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Abstract. Parametric models of humans, faces, hands and animals have
been widely used for a range of tasks such as image-based reconstruction,
shape correspondence estimation, and animation. Their key strength is
the ability to factor surface variations into shape and pose dependent
components. Learning such models requires lots of expert knowledge and
hand-defined object-specific constraints, making the learning approach
unscalable to novel objects. In this paper, we present a simple yet effec-
tive approach to learn disentangled shape and pose representations in
an unsupervised setting. We use a combination of self-consistency and
cross-consistency constraints to learn pose and shape space from regis-
tered meshes. We additionally incorporate as-rigid-as-possible deforma-
tion(ARAP) into the training loop to avoid degenerate solutions. We
demonstrate the usefulness of learned representations through a number
of tasks including pose transfer and shape retrieval. The experiments on
datasets of 3D humans, faces, hands and animals demonstrate the gener-
ality of our approach. Code is made available at https://virtualhumans.
mpi-inf.mpg.de/unsup shape pose/.

Keywords: 3D deep learning · Disentanglement · Body shape · Mesh
auto-encoder · Representation learning

1 Introduction

Parameterizing 3D mesh deformation with different factors, such as pose and
shape, is crucial in computer graphics for efficient 3D shape manipulation, and
for computer vision, to extract structure and understand human and animal
motion in videos.

Although parametric models of meshes such as SCAPE [1], SMPL [25],
Dyna [31], Adam [20] for bodies, MANO [34] for hands, SMAL [45] for animals,
basel face model [29], FLAME [23] and their combinations [30] for faces, have
been extremely useful for many applications. Learning them is a difficult task
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Fig. 1. Our model learns a disentangled representation of shape and pose for mesh. In
the middle are two source subjects taken from AMASS and SMAL datasets respectively.
On the left are meshes with the same pose but varying shapes which we construct by
transferring shape codes extracted from other meshes using our method. On the right
are meshes with the same subject identity but varying poses which we construct by
transferring pose codes.

that requires expert knowledge and manual intervention. SMPL for example, is
learned from a set of meshes in correspondence, and requires defining a skeleton
hierarchy, manually initializing blendweights to bind each vertex to body parts,
carefully unposing meshes, and a training procedure that requires several stages.

In this paper, we address the problem of unsupervised disentanglement of
pose and shape for 3D meshes. Like other models such as SMPL, our method
requires a dataset of meshes registered to a template for training. But unlike
other methods, we learn to factor pose and shape based on the data alone without
making assumptions on the number of parts, the skeleton or the kinematic chain.
Our model only requires that the same shape can be seen in different poses, which
is available for datasets collected from scanners or motion capture devices. We
call our model unsupervised because we do not make use of meshes annotated
with pose or shape codes, and we make no assumptions on the underlying parts
or skeleton. This flexibility makes our model applicable to a wide variety of
objects, such as humans, hands, animals and faces.

Unsupervised disentanglement from meshes is a challenging task. Most
datasets [23,25,27,34] contain the same shape in different poses, e.g., they cap-
ture a human or an animal moving. However, real world datasets do not contain
two different shapes in the same pose – two different humans, or animals are
highly unlikely to be captured performing the exact same pose or motion. This
makes disentangling pose and shape from data difficult.

We achieve disentanglement with an auto-encoding neural network based on
two key observations. First, we should be able to auto-encode a mesh in two
codes (pose and shape), which we achieve with two separate encoder branches,
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Fig. 2. A schematic overview of shape and pose disentangling mesh auto-encoder. The
input mesh X is separately processed by a shape branch and a pose branch to get
shape code β and pose code θ. The two latent codes are subsequently concatenated
and decoded to the reconstructed mesh X̂(top). The shape codes of two deformations
of the same subject are swapped to reconstruct each other (bottom left). The pose code
of one subject is used to reconstruct itself after a cycle of decoding-encoding (bottom
right).

see Fig. 2(top). Second, given two meshes Xs
1 and Xs

2 of the same subject s in
two different poses, we should be able to swap their shape codes and reconstruct
exactly the two input meshes. This is imposed with a cross-consistency loss, see
Fig. 2(lower left). These two constraints however, are not sufficient and lead to
degenerate solutions, with shape information flowing into pose code.

If we had access to two different shapes in the exact same pose, we could
impose an analogous cross-consistency loss on the pose. But as mentioned, such
data is not available. Our idea is to generate such pairs of different shapes with
the exact same pose on the fly during training with our disentangling network.

Given two meshes with different shapes and poses Xs
1 and Xt, we generate

a proxy mesh X̃t with the pose of mesh Xs
1 and the shape of mesh Xt within

the training loop. If disentanglement is effective, we should recover the original
pose code from the proxy mesh, and mix it with the shape code of mesh Xs

1, to
decode it into mesh Xs

1. We ask the network to satisfy this constraint with a self-
consistency loss. For the self-consistency constraint to work well, the proxy mesh
must not contain any shape characteristic of mesh Xs

1, which occurrs if the pose
code carries shape information. To resolve this, we replace the initially decoded
proxy mesh X̃t with an As-Rigid-As-Possible [38] approximate. Self-consistency
is best understood with the illustration in Fig. 2 (lower right).
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Our experiments show that these two simple—but not immediately obvious—
losses allow to discover independent pose and shape factors from 3D meshes
directly. To demonstrate the wide applicability of our method, we use it to dis-
entangle pose and shape in four different publicly available datasets of full body
humans [27], hands [34], faces [23] and animals [45]. We show several down-
stream applications, such as pose transfer, pose-aware shape retrieval, and pose
and shape interpolation. We will make our code and model publicly available so
that researchers can learn their own models from data.

2 Related Work

Disentangled Representations for 2D Images. The motivation behind fea-
ture disentanglement is that images can be synthesized from individual factors of
variation. A pioneering work for disentanglement learning is InfoGAN [7], which
maximizes the variational lower bound for the mutual information between latent
code and generator distribution. Beta-VAE [15] and its follow-up work [6] penal-
ized a KL divergence term to reduce variable correlations. Similarly, Kim et
al. [21] encouraged fatorial marginal distribution of latent variables.

Another line of work incorporates Spatial Transformer Network [17] to explic-
itly model object deformations [26,36,37]. Iosanos et al. [35] recovered a 3D
deformable template from a set of images and transformed it to fit image coor-
dinates. Recently, adversarial training is exploited to enforce feature disentan-
glement [10,11,24,28,40]. Our work has similarities with [16,43], where latent
features are mixed and then separated. But unlike them, our method does not
depend on auxiliary classifiers or adversarial loss, which are notoriously hard
to train and tune. The idea of swapping codes (cross-consistency) to factor out
appearance or identity as been also used in [33], but we additionally intro-
duce the self-consistency loss which is critical for disentanglement. Furthermore,
all these works focus on 2D images while we focus on disentanglement for 3D
meshes.

Deep Learning for 3D Reconstructions. With the advances in geometric
deep learning, a number of models have been proposed to analyse and recon-
struct 3D shapes. Particularly related to us are mesh auto-encoders. Tan et
al. [41] designed a mesh variational auto-encoder using fully-connected layers.
Instead of operating directly on mesh vertices, the model deals with a rotation-
invariant mesh representation [12]. Ranjan et al. [32] generalized downsam-
pling and upsampling layers to meshes by collapsing unimportant edges based
on quadric error measure. DEMEA [42] performs mesh deformation in a low-
dimensional embedded deformation layer which helps reduce reconstruction arti-
facts. These models do not separate shapes from poses when embedding meshes
into the latent space. Jiang et al. [19] decomposed 3D facial meshes into identity
code and expression code. Their approach needs supervision on expression labels
to work. Similarly, Jiang et al. [18] trained a disentangled human body model in
a hierarchical manner with a predefined anatomical segmentation. Deng et al. [9]
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conditions human shape occupancy on pose, but requires pose labels for train-
ing. Levinson et al. [22] trained on pairs of shapes with the exact same poses,
which is unrealistic for non-synthetic datasets. LIMP [8] explicitly enforced that
change in pose should preserve pairwise geodesic distances. Although it works
well for small datasets, the intensive computations make it unsuitable for larger
datasets. Geometrically Disentangled VAE(GDVAE) [3] is capable of learning
shape and pose from pointclouds in a completely unsupervised manner. GDVAE
utilizes the fact that isometric deformations preserve spectrum of the Laplace-
Beltrami Operator(LBO) to disentangle shape. While we require meshes in corre-
spondence and GDVAE does not, we obtain significantly better disentanglement
and reconstruction quality. Furthermore, in practice GDVAE uses meshes in
correspondence to compute the LBO spectrum of each mesh. While the spec-
trum should be invariant to connectivity, in practice it is known to be very
sensitive to noise and different discretizations. Instead of relying on LBO spec-
trum, we assume the subject identity is known which requires no extra labelling,
and impose shape and pose consistency by swapping and mixing codes during
training.

3D Deformation Transfer. Traditional deformation transfer methods solve
an optimization problem for each pair of source and target meshes. The seminal
work of Sumner et al. [39] transfers deformation via per-triangle affine transfor-
mations assuming correspondence. While general, this approach produces arti-
facts when transferring between significantly different shapes. Ben-Chen et al. [4]
formulated deformation transfer as a space deformation problem. Recently, Lin et
al. [13] achieved automatic deformation transfer between two different domains
of meshes without correspondence. They build an auto-encoder for each of the
source and target domain. Deformation transfer is performed at latent space
by a cycle-consistent adversarial network [44]. For every new pair of shapes, a
new model needs to be trained, whereas we train on multiple shapes simultane-
ously, and our training procedure is much simpler. These approaches focus on
transferring pose deformations between pairs of meshes, whereas our ability to
transfer deformation is just a natural consequence of the learned disentangled
representation.

3 Method

Given a set of meshes with the same topology, our goal is to learn a latent
representation with disentangled shape and pose components. In our context,
we refer to shape as the intrinsic geometric properties of a surface (height, limb
lengths, body shape etc.), which remain invariant under approximately isometric
deformations. We refer to the other properties that vary with motion as pose.

Our model is built on three mild assumptions. i) All the meshes should be
registered and have the same connectivity. ii) There are enough shape and pose
variations in the training set to cover the latent space. iii) The same shape can
be seen in different poses, which naturally occurs when capturing a body, face,
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hand or animal in motion. Note that models like SMPL [25] are built on the
same assumptions, but unlike those models we do not hand-define the number
of parts, skeleton nor the surface-to-part associations.

3.1 Overview

Our model follows the classical auto-encoder architecture. The encoder func-
tion fenc embeds input mesh X into latent shape space and latent pose space:
fenc(X) = (fβ (X), fθ (X)) = (β,θ), where β denotes shape code, and θ denotes
pose code. The encoder consists of two branches for shape fβ (X) = β and for
pose fθ (X) = θ respectively, which are independent and do not share weights.
The decoder function gdec takes shape and pose codes as inputs, and transforms
them back to the corresponding mesh: gdec(β,θ) = X̃.

The challenge is to disentangle pose and shape in an unsupervised manner,
without supervision on θ or β coming from an existing parametric model. We
achieve this with a cross-consistency and a self-consistency loss during training.
An overview of our approach is given in Fig. 2.

3.2 Cross-Consistency

Given two meshes, Xs
1 and Xs

2 (superscript indicates subject identity and sub-
script labels individual meshes of a given subject), of subject s in different poses
we should be able to swap their shape codes and recover exactly the same meshes.

We randomly sample a mesh pair (Xs
1,X

s
2) of the same subject from the

training set and decompose it into (βs
1,θ

s
1) and (βs

2,θ
s
2) respectively. The cross-

consistency implies that the original meshes should be recovered by swapping
shape codes βs

1 βs
2:

gdec(βs
2,θ

s
1) = Xs

1 (1)
gdec(βs

1,θ
s
2) = Xs

2 (2)

Since the cross-consistency constraint holds in both directions, optimizing one
loss term suffices. The loss is defined as

LC = ‖gdec (fβ (Xs
2), fθ (T (Xs

1))) − Xs
1‖1, (3)

where T is a family of pose invariant mesh transformations such as random
scaling and uniform noise corruption, which serves as data augmentation to
improve generalization and robustness of the pose branch. The cross-consistency
is useful to make the model aware of the distinction between shape and pose,
but as we discussed in the introduction, it alone does not guarantee disentangled
representations. This motivates our self-consistency loss, which we explain next.

3.3 Self-consistency

Having pairs of meshes with different shapes and the exact same pose would
simplify the task, but such data is never available in real world datasets. The
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key idea of self-consistency is to generate such mesh pairs consisting of two
different shapes in the same pose on the fly during the training process.

We sample a triplet (Xs
1,X

s
2,X

t), where mesh Xt shares neither shape nor
pose with (Xs

1,X
s
2). We combine the shape from Xt and pose from Xs

1 to generate
an intermediate mesh X̃t = gdec(βt,θs

1).
Since X̃t should have the same pose θ̃

t
= fθ (X̃t) as Xs

1, and Xs
2 has the

same shape βs
2 as Xs

1, we should be able to reconstruct Xs
1 with

gdec

(
βs
2, θ̃

t
)

= Xs
1. (4)

The intuition behind this constraint is that the encoding and decoding of pose
code should remain self-consistent with changes in the shape.

Although this loss alone is already quite effective, degeneracy can occur in
the network if the proxy mesh X̃t inherits shape attributes of Xs

1 through the
pose code. We make sure this does not happen by incorporating ARAP defor-
mation [38] within the training loop.

As-rigid-as-possible Deformation. We use ARAP to deform Xt to match
the pose of the network prediction X̃t while preserving the original shape as
much as possible,

X̃t′
= ARAP

(
Xt, X̃t

)
, (5)

where X̃t′
is the desired deformed shape, see Fig. 3. Specifically, we deform

Xt to match a few randomly selected anchor points of the network prediction
X̃t. ARAP is a detail-preserving surface deformation algorithm that encourages
locally rigid transformations. Note that we can successfully apply ARAP because
the shape of X̃t should converge to the shape of Xt during training. Hence, when
only pose is different in the pair (Xt, X̃t), the ARAP loss approaches zero, and
disentanglement is successful.

In the following, we provide a brief introduction to the optimization proce-
dure of ARAP. We refer interested readers to [38] for more details. Let X be
a triangle mesh embedded in R

3 and X̃ be the deformed mesh. Each vertex i
has an associated cell Ci, which covers the vertex itself and its one-ring neigh-
bourhood N (i). If a cell Ci is rigidly transformed to C̃i, the transformation can
be represented by a rotation matrix Ri satisfying ẽij = Rieij for every edge
eij = (vj −vi) incident at vertex vi. If C̃i and Ci cannot be rigidly aligned, then
Ri is the optimal rotation matrix that aligns Ci and C̃i with minimal non-rigid
distortion. This objective can be formulated as follows.

E
(
Ci, C̃i

)
=

∑
j∈N (i)

wij ‖ẽij − Rieij‖2 (6)

where wij adjusts the importance of each edge. ARAP deformation minimizes
Eq. (6) for all vertices i by an iterative procedure. It alternates between first
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estimating the current optimal rotation Ri for cell Ci while keeping the vertices
ṽi (and hence the edges ẽij) fixed, and second computing the updated vertices
ṽi based on the updated Ri. Let the covariance matrix Si =

∑
j∈N (i) wijeij ẽ

T
ij

have a singular value decomposition, Si = UiΣiVi. Then the relative rotation
Ri between them can be analytically calculated as Ri = ViUT

i up to a change
of sign [2]. Fixing Ri simplifies Eq. (6) to a weighted least squares problem (over
the vertices ) of the form

Fig. 3. ARAP corrects artifacts in network prediction caused by embedding shape
information in pose code. Notice how the circled region in the initial prediction resem-
bles that of the pose source. This is rectified after applying ARAP for only 1 iteration.

∑
j∈N (i)

wij (ṽi − ṽj) =
∑

j∈N (i)

wij

2
(Ri + Rj) (vi − vj), (7)

which can be solved efficiently by a sparse Cholesky solver.
Note that Eq. (7) is an underdetermined problem so at least one anchor vertex

needs to be fixed to obtain a unique solution. We take X̃t as an initial guess and
randomly fix a small number of anchor vertices across its surface that should be
matched by deforming the source mesh Xt (i.e. ṽt

j := vt
j for all anchor vertices

vt
j). There is a tradeoff when determining the number of anchor vertices; fixing

too many does not improve the shape much while fixing too few could incur
a deviation of pose. We found that fixing 1%–10% vertices gives good results
in most cases. For training efficiency considerations, we only run ARAP for 1
iteration. This is sufficient since ARAP runs on every input training batch. We
also adopted uniform weighting instead of cotangent weighting for wij and we
did not observe any performance drop under this choice.

Self-consistency Loss. Let X̃t′
be the output of ARAP, which should have

the pose of Xs
1 with the shape of Xt. We enforce the equality in Eq. (4) with

the following self-consistency loss:

LS =
∥∥∥gdec

(
fβ (Xs

2), fθ (T (X̃t′
))

)
− Xs

1

∥∥∥
1

(8)
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where again, the intuition is that the pose extracted fθ (T (X̃t′
)) should be inde-

pendent of shape. Note that while ARAP is computed on the fly during training,
we do not backpropagate through it.

3.4 Loss Terms and Objective Function

The overall objective we seek to optimize is

L = λCLC + λSLS (9)

In all our experiments we set λC = λS = 0.5. We also experimented with edge
length constraints and other local shape preserving losses, but observed no ben-
efit or worse performance.

3.5 Implementation Details

We preprocess the input meshes by centering them around the origin. For the
disentangling mesh auto-encoder, we use an architecture similar to [5]. In par-
ticular, we adopt the spiral convolution operator, which aggregates and orders
local vertices in a spiral trajectory. Each encoder branch consists of four con-
secutive mesh convolution layers and downsampling layers. The last layer is
fully-connected which maps flattened features to latent space. The decoder archi-
tecture is a symmetry of the encoder except that mesh downsampling layers are
replaced by upsampling layers. We follow the practice in [32] which downsamples
and upsamples meshes based on quadric error metrics. We choose leaky ReLU
with a negative slope of 0.02 as activation function. The model is optimized by
ADAM solver with a cosine annealing learning rate scheduler.

4 Experiments

In this section, we evaluate our proposed approach on a variety of datasets
and tasks. We conduct quantitative evaluations on AMASS dataset and COMA
dataset. We compare our model to the state-of-the-art unsupervised disentan-
gling models proposed in [3,19]. We also perform an ablation study to evaluate
the importance of each loss. In addition, we qualitatively show pose transfer
results on four datasets (AMASS, SMAL, COMA and MANO) to demonstrate
the wide applicability of our method. Finally, we show the usefulness of our dis-
entangled codes for the tasks of shape and pose retrieval and motion sequence
interpolation.

4.1 Datasets

We use the following four publicly available datasets to evaluate our method:
AMASS [27] is a large human motion sequence dataset that unifies 15

smaller datasets by fitting SMPL body model to motion capture markers. It
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Table 1. AMASS pose transfer results when training on different models. The numbers
are measured in millimeters. The error on our model is close to the supervised baseline,
indicating that our self-consistency loss is a good substitute for pose supervision.

GDVAE Ours with
ARAP

Ours without
ARAP

Ours without
self-consistency

Ours
supervised

Mean Error 54.44 19.43 20.27 23.83 15.44

consists of 344 subjects and more than 10k motions. We follow the protocol
splits and sample every 1 out of 100 frames for the middle 90% portion of each
sequence.

SMAL [45] is a parametric articulated body model for quadrupedal animals.
Since there are not sufficient scans in this dataset, we synthesize SMAL shapes
and poses using the procedure in [14]. Finally, we get 100 shapes and 160 poses
distinct for each shape. We use a 9:1 data split.

MANO [34] is the 3D hand model used to fit AMASS together with SMPL.
We treat it as a standalone dataset since its training scans contain more pose
variations. To keep things simple without losing generality, we train the model
specifically on right hands and flipped left hands. The official training set con-
tains less than 2000 samples, hence we augment it by sampling shape and pose
parameters of MANO from a Gaussian distribution.

COMA [32] is a facial expression dataset consisting of 12 subjects under 12
types of extreme expressions. We follow the same splits as in [32].

4.2 Quantitative Evaluation

AMASS Pose Transfer. In the following, we show quantitative results of
our model trained on AMASS. Since AMASS comes with SMPL parameters,
we utilize the SMPL model to generate pseudo-groundtruth for evaluating pose-
transferred reconstructions. We sample a subset of paired meshes (with different
shapes and poses) along with their pose-transferred pseudo-groundtruth. The
error is calculated between model-predicted transfer results and the pseudo-
groundtruth. We use 128-dimensional latent codes, 16 for shape and 112 for
pose.

We compare our method to Geometric Disentanglement Variational Autoen-
coder(GDVAE) [3], a state-of-the-art unsupervised method which can disentan-
gle pose and shape from 3D pointclouds. It is important to note that a fair
comparison to GDVAE is not possible as we make different assumptions. They
do not assume mesh correspondence while we do. However, GDVAE uses LBO
spectra computed on meshes which are in perfect correspondence. Since the LBO
spectra is sensitive to noise and the type of discretization, the performance of
GDVAE could be significantly deteriorated when computed on meshes not in
correspondence. Furthermore, we assume we can see the same shape in different
poses. But as argued earlier, this is the typical case in datasets with dynam-
ics. Hence, despite the differences in assumptions, we think the comparison is
meaningful.
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We report the one-side Chamfer distance for GDVAE (i.e., average distance
between every point and its nearest point on groundtruth surface) and report
the vertex-to-vertex error for our method. Note that the Chamfer distance would
be lower for our method, but we want the metric to reflect how well we predict
the semantics (body part locations) as well.

We also compare our method with a supervised baseline, which leverages
pose labels from the SMPL. In that case, the intermediate mesh X̃t′

is replaced
by the pseudo-groundtruth coming from the SMPL model.

Table 1 summarizes reconstruction errors of pose-transferred meshes on
AMASS dataset using different models. The supervised baseline with pose super-
vision achieves the lowest error, which serves as the performance upper bound
for our model. Remarkably, our unsupervised model is only 4mm worse than the
supervised baseline, suggesting that our proposed approach, which only requires
seeing a subject in different poses, is sufficient to disentangle shape from pose. In
addition, our approach achieves a much lower error compared to GDVAE. Again,
we compare for completeness, but we do not want to claim we are superior as
our assumptions are different, and the losses are conceptually very different.

We can also observe from Table 1 that training solely with cross-consistency
constraint leads to degenerate solutions. This shows that our approach can only
exploit the weak signal of seeing the same subject in different poses when com-
bined with the self-consistency loss. Notably, enforcing the self-consistency con-
straint already drives the model to learn a reasonably well-disentangled repre-
sentation, which is further improved by incorporating ARAP in-the-loop. We
hypothesize that without ARAP, the intermediate mesh X̃t is noisy in shape
but relatively accurate in pose at early stages of training, thus helping disentan-
glement.

AMASS Pose-Aware Shape Retrieval. Shape retrieval refers to the task of
retrieving similar objects given a query object. Our model learns disentangled
representations for shape and pose; hence we can retrieve objects either simi-
lar in shape or similar in pose. Our evaluation of shape retrieval accuracy fol-
lows the experiment settings in [3]. Specifically, we evaluate on AMASS dataset
which comprises groundtruth SMPL parameters. To avoid confusion of nota-
tions, we denote with β̇ the SMPL shape parameters and denote with θ̇ the
SMPL pose parameters. For each queried object X, we encode it into a latent
code and search for its closest neighbour Y in latent space. The retrieval accu-
racy is determined by the Euclidean error between SMPL parameters of X and
Y: Eβ̇ (X,Y) = ‖β̇(X) − β̇(Y)‖2, Eθ̇ (X,Y) = ‖q(θ̇(X)) − q(θ̇(Y))‖2, where
q(·) converts axis-angle representations to unit quaternions. Again, to properly
compare with GDVAE which uses 5 dimensions for shape and 15 dimensions
for pose, we reduce the latent dimension of our model with principal component
analysis(PCA). We show results for shape retrieval and pose retrieval in Table 2.

Ideally if the shape code is disentangled from the pose code, we should get
a low Eβ̇ and high Eθ̇ when retrieving with β, and vice versa. This is in accor-
dance with our results. Interestingly, dimensionality reduction with PCA boosts
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Table 2. Mean error on SMPL parameters for shape retrieval. Column 1 corresponds
to retrieval with shape code β and column 2 with pose code θ. Arrows indicate if the
desired metrics should be high or low when retrieving with β or θ.

β θ

GDVAE Eβ̇ 2.80 ↓ 4.71 ↑
Eθ̇ 1.47 ↑ 1.44 ↓

Ours - with PCA Eβ̇ 0.34 ↓ 2.14 ↑
Eθ̇ 1.23 ↑ 0.87 ↓

Ours - without PCA Eβ̇ 0.14 ↓ 0.92 ↑
Eθ̇ 0.94 ↑ 0.76 ↓

Fig. 4. An example of pose retrieval with our model. Bottom left: top three meshes
most similar with the query in pose code. Bottom right: top three meshes of different
subjects most similar with the query in pose code.

the shape difference for pose retrieval. This indicates that some degree of entan-
glement is still present in our pose code. An example of pose retrieval is demon-
strated in Fig. 4 – notice the pose similarity for the retrieved shapes.

COMA Expression Extrapolation. COMA dataset spans over twelve types
of extreme expressions. To evaluate the generalization capability of our model,
we adopt the expression extrapolation setting of [32]. Specifically, we run a 12-
fold cross-validation by leaving one expression class out and training on the rest.
We subsequently evaluate reconstruction on the left-out class. Table 3 shows the
average reconstruction performance of our model compared with FLAME [23]
and Jiang et al.’s approach [19] (see supplementary material for the full table).
Both Jiang et al. and our model allocate 4 dimensions for identity and 4 dimen-
sions for expression, while FLAME allocates 8 dimensions for each. Our model
consistently outperforms the other two by a large margin.
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Table 3. Mean errors of expression extrapolation on COMA dataset. All numbers are
in millimeters. The results of Jiang et al. and FLAME are taken from [19].

Ours Jiang et al.’s FLAME

average 1.28 1.64 2.00

Fig. 5. Pose transfer from pose sources to shape sources. Please see supplemen-
tary video at https://virtualhumans.mpi-inf.mpg.de/unsup shape pose/ for transfer-
ring animated sequences.

4.3 Qualitative Evaluation

Pose Transfer. We qualitatively evaluate pose transfer on AMASS, SMAL,
COMA and MANO. In each dataset, a pose sequence is transferred to a given
shape. Ideally if our model learns a disentangled representation, the outputs
should preserve the identity of shape source, while inheriting the deformation
from pose sources. Figure 5 visualizes the transfer results. We can observe subject
shape is preserved well under new poses. The results are most obvious for bodies,
animals and faces. It is less obvious for hands due to their visual similarity.

Latent Interpolation. Latent representations learned by our model should
ideally be smooth and vary continuously. We demonstrate this via linearly inter-
polating our learned shape codes and pose codes. When interpolating shape,
we always fix the pose code to that of the source mesh. The same holds when
we interpolate pose. Interpolation results are shown in Fig. 6. We can observe
the smooth transition between nearby meshes. Furthermore, we can see that

https://virtualhumans.mpi-inf.mpg.de/unsup_shape_pose/
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Fig. 6. Latent interpolation of shape and pose codes on AMASS dataset. The leftmost
column are source meshes, while the rightmost are target meshes. Intermediate columns
are linear interpolation of specific codes at uniform time steps s = 0 and s = 1. First
two rows show interpolation of pose, and last two rows show interpolation of shape.

mesh shapes remain unchanged during pose interpolation, and vice versa. This
indicates that variations in shape and pose are independent of each other.

5 Conclusion and Future Work

In this paper, we introduced an auto-encoder model that disentangles shape and
pose for 3D meshes in an unsupervised manner. We exploited subject identity
information, which is commonly available when scanning or capturing shapes
using motion capture. We showed two key ideas to achieve disentanglement,
namely a cross-consistency and a self-consistency loss coupled with ARAP defor-
mation within the training loop. Our model is straightforward to train and it gen-
eralizes well across various datasets. We demonstrated the use of latent codes by
performing pose transfer, shape retrieval and latent interpolation. Although our
method provides an exciting next step in unsupervised learning of deformable
models from data, there is still room for improvement. In contrast to hand-
crafted models like SMPL, where every parameter carries meaning (joint axes
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and angles per part), we have no control over specific parts of the mesh with our
pose code. We also observed that interpolation of large torso rotations squeezes
the meshes. In future work, we plan to explore a more structured pose space
for easier part manipulation, which allows easy user manipulation, and plan to
generalize our method to work with un-registered pointclouds as input. Since
our model builds on simple yet effective ideas, we hope researchers can build on
it and make further progress in this exciting research direction.
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