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Abstract. Accurate modeling of 3D objects exhibiting transparency,
reflections and thin structures is an extremely challenging problem.
Inspired by billboards and geometric proxies used in computer graphics,
this paper proposes Generative Latent Textured Objects (GeLaTO), a
compact representation that combines a set of coarse shape proxies defin-
ing low frequency geometry with learned neural textures, to encode both
medium and fine scale geometry as well as view-dependent appearance.
To generate the proxies’ textures, we learn a joint latent space allow-
ing category-level appearance and geometry interpolation. The prox-
ies are independently rasterized with their corresponding neural texture
and composited using a U-Net, which generates an output photorealistic
image including an alpha map. We demonstrate the effectiveness of our
approach by reconstructing complex objects from a sparse set of views.
We show results on a dataset of real images of eyeglasses frames, which
are particularly challenging to reconstruct using classical methods. We
also demonstrate that these coarse proxies can be handcrafted when the
underlying object geometry is easy to model, like eyeglasses, or generated
using a neural network for more complex categories, such as cars.

Keywords: 3D modeling · 3D reconstruction · Generative modeling

1 Introduction

Recent research in category-level view and shape interpolation has largely
focused on generative methods [20] due to their ability to generate realistic
and high resolution images. To close the gap between generative models and 3D
reconstruction approaches, we present a method that embeds a generative model
in a compact 3D representation based on textured-mapped proxies.

Texture-mapped proxies have been used as a substitute for complex geometry
since the early days of computer graphics. Because manipulating and rendering
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Fig. 1. Inspired by (a) traditional computer graphics billboards [12], our representa-
tion uses (b) planar proxies for classes with well-bounded geometric variations like
eyeglasses, and (c) free-form 3D patches for generic classes like cars.

geometric proxies is much less computationally intensive than corresponding
detailed geometry, this representation has been especially useful to represent
objects with highly complex appearance such as clouds, trees, and grass [10,36].
Even today, with the availability of powerful graphics processing units, real-
time game engines offer geometric representations with multiple levels of detail
that can be swapped in and out with distance, using texture maps to supplant
geometry at lower levels of detail.

This concept can be adapted to deep learning, for which the capacity of a
network that can learn complex geometry might be larger than the capacity
needed to learn its surface appearance under multiple viewpoints. Inspired by
texture-mapped proxies, we propose a representation consisting of four parts:
1© a 3D proxy geometry that coarsely approximates the object geometry; 2© a
view-dependent deep texture encoding the object’s surface light field, including
view-dependent effects like specular reflections, and geometry that lies away from
the proxy surface; 3© a generative model for these deep textures that can be
used to smoothly interpolate between models, or to reconstruct unseen object
instances within the category; 4© a U-Net to re-render and composite all the
Neural Proxies into a final RGB image and a transparency mask.

To evaluate our approach we capture a dataset of 85 eyeglasses frames and
demonstrate that our compact representation is able to generate realistic recon-
structions even for these complex objects featuring transparencies, reflections
and thin features. In particular, we use three planar proxies to model eye-
glasses and show that using our generative model, we can reconstruct an instance
with more accuracy and 3× fewer input views compared to a model optimized
exclusively for that instance. We also show compelling interpolations between
instances of the dataset, and a prototype virtual try-on system for eyeglasses.
Finally, we qualitatively evaluate our representation on cars from the ShapeNet
dataset [7], for which we use five free-form parameterized textured mesh proxies
learnt to model car shapes [15].

To summarize, our main contributions are: 1© a novel compact representation
to capture the appearance and geometry of complex real world objects; 2© a re-
rendering and compositing step that can handle transparent objects; 3© a learned
latent space allowing category-level interpolation; 4© few-shot reconstruction,
using a network pre-trained on a corpus of the corresponding object category.
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2 Related Work

2.1 3D Reconstruction

Early work in 3D reconstruction attempted to model a single object instance
or static scene [34] by refining multiview image correspondences [13] along with
robust estimation of camera geometry. These methods work well for rigid, tex-
tured scenes but are limited by assumptions of Lambertian reflectance. Later
work attempts to address this, for example using active illumination to capture
reflectance [44], known backgrounds to reason about transparency [38], or special
markers on the scanner to recognise mirrors [45]. Thin structures present special
challenges, which Liu et al. [25] address by fusing of RGBD observations over
multiple views. Even with such specifically engineered solutions, reconstruction
of thin structures, reflection and transparency remain open research problems,
and strong object or scene priors are desirable to enable accurate 3D reconstruc-
tion.

Recent progress in deep learning has renewed efforts to develop scene priors
and object category models. Kar et al. [19] learn a linear shape basis for 3D
keypoints for each category, using a variant of NRSfM [6]. Kanazawa et al. [18]
learn category models using a fixed deformable mesh, with a silhouette based
loss function trained via a differentiable mesh renderer. Later work to regress
mesh coordinates directly from the image, trained via cycle consistency, showed
generalization across deformations for a class-specific mesh [23]. Chen et al. rep-
resent view dependent effects by learning surface lightfields [8]. Implicit surface
models [9,28,32] use a fully connected network to represent the signed surface
distance as a function of 3D coordinate.

2.2 Neural Rendering

Neural rendering techniques relax the requirement to produce a fully specified
physical model of the object or scene, generating instead an intermediate repre-
sentation that requires a neural network to render. We refer the reader to the
comprehensive survey of Tewari et al. [41]. Recent works use volumetric rep-
resentations that can be learned on a voxel grid [27,39], or modeled directly
as a function taking 3D coordinates as input [30,40]. These methods tend to
be computationally expensive and have limited real-time performance (except
for [27]). Neural textures [43] jointly learn features on a texture map along
with a U-Net. IGNOR [42] incorporates view dependent effects by modelling
the difference between true appearance and a diffuse reprojection. Such effects
are difficult to predict given the scene knowledge, so GAN based loss functions
are often used to render realistic output. Deep Appearance Models [26] use a
conditional variational autoencoder to generate view-dependent texture maps
of faces. Image-to-image translation (pix2pix) [16] is often used as a general
baseline. HoloGAN learns a 3D object representation such that sampled repro-
jections under a transform fool a discriminator [31]. Point-cloud representations
are also popular for neural rerendering [29,33] or to optimize neural features on
the point cloud itself [2].
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3 Generative Latent Textured Objects

Our representation is inspired by proxy geometry used in computer graphics.
We encode the geometric structure using a set of coarse proxy surfaces shown
in Fig. 1, and shape, albedo, and view dependent effects using view-dependent
neural textures. The neural textures are parameterized using a generative model
that can produce a variety of shape and appearances.

Fig. 2. Network architecture. See Sect. 3.2 for details.

3.1 Model

Given a collection of objects of a particular class, we define a latent code for
each instance i as zi ∈ R

n. We assume that a coarse geometry consisting of a
set of K proxies {Pi,1, . . . , Pi,K}, i.e. triangular meshes with UV-coordinates,
is available. Our network computes a neural texture Ti,j = Genj(wi) for each
instance and proxy, where wi = MLP(zi) is a non-linear reparametrization of
the latent code zi using an MLP. The image generators Genj(·) are decoders,
that take a latent code as input and generate a feature map. To render an output
view, we rasterize a deferred shading deep buffer from each proxy consisting of
the depth, normal and UV coordinates. We then sample the corresponding neural
texture using the deep buffer UV coordinates for each proxy. The deep buffers
are finally processed by a U-Net [37] that generates four output channels, three
color channels interpreted as color premultiplied by alpha [35], and a separate
alpha channel. We use color values premultiplied by alphas because color in
pixels with low alpha tends to be particularly noisy in the extracted mattes and
distracts the network when using reconstruction losses on the RGB components.

3.2 Training and Architecture Details

Our network architecture is depicted in Fig. 2. We use the Generative Latent
Optimization (GLO) framework [5] to train our network end to end using simple
�1 and perceptual reconstruction losses [17]. We use reconstruction �1 losses
on the premultiplied RGB values, alphas, and a composite on a neutral gray
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Fig. 3. (a) Our capture fixture includes a backlit mannequin head and white acrylic
plate, surrounded by a Calibu calibration pattern [3], all of which are actuated by a
robot arm. We capture (b) four conditions for each pose and object, and solve for
(c) foreground alpha mattes and colors. Note some shadows of the eyeglasses remain
unmasked, due to limitations of the matting approach. (Color figure online)

background. We also apply a perceptual loss on the composite using the 2nd
and 5th layers of VGG pretrained on ImageNet [11]. We found adversarial losses
lead to worse results, and we apply no regularization losses on the latent codes.

The latent codes z for each class are randomly initialized, and we use the
Adam [21] optimizer with a learning rate of 1e−5. We use neural textures of
9 channels, and z and w are 8 and 512 dimensions respectively. We generate
results at a 512 × 512 resolution for the eyeglasses dataset and 256 × 256 for
ShapeNet. The latent transformation MLP has 4 layers of 256 features, and the
rendering U-Net contains 5 down- and up-sampling blocks with 2 convolutions
each, and uses BlurPool layers [47], see more details in the supplementary.

4 Dataset

The de facto standard for evaluating category-level object reconstruction
approaches is the ShapeNet dataset [7]. Shapenet objects can be rendered under
different viewpoints, generating RGB images with ground truth poses, and masks
for multiple objects of the same category.

Although using a synthetic dataset can help in analyzing 3D reconstruction
algorithms, synthetically rendered images do not capture the complexities of
real-world data. To evaluate our approach we acquire a challenging dataset of
eyeglasses frames. We choose this object category because eyeglasses are phys-
ically small and have well-bounded geometric variations, making them easy to
photograph under controlled settings, but they still exhibit complex structures
and materials, including transparency, reflections, and thin geometric features.

4.1 Eyeglasses Frames

We collect a dataset of 85 eyeglasses frames under different viewpoints and fixed
illumination. To capture the frames, we design a robotic fixture to sample 24×24
viewpoints spanning approximately ±24◦ in yaw and azimuth (Fig. 3a). The fix-
ture includes a Calibu pattern [3] with 3 vertical and 5 horizontal rows, enabling
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Table 1. Ablation study comparing multiple baselines on view interpolation of seen
instances, and of few-shot reconstruction using N = 3 input views, where we fine-tune
the whole network together with the latent code. The VAE model is inferior in both
tasks, and our approach improves upon DNR in few-shot reconstruction because our
textured proxies are not masked by z-buffering.

Model View interpolation Few-shot reconstruction

VAE DNR Ours VAE DNR Ours

PSNR 39.70 41.21 41.32 35.59 36.14 37.19

PSNRM 21.79 23.29 23.42 17.94 18.65 19.64

SSIM 0.9897 0.9916 0.9917 0.9793 0.9819 0.9842

Mask IoU 0.9379 0.9556 0.9556 0.8686 0.8725 0.9012

accurate pose estimation. The fixture center features a hollow 3D printed man-
nequin head and contains a light inside. For each pose, we capture an image with
this backlight on and off (Fig. 3b). We perform difference matting by subtract-
ing the backlit images – which contain fewer shadows – from a reference backlit
frame without glasses. We then solve for foreground and background using the
closed-form matting approach of Levin et al. [24] (Fig. 3c). The robot’s pose is
repeatable within 0.5 pixels, enabling precise difference matting.

We generate 3 planar billboards to model each eyeglasses instance: front,
left and right. We first compute a coarse visual hull for each object using the
extracted alpha masks. We then specify a region of interest in axis-aligned head
coordinates, and extract a plane that best matches the surface seen from the
corresponding direction. See the supplementary for a more detailed description.
We use 5 instances for testing few-shot reconstruction and train on the rest.

Note that this dataset contains two types of artifacts due to the simple acqui-
sition setup: 1© shadows cast by the glasses onto the 3D head pollute the alpha
mattes and RGB images; 2© depending of the viewpoint, the 3D head can occlude
part of the glasses frames, resulting in missing temples. We find however that
these artifacts do not affect the overall evaluation of our approach.

4.2 ShapeNet

We also train GeLaTO using cars from ShapeNet [7]. We generate the proxies
using the auto-encoder version of AtlasNet [15] which takes as input a point
cloud. We train a 5 patches/proxies model generating triangular meshes based
on a 24×24 uniform grid sampling. Note that the proxies generated by AtlasNet
can overlap, but our model is robust thanks to the U-Net compositing step.

5 Evaluation

We evaluate GeLaTO on a number of tasks on the eyeglasses dataset, and
then show qualitative results on ShapeNet cars. We compare our representation
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Fig. 4. Comparison of view interpolation results for our model and the baselines.

Fig. 5. View interpolation results from our model for a variety of glasses.

against baselines inspired by neural textures [43] using the same proxy geome-
try. In particular, we modify deferred neural rendering (DNR) in two ways: we
parameterize the texture using a generator network, without loss of performance,
and concatenate deep buffer channels consisting of normal and depth informa-
tion to the sampled neural texture, instead of multiplying the sampled neural
texture by the viewing direction vector. A key difference of our method is that
Thies et al. render a deferred rendering buffer with z-buffering before the U-Net,
whereas our method stacks the deferred rendering buffers of each texture proxy
before the U-Net. Thus our network is able to “see through” transparent layers
to other surfaces behind the frontmost proxy. We evaluate a second baseline
that uses a Variational Auto-Encoder (VAE) [22] instead of GLO [5] to model
the distribution of instances, where the encoder is a MLP that takes as input a
one-hot encoding of the instance id (more details in the supplementary).
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Fig. 6. Examples of instance interpolation of VAE and our model using GLO.

5.1 View Interpolation

We first evaluate our method on the view interpolation task, and show that
textured proxies can model complex geometry and view-dependent effects. We
train a network on 98% of the views of the training set of the eyeglasses dataset,
and test on the remaining 2%. Quantitative results in Table 1 show that our
model slightly improves upon the DNR baseline, and is significantly better than
VAE. We report PSNR and SSIM on the whole image, PSNRM evaluated within
7 pixels of alpha > 0.1 values, and IoU of the alpha channel thresholded at 0.5.

Figure 4 qualitatively compares the view interpolation results. VAE results
are overly smoothed, and our approach captures more high-frequency details
compared to DNR. Figure 5 contains interpolations of the eyeglasses seen from
multiple viewpoints, showcasing strong view-dependent effects due to shiny or
metallic metallic materials, and reconstructions of transparent glasses that are
predominantly composed of specular reflections (last example).

5.2 Instance Interpolation

Our generative model allows interpolations in the latent space of objects, effec-
tively building a deformable model of shape and appearance, reminiscent of 3D
morphable models [4]. We visualize such interpolations in Fig. 6, in which the
latent code z is linearly interpolated while the proxy geometry is kept constant.
VAE models are commonly thought to have better interpolation abilities than
GLO, because the injected noise regularizes the latent space. However, we find
GLO offers better interpolations in our setup. VAE interpolations tend to be less
visually monotonic, like in the last example where a white border appears and
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then disappears on the left side of the frame, and often contain spurious struc-
tures like the double rim on the second example. The supplementary video shows
the effects of interpolating the neural texture and proxy geometry independently.

Fig. 7. Comparison of few-shot reconstruction using N = 3 input views.

Table 2. Reconstruction results with varying numbers of input images N for unseen
instances, for the DNR baseline without the category model, finetuning our category-
level model, and NeRF. Fine-tuning the category model provides similar quality to
DNR with > 3× fewer input views, and provides ∼3 dB improvement with the same
number of input views. NeRF generates better results with N ≥ 30 views, but is
significantly slower to train and render novel views.

DNR [43] Ours NeRF [30]

Trained from scratch Finetuning category model Trained from scratch

N=30 N=100 N=3 N=10 N=30 N=100 N=3 N=10 N=30 N=100

PSNR 38.75 40.05 36.53 39.35 41.61 43.42 31.20 37.21 43.32 45.28

PSNRM 21.48 22.43 19.01 21.78 24.00 25.80 15.41 21.25 27.49 29.80

SSIM 0.9858 0.9897 0.9824 0.9890 0.9921 0.9942 0.9600 0.9845 0.9947 0.9962

Mask IoU 0.9293 0.9407 0.8864 0.9350 0.9585 0.9682 N/A N/A N/A N/A

5.3 Few-Shot Reconstruction

Because we have parameterized the space of textures, we can think of recon-
structing a particular instance by finding the right latent code z that repro-
duces the input views. This can be done either using an encoder network, or
by optimization via gradient descent on a reconstruction loss. These approaches
are unlikely to yield good results in isolation, because the dimensionality of the
object space can be arbitrarily large compared to the dimensionality of the latent
space, e.g., when objects exhibit a print of a logo or text. As noted by Abdal et
al. [1], optimizing intermediate parameters of the networks instead can yield
better results, like the transformed latent space w, the neural texture space, or
even optimizing all the network parameters, i.e. fine-tuning the whole network.
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Fig. 8. Results for few-shot reconstruction using N = 3 views. Left: Input views. Right:
Reconstructed views using our method after fine-tuning on the input views. Notice that
although the first instance is only captured from the left, our network still is able to
reconstruct other viewpoints effectively. We are also able to capture view-dependent
effects as seen on the bridge region of the glasses.

Thus, given a set of views {I1, . . . , Ik} with corresponding poses {p1 . . .pk}
and proxy geometry {P1, . . . , PK}, we define a new latent code z and set the
reconstruction process as optimization

z�,θ� = arg min
z,θ

∑

k

‖Ik − Net(z,pk,θ)‖1,

where Net(·, ·, ·) is the end to end network depicted in Fig. 2 parameterized by
the latent code z, the pose p, and the network parameters θ.

In Table 1, we quantitatively evaluate reconstructions of 5 unseen instances
using only N = 3 input images, by fine-tuning all network parameters together
with the latent code, and show qualitative results in Fig. 7. We use the same
baselines as in Sect. 5.1, and report statistics across the 5 instances. We halt the
optimization at 1000 steps, because running the optimization to convergence
overfits to only the visible data, reducing the performance on unseen views. We
observe that the VAE model is inferior, and that stacking the proxy inputs in our
model performs better compared to z-buffering in DNR, because the eyeglasses’
arms can be occluded by the front proxy, preventing the optimization of the side
textured proxy. Figure 8 shows the input images and reconstructed views using
our model, illustrating accurate reproduction of view-dependent effects on the
bridge and novel views from an unseen side of the glasses.
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Fig. 9. Unseen instance reconstruction varying the number of input images N .

Fig. 10. Differences depending on where the model is being fit. The shape is best fit
under w, although the texture does not match, and better overall reconstruction is
achieved when all network parameters are fine-tuned.

To demonstrate the power of our representation, we compare reconstructions
of unseen objects with increasing number of input images N , using our GeLaTO,
and the DNR baseline described in Sect. 5.1, that is exclusively trained on the
unseen instance. Similar to Thies et al. [43], we optimize the neural texture for
30k and 100k steps for N = 30 and N = 100 respectively. We also compare with
Neural Radiance Fields (NeRF) [30], a concurrent novel-view synthesis technique
that uses a volumetric approach that does not require proxy geometry. Table 2
and Fig. 8 show that our representation achieves better results than the DNR
baseline with more than 3× less input images. Using the same number of input
images, our reconstructions have PSNR score ∼3 dB higher than the model
trained from scratch. Compared to NeRF, our model is more accurate with few
views, although NeRF is significantly better with denser sampling. Moreover,
training the DNR baseline takes 50 and 150 min on 15 GPUs for N = 30 and
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Fig. 11. Reconstruction results on ShapeNet cars using textured proxies based on
AtlasNet reconstructions. See supplementary video for more results.

N = 100 respectively, whereas fine-tuning GeLaTO takes less than 4 min on a
single GPU. Training NeRF takes 4 hours on 4 GPUs and rendering a single
using NeRF takes several seconds, making it unsuitable for real-time rendering,
while DNR and GeLaTO render new views under 20 ms on a NVidia 1080 Ti.

Table 3. Comparison of reconstructions when fitting in different spaces. z is the
instance latent code, w is the transformed latent code, texture refers to fitting also
the parameters of the texture generators, and all refers to fine-tuning the neural ren-
dering network as well.

Fit variables z w Texture All

PSNR 31.30 36.50 37.12 37.19

PSNRM 13.85 18.85 19.59 19.64

SSIM 0.9638 0.9833 0.9841 0.9842

Mask IoU 0.7242 0.9152 0.8984 0.9012

Finally, we evaluate the choice of which variables to optimize during few-shot
reconstruction in Table 3, and show comparative qualitative results in Fig. 10.
Optimizing the transformed latent code w reconstructs the shape best as mea-
sured by the mask IoU, albeit with a strong color mismatch. Fine-tuning all the
network parameters generates the best results as measured by PSNR.
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5.4 Results on ShapeNet

We show results of modeling ShapeNet cars using textured proxies based on
AtlasNet reconstructions. We train a model on 100 car instances using 500 views.
We use 5 textured proxies, with a 128×128 resolution each, and increase the first
layer of the neural renderer from 32 to 64 channels to accommodate the extra
proxies’ channels. Figure 11 shows unseen view reconstruction results, scoring a
PSNR of 30.99 dB on a held-out set.

Fig. 12. Instance interpolations on ShapeNet. Left: reconstructed view of start
instance. Middle: latent texture code interpolation while keeping proxy geometry con-
stant. Right: target instance reconstruction using its proxy geometry.

Fig. 13. Learnt neural textures for eyeglasses and cars. Left top: reconstructed view,
left bottom: ground truth, right: neural textures. Note the high frequency details encod-
ing the eyeglasses’ shape and the number decal on the car.

Figure 12 shows smooth latent interpolation of the latent code of the textured
proxies while maintaining the proxy geometry of the first car. Although the proxy
geometry is different between instances, Groueix et al. [15] observe that the
semantically similar areas of the car are modeled consistently by the same parts
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Fig. 14. Virtual try-on application for eyeglasses frames, in which a user without eye-
wear can virtually place reconstructed glasses on themselves. The eyeglasses are gener-
ated by our model given the user’s head pose, and composited on the user’s view. See
supplementary video for more results.

of the AtlasNet patches, allowing our model to generate plausible renderings
when modifying only the neural texture. Using the proxy geometry of the first
instance creates some artifacts, like the white stripes on the first example that
are tilted compared to the car’s main axis. The eyeglasses interpolation results
are more realistic due to a smaller degree of variability in the object class. Please
see the supplementary video for more results.

5.5 Neural Textures

We visualize the learned neural textures in Fig. 13, showing the first three chan-
nels as red, green and blue. They contain high frequency details of the object,
such as the eyeglasses shape and decals on the car.

5.6 Limitations

Our model has several limitations. When seen from the side, planar proxies
almost disappear when rasterized to the target view, creating artifacts on the
eyeglasses arms in view interpolations, as seen for a few instances in the sup-
plementary video. Another type of artifacts stems from inaccurate matting in
the captured dataset, as seen by the remaining skin color shadows in row 4 of
Fig. 4 and the incomplete transparent eyeframe in row 6. In the case of few-shot
reconstruction, a major limitation of our model is the requirement of known pose
and proxy geometry, which can be tackled as a general 6D pose estimation in
the case of planar billboard proxies.

6 Application: Virtual Try-On

Our generative model of eyeglasses frames can enable the experience of virtually
trying-on a pair of eyeglasses [46]. Additionally, the learned latent space allows
a user to modify the appearance and shape of eyeglasses by modifying the input
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latent code. We prototype such a system in Fig. 14, where we capture a video
of a user at close distance who is not wearing eyewear, track their head pose
using [14], place the textured proxies on the head frame of reference, render
the neural proxies to into a RGBA eyeglasses layer and finally composite it
onto the frame. Our neural renderer network is sufficiently lightweight – running
under 20 ms on a NVidia 1080Ti – that such a system could be made to run
interactively.

7 Conclusion

We present a novel compact and efficient representation for jointly modeling
shape and appearance. Our approach uses coarse proxy geometry and genera-
tive latent textures. We show that by jointly modeling an object collection, we
can perform latent interpolations between seen instances, and reconstruct unseen
instances at high quality with as few as 3 input images. We show results on a
dataset consisting of real images and alpha mattes of eyeglasses frames, con-
taining strong view-dependent effects and semi-transparent materials, and on
ShapeNet cars. The current approach assumes known proxy geometry and pose;
modeling the distribution of proxy geometry and estimating both its parameters
and pose on a given image remains as future work.
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40. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: con-
tinuous 3D-structure-aware neural scene representations. In: Advances in Neural
Information Processing Systems, pp. 1119–1130 (2019)

41. Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics
Forum (EG STAR 2020) (2020)
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