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Abstract. Finding out the computational redundant part of a trained
Deep Neural Network (DNN) is the key question that pruning algorithms
target on. Many algorithms try to predict model performance of the
pruned sub-nets by introducing various evaluation methods. But they
are either inaccurate or very complicated for general application. In this
work, we present a pruning method called EagleEye, in which a simple yet
efficient evaluation component based on adaptive batch normalization is
applied to unveil a strong correlation between different pruned DNN struc-
tures and their final settled accuracy. This strong correlation allows us
to fast spot the pruned candidates with highest potential accuracy with-
out actually fine-tuning them. This module is also general to plug-in and
improve some existing pruning algorithms. EagleEye achieves better prun-
ing performance than all of the studied pruning algorithms in our experi-
ments. Concretely, to prune MobileNet V1 and ResNet-50, EagleEye out-
performs all compared methods by up to 3.8%. Even in the more challeng-
ing experiments of pruning the compact model of MobileNet V1, Eagle-
Eye achieves the highest accuracy of 70.9% with an overall 50% operations
(FLOPs) pruned. All accuracy results are Top-1 ImageNet classification
accuracy. Source code and models are accessible to open-source commu-
nity (https://github.com/anonymous47823493/EagleEye).

Keywords: Model compression · Neural network pruning

1 Introduction

Deep Neural Network (DNN) pruning aims to reduce computational redundancy
from a full model with an allowed accuracy range. Pruned models usually result
in a smaller energy or hardware resource budget and, therefore, are especially
meaningful to the deployment to power-efficient front-end systems. However,
how to trim off the parts of a network that make little contribution to the model
accuracy is no trivial question.
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58536-5 38) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12347, pp. 639–654, 2020.
https://doi.org/10.1007/978-3-030-58536-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58536-5_38&domain=pdf
https://github.com/anonymous47823493/EagleEye
https://doi.org/10.1007/978-3-030-58536-5_38
https://doi.org/10.1007/978-3-030-58536-5_38
https://doi.org/10.1007/978-3-030-58536-5_38


640 B. Li et al.

Fig. 1. A generalized pipeline for pruning tasks. The evaluation process unveils the
potential of different pruning strategies and picks the one that most likely to deliver
high accuracy after convergence.

DNN pruning can be considered as a searching problem. The searching space
consists of all legitimate pruned networks, which are referred as sub-nets or prun-
ing candidates. In such space, how to obtain the sub-net with highest accuracy
with reasonably small searching efforts is the core of a pruning task.

Particularly, an evaluation process can be commonly found in existing prun-
ing pipelines. Such process aims to unveil the potential of sub-nets so that best
pruning candidate can be selected to deliver the final pruning strategy. A visual
illustration of this generalization is shown in Fig. 1. More details about the exist-
ing evaluation methods will be discussed throughout this work. An advantage
of using an evaluation module is fast decision-making because training all sub-
nets, in a large searching space, to convergence for comparison can be very
time-consuming and hence impractical.

However, we found that the evaluation methods in existing works are sub-
optimal. Concretely, they are either inaccurate or complicated.

By saying “inaccurate” , it means the winner sub-nets from the evaluation
process do not necessarily deliver high accuracy when they converge [7,13,19].
This will be quantitatively proved in Sect. 4.1 as a correlation problem measured
by several commonly used correlation coefficients. To our knowledge, we are the
first to introduce correlation-based analysis for sub-net selection in pruning task.
Moreover, we demonstrate that the reason such evaluation is inaccurate is the
use of sub-optimal statistical values for Batch Normalization (BN) layers [10].
In this work, we use a so-called “adaptive BN” technique to fix the issue and
effectively reach a higher correlation for our proposed evaluation process.

By saying “complicated”, it points to the fact that the evaluation process
in some works rely on tricky or computationally intensive components such as
a reinforcement learning agent [7], auxiliary network training [22], knowledge
distillation [8], and so on. These methods require careful hyper-parameter tuning
or extra training efforts on the auxiliary models. These requirements make it
potentially difficult to repeat the results and these pruning methods can be
time-consuming due to their high algorithmic complexity.

Above-mentioned issues in current works motivate us to propose a bet-
ter pruning algorithm that equips with a faster and more accurate evaluation
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process, which eventually helps to provide the state-of-the-art pruning per-
formance. The main novelty of the proposed EagleEye pruning algorithm is
described as below:

– We point out the reason that a so-called “vanilla” evaluation step (explained
in Sect. 3.1) widely found in many existing pruning methods leads to poor
pruning results. To quantitatively demonstrate the issue, we are the first to
introduce a correlation analysis to the domain of pruning algorithm.

– We adopt the technique of adaptive batch normalization for pruning purposes
in this work to address the issue in the “vanilla” evaluation step. It is one
of the modules in our proposed pruning algorithm called EagleEye. Our pro-
posed algorithm can effectively estimate the converged accuracy for any pruned
model in the time of only a few iterations of inference. It is also general enough
to plug-in and improve some existing methods for performance improvement.

– Our experiments show that although EagleEye is simple, it achieves the state-
of-the-art pruning performance in comparisons with many more complex
approaches. In the ResNet-50 experiments, EagleEye delivers 1.3% to 3.8%
higher accuracy than compared algorithms. Even in the challenging task of
pruning the compact model of MobileNet V1, EagleEye achieves the high-
est accuracy of 70.9% with an overall 50% operations (FLOPs) pruned. The
results here are ImageNet top-1 classification accuracy.

2 Related Work

Pruning was mainly handled by hand-crafted heuristics in early time [13]. So a
pruned candidate network is obtained by human expertise and evaluated by train-
ing it to the converged accuracy, which can be very time consuming considering
the large number of plausible sub-nets. In later chapters, we will show that the
pruning candidate selection is problematic and selected pruned networks cannot
necessarily deliver the highest accuracy after fine-tuning. Greedy strategy were
introduced to save manual efforts [26] in more recent time. But it is easy for such
strategy to fall into the local optimal caused by the greedy nature. For example,
NetAdapt [26] supposes the layer lt with the least accuracy drop, noted as dt,
is greedily pruned at step t. However, there may exist a better pruning strategy
where d′

t > dt, but d′
t +d′

t+1 < dt +dt+1. Our method searches the pruning ratios
for all layers together in one single step and therefore avoids this issue.

Some other works induce sparsity to weights in training phase for pruning
purposes. For example, [25] introduces group-LASSO to introduce sparsity of
the kernels and [21] regularizes the parameter in batch normalization layer.
[23] ranks the importance of filters based on Taylor expansion and trimmed off
the low-ranked ones. The selection standards proposed in these methods are
orthogonal to our proposed algorithm. More recently, versatile techniques were
proposed to achieve automated and efficient pruning strategies such as reinforce-
ment learning [7], generative adversarial learning mechanism [17] and so on. But
the introduced hyper-parameters add difficulty to repeat the experiments and
the trail-and-error to get the auxiliary models work well can be time consuming.
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The technique of adjusting BN was used to serve for non-pruning purposes
in existing works. [14] adapts the BN statistics for target domain in domain
adaptation tasks. The common point with our work is that we both notice the
batch normalization requires an adjustment to adapt models in a new setting
where either model or domain changes. But this useful technique has not been
particularly used for model pruning purposes.

3 Methodology

Fig. 2. A typical pipeline for neural network training and pruning

A typical neural network training and pruning pipeline is generalized and visual-
ized in Fig. 2. Pruning is normally applied to a trained full-size network for redun-
dancy removal purposes. An fine-tuning process is then followed up to gain accu-
racy back from losing parameters in the trimmed filters. In this work, we focus on
structured filter pruning approaches, which can be generally formulated as

(r1, r2, ..., rL)∗ = arg min
r1,r2,...,rL

L(A(r1, r2, ..., rL;w)), s.t. C < constraints,

(1)
where L is the loss function and A is the neural network model. rl is the pruning
ratio applied to the lth layer. Given some constraints C such as targeted amount
of parameters, operations, or execution latency, a combination of pruning ratios
(r1, r2, ..., rL), which is referred as pruning strategy, is applied to the full-size
model. All possible combinations of the pruning ratios form a searching space. To
obtain a compact model with the highest accuracy, one should search through the
search space by applying different pruning strategies to the model, fine-tuning
each of the pruned model to converged and pick the best one. We consider the
pruning task as finding the optimal pruning strategy, denoted as (r1, r2, ..., rL)∗,
that results in the highest converged accuracy of the pruned model.

Apart from handcraft designing, different searching methods have been
applied in previous work to find the optimal pruning strategy, such as greedy
algorithm [26,28], RL [7], and evlolutionary algorithm [20]. All of the these
methods are guided by the evaluation results of the pruning strategies.
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3.1 Motivation

In many published approaches [7,13,19] in this domain, pruning candidates
directly compare with each other in terms of evaluation accuracy. The sub-
nets with higher evaluation accuracy are selected and expected to also deliver
high accuracy after fine-tuning. However, such intention can not be necessarily
achieved as we notice the sub-nets perform poorly if directly used to do infer-
ence. The inference results normally fall into a very low-range accuracy, which is
illustrated in Fig. 3 left. An early attempt is to randomly generate pruning rates
for MobileNet V1 and apply L1-norm based pruning [13] for 50 times. The dark
red bars form the histogram of accuracy collected from directly doing inference
with the pruned candidates in the same way that [7,13,19] do before fine-tuning.
Because our pruning rates are randomly generated in this early attempt, so the
accuracy is very low and only for observation. The gray bars in Fig. 4 shows the
situation after fine-tuning these 50 pruned networks. We notice a huge differ-
ence in accuracy distribution between these two results. Therefore, there are two
questions came up to our mind given above observation. The first question is
why removal to filters, especially considered as “unimportant” filters, can cause
such noticeable accuracy degradation although the pruning rates are random?
The natural question to ask next is how strongly the low-range accuracy is pos-
itively correlated to the final converged accuracy. These two questions triggered
our investigation into this commonly used evaluation process, which is called
vanilla evaluation in this work.

Fig. 3. Left: Histogram for accuracy collected from directly pruning MobileNet V1
and fine-tuning 15 epoches. Right: Evolution of the weight distribution of a pruned
MobileNetV1 [9] during fine-tuning on ImageNet [3]. Where X axis presents the mag-
nitude of the L1-norm of kernel, Y axis presents the quantity, Z axis presents the
fine-tuning epochs.

Some initial investigations are done to tentatively address the above two ques-
tions. Figure 3 right shows that it might not be the weights that mess up the accu-
racy at the evaluation stage as only a gentle shift in weight distribution is observed
during fine-tuning, but the delivered inference accuracy is very different. On the
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other side, Fig. 4 left shows that the low-range accuracy indeed presents poor cor-
relation with the fine-tuned accuracy, which means that it can be misleading to
use evaluated accuracy to guide the pruning candidates selection.

Interestingly, we found that it is the batch normalization layer that largely
affects the evaluation. Without fine-tuning, pruning candidates have parameters
that are a subset of those in the full-size model. So the layer-wise feature map
data are also affected by the changed model dimensions. However, vanilla eval-
uation still uses Batch Normalization (BN) inherited from the full-size model.
The outdated statistical values of BN layers eventually drag down the evalu-
ation accuracy to a surprisingly low range and, more importantly, break the
correlation between evaluation accuracy and the final converged accuracy of the
pruning candidates in the strategy searching space. A brief training, also called
fine-tuning, all pruning candidates and then compare them is a more accurate
way to carry out the evaluation [15,20]. However, it is very time-consuming to do
the training-based evaluation for even single-epoch fine-tuning due to the large
scale of the searching space. We give quantitative analysis later in this section
to demonstrate this point.

Firstly, to quantitatively demonstrate the idea of vanilla evaluation and the
problems that come with it, we symbolize the original BN [10] as below:

y = γ
x − μ√
σ2 + ε

+ β, (2)

Where β and γ are trainable scale and bias terms. ε is a term with small value
to avoid zero division. For a mini-batch with size N , the statistical values of μ
and σ2 are calculated as below:

μB = E[xB] =
1
N

N∑

i=1

xi, σ2
B = V ar[xB] =

1
N − 1

N∑

i=1

(xi − μB)2. (3)

During training, μ and σ2 are calculated with the moving mean and variance:

μt = mμt−1 + (1 − m)μB, σ2
t = mσ2

t−1 + (1 − m)σ2
B, (4)

where m is the momentum coefficient and subscript t refers to the number of
training iterations. In a typical training pipeline, if the total number of training
iteration is T , μT and σ2

T are used in testing phase. These two items are called
global BN statistics, where “global” refers to the full-size model.

3.2 Adaptive Batch Normalization

As briefly mentioned before, vanilla evaluation used in [7,13,19] apply global BN
statistics to pruned networks to fast evaluate their accuracy potential, which we
think leads to the low-range accuracy results and unfair candidate selection. If
the global BN statistics are out-dated to the sub-nets, we should re-calculate μT

and σ2
T with adaptive values by conducting a few iterations of inference on part of

the training set, which essentially adapts the BN statistical values to the pruned
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network connections. Concretely, we freeze all the network parameters while
resetting the moving average statistics. Then, we update the moving statistics
by a few iterations of forward-propagation, using Eq. 4, but without backward
propagation. We note the adaptive BN statistics as μ̂T and σ̂2

T .

Fig. 4. Correlation between fine-tuning accuracy and inference accuracy gained from
vanilla evaluation (left), adaptive-BN-based evaluation (right) based on MobileNet V1
experiments on ImageNet Top-1 classification results.

Figure 4 right illustrates that applying adaptive BN delivers evaluation accu-
racy that has a stronger correlation, compared to the vanilla evaluation Fig. 4
left.

As another evidence, we compare the distance of BN statistical values
between “true” statistics. We consider μ and σ2 sampled from the validation
data as the “true” statistics, noted as μval and σ2

val , because they are the real
statistical values in the testing phase. Specially, we are not obtaining insights
from the validation data, which we think is unfair, but simply showing that
our evaluation results are closer to the ground truth compared to the vanilla
method. Concretely, we expect μ̂T and σ̂2

T to be as close as possible to the
“true” BN statistics values,μval and σ2

val, so they could deliver close computa-
tional results. So we visualize the distance of BN statistical values gained from
different evaluation methods (see Fig. 5). Each pixel in the heatmaps represents
a distance for a type of BN statistics, either μval or σ2

val, between post-evaluation
results and the “true” statistics sampled via one filter in MobileNet V1 [9]. The
visual observation shows that adaptive BN provides closer statistical values to
the “true” values while global BN is way further. A possible explanation is that
the global BN statistics are out-dated and not adapted to the pruned network
connections. So they mess up the inference accuracy during evaluation for the
pruned networks.

Noticeably, fine-tuning also relieves such problem of mismatched BN statis-
tics because the training process itself re-calculates the BN statistical values in
the forward pass and hence fixes the mismatch. However, BN statistics are not
trainable values but sampling parameters only calculated in inference time. Our
adaptive BN targets on this issue by conducting re-sampling in exactly the infer-
ence step, which achieves the same goal but with way less computational cost
compared to fine-tuning. This is the main reason that we claim the application
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Fig. 5. Visualization of distances of BN statistics in terms of the moving mean
and variance. Each pixel refers to the distance of one BN statistics of a channel in
MobileNetV1. (a) ‖μT − μval‖2, distance of moving mean between global BN and the
“true” values. (b) distance of moving mean between adaptive-BN and the “true” val-
ues ‖μ̂T − μval‖2. (c)

∥
∥σ2

T − σ2
val

∥
∥
2
, distance of moving variance between global BN

and the “true” values. (d) distance of moving variance between adaptive-BN and the
“true” values

∥
∥σ2

T − σ2
val

∥
∥
2

of adaptive BN in pruning evaluation is more efficient than the fine-tuning-based
solution.

3.3 Correlation Measurement

As mentioned before, a “good” evaluation process in the pruning pipeline should
present a strong positive correlation between the evaluated pruning candidates
and their corresponding converged accuracy. Here, we compare two different
evaluation methods, adaptive-BN-based and vanilla evaluation, and study their
correlation with the fine-tuned accuracy. So we symbolize a vector of accuracy
for all pruning candidates in the searching space (Fig. 6) separately using the
above two evaluation methods as X1 and X2 correspondingly while fine-tuned
accuracy is noted as Y . We firstly use Pearson Correlation Coefficient [24] (PCC)
ρX,Y , which is used to measure the linear correlation between two variables X
and Y , to measure the correlation between ρX1,Y and ρX2,Y .

Since we particularly care about high-accuracy sub-nets in the ordered accu-
racy vectors, Spearman Correlation Coefficient (SCC) [2] φX,Y and Kendall rank
Correlation Coefficient (KRCC) [11] τX,Y are adopted to measure the monotonic
correlation. We compare the correlation between (X1, Y ) and (X2, Y ) in above
three metrics with different pruning rates. All cases present a stronger correla-
tion for the adaptive-BN-based evaluation than the vanilla strategy. See richer
details about quantitative analysis in Sect. 4.1.

3.4 EagleEye Pruning Algorithm

Based on the discussion about the accurate evaluation process in pruning, we
now present the overall workflow of EagleEye in Fig. 6. Our pruning pipeline
contains three parts, pruning strategy generation, filter pruning, and adaptive-
BN-based evaluation.
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Fig. 6. Workflow of the EagleEye Pruning Algorithm

Strategy generation outputs pruning strategies in the form of layer-wise
pruning rate vectors like (r1, r2, ..., rL) for a L-layer model. The generation pro-
cess follows pre-defined constraints such as inference latency, a global reduction
of operations (FLOPs) or parameters and so on. Concretely, it randomly samples
L real numbers from a given range [0, R] to form a pruning strategy, where rl
denotes the pruning ratio for the lth layer. R is the largest pruning ratio applied
to a layer. This is essentially a Monte Carlo sampling process with a uniform dis-
tribution for all legitimate layer-wise pruning rates, i.e. removed number of filters
over the number of total filters. Noticeably, other strategy generation methods
can be used here, such as the evolutionary algorithm, reinforcement learning etc.,
we found that a simple random sampling is good enough for the entire pipeline
to quickly yield pruning candidates with state-of-the-art accuracy. A possible
reason for this can be that the adjustment to the BN statistics leads to a much
more accurate prediction to the sub-nets’ potential, so the efforts of generating
candidates are allowed to be massively simplified. The low computation cost
of this simple component also adds the advantage of fast speed to the entire
algorithm.

Filter pruning process prunes the full-size trained model according to the
generated pruning strategy from the previous module. Similar to a normal filter
pruning method, the filters are firstly ranked according to their L1-norm and
the rl of the least important filters are trimmed off permanently. The sampled
pruning candidates from the searching space are ready to be delivered to the
next evaluation stage after this process.

The adaptive-BN-based candidate evaluation module provides a BN
statistics adaptation and fast evaluation to the pruned candidates handed over
from the previous module. Given a pruned network, it freezes all learnable
parameters and traverses through a small amount of data in the training set to
calculate the adaptive BN statistics μ̂ and σ̂2. In practice, we sampled 1/30 of
the total training set for 100 iterations in our ImageNet experiments, which takes
only 10-ish seconds in a single Nvidia 2080 Ti GPU. Next, this module evaluates
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the performance of the candidate networks on a small part of training set data,
called “sub-validation set”, and picks the top ones in the accuracy ranking as
winner candidates. The correlation analysis presented in Sect. 4.1 guarantees the
effectiveness of this process. After a fine-tuning process, the winner candidates
are finally delivered as outputs.

4 Experiments

4.1 Quantitative Analysis of Correlation

We use three commonly used correlation coefficient(ρ,σ and τ) to quantitatively
measure the relation between X1, X2 and Y , which are defined in Sect. 3.3.

Fig. 7. Vanilla vs. adaptive-BN evaluation: Correlation between evaluation and fine-
tuning accuracy with different pruning ratios (MobileNet V1 [9] on ImageNet [3] clas-
sification Top-1 results)

Firstly, as mentioned in Sect. 3.1 the poor correlation, presented by Fig. 4
sub-figure, is basically 10 times smaller than adaptive-BN-based results shown
in Fig. 4 right sub-figure. This matches with the visual observation that the
adaptive-BN-based samples are more trendy while the vanilla strategy tends to
give randomly distributed samples on the figure. This means the vanilla eval-
uation hardly present accurate prediction to the pruned networks about their
fine-tuned accuracy.

Based on the above initial exploration, we extend the quantitative study to
a larger scale applying three correlation coefficients to different pruning ratios
as shown in Table 1. Firstly, the adaptive-BN-based evaluation delivers stronger
correlation measured in all three coefficients compared to the vanilla evaluation.
In average, ρ is 0.67 higher, φ is 0.79 higher and τ is 0.46 higher. Noticeably, the
correlation high in φ and τ means that the winner pruning candidates selected
from the adaptive-based evaluation module are more likely to rank high in the
fine-tuned accuracy ranking as φ emphasizes the monotonic correlation.
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Table 1. Correlation analysis quantified by Pearson Correlation Coefficient ρX,Y ,
Spearman Correlation Coefficient φX,Y , and Kendall rank Correlation Coefficient τX,Y .

FLOPs constraints ρX1,Y ρX2,Y φX1,Y φX2,Y τX1,Y τX2,Y

Not fixed 0.793 0.079 0.850 0.025 0.679 0.063

75% FLOPs 0.819 −0.038 0.829 −0.030 0.656 −0.003

62.5% FLOPs 0.683 0.250 0.644 0.395 0.458 0.267

50% FLOPs 0.813 0.105 0.803 0.127 0.639 0.122

Especially, the third to fifth rows of Table 1 shows the correlation metrics
with different pruning rates (for instance, 75% FLOPs also means 25% pruning
rate to operations). The corresponding results are also visualized in Fig. 7. The
second row in Table 1 means the pruning rate follows a layer-wise Monte Carlo
sampling with a uniform distribution among the legitimate pruning rate options.
All the above tables and figures prove that the adaptive-BN-based evaluation
shows stronger correlation, and hence a more robust prediction, between the
evaluated and fine-tuned accuracy for the pruning candidates.

4.2 Generality of the Adaptive-BN-Based Evaluation Method

The proposed adaptive-BN-based evaluation method is general enough to plug-
in and improves some existing methods. As an example, we apply it to AMC [7],
which is an automatic method based on Reinforcement Learning mechanism.

AMC [7] trains an RL-agent to decide the pruning ratio for each layer. At
each training step, the agent tries applying different pruning ratios (pruning
strategy) to the full-size model as an action. Then it directly evaluates the accu-
racy without fine-tuning, which is noted as vanilla evaluation in our paper, and
takes this validation accuracy as the reward. As the RL-agent is trained with the
reward based on the vanilla evaluation, which is proved to have a poor correlation
to the converged accuracy of pruned networks. So we replace the vanilla evalua-
tion process with our proposed adaptive-BN-based evaluation. Concretely, after
pruning out filters at each step, we freeze all learnable parameters and do infer-
ence on the training set to fix the BN statistics and evaluate the accuracy of the
model on the sub-validation set. We feed this accuracy as a reward to train the
RL-agent in place of the accuracy of vanilla evaluation. The experiment about
MobileNetV1 [9] on ImageNet [3] classification accuracy is improved from 70.5%
(reported in AMC [7]) to 70.7%. It shows that the RL-agent can find a better
pruning strategy with the help of our adaptive-BN-based evaluation module.

Another example is the “short-term fine-tune” block in [26], which also can
be handily replaced by our adaptiveBN-based module for a faster pruning strat-
egy selection. On the other side, our pipeline can also be upgraded by exist-
ing methods such as the evolutionary algorithm used in [20] to improve the
basic Monte Carlo sampling strategy. The above experiments and discussion
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demonstrate the generality of our adaptive-BN-based evaluation module, but
can not be analyzed in more detail due to the limited length of this paper.

4.3 Efficiency of Our Proposed Method

Our proposed pruning evaluation based on adaptive BN turn the prediction
of sub-net accuracy into a very fast and reliable process, so EagleEye is much
less time-consuming to complete the entire pruning pipeline than other heavy
evaluation based algorithms. In this part, we compare the execution cost for
various state-of-the-art algorithms to demonstrate the efficiency of our method.

Table 2. Comparison of computation costs of various pruning methods in the task
where all pruning methods are executed to find the best pruning strategy from 1000
potential strategies (candidates).

Method Evaluation method Candidate selection GPU hours

ThiNet [22] Finetuning 1000×10 finetune epochs ∼ 8000

NetAdapt [26] Finetuning 104 training iterations 864

Filter pruning [13] Vanilla 1000×25 finetune epochs ∼ 20000

AMC [26] Vanilla Training an RL agent -

Meta-Pruning [20] PruningNet Training an auxiliary network -

EagleEye adaptive-BN <1000×100 inference iterations 25

Table 2 compares the computational costs of picking the best pruning strategy
among 1000 potential pruning candidates. As ThiNet [22] and Filter Pruning [13]
require manually assigning layer-wise pruning ratio, The final GPU hours are
the estimation of completing the pruning pipeline for 1000 random strategies.
In practice, the real computation cost highly depends on the expert’s heuristic
practice of trial-and-error. The computation time for AMC [7] and Meta-pruning
can be long because training either an RL network or an auxiliary network itself
is time-consuming and tricky. Among all compared methods, EagleEye is the
most efficient method as each evaluation takes no more than 100 iterations,
which takes 10 to 20 s in a single Nvidia 2080 Ti GPU. So the total candidate
selection is simply an evaluation comparison process, which also can be done in
negligible time.

4.4 Effectiveness of Our Proposed Method

To demonstrate the effectiveness of EagleEye, we compare it with several state-
of-the-art pruning methods on MobileNetV1 and ResNet-50 [4] models tested on
the small dataset of CIFAR-10 [12] and the large dataset of ImageNet.

ResNet. Table 3 left shows EagleEye outperforms all compared methods in
terms of Top-1 accuracy on CIFAR-10 dataset. To further prove the robust-
ness of our method, we compare the top-1 accuracy of ResNet-50 on ImageNet
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Table 3. Pruning results of ResNet-56 (left) and MobileNetV1 (right) on CIFAR-10

Method FLOPs Top1-Acc

ResNet-56 125.49M 93.26%

FP [13] 90.90M 93.06%

RFP [1] 90.70M 93.12%

NISP [29] 81.00M 93.01%

GAL [18] 78.30M 92.98%

HRank [15] 88.72M 93.52%

EagleEye 62.23M 94.66%

Method FLOPs Top1-Acc

0.75 × MobileNetV1

26.5M

88.07%

FP(our-implement) [13] 91.58 %

EagleEye 91.89%

0.5 × MobileNetV1

12.1M

87.51%

FP(our-implement) [13] 90.4%

EagleEye 91.44%

0.25 × MobileNetV1

3.3M

84.59%

FP(our-implement) [13] 85.81%

EagleEye 88.01%

under different FLOPs constraints. For each FLOPs constraint (3G, 2G, and 1G),
1000 pruning strategies are generated. Then the adaptive-BN-based evaluation
method is applied to each candidate. We just fine-tune the top-2 candidates and
return the best as delivered pruned model. It is shown that EagleEye achieves
the best results among the compared approaches listed in Table 4.

ThiNet [22] prunes the channels uniformly for each layer other than finding
an optimal pruning strategy, which hurts the performance significantly. Meta-
Pruning [20] trains an auxiliary network called “PruningNet” to predict the
weights of the pruned model. But the adopted vanilla evaluation may mislead the
searching of the pruning strategies. As shown in Table 4, our proposed algorithm
outperform all compared methods given different pruned network targets.

MobileNet. We conduct experiments of the compact model of MobileNetV1
and compare the pruning results with Filter Pruning [13] and the directly-scaled
models. Please refer to y material for more details about FP implementation
and training methods to get the accuracy for the directly-scaled models. Table 3
right shows that EagleEye gets the best results in all cases.

Pruning MobileNetV1 for ImageNet is more challenging as it is already a very
compact model. We compare the top-1 ImageNet classification accuracy under
the same FLOPs constraint (about 280M FLOPs) and the results are shown in
Table 5. 1500 pruning strategies are generated with this FLOPs constraint. Then
adaptive-BN-based evaluation is applied to each candidate. After fine-tuning the
top-2 candidates, the pruning candidate that returns the highest accuracy is
selected as the final output.

AMC [7] trains their pruning strategy decision agent based on the pruned
model without fine-tuning, which may lead to a problematic selection on the
candidates. NetAdapt [26] searches for the pruning strategy based on a greedy
algorithm, which may drop into a local optimum as analysed in Sect. 2. It is
shown that EagleEye achieves the best performance among all studied methods
again in this task (see Table 5).
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Table 4. Comparisions of ResNet-50 and other pruning methods on ImageNet

FLOPs after pruning Method FLOPs Top1-Acc Top5-Acc

3G ThiNet-70 [20] 2.9G 75.8% 90.67%

AutoSlim [28] 3.0G 76.0% -

Meta-Pruning [20] 3.0G 76.2% -

EagleEye 3.0G 77.1% 93.37%

2G 0.75 × ResNet-50 [4] 2.3G 74.8% -

Thinet-50 [22] 2.1G 74.7% 90.02%

AutoSlim [28] 2.0G 75.6% -

CP [8] 2.0G 73.3% 90.8%

FPGM [6] 2.31G 75.59% 92.63%

SFP [5] 2.32G 74.61% 92.06%

GBN [27] 1.79G 75.18% 92.41%

GDP [16] 2.24G 72.61% 91.05%

DCP [30] 1.77G 74.95% 92.32%

Meta-Pruning [20] 2.0G 75.4% -

EagleEye 2.0G 76.4% 92.89%

1G 0.5 × ResNet-50 [4] 1.1G 72.0% -

ThiNet-30 [22] 1.2G 72.1% 88.30%

AutoSlim [28] 1.0G 74.0% -

Meta-Pruning [20] 1.0G 73.4% -

EagleEye 1.0G 74.2% 91.77%

Table 5. Comparisions of MobileNetV1 and other pruning methods on ImageNet

Method FLOPs Top1-Acc Top5-Acc

0.75 × MobileNetV1 [9] 325M 68.4% -

AMC [7] 285M 70.5% -

NetAdapt [26] 284M 69.1% -

Meta-Pruning [20] 281M 70.6% -

EagleEye 284M 70.9% 89.62%

5 Discussion and Conclusions

We presented EagleEye pruning algorithm, in which a fast and accurate evalu-
ation process based on adaptive batch normalization is proposed. Our experi-
ments show the efficiency and effectiveness of our proposed method by delivering
higher accuracy than the studied methods in the pruning experiments on Ima-
geNet dataset. An interesting work is to further explore the generality of the
adaptive-BN-based module by integrating it into many other existing methods
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and observe the potential improvement. Another experiment that is worth a try
is to replace the random generation of pruning strategy with more advanced
methods such as evolutionary algorithms and so on.
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