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Abstract. Many current activity recognition models use 3D convolu-
tional neural networks (e.g. I3D, I3D-NL) to generate local spatial-
temporal features. However, such features do not encode clip-level
ordered temporal information. In this paper, we introduce a channel
independent directional convolution (CIDC) operation, which learns to
model the temporal evolution among local features. By applying mul-
tiple CIDC units we construct a light-weight network that models the
clip-level temporal evolution across multiple spatial scales. Our CIDC
network can be attached to any activity recognition backbone network.
We evaluate our method on four popular activity recognition datasets
and consistently improve upon state-of-the-art techniques. We further
visualize the activation map of our CIDC network and show that it is
able to focus on more meaningful, action related parts of the frame.

Keywords: Action recognition · Temporal modeling · Directional
convolution

1 Introduction

Action recognition has made significant progress in recent years [6,14,19,21,35],
with most of these methods leveraging 3D convolutions to learn spatial-temporal
features. Most operate by taking as the input a video clip (a set of contiguous
frames extracted from a video), and passing it through a 3D feature backbone.
After the final convolutional block, the temporal dimension of feature map is
typically down-sampled by a factor of t (e.g. 8). At this point the feature map
at each temporal position represents a t frame sub-clip. The spatial-temporal
feature map is passed to a global average pooling layer to summarize its salient
features, and this pooled feature is used to derive the activity class label.

Even though 3D feature extraction backbones [35] and their derivatives (e.g.
I3D-NL [35]) have proven to be effective, there are two major issues: (1) while
the 3D convolutions in these networks have a temporal receptive field that spans
the full clip, the effective receptive fields have been shown to actually be quite
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Fig. 1. We show a video clip (32 frames) and the spatial activation maps for the repre-
sentative frame of every sub-clip (8 frames). I3D and I3D-NL not only activates related
image regions of “althelets hurdling”, but also activates “audiences moving” in
the background. In contrast, our proposed model has clip-level motion understanding,
thus it largely focuses on image region of interest that explains the action “althelets
hurdling”. Video examples are from Kinetics-400 dataset.

local [20] and thus lack full clip level motion understanding and (2) the temporal
ordering/relationships between sub-clips is lost by the global average pooling of
the feature maps.

To this end, we propose a novel channel independent directional convolution
(CIDC) operation that captures temporal order information between sub-clips.
Specifically, our CIDC unit encodes a feature vector that progressively aggregates
the backbone features over the full extent of the input video clip. In other words,
the first element in our method’s output represents only the first few frames
of the input clip, the middle element: the first half of the clip, and the last
element: the full clip. We perform this operation bidirectionally (both forwards
and backwards) to better capture the complete temporal order information of
the video clip.

We use our CIDC unit to construct a light-weight CIDC network that can be
attached to any activity recognition backbone (e.g. I3D, I3D-NL) to explicitly
aggregate clip-level motion information. Our CIDC network is formed by stack-
ing multiple CIDC units on top of the last three blocks of any action recognition
backbone network. Our network is able to aggregate multiple spatial-temporal
feature maps from different scales to effectively encode different types of motion.

As can be seen in Fig. 1, although the I3D and I3D-NL feature encoders are
able to focus on the image areas correlated with the activity, they also activate
on image regions where irrelevant object motion happens (i.e audience moving
in the background). In contrast, the proposed network is able to understand the
longer-term clip-level motion, therefore it precisely localizes the key area of the
video for the action of interest (i.e. athletes hurdling).

We test our multi-scale CIDC network on four datasets: UCF-101 [26],
HMDB-51 [16], Something-Something V2 [11] and Kinetics-400 [2]. Our model
consistently improves state-of-the-art activity recognition models, demonstrating
the effectiveness of the proposed method. Overall, our contributions are:

1. A novel channel independent directional convolution (CIDC) unit that aggre-
gates features temporally and maintains the relative temporal order in the
generated feature.
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2. A multi-scale CIDC network that learns video clip-level temporal feature from
different spatial and temporal scales.

3. An in-depth analysis and visualization of CIDC network that shows it is able
to leverage clip-level temporal association to better focus on action-related
features.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 elaborates the technical details of the proposed multi-scale CIDC
networks. Section 4 presents our experimental results. Section 5 concludes the
paper.

2 Related Work

Feature Representation for Activity Recognition. In order to represent an action,
the video-level feature encoder needs to summarize the information about the
objects, scenes as well as target object motions in the videos. First, researchers
use ConvNet-2D [7,14,19,25,34] to extract feature for every frame, and aggregate
frame-wise features to video-level feature. In order to encode motion information,
two stream ConvNet-2D [7,14,25,34] are used, in which optical flow images [22]
are directly taken as input to complement visual appearance information from
RGB-stream Convnet-2D. Recently, ConvNet-3D [3,6,21,29–31,35,39] extends
ConvNet-2D to spatial-temporal domain, handling both spatial and temporal
dimensions similarly. It achieves successes on action recognition in terms of its
model efficiency and model capacity. TSM [19] and TAM [5] propose to perform
temporal modeling by shifting the feature channel along temporal dimension.
SlowFast [6] models the action with a motion (fast) branch and a visual appear-
ance (slow) branch, and it achieves the state-of-the-art performance. LFB [37]
adopts a self-attention block to aggregate video-level features [37]. In this paper,
we propose a novel light-weight CIDC network to learn clip-level temporal associ-
ation, which is important for action recognition. More importantly, the proposed
CIDC network is complementary to previous works that usually captures local
spatio-temporal information.

Temporal Modelling in Activity Recognition. Temporal modelling is considered to
be essential for action recognition [6,19,37]. LSTMs [13] are firstly used to model
temporal associations among features extracted by 2D networks [4,17,18,40].
However, its results are not as good as expected in helping activity recognition
[6,19,37]. The temporal rank pooling is another way to model the evolution
of actions in sequential order [1,8,9]. Temporal rank pooling requires flattened
features, which may compromises the spatial arrangement of the features, which
makes it not feasible to insert the temporal rank pooling in the middle of the
network. Furthermore, self-attention block [24,32] is used to aggregate spatial-
temporal features, and it helps improving the action recognition performance
[10,35]. In this paper, we propose channel independent directional convolution
(CIDC) network to model clip-level temporal associations. We empirically show
that our CIDC network outperforms LSTM and self-attention block in improving
action recognition accuracy.



278 X. Li et al.

3 Methodology

A typical action recognition network takes as input a video clip (a set of n
contiguous video frames), and passes it through a 3D feature backbone (e.g.
I3D, I3D-NL [35]) to create a feature map (FC×T×W×H), where T indicates the
temporal length, C the number of channels and W × H the width and height.
While the 3D convolutions that create this feature map do have a temporal
receptive field that spans the full clip (T ), the effective receptive fields of con-
volutional features have been shown to generate local, sub-clip descriptors [20],
rather descriptors that capture the long term temporal evolution of the full clip.
Unfortunately, most networks at this point perform global average pooling over
the spatial-temporal dimensions, thus throwing away any information of how the
action evolves over the entirety of the clip. In this section we present our method
to overcome this limitation by explicitly modeling the temporal evolution over
the full clip.

3.1 Channel Independent Directional Convolution

To explicitly encode the temporal evolution of the clip, we introduce our novel
directional convolution operation. This operation can be thought of as set of
2D convolution over the spatial dimensions that progressively add more temporal
context. The first convolution of this set only operates on the first temporal
element of the clip volume. The subsequent spatial convolutions progressively
incorporate more of the temporal extent of the clip until the final convolution
considers the whole clip. Considering that different channels in the feature map
represent different visual components, applying the same directional convolution
across all channels restricts the temporal modelling capacity of the network.
Thus, we instead apply this directional convolution independently per channel,
and we refer to the complete operation as a channel independent directional
convolution or CIDC. In the following section we present how we implement
our proposed CIDC.

Channel Independent Directional Convolution Implementation. We
implement our proposed CIDC operator as 2D convolutions that operate on
each channel (C) independently and treat the temporal dimension (T ) as the
channels normally would be. Consider the input feature map Fc as the feature
map for the cth channel where Fc ∈ R

T×W×H . We convolve it with T ′ filters
wc = [wc

1; . . .w
c
t ; . . . ;w

c
T ′ ] to produce a feature map F′

c ∈ R
T ′×W×H :

F′
c = concat )wc

t ∗ Fc )t∈1..T (1)

and then concatenate all c features maps to produce F′ ∈ R
T ′×C×W×H , which is

our generated spatial-temporal feature map. This brings us close to the operator
outline in Sect. 3.1, but if we apply such a convolution naively over feature maps
we do not have any guarantees that it will capture the temporal evolution of the
full clip.
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Fig. 2. Graphical illustration of a single Channel Independent Directional Convolution
(CIDC) unit.

To create our CIDC operator we force the upper triangle of each wc to be
zeros. By doing so the output features gradually represent larger portions of the
video: the first element only has the context of the first sub-clip of the video
clip, the center element has the context of the first half of the video clip and the
last element has the context of the whole video clip. The operation is straight
forward to implement when T = T ′ but when this condition is not met (when we
perform temporal re-sampling) it is less obvious. We cover this case in detail in
Sect. 3.3, as it turns out the efficient implementation of this operation can deal
with this dimension miss match trivially.

Our method has the added benefit that by changing the output temporal
dimension T ′, we are able to“softly” manipulate the temporal dimension. This
is important, as it avoids the significant information loss due to temporal pooling
or temporal convolution with strides that current 3D backbones use.

To have an efficient implementation of the above algorithm, instead of split-
ting the operation into C separate operators, we combine the temporal and
channel dimensions and maintain the channel independence by using grouped
convolutions [15,38] where the number of groups is C. In this work we only use
1×1 filter sizes for w as our main focus is on the temporal, not spatial modeling
but there is nothing that specifically restricts one to this choice. After this oper-
ation, we also apply a standard channel-wise 3D convolution with kernel size of
1 to learn the semantic features after temporal aggregation (Fig. 2).

3.2 Multi-scale CIDC Network

Although the spatial-temporal feature map F encodes sub-clip level motion infor-
mation, it lacks longer-time clip-level motion understanding. To encode this, it
is important to get rid of distracting motion information from irrelevant objects.
Even though in some case, background objects or their motion information can
help action recognition, we argue that the model should focus on the motion of
the target objects in order to achieve deeper video understanding (e.g. spatial-
temporal action detection, etc.).
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Fig. 3. The architecture of multi-scale CIDC network, in which it aggregates multiple
spatial-scale feature maps. The dotted line arrows denotes spatial feature aggregation
operation from higher-resolution feature maps to lower-resolution ones. The solid line
arrow indicates the spatial attention propagation operation. CIDC(T1, T2, C) refers to
a CIDC unit with T1 input temporal length, T2 output temporal lenght and C channels.

To this end, we construct our CIDC network (Fig. 3) by stacking multiple
CIDC units and attaching it to a backbone network. The resulting output feature
map of our CIDC network is compact, has temporally ordered information and
more importantly, it aggregates the clip-level temporal information. Therefore,
the network can leverage such information to activate image regions that can
consistently explain the actions (athletes hurdling in Fig. 1) in the video clips
rather than to attend to short-term background motions (audiences moving due
to camera motion in Fig. 1). The output of our network (FCIDC) has the same
dimensions (C × T ×W ×H) as the backbone output F before average pooling.

We expect these two features to be complementary, and we fuse F and FCIDC

before they are passed to a final classification layer. We define,

Fout = S(F,FCIDC) (2)

where S is the fusion function. We explore the following fusion functions: (1),
concatenation Fout = [F;FCIDC ]d, where d indicates the dimension along which
the concatenation operation happens; (2), summation Fout = F + FCIDC .

Multi-scale Aggregation. Inspired by HRNet [27,28], our CIDC network con-
sists of multiple CIDC branches attached to different scale feature maps, with
cross-scale links. Instead of applying bi-directional cross scale aggregation, as
in HR-Net, we only pass early stage feature maps (with higher resolution) to
later stage feature maps (with lower resolution). To achieve this aggregation,
our feature aggregation unit performs the necessary dimensionality reduction to
ensure that feature vectors are compatible and applies an element-wise addition
to fuse these two feature maps. The dimentionality reduction is performed by
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2D spatial average pooling, followed by 3D 1 × 1 × 1 convolution. The details of
this multi-scale aggregation operator is illustrated in Fig. 3.

Spatial-Attention Propagation. It has been shown that self attention from
the later stage feature maps is an effective way to aggregate semantic context
from across the scene and focus on the key elements of the scene [33]. We leverage
this idea by using activation maps on the later stage feature maps to weight the
early stage features. This guides our CIDC module to focus on the temporal
evolution of the semantically important parts of the video clip. We propose to
propagate attention maps from later stage feature maps to early stage ones, and
use them to generate task-attentive feature maps before they are fed to CIDC
network. Formally,

F′
x = Bilinear(att(F)) � Fx + Fx (3)

where F ∈ R
C×T×W×H and Fx corresponds to later stage and early stage feature

maps respectively, � is the element-wise multiplication operator, att(F(t,i,j) =
sigmoid(mean(F(t,i,j)) and Bilinear denotes the bilinear interpolation opera-
tion that is used to upsample the spatial attention maps.

3.3 Implementation Details

Efficient CIDC Unit. While conceptually our CIDC unit is straight forward,
if implemented as separate convolutions for each time step (sub-clip feature) it
would be very inefficient. Instead we use the intuition that our unit is equivalent
to a standard 1 × 1 convolution with the upper triangle portion of the weights
set to zero. However simply performing this operation poses issues for stable
learning through SGD, and so here we present our normalization strategy to
perform this operation efficiently, while keeping it stable during training.

To be as efficient as possible, we would ideally construct the weights of con-
volution kernel (w from Eq. 1) in such a way that t-th row of wc

t abides by the
conditions of Eq. 1: wc

t (t + 1 : T ) = 0 and that is compatible with SGD opti-
mization. In other words, Eq. 1 is a differentiable operation that is compatible
with the SGD family of training. To achieve this we take advantage of the fact
that we are using a softmax operation to normalize each row wc

t . Modify Eq. 1
as follows, adding − inf to each element of wc

t [t + 1 : T ]:

F′
c = [wc

t ∗ Fc]t∈1..T (4)
wc

t = softmax(kc
t − [inf · triu(k)]ct) (5)

where k is the learnable parameters, kc
t is the tth row of kc, and w is computed

from k that are passed through a softmax operation. By adding − inf to the
upper triangle matrix of k we mask the convolution kernel and achieve our
directional temporal convolution. We further linearly normalize the numerical
values of weights in the lower-triangular portion of kernel w to the range of [−1,
1]. When T ′ �= T , we first generate a square upper triangle matrix and rescale



282 X. Li et al.

it to T ′ × T using bilinear interpolation. Finally, the uni-directional convolution
can be extended to bi-directional by flipping the input data along temporal
dimension as is done in bi-directional LSTMs [23].

Training Details. We first pre-train the backbone network or initialize back-
bone from pre-trained models, and then train our multi-scale CIDC network.
We start training with a learning rate of 0.01, and decay it by a factor of 10 at
epoch 40 and 80 respectively. In total the model is trained for 100 epoches. We
use stochastic gradient descent (SGD) with momentum of 0.9 and weight decay
of 1e−4 to train the network. In order to mitigate over-fitting, we add a dropout
layer of rate of 0.6 for fully connected layers in CIDC network. During training,
we sample a random clip of length of 32 frames by skipping ever other frame
(on average 15 fps). We perform scale augmentation by randomly resizing the
shorter size of training clip to between 256 and 320 pixels, and then randomly
crop a video clip with spatial size of 224 × 224 pixels. Meanwhile, we apply
random horizontal flips to the video clip at 0.5 probability.

During inference, we follow [6] to first uniformly sample 10 clips from each
video, and then resize the shorter side of every testing clip to 256 pixels. We
then uniformly take three crops (with spatial size of 256 × 256) along its longer
side, and finally we derive the prediction by taking average of predictions of all
these 30 clips. Our experiments are conducted using the pytorch framework.

4 Experiments

4.1 Dataset

We evaluate our model on four commonly used datasets.

UCF 101. [26] includes 101 categories of human actions. It contains more 13 K
videos with an average length of 180 frames per video. Following previous works
[19,34], we report the top-1 classification accuracy on the validation videos based
on split 1.

HMDB 51. [16] has a total of 6766 videos organized as 51 distinct action
categories. The dataset has three splits and we report the top-1 classification
accuracy on split 1 by following previous works [19,34].

Something something V2. [11] dataset consists of 174 actions and contains
approximately 220,847 videos. Following other works [34], we report top-1 and
top-5 classification accuracy on validation set. Something-Something dataset
requires strong temporal modeling because many activities cannot be inferred
based on spatial features only (e.g. open something, Covering something with
something).

Kinetics 400. [2] consists of approximately 240k training and 20k validation
videos videos trimmed to 10 s from 400 human action categories. Similar to other
works, we report top-1 and top-5 classification accuracy on validation set.



Directional Temporal Modeling for Action Recognition 283

Table 1. Result comparison on UCF101 and HMDB51 datasets. We only compare
with methods that use ResNet-50 as backbone and take as input the RGB video. All
models are pre-trained on Kinetics-400 dataset.

Model Conv FLOPs Param HMDB51 UCF101

R2D [12] 2D 42G 24M 69.0 92.6

R2D-NL [36] 2D 64G 31M 72.5 93.3

TSN [34] 2D 19G 11M 64.7 91.7

TSM [19] 2D 64G 24M 73.5 95.9

I3D [36] 3D 65G 44M 69.1 92.9

I3D-NL [36] 3D 94G 62M 72.2 94.6

Ours (R2D) 2D 72G 85M 72.6 95.6

Ours (R2D-NL) 2D 91G 90M 73.3 95.9

Ours (I3D) 3D 92G 87M 74.9 97.2

Ours (I3D-NL) 3D 121G 103M 75.2 97.9

4.2 Comparison with State-of-the-art

UCF101 and HMDB51. We summarize the results in Table 1. Our proposed
method achieves state-of-the-art performance on both datasets. Our method
improves upon both 2D and 3D baselines, both with and without non-local
attention blocks. We see the biggest error reduction using our method on 3D
networks, where our method reduces error by 11% to 19% on HMDB51 and
61% on UCF101.

Kinetics-400. We compare our model with state-of-the-art methods in Table 2.
The results for non-local [35] and Slowfast network [6] are obtained by running
the model definition and weights provided by Gluon CV on our copy of the
Kinetics 400 dataset. It is important to note that there is a consistent perfor-
mance discrepancy between our reproduced results and those reported in [6,35].
We believe that this is due to inconsistencies in the data as videos go missing
from Kinetics 400 over time. The results in Table 2 show that the proposed multi-
scale CIDC network again, consistently improves upon state-of-the-art methods
for both 2D and 3D networks.

Something-something V2. We compare our method with state-of-the-art meth-
ods in Table 3. Our method achieves very competitive results. By digging into
the results, we observe that the proposed multi-scale CIDC network reduces the
error on the baseline networks (R2D, I3D) by 7.3% and 13.2% respectively.
This demonstrates that CIDC network learns important temporal information
that is complementary to 3D convolutions.
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Table 2. Result comparison on Kinetics-
400 dataset. For fair comparison, we only
compare with methods that use ResNet-50.

Model Conv FLOPs Top1 Top5

TSN [34] 2D 19G 70.6 89.2

R2D [35] 2D 42G 70.2 88.7

R2D-NL [35] 2D 64G 72.4 89.8

I3D[35] 3D 65G 73.8 91.1

I3D-NL [35] 3D 94G 75.2 91.9

TSM [19] 2D 65G 74.1 92.2

bLVNet [5] 3D 93G 74.3 91.2

SF 4× 16 [6] 3D 36G 75.3 91.1

Ours (R2D) 2D 72G 72.2 90.1

Ours (R2D-NL) 2D 91G 72.8 90.5

Ours (I3D) 3D 92G 74.5 91.3

Ours (I3D-NL) 3D 121G 75.6 92.4

Ours (Slowonly) 3D 101G 75.5 92.1

Table 3. Result comparison on
Something-Something V2 dataset. We
only compare with methods that use
ResNet-50 as backbone and take as
input the RGB video. MS-TRN stands
for multi-scale TRN and TS-TRN
denotes two-stream TRN.

Model Conv FLOPs Top1 Top5

TSN [19,34] 2D 19G 30.0 60.5

MS-TRN [41] 2D 33G 48.8 77.6

TS-TRN [41] 2D 42G 55.5 83.1

Fine-grain [21] 3D 69G 53.4 81.1

TSM [19] 2D 65G 63.4 88.5

bLVNet [5] 3D 48G 61.7 88.1

R2D [35] 2D 42G 35.5 65.4

I3D[35] 3D 65G 49.6 78.2

Ours (R2D) 2D 72G 40.2 68.6

Ours (I3D) 3D 92G 56.3 83.7

4.3 Ablation Study

We carefully perform the ablation study on one of the most challenging and
largest-scale action classification dataset – Kinetics-400 as well as on UCF-101
and HMDB-51 datasets. To facilitate the studies, we adopt I3D-50 as our feature
backbone unless specified. Results are summarized in Table 4.

CIDC Multi-scale is Effective. We first look at the effect that the multi-scale and
spatial attention have on the model performance. We attach a single-scale CIDC
network on top of the final feature map produced by the I3D-50 backbone; then
we add our multi-scale version; and finally add our spatial attention. We present
these results in Table 4(a). Each component provides a non-trivial boost in the
final performance. These results show that by substituting single CIDC with its
multi-scale alternative (w/ or w/o spatial attention propagation), we observe a
healthy performance boost, which demonstrates the benefit of aggregating early
stage feature maps.

Directional Temporal Modeling is Important. In order to understand the signif-
icance of directional temporal modeling, we instantiate the directional convolu-
tion in CIDC unit with three different configurations: (1), non-direction, where
there is no temporal masking applied to the temporal convolution kernel. (2), uni-
direction, where we apply temporal masking to the convolution kernel to make
temporal modeling directional. and (3), bi-direction, where we apply the direc-
tional temporal modeling to both feature and temporally inverted feature, and
concatenate the feature together along temporal axis. The performance of their
corresponding multi-scale CIDC networks are listed in Table 4(b). As shown, the
model with bi-directional CIDC unit performs best, and it reduces error relative
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Table 4. Ablation experiments on UCF-101, HMDB-51 and Kinetics-400 (K400)
datasets. Top-1 classification accuracy is reported.

(a) Result comparison with CIDC networks
with different configurations.

Model UCF HMDB K400

I3D-50 92.9 69.1 73.8

+ single-scale CIDC 95.2 73.6 74.0
+ Multi-scale CIDC 95.9 74.1 74.4
+ Spatial attention 97.2 74.9 74.5

(b) Result comparison of using differ-
ent directional modeling units.

Model UCF HMDB K400

I3D-50 92.9 69.1 73.8

non-direction 94.1 72.5 73.9
uni-direction 95.5 73.1 74.2
bi-direction 97.2 74.9 74.5

Table 5. Ablation experiments on UCF-101, HMDB-51 and Kinetics-400 datasets.
Top-1 classification accuracy is reported.

(a) Result comparison among different
temporal modeling methods.

Model UCF HMDB Kinetics

I3D 92.9 69.1 73.8

LSTM 63.2 31.3 63.4
self-attention 94.7 69.7 74.2
CIDC 95.3 73.6 74.5

(b) Result comparison among
feature fusion functions S on
Kinetics-400.

Model Acc%

I3D 73.8

concatenate along t 74.5
concatenate along c 74.1
sum 73.7

to its non-directional alternative by a significant percentage: 52.5% 8.7% 2.2%
on UCF-101, HMDB-51 nad Kinetics-400 respectively. These results validate the
importance of directional temporal modeling in activity recognition. We notice
that the performance improvement on UCF and HMDB dataset is more signif-
icant than that on Kinetics. We conjecture that it is because many videos in
kinetics can be simply recognized by spotting key objects, thus undercutting the
benefits of directional temporal modelling.

Other Temporal Modeling Methods are Less Effective. We compare against two
related clip-level temporal modelling methods – self-attention and LSTM in
Table 5. In detail, we attach a network with 2-layer LSTM for temporal fea-
tures with 512 LSTM unit on each layer (by performing 2D spatial pooling layer
on spatial-temporal feature map F in Eq. 1). Meanwhile, we attach a network
with 2-layer self-attention block on top of spatial-temporal feature map F. We
used the vanilla self-attention [32]. Following previous work [35], we first flatten
the spatio-temporal feature map and then use 3D convolution instead of linear
layer used in [32] for linear projection. Their outputs are concatenated accord-
ingly with the spatial-temporal feature map F before and after global pooling.
As shown in Table 5 (a), LSTM network does not perform well, even being out-
performed by baseline I3D. This result is consistent with the observations in
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Carreira etc. [3]. Even though self-attention network improves over I3D, it trails
behind our proposed CIDC network. These results demonstrate that the pro-
posed network is effective at learning clip-level motion information for action
recognition.

Feature Fusion Function S. We experiment with different feature fusion func-
tions S in Eq. 2, and we summarize their results on Kinetics-400 in Table 5 (b).
Overall, feature concatenation across temporal dimension Fout = [F ;FCIDC ]t
performs the best. We thus use this feature fusion function in our CIDC net-
work.

Performance Across Different Backbones. As shown in Table 1, 2, and 3, the pro-
posed multi-scale CIDC network substantially boosts the top-1 accuracy both for
2-D (R-2D, R2D-NL) and 3-D (R-3D, I3D-NL, Slowfast) feature backbones on
all four datasets. It shows that the temporal associations learned by the proposed
CIDC network generalizes well to different state-of-the-art activity recognition
models. It is particularly important to note that our method improves upon
even backbones that contain similar temporal mechanisms (R2D-NL, I3D-NL).
This shows that not only is our temporal modeling strategy powerful but also
complementary to other common temporal modeling techniques.

4.4 Error Analysis

In order to understand which classes are impacted most by the proposed method,
we compare per-class errors on Kinetics 400 dataset between I3D and our model.
In Table 6 (a), we show the 5 action classes that are most positively and neg-
atively impacted. We observe that our model improves the recognition perfor-
mance for actions that exhibit large target object motions, e.g. “waxing legs,
climbing trees, whereas the model is confused for those actions that involves
less obvious target object motions, e.g. “strumming guitar, yawning”. Given
that the proposed model is to learn the clip-level temporal information, it’s eas-
ier for the model to differentiate actions that exhibit large motions. We noticed
the “garbage collection” and “springboard diving” should have noticeable
motion but didn’t benefit from our CIDC module. After watch the videos in these
classes, we noticed the “garbage collection” is often related to the garbage
truck rather than the collection motion and the diving often has the camera
motion with the athlete which makes the motion subtle. We also explore how
our model performs for several challenging activity pairs whose visual appear-
ance looks similar except the motion patterns exhibited by the targets are eas-
ily distinguishable (e.g. “swimming breast stroke” vs “swimming butterfly
stroke”). As results shown in Table 6 (b), our model significantly improves the
recognition accuracy for all those activities over I3D.
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Table 6. Quantitative analysis on Kinetics-400 dataset. The performance gain is
defined as the disparity of the top-1 accuracy between CIDC network and that of
I3D.

(a) Top 5 activity classes that are positively and negatively impacted
by introducing CIDC network over I3D.

Top 5 (+) Accuracy gain Top 5 (-) Accuracy gain

waxing legs +24% kissing -17%
celebrating +23% garbage collecting -17%
rock scissors paper +22% strumming guitar -17%
climbing tree +21% yawning -16%
ironing +20% springboard diving -14%

(b) The activity recognition accuracy gains of attaching CIDC network
to I3D for activity pairs which share similar visual appearance.

niagycaruccAriapytivitcA

waxing legs / shaving legs +24% / +11%
(swimming) breast stroke / butterfly stroke +22% / +9%
washing hair / curling hair +20% / +11%
long jump / triple jump +10% / +6%
bending metal / welding +12% / +8%

4.5 Visualizing CIDC Activations

We visualize the feature maps from I3D, I3D-NL and our CIDC network on
videos from Kinetics-400 dataset. We generate the spatial activation map based
on att(F ) in Eq. 3 and show some representative examples in Fig. 4. From the
visualized spatial attention maps, we can infer that: 1. I3D is only able to attend
to image regions that are related to understanding actions but does not pick out
the specific action in the scene. The top right of Fig. 4 illustrates this as image
regions related to the object “potato” and the action “peeling” are both acti-
vated by I3D to detect the “peeling potato” action, even though the potatoes
that are highlighted have nothing to do with the pealing action. 2. I3D-NL fur-
ther narrows down these attention maps to focus on image regions that highly
correlate with the action labels. Take action “clapping” in Fig. 4 as an exam-
ple, some of the background object “person” that does not perform the action
“clapping” is deactivated. 3. Finally as examples in Fig. 4 show, the proposed
CIDC network only activates image regions that can explain the actions (e.g.
“clapping” and “peeling”). This demonstrates that the 3D convolution is sen-
sitive to motion across adjacent frames, however, without clip level contextual
information, the 3D convolution is not able to distinguish whether the motion
is related to action. As a result, the 3D convolution is likely to pick up all of
the moving target. The CIDC network learns clip-level motion and has the con-
textual information about action target and irrelevant motion and thus tend to
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Fig. 4. We show two video clips (32 frames) and the spatial activation maps for the
representative frame of every sub-clip (8 frames). I3D and I3D-NL network not only
activates related image regions of “clapping” and “peeling”, but also activates image
regions that include irrelevant “people moving” due to camera motion and irrelevant
potato in the background respectively. In contrast, our proposed model largely focuses
on image region of interest that explains the action “clapping” and “peeling”. Exam-
ples are from Kinetics-400 dataset.

focus better on the action related features. 4. On Fig. 1 and Fig. 4, the activa-
tion maps show the spatial attention propagation fires on both background and
action related regions, and thus it is the CIDC unit that is able to focus on
action related regions only

5 Conclusion

In this paper, we first introduce the channel independent directional convolu-
tion (CIDC) unit, which learns temporal association among local features in a
temporally directional fashion. Thus, it is able to encode the temporal ordering
information of actions into feature maps. Moreover, we propose a light-weight
network (based on CIDC units) that models the video clip-level temporal asso-
ciation of local spatial/spatial-temporal features. We test our method on four
datasets and achieved the state-of-the-art performance. Our ablation study vali-
dates that the proposed CIDC is more effective at temporal modelling in action
recognition. Furthermore, we visualize the activation map of CIDC network and
show that it generally focuses on moving target that performs the actions.
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22. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: Tv-l1 optical flow estimation. Image
Process. On Line 2013, 137–150 (2013)

23. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

24. Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., Zhang, C.: DiSAN: directional self-
attention network for RNN/CNN-free language understanding. In: Thirty-Second
AAAI Conference on Artificial Intelligence (2018)

25. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: Advances in Neural Information Processing Systems, pp. 568–
576 (2014)

26. Soomro, K., Zamir, A.R., Shah, M.: A dataset of 101 human action classes from
videos in the wild. Center for Research in Computer Vision (2012)

27. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR (2019)

28. Sun, K., et al.: High-resolution representations for labeling pixels and regions.
CoRR abs/1904.04514 (2019)

29. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-
temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010.
LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15567-3 11

30. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3D convolutional networks. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 4489–4497 (2015)

31. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look
at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

33. Wang, F., et al.: Residual attention network for image classification. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3156–3164 (2017)

34. Wang, L., et al.: Temporal segment networks: towards good practices for deep
action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46484-8 2

35. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7794–7803 (2018)

36. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 399–417 (2018)

https://doi.org/10.1007/978-3-642-15567-3_11
https://doi.org/10.1007/978-3-642-15567-3_11
https://doi.org/10.1007/978-3-319-46484-8_2
https://doi.org/10.1007/978-3-319-46484-8_2


Directional Temporal Modeling for Action Recognition 291

37. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-
term feature banks for detailed video understanding. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 284–293 (2019)

38. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492–1500 (2017)

39. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: speed-accuracy trade-offs in video classification. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 305–321 (2018)

40. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: deep networks for video classification. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4694–4702 (2015)

41. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in
videos. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 803–818 (2018)


	Directional Temporal Modeling for Action Recognition
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Channel Independent Directional Convolution
	3.2 Multi-scale CIDC Network
	3.3 Implementation Details

	4 Experiments
	4.1 Dataset
	4.2 Comparison with State-of-the-art
	4.3 Ablation Study
	4.4 Error Analysis
	4.5 Visualizing CIDC Activations

	5 Conclusion
	References




