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Abstract. Gait recognition aims at identifying different people by the
walking patterns, which can be conducted at a long distance without
the cooperation of subjects. A key challenge for gait recognition is to
learn representations from the silhouettes that are invariant to the fac-
tors such as clothing, carrying conditions and camera viewpoints. Besides
being discriminative for identification, the gait representations should
also be compact for storage to keep millions of subjects registered in the
gallery. In this work, we propose a novel network named Gait Lateral
Network (GLN) which can learn both discriminative and compact rep-
resentations from the silhouettes for gait recognition. Specifically, GLN
leverages the inherent feature pyramid in deep convolutional neural net-
works to enhance the gait representations. The silhouette-level and set-
level features extracted by different stages are merged with the lateral
connections in a top-down manner. Besides, GLN is equipped with a
Compact Block which can significantly reduce the dimension of the gait
representations without hindering the accuracy. Extensive experiments
on CASIA-B and OUMVLP show that GLN can achieve state-of-the-art
performance using the 256-dimensional representations. Under the most
challenging condition of walking in different clothes on CASIA-B, our
method improves the rank-1 accuracy by 6.45%.

Keywords: Gait recognition · Lateral connections · Discriminative
representations · Compact representations

1 Introduction

Gait recognition aims at identifying different people using videos recording the
walking patterns [38]. Compared to other biometrics such as face [33], finger-
print [27] and iris [39], human gait can be obtained at a long distance without
the cooperation of subjects, which contributes to its broad applications in crime
prevention, forensic identification and social security [4,18]. However, gait recog-
nition suffers from a lot of variations such as clothing, carrying conditions and
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Fig. 1. Illustration of the silhouette-based gait recognition. The learned representations
should be discriminative to identify different people, and should also be compact for
the convenience of storage

camera viewpoints [36,42]. A key challenge is to learn representations from the
silhouettes of gait sequences that are invariant to the factors mentioned above.

To address the issue, various methods have been proposed which can be
roughly divided into three categories. The first category [8,10,35,41] aggregates
the silhouettes of a complete gait sequence into an image (or template) for recog-
nition, e.g. Gait Energy Image [8]. Despite the simplicity, the temporal and
fine-grained spatial information is inevitably lost in the pre-processing. The sec-
ond [20,40] regards the silhouettes of a gait sequence as a video. For example,
in [40], a 3D-CNN [14] is adopted to extract the spatial and temporal informa-
tion while the model is relatively hard to train. The third [6] is recently proposed
and treats the silhouettes of a gait sequence as an unordered set, which is robust
to the number of the silhouettes and achieves significant improvements. How-
ever, the dimension of the representations learned by [6] reaches up to 15872
that is much higher than those for face recognition (e.g. 180 [33]) or person
re-identification (e.g. 2048 [25]).

In this work, we deal with gait recognition with the aims of learning both
discriminative and compact representations from the silhouettes for gait recog-
nition. We propose a novel network named Gait Lateral Network (denoted as
GLN) where the silhouettes of each gait sequence are regarded as an unordered
set. As illustrated in Fig. 1, besides being discriminative to identify different peo-
ple, the learned representation for each silhouette set should also be as compact
as possible, which would otherwise incur a heavy storage burden to keep mil-
lions of subjects registered in the gallery. It is noteworthy that, the dimension of
the representations learned by GLN is fixed to 256 which is reduced by nearly
two orders of magnitude compared to [6] and the performance for all walking
conditions are improved simultaneously.

Specifically, we propose to leverage the inherent feature pyramid in deep
CNNs to learn discriminative gait representations. The features extracted by
different layers capture various visual details of the input [43]. We notice that
the silhouettes for different subjects only have subtle differences in many cases,
which makes it vital to explore the shallow features encoding the local spatial
structural information for gait recognition. Particularly, we modify the network
of [6] as the backbone and explicitly divide the layers into three stages. The
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silhouette-level and set-level features extracted by different stages are merged
with the lateral connections in a top-down manner, which tries to aggregate the
visual details extracted by different layers for accurate recognition. The features
after refinement of different stages are then split horizontally to learn part rep-
resentations and the triplet loss is added at all stages as the intermediate super-
vision [19]. Besides, we propose a novel Compact Block to learn compact gait
representations. The preliminary study reveals that there exists a lot of redun-
dancy in the high-dimensional representations learned by HPM [6,7] which is
widely adopted for part representation learning. The proposed Compact Block
can distill the knowledge of high-dimensional gait representations into compact
ones without hindering the accuracy. Its architecture is simple but non-trivial
which can be seamlessly integrated with the backbone and trained in an end-to-
end manner. We regard the high-dimensional representations as an ensemble of
low-dimensional ones and utilize Dropout to select a small subset, which is then
mapped into a compact space by Fully Connected Layer.

In summary, our contributions of this work lie in three folds: (1) We propose
to leverage the inherent feature pyramid in deep CNNs to enhance the gait rep-
resentations for accurate recognition. The silhouette-level and set-level features
extracted by different stages are merged with the lateral connections in a top-
down manner. (2) We propose a Compact Block which can significantly reduce
the dimension of the gait representations without hindering the accuracy. (3)
The resulting GLN can learn both discriminative and compact representations
from the silhouettes for gait recognition. The experiments on CASIA-B [42]
and OUMVLP [36] show that GLN can achieve state-of-the-art performance
for all walking conditions using the 256-dimensional representations. In partic-
ular, under the most challenging condition of walking in different clothes on
CASIA-B, the rank-1 accuracy achieved by GLN exceeds GaitSet [6] with the
15872-dimensional representations by 6.45%.

2 Related Work

Motion-Based Gait Recognition. These methods including [1,3,16] attempt
to model the human body structures and then extract motion features for gait
recognition, which have the advantage of being robust to clothing and carrying
conditions. Nevertheless, they usually fail on low-resolution videos where it is
difficult to estimate the body parameters accurately.

Appearance-Based Gait Recognition. These methods including [8,17,26,
37] directly learn features from the gait sequences without explicitly modeling
the body structures, which suit for the low-resolution conditions and thus attract
increasing attention [44,46]. The silhouettes are usually taken as the input and a
key challenge is to learn representations from the silhouettes that are robust to
the factors such as clothing, carrying conditions and camera viewpoints [36,42].
The silhouette-based gait recognition can be roughly divided into three categories
where the silhouettes of a complete gait sequence are respectively regarded as
an image [8,10,35,41], a video [20,40] or an unordered image set [6].
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Deep learning that innovates the field of computer vision is also widely used
for gait recognition. Specifically, a comprehensive study on deep convolutional
neural networks for gait recognition is conducted in [41]. An auto-encoder frame-
work is proposed by [46] to explicitly disentangle the appearance and pose
features in the representation learning. JUCNet [44] integrates the cross-gait
and unique-gait supervision with a tailored quintuplet loss. DiGGAN [12] takes
advantage of a Conditional GAN [28] to learn the view-invariant gait features.
GaitSet [6] treats the silhouettes of each gait sequence as an unordered set and
splits the features horizontally to learn part representations for gait recognition,
which achieves significant improvements and holds the best performance across
different datasets. However, the dimension of the final representations learned
by [6] is too high, i.e. 15872.
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Fig. 2. Illustration of the division for the backbone, Sil-level for Silhouette-level, MaxP
for Max Pooling, SP for Set Pooling. The silhouette-level features are extracted from
each silhouette separately while the set-level features are extracted from all silhouettes.
Set Pooling is a function to aggregate the features in a silhouette set

Inherent Feature Pyramid. The inherent feature pyramid in deep convo-
lutional neural networks has been exploited in many visual tasks. For exam-
ple, FCN [24] utilizes the features of different layers to progressively refine the
predictions for semantic segmentation. Hypercolumns [9] proposes an efficient
computation strategy to aggregate the features of different layers for object seg-
mentation and localization. SSD [23] detects the objects using the features of
different layers separately without fusing features or scores.

The top-down manner to merge the features of different stages in GLN is
inspired by FPN [21] for object detection. However, our approach differs from
FPN in three aspects. First, there are two branches in the last two stages of GLN
as shown in Fig. 2 and the lateral connections in GLN are utilized to merge
the silhouette-level and set-level features simultaneously. Second, the training
labels for different stages in FPN are assigned according to the receptive fields,
while the supervision signals for different stages in GLN are the same. Third,
FPN shares the parameters in the heads following different stages, while the
subsequent layers for different stages in GLN have independent parameters.
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Fig. 3. Illustration of Gait Lateral Network, Sil-level for Silhouette-level, MaxP for
Max Pooling, SMO for Smooth Layer, HPM for Horizontal Pyramid Mapping. For
simplicity, Set Pooling for the silhouette-level features before each 1 × 1 convolutional
layer is omitted and we use the scales S = {1, 2, 4} to split the features horizontally in
HPM. The output of Compact Block is taken as the final representation

3 Our Approach

In this work, we propose a novel network named Gait Lateral Network (GLN)
which can learn both discriminative and compact representations from the sil-
houettes for gait recognition. The silhouettes of a complete gait sequence are
regarded as an unordered set. The network structure is illustrated in Fig. 3. The
silhouette-level and set-level features extracted by different stages in the back-
bone are merged with the lateral connections in a top-down manner, which aims
to enhance the gait representations for accurate recognition. And we propose a
Compact Block which can significantly reduce the dimension of the gait repre-
sentations without hindering the accuracy. In what follows, we will first elabo-
rate the lateral connections in GLN. Then we will introduce the composition of
Compact Block. Finally, we will describe the corresponding training strategy for
GLN.

3.1 Lateral Connections

In GLN, we propose to leverage the inherent feature pyramid in deep convolu-
tional neural networks to learn discriminative gait representations. The features
extracted by different layers in the backbone are aggregated to enhance the gait
representations.

Specifically, we modify the network of [6] as the backbone where the order
of the second Set Pooling and Max Pooling is switched. As shown in Fig. 2, we
explicitly divide the layers in the backbone into three stages. The first stage is
comprised of two convolutional layers which transform the silhouettes into the
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internal features. The second and third stages consist of two branches that learn
the silhouette-level and set-level features respectively. Set Pooling is a function to
aggregate the features in a silhouette set, which should be permutation invariant
to the order of the silhouettes and is implemented by Max Pooling for simplicity.
Note that, different from Max Pooling between different stages operating along
the spatial dimensions (height and width), Max Pooling for Set Pooling operates
along the set dimension1. The backbone extracts the silhouette-level features as
well as the set-level features in a bottom-up way. The features extracted by the
three stages are respectively denoted as {C0, C1, C2}, which have the strides of
{1, 2, 4} with respect to the input silhouettes.

The features of different stages in the backbone capture various visual details
of the silhouettes [43], and we propose to merge the features extracted by dif-
ferent stages with the lateral connections in a top-down manner. The strategy
is illustrated in Fig. 3. Specifically, first, at the last two stages, we adopt Set
Pooling to deal with the silhouette-level features and concatenate the output
with the set-level features along the channel dimension. And at the first stage,
only the silhouette-level features are available which are also processed by Set
Pooling. Then at each stage, a 1 × 1 convolutional layer is taken to rearrange
the features and adjust the channel dimension. Next, starting from the features
generated at the last stage, we upsample the spatial dimensions (height and
width) by a factor of 2 and add to the features generated at the previous stage
(which have the same channel dimensions after the 1 × 1 convolutional layers)
by element-wise addition. This process is iterated until the features generated
at all stages are merged. Finally, a smooth layer is appended after each stage
to alleviate the aliasing effect caused by upsampling and semantic gaps between
different stages. The output of the smooth layers are denoted as {F0, F1, F2}
for the three stages, corresponding to {C0, C1, C2}, which respectively have the
same spatial dimensions.

It is worth noting that, the output of the 1 × 1 convolutional layers as well
as the smooth layers have the same channel dimensions, which are fixed to 256
through our experiments. Every smooth layer is implemented by a 3 × 3 con-
volutional layer. Besides, there are no non-linear activation functions involved
in the lateral connections and we use the nearest neighbor upsampling between
different stages.

3.2 Compact Block

In this section, we will elaborate the composition of Compact Block which is
proposed to learn compact gait representations. Before that, we first review
Horizontal Pyramid Mapping (HPM) [6] as the background which results in
the high representation dimension.

HPM is equivalent to Horizontal Pyramid Pooling (HPP) [7] for person Re-
ID, which is adopted by GLN to learn part representations for gait recognition.
1 The silhouette-level features have the shape of [batch, set, channel, height, width]

where the set dimension denotes the number of the silhouettes in an unordered set.
And the set-level features have the shape of [batch, channel, height, width].
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Despite the effectiveness, the representations obtained by HPM hold a very high
dimension, e.g. 15872 [6]. Specifically, HPM first splits the features horizontally
using multiple scales S, e.g. S = {1, 2, 4, 8, 16}. For each scale s ∈ S, the features
F are sliced into s bins horizontally and equally. Then, the global max and
average pooling are taken to generate the features Gs,t for each bin:

Gs,t = MaxPool (Fs,t) + AvgPool (Fs,t) (1)

where s ∈ S and t ∈ {1, · · · , s}. Finally, a fully connected layer is applied to
Gs,t and the output is denoted as ̂Gs,t. In the training phase, the loss is added
to the features of each part. And in the test phase, the features of all parts
are concatenated as the final representations. As a result, the dimension of the
final representations is proportional to the sum of scales (e.g. sum(S) = 31 with
S = {1, 2, 4, 8, 16}) and the feature dimension of each part (e.g. 256), which
is infeasible for the real-world applications. By delving into the formulation of
HPM, we observe that the representations across different scales encode some
duplicate information. For example, the part representations with the indexes
(s, t) = (4, 1) and (s, t) = {(8, 1), (8, 2)} correspond to the same regions in the
input silhouettes. Thus we conjecture that there exists a lot of redundancy in
the high-dimensional representations obtained by HPM.

To tackle the issue, we propose a Compact Block with the aims of distilling
the knowledge of high-dimensional representations into compact ones without
hindering the accuracy. As shown in Fig. 3, Compact Block has a plain structure
which is composed of Batch Normalization (BN-I) [13], ReLU [15], Dropout [32],
Fully Connected Layer (FC) and another Batch Normalization (BN-II). The
block is simple yet effective, and here we provide the design principles for each
layer:

(1) BN-I is adopted to normalize the concatenated features obtained by HPM,
which helps stabilize the training processing.

(2) ReLU is introduced as the activation function to increase the non-linearity
for Compact Block.

(3) Dropout is the key of Compact Block. As mentioned above, the representa-
tions obtained by HPM can be regarded as an ensemble of low-dimensional
ones. Here we take advantage of Dropout to select a small subset from each
high-dimensional representation.

(4) FC is used to map the small subset from Dropout into a more discriminative
space. The output of FC determines the dimension of the final representa-
tions which is set to 256 through our experiments.

(5) BN-II is introduced for the convenience of optimizing the cross-entropy loss
inspired by [22,25], where each subject in the training set is treated as a
separate class.

In summary, Compact Block significantly reduces the gait representations to
a fixed dimension (e.g. 256 in our experiments), which is seamlessly integrated
with the backbone and trained in an end-to-end manner. It is worth noting that,
we adopt the implementation of Dropout that is available in PyTorch [29]. It
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only works in the training phase, and at inference time the final representations
can be treated as an ensemble of multiple reductions.

3.3 Training Strategy

The training strategy for GLN consists of two steps: Lateral Pretraining and
Global Training. As shown in Fig. 3, there are two types of losses involved in the
training, i.e. triplet loss and cross-entropy loss. The triplet loss is deployed after
HPM as the intermediate supervision [19], while the cross-entropy loss is added
at the end of GLN to learn the global representations.

First, in order to obtain a reasonable initialization for the lateral connections,
we propose Lateral Pretraining supervised by the triplet loss only. Specifically,
the batch all version of triplet loss [11] is added to the features of each part
obtained by HPM at all stages. Formally:

Ltp =
1

Ntp+

bins
︷ ︸︸ ︷

∑

s∈S

s
∑

t=1

anchors
︷ ︸︸ ︷

P
∑

i=1

K
∑

j=1

pos.
︷︸︸︷

K
∑

a=1
a�=j

negative
︷ ︸︸ ︷

P
∑

b=1
b�=i

K
∑

c=1

[

m + ds,t,i,j,b,cs,t,i,j,i,a

]

+

ds,t,i,j,b,cs,t,i,j,i,a = dist(f(sils,ti,j ), f(sils,ti,a)) − dist(f(sils,ti,j ), f(sils,tb,c))

(2)

where Ntp+ is the number of triplets resulting in the non-zero loss terms over
a mini-batch, S is the multiple scales for HPM, (P,K) are the number of sub-
jects and the number of sequences for each subject in a mini-batch, m is the
margin threshold, f denotes the feature extraction, sil denotes the silhouette
set, dist measures the similarity between two features, e.g. euclidean distance.
Note that, in Lateral Pretraining, we do not decrease the learning rate to prevent
overfitting [47].

Then, Global Training is conducted to train the whole network with the sum
of triplet loss and cross-entropy loss. For cross-entropy loss, each subject in the
training set is treated as a separate class and the label smooth technique [34] is
adopted. Formally:

Lce = − 1
P × K

P
∑

i=1

K
∑

j=1

N
∑

n=1

qijn log pijn (3)

where N is the number of all subjects in the training set, p is the probabilities
belonging to each subject, q encodes the identity information which is computed
as follows (taking the y-th subject as an example):

qijn =

⎧

⎪

⎨

⎪

⎩

1 − N − 1
N

ε if n = y

ε

N
otherwise

(4)

where ε is a small constant to encourage the model to be less confident on the
training set. In our experiments, ε is set to 0.1. The total loss for Global Training
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is computed as:
L = Ltp + Lce (5)

It is worth noting that, in the training phase, another Fully Connected Layer
is introduced after Compact Block to compute the probabilities for each subject,
which, however, is deprecated at inference time. The output of Compact Block
is taken as the final representation for each silhouette set to match the probe
and gallery.

Table 1. The dataset statistics. NM for normal walking, BG for walking with bags, CL
for walking in different clothes

Dataset Subjects Walking conditions Views

Train Test NM BG CL

CASIA-B 74 50 6 2 2 11

OUMVLP 5153 5154 2 – – 14

4 Experiment

4.1 Settings

Datasets. The experiments are conducted on two popular gait datasets:
CASIA-B [42] and OUMVLP [36]. The dataset statistics are shown in Table 1.

CASIA-B. It is a typical gait dataset that consists of 124 subjects. The
walking conditions contain normal walking (NM, 6 variants per subject), walking
with bags (BG, 2 variants per subject) and walking in different clothes (CL, 2
variants per subject). The 11 views for each walking condition are uniformly
distributed in [0◦, 180◦] at an interval of 18◦. In total, there are (6 + 2 + 2) ×
11 = 110 sequences for each subject. There is no partition for training and test
provided in this dataset. In our experiments, we take the first 74 subjects as the
training set and the rest 50 as the test set. For evaluation, we regard the first 4
variants of normal walking (NM) for each subject as the gallery with the rest as
the probe. The probe can be further divided into three subsets according to the
walking conditions, i.e. NM, BG, CL.

OUMVLP. It is the largest gait dataset in public which consists of 10307
subjects. However, only the sequences of normal walking (NM, 2 variants per
subject) are available for each subject. The 14 views are uniformly distributed
between [0◦, 90◦] and [180◦, 270◦] at an interval of 15◦. In total, there are 2×14 =
28 sequences for each subject. According to the provided partition, we take 5153
subjects as the training set with the rest 5154 as the test set. For evaluation, the
first variant of normal walking (NM) for each subject is treated as the gallery
with the rest as the probe.
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Implementation Details. All models are implemented with PyTorch [29].
The silhouettes in both datasets are pre-processed using the methods in [35].
The number of subjects and the sequences for each subject in a mini-batch as
well as the input size of each silhouette, are set to (8, 16, 128 × 88) for CASIA-B
and (32, 16, 64 × 44) for OUMVLP. In the training phase, we randomly select
30 silhouettes for each gait sequence. For evaluation, all silhouettes of a gait
sequence are taken to obtain the final representation.

The convolutional channels in the three stages shown in Fig. 2 are set to
(32, 64, 128) for CASIA-B and (64, 128, 256) for OUMVLP. In the lateral connec-
tions shown in Fig. 3, the output dimensions of the 1×1 convolutional layers and
the smooth layers are all set to 256. We use the multiple scales S = {1, 2, 4, 8, 16}
to split the features horizontally at all stages and the feature dimension of each
part obtained by HPM is set to 256. For Compact Block, an aggressive dropping
ratio 0.9 is adopted for Dropout and the output dimension is set to 256.

We adopt SGD with momentum [30] as the optimizer. The initial learning
rate is set to 0.1 which is not decreased in Lateral Pretraining. While in Global
Training, the learning rate is scaled to its 1/10 three times until convergence.
The step size is set to 10000 iterations for CAISA-B and 50000 iterations for
OUMVLP. We use the momentum 0.9 and the weight decay 5e−4 for the opti-
mization. The margin threshold m for Ltp in Eq. 2 is set to 0.2. Besides, the
warmup strategy [25] is adopted at the start of training.

Baselines. GaitSet [6] holds the best performance for the silhouette-based gait
recognition and is taken as an important baseline in our experiments. It pro-
poses to treat the silhouettes of a gait sequence as an unordered set and splits
the features horizontally to learn part representations for gait recognition, which
outperforms the previous works [31,41] by a large margin. It is worth mention-
ing that, we reproduce the results for GaitSet by ourselves which are a little
higher than those reported in [6]. Besides, for a comprehensive study, we also
re-implement GEINet [31] which is a representative method taking Gait Energy
Image [8] as the input. It customizes a network for gait recognition and treats
each subject as a separate class in the training. The features before the softmax
layer are taken to match the probe and gallery for evaluation. Finally, to enable
a more fair comparison on CASIA-B, we implement an improved version of Gait-
Set (denoted as GaitSet-L) where the input size of each silhouette is enlarged
from 64 × 44 to 128 × 88.

4.2 Performance Comparison

CASIA-B. Table 2 shows the performance comparison on CASIA-B. The
dimensions of the final representations learned by different methods are also
compared. The probe sequences are divided into three subsets, i.e. NM, BG,
CL, which are respectively evaluated. The accuracy for each probe view is aver-
aged on all gallery views excluding the identical-view cases.
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From the results in Table 2, we observe that GaitSet and GaitSet-L out-
perform GEINet by a large margin, which, however, generate the gait repre-
sentations with a very high dimension (i.e. 15872). The comparisons between
GaitSet-L and GaitSet indicate that enlarging the input size is beneficial to
gait recognition especially for walking with bags (BG) and walking in differ-
ent clothes (CL), although the consumption of GPU memory is simultaneously
increased. Particularly, compared to GaitSet and GaitSet-L, GLN reduces the
representation dimension by nearly two orders of magnitude (15872→256) and
achieves state-of-the-art performance under all walking conditions (NM-96.88%,
BG-94.04%, CL-77.50%). Under the most challenging condition of walking in
different clothes (CL), GLN exceeds GaitSet by 6.45% with the representation
dimension significantly reduced to 256. The improvements under the other two
walking conditions compared to GaitSet are also impressive, i.e. +1.67% for nor-
mal walking (NM) and +5.96% for walking with bags (BG). Besides, we notice
that, though the average performance is inferior to GLN, GaitSet-L achieves the
best performance in some probe views (e.g. 126◦) for walking in different clothes
(CL). This phenomenon needs further exploration.

Table 2. The rank-1 accuracy (%) on CAISA-B across different views excluding the
identical-view cases, DIM for Dimension. For evaluation, the first 4 variants of normal
walking (NM) for each subject are taken as the gallery. The probe sequences are divided
into three subsets according to the walking conditions, i.e. NM, BG and CL

Probe Method DIM Probe view Average

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 134◦ 162◦ 180◦

NM GEINet [31] 1024 40.20 38.90 42.90 45.60 51.20 42.00 53.50 57.60 57.80 51.80 47.70 48.11

GaitSet [6] 15872 93.40 98.10 98.50 97.80 92.60 90.90 94.20 97.30 98.40 97.00 89.10 95.21

GaitSet-L 15872 91.40 98.50 98.80 97.20 94.80 92.90 95.40 97.90 98.80 96.50 89.10 95.57

GLN (ours) 256 93.20 99.30 99.50 98.70 96.10 95.60 97.20 98.10 99.30 98.60 90.10 96.88

BG GEINet [31] 1024 34.20 29.29 31.21 35.20 35.20 27.60 35.90 43.50 45.00 38.99 36.80 35.72

GaitSet [6] 15872 85.90 92.12 93.94 90.41 86.40 78.70 85.00 91.60 93.10 91.01 80.70 88.08

GaitSet-L 15872 89.00 95.25 95.56 93.98 89.70 86.70 89.70 94.30 95.40 92.73 84.40 91.52

GLN (ours) 256 91.10 97.68 97.78 95.20 92.50 91.20 92.40 96.00 97.50 94.95 88.10 94.04

CL GEINet [31] 1024 19.90 20.30 22.50 23.50 26.70 21.30 27.40 28.20 24.20 22.50 21.60 23.46

GaitSet [6] 15872 63.70 75.60 80.70 77.50 69.10 67.80 69.70 74.60 76.10 71.10 55.70 71.05

GaitSet-L 15872 66.30 79.40 84.50 80.70 74.60 73.20 74.10 80.30 79.70 72.30 62.90 75.27

GLN (ours) 256 70.60 82.40 85.20 82.70 79.20 76.40 76.20 78.90 77.90 78.70 64.30 77.50

OUMVLP. Table 3 displays the performance comparison on OUMVLP where
GLN also achieves state-of-the-art performance with the 256-dimensional rep-
resentations. The input size of each silhouette on this dataset is set to 64 × 44
due to the limits of GPU memory and thus the performance of GaitSet-L is not
available. It is worth noting that, the dimension of the representations learned
by GEINet is doubled to 2048 for this large-scale dataset, and the reproduced
results for GEINet is much higher than those reported in [6]. In spite of the high
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representation dimension, GaitS et al. so holds the best performance on this
large-scale dataset before this work and outperforms GEINet by a large margin.
According to the results shown in Table 3, we observe that GLN improves the
rank-1 accuracy by 2.13% compared to GaitSet and the representation dimension
is significantly reduced to 256.

Besides, we notice that the gait data for some subjects in OUMVLP is incom-
plete. As a result, for some probe sequences, there are not the corresponding
sequences in the gallery. Thus we further conduct the evaluation ignoring the
probe sequences which have no corresponding ones in the gallery. As shown
in the last three rows of Table 3, GLN finally achieves the rank-1 accuracy of
95.57% with the 256-dimensional representations, which exceeds GaitSet with
the 15872-dimensional representations by 2.32% on this large-scale dataset.

4.3 Ablation Study

In this section we provide the ablation study to further analyze GLN. The exper-
iments are conducted on CASIA-B using the settings described in Sect. 4.1.

Table 3. The rank-1 accuracy (%) on OUMVLP across different views excluding the
identical-view cases, DIM for Dimension. For evaluation, the first variant of normal
walking (NM) for each subject is taken as the gallery with the rest as the probe. The last
three rows show the results ignoring the probe sequences which have no corresponding
ones in the gallery

Method DIM Probe view Average

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet [31] 2048 23.20 38.09 47.95 51.81 47.53 48.09 43.75 27.25 37.89 46.78 49.85 45.94 45.65 40.96 42.48

GaitSet [6] 15872 79.33 87.59 89.96 90.09 87.96 88.74 87.69 81.82 86.46 88.95 89.17 87.16 87.60 86.15 87.05

GLN(ours) 256 83.81 90.00 91.02 91.21 90.25 89.99 89.43 85.28 89.09 90.47 90.59 89.60 89.31 88.47 89.18

GEINet [31] 2048 24.91 40.65 51.55 55.13 49.81 51.05 46.37 29.17 40.67 50.53 53.27 48.39 48.64 43.49 45.26

GaitSet [6] 15872 84.50 93.27 96.72 96.58 93.48 95.28 94.15 87.04 92.50 96.00 95.96 92.99 94.34 92.69 93.25

GLN(ours) 256 89.28 95.84 97.87 97.82 96.01 96.68 96.07 90.71 95.34 97.66 97.54 95.69 96.24 95.27 95.57

Lateral Connections. In GLN, the silhouette-level and set-level features
extracted by different stages are merged with the lateral connections in a top-
down manner. Here we separately evaluate the effect of lateral connections.
Specifically, the network shown in Fig. 3 is trained without Compact Block until
convergence. HPM is applied to the features generated by the lateral connec-
tions at the three stages. And the features of all parts are concatenated as the
final representations where the dimension reaches up to 23808. According to the
results shown in Table 4, the lateral connections can improve the performance
under all walking conditions especially for walking in different clothes (CL).
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Label Smooth. As stated in Sect. 3.3, the label smooth is adopted to prevent
overfitting on the subjects in the training set. Here we conduct the experiment
ignoring the label smooth and the standard cross-entropy loss [15] is computed
for GLN. As shown in the last two rows of Table 4, the label smooth is beneficial
to gait recognition under all walking conditions. Besides, the experimental results
in Table 4 indicate that Compact Block can simultaneously reduce the dimension
of the representations and improve the performance especially for normal walking
(NM) and walking with bags (BG). The performance for walking in different
clothes (CL) is comparable before and after reduction.

Training Strategy. The training strategy for GLN consists of two steps: Lateral
Pretraining and Global Training. We have also tried to train the whole network
globally from scratch, however, the performance is inferior under all walking
conditions on CASIA-B (NM-96.48%, BG-93.07%, CL-77.07%). The comparison
indicates that it is necessary to pretrain the lateral connections.

Table 4. The ablation study for lateral connections and label smooth, DIM for Dimen-
sion, CBlock for Compact Block. The results are reported on CASIA-B

Method DIM Label Smooth NM BG CL

GaitSet [6] 15872 – 95.21 88.08 71.05

GaitSet-L 15872 – 95.57 91.52 75.27

GLN (without CBlock) 23808 – 95.58 91.98 77.22

GLN (with CBlock) 256 × 96.48 94.03 77.03

GLN (with CBlock) 256
√

96.88 94.04 77.50

Output Dimensions. The dimension of the final representations learned by
GLN is empirically set to 256 through our experiments. Here we provide the
experimental results with different output dimensions including 128 and 512.
As shown in Table 5, the performance for normal walking (NM) and walking
with bags (BG) are comparable with the three dimensions. The dimension 256
achieves the best performance for walking in different clothes (CL) which is the
most challenging and occurs frequently in the real-world applications.

Variants of Compact Block. As shown in Table 5, we conduct the exper-
iments in comparison to some variants of Compact Block. We use the same
settings as described in Sect. 4.1 except that the structure of Compact Block is
replaced by the variants shown in Table 5. And we have also tried some clas-
sical methods for dimension reduction such as Principal Components Analysis
(PCA, NM-95.47%, BG-91.90%, CL-76.99%) and Linear Discriminant Analy-
sis (LDA, NM-87.97%, BG-81.85%, CL-63.19%). The performance comparisons
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indicate that Compact Block can be treated as a reasonable choice to reduce the
dimension of the gait representations.

Time Statistics. Here we provide the running time comparison on CASIA-B
between GaitSet-L and GLN in the training (GaitSet-L: 0.96s per iteration v.s.
GLN: 1.01s per iteration) and test (GaitSet-L: 0.021s per sequence v.s. GLN:
0.022s per sequence). Though the running time of GLN is marginally increased
compared to GaitSet-L, our method can reduce the representation dimension
by nearly two orders of magnitude (15872 → 256) and the performance for all
walking conditions are improved simultaneously.

Table 5. The ablation study for output dimensions and variants of Compact Block,
DIM for Dimension. The results are reported on CASIA-B

DIM Variants of compact block NM BG CL

512 BN+ReLU+Dropout+FC+BN 96.98 94.09 77.10

256 BN+ReLU+Dropout+FC+BN 96.88 94.04 77.50

128 BN+ReLU+Dropout+FC+BN 97.07 94.10 76.84

256 BN+FC+BN 94.58 90.81 70.05

256 BN+ReLU+FC+BN 95.29 90.74 71.48

256 BN+Dropout+FC+BN 96.37 93.83 75.23

256 BN+ReLU+Dropout+FC+BN 96.88 94.04 77.50

Comparison to More Baselines. As stated in Sect. 4.1, GaitSet [6] holds
state-of-the-art performance for the silhouettes-based gait recognition before this
work and GEINet [31] is a representative method taking Gait Energy Image [8]
as input, which are more related to our work and compared thoroughly in our
experiments. Here we provide more silhouette-based methods for comparison
such as CNN-LB [41] (NM-89.9%, BG-72.4%, CL-54.0%) and J-CNN [45] (NM-
91.2%, BG-75.0%, 54.0%). Besides, we notice that there are some methods taking
other types of input for gait recognition such as GaitNet [46] (RGB frames, NM-
92.3%, BG-88.9%, CL-62.3%), GaitMotion [2] (optical flow, NM-97.5%, BG-
83.6%, CL-48.8%), SM-Prod [5] (gray images and optical flow, NM-99.8%, BG-
96.1%, CL-67.0%). Though some methods [2,5] report a little higher performance
for NM, the optical flow needs a lot of computation cost and the performance
for the challenging CL is much inferior to our method (CL-77.50%). The results
here are all reported on CASIA-B.

5 Conclusion

In this work, we propose a novel network named Gait Lateral Network (GLN)
which can learn both discriminative and compact representations from the sil-
houettes for gait recognition. Specifically, the inherent feature pyramid in deep
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convolutional networks is leveraged to learn discriminative gait representations.
The silhouette-level and set-level features extracted by different stages in the
backbone are merged with the lateral connections in a top-down manner, which
enhances the gait representations by aggregating more visual details. And we
propose a Compact Block to learn compact gait representations, which can sig-
nificantly reduce the dimension of the gait representations without hindering the
accuracy. Extensive experiments on CASIA-B and OUMVLP demonstrate that
GLN achieves state-of-the-art performance under all walking conditions using
the 256-dimensional representations.

Acknowledgments. We are grateful to Prof. Dongbin Zhao for his support to this
work.
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