
TextCaps: A Dataset for Image
Captioning with Reading Comprehension

Oleksii Sidorov1(B), Ronghang Hu1,2, Marcus Rohrbach1,
and Amanpreet Singh1

1 Facebook AI Research, Menlo Park, USA
acecreamu@gmail.com, {mrf,asg}@fb.com
2 University of California, Berkeley, USA

ronghang@eecs.berkeley.edu

Abstract. Image descriptions can help visually impaired people to
quickly understand the image content. While we made significant
progress in automatically describing images and optical character recog-
nition, current approaches are unable to include written text in their
descriptions, although text is omnipresent in human environments and
frequently critical to understand our surroundings. To study how to com-
prehend text in the context of an image we collect a novel dataset,
TextCaps, with 145k captions for 28k images. Our dataset challenges
a model to recognize text, relate it to its visual context, and decide what
part of the text to copy or paraphrase, requiring spatial, semantic, and
visual reasoning between multiple text tokens and visual entities, such as
objects. We study baselines and adapt existing approaches to this new
task, which we refer to as image captioning with reading comprehension.
Our analysis with automatic and human studies shows that our new
TextCaps dataset provides many new technical challenges over previous
datasets.

1 Introduction

When trying to understand man-made environments, it is not only important
to recognize objects but also frequently critical to read associated text and com-
prehend it in the context to the visual scene. Knowing there is “a red sign” is
not sufficient to understand that one is at “Mornington Crescent” Station (see
Fig. 1(a)), or knowing that an old artifact is next to a ruler is not enough to
know that it is “40 mm wide” (Fig. 1(c)). Reading comprehension in images is
crucial for blind people. As the VizWiz datasets [5] suggest, 21% of questions
visually-impaired people asked about an image were related to the text in it.
Image captioning plays an important role in starting a visual dialog with a blind
user allowing them to ask for further information as required. In addition, text
out of context (e.g. ‘5:43p’ ) may be of little help, whereas scene description (e.g.
‘shown on a departure tableau’) makes it substantially more meaningful.
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Fig. 1. Existing captioning models cannot read! The image captioning with reading
comprehension task using data from our TextCaps dataset and BUTD model [4] trained
on it. (Color figure online)

In recent years, with the availability of large labelled corpora, progress
in image captioning has seen steady increase in performance and quality
[4,10,12,13,34] and reading scene text (OCR) has matured [8,16,19,21,31]. How-
ever, while OCR only focuses on written text, state-of-the-art image captioning
methods focus only on the visual objects when generating captions and fail to
recognize and reason about the text in the scene. For example, Fig. 1 shows
predictions of a state-of-the-art model [4] on a few images that require reading
comprehension. The predictions clearly show an inability of current state-of-the-
art image captioning methods to read and comprehend text present in images.
Incorporating OCR tokens into a sentence is a challenging task, as unlike con-
ventional vocabulary tokens which depend on the text before them and therefore
can be inferred, OCR tokens often can not be predicted from the context and
therefore represent independent entities. Predicting a token from vocabulary and
selecting an OCR token from the scene are two rather different tasks which have
to be seamlessly combined to tackle this task.

Considering the images and reference captions in Fig. 1, we can breakdown
what is needed to successfully describe these images: First, detect and extract
text/OCR tokens1 (‘Mornington Crescent’, ‘moved track’ ) as well the visual
context such as objects in the image (‘red circle’, ‘kiosk’ ). Second, generate a
grammatically correct sentence which combines words from the vocabulary and
OCR tokens. In addition to the challenges in normal captioning, image captioning
with reading comprehension can include the following technical challenges:

1. Determine the relationships between different OCR tokens and between
OCR tokens and the visual context, to decide if an OCR token should be
mentioned in the sentence and which OCR tokens should be joined together
(e.g. in Fig. 1b: “5:35” denotes the current time and should not be joined with

1 The remainder of the manuscript we refer to the text in an image as “OCR tokens”,
where one token is typically a word, i.e. a group of characters.
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“ON TIME”), based on their (a) semantics (Fig. 2b), (b) spatial relationship
(Fig. 1c), and (c) visual appearance and context (Fig. 2d).

2. Switching multiple times during caption generation between the words
from the model’s vocabulary and OCR tokens (Fig. 1b).

3. Paraphrasing and inference about the OCR tokens (Fig. 2 bold).
4. Handling of OCR tokens, including ones never seen before (zero-shot).

While this list should not suggest a temporal processing order, it explains why
today’s models lack capabilities to comprehend text in images to generate mean-
ingful descriptions. It is unlikely that the above skills will naturally emerge
through supervised deep learning on existing image captioning datasets as they
are not focusing on this problem. In contrast, captions in these datasets are col-
lected in a way that implicitly or explicitly avoids mentioning specific instances
appearing in the OCR text. To study the novel task of image captioning with
reading comprehension, we thus believe it is important to build a dataset con-
taining captions which require reading and reasoning about text in images. We
find the COCO Captioning dataset [9] not suitable as only an estimated 2.7% of
its captions mention OCR tokens present in the image, and in total there are less
than 350 different OCRs (i.e. the OCR vocabulary size), moreover most OCR
tokens are common words, such as “stop”, “man”, which are already present
in a standard captioning vocabulary. Meanwhile, in Visual Question Answering,
multiple datasets [6,23,30] were recently introduced which focus on text-based
visual question answering. This task is harder than OCR recognition and extrac-
tion as it requires understanding the OCR extracted text in the context of the
question and the image to deduce the correct answer. However, although these
datasets focus on text reading, the answers are typically shorter than 5 words
(mainly 1 or 2), and, typically, all the words which have to be generated are
either entirely from the training vocabulary or OCR text, rather than requir-
ing switching between them to build a complete sentence. These differences in
task and dataset do not allow training models to generate long sentences. Fur-
thermore and importantly, we require a dataset with human collected reference
sentences to validate and test captioning models for reading comprehension.

Consequently, in this work, we contribute the following:

– For our novel task image captioning with reading comprehension, we collect
a new dataset, TextCaps, which contains 142,040 captions on 28,408
images and requires models to read and reason about text in the image to
generate coherent descriptions.

– We analyse our dataset, and find it has several new technical challenges
for captioning, including the ability to switch multiple times between OCR
tokens and vocabulary, zero-shot OCR tokens, as well as paraphrasing and
inference about OCR tokens.

– Our evaluation shows that standard captioning models fail on this new
task, while the state-of-the-art TextVQA [30] model, M4C [17], when trained
with our dataset TextCaps, gets encouraging results. Our ablation study
shows that it is important to take into account all semantic, visual, and
spatial information of OCR tokens to generate high-quality captions.
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– We conduct human evaluations on model predictions which show that there
is a significant gap between the best model and humans, indicating
an exciting avenue of future image captioning research.

2 Related Work

Image Captioning. The Flickr30k [35] and COCO Captions [9] dataset have
both been collected similarly via crowd-sourcing. The COCO Captions dataset
is significantly larger than Flickr30k and acts as a base for training the majority
of current state-of-the-art image captioning algorithms. It includes 995,684 cap-
tions for 164,062 images. The annotators of COCO were asked “Describe all the
important parts of the scene” and “Do not describe unimportant details”, which
resulted in COCO being focused on objects which are more prominent rather
than text. SBU Captions [24] is an image captioning dataset which was collected
automatically by retrieving one million images and associated user descriptions
from Flickr, filtering them based on key words and sentence length. Similarly,
Conceptual Captions (CC) dataset [27] is also automatically constructed by
crawling images from web pages together with their ALT-text. The collected
annotations were extensively filtered and processed, e.g. replacing proper names
and titles with object classes (e.g. man, city), resulting in 3.3 million image-
caption pairs. This simplifies caption generation but at the same time removes
fine details such as unique OCR tokens. Apart from conventional paired datasets
there are also datasets like NoCaps [1], oriented to a more advanced task of cap-
tioning with zero-shot generalization to novel object classes.

While our TextCaps dataset also consists of image-sentence pairs, it focuses
on the text in the image, posing additional challenges. Specifically, text can be
seen as an additional modality, which models have to read (typically using OCR),
comprehend, and include when generating a sentence. Additionally, many OCR
tokens do not appear in the training set, but only in the test (zero-shot). In
concurrent work, [15] collect captions on VizWiz [5] images but unlike TextCaps
there isn’t a specific focus on reading comprehension.

Optical Character Recognition (OCR). OCR involves in general two steps,
namely (i) detection: finding the location of text, and (ii) extraction: based on
the detected text boundaries, extracting the text as characters. OCR can be
seen as a subtask for our image captioning with reading comprehension task
as one needs to know the text present in the image to generate a meaningful
description of an image containing text. This makes OCR research an important
and relevant topic to our task, which additionally requires to understand the
importance of OCR token, their semantic meaning, as well as relationship to
visual context and other OCR tokens. Recent OCR models have shown reliability
and performance improvements [8,16,19,21,31]. However, in our experiments we
observe that OCR is far from a solved problem in real-world scenarios present
in our dataset.
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Visual Question Answering with Text Reading Ability. Recently, three
different text-oriented datasets were presented for the task of Visual Question
Answering. TextVQA [30] consists of 28,408 images from selected categories
of Open Images v3 dataset, corresponding 45,336 questions, and 10 answers
for each question. Scene Text VQA (ST-VQA) dataset [6] has a similar size of
23,038 images and 31,791 questions but only one answer for each question. Both
these datasets were annotated via crowd-sourcing. OCR-VQA [23] is a larger
dataset (207,572 images) collected semi-automatically using photos of book cov-
ers and corresponding metadata. The rule generated questions were paraphrased
by human annotators. These three datasets require reading and reasoning about
the text in the image while considering the context for answering a question,
which is similar in spirit to TextCaps. However, the image, question and answer
triplet is not directly suitable for generation of descriptive sentences. We provide
additional quantitative comparisons and discussion between our and existing
captioning and VQA datasets in Sect. 3.2.

3 TextCaps Dataset

We collect TextCaps with the goal of studying the novel task of image caption-
ing with reading comprehension. Our dataset allows us to test captioning models’
reading comprehension ability and we hope it will also enable us to teach image
captioning models how “to read”, i.e., allow us to design and train image cap-
tioning algorithms which are able to process and include information from the
text in the image. In this section, we describe the dataset collection and analyze
its statistics. The dataset is publicly available at textvqa.org/textcaps.

3.1 Dataset Collection

With the goal of having a diverse set of images, we rely on images from Open
Images v3 dataset (CC 2.0 license). Specifically, we use the same subset of images
as in the TextVQA dataset [30]; these images have been verified to contain text
through an OCR system [8] and human annotators [30]. Using the same images as
TextVQA additionally allows multi-task and transfer learning scenarios between
OCR-based VQA and image captioning tasks. The images were annotated by
human annotators in two stages.2

Annotators were asked to describe an image in one sentence which would require
reading the text in the image.3

2 The full text of the instructions as well as screenshots of the user interface are
presented in the Supplemental (Sec. F).

3 Apart from direct copying, we also allowed indirect use of text, e.g. inferring, para-
phrasing, summarizing, or reasoning about it (see Fig. 2). This approach creates a
fundamental difference from OCR datasets where alteration of text is not acceptable.
For captioning, however, the ability to reason about text can be beneficial.

https://textvqa.org/textcaps
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Evaluators were asked to vote yes/no on whether the caption written in the
first step satisfies the following requirements: requires reading the text in the
image; is true for the given image; consists of one sentence; is grammatically
correct; and does not contain subjective language. The majority of 5 votes
was used to filter captions of low quality. The quality of the work of evaluators
was controlled using gold captions of known good/bad quality.

Five independent captions were collected for each image. An additional 6th cap-
tion was collected for the test set only to estimate human performance on the
dataset. The annotators did not see previously collected captions for a particu-
lar image and did not see the same image twice. In total, we collected 145,329
captions for 28,408 images. We follow the same image splits as TextVQA for
training (21,953), validation (3,166), and test (3,289) sets. An estimation per-
formed using ground-truth OCR shows that on average, 39.5% out of all OCR
tokens present in the image are covered by the collected human annotations.

Fig. 2. Illustration of TextCaps captions. The bold font highlights instances which do
not copy the text directly but require paraphrasing or some inference beyond copying.
Underlined font highlights copied text tokens.

3.2 Dataset Analysis

We first discuss several properties of the TextCaps qualitatively and then analyse
and compare its statistics to other captioning and OCR-based VQA datasets.
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Qualitative Observations. Examples of our collected dataset in Fig. 2 demon-
strate that our image captions combine the textual information present in the
image with its natural language scene description. We asked the annotators to
read and use text in the images but we did not restrict them to directly copy
the text. Thus, our dataset also contains captions where OCR tokens are not
present directly but were used to infer a description, e.g. in Fig. 2a “Rice is win-
ning” instead of “Rice has 18 and Ecu has 17”. In a human evaluation of 640
captions we found that about 20% of images have at least one caption (8% of
captions) which require more challenging reasoning or paraphrasing rather than
just direct copying of visible text. Nevertheless, even the captions which require
copying text directly can be complex and may require advanced reasoning as
illustrated in multiple examples in Fig. 2. The collected captions are not lim-
ited to trivial template “Object X which says Y ”. We have observed various
types of relations between text and other objects in a scene which are impos-
sible to formulate without reading comprehension. For example, in Fig. 2: “A
score board shows Rice with 18 points vs. ECU with 17 points” (a), “Box of
Hydroxycut on sale for only 17.88 at a store” (b), “Two light switches are both
in off position” (e).

Fig. 3. Distribution of caption/answer lengths in Image Captioning (left) and VQA
(right) datasets. VQA answers are significantly shorter than image captions and mostly
concentrated within 5 words limit.

Dataset Statistics. To situate TextCaps properly w.r.t. other image captioning
datasets, we compare TextCaps with other prominent image captioning datasets,
namely COCO [9], SBU [24], and Conceptual Captions [27], as well as reading-
oriented VQA datasets TextVQA [30], ST-VQA [6], and OCR-VQA [23]. The
average caption length is 12.0 words for SBU, 9.7 words for Conceptual Captions,
and 10.5 words for COCO, respectively. The average length for TextCaps is 12.4,
slightly larger than the others (see Fig. 3). This can be explained by the fact that
captions in TextCaps typically include both scene description as well as the text
from it in one sentence, while conventional captioning datasets only cover the
scene description. Meanwhile, the average answer length is 1.53 for TextVQA,
1.51 for ST-VQA and 3.31 for OCR-VQA – much smaller than the captions in



TextCaps: A Dataset for Image Captioning with Reading Comprehension 749

Fig. 4. Distribution of OCR tokens in COCO and TextCaps captions (left) and images
(right). In total, COCO contains 2.7% of captions and 12.7% of images with at least
one OCR token, whereas TextCaps – 81.3% and 96.9%.

(a) OCR frequency distribution shows
how many OCR tokens occur once, twice,
etc. TextCaps has the largest amount of
unique and rare (< 5) OCR tokens. Note
that TextVQA has 10 answers for each ques-
tion which are often identical.

(b) Number of switches between
OCR � Vocab illustrates the technical
complexity of the datasets. An approach
which cannot make switches will be suf-
ficient for most of COCO captions and
TextVQA but not for TextCaps.

Fig. 5. Analysis of OCR in our dataset vs. others

our dataset. Typical answers like ‘yes’, ‘two’, ‘coca cola’ may be sufficient to
answer a question but insufficient to describe the image comprehensively.

Figure 4 compares the percentage of captions with a particular number of
OCR tokens between COCO and TextCaps datasets.4 TextCaps has a much
larger number of OCR tokens in the captions as well as in the images compared
to COCO (note the high percentage at 0). A small part (2.7%) of COCO captions
which contain OCR tokens is mostly limited to one token per caption; only
0.38% of captions contain two or more tokens. Whereas in TextCaps, multi-
4 Note that OCR tokens are extracted using Rosetta OCR system [8] which cannot

guarantee exhaustive coverage of all text in an image and presents just an estimation.
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word reading is much more common (56.8%) which is crucial for capturing real-
world information (e.g. authors, titles, monuments, etc.). Moreover, while COCO
Captions contain less than 350 unique OCR tokens, TextCaps contains 39.7k of
them.

We also measured the frequency of OCR tokens in the captions. Figure 5a
illustrates the number of times a particular OCR token appears in the captions.
More than 9000 tokens appear only once in the whole dataset. The curve drops
rapidly after 5 occurrences and only a small part of tokens occur more than 10
times. Quantitatively, 75.7% of tokens are presented less then 5 times, and only
12.9% are presented more than 10 times. The distribution specifically demon-
strates the large variance in text occurring in natural images which is challenging
to model using a fixed word vocabulary. In addition to this long-tailed distri-
bution, we find that an impressive number of 2901 of 6329 unique OCR tokens
appearing in the test set captions, have neither appeared in the training nor
validation set (i.e. they are “zero-shot”) which makes it necessary for models
to be able to read new text in images. TextCaps dataset also creates new tech-
nical challenges for the models. Figure 5b illustrates that due to the common
use of OCR tokens in the captions, models required to switch between OCR
and vocabulary words often. The majority of the TextCaps captions require
to switch twice or more, whereas most COCO and TextVQA outputs can be
generated even without any switches.

4 Benchmark Evaluation

4.1 Baselines

Our baselines aim to illustrate the gap between performance of conventional
state-of-the-art image captioning models (BUTD [4], AoANet[18]) in comparison
to recent architectures which incorporate reading (M4C [17]).

Bottom-Up Top-Down Attention Model (BUTD). [4] is a widely used
image captioning model based on Faster R-CNN [26] object detection features
(Bottom-Up) in conjunction with attention-weighted LSTM layers (Top-Down).

Attention on Attention Model (AoANet). [18] is a current SoTA caption-
ing algorithm which uses the attention-on-attention module (AoA) to create a
relation between attended vectors in both encoder and decoder.

M4C-Captioner. M4C [17] is a recent model with state-of-the-art performance
on the TextVQA task. The model fuses different modalities by embedding them
into a common semantic space and processing them with a multimodal trans-
former. Apart from that, unlike conventional VQA models where a prediction
is made via classification, it enables iterative answer decoding with a dynamic
pointer network [22,33], allowing the model to generate a multi-word answer,
which is not limited to a fixed vocabulary. This feature makes it also suitable
for reading-based caption generation. We adapt M4C to our task by removing
the question input and directly use its multi-word answer decoder to generate a



TextCaps: A Dataset for Image Captioning with Reading Comprehension 751

caption conditioned on the detected objects and OCR tokens in the image (we
refer to this model as M4C-Captioner and illustrate it in Fig. 6).

Fig. 6. M4C-Captioner architecture for the image captioning with reading comprehen-
sion task.

M4C-Captioner Ablations. In comparison to its full version, we also evalu-
ate a restricted version of this model without access to OCR results (referred
to as M4C-Captioner w/o OCRs), where we use an empty OCR token list
as input to the model. Additionally, we experiment with removing the pointer
network (described in details in [17]) from M4C-Captioner, so that the model
still has access to OCR features but cannot directly copy OCR tokens, and must
use its fixed vocabulary for caption generation (referred to as M4C-Captioner
w/o copying). As multiple types of features are used for OCR tokens in M4C-
Captioner by default (same as in [17]), we further study the impact of each OCR
feature type and use only spatial information (4-dimensional relative bounding
box coordinates [xmin, ymin, xmax, ymax] of OCR tokens), semantic information
(FastText [7] and PHOC [2]), and visual (Faster R-CNN [26]) features in dif-
ferent experiments. Additionally, we use ground truth OCR tokens annotated
by humans (referred to as M4C-Captioner w/ GT OCRs) for training and
prediction5 to study the influence of mistakes of automatic OCR methods.

Human Performance. In addition to our baselines, we provide an estimate
of human performance by using the same metrics on the TextCaps test set to
benchmark the progress that models still need to make. As discussed in Sect. 4.3,
we collected one more caption for each image in the test set. The metrics are
then calculated by averaging the results over 6 runs, each time leaving out one
caption as a prediction, similar to [14]. On the test set, we use the same approach
to evaluate machine-generated captions, so numbers are comparable.

5 This includes a small number of images without GT-OCRs (Supplemental Sec. A).
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Table 1. Performance of our baselines on our TextCaps dataset. M4C-Captioner sig-
nificantly benefits from OCR inputs and achieves the highest CIDEr score, suggesting
that it is important to copy text from image on this task. However, there is still a large
gap between the current machine performance and human performance, which we hope
can be closed by future work.

# Method Trained on TextCaps validation set metrics

B-4 M R S C

1 BUTD [4] COCO 12.4 13.3 33.7 8.7 24.2

2 BUTD [4] TextCaps 20.1 17.8 42.9 11.7 41.9

3 AoANet [18] COCO 18.1 17.7 41.4 11.2 32.3

4 AoANet [18] TextCaps 20.4 18.9 42.9 13.2 42.7

5 M4C-Captioner COCO 12.3 14.2 34.8 9.2 30.3

6 M4C-Captioner TextVQA 0.1 4.4 11.3 2.8 16.9

7 M4C-Captioner w/o OCRs TextCaps 15.9 18.0 39.6 12.1 35.1

8 M4C-Captioner w/o copying TextCaps 18.2 19.2 41.5 13.1 49.2

9 M4C-Captioner (OCR semantic) TextCaps 21.4 20.4 44.0 14.1 69.0

10 M4C-Captioner (OCR spatial) TextCaps 21.7 20.6 44.6 13.7 72.0

11 M4C-Captioner (OCR visual) TextCaps 22.5 21.3 45.3 14.4 84.0

12 M4C-Captioner (OCR semantic &
visual)

TextCaps 23.4 21.5 45.8 14.9 86.0

13 M4C-Captioner TextCaps 23.3 22.0 46.2 15.6 89.6

14 M4C-Captioner (w/ GT OCRs) TextCaps 26.0 23.2 47.8 16.2 104.3

# Method Trained on TextCaps test set metrics

B-4 M R S C H

15 BUTD [4] TextCaps 14.9 15.2 39.9 8.8 33.8 1.4

16 AoANet [18] TextCaps 15.9 16.6 40.4 10.5 34.6 1.4

17 M4C-Captioner TextCaps 18.9 19.8 43.2 12.8 81.0 3.0

18 M4C-Captioner (w/ GT OCRs) TextCaps 21.3 21.1 45.0 13.5 97.2 3.4

19 Human – 24.4 26.1 47.0 18.8 125.5 4.7

B-4: BLEU-4; M: METEOR; R: ROUGE L; S: SPICE; C: CIDEr; H: human evaluation

4.2 Experimental Setup

6We follow the default configurations and hyper-parameters for training and
evaluation of each baseline. For AoANet we use original implementation and
feature extraction technique. For BUTD [4], we use the implementation and
hyper-parameters from MMF [28,29]. For M4C-Captioner [17], we follow the
same implementation details as used for TextVQA task [17]. We train both
models for the same number of iterations on the TextCaps training set. During
caption generation, we remove the <unk> token (for unknown words).

Datasets. We first evaluate the models trained using COCO dataset on
TextCaps to demonstrate how existing datasets and models lack reading com-
prehension. Then we train and evaluate each baseline using TextCaps.
6 Code for experiments is available at https://git.io/JJGuG.

https://git.io/JJGuG
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Metrics. Apart from automatic captioning metrics including BLEU [25],
METEOR [11], ROUGE L [20], SPICE [3], and CIDEr [32], we also perform
human evaluation. We collect 5000 human scores on a Likert scale from 1 to 5

Fig. 7. Human evaluation in com-
parison to automatic metrics.

for a random sample of 200 images and com-
pute median score for each caption. Figure 7
shows that ranking of the sentence quality is
the same as for automatic metrics. Moreover,
all the metrics show very high correlation with
human scores but CIDEr and METEOR have
the highest. For comparison between different
methods, we focus on the CIDEr, which puts
more weight on informative n-grams in the
captions (such as OCR tokens) and less weight
on commonly occurring words with TF-IDF
weighting.

Fig. 8. Illustration of positive and negative predictions from different models on
TextCaps validation set. For M4C-Captioner, square brackets indicate tokens copied
from OCR. While most of the time OCR tokens are very important for correct copying
of the text from the images, for common terms such as “pepsi” or “pence”, the model
sometimes prefer to select them from the vocabulary.
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4.3 Results

TextCaps Dataset. It can be observed in results (Table 1) that the BUTD
model trained on the COCO captioning dataset (line 1) achieves the lowest
CIDEr score, indicating that it fails to describe text in the image. When trained
on the TextCaps dataset (line 2), the BUTD model has higher scores as expected,
since there is no longer a domain shift between training and evaluation. AoANet
(line 3, 4), which is a stronger captioning model, outperforms BUTD but still can-
not handle reading comprehension and largely underperforms M4C-Captioner.
For the M4C-Captioner model, there is a large gap (especially in CIDEr scores)
between training with and without OCR inputs (line 13 vs. 7). Moreover, “M4C-
Captioner w/o copying” (line 8) is worse than the full model (line 13) but better
than the more restricted “M4C-Captioner w/o OCRs” (line 7). The results indi-
cate that it is important to both encode OCR features and be able to directly
copy OCR tokens. We also observe (in line 13 vs. 9–12) that it is important for a
model to use spatial, visual, and semantic features of OCR tokens together, espe-
cially in the complex combinations of OCR tokens where both spatial relation
and semantics play an important role in finding a connection between words.
However, on the test set, we still notice a large gap between the best machine
performance (line 17) and the human performance (line 19) on this task. Also,
using ground-truth OCRs (line 18) reduces this gap but still does not close it,
suggesting that there is room for future improvement in both better reasoning
and better text recognition.

Fig. 9. Examples of M4C-Captioner’s predictions on COCO data when trained on
COCO and TextCaps. It can be observed that despite of availability of OCR module
in both cases, using TextCaps pushes model to read the text. Square brackets indicate
tokens copied from OCR.

Figure 8 shows qualitative examples from different methods. It can be seen
that BUTD and M4C-Captioner without OCR inputs rarely mention text in
the image except for common brand logos such as “pepsi” that are easy to
recognize visually. On the other hand, the full M4C-Captioner approach learns
to read text in the image and mention it in its generated captions.7 Moreover,
7 More predictions from M4C-Captioner are presented in Supplemental (Fig. F.1).
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M4C-Captioner learns and recognizes relations between objects and is able to
combine multiple OCR tokens into one complex description. For e.g., in Fig. 8(d)
the model uses a OCR token to correctly name a player who is blocking another
player; in Fig. 8(e) the model attempts to include and combine multiple tokens
into a single message (“the track is moved in Kenosha” instead of “the word
moved, the word track, and the word Kenosha are on the sign”). In Fig. 8(b)
prediction is constructed fully from vocabulary, and even then the model counts
similar objects and returns “two pepsi bottles” instead of “pepsi bottle and
pepsi bottle”. We also observe a large amount of mistakes in model predictions.
Many mistakes are due to wrong scene understanding and object identification,
which is a common problem in captioning algorithms. We also observe placing
OCR tokens in the wrong object or semantic context in the caption (Fig. 8(c, e)),
incorrect repetition of an OCR token in a caption (Fig. 8(a, e)), or insufficient use
of them (Fig. 8(f)) by the model. Some mistakes (as “number 3” in Fig. 8(d) are
due to the errors of OCR detection algorith m and not the captioning model. This
points to many potential directions for future development on this challenging
generative task, which requires visual and textual understanding, requiring new
model designs, conceptually different from previously existing captioning models.

Transferring to COCO. We further qualitatively show that when integrated
with other datasets such as COCO [9], our dataset also enables text-based cap-
tioning on other datasets. In this setting, we experiment training M4C-Captioner
(Table 1’s best) on both TextCaps dataset and COCO dataset together. We bal-
ance the number of samples seen by the model from both COCO and TextCaps
during training, and apply the trained model on the COCO validation set. COCO
Captions mostly focus on visual objects but we show several examples where
reading is necessary to describe the scene in Fig. 9. When trained on the union
of our dataset and COCO, the M4C-Captioner learns to generate captions con-
taining text present in the images. On the other hand, the same model only
describes visual objects without mentioning any text when trained on COCO
alone. Quantitative results can be found in Supplemental (Sec. C).

5 Conclusion

Image captioning with reading comprehension is a novel challenging task requir-
ing models to read text in the image, recognize the image content, and com-
prehend both modalities jointly to generate a succinct image caption. To enable
models to learn this ability and study this task in isolation, we collected TextCaps
with 142k captions. The captions include a mix of objects and/or visual scene
descriptions in relation to OCR tokens copied or rephrased from the images.
In most cases, OCR tokens have to be copied and related to the visual scene,
but sometimes the OCR tokens have to be understood, and sometimes spa-
tial or visual reasoning between text and objects in the image is required, as
shown in our ablation study. Our analysis also points out several challenges of
this dataset: Different from other captioning datasets, nearly all our captions
require integration of OCR tokens, many are unseen (“zero-shot”). In contrast
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to TextVQA datasets, TextCaps requires generating long sentences and involves
new technical challenges, including many switches between OCR and vocabulary
tokens.

We find that current state-of-the-art image captioning models cannot read
when trained on existing captioning dataset. However, when adapting the recent
M4C VQA model to our task and training it on our TextCaps dataset, we are
able to generate impressive captions on both TextCaps and COCO, which involve
copying multiple OCR tokens and correctly integrating them in the captions. Our
human evaluation confirms the result of the automatic metrics with very high
correlation, and also shows that human captions are still significantly better
than automatically generated ones, leaving room for many advances in future
work, including better semantic understanding between image and text content,
missing reasoning capabilities, and reading long text or single characters.

We hope our dataset with challenge server, available at textvqa.org/textcaps,
will encourage the community to design better image captioning models for
this novel task and address its technical challenges, especially increasing their
usefulness for assisting visually disabled people.
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