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Abstract. We present a simple and flexible object detection framework
optimized for autonomous driving. Building on the observation that point
clouds in this application are extremely sparse, we propose a practical
pillar-based approach to fix the imbalance issue caused by anchors. In
particular, our algorithm incorporates a cylindrical projection into multi-
view feature learning, predicts bounding box parameters per pillar rather
than per point or per anchor, and includes an aligned pillar-to-point pro-
jection module to improve the final prediction. Our anchor-free approach
avoids hyperparameter search associated with past methods, simplifying
3D object detection while significantly improving upon state-of-the-art.

1 Introduction

3D object detection is a central component of perception systems for autonomous
driving, used to identify pedestrians, vehicles, obstacles, and other key features of
the environment around a car. Ongoing development of object detection methods
for vision, graphics, and other domain areas has led to steady improvement in
the performance and reliability of these systems as they transition from research
to production.

Most 3D object detection algorithms project points to a single prescribed
view for feature learning. These views—e.g., the “bird’s eye” view of the envi-
ronment around the car—are not necessarily optimal for distinguishing objects
of interest. After computing features, these methods typically make anchor-based
predictions of the locations and poses of objects in the scene. Anchors provide
useful position and pose priors, but they lead to learning algorithms with many
hyperparameters and potentially unstable training.

Two popular architectures typifying this approach are PointPillars [16] and
multi-view fusion (MVF) [51], which achieve top efficiency and performance
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on recent 3D object detection benchmarks. These methods use learning repre-
sentations built from birds-eye view pillars above the ground plane. MVF also
benefits from complementary information provided by a spherical view. These
methods, however, predict parameters of a bounding box per anchor. Hyperpa-
rameters of anchors need to be tuned case-by-case for different tasks/datasets,
reducing practicality. Moreover, anchors are sparsely distributed in the scene,
leading to a significant class imbalance. An anchor is assigned as positive when
its intersection-over-union (IoU) with a ground-truth box reaches above pre-
scribed threshold; the number of positive anchors is less than 0.1% of all anchors
in a typical point cloud.

As an alternative, we introduce a fully pillar-based (anchor-free) object detec-
tion model for autonomous driving. In principle, our method is an intuitive
extension of PointPillars [16] and MVF [51] that uses pillar representations in
multi-view feature learning and in pose estimation. In contrast to past works,
we find that predicting box parameters per anchor is neither necessary nor effec-
tive for 3D object detection in autonomous driving. A critical new component
of our model is a per-pillar prediction network, removing the necessity of anchor
assignment. For each birds-eye view pillar, the model directly predicts the posi-
tion and pose of the best possible box. This component improves performance
and is significantly simpler than current state-of-the-art 3D object detection
pipelines.

In addition to introducing this pillar-based object detection approach, we also
propose ways to address other problems with previous methods. For example,
we find the spherical projection in MVF [51] causes unnecessary distortion of
scenes and can actually degrade detection performance. So, we complement the
conventional birds-eye view with a new cylindrical view, which does not suffer
from perspective distortions. We also observe that current methods for pillar-
to-point projection suffer from spatial aliasing, which we improve with bilinear
interpolation.

To investigate the performance of our method, we train and test the model
on the Waymo Open Dataset [39]. Compared to the top performers on this
dataset [16,27,51], we show significant improvements by 6.87 3D mAP and 6.71
2D mAP for vehicle detection. We provide ablation studies to analyze the con-
tribution of each proposed module in Sect. 4 and show that each outperforms its
counterpart by a large margin.

Contributions. We summarize our key contributions as follows:

– We present a fully pillar-based model for high-quality 3D object detec-
tion. The model achieves state-of-the-art results on the most challenging
autonomous driving dataset.

– We design an pillar-based box prediction paradigm for object detection, which
is much simpler and stronger than its anchor-based and/or point-based coun-
terpart.

– We analyze the multi-view feature learning module and find a cylindrical view
is the best complementary view to a birds-eye view.
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– We use bilinear interpolation in pillar-to-point projection to avoid quantiza-
tion errors.

– We release our code to facilitate reproducibility and future research: https://
github.com/WangYueFt/pillar-od.

2 Related Work

Methods for object detection are highly successful in 2D visual recogni-
tion [7,8,11,21,33,34]. They generally involve two aspects: backbone networks
and detection heads. The input image is passed through a backbone network to
learn latent features, while the detection heads make predictions of bounding
boxes based on the features. In 3D, due to the sparsity of the data, many special
considerations are taken to improve both efficiency and performance. Below,
we discuss related works on general object detection, as well as more general
methods relevant to learning on point clouds.

2D Object Detection. RCNN [8] pioneers the modern two-stage approach to
object detection; more recent models often follow a similar template. RCNN
uses a simple selective search to find regions of interest (region proposals) and
subsequently applies a convolutional neural network (CNN) to bottom-up region
proposals to regress bounding box parameters.

RCNN can be inefficient because it applies a CNN to each region proposal,
or image patch. Fast RCNN [7] addresses this problem by sharing features for
region proposals from the same image: it passes the image in a one-shot fashion
through the CNN, and then region features are cropped and resized from the
shared feature map. Faster RCNN [34] further improves speed and performance
by replacing the selective search with region proposal networks (RPN), whose
features can be shared.

Mask RCNN [11] is built on top of Faster RCNN. In addition to box predic-
tion, it adds another pathway for mask prediction, enabling enables object detec-
tion, semantic segmentation, and instance segmentation using a single pipeline.
Rather than using ROIPool [7] to resize feature patch to a fixed size grid,
Mask RCNN proposes using bilinear interpolation (ROIAlign) to avoid quan-
tization error. Beyond significant structural changes in the general two-stage
object detection models, extensions using machinery from image processing and
shape registration include: exploiting multi-scale information using feature pyra-
mids [19], iterative refinement of box prediction [2], and using deformable convo-
lutions [6] to get an adaptive receptive field. Recent works [41,50,53] also show
anchor-free methods achieve comparable results to existing two-stage object
detection models in 2D.

In addition to two-stage object detection, many works aim to design real-time
object detection models via one-stage algorithms. These methods densely place
anchors that define position priors and size priors in the image and then asso-
ciate each anchor with the ground-truth using an intersection-over-union (IoU)
threshold. The networks classify each anchor and regress parameters of anchors;
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non-maximum suppression (NMS) removes redundant predictions. SSD [21] and
YOLO [32,33] are representative examples of this approach. RetinaNet [20] is
built on the observation that the extreme foreground-background class imbal-
ance encountered during training causes one-stage detectors trailed the accuracy
of two-stage detectors. It proposes a focal loss to amplify a sparse set of hard
examples and to prevent easy negatives from overwhelming the detector dur-
ing training. Similar to image object detection, we also find the imbalance issue
causes instability in 3D object detection. In contrast to RetinaNet, however, we
replace anchors with pillar-centric predictions to alleviate imbalance.

Learning on Point Clouds. Point clouds provide a natural representation of
3D shapes [3] and scenes. Due to irregularity and symmetry under reordering,
however, defining convolution-like operations on point clouds is difficult.

PointNet [30] exemplifies a broad class of deep learning architectures that
operate on raw point clouds. It uses a shared multi-layer perceptron (MLP)
to lift points to high-demensional space and then aggregates features of points
using symmetric set function. PointNet++ [31] exploits local context by build-
ing hierarchical abstraction of point clouds. DGCNN [44] uses graph neural
networks (GCN) on the k-nearest neighbor graphs to learn geometric features.
KPConv [40] defines a set of kernel points to perform deformable convolutions,
providing more flexibility than fixed grid convolutions. PCNN [1] defines exten-
sion and restriction operations, mapping point cloud functions to volumetric
functions and vice versa. SPLATNet [38] renders point clouds to lattice grid and
perform lattice convolutions.

FlowNet3D [22] and MeteorNet [23] adopt these methods and learn point-
wise flows on dynamical point clouds. In addition to high-level point cloud
recognition, recent works [9,35,42,43] tackle low-level registration problems
using point cloud networks and show significant improvements over traditional
optimization-based methods. These point-based approaches, however, are con-
strained by the number of points in the point clouds and cannot scale to large-
scale settings such as autonomous driving. To that end, sparse 3D convolu-
tions [10] have been proposed to apply 3D convolutions sparsely only on areas
where points reside. Minkowski ConvNet [5] generalizes the definition of high-
dimensional sparse convolution and improves 3D temporal perception.

3D Object Detection. The community has seen rising interest in 3D object detec-
tion thanks to the popularity of autonomous driving. VoxelNet [52] proposes a
generic one-stage model for 3D object detection. It voxelizes the whole point
cloud and uses dense 3D convolutions to perform feature learning. To address
the efficiency issue, PIXOR [49] and PointPillars [16] both organize in vertical
columns (pillars); a PointNet is used to transform features from points to pillars.
MVF [51] learns to utilize the complementary information from both birds-eye
view pillars and perspective view pillars. Complex-YOLO [37] extends YOLO
to 3D scenarios and achieves real-time 3D perception; PointRCNN [36], on the
other hand, adopts a RCNN-style detection pipeline. Rather than working in 3D,
LaserNet [25] performs convolutions in raw range scans. Beyond point clouds
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only, recent works [4,15,46] combine point clouds with camera images to utilize
additional information. Frustum-PointNet [29] leverages 2D object detectors to
form a frustum crop of points and then uses a PointNet to aggregate features
from points in frustum. [18] designs an end-to-end learnable architecture that
exploits continuous convolutions to have better fused feature maps in every level.
In addition to visual inputs, [48] shows that High-Definition (HD) maps provide
strong priors that can boost the performance of 3D object detectors. [17] argues
multi-tasking training can help the network to learn better representations than
single-tasking. Beyond supervised learning, [45] investigates how to learn a per-
ception model for unknown classes.

3 Method

In this section, we detail our approach to object pillar-based detection. We
establish preliminaries about the pillar-point projection, PointPillars, and MVF
in Sect. 3.1 and summarize our model in Sect. 3.2. Next, we discuss three critical
new components of our model: cylindrical view projection (Sect. 3.3), a pillar-
based prediction paradigm (Sect. 3.4), and a pillar-to-point projection module
with bilinear interpolation (Sect. 3.5). Finally, we introduce the loss function
in Sect. 3.6. For ease of comparison to previous work, we use the same notation
as MVF [51].

3.1 Preliminaries

We consider a three-dimensional point cloud with N points P = {pi}N−1
i=0 ⊆ R

3

with K-dimensional features F = {fi}N−1
i=0 ⊆ R

K . We define two functions
FV (pi) and FP (vj), where FV (pi) returns the index j of pi’s corresponding pillar
vj and FP (vj) gives the set of points in vj . When projecting features from points
to pillars, multiple points can potentially fall into the same pillar. To aggregate
features from points in a pillar, a PointNet [30] (denoted as PN) is used to
aggregate features from points to get pillar-wise features, where

fpillar
j = PN({fi|∀pi ∈ FP (vj)}). (1)

Then, pillar-wise features are further transformed through an additional con-
volutional neural network (CNN), notated φpillar = Φ(fpillar) where Φ denotes
the CNN. To retrieve point-wise features from pillars, the pillar-to-point feature
projection is given by

fpoint
i = fpillar

j and φpoint
i = φpillar

j , where j = FV (pi). (2)

While PointPillars only considers birds-eye view pillars and makes predictions
based on the birds-eye feature map, MVF also incorporates spherical pillars.
Given a point pi = (xi, yi, zi), its spherical coordinates (ϕi, θi, di) are defined via

ϕi = arctan
yi

xi
θi = arccos

zi

di
di =

√
x2

i + y2
i + z2i . (3)
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Fig. 1. Overall architecture of the proposed model: a point cloud is projected to BEV
and CYV respectively; then, view-specific feature learning is done in each view; third,
features from multiple views are aggregated; next, point-wise features are projected
to BEV again for further embedding; finally, in BEV, a classification network and a
regression network make predictions per pillar. BEV: birds-eye view; CYV: cylindrical
view; cls: per pillar classification target; reg: per pillar regression target.

We can denote the established point-pillar transformations as (F bev
V (pi), F bev

P

(vj)) and (F spv
V (pi), F

spv
P (vj)) for the birds-eye view and the spherical view,

respectively. In MVF, pillar-wise features are learned independently in two views;
then the point-wise features are gathered from those views using Eq. 2. Next, the
fused point-wise features are projected to birds-eye view again and embedded
through a CNN as in PointPillars.

The final detection head for both PointPillars and MVF is an anchor-based
module. Anchors, parameterized by (xa, ya, za, la, wa, ha, θa), are densely placed
in each cell of the final feature map. During pre-processing, an anchor is marked
as “positive” if its intersection-over-union (IoU) with a ground-truth box is above
a prescribed positive threshold, and “negative” if its IoU is below a negative
threshold; otherwise, the anchor is excluded in the final loss computation.

3.2 Overall Architecture

An overview of our proposed model is shown in Fig. 1. The input point cloud
is passed through the birds-eye view network and the cylindrical view network
individually. Then, features from different views are aggregated in the same
way with MVF. Next, features are projected back to birds-eye view and passed
through additional convolutional layers. Finally, a classification network and a
regression network make the final predictions per birds-eye view pillar. We do
not use anchors in any stage. We describe each module in detail below.

3.3 Cylindrical View

In this section, we formulate the cylindrical view projection. The cylindrical
coordinates (ρi, ϕi, zi) of a point pi is given by the following:

ρi =
√

x2
i + y2

i ϕi = arctan
yi

xi
zi = zi. (4)
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(a) Cylindrical View

(b) Spherical View

Fig. 2. Comparison of (a) cylindrical view projection and (b) spherical view projection.
We label two example cars in these views. Objects in spherical view are distorted (in
Z-axis) and no longer in physical scale.

Cylindrical pillars are generated by grouping points that have the same ϕ and z
coordinates. Although it is closely related to the spherical view, the cylindrical
view does not introduce distortion in the Z-axis. We show an example in Fig. 2,
where cars are clearly visible in the cylindrical view but not distinguishable in
the spherical view. In addition, objects in spherical view are no longer in their
physical scales—e.g., distant cars become small.

3.4 Pillar-Based Prediction

The pillar-based prediction module consists of two networks: a classification
network and a regression network. They both take the final pillar features φpillar

from birds-eye view. The prediction targets are given by

p = fcls(φpillar) and (Δx,Δy,Δz,Δl,Δw,Δh, θp) = freg(φpillar), (5)

where p denotes the probability of whether a pillar is a positive match to a
ground-truth box and (Δx,Δy,Δz,Δl,Δw,Δh, θp) are the regression targets for
position, size, and heading angle of the bounding box.

The differences between anchor-based method and pillar-based method are
explained in Fig. 3. Rather than associating a pillar with an anchor and predict-
ing the targets with reference to the anchor, the model (on the right) directly
makes a prediction per pillar.

3.5 Bilinear Interpolation

The pillar-to-point projection used in PointPillars [16] and MVF [51] can be
thought of as a version of nearest neighbor interpolation, however, which often
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(a) Prediction per anchor (b) Prediction per pillar

Fig. 3. Differences between prediction per anchor and prediction per pillar. (a) Multiple
anchors with different sizes and rotations are densely placed in each cell. Anchor-
based models predict parameters of bounding box for the positive anchor. For ease
of visualization, we only show three anchors. Grid (in orange): birds-eye view pillar;
dashed box (in red): a positive match; dashed box (in black): a negative match; dashed
box (in green): invalid anchors because their IoUs are above negative threshold and
below positive threshold. (b) For each pillar (center), we predict whether it is within a
box and the box parameters. Dots (in red): pillar center. (Color figure online)

(a) Nearest neighbor interpolation (b) Bilinear interpolation

Fig. 4. Comparison between nearest neighbor interpolation and bilinear interpolation
in pillar-to-point projection. Rectangles (in orange): birds-eye view pillars; dots (in
blue): points in 3D Cartesian coordinates; dots (in green): points projected to pillar
frame; dots (in red): centers of pillars. (Color figure online)

introduces quantization errors. Rather than performing nearest neighbor inter-
polation, we propose using bilinear interpolation to learn spatially-consistent fea-
tures. We describe the formulation of nearest neighbor interpolation and bilinear
interpolation in the context of pillar-to-point projection below.

As shown in Fig. 4 (a), we denote the center of a pillar vj as cj where cj is
defined by its 2D or 3D coordinates. Then, the point-to-pillar mapping function
is given by

FV (pi) = j, where ‖pi − cj‖ ≤ ‖pi − ck‖ ∀k (6)

and ‖·‖ denotes the L2 norm. When querying the features for a point pi from a
collection pillars, we determine the corresponding pillar vj by checking FV and
copy the features of vj to pi—that is φpoint

i = φpillar
j .

This operation, though straightforward, leads to undesired spatial misalign-
ment: if two points pi and pj with different spatial locations reside in the same
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pillar, their pillar-to-point features are the same. To address this issue, we pro-
pose using bilinear interpolation for the pillar-to-point projection. As shown in
Fig. 4 (b), the bilinear interpolation provides consistent spatial mapping between
points and pillars.

3.6 Loss Function

We use the same loss function as in SECOND [47], PointPillars [16], and
MVF [51]. The loss function consists of two terms: a pillar classification loss
and a pillar regression loss. The ground-truth bounding box is parametrized as
(xg, yg, zg, lg, wg, hg, θg); the center of pillar is (xp, yp, zp); and the prediction
targets for the bounding box are (Δx,Δy,Δz,Δl,Δw,Δh, θp) as in Sect. 3.4.
Then, the regression loss is:

Lreg = SmoothL1(θp − θg) +
∑

r∈{x,y,z}
SmoothL1(rp − rg − Δr)

+
∑

r∈{l,w,h}
SmoothL1(log(rg) − Δr)

(7)

where

SmoothL1(d) =
{

0.5 · d2 · σ2, if |d| < 1
σ2

|d| − 1
2σ2 , otherwise. (8)

We take σ = 3.0. For pillar classification, we adopt the focal loss [20]:

Lcls = −α(1 − p)γ log p. (9)

We use α = 0.25 and γ = 2, as recommended by [20].

4 Experiments

Our experiments are divided into four parts. First, we demonstrate perfor-
mance of our model for vehicle and pedestrian detection on the Waymo Open
Dataset [39] in Sect. 4.1. Then, we compare anchor-, point-, and pillar-based
detection heads in Sect. 4.2. We compare different combinations of views in
Sect. 4.3. Finally, we test the effects of bilinear interpolation in Sect. 4.4.

Dataset. The Waymo Open Dataset [39] is the largest publicly-available 3D
object detection dataset for autonomous driving. The dataset provides 1000
sequences total; each sequence contains roughly 200 frames. The training set con-
sists of 798 sequences with 158,361 frames, containing 4.81M vehicle and 2.22M
pedestrian boxes. The validation set consists of 202 sequences with 40,077 frames,
containing 1.25M vehicle and 539K pedestrian boxes. The detection range is set
to [−75.2, 75.2] meters (m) horizontally and [−3, 3] m vertically.
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Metrics. For our experiments, we adopt the official evaluation protocols from
the Waymo Open Dataset. In particular, we employ the 3D and BEV mean
average precision (mAP) metrics. The orientation-aware IoU threshold is 0.7 for
vehicles and 0.5 for pedestrians. We also break down the metrics according to
the distances between the origin and ground-truth boxes: 0m–30m, 30m–50m,
and 50m–infinity (Inf). The dataset is split based on the number of points in
each box: LEVEL 1 denotes boxes that have more than 5 points while LEVEL 2
denotes boxes that have 1–5 points. Following StarNet [27], MVF [51], and Point-
Pillars [16] as reimplemented in [39], we evaluate our models on LEVEL 1 boxes.

Implementation Details. Our model consists of three parts: a multi-view feature
learning network; a birds-eye view PointPillar [16] backbone; and a per-pillar
prediction network. In the multi-view feature learning network, we project point
features to both birds-eye view pillars and cylindrical pillars. For each view, we
apply three ResNet [12] layers with strides [1, 2, 2], which gradually downsam-
ples the input feature to 1/1, 1/2, and 1/4 of the original feature map. Then,
we project the pillar-wise features to points using bilinear interpolation and con-
catenate features from both views and from a parallel PointNet with one fully-
connected layer. Then, we transform the per-point features to birds-eye pillars
and use a PointPillars [16] backbone with three blocks to further improve the
representations. The three blocks have [4, 6, 6] convolutional layers, with dimen-
sions [128, 128, 256]. Finally, for each pillar, the model predicts the categorical
label using a classification head and 7 DoF parameters of its closest box using
a regression head. The classification head and regression head both have four
convolutional layers with 128 hidden dimensions. We use BatchNorm [13] and
ReLU [26] after every convolutional layer.

Training. We use the Adam [14] optimizer to train the model. The learning rate
is initially 3× 10−4 and then linearly increased to 3× 10−3 in the first 5 epochs.
Finally, the learning rate is decreased to 3 × 10−6 using cosine scheduling [24].
We train the model for 75 epochs in 64 TPU cores.

Inference. The input point clouds pass through the whole model once to get the
initial predictions. Then, we use non-maximum suppression (NMS) [7] to remove
redundant bounding boxes. The oriented IoU threshold of NMS is 0.7 for vehicle
and 0.2 for pedestrian. We keep the top 200 boxes for metric computation. The
size of our model is on a par with MVF; the model runs at 15 frames per second
(FPS) on a Tesla V100.

4.1 Results Compared to State-of-the-Art

We compare the proposed method to top-performing methods on the Waymo
Open Dataset. StarNet [27] is a purely point-based method with a small receptive
field, which performs well for small objects such as pedestrians but poorly for
large objects such as vehicles. LaserNet [25] operates on range images, which
is similar to our cylindrical view feature learning. Although PointPillars [16]
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Table 1. Results on vehicle. ¶: re-implemented by [39], the feature map in the first
PointPillars block is two times as big as in others; ‡: our re-implementation; †: re-
implemented by [51].

Method BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)

Overall 0–30m 30–50m 50m–Inf Overall 0–30m 30–50m 50m–Inf

StarNet [27] – – – – 53.7 – – –

LaserNet [25] 71.57 92.94 74.92 48.87 55.1 84.9 53.11 23.92

PointPillars¶ [16] 80.4 92.0 77.6 62.7 62.2 81.8 55.7 31.2

PointPillars‡ [16] 70.59 86.63 69.34 49.3 54.25 76.31 48.08 24.21

PointPillars† [16] 75.57 92.1 74.06 55.47 56.62 81.01 51.75 27.94

MVF [51] 80.4 93.59 79.21 63.09 62.93 86.3 60.2 36.02

Ours 87.11 95.78 84.74 72.12 69.8 88.53 66.5 42.93

Improvements +6.71 +2.19 +5.53 +9.03 +6.87 +2.23 +6.3 +6.91

Table 2. Results on pedestrian. ¶: re-implemented by [39]. †: re-implemented by [51].

Method BEV mAP (IoU=0.5) 3D mAP (IoU=0.5)

Overall 0–30m 30–50m 50m–Inf Overall 0–30m 30–50m 50m–Inf

StarNet [27] – – – – 66.8 – – –

LaserNet [25] 70.01 78.24 69.47 52.68 63.4 73.47 61.55 42.69

PointPillars¶ [16] 68.7 75.0 66.6 58.7 60.0 68.9 57.6 46.0

PointPillars† [16] 68.57 75.02 67.11 53.86 59.25 67.99 57.01 41.29

MVF [51] 74.38 80.01 72.98 62.51 65.33 72.51 63.35 50.62

Ours 78.53 83.56 78.7 65.86 72.51 79.34 72.14 56.77

Improvements +4.15 +3.55 +5.72 +3.35 +5.71 +6.83 +8.77 +6.15

does not evaluate on this dataset, MVF [51] and the Waymo Open Dataset [39]
both re-implement the PointPillars. So we adopt the results from MVF [51]
and [39]. The re-implementation from [39] uses larger feature map resolution in
the first PointPillars block; therefore, it outperforms the re-implementation from
MVF [51].

MVF [51] extends PointPillars [16] with the same backbone networks and
multi-view feature learning. We use the same backbone networks with PointPil-
lars [16] and MVF [51].

As shown in Table 1 and Table 2, we achieve significantly better results for
both pedestrians and vehicles. Especially for distant vehicles (30m–Inf), the
improvements are more significant. This is inline with our hypothesis: in distant
areas, anchors are less possible to match to a ground-truth box; therefore, the
imbalance problem is more serious. Also, to verify the improvements are not
due to differences in training protocol, we re-implement PointPillars; using our
training protocol, it achieves 54.25 3D mAP and 70.59 2d mAP, which are worse
than the re-implementations in [51] and [39]. Therefore, we can conclude the
improvements are due to the three new components added by our proposed
model.
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Table 3. Comparison of making prediction per anchor, per point, or per pillar.

Method BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)

Overall 0–30m 30–50m 50m–Inf Overall 0–30m 30–50m 50m–Inf

Anchor-based 78.84 91.91 74.99 59.59 59.78 82.69 53.38 31.02

Point-based 79.77 92.35 76.58 60.00 60.6 83.66 55.48 30.95

Pillar-based 87.11 95.78 84.74 72.12 69.8 88.53 66.5 42.93

4.2 Comparing Anchor-Based, Point-Based, and Pillar-Based
Prediction

In this experiment, we compare to alternative means of making predictions:
predicting box parameters per anchor or per point. For these three detection
head choices, we use the same overall architecture with experiments in Sect. 4.1.
We conduct this ablation study on vehicle detection.

Anchor-Based Model. We use the parameters and matching strategy from Point-
Pillars [51] and MVF [51]. Each class anchor is described by a width, length,
height, and center position and is applied at two orientations: 0◦ and 90◦.
Anchors are matched to ground-truth boxes using the 2D IoU with the fol-
lowing rules: a positive match is either the highest with a ground truth box, or
above the positive match threshold (0.6); while a negative match is below the
negative threshold (0.45). All other anchors are ignored in the box parameter
prediction. The model is to predict whether a anchor is positive or negative, and
width, length, height, heading angle, and center position of the bounding box.

Point-Based Model. The per-pillar features are projected to points using bilinear
interpolation. Then, we assign each point to its surrounding box with the follow-
ing rules: if a point is inside a bounding box, we assign it as a foreground point;
otherwise it is a background point. The model is asked to predict the binary
label whether a point is a foreground point or a background point. For positive
points, the model also predicts the width, length, height, heading angle, and cen-
ter offsets (with reference to point positions) of their associated bounding boxes.
Conceptually, this point-based model is an instantiation of VoteNet [28] applied
to this autonomous driving scenario. The key difference is: the VoteNet [28] uses
a PointNet++ [31] backbone while we use a PointPillars [51] backbone.

Pillar-Based Model. Since we use the same architecture, we take the results
from Sect. 4.1. As Table 3 shows, anchor-based prediction performs the worst
while point-based prediction is slightly better. Our pillar-based prediction is
top performing among these three choices. The pillar-based prediction model
achieves the best balance between coarse prediction (per anchor) and fine-grained
prediction (per point).
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Table 4. View projection

View Coordinates Range

3D Cartesian (x, y, z) (−75.2, 75.2)m, (−75.2, 75.2)m, (−3, 3)m

BEV (x, y, z) (−75.2, 75.2)m, (−75.2, 75.2)m, (−3, 3)m

SPV (arctan( y
x
), arccos( z√

x2+y2+z2
),

√
x2 + y2 + z2) (0, 2π), (0.485π, 0.55π), (0, 107)m,

XZ view (x, y, z) (−75.2, 75.2)m, (−75.2, 75.2)m, (−3, 3)m

CYV (
√

x2 + y2, arctan( y
x
), z) (0, 107)m, (0, 2π), (−3, 3)m

Table 5. Ablation on view combinations.

Method BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)

Overall 0–30m 30–50m 50m–Inf Overall 0–30m 30–50m 50m–Inf

BEV 81.58 92.69 78.64 63.52 61.86 83.61 56.91 33.53

SPV 81.58 93.7 78.43 63.2 62.08 83.31 56.59 34.05

XZ 81.49 94.03 78.04 62.32 61.67 84.64 55.01 32.06

CYV 83.43 95.21 81.49 66.77 64.77 87.09 60.91 37.99

BEV + SPV 85.09 95.19 82.01 69.13 66.31 86.56 61.15 39.36

BEV + XZ 82.45 94.1 79.19 63.91 62.76 85.08 56.8 33.36

BEV + CYV 87.11 95.78 84.74 72.12 69.8 88.53 66.5 42.93

4.3 View Combinations

In this section, we test different view projections in multi-view feature learning:
birds-eye view (BEV), spherical view (SPV), XZ view, cylindrical view (CYV),
and their combinations. First, we define the vehicle frame: the X-axis is positive
forwards, the Y-axis is positive to the left, and the Z-axis is positive upwards.
Then, we can write the coordinates of a point p = (x, y, z) in different views;
the range of each view is given in Table 4. The pillars in the corresponding
view are generated by projecting points from 3D to 2D using the coordinate
transformation. One exception is in XZ view, in which we use separate pillars
for positive part and negative part for Y-axis to avoid undesired occlusions.

We show results of different view projections and their combinations in
Table 5 for vehicle detection. When using a single view, the cylindrical view
achieves significantly better results than the alternatives, especially in the long-
range detection case (50m–Inf). When combining with the birds-eye view, the
cylindrical view still outperforms others in all metrics. The spherical view, albeit
similar to cylindrical view, introduces distortion in Z-axis, degrading perfor-
mance relative to the cylindrical view. On the other hand, the XZ view does not
distort the Z-axis, but occlusions in Y-axis prevent it from achieving as strong
results as the cylindrical view. We also test with additional view combinations
(such as using birds-eye view, spherical view, and cylindrical view) and do not
observe any improvements over combining just the birds-eye view and the cylin-
drical view.
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Table 6. Comparing bilinear interpolation and nearest neighbor projection.

Method BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)

Overall 0–30m 30–50m 50m–Inf Overall 0–30m 30–50m 50m–Inf

Nearest neighbor 84.67 94.42 79.2 65.77 64.76 85.55 59.21 35.63

Bilinear 87.11 95.78 84.74 72.12 69.8 88.53 66.5 42.93

4.4 Bilinear Interpolation or Nearest Neighbor Interpolation?

In this section, we compare bilinear interpolation to nearest neighbor interpola-
tion in pillar-to-point projection (for vehicle detection). The architectures remain
the same for both alternatives except the way we project multi-view features
from pillars to points: In nearest neighbor interpolation, for each query point,
we sample its closest pillar center and copy the pillar features to it, while in
bilinear interpolation, we sample its four pillar neighbors and take a weighted
average of the corresponding pillar features. Table 6 shows bilinear interpolation
systematically outperforms its counterpart in all metrics. This observation is
consistent with the comparison of ROIAlign [11] and ROIPool [34] in 2D.

5 Discussion

We present a pillar-based object detection pipeline for autonomous driving. Our
model achieves state-of-the-art results on the largest publicly-available 3D object
detection dataset. The success of our model suggests many designs from 2D
object detection/visual recognition are not directly applicable to 3D scenarios.
In addition, we find that learning features in correct views is import to the
performance of the model.

Our experiments also suggest several avenues for future work. For example,
rather than hand-designing a view projection as we do in Sect. 3.3, learning
an optimal view transformation from data may provide further performance
improvements. Learning features using 3D sparse convolutions rather than 2D
convolutions could improve performance as well. Also, following two-stage object
detection models designed for images, adding a refinement step might increase
the performance for small objects.

Finally, we hope to find more applications of the proposed model beyond
object detection. For example, we could incorporate instance segmentation,
which may help with fine-grained 3D recognition and robotic manipulation.
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