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Abstract. Deep generative models are often used for human motion
prediction as they are able to model multi-modal data distributions
and characterize diverse human behavior. While much care has been
taken into designing and learning deep generative models, how to effi-
ciently produce diverse samples from a deep generative model after it
has been trained is still an under-explored problem. To obtain sam-
ples from a pretrained generative model, most existing generative human
motion prediction methods draw a set of independent Gaussian latent
codes and convert them to motion samples. Clearly, this random sam-
pling strategy is not guaranteed to produce diverse samples for two
reasons: (1) The independent sampling cannot force the samples to
be diverse; (2) The sampling is based solely on likelihood which may
only produce samples that correspond to the major modes of the data
distribution. To address these problems, we propose a novel sampling
method, Diversifying Latent Flows (DLow), to produce a diverse set
of samples from a pretrained deep generative model. Unlike random
(independent) sampling, the proposed DLow sampling method samples
a single random variable and then maps it with a set of learnable map-
ping functions to a set of correlated latent codes. The correlated latent
codes are then decoded into a set of correlated samples. During train-
ing, DLow uses a diversity-promoting prior over samples as an objec-
tive to optimize the latent mappings to improve sample diversity. The
design of the prior is highly flexible and can be customized to gen-
erate diverse motions with common features (e.g., similar leg motion
but diverse upper-body motion). Our experiments demonstrate that
DLow outperforms state-of-the-art baseline methods in terms of sample
diversity and accuracy (Code: https://github.com/Khrylx/DLow. Video:
https://youtu.be/64OEdSadb00).

Keywords: Generative models · Diversity · Human motion forecasting

1 Introduction

Human motion prediction, i.e., predicting the future 3D poses of a person based
on past poses, is an important problem in computer vision and has many
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Fig. 1. In the latent space of a conditional variational autoencoder (CVAE), samples
(stars) from our method DLow are able to cover more modes (colored ellipses) than
the CVAE samples. In the motion space, DLow generates a diverse set of future human
motions while the CVAE only produces perturbations of the motion of the major mode.

useful applications in autonomous driving [53], human robot interaction [37]
and healthcare [65]. It is a challenging problem because the future motion of
a person is potentially diverse and multi-modal due to the complex nature of
human behavior. For many safety-critical applications, it is important to predict
a diverse set of human motions instead of just the most likely one. For examples,
an autonomous vehicle should be aware that a nearby pedestrian can suddenly
cross the road even though the pedestrian will most likely remain in place. This
diversity requirement calls for a generative approach that can fully characterize
the multi-modal distribution of future human motion.

Deep generative models, e.g., variational autoencoders (VAEs) [36], are effec-
tive tools to model multi-modal data distributions. Most existing work [3,6,
40,44,59,66,69] using deep generative models for human motion prediction is
focused on the design of the generative model to allow it to effectively learn
the data distribution. After the generative model is learned, little attention has
been paid to the sampling method used to produce motion samples (predicted
future motions) from the pretrained generative model (weights kept fixed). Most
of prior work predicts a set of motions by randomly sampling a set of latent
codes from the latent prior and decoding them with the generator into motion
samples. We argue that such a sampling strategy is not guaranteed to produce a
diverse set of samples for two reasons: (1) The samples are independently drawn,
which makes it difficult to enforce diversity; (2) The samples are drawn based on
likelihood only, which means many samples may concentrate around the major
modes (which have more observed data) of the data distribution and fail to cover
the minor modes (as shown in Fig. 1 (Bottom)). The poor sample efficiency of
random sampling means that one needs to draw a large number of samples in
order to cover all the modes which is computationally expensive and can lead to
high latency, making it unsuitable for real-time applications such as autonomous
driving and virtual reality. This prompts us to address an overlooked aspect of
diverse human motion prediction—the sampling strategy.
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We propose a novel sampling method, Diversifying Latent Flows (DLow), to
obtain a diverse set of samples from a pretrained deep generative model. For
this work, we use a conditional variational autoencoder (CVAE) as our pre-
trained generative model but other generative models can also be used with our
approach. DLow is inspired by the two previously mentioned problems with ran-
dom (independent) sampling. To tackle problem (1) where sample independence
limits model diversity, we introduce a new random variable and a set of learn-
able deterministic mapping functions to correlate the motion samples. We first
transform the random variable with the mapping functions to generate a set of
correlated latent codes which are then decoded into motion samples using the
generator. As all motion samples are generated from a common random factor,
this formulation allows us to model the joint sample distribution and offers us
the opportunity to impose diversity on the samples by optimizing the parameters
of the mapping functions. To address problem (2) where likelihood-based sam-
pling limits diversity, we introduce a diversity-promoting prior (loss function)
on the samples during the training of DLow. The prior follows an energy-based
formulation using an energy function based on pairwise sample distance. We
optimize the mapping functions during training to minimize the cross entropy
between the joint sample distribution and diversity-promoting prior to increase
sample diversity. To strike a balance between diversity and likelihood, we add
a KL term to the optimization to enhance the likelihood of each sample. The
relative weights between the prior term and the KL term represent the trade-off
between the diversity and likelihood of the generated motion samples. Further-
more, our approach is highly flexible in that by designing different forms of the
diversity-promoting prior we can impose a variety of structures on the samples
besides diversity. For example, we can design the prior to ask the motion samples
to cover the ground truth better to achieve higher sample accuracy. Addition-
ally, other designs of the prior can enable new applications, such as controllable
motion prediction, where we generate diverse motion samples that share some
common features (e.g., similar leg motion but diverse upper-body motion).

The contributions of this work are the following: (1) We propose a novel per-
spective for addressing sample diversity in deep generative models—designing
sampling methods for a pretrained generative model. (2) We propose a prin-
cipled sampling method, DLow, which formulates diversity sampling as a con-
strained optimization problem over a set of learnable mapping functions using a
diversity-promoting prior on the samples and KL constraints on the latent codes,
which allows us to balance between sample diversity and likelihood. (3) Our app-
roach allows for flexible design of the diversity-promoting prior to obtain more
accurate samples or enable new applications such as controllable motion predic-
tion. (4) We demonstrate through human motion prediction experiments that
our approach outperforms state-of-the-art baseline methods in terms of sample
diversity and accuracy.
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2 Related Work

Human Motion Prediction. Most previous work takes a deterministic app-
roach to modeling human motion and regress a single future motion from past
3D poses [1,9,13,16,17,21,33,43,49,50,55,67] or video frames [10,73,75]. While
these approaches are able to predict the most likely future motion, they fail to
model the multi-modal nature of human motion, which is essential for safety-
critical applications. More related to our work, stochastic human motion predic-
tion methods start to gain popularity with the development of deep generative
models. These methods [3,6,40,44,59,66,69,74] often build upon popular genera-
tive models such as conditional generative adversarial networks (CGANs; [20]) or
conditional variational autoencoders (CVAEs; [36]). The aforementioned meth-
ods differ in the design of their generative models, but at test time they follow
the same sampling strategy—randomly and independently sampling trajecto-
ries from the pretrained generative model without considering the correlation
between samples. In this work, we propose a principled sampling method that
can produce a diverse set of samples, thus improving sample efficiency compared
to the random sampling typically used in prior work.

Diverse Inference. Producing a diverse set of solutions has been investigated in
numerous problems in computer vision and machine learning. A branch of these
diversity-driven methods stems from the M-Best MAP problem [52,60], including
diverse M-Best solutions [7] and multiple choice learning [27,42]. Alternatively,
submodular function maximization has been applied to select a diverse subset
of garments from fashion images [30]. Another type of methods [5,18,19,31,
38,68,72] seeks diversity using determinantal point processes (DPPs; [39,48])
which are efficient probabilistic models that can measure the global diversity
and quality within a set. Similarly, Fisher information [58] has been used for
diverse feature [22] and data [62] selection. Diversity has also been a key aspect
in generative modeling. A vast body of work has tried to alleviate the mode
collapse problem in GANs [4,11,12,15,24,45,63,70] and the posterior collapse
problem in VAEs [8,28,35,46,64,76]. Normalizing flows [56] have also been used
to promote diversity in trajectory forecasting [23,57]. This line of work aims
to improve the diversity of the data distribution learned by deep generative
models. We address diversity from a different angle by improving the strategy
for producing samples from a pretrained deep generative model.

3 Diversifying Latent Flows (DLow)

For many existing methods on generative vision tasks such as multi-modal
human motion prediction, the primary focus is to learn a good generative model
that can capture the multi-modal distribution of the data. In contrast, once the
generative model is learned, little attention has been paid to devising sampling
strategies for producing diverse samples from the pretrained generative model.

In this section, we will introduce our method, Diversifying Latent Flows
(DLow), as a principled way for drawing a diverse and likely set of samples
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from a pretrained generative model (weights kept fixed). To provide the proper
context, we will first start with a brief review of deep generative models and how
traditional methods produce samples from a pretrained generative model.

Background: Deep Generative Models. Let x ∈ X denote data (e.g., human
motion) drawn from a data distribution p(x|c) where c is some conditional infor-
mation (e.g., past motion). One can reparameterize the data distribution by
introducing a latent variable z ∈ Z such that p(x|c) =

∫
z
p(x|z, c)p(z)dz, where

p(z) is a Gaussian prior distribution. Deep generative models learn p(x|c) by
modeling the conditional distribution p(x|z, c), and the generative process can
be described as sampling z and mapping them to data samples x using a deter-
ministic generator function Gθ : Z → X as

z ∼ p(z) , (1)
x = Gθ(z, c) , (2)

where the generator Gθ is instantiated as a deep neural network parametrized
by θ. This generative process produces samples from the implicit sample distri-
bution pθ(x|c) of the generative model, and the goal of generative modeling is to
learn a generator Gθ such that pθ(x|c) ≈ p(x|c). There are various approaches
for learning the generator function Gθ, which yield different types of deep gen-
erative models such as variational autoencoders (VAEs; [36]), normalizing flows
(NFs; [56]), and generative adversarial networks (GANs; [20]). Note that even
though the discussion in this work is focused on conditional generative models,
our method can be readily applied to the unconditional case.

Random Sampling. Once the generator function Gθ is learned, traditional
approaches produce samples from the learned data distribution pθ(x|c) by first
randomly sampling a set of latent codes Z = {z1, . . . , zK} from the latent prior
p(z) (Eq. (1)) and decode Z with the generator Gθ into a set of data samples
X = {x1, . . . ,xK} (Eq. (2)). We argue that such a sampling strategy may result
in a less diverse sample set for two reasons: (1) Independent sampling cannot
model the repulsion between samples within a diverse set; (2) The sampling is
only based on the data likelihood and many samples can concentrate around
a small number of modes that have more training data. As a result, random
sampling can lead to low sample efficiency because many samples are similar to
one another and fail to cover other modes in the data distribution.

DLow Sampling. To address the above issues with the random sampling app-
roach, we propose an alternative sampling method, Diversifying Latent Flows
(DLow), that can generate a diverse and likely set of samples from a pretrained
deep generative model. Again, we stress that the weights of the generative model
are kept fixed for DLow. We later apply DLow to the task of human motion pre-
diction in Sect. 4 to demonstrate DLow’s ability to improve sample diversity.

Instead of sampling each latent code zk ∈ Z independently according to p(z),
we introduce a random variable ε and conditionally generate the latent codes Z
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Fig. 2. Overview of our DLow framework applied to diverse human motion
prediction. The network Qγ takes past motion c as input and outputs the parameters
of the mapping functions Tψ1 , . . . , TψK . Each mapping Tψk transforms the random
variable ε to a different latent code zk and also warps the density p(ε) to the latent
code density rψ(zk|c). Each latent code zk is decoded by the CVAE decoder into a
motion sample xk.

and data samples X as follows:

ε ∼ p(ε) , (3)
zk = Tψk

(ε) , 1 ≤ k ≤ K , (4)
xk = Gθ(zk, c) , 1 ≤ k ≤ K , (5)

where p(ε) is a Gaussian distribution, Tψ1 , . . . , TψK
are latent mapping functions

with parameters ψ = {ψ1, . . . , ψK}, and each Tψk
maps ε to a different latent

code zk. The above generative process defines a joint distribution rψ(X,Z|c) =
pθ(X|Z, c)rψ(Z|c) over the samples X and latent codes Z, where pθ(X|Z, c) is
the conditional distribution induced by the generator Gθ(z, c). Notice that in our
setup, rψ(X,Z|c) depends only on ψ as the generator parameters θ are learned in
advance and are kept fixed. The data samples X can be viewed as a sample from
the joint sample distribution rψ(X|c) =

∫
rψ(X,Z|c)dZ and the latent codes Z

can be regarded as a sample from the joint latent distribution rψ(Z|c) induced
by warping p(ε) through Tψ1 , . . . , TψK

. If we further marginalize out all variables
except for xk from rψ(X|c), we obtain the marginal sample distribution rψ(xk|c)
from which each sample xk is drawn. Similarly, each latent code zk ∈ Z can be
viewed as a latent sample from the marginal latent distribution rψ(zk|c).

The above distribution reparametrizations are illustrated in Fig. 2. We can
see that all latent codes Z and data samples X are correlated as they are
uniquely determined by ε, and by sampling ε one can easily produce Z and X
from the joint latent distribution rψ(Z|c) and joint sample distribution rψ(X|c).
Because rψ(Z|c) and rψ(X|c) are controlled by the latent mapping functions
Tψ1 , . . . , TψK

, we can impose structural constraints on rψ(Z|c) and rψ(X|c) by
optimizing the parameters ψ of the latent mapping functions.

To encourage the diversity of samples X, we introduce a diversity-promoting
prior p(X) (specific form defined later) and formulate a constrained optimization
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problem:

min
ψ

− EX∼rψ(X|c)[log p(X)] , (6)

s.t. KL(rψ(zk|c)‖p(zk)) = 0 , 1 ≤ k ≤ K , (7)

where we minimize the cross entropy between the sample distribution rψ(X|c)
and the diversity-promoting prior p(X). However, the objective in Eq. (6) alone
can result in very low-likelihood samples xk corresponding to latent codes zk

that are far away from the Gaussian prior p(zk). To ensure that each sample xk

also has high likelihood under the generative model pθ(x|c), we add constraints
in Eq. (7) on the KL divergence between rψ(zk|c) and the Gaussian prior p(zk)
(same as p(z)) to make rψ(zk|c) = p(zk) and thus rψ(xk|c) = pθ(xk|c) where
rψ(xk|c) =

∫
pθ(xk|zk, c)rψ(zk|c)dzk and pθ(xk|c) =

∫
pθ(xk|zk, c)p(zk)dzk.

To optimize this constrained objective, we soften the constraints with the
Lagrangian function:

min
ψ

−EX∼rψ(X|c)[log p(X)] + β

K∑

k=1

KL(rψ(zk|c)‖p(zk)) , (8)

where we use the same Lagrangian multiplier β for all constraints. Despite having
similar form, the above objective is very different from the objective function of
β-VAE [29] in many ways: (1) our goal is to learn a diverse sampling distribution
rψ(X|c) for a pretrained generative model rather than learning the generative
model itself; (2) The first part in our objective is a diversifying term instead of a
reconstruction term; (3) Our objective function applies to most deep generative
models, not just VAEs. In this objective, the softening of the hard KL constraints
allows for the trade-off between the diversity and likelihood of the samples X. For
small β, rψ(zk|c) is allowed to deviate from p(zk) so that rψ(z1|c), . . . , rψ(zK |c)
can potentially attend to different regions in the latent space as shown in Fig. 2
(latent space) to further improve sample diversity. For large β, the objective
will focus on minimizing the KL term so that rψ(zk|c) ≈ p(zk) and rψ(xk|c) ≈
pθ(xk|c), and thus the sample xk will have high likelihood under pθ(xk|c).

The overall DLow objective is defined as:

LDLow = Lprior + βLKL , (9)

where Lprior and LKL are the first and second term in Eq. (8) respectively. In the
following, we will discuss in detail how we design the latent mapping functions
Tψ1 , . . . , TψK

and the diversity-promoting prior p(X).

Latent Mapping Functions. Each latent mapping Tψk
transforms the Gaus-

sian distribution p(ε) to the marginal latent distribution rψ(zk|c) for latent code
zk where Tψk

is also conditioned on c. As rψ(zk|c) should stay close to the Gaus-
sian latent prior p(zk), it would be ideal if the mapping Tψk

makes rψ(zk|c) also
a Gaussian. Thus, we design Tψk

to be an invertible affine transformation:

Tψk
(ε) = Ak(c)ε + bk(c) , (10)
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where the mapping parameters ψk = {Ak(c),bk(c)}, Ak ∈ R
nz×nz is a nonsin-

gular matrix, bk ∈ R
nz is a vector, and nz is the number of dimensions for zk

and ε. As shown in Fig. 2, we use a K-head network Qγ(c) to output ψ1, . . . , ψK ,
and the parameters γ of the network Qγ(c) are the parameters to be optimized
with the DLow objective in Eq. (9).

Under the invertible affine transformation Tψk
, rψ(zk|c) becomes a Gaussian

distribution N (bk,AkAT
k ). This allows us to compute the KL divergence terms

in LKL analytically:

KL(rψ(zk|c)‖p(zk)) =
1
2

(
tr

(
AkAT

k

)
+ bT

k bk − nz − log det
(
AkAT

k

))
. (11)

The KL divergence is minimized when rψ(zk|c) = p(zk) which implies that
AkAT

k = I and bk = 0. Geometrically, this means that Ak is in the orthogonal
group O(nz), which includes all rotations and reflections in an nz-dimensional
space. This means any mapping Tψk

that is a rotation or reflection operation will
minimize the KL divergence. As mentioned before, there is a trade-off between
diversity and likelihood in Eq. (9). To improve sample diversity (minimize Lprior)
without compromising likelihood (KL divergence), we can optimize Tψ1 , . . . , TψK

to be different rotations or reflections to map ε to different feasible points
z1, . . . , zk in the latent space. This geometric understanding sheds light on the
mapping space admitted by the hard KL constraints. In practice, we use soft KL
constraints in the DLow objective to further enlarge the feasible mapping space
which allows us to achieve lower Lprior and better sample diversity.

Diversity-Promoting Prior. In the DLow objective, a diversity-promoting
prior p(X) on the joint sample distribution is used to guide the optimization of
the latent mapping functions Tψ1 , . . . , TψK

. With an energy-based formulation,
the prior p(X) can be defined using an energy function E(X):

p(X) = exp(−E(X))/S , (12)

where S is a normalizing constant. Dropping the constant S, the first term in
Eq. (8) can be rewritten as

Lprior = EX∼rψ(X|c)[E(X)] . (13)

To promote sample diversity of X, we design an energy function E := Ed based
on a pairwise distance metric D:

Ed(X) =
1

K(K − 1)

K∑

i=1

K∑

j �=i

exp
(

−D2(xi,xj)
σd

)

, (14)

where we use the Euclidean distance for D and an RBF kernel with scale σd. Min-
imizing Lprior moves the samples towards a lower-energy (diverse) configuration.
Lprior can be evaluated efficiently with the reparametrization trick [36].

Up to this point, we have described the proposed sampling method, DLow, for
generating a diverse set of samples from a pretrained generative model pθ(x|c).



354 Y. Yuan and K. Kitani

By introducing a common random variable ε, DLow allows us to generate cor-
related samples X. Moreover, by introducing learnable mapping functions Tψk

,
we can model the joint sample distribution rψ(X|c) and impose structural con-
straints, such as diversity, on the sample set X which cannot be modeled by
random sampling from the generative model.

4 Diverse Human Motion Prediction

Equipped with a method to generate diverse samples from a pretrained deep
generative model, we now turn our attention to the task of diverse human motion
prediction. Suppose the pose of a person is a V -dimensional vector consisting
of 3D joint positions, we use c ∈ R

H×V to denote the past motion of H time
steps and x ∈ R

T×V to denote the future motion over a future time horizon of
T . Given a past motion c, the goal of diverse human motion prediction is to
generate a diverse set of future motions X = {x1, . . . ,xK}.

To capture the multi-modal distribution of the future trajectory x, we take
a generative approach and use a conditional variational autoencoder (CVAE)
to learn the future trajectory distribution pθ(x|c). Here we use the CVAE for
its stability over other popular approaches such as CGANs, but other suitable
deep generative models could also be used. The CVAE uses a variational lower
bound [34] as a surrogate for the intractable true data log-likelihood:

L(x; θ, φ) = Eqφ(z|x,c) [log pθ(x|z, c)] − KL (qφ(z|x, c)‖p(z)) , (15)

where qφ(z|x, c) is an φ-parametrized approximate posterior distribution. We
use multivariate Gaussians for the prior, posterior (encoder distribution) and
likelihood (decoder distribution): p(z) = N (0, I), qφ(z|x, c) = N (μ,Diag(σ2)),
and pθ(x|z, c) = N (x̃, αI) where α is a hyperparameter. Both the encoder and
decoder are implemented as recurrent neural networks (RNNs) (network archi-
tectures given in the supplementary materials). The encoder network Fφ outputs
the parameters of the posterior distribution: (μ,σ) = Fφ(x, c); the decoder net-
work Gθ outputs the reconstructed future trajectory x̃ = Gθ(z, c). The CVAE
is learned via jointly optimizing the encoder and decoder with Eq. (15).

4.1 Diversity Sampling with DLow

Once the CVAE is learned, we follow the DLow framework proposed in Sect. 3 to
optimize the network Qγ and learn the latent mapping functions Tψ1 , . . . , TψK

.
Before doing this, to fully leverage the DLow framework, we will look at one
of DLow’s key feature, i.e., the design of the diversity-promoting prior p(X)
in Lprior can be flexibly changed by modifying the underlying energy function
E(X). This allows us to impose various structural constraints besides diversity on
the sample set X. Below, we will provide two examples of such prior designs that
(1) improve sample accuracy or (2) enable new applications such as controllable
motion prediction.
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Reconstruction Energy. To ensure that the sample set X is both diverse and
accurate, i.e., the ground truth future motion x̂ is close to one of the samples
in X, we can modify the prior’s energy function E in Eq. (12) by adding a
reconstruction term Er:

E(X) = Ed(X) + λrEr(X) , (16)

Er(X) = min
k

D2(xk, x̂) , (17)

where λr is a weighting factor and we use Euclidean distance as the distance
metric D. As DLow produces a correlated set of samples X instead of indepen-
dent samples, the network Qγ can learn to distribute samples in a way that are
both diverse and accurate, covering the ground truth better. We use this prior
design for our main experiments.

Controllable Motion Prediction. Another possible design of the diversity-
promoting prior p(X) is one that promotes diversity in a certain subspace of the
sample space. In the context of human motion prediction, we may want certain
body parts to move similarly but other parts to move differently. For example, we
may want leg motion to be similar but upper-body motion to be diverse across
motion samples. We call this task controllable motion prediction, i.e., finding a
set of diverse samples that share some common features, which can allow users
or down-stream systems to explore variations of a certain type of samples.

Formally, we divide the human joints into two sets, Js and Jd, and ask samples
in X to have similar motions for joints Js but diverse motions for joints Jd. We
can slice a motion sample xk into two parts: xk =

(
xs

k,xd
k

)
where xs

k and xd
k

correspond to Js and Jd respectively. Similarly, we can slice the sample set X
into two sets: Xs = {xs

1, . . . ,x
s
K} and Xd = {xd

1, . . . ,x
d
K}. We then define a new

energy function E for the prior p(X):

E(X) = Ed(Xd) + λsEs(Xs) + λrEr(X) , (18)

Es(Xs) =
1

K(K − 1)

K∑

i=1

K∑

j �=i

D2(xs
i ,x

s
j) , (19)

where we add another energy term Es weighted by λs to minimize the motion
distance between samples for joints Js, and we only compute the diversity-
promoting term Ed using motions of joints Jd. After optimizing Qγ using the
DLow objective with the new energy E, we can produce diverse samples X that
have similar motions for joints Js.

Furthermore, we may also want to use a reference motion sample xref to
provide the desired features. To achieve this, we can treat xref as the first sam-
ple x1 in X. We first find its corresponding latent code z1 := zref using the
CVAE encoder: zref = Fμ

φ (xref, c). We can then find the common variable εref

for generating X using the inverse mapping T −1
ψ1

:

εref = T −1
ψ1

(zref) = A−1
1 (zref − b1) . (20)
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With εref known, we can generate X that includes xref. In practice, we force Tψ1

to be an identity mapping to enforce rψ(z1|c) = p(z1) so that rψ(z1|c) covers the
posterior distribution of zref. Otherwise, if zref lies outside of the high density
region of rψ(z1|c), it may lead to low-likelihood εref after the inverse mapping.

5 Experiments

Datasets. We perform evaluation on two public motion capture datasets:
Human3.6M [32] and HumanEva-I [61]. Human3.6M is a large-scale dataset with
11 subjects (7 with ground truth) and 3.6 million video frames in total. Each
subject performs 15 actions and the human motion is recorded 50 Hz. Following
previous work [47,51,54,71], we adopt a 17-joint skeleton and train on five sub-
jects (S1, S5, S6, S7, S8) and test on two subjects (S9 and S11). HumanEva-I is a
relatively small dataset, containing only three subjects recorded 60 Hz. We adopt
a 15-joint skeleton [54] and use the same train/test split provided in the dataset.
By using both a large dataset with more variation in motion and a small dataset
with less variation, we can better evaluate the generalization of our method to
different types of data. For Human3.6M, we predict future motion for 2 s based
on observed motion of 0.5 s. For HumanEva-I, we forecast future motion for 1 s
given observed motion of 0.25 s.

Baselines. To fully evaluate our method, we consider three types of base-
lines: (1) Deterministic motion prediction methods, including ERD [16] and
acLSTM [43]; (2) Stochastic motion prediction methods, including CVAE based
methods, Pose-Knows [66] and MT-VAE [69], as well as a CGAN based
method, HP-GAN [6]; (3) Diversity-promoting methods for generative models,
including Best-of-Many [8], GMVAE [14], DeLiGAN [26], and DSF [72].

Metrics. We use the following metrics to measure both sample diversity and
accuracy. (1) Average Pairwise Distance (APD): average L2 distance
between all pairs of motion samples to measure diversity within samples, which is
computed as 1

K(K−1)

∑K
i=1

∑K
j �=i ‖xi −xj‖. (2) Average Displacement Error

(ADE): average L2 distance over all time steps between the ground truth motion
x̂ and the closest sample, which is computed as 1

T minx∈X ‖x̂−x‖. (3) Final Dis-
placement Error (FDE): L2 distance between the final ground truth pose xT

and the closest sample’s final pose, which is computed as minx∈X ‖x̂T −xT ‖. (4)
Multi-Modal ADE (MMADE): the multi-modal version of ADE that obtains
multi-modal ground truth future motions by grouping similar past motions. (5)
Multi-Modal FDE (MMFDE): the multi-modal version of FDE.

In these metrics, APD has been used to measure sample diversity [3]. ADE
and FDE are common metrics for evaluating sample accuracy in trajectory fore-
casting literature [2,25,41]. MMADE and MMFDE [72] are metrics used to mea-
sure a method’s ability to produce multi-modal predictions.
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Table 1. Quantitative results on Human3.6M and HumanEva-I.

Human3.6M [32] HumanEva-I [61]

Method APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
DLow (Ours) 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339

ERD [16] 0 0.722 0.969 0.776 0.995 0 0.382 0.461 0.521 0.595

acLSTM [43] 0 0.789 1.126 0.849 1.139 0 0.429 0.541 0.530 0.608

Pose-Knows [66] 6.723 0.461 0.560 0.522 0.569 2.308 0.269 0.296 0.384 0.375

MT-VAE [69] 0.403 0.457 0.595 0.716 0.883 0.021 0.345 0.403 0.518 0.577

HP-GAN [6] 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769

Best-of-Many [8] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351

GMVAE [14] 6.769 0.461 0.555 0.524 0.566 2.443 0.305 0.345 0.408 0.410

DeLiGAN [26] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371

DSF [72] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340

5.1 Quantitative Results

We summarize the quantitative results on Human3.6M and HumanEva-I in
Table 1. The metrics are computed with the sample set size K = 50. For both
datasets, we can see that our method, DLow, outperforms all baselines in terms
of both sample diversity (APD) and accuracy (ADE, FDE) as well as cover-
ing multi-modal ground truth (MMADE, MMFDE). Deterministic methods like
ERD [16] and acLSTM [43] do not perform well because they only predict one
future trajectory which can lead to mode averaging. Methods like MT-VAE [69]
produce trajectories samples that lack diversity so they fail to cover the multi-
modal ground-truth (indicated by high MMADE and MMFDE) despite having
decently low ADE and FDE. We would also like to point out the closest com-
petitor DSF [72] can only generate one deterministic set of samples, while our
method can produce multiple diverse sets by sampling ε. We also show how each
metric changes against various K in the supplementary materials.

Table 2. Ablation study on Human3.6M and HumanEva-I.

Energy Human3.6M [32] HumanEva-I [61]

Ed Er APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓
✓ ✓ 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339

✓ ✗ 13.091 0.546 0.663 0.599 0.669 4.927 0.263 0.281 0.368 0.347

✗ ✓ 6.844 0.432 0.525 0.500 0.539 2.355 0.252 0.277 0.376 0.366

✗ ✗ 6.383 0.520 0.629 0.577 0.638 2.247 0.281 0.317 0.395 0.393

Ablation Study. We further perform an ablation study (Table 2) to analyze
the effects of the two energy terms Ed and Er in Eq. (16). First, without the
reconstruction term Er, the DLow variant is able to achieve higher diversity
(APD) at the cost of sample accuracy (ADE, FDE, MMADE, MMFDE). This is
expected because the network only optimizes the diversity term Ed and focuses
solely on diversity. Second, for the variant without Ed, both sample diversity and
accuracy decrease. It is intuitive to see why the diversity (APD) decreases. To
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see why the sample accuracy (ADE, FDE, MMADE, MMFDE) also decreases,
we should consider the fact that a more diverse set of samples have a better
chance at covering the ground truth. Finally, when we remove both Ed and Er

(i.e., only optimize LKL), the results are the worst, which is expected.
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Fig. 3. Qualitative Results on Human3.6M and HumanEva-I.
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Fig. 4. Varying β in DLow allows us to balance between diversity and likelihood.

5.2 Qualitative Results

To visually evaluate the diversity and accuracy of each method, we present a
qualitative comparison in Fig. 3 where we render the start pose, the end pose of
the ground truth future motion, and the end pose of 10 motion samples. Note
that we do not model the global translation of the person, which is why some
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sitting motions appear to be floating. For Human3.6M, we can see that our
method DLow can predict a wide array of future motions, including standing,
sitting, bending, crouching, and turning, which cover the ground truth bend-
ing motion. In contrast, the baseline methods mostly produce perturbations of
a single motion—standing. For HumanEva-I, we can see that DLow produces
interesting variations of the fighting motion, while the baselines produce almost
identical future motions.

Start Pose End Pose of 6 Samples Start Pose End Pose of 6 Samples

Fig. 5. Effect of varying ε on motion samples.
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Random
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Fig. 6. Controllable Motion Prediction. DLow enables samples to have more
similar leg motion to the reference.

Diversity vs. Likelihood. As discussed in the approach section, the β in
Eq. (8) represents the trade-off between sample diversity and likelihood. To
verify this, we trained three DLow models with different β (1, 10, 100) and visu-
alize the motion samples generated by each model in Fig. 4. We can see that a
larger β leads to less diverse samples which correspond to the major mode of
the generator distribution, while a smaller β can produce more diverse motion
samples covering other plausible yet less likely future motions.

Effect of Varying ε. A key difference between our method and DSF [72] is that
we can generate multiple diverse sets of samples while DSF can only produce a
fixed diverse set. To demonstrate this, we show in Fig. 5 how the motion samples
of DLow change with different ε. By comparing the four sets of motion samples,
one can conclude that changing ε varies each set of samples but preserves the
main structure of each motion.

Controllable Motion Prediction. As highlighted before, the flexible design
of the diversity-promoting prior enables a new application, controllable motion
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prediction, where we predict diverse motions that share some common features.
We showcase this application by conducting an experiment using the energy
function defined in Eq. (18). The network is trained so that the leg motion
of the motion samples is similar while the upper-body motion is diverse. The
results are shown in Fig. 6. We can see that given a reference motion, our method
can generate diverse upper-body motion and preserve similar leg motion, while
random samples from the CVAE cannot enforce similar leg motion. Please refer
to the supplementary materials for more results.

6 Conclusion

We have proposed a novel sampling strategy, DLow, for deep generative models
to obtain a diverse set of future human motions. We introduced learnable latent
mapping functions which allowed us to generate a set of correlated samples,
whose diversity can be optimized by a diversity-promoting prior. Experiments
demonstrated superior performance in generating diverse motion samples. More-
over, we showed that the flexible design of the diversity-promoting prior further
enables new applications, such as controllable human motion prediction. We hope
that our exploration of deep generative models through the lens of diversity will
encourage more work towards understanding the complex nature of modeling
and predicting future human behavior.
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