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Abstract. Deep encoder-decoder based CNNs have advanced image
inpainting methods for hole filling. While existing methods recover struc-
tures and textures step-by-step in the hole regions, they typically use
two encoder-decoders for separate recovery. The CNN features of each
encoder are learned to capture either missing structures or textures with-
out considering them as a whole. The insufficient utilization of these
encoder features hampers the performance of recovering both structures
and textures. In this paper, we propose a mutual encoder-decoder CNN
for joint recovery of both. We use CNN features from the deep and
shallow layers of the encoder to represent structures and textures of an
input image, respectively. The deep layer features are sent to a structure
branch, while the shallow layer features are sent to a texture branch.
In each branch, we fill holes in multiple scales of the CNN features.
The filled CNN features from both branches are concatenated and then
equalized. During feature equalization, we reweigh channel attentions
first and propose a bilateral propagation activation function to enable
spatial equalization. To this end, the filled CNN features of structure
and texture mutually benefit each other to represent image content at all
feature levels. We then use the equalized feature to supplement decoder
features for output image generation through skip connections. Experi-
ments on benchmark datasets show that the proposed method is effective
to recover structures and textures and performs favorably against state-
of-the-art approaches.
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1 Introduction

There is a need to recover missing contents in corrupted images for visual aes-
thetics improvement. Deep neural networks have advanced image inpainting by
introducing semantic guidance to fill hole regions. Different from the traditional
methods [2,3,7,8] that propagate uncorrupted image contents to the hole regions
via patch-based image matching, deep inpainting methods [13,25] utilize CNN
features in different levels (i.e., from low-level features to high-level semantics)
to produce more meaningful and globally consistent results.

(a) Input (b) GC [41] (c) CSA [21] (d) Ours (e) GT

Fig. 1. Visual comparison on the Paris StreetView dataset [6]. GT is the ground truth
image. The proposed inpainting method is effective to reduce blur and artifacts within
and around the hole regions, which are brought by inconsistent structure and texture
features.

The encoder-decoder architecture is prevalent in existing deep inpainting
methods [13,19,25,38]. However, a direct utilization of the end-to-end training
and prediction processes generates limited results. This is due to the challeng-
ing factor that the hole region is completely empty. Without sufficient image
guidance, an encoder-decoder is not able to reconstruct the whole missing con-
tent. An alternative is to use two encoder-decoders to separately learn miss-
ing structures and textures in a step-by-step manner. These two-stage meth-
ods [21,24,26,27,29,40,41] typically generate an intermediate image with recov-
ered structures in the first stage (i.e., encoder-decoder), and send this image to
the second stage for texture generation. Although structures and textures are
produced on the output image, their appearances are not consistent. Figure 1
shows an example. The inconsistent structures and textures within hole regions
produce blur and artifacts as shown in (b) and (c). Meanwhile, the recovered
contents are not coherent to the uncorrupted contents around the hole bound-
aries (e.g., the leaves). This limitation is because of the independent learning of
CNN features representing structures and textures. In practice, the structures
and textures correlate with each other to formulate the image contents. Without
considering their coherence, existing methods are not able to produce visually
pleasing results.
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In this work, we propose a mutual encoder-decoder to jointly learn CNN fea-
tures representing structures and textures. The features from the deep layers of
the encoder contain structure semantics while the features from the shallow lay-
ers contain texture details. The hole regions of these two features are filled via two
separate branches. In the CNN feature space, we use a multi-scale filling block
within each branch for hole filling. Each block consists of 3 partial convolution
streams with progressively increased kernel sizes. After hole filling in these two
features, we propose a feature equalization method to ensure the structure and
texture features consistent with each other. Meanwhile, the equalized features
are coherent with the features of uncorrupted image content around the hole
boundaries. The proposed feature equalization consists of channel reweighing
and bilateral propagation. We concatenate two features first and perform chan-
nel reweighing via attention exploration [12]. The attentions across two features
are set to be consistent after channel equalization. Then, we propose a bilateral
propagation activation function to equalize the feature consistency in the whole
feature maps. This activation function uses elements on the global feature maps
to propagate channel consistency (i.e., feature coherence across the hole bound-
aries), while using elements within local neighboring regions to maintain channel
similarities (i.e., feature consistency within the hole). To this end, we fuse the
texture and structure features together to reduce inconsistency in the CNN fea-
ture maps. The equalized features then supplement the decoder features in all
the feature levels via encoder-decoder skip connections. The feature consistency
is then reflected in the reconstructed output image, where the blur and artifacts
are effectively removed around the hole regions as shown in Fig. 1(d). Exper-
iments on the benchmark datasets show that the proposed method performs
favorably against state-of-the-art approaches.

We summarize the contributions of this work as follows:

– We propose a mutual encoder-decoder network for image inpainting. The
CNN features from the shallow layer are learned to represent textures and
the features from deep layers represent structures.

– We propose a feature equalization method to make structure and texture fea-
tures consistent with each other. We first reweigh channels after feature con-
catenation and propose a bilateral propagation activation function to make
the whole feature consistent.

– Extensive experiments on the benchmark datasets show the effectiveness of
the proposed inpainting method in removing blur and artifacts caused by
inconsistent structure and texture features. The proposed method performs
favorably against state-of-the-art inpainting approaches.

2 Related Works

Empirical Image Inpainting. The empirical image inpainting methods [1,3,
18] based on diffusion techniques propagate the neighborhood appearances to
the missing regions. However, they only consider surrounding pixels of missing
regions, which can only deal with small holes in background inpainting tasks and
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may fail to generate meaningful structures. In contrast, methods [2,4,5,28,36]
based on patch match fill missing regions by transferring similar and relevant
patches from the remaining image region to the hole region. Although empirical
methods perform well to handle small holes on the background inpainting task,
they are not able to generate semantically meaningful content. When the hole
region is large, these methods suffer from a lack of semantic guidance.
Deep Image Inpainting. Image inpainting based on deep learning typically
involves the generative adversarial network [9] to supplement visual perceptual
guidance for hole filling. Pathak et al. [25] first bring adversarial training [9] to
inpainting and demonstrate semantic hole-filling. Iizuka et al. [13] propose local
and global discriminators, assisted by dilated convolution [39] to improve the
inpainting quality. Nazeri et al. [24] propose EdgeConnect that predicts salient
edges for inpainting guidance. Song et al. [29] utilize a segmentation predic-
tion network to generate segmentation guidance for detail refinement around the
hole region. Xiong et al. [34] present foreground-aware inpainting, which involves
three stages, i.e., contour detection, contour completion and image completion,
for the disentanglement of structure inference and content hallucination. Ren et
al. [26] introduce a structure-aware network, which splits the inpainting task into
two parts: structure reconstruction and texture generation. It uses appearance
flow to sample features from contextual regions. Yan et al. [37] speculate the
relationship between the contextual regions in the encoder layer and the asso-
ciated hole region in the decoder layer for better predictions. Yu et al. [40] and
Song et al. [27] search for a collection of background patches with the highest
similarity to the generated contents in the first stage prediction. Liu et al. [20]
address this inpainting task via exploiting the partial convolutional layer and
mask-update operation. Following the [20], Yu et al. [41] present gate convolu-
tion that learns a dynamic mask-updating mechanism and combines with the
SN-PatchGAN discriminator to achieve better predictions. Liu et al. [21] pro-
pose coherent semantic attention, which considers the feature coherency of hole
regions to guarantee the pixel continuity in image level. Wang et al. [32] pro-
pose a generative multi-column convolutional neural network (GMCNN) that
uses varying receptive fields in branches. Different from existing deep inpainting
methods, our method produces CNN features to consistently represent structures
and textures to reduce blur and artifacts around the hole region.

3 Proposed Algorithm

Figure 2 shows the pipeline of the proposed method. We use one mutual encoder-
decoder to jointly learn structure and texture features and equalize them for
consistent representation. The details are presented in the following:

3.1 Mutual Encoder-Decoder

We use an encoder-decoder for end-to-end image generation to fill holes. The
structure of this encoder-decoder is a simplified generative network [14], where
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Fig. 2. The overview of the proposed pipeline. We use a mutual encoder-decoder to
jointly recover structures and textures during hole filling. The deep layer features of
the encoder are reorganized as structure features, while the shallow layer features are
reorganized as texture features. We fill holes in multi-scales within the CNN feature
space and equalize output features in both channel and spatial domains. The equalized
features contain consistent structure and texture features at different CNN feature
levels, and supplement the decoder via skip connections for output image generation.

there are 6 convolutional layers in the encoder and 5 convolutional layers in the
decoder, respectively. Meanwhile, 4 residual blocks [10] with dilated convolutions
are set between the encoders and decoders. The dilated convolutions [13,24]
increase the size of the receptive field to perceive encoder features.

In the encoder, we reorganize the CNN features from deep layers as structure
features where the semantics reside. Meanwhile, we reorganize the CNN features
from shallow layers as texture features to represent image details. We denote the
structure features as Fst and the texture features as Fte as shown in Fig. 2. The
reorganization process is to resize and transform the CNN feature maps from
different convolutional layers to the same size, and concatenate them accordingly.

After CNN feature reorganization, we design two branches (i.e., the structure
branch and the texture branch) to separately perform hole filling on Fte and Fst.
The architectures of these two branches are the same. In each branch, there are 3
parallel streams to fill holes in multiple scales. Each stream consists of 5 partial
convolutions [20] with the same kernel size while the kernel size differs among
different streams. By using different kernel sizes, we perform multi-scale filling in
each branch for the input CNN features. The filled features from 3 streams (i.e.,
3 scales) are concatenated and mapped to the same size of the input feature map
via a 1 × 1 convolution. We denote the output of the structure branch as Ffst,
and the output of the texture branch as Ffte. To ensure the hole filling to focus
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on the textures and structures, we incorporate supervisions on Ffst and Ffte.
We use a 1 × 1 convolution to separately map Ffst and Ffte to a color image
Iost and a color image Iote, respectively. The pixel-wise L1 loss can be written
as follows:

Lrst = ‖Iost − Ist‖1
Lrte = ‖Iote − Igt‖1

(1)

where Igt is the ground truth image and Ist is the structure image of Igt. We use
an edge-preserving smoothing method RTV [35] to generate Ist following [26].

The hole regions in Fte and Fst are filled via structure and texture branches,
individually. The feature representations in Ffte and Ffst are not consistent to
reflect the recovered structures and textures. This inconsistency leads to blur and
artifacts within and around the hole regions as shown in Fig. 1. To mitigate these
effects, we concatenate Ffte and Ffst first, and make a simple fusion to generate
Fsf via a 1×1 convolutional layer. The texture and structure representations in
Fsf are corrected via feature equalization at different CNN feature levels (i.e.,
across shallow to deep CNN layers).

3.2 Feature Equalizations

We equalize the fused CNN features Fsf in both channel and spatial domains.
The channel equalization follows the squeeze and excitation operation [12] to
ensure that the attentions within each channel of Fsf are the same. As the
reweighed channels are influenced by both structure and texture representations
in Fsf , the consistent attentions indicate that these representations are set to
be consistent as well. We propagate channel equalization to the spatial domain
via the proposed bilateral propagation activation function (BPA).

Formulation. BPA is inspired by the edge-preserving image smoothing [30] to
generate response values based on spatial and range distances. It can be written
as follows:

ys
i =

1
C(x)

∑

j∈s

gαs
(‖j − i‖)xj (2)

yr
i =

1
C(x)

∑

j∈v

f(xi, xj)xj (3)

yi = q(ys
i , y

r
i ) (4)

where xi is the feature channel at position i of input feature x, xj is a neighboring
feature channel around i at position j, ys

i and yr
i are the feature channels after

spatial and range similarity measurements. We set the normalization factor as
C(x) = N , where N is the number of positions in x. We use q to denote the
concatenation and channel reduction of ys

i and yr
i via a 1×1 convolutional layer.

The bilateral propagation utilizes the distances of feature channels from both
spatial and range domains. We explore j within a neighboring region s, which is
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set as the same spatial size as the input feature for global propagation. The spa-
tial contributions from neighboring feature channels are adjusted via a Gaussian
function gαs

. When computing yr
i , we measure the similarities between feature

channels xi and xj via f(.) within a neighboring region v around i. The size of v
is 3 × 3. To this end, the bilateral propagation considers both global continuity
via yi

s and local consistency via yi
r.

Fig. 3. The pipeline of the bilateral propagation activation function. We denote the
broadcast dot product operation as ⊗, element-wise addition in the selected channel as
⊕, and the concatenation as �. For two matrices with different dimensions, broadcast
operations first broadcast features in each dimension to match the dimensions of the
two matrices.

During the range similarity computation step, we define the pairwise function
f(.) as a dot product operation, which can be written as follows:

f(xi, xj) = (xi)T (xj). (5)

The proposed bilateral propagation shares similarity to the non-local
block [31] that for each i, 1

C(x)f(xi, xj) becomes the softmax computation along
dimension j. The difference resides on the region design of propagation. The
non-local block uses feature channels from all the positions to generate yi and
the similarity is only measured between xi and xj . In contrast, BPA considers
both feature channel similarity and spatial distance between xi and xj during
bilateral weight computation. In addition, we use a global region s to compute
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spatial distance while using a local region v to compute range distance. The
advantage of global and local region selections is that we ensure both long-term
continuity in the whole spatial region and local consistency around the current
feature channel. The boundaries of hole regions are unified with the neighboring
image content and the contents within the hole regions are set to be consistent.

Implementations. Figure 3 shows how bilateral propagation operates in the
network. The range step corresponds to the computation of yr

i in Eq. 3 and the
spatial step corresponds to ys

i in Eq. 2. During range computation, the operations
until the element-wise multiplication P1 represent Eq. 5 at all spatial locations.
We use the unfold function in PyTorch to reshape the features to vectors (i.e.,
HW × 3 × 3 × C) for obtaining all the neighboring xj for each xi, so that we
can make efficient element-wise matrix multiplications. Similarly, the operations
until P2 represent the term

∑
j f(xi, xj)·xj in Eq. 3. During spatial computation,

the operations until P3 represent the term
∑

j gαs
(‖j − i‖)xj . As a result, the

bilateral propagation operation can be efficiently executed via the element-wise
matrix multiplications and additions shown in Fig. 3.

3.3 Loss Functions

We introduce several loss functions to measure structure and texture differences
including pixel reconstruction loss, perceptual loss, style loss, and relativistic
average LS adversarial loss [16] during training. We also employ a discriminator
with local and global operations to ensure local-global contents consistency. And
the spectral normalization [23] is applied in both local and global discriminators
to achieve stable training.

Pixel Reconstruction Loss. We measure the pixel-wise difference from two
aspects. The first one is the loss terms illustrated in Eq. 1 where we add super-
visions on the texture and structure branches. The second one measures the
similarity between the network output and the ground truth, which can be writ-
ten as follows:

Lre = ‖Iout − Igt‖1 (6)

where Iout is the finally predicted image by the network.

Perceptual Loss. To capture the high-level semantics and simulate human
perception of images quality, we utilize the perceptual loss [15] Lperc defined on
the ImageNet-pretrained VGG-16 feature backbone:

Lprec = E

[ ∑

i

1
Ni

‖Φi(Iout) − Φi(Igt)‖1
]

(7)

where Φi is the activation map of the i-th layer of the VGG-16 backbone. In
our work, Φi corresponds to the activation maps from layers ReLu1 1, ReLu2 1,
ReLu3 1, ReLu4 1, and ReLu5 1.
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Style Loss. The transposed convolutional layers from the decoder will bring
artifacts that resemble checkerboard. To mitigate this effect, we introduce the
style loss. Given feature maps of size Cj × Hj × Wj , we compute the style loss
as follows:

Lstyle = Ej

[
‖GΦ

j (Iout) − GΦ
j (Igt)‖1

]
(8)

where GΦ
j is a Cj × Cj Gram matrix constructed from the selected activation

maps. These activation maps are the same as those used in the perceptual loss.

(a) Input (b) Fte (c) Ffte (d) Fsf

(e) Output (f) Fst (g) Ffst (h) Fequal

Fig. 4. Visualization of the feature map response. The input and output images are
shown in (a) and (e), respectively. We use a 1 × 1 convolutional layer to map high
dimensional feature maps to the color images as shown in (b)–(d) and (f)–(h).

Relativistic Average LS Adversarial Loss. We follow [40] to utilize global
and local discriminators for perception enhancement. The relativistic average
LS adversarial loss is adopted for our discriminators. For the generator, the
adversarial loss is defined as:

Ladv = −Exr
[log(1 − Dra(xr, xf ))] − Exf

[log(Dra(xf , xr))] (9)

where Dra(xr, xf ) = sigmoid(C(xr) − Exf
[C(xf )]) and C(.) indicates the local

or global discriminator without the last sigmoid function. To this end, real and
fake data pairs (xr, xf ) are sampled from the ground-truth and output images.

Total Losses. The whole objective function of the proposed network can be
written as:

Ltotal = λrLre + λpLprec + λsLstyle + λadvLadv + λstLrst + λteLrte (10)

where λr, λp, λs, λadv, λst and λte are the tradeoff parameters. In our imple-
mentation, we empirically set λr = 1, λp = 0.1, λs = 250, λadv = 0.2, λst = 1,
λte = 1.
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3.4 Visualizations

We use a structure branch and a texture branch to separately fill holes in CNN
feature space. Then, we perform feature equalization to enable consistent feature
representations in different feature levels for output image reconstruction. In this
section, we visualize the feature maps during different steps to show whether they
correspond to our objectives. We use a 1 × 1 convolutional layer to map CNN
feature maps to color images for a clear display.

Figure 4 shows the visualization results. The input image is shown in (a)
with a mask in the center. The visualized Fte and Fst are shown in (b) and (f),
respectively. We observe that textures are preserved in (b) while the structures
are in (f). By multi-scale hole filling, the hole regions in Ffte and Ffst are
effectively reduced as shown in (c) and (g). After equalization, the hole regions
in (h) are effectively filled and the equalized features contribute to the decoders
to generate the output image as shown in (e).

(a) Input (b) CE [25] (c) CA [40] (d) SH [37] (e) Ours (f) GT

Fig. 5. Visual evaluations for filling center holes. Our method performs favorably
against existing approaches to retain both structures and textures.

4 Experiments

We evaluate our method on three datasets: Paris StreetView [6], Place2 [43] and
CelebA [22]. We follow the training, testing, and validation splits of these three
datasets. Data augmentation such as flipping is also adopted during training.
Our model is optimized by the Adam optimizer [17] with a learning rate of
2 × 10−4 on a single NVIDIA 2080TI GPU. The training process of the CelebA
model, Paris StreetView model and Place2 model are stopped after 6 epochs, 30
epochs and 60 epochs, respectively. All the masks and images for training and
testing are with the size of 256 × 256.

We compare our method with six state-of-the-art method: CE [25], CA [40],
SH [37], CSA [21], SF [26] and GC [41]. For a fair evaluation on model generaliza-
tion abilities, we conduct experiments on filling center holes and irregular holes
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on the input images. The center hole is brought by a mask that covers the image
center with a size of 128×128. We obtain irregular masks from PConv [20]. These
masks are in different categories according to the ratios of the hole regions versus
the entire image size (i.e., below 10%, from 10% to 20%, etc.). For holes in the
image center, we compare with CA [40], SH [37] and CE [25] on the CelebA [22]
validation set. We choose these three methods because they are more effective
to fill holes in the image center than fill irregular holes. When handling irregular
holes on the input images, we compare with CSA [21], SF [26] and GC [41] using
Paris StreetView [6] and Place2 [43] validation datasets.

(a) Input (b) GC [41] (c) SF [26] (d) CSA [21] (e) Ours (f) GT

Fig. 6. Visual evaluations for filling irregular holes. Our method performs favorably
against existing approaches to retain both structures and textures.

4.1 Visual Evaluations

The visual comparison on the results for filling center holes are in Fig. 5 and
the results for filling irregular holes are in Fig. 6. We also display ground truth
images in (f) to show the actual image content. In Fig. 5, the input images are
shown in (a). The results produced by CE and CA contain distorted structures
and blurry textures as shown in (b) and (c). Although more visually pleasing
contents are generated in (d), the semantics remain unreasonable. By utilizing
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Table 1. Numerical evaluations on the CelebA dataset where the inputs are with
centering hole regions. ↓ indicates lower is better while ↑ indicates higher is better.

CE CA SH Ours

FID↓ 52.17 37.61 29.72 25.51

PSNR↑ 8.53 23.65 26.10 26.32

SSIM↑ 0.137 0.870 0.902 0.910

Table 2. Numerical comparisons on the Place2 dataset. ↓ indicates lower is better
while ↑ indicates higher is better.

Mask GC SF CSA Ours

FID↓ 10–20% 19.04 8.78 7.85 6.91

20–30% 28.45 16.38 13.95 8.06

30–40% 40.71 27.54 25.74 19.36

40–50% 60.72 40.93 38.74 28.79

PSNR↑ 10–20% 27.10 29.50 31.31 31.13

20–30% 25.18 27.22 28.66 28.87

30–40% 22.51 24.37 25.01 25.34

40–50% 20.35 21.90 22.54 22.81

SSIM↑ 10–20% 0.929 0.926 0.954 0.957

20–30% 0.878 0.885 0.918 0.923

30–40% 0.823 0.802 0.843 0.854

40–50% 0.670 0.678 0.702 0.719

consistent structure and texture features, our method is effective to generate
results with realistic textures.

Figure 6 shows the comparison for filling irregular holes, which is more chal-
lenging than filling centering holes. The results from GC contain noisy patterns
shown in (b). The details are missing and the structures are distorted in (c) and
(d). These methods are not effective to recover image contents without bringing
in obvious artifacts (i.e., the second row around the door regions). In contrast,
our method learns to represent structures and textures in a consistent forma-
tion. The results shown in (e) indicate the effectiveness of our method to produce
visually pleasing contents. The evaluations on filling both centering holes and
irregular holes indicate that our method performs favorably against existing hole
filling approaches.

4.2 Numerical Evaluations

We conduct numerical evaluations on the Place2 dataset with different mask
ratios. Besides, we evaluate numerically on the CelebA dataset with centering
holes in the input images. There are 100 validation images from the “valley”
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scene category chosen for evaluations. In CelebA, we randomly choose 500 images
for evaluation. For the evaluation metrics, we follow [26] to use SSIM [33] and
PSNR. Moreover, we introduce FID (Fr̀echet Inception Distance) metric [11]
as it indicates the perceptual quality of the results. The evaluation results are
shown in Tables 1 and 2. Our method outperforms existing methods to fill cen-
tering holes. Meanwhile, favorable performance is achieved by our method to fill
irregular holes under various hole versus image ratios.

Human Subject Evaluation. We follow [42] to involve over 35 volunteers
for evaluating the results on CelebA, Place2 and Paris StreetView datasets. The
volunteers are all image experts with image processing background. There are 20
questions for each subject. In each question, the subject needs to select the most
realistic result from 4 results generated by different methods without knowing
the hole region in advance. We tally the votes and show the statistics in Table 3.
Our method performs favorably against existing methods.

Table 3. Human Subject Evaluation results. Each subject selects the most realistic
result without knowing hole regions in advance.

CE CA SH GC SF CSA Ours

Paris StreetView N/A N/A N/A 5.3% 21.0% 29.8% 43.7%

Place2 N/A N/A N/A 3.0% 25.0% 29.6% 42.4%

CelebA 1.2% 2.0% 40.4% N/A N/A N/A 56.4%

Table 4. Ablation study on the Paris StreetView dataset. Our performance is improved
by using structure and texture branches.

Ours without textures Ours without structures Ours

FID↓ 30.37 27.46 25.10

PSNR↑ 22.80 22.96 23.38

SSIM↑ 0.818 0.823 0.833

Table 5. Ablation study on the Place2 dataset. Non-local aggregation improves our
baseline while feature equalization makes further improvement.

Ours without equalization Non-local aggregation Ours

FID↓ 29.11 24.07 21.26

PSNR↑ 23.14 23.64 24.57

SSIM↑ 0.837 0.848 0.852
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(a) Input (b) Ours w/o (c) Ours w/o (d) Ours (e) Ground
hturtserutcurtsserutxetegami

Fig. 7. Abalation studies on structure and texture branches. A joint utilization of these
two branches improves the content quality.

(a) Input (b) Ours w/o (c) Non-Local (d) Ours (e) Ground
hturtnoitagergganoitazilauqeegami

Fig. 8. Ablation studies on feature equalizations. More realistic and visually pleasing
contents are generated via feature equalizations.

5 Ablation Study

Structure and Texture Branches. To evaluate the effects of structure and
texture branches, we use each of these branches separately for network training.
For fair comparisons, we expand the channel number of the texture and structure
branch outputs via additional convolutions. So the single branch output contains
the same size as that of Fsf . As shown in Fig. 7, the output of our method without
a texture branch contains rich structure information (i.e., the window in the red
and green boxes) while the textures are missing. In comparison, the output of
our method without a structure branch does not contain meaningful structure
(i.e., the window in the red and green boxes). By utilizing both branches, our
method achieves favorable results on both structures and textures. Table 4 shows
the similar numerical performance on the Paris StreetView dataset where these
two branches improve our method significantly.

Feature Equalizations. We show the contributions of feature equalizations
by removing them from the pipeline and showing the performance degradation.
Moreover, we show that the bilateral propagation activation function (BPA) is
more effective to fill hole regions than the Non-local attentions [31]. As shown
in Fig. 8, without using equalization our method generates visually unpleasant
contents and visible artifacts. In comparison, the contents generated by [31] are
more natural. However, the recovered contents are still blurry and inconsistent
because the Non-local block ignores the local coherency and global distance
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of features. This limitation is effectively solved via our method with feature
equalizations. Similar performance has been shown numerically in Table 5 where
our method achieves favorable results.

6 Concluding Remarks

We propose a mutual encoder-decoder with feature equalizations to correlate
filled structures with textures during image inpainting. The shallow and deep
layer features are reorganized as texture and structure features, respectively. In
the CNN feature space, we introduce a texture branch and a structure branch
to fill holes in multi-scales and fuse the outputs together via feature equaliza-
tions. During equalization, we first ensure consistent attentions among individ-
ual channels and propagate them to the whole spatial feature map region via
the proposed bilateral propagation activation function. The experiments carried
out over the benchmark datasets have shown the effectiveness of the proposed
method when compared to state-of-the-art approaches on filling both regular
and irregular hole regions.
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4. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-
based image inpainting. TIP 13, 1200–1212 (2004)

5. Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P.: Image melding:
combining inconsistent images using patch-based synthesis. ACM Trans. Graph.
31, 18 (2012)

6. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes Paris look
like Paris? Commun. ACM 58, 103–110 (2015)

7. Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In: SIG-
GRAPH (2001)

8. Efros, A., Freeman, W.: Texture synthesis by nonparametric sampling. In: ICCV
(2001)

9. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs

trained by a two time-scale update rule converge to a local Nash equilibrium.
In: NIPS (2017)

12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)



740 H. Liu et al.

13. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image com-
pletion. In: SIGGRAPH (2017)

14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: CVPR (2017)

15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

16. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from
standard GAN. In: ICLR (2018)

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statis-
tics. In: ICCV (2003)

19. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR (2017)
20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image

inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6 6

21. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image
inpainting. In: ICCV (2019)

22. Liu, Z., LuoPi, n., Wang, X., Tang, X.: Deep learning face attributes in the wild.
In: ICCV (2015)

23. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

24. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: gener-
ative image inpainting with adversarial edge learning. In: ICCV Workshops (2019)

25. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders:
feature learning by inpainting. In: CVPR (2016)

26. Ren, Y., Yu, X., Zhang, R., Li, T.H., Liu, S., Li, G.: StructureFlow: image inpaint-
ing via structure-aware appearance flow. In: ICCV (2019)

27. Song, Y., Yang, C., Lin, Z., Liu, X., Huang, Q., Li, H., Kuo, C.-C.J.: Contextual-
based image inpainting: infer, match, and translate. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 3–18.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8 1

28. Song, Y., Bao, L., He, S., Yang, Q., Yang, M.H.: Stylizing face images via multiple
exemplars. CVIU 162, 135–145 (2017)

29. Song, Y., Yang, C., Shen, Y., Wang, P., Huang, Q., Kuo, J.: SPG-Net: seg-
mentation prediction and guidance network for image inpainting. arXiv preprint
arXiv:1805.03356 (2018)

30. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: CVPR
(1998)

31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR
(2018)

32. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-
column convolutional neural networks. In: NIPS (2018)

33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. TIP 13, 600–612 (2004)

34. Xiong, W., Yu, J., Lin, Z., Yang, J., Lu, X., Barnes, C., Luo, J.: Foreground-aware
image inpainting. In: CVPR (2019)

https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-01252-6_6
http://arxiv.org/abs/1802.05957
https://doi.org/10.1007/978-3-030-01216-8_1
http://arxiv.org/abs/1805.03356


Deep Image Inpainting 741

35. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative
total variation. SIGGRAPH 31, 139 (2012)

36. Xu, Z., Sun, J.: Image inpainting by patch propagation using patch sparsity. TIP
19, 1153–1165 (2010)

37. Yan, Z., Li, X., Li, M., Zuo, W., Shan, S.: Shift-Net: image inpainting via deep
feature rearrangement. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 3–19. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01264-9 1

38. Yeh, R., Chen, C., Lim, T., Johnson, M.H., Do, M.N.: Semantic image inpainting
with perceptual and contextual losses. arXiv preprint arXiv:1607.07539 (2016)

39. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015)

40. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting
with contextual attention. In: CVPR (2018)

41. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. In: ICCV (2019)

42. Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network
for high-quality image inpainting. In: CVPR (2019)

43. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million
image database for scene recognition. PAMI 40, 1452–1464 (2017)

https://doi.org/10.1007/978-3-030-01264-9_1
http://arxiv.org/abs/1607.07539
http://arxiv.org/abs/1511.07122

	Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations*-4mm
	1 Introduction
	2 Related Works
	3 Proposed Algorithm
	3.1 Mutual Encoder-Decoder
	3.2 Feature Equalizations
	3.3 Loss Functions
	3.4 Visualizations

	4 Experiments
	4.1 Visual Evaluations
	4.2 Numerical Evaluations

	5 Ablation Study
	6 Concluding Remarks
	References




