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Abstract. To be invariant, or not to be invariant: that is the question
formulated in this work about local descriptors. A limitation of current
feature descriptors is the trade-off between generalization and discrim-
inative power: more invariance means less informative descriptors. We
propose to overcome this limitation with a disentanglement of invariance
in local descriptors and with an online selection of the most appropri-
ate invariance given the context. Our framework (https://github.com/
rpautrat/LISRD) consists in a joint learning of multiple local descriptors
with different levels of invariance and of meta descriptors encoding the
regional variations of an image. The similarity of these meta descrip-
tors across images is used to select the right invariance when matching
the local descriptors. Our approach, named Local Invariance Selection
at Runtime for Descriptors (LISRD), enables descriptors to adapt to
adverse changes in images, while remaining discriminative when invari-
ance is not required. We demonstrate that our method can boost the per-
formance of current descriptors and outperforms state-of-the-art descrip-
tors in several matching tasks, when evaluated on challenging datasets
with day-night illumination as well as viewpoint changes.
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1 Introduction

Sparse features detection and description is at the root of many computer vision
tasks: Structure-from-Motion (SfM), Simultaneous Localization and Mapping
(SLAM), image retrieval, tracking, etc. They offer a compact representation in
terms of memory storage and allow for efficient image matching, and are thus well
suited for large-scale applications [14,35,36]. These features should however be
able to cope with real world conditions such as day-night changes [44], seasonal
variations [34] and matching across large baselines [40].
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Fig. 1. Importance of invariance among descriptors. SIFT descriptors (left) perform
well on rotated images (top), but are outperformed by Upright SIFT descriptors (mid-
dle) when no rotation is present (bottom). We propose a method (right) that automat-
ically selects the proper invariance during matching time.

To be able to do matching in extreme scenarios, the successive feature detec-
tors and descriptors have become more and more invariant [23]. The Harris cor-
ner detector [12] was already invariant to rotations, but not to scale. The SIFT
detector and descriptor [20] was one of the first to achieve invariance with respect
to scale, rotation and uniform light changes. More recently, learned descriptors
have been able to encode invariance without handcrafting it. On the one hand,
patch-based descriptors can become invariant to transforms when estimating the
shape of the patch [10,25,29,43]. On the other hand, recent dense descriptors
leverage the power of large convolutional neural networks (CNN) to become more
general and invariant. Most of them are trained on images with many variations
in the training set, either obtained through data augmentation [8], with large
databases of challenging images [9,42] or with style transfer [31]. They can also
directly encode the invariance in the network itself [19]. The general trend in
descriptor learning is thus to capture as much invariance as possible.

While feature detectors should generally be invariant to be repeatable under
different scenarios [44], the same is not necessarily true for descriptors [41]. There
is a direct trade-off for descriptors between generalization and discriminative
power. More invariance allows a better generalization, but produces descriptors
that are less informative. Figure 1 shows that the rotation variant descriptor
Upright SIFT performs better than its invariant counterpart SIFT when only
small rotations are present in the data. We argue that the best level of invariance
depends on the situation. As a consequence, this questions the recent trend of
jointly learning detector and descriptor: they may have to be dissociated if one
does not want the descriptor to be as invariant as the detector.

In this work we focus on learning descriptors only and propose to select at
runtime the right invariance given the context. Instead of learning a single generic
descriptor, we compute several descriptors with different levels of invariance.
We then propose a method to automatically select the most suitable invariance
during matching. We achieve this by leveraging the local descriptors to learn
meta descriptors that can encode global information about the variations present
in the image. At matching time, the local descriptors distances are weighted by
the similarity of these meta descriptors to produce a single descriptor distance.
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Matches based on this distance can then be filtered using standard heuristics
such as ratio test or mutual nearest neighbor.

Overall, our method, named Local Invariance Selection at Runtime for
Descriptors (LISRD - pronounced as lizard), brings flexibility and interpretabil-
ity into the feature description. When some image variations are known to be
limited for a given application, one may directly use the most discriminative
descriptor among all our learned local descriptors. However, it is usually hard
to make such an assumption about the inter-image variations, and LISRD can
instead automatically select the best invariance independently for each local
region. Hence we are able to distinguish between different levels of variations
within the same image (e.g. if half of the image is in the shadow but not the
other half) and we show that this can improve the matching capabilities in com-
parison to using a single descriptor. The meta descriptors formulation is also not
restricted to our proposed learned local descriptors, but can be easily general-
ized to most keypoint detectors and descriptors, as shown in Fig. 1 where it is
applied to SIFT and Upright SIFT. Furthermore, the meta description only adds
a small overhead to the current pipelines of keypoint detection and description
in terms of runtime and memory consumption, which makes it suitable for real
time applications. In summary, this work makes the following contributions:

— We show how to learn several local descriptors with multiple variance prop-
erties through a single network, in a similar spirit as in multi-task learning.

— We propose a light-weight meta descriptor approach to automatically select
the best invariance of the local descriptors given the context.

— Our concept of meta descriptor and general approach of invariance selection
can be easily transferred to most feature point detectors and descriptors, which
we demonstrate for learned as well as traditional handcrafted descriptors.

2 Related Work

Learned Local Feature Descriptors. The recent progress in deep learning
has enabled learned local descriptors to outperform the classical baselines by
a large margin [8,9,21,31]. Following the classical approach, early works run
a CNN on a small image region around the point of interest to get a patch
descriptor [24,29,38]. The patch is not restricted to square areas, but can encode
spatial transforms, such as affine [25] and polar [10] ones. The network is often
optimized with a triplet loss using heuristics to extract positive and negative
patches [3,11,22,39], or by directly maximizing the average precision (AP) [13].
Working on sparse features also gives the possibility to leverage both the visual
context of the image and the spatial relationships between the keypoint loca-
tions [21]. More recently, descriptors extracted densely by CNN architectures
from full images have shown both fast inference time and high performance on
matching and retrieval tasks, and can jointly detect a heatmap of keypoints.
Some works detect keypoints and describe them in parallel, such as Super-
Point [8] and R2D2 [31], with for the latter an additional reliability map keeping
track of the most informative locations in the image. Another approach is to
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use the features of the network as dense descriptors to subsequently detect key-
points, based on those features [9,28,42]. DELF [28] selects the keypoints using a
learned attention, D2-Net [9] retrieves the maximum responses of the descriptor
feature map across all channels, while UR2KID [42] clusters the channels in dif-
ferent groups and extracts keypoints based on their L2 responses. Even though
jointly estimating the keypoints and descriptors allows a faster prediction and
yields descriptors that are more correlated to the keypoints, the consequence is
that detector and descriptor will share the same invariance. Therefore, we choose
to focus exclusively on descriptor learning in this work.

Invariance in Feature Descriptors. Selecting an online invariance for binary
descriptors is the core idea of BOLD [2], where a subset of the binary tests is
chosen at runtime for each image patch to maximize the invariance to small
affine transformations. Similarly, the general trend of most recent learned meth-
ods is to obtain descriptors as invariant as possible to any image variations.
LIFT [43] mimics SIFT to achieve rotation invariance by estimating the key-
points, their orientation and finally their descriptor. Invariance to specific geo-
metric changes can be achieved through group convolutions [7] by clustering
the different geometrical transformations into specific groups [19]. However, the
usual strategy is to incorporate as much diversity in the training data as possi-
ble. Illumination invariance can for example be obtained by training on images
with multiple lighting conditions [15]. Photometric and homographic data aug-
mentations also increase robustness to illumination and viewpoint changes [8].
Similarly, R2D2 [31] improves the robustness to day-night changes by synthesiz-
ing night images with style transfer and also to viewpoint changes by leveraging
flow between close-by images [30]. Methods like D2-Net [9] and UR2KID [42]
leverage a large database of images with multiple conditions and non planar
viewpoint changes thanks to SfM data [17]. In this work, we adopt a mixture of
the previously mentioned methods, namely the same synthesized night images
as in [31], homographic augmentation, and training on datasets with multiple
illumination changes [27].

Multi-task Learning in Description and Matching Tasks. Using a single
network to achieve multiple and related tasks in feature description and match-
ing is not new. Jointly learning the detector and descriptor [8,9,31] is already
multi-task learning that makes the descriptors more discriminative at the pre-
dicted keypoint locations. HF-Net [32] unifies the detection of feature points,
local and also global descriptors for image retrieval using multi-task distillation
with a teacher network. Methods such as SuperGlue [33] and ContextDesc [21]
can leverage both visual and geometric context in their descriptors in order
to get a more consistent matching between images. UR2KID [42] bypasses the
need of keypoint supervision during training and directly optimizes the descrip-
tors jointly for local matching and image retrieval. In our approach, multiple
descriptors are also learned in parallel, but instead of differing in their scope,
they differ in their level of invariance. Furthermore, unlike previous hierarchi-
cal global-to-local approaches, our method relies on local descriptors first and
leverages global information only to refine the local matching.
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Fig. 2. Overview of our network architecture. Our network computes four local dense
descriptors with diverse invariances and aggregates them through a NetVLAD layer [1]
to obtain a regional description of the variations of the image.

3 Learning the Best Invariance for Local Descriptors

Our approach to select the most relevant variance for local feature descriptors
consists in two steps. First, we design a network to learn several dense descrip-
tors, each with a different type of invariance (see Sect. 3.1). Second, we propose
a strategy in Sect. 3.2 to determine the best invariance to use when matching
the local descriptors. Figure 2 provides an overview of the full architecture.

3.1 Disentangling Invariance for Local Descriptors

Many properties of an image have an influence on descriptors, but disentan-
gling all of them would be intractable. We focus here on two factors known to
have a large impact on descriptors performance: rotation and illumination. Our
framework can however be generalized to other kinds of variations, for instance
scaling. Since each of the two factors can either be variant or invariant, there are
four possible combinations of variance with respect to illumination and rotation.
We show in the following that the variant versions of descriptors are more dis-
criminative since they are more specialized, while the invariant ones are trading
the discriminative power for better generalization capabilities.

Network Architecture. Our network is inspired by SuperPoint [8], with slight
modifications. It takes RGB images as input, computes semi-dense features with
a shared backbone of convolutions and is then divided into 4 heads predicting a
semi-dense descriptor each, one per combination of variance, as shown in Fig. 2.
Since most computations are redundant between the 4 local descriptors, the
shared backbone reduces the number of weights in the network and offers an
inference time competitive with the current learned descriptors.

Dataset Preparation. The training dataset is composed of triplets of images.
The first one, the anchor image I, is taken from a large database of real images.
The variant image I is a warped version of the anchor by a homography without



712 R. Pautrat et al.

rotation and with equal illumination to train variant descriptors. Finally, the
invariant image I' used for invariant descriptors is also related to the anchor by
a homography, but its orientation and illumination can differ from the anchor.

Training Losses. The local descriptors are trained using variants of the mar-
gin triplet ranking loss [5,24], depending on whether the descriptor should be
invariant or not to the variations present in I’. The dense descriptors are first
sampled on selected keypoints of the images, they are L2-normalized and the
losses are computed on the resulting set of feature descriptors. Since we focus on
descriptors only, we use SIFT keypoints during training to propagate the gradi-
ent in informative areas of the image only. Any kind of keypoint can be used at
inference time nonetheless, as demonstrated in Sect. 4.5.

Formally, given two images I® and I” related by a homography H and n
keypoints x¢ ,, in image I¢, we warp each point to image I” using the homog-
raphy: x¢ = H(x{ ,,). This yields a set of n correspondences between the two
images, where we can extract the descriptors from each dense descriptor map:
d¢ ,, and d? . Let us define a generic triplet loss Ly (1%, 1%, dist) between I¢
and I°, given a descriptor distance dist(x?,x%). The triplet loss first enforces a
correct correspondence (x¢,x?) to be close in descriptor space through a positive
distance

pi = dist(x7,x2). 1)

Additionally, the triplet loss increases the negative distance n; between x¢ and
the closest point in I? which is at least at a distance T from the correct match
xf. This distance is computed symmetrically across the two images and the
minimum is kept:

n; = min(dist(xy, xzb ) ), dist(x?, X () ))s (2)

with ny(i) = argmin;ep ) (dist(x¢,x5)) s.t. |[x¢ —x5||; > T, and similarly for
nq (7). Given a margin M, the triplet margin loss is then defined as

Ly (I%,1°, dist) = %ZmaX(M + (p2)? — (14)%,0). (3)
i=1

In our case, the loss L; for invariant descriptors is an instance of this generic
triplet loss between the anchor image I and the invariant image I, for the L2
descriptor distance:

Ly = Lp(I*, 1%, ]|d* — d||2). (4)

The loss Ly for variant descriptors is based on the full triplet of images: I4, I’
and IV . Tt enforces variant descriptors to be different between the anchor and the
invariant image, while preserving similarity between the anchor and the variant
image. Its positive loss is the distance in descriptor space of positive matches
between I” and I, and similarly for the negative distance between I and I':

1 n
Ly = — > max(FM +[|df - d}'|}3 — [ldf - [ 3,0, 5)
=1
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Fig. 3. The LISRD descriptor distance between two points is the sum of the four local
descriptors distances, weighted by the similarity of the meta descriptors.

where f is a factor controlling at which point the anchor and the invariant
images are different. For rotation changes, f = min(1, &iﬁ)’ where 07 is the
absolute angle of rotation between the anchor and the invariant image and 6,4
is a hyper-parameter representing the threshold beyond which the two images
should be considered different. This threshold ensures that only large rotations
are penalized by the loss. It is hard to quantify the difference in illumination
between two real images, so we set f = 1 when the illumination differs between
the anchor and invariant image.

When a descriptor d in the set D of descriptors is supposed to be invariant
to all changes (illumination and/or rotation) between I and I?, we use Lj.
Otherwise, Ly is used. We define L,y (d) as the selected loss and the total loss

for local descriptors as
1
L= D > Liv(d). (6)

deD

3.2 Online Selection of the Best Invariance

Given the local descriptors of the previous section, this section explores how
to pick the most relevant invariance when matching images. Since it would be
costly to recompute and compare the image variations for every pair of images
to be matched, we propose to rely solely on the information contained in the
descriptors to perform the selection. A naive approach would be to separately
compute the similarity of the different local descriptors and to pick the most sim-
ilar ones. However, the invariance selection would gain by having more context
than the information of a single local descriptor and should be consistent with
neighboring descriptors. Therefore, we propose to extract regional descriptors
from the local ones and to use them to guide the invariance selection.

The local descriptors are thus gathered in neighboring areas through a
NetVLAD layer [1] to get a meta descriptor sharing the same kind of invari-
ance as the subset of local descriptors, but with more context than a single local
descriptor. Thus, having similar meta descriptors means sharing the same level
of variations. The neighboring areas are created by tiling the image into a ¢ X ¢
grid and computing a meta descriptor for each tile. Hence, we get four meta
descriptors per tile, which are then L2 normalized.
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When matching the local descriptors of a tile, the four similarities between
the meta descriptors are computed with a scalar product and we can rank the
four local descriptors according to these similarities. Instead of making a hard
choice by taking only the closest local descriptor, we use a soft assignment. A
softmax operation is applied to the four similarities, to get four weights summing
to one. These weights are then used to compute the distance between the local
descriptors as shown in Fig. 3. More precisely, suppose that we want to compute
the distance in descriptor space between point x¢ in image I® and point x°
in image I°. Point x® is associated with 4 local descriptors d¢ , and 4 meta
descriptors m¢ , corresponding to the region where x? lies, and similarly for x°.
Then the final descriptor distance between x¢ and x? is

4 a
dist(x®, x°) = Z 4exp ((m)T - my) ~ldf — d?|o. (7)
i=1 Zj:l exp ((m‘})T : mj)

Thus, the similarity of the meta descriptors acts as a weighting of the local
descriptors distances and can put a stronger emphasis on one specific variance
when the corresponding meta descriptors have a high similarity. Matching is
then performed with this descriptor distance, and can easily be refined with
ratio test [20] or mutual nearest neighbor.

Training Loss. The 4 NetVLAD layers are trained with a weak supervision
based on another instance of the triplet loss Ly between I and I’ with the
distance defined above:

Ly, = Lp(I*, I, dist) (8)

Thanks to this weak supervision, there is no need to explicitly supervise the
meta descriptors, which would require knowing the amount of rotation and illu-
mination for every tile in the image. The total loss of the network is finally a
combination of the local and meta descriptors, weighted by a factor A:

L=1L;+AL,,. 9)

3.3 Training Details

Datasets. To train descriptors with different levels of variance in terms of rota-
tion and illumination, datasets presenting all possible combinations of changes
are needed. Control over the amount of changes is also required in order to
know which loss between L; and Ly should be used for each descriptor. We use
in total four datasets to accomplish that. Illumination variations are obtained
through the multi illumination dataset in the wild [27] and the style transferred
night images of the Aachen day dataset [31]. Both offer pairs of images with
fixed viewpoint and different illuminations. Images with fixed illumination come
from the MS COCO dataset [18] and the day flow images from the Aachen
dataset [31]. For all datasets except the latter, the images are augmented with
random homographies containing translation, scaling, rotation and perspective
distortion, similarly as in [8]. For the day images of Aachen, the flow is used



Online Invariance Selection for Local Feature Descriptors 715

to create the correspondences and we consider that these images contain only
small rotations and no major illumination changes. Overall, there is an equal
distribution of images with and without illumination changes, and of rotated
and non rotated images.

Implementation Details. We describe here the details of our architecture.
The backbone network, inspired by the VGG16 [37], is composed of successive
3 x 3 convolutional layers with channel size 64-64-64-64-128-128-256-256. Each
conv layer is followed by ReLU activation and batch normalization. Every two
layers, a 2 x 2 average pooling with stride 2 is applied to reduce the spatial
resolution by 2. For an image of size H x W x 3, the output feature map will
have a size of H/8 x W/8 x 256. The local descriptor heads are all composed of
the following operations: 3 x 3 conv of channel size 256 - ReLLU - Batch Norm
- 1 x 1 conv of channel size 128. The final dimension of each local descriptor is
thus H/8x W/8x 128, and each concatenated descriptor is 512-dimensional. The
semi-dense descriptors can then be bilinearly interpolated to the locations of any
keypoint. Note that in order to achieve a better robustness to scale changes, one
can also detect the keypoints and describe them at multiple image resolutions
and aggregate the results in the original image resolution, similarly as in [9] and
[31]. The NetVLAD layers cousists in 8 clusters of 128-dimensional descriptors,
hence a meta descriptor size of 1024. We used ¢ x ¢ = 3 x 3 tiles per image.

The network is trained on RGB images resized to 240 x 320 with the following
hyper-parameters: distance threshold T' = 8, 0,4, = 7, margin M = 1, loss
factor A = 1. It comprises roughly 3.7M parameters, which are optimized with
the Adam solver [16] (learning rate = 0.001 and 8 = (0.9,0.999)). In practice,
the local descriptors are pre-trained first and then fine-tuned by an end-to-end
training with the meta descriptors. At test time, a single forward pass on a
GeForce RTX 2080 Ti with 480 x 640 images takes 6ms on average.

4 Experimental Results

We present here experiments validating the relevance of our method. Section 4.2
highlights the importance of learning different invariances, validates the pro-
posed approach with an ablation study, and shows that LISRD can be extended
to other descriptors such as SIFT and Upright SIFT. LISRD is then compared
to the state of the art on a benchmark homography dataset (Sect. 4.3), on a
challenging dataset with diverse conditions where the presence or lack of invari-
ance is essential (Sect. 4.4) and on a visual localization task in the real world
(Sect. 4.5).

4.1 Metrics

Since we want to compare the performance of the descriptors only, all the fol-
lowing metrics are computed on SIFT keypoints if not stated otherwise. The
metrics are computed on pairs of images resized to 480 x 640 and related by a
known homography. Resizing is performed by upscaling/downscaling the images
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Fig. 4. Precision on HPatches of the 4 local descriptors. Variant ones are better when
invariance is not needed (e.g. rotation for the illumination dataset).

to have each edge greater or equal respectively to 480 and 640, and a central
crop is applied to get the target resolution. We keep a maximum of 1000 points
among the keypoints shared between the two views and matches are obtained
after mutual nearest neighbor filtering.

Homography Estimation. We follow the procedure of [8] to compute a homog-
raphy estimation score. Given a pair of images, RANSAC is used to fit a homog-
raphy between the clouds of matched keypoints. The score is obtained by warp-
ing the four corners of the first image ¢;.. 4 with the predicted homography
and comparing their distance to the same points c¢;. 4 warped by the ground
truth homography. The homography is considered as correct when the aver-
age distance is below a threshold €, which is set to 3 pixels in all experiments:
HEstimation = iZ?:l [1é; — cill2 <e.

Precision. Precision (also known as mean matching accuracy) is the percentage
of correct matches over all the predicted matches [9,31]. We use by default a
threshold of 3 pixels to consider a match to be correct.

Recall. Recall is the ratio of correctly predicted matches over the total number
of ground truth matches, where a ground truth correspondence is the closest
point within an error threshold of 3 pixels. A predicted match with the second
closest point but still within the correct threshold is considered as incorrect.

4.2 Method Validation

Impact of the Different Invariances. One can check the validity of our app-
roach by comparing the 4 local descriptors. We use the HPatches dataset [4],
which is standard in descriptor evaluation. It is composed of 116 sequences of 5
pairs of images, with either viewpoint changes (given by a known homography)
or illumination changes with fixed viewpoint. Figure 4 shows the comparison
between the 4 descriptors in terms of precision. On viewpoint changes, the illu-
mination variant descriptors are superior as the lighting is fixed in these images
and they are thus more discriminative. Since HPatches contains few rotations,
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Table 1. Ablation study on the HPatches
dataset.

o
o

HEstimation I§ 0s
[

Best of the 4 0.778 & -
Greedy 0.774 04 — L|2:?3-SIFT
Hard assignment 0.762 7 7 3 5 10
No tiling 0.752 Threshold (px)
5 % 5 tiles 0.773
Single desc 0.766 Fig. 5. Variants of SIFT vs. our
LISRD (ours) 0.784 method fusing them (LISRD-SIFT).

Precision is computed on HPatches
viewpoint.

there is no significant difference in terms of rotation invariance and being rota-
tion variant brings a small advantage on average. The precision on illumination
changes shows that the best performing descriptors are the illumination invari-
ant ones and that being rotation variant helps since the viewpoint is fixed. Thus
there is no descriptor outperforming the others in all cases, and our hypothesis
that variant descriptors are more discriminative than invariant ones is validated.

Ablation Study. To confirm the benefit of our online selection of invariance
and choice of parameters, we compare LISRD on homography estimation on the
HPatches dataset with other selection methods of the local descriptors as well as
with variants of our approach (Table 1). Best of the 4 computes the metrics for
the 4 local descriptors separately and picks the best score. Greedy computes the
pairwise distances of all points for each local descriptor and greedily chooses the
local descriptor with smallest distance for each pair of points. Hard assignment
selects the local descriptor that maximizes the meta descriptor similarity, instead
of choosing a soft assignment as in our proposed method. No tiling and 5 x &
tiles are variants of our method with no tiling or with 5§ x 5 tiles for the meta
descriptors. Finally, Single desc is a descriptor trained with exactly the same
architecture as ours, but with the 4 local descriptors concatenated and trained
with invariance in both illumination and rotation.

On the full HPatches dataset, Best of the 4 corresponds to the descriptor
invariant to both illumination and rotation, as both changes are present. How-
ever, our selection method can still leverage the other descriptors: for example
an illumination variant descriptor for the viewpoint part. The disparity between
LISRD and Greedy and Hard assignment highlights the added value of the meta
descriptors, and shows that a soft assignment can better leverage the 4 descrip-
tors at the same time. Finally, the comparison with Single desc confirms our
hypothesis that disentangling the types of invariance is beneficial compared to
learning a single invariant descriptor with the same number of weights.

Generalization to Other Descriptors. LISRD can be easily generalized to
other kinds of descriptors, and not only to our proposed learned local descriptors.
We demonstrate this by applying our approach to the duo of local descriptors
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SIFT and Upright SIFT — SIFT without rotation invariance, as presented in
Fig. 1. Instead of having four local descriptors, there are only two of them, one
invariant to rotation and one variant, and similarly for the meta descriptors.
Our method is evaluated against SIFT and Upright SIFT on the viewpoint part
of HPatches. This dataset contains indeed sequences with no rotation, where
Upright SIFT performs better, and other sequences with strong rotations, where
SIFT takes over. Figure 5 shows that our method can effectively leverage both
SIFT and Upright SIFT and outperforms the two.

4.3 Descriptor Evaluation on HPatches

This section compares the performance of LISRD against state-of-the-art local
descriptors on the benchmark dataset HPatches. Since our approach requires
global context from full images, we cannot run it on the patch level dataset. We
use the full sequences of images instead, similarly as in [8,9,31]. We consider
the following baselines: Root SIFT with the default Kornia' implementation;
HardNet [24] (trained on the PS-dataset [26]), SOSNet [39] (trained on the Lib-
erty dataset of UBC Phototour [6]), SuperPoint (SP) [8], D2-Net [9], R2D2 [31]
and GIFT [19] with the authors implementation. Since we want to evaluate the
descriptors only, SIFT keypoints are detected in the images and for each method,
we extract the local descriptors at these locations. For Root SIFT, HardNet and
SOSNet, we sample 32 x 32 patches at each SIFT keypoint and rotate them
according to the SIFT orientation. As we want to evaluate the impact of rota-
tion and illumination invariance only, we use single scale implementations for
all methods?. Our method could however be made scale invariant using similar
multi-scale approaches as in [9,31].

Table 2. Comparison to the state of the art on HPatches. Homography estimation,
precision and recall are computed for error thresholds of 3 pixels. The best score is in
bold and the second best one is underlined.

Root SIFT HardNet SOSNet SP D2-Net R2D2 GIFT Ours

HpP HEst.ir.nation 0.898 0.884 0.919 0.877 0.818 0.916 0.923 0.884

Ilum Precision 0.554 0.574 0.591 0.629 0.650 0.666 0.573 0.665
Recall 0.431 0.483 0.519 0.565  0.564 0.580 0.521 0.655

HP HEst.ir.nation 0.644 0.688 0.742 0.651  0.553 0.627 0.715 0.688

View Precision 0.515 0.582 0.598 0.595  0.564 0.550 0.552 0.626
Recall 0.350 0.422 0.448 0.446  0.382 0.371 0.429 0.495

! https://kornia.github.io/.
2 In the case of GIFT, which is both rotation and scale invariant, we sample images
with scale 1 to make it rotation invariant only.
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The results are summarized in Table 2. Overall, LISRD ranks among the two
best methods in precision and recall. The possibility to leverage rotation vari-
ant descriptors on the fixed pairs of the illumination part and to alternatively
select the right level of lighting invariance given the amount of illumination
changes probably explains our superior performance on the illumination part.
Note the comparison with SuperPoint, whose architecture and training proce-
dure are very similar to LISRD, and where our method displays better results
in all metrics, thus showing the gain of our approach. The weaker results in
homography estimation can be explained by a limitation of our method. Since
our meta descriptors have a very coarse spatial resolution (3 x 3 grid), if one
of them fails to pick the right invariance, this will impact all the matches of its
region. Thus, the correct matches predicted by LISRD can in that case become
very concentrated in a specific part of the image, which makes the homography
estimation with RANSAC less accurate. This issue could be avoided with a finer
tiling of the meta descriptors, but at the price of a reduced global context.

4.4 Evaluation in Challenging and Cross-Modal Situations

The HPatches dataset offers a fair benchmark, but is limited to only few rotations
and medium illumination changes. Our approach is designed to be used in a
variety of scenarios and with changing conditions, so that all our local descriptors
can be leveraged. In order to evaluate our method on such a versatile task, we
designed a new benchmark dataset, based on the day-night image matching
(DNIM) dataset [44]. This dataset is composed of sequences of images of a fixed
camera taking pictures at regular time intervals and across day and night, with
a total of 1722 images. For each sequence, the image with timestamp closest
to noon is taken as day reference and the image closest to midnight as night
reference. We create two benchmarks, where the images of each sequence are
paired with either the day reference or the night one. We then synthetically warp
the pairs with the same homography sampling scheme as in [8] with an equal
distribution of homographies with and without rotations. We plan to release the
homographies used in this benchmark to let other researchers compare with their
own methods. Examples of images and matches for this dataset can be found in
the supplementary material.

Table 3 and Fig. 6 show the evaluation with the state-of-the-art descriptors,
using SuperPoint keypoints. LISRD can adapt its invariance to illumination and
rotations to alternatively select the most relevant descriptor and it outperforms
the other methods by a large margin both in terms of precision and recall.
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Table 3. Evaluation on a use case where invariance selection matters. Homography
estimation, precision and recall are computed with SuperPoint keypoints on a dataset
with day-night changes and various levels of rotation. Selecting the relevant variant or
invariant descriptors boosts the precision and recall of our method compared to the
previous state-of-the-art methods.

Root SIFT HardNet SOSNet SP D2-Net R2D2 GIFT Ours

Da HEstimation 0.121 0.199 0.178 0.146 0.094 0.170 0.187 0.198
g’ Precision 0.188 0.232 0.228  0.195 0.195 0.175 0.152 0.291
re Recall 0.112 0.194 0.203 0.178 0.117 0.162 0.133 0.317
Night HEstimation 0.141 0.262 0.211  0.182 0.145 0.196 0.241 0.262
rff Precision 0.238 0.366 0.297 0.264 0.259 0.237 0.236 0.371
Recall 0.164 0.323 0.269  0.255 0.182 0.216 0.209 0.384
0.5 Day reference Night reference
Root SIFT
0.4 —— HardNet
s SOSNet
©o0.3 —— SuperPoint
9 —— D2-Net
a 0.2 — R2D2
— GIFT
0.1 —— LISRD (ours)
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Threshold [px] Threshold [px]

Fig. 6. Precision curves on the DNIM dataset [44] augmented with rotations. LISRD
leverages its variant and more discriminative descriptors whenever possible and is thus
more accurate than the state-of-the-art descriptors for all pixel error thresholds.

4.5 Application to Localization in Challenging Conditions

A typical application of image matching including adverse conditions such as
strong illumination changes and wide baselines is the visual localization task.
We evaluate our method on the local feature challenge of CVPR 2019 based on
the Aachen Day-Night dataset [34]. The goal is to localize 98 night time query
images as accurately as possible, 20 day images per query with known camera
pose. As the keypoint quality is essential in this task, we compare our method
with other descriptors for various types of keypoints: SIFT, SuperPoint and D2-
Net multi-scale (MS). The numbers for the baseline methods are taken from the
benchmark on the official website?. The results in Table 4 show that our method
is not limited to SIFT keypoints and can effectively improve the performance of
local descriptors in challenging conditions. Note in particular the improvement
over SuperPoint, which shares a similar architecture as ours.

3 https://www.visuallocalization.net /.
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Table 4. Visual localization performance on the Aachen Day-Night dataset [34]. We
report the percentage of correctly localized queries for various distance and orientation
error thresholds for SIFT, SuperPoint and D2-Net multi-scale (MS). Our method shows
a good generalization when evaluated on different keypoints (KP) and can improve the
original descriptor performance.

Error SIFT KP SuperPoint KP D2-Net KP
threshold Up-Root SIFT Ours SuperPoint Ours D2-Net (MS) Ours (MS)
0.5m, 2° 54.1 72.4 73.5 78.6 67.3 73.5

1m, 5° 66.3 82.7 79.6 86.7 87.8 88.8
5m, 10° 75.5 94.9 88.8 98.0 100.0 99.0

5 Conclusion

We presented a novel approach to learn local feature descriptors able to adapt
to multiple variations in images, while remaining discriminative. We unified the
learning of several local descriptors with multiple levels of invariance and of meta
descriptors leveraging regional context to guide the local descriptors matching.

While restricted to illumination and rotation invariance, our framework can
be generalized to more variations, at the cost of an exponentially growing number
of descriptors however. A future direction of work would be to reduce the amount
of redundancy between each descriptor by enforcing a stronger disentanglement
separating each factors of variation. Since our approach is able to enforce different
levels of invariance, one can also add another head to our network to predict
invariant keypoints, while keeping discriminative descriptors, thus solving the
current issue in joint learning of invariant detectors and descriptors.

Overall, this work is a first step towards disentangled descriptors. Separating
the types of invariances paves the way to a full disentanglement of the factors of
variations of images and could lead to flexible and interpretable local descriptors.

Acknowledgments. This work has been supported by an ETH Zurich Postdoctoral
Fellowship and Innosuisse funding (Grant No. 34475.1 IP-ICT).
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