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Abstract. Automatic satellite-based reconstruction enables large and
widespread creation of urban areas. However, satellite imagery is often
noisy and incomplete, and is not suitable for reconstructing detailed
building facades. We present a machine learning-based inverse proce-
dural modeling method to automatically create synthetic facades from
satellite imagery. Our key observation is that building facades exhibit
regular, grid-like structures. Hence, we can overcome the low-resolution,
noisy, and partial building data obtained from satellite imagery by syn-
thesizing the underlying facade layout. Our method infers regular facade
details from satellite-based image-fragments of a building, and applies
them to occluded or under-sampled parts of the building, resulting in
plausible, crisp facades. Using urban areas from six cities, we compare our
approach to several state-of-the-art image completion/in-filling methods
and our approach consistently creates better facade images.

Keywords: Image synthesis and completion · Inverse procedural
modeling · Satellite imagery

1 Introduction

Urban inverse procedural modeling is beneficial for many simulation, training,
and entertainment applications. Using satellite data enables large scale, poten-
tially global reconstructions. However, satellite data is challenging to work with
due to limitations in resolution, noise, complex camera models, partial coverage,
and occlusions. These aspects hinder high quality urban reconstruction.

Our key observation is that buildings in dense urban areas typically exhibit
a regular, grid-like facade structure. We exploit this observation via a machine
learning-based inverse procedural modeling approach to determine procedural
parameters for a number of facade grammars in the presence of incomplete data.
The grammars are then applied to the faces of reconstructed 3D building models
during a facade completion phase. This methodology significantly improves the
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Fig. 1. Examples of facade synthesis and completion. Our method automatically creates
procedural facades from satellite-based images despite noise, occlusions, and incomplete
coverage.

resilience to occluded/noisy images and produces more accurate facade layouts
as compared to alternative segmentation-based methods. Since satellite images
have a very limited off-nadir view (e.g., at most 20 to 40◦), and building surface
coverage is limited (e.g., the orbital path of the satellite is not able to capture
all building sides), often only fragments of a building are seen. Furthermore,
facades that are observed may only be seen at very oblique angles, resulting in
low resolution and stretched facade images. Nonetheless, a procedural approach
has the ability to recreate the observed portion as well as create a plausible
synthesized facade reconstruction of the occluded/not-sampled fragments. The
result is plausible, complete building facades.

Our approach takes as input 3D building models obtained from point-clouds
(e.g., [19]), as well as satellite image fragments projected onto the faces of the
building models. The image fragments are used together with trained deep net-
works to find a representative sample of a facade with minimal noise, and infer
its style and procedural parameters. The parameters are then used to complete
the rest of the facade, and potentially other non-observed facades of a building.
In the end, our approach produces complete facade layouts applied to building
models. Figure 1 shows example results of our approach. Since we have a proce-
dural output (instead of an image), we can zoom-in to any part of the facade
and still have a crisp result, as observed in the close-up views.

Our results yield improvements over other methods applied to the same data.
Over our six test areas, each spanning 1–2 km2, our method is consistently bet-
ter than the prior work we compare to quantitatively and qualitatively, and
the average accuracy of several performance metrics is 85.4% despite significant
occlusions, noise, and strong blurriness. Further, our deep networks are trained
on a new dataset of rectified satellite facade views with ground truth segmenta-
tion that we also offer as a contribution. As far as we know, our work is the first
pipeline to handle façade reconstruction based on satellite imagery despite the
occlusions and resolution limitations of such imagery.

Our main contributions include: (1) A machine learning based pipeline
addressing occlusion and regularity for satellite facade patterns. (2) A facade
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completion technique to generate plausible facade layouts based on the predicted
grammars and building geometry. (3) A satellite facade dataset with ground
truth window and door segmentation.

2 Related Work

Related work can be divided into building-envelope reconstruction, facade recon-
struction, and forward/inverse procedural modeling. Musialski et al. [18] provides
a review of urban reconstruction. Despite having the highest-resolution com-
mercially available satellite imagery (i.e., WorldView3), the main structure of a
building occupies on average 90× 90 pixels on the ground plane and on average
the best observation of a facade is 20 pixels tall. Aside from the relatively low
resolution of satellite imagery, there are several other aspects that differentiate
satellite-based multi-view stereo reconstruction from ground/aerial multi-view
stereo reconstruction [21,22]. First, satellites use scan-line sensors producing
images with a different projection model than standard frame cameras. Usually
a rational polynomial coefficient (RPC) model is used. Such RPCs are hard to
calibrate, require iterative processes, need many ground control points, and per-
forming 3D to 2D as well as 2D to 3D mapping is difficult [34]. Second, the image
quality can vary a lot due to a number of factors, including the viewing angles of
satellite sensors are greatly limited by the orbit (i.e., not very off-nadir), images
of an area might be days/weeks/months apart yielding different illumination and
potentially physical changes, and radiometric quality is lower despite attempts
of atmospheric corrections (see Fig. 2). While our work does not address the
problem of 3D building reconstruction, building geometry is reconstructed auto-
matically from a SOTA multi-view stereo point cloud obtained from satellite
images, similar to and by extending [13,32]. It’s important to note that the
above limitations affect the quality of the reconstructed models, which are used
by our facade synthesis method. Thus we cannot expect to have perfect building
geometry with which to produce synthetic facade layouts.

Fig. 2. Satellite image and facade closeups. Example satellite image and views of some
typical facades.
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Almost all facade reconstruction methods use ground or aerial imagery, typi-
cally rectified and rectangular. Many approaches have been followed (e.g., using
dynamic programming [3], using lattices [23], using matrix approximations [29],
and inferring grammars from pre-labelled segments [7,12,15]). However, these
methods do not perform well for our very under-sampled facades. For example,
see our comparisons in the results section.

More recently, deep learning based facade parsing has obtained excellent
results for ground-level imagery. For example, Liu et al. [14] and Fathalla et al. [6]
perform facade segmentation but assume high-resolution frontal views. Nishida
et al. [20] further assumes hand-specified building silhouettes and their facade
stage depends on having clear boundaries between floors and between columns.
Further, none of these account for the significant occlusions in satellite-based
facades. Kelly et al. [10] could automatically and realistically decorate build-
ings by synthesizing geometric details/textures. However, their work requires
style references (e.g., façade and roof textures, window layouts) and such refer-
ences from satellite would be very low-resolution and heavily occluded. Kozinski
et al. [11] (and partially Mathias et al. [16]) include provisions for occlusions
but depend on many assumed structural priors for numerous object classes and
SIFT feature vectors. On average the facades we encounter are only 20 × 90
pixels in size (often significantly worse) and thus make it prohibitive to deter-
mine such detailed structure. Image-to-image translation, such as Isola et al. [9]
and Zhu et al. [35], has been proposed but does not support all of regularity,
occlusions, and satellite data. From the semantic segmentation point of view,
facade parsing could also be considered as a segmentation task. Many papers
(e.g. DeepLabv3+ [2], EncNet [31], etc.) have shown great success with segmen-
tation, but none of them use satellite facade data. Thus we trained those neural
networks from scratch using our created satellite facade dataset (see Results
section) and observe that these state-of-the-art segmentation neural networks
also suffer from the low-quality of satellite facade data and cannot generate
crisp facades.

Filling-in missing pixels of an image, often referred as image in-painting or
completion, is an important task in computer vision. Deep learning and GAN-
based approaches (e.g., DeepFill [30], PICNet [33]) have achieved promising
results in this task. However, image in-painting is ill-suited for resolving shad-
ows and occlusions in satellite facade images. First, detection of these areas is
a very challenging problem, especially for satellite data. Second, even assuming
these areas could be detected automatically, image in-painting approaches can-
not infer correctly due to the low quality of satellite facade data. We also show
in the Results section comparisons to these approaches.

Inverse procedural modeling (IPM) attempts to determine the procedure
(e.g., rules and/or parameter values) yielding a desired geometric output.
IPM has been used to stochastically derive a procedural model [24,26], infer
Manhattan-world buildings from aerial imagery [28], or arbitrary buildings from
polygonal data [1,4,5]. However, none of these methods have been used to infer
building facade layouts from satellite data.
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3 Facade Synthesis

While there might be 1–20 satellite images observing portions of buildings, there
is usually not a high quality satellite observation of every facade on a building
due to shadows, foliage/occlusions, and limited resolution. Thus simply applying
satellite images to building faces via projective texture mapping is inadequate.
Further, such texture mapping depends on very accurate image-to-image regis-
tration, geometric modeling, and complete coverage of all building facades. Our
approach attempts to overcome these issues by synthesizing procedural facades
using a selected subset of the available satellite imagery, and then applying these
facades across the entire building. This approach has the following advantages:

– Crisp Results. The produced facade details will be crisp and visible at any
resolution.

– Exploits Best Observations. Without relying on accurate RPCs and image
registration, we choose the best, potentially fragmented, observations of each
building and use it to obtain facade details.

– Completes Missing Fragments. Even if a facade/fragment is missing, we can
fill-in the facade with details from a partial observation (or in worst case with
details from neighboring facades).

Fig. 3. Pipeline. The pipeline of our multi-stage approach for facade completion and
synthesis.

We provide an overview of the proposed procedural facade approach in Fig. 3
and in the following we describe the pipeline starting with our selection method,
followed by our deep-learning based facade style classification and parameter
estimation, and finally our facade and building completion.

3.1 Selection

In a first stage, we choose the satellite image that has low grazing angle and
does not have much dark pixels as the best view of the facade, and the resulting
image is used as input to the rest of the pipeline. In many cases, even the best
observation of a facade is not useful due to noise, shadows, trees, and occlusions.
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Thus we employ a deep-learning based rejection model to prevent further pro-
cessing of any such facades. Rejected facades will not undergo classification or
parameter estimation, but can still receive synthetic facade layouts as part of
the completion phase (Sect. 3.3).

Accept

Reject

Fig. 4. Accept or reject. The first row
shows facades that our rejection model will
accept. The second row shows facades that
will be rejected.

Our rejection network is based on a
pre-trained ResNet [8] model, in which
we modify the last fully connected
layer to two classes: one for “good”
facades to be accepted and the other
for “bad” facades to be rejected. We
used 120 examples of “good” facades
from our facade data set and 120
examples of “bad” facades, resulting in 1920 training images in total after apply-
ing data augmentation such as flip, rotation, random crop and intensity varia-
tions. The model performs with 92% accuracy when tested on 200 test images.
Figure 4 shows some examples of accepted and rejected facades.

3.2 Classification and Parameter Estimation

In a second stage, our approach estimates the style and parameters of an equiv-
alent procedural facade representation. Our method extracts a “chip” from
the selected facade image because i) satellite-based images often suffer from
occlusions and thus assuming a full facade view would be prohibitive, and ii)
otherwise the parameter space would be unnecessarily large as the number of
floors/windows may vary significantly yet the spacing between floors and win-
dows is regular. The procedural representation for the entire facade is obtained
from the chip and then used during the next stage to complete each facade.

c) d)

a) b)

…

Fig. 5. Chip extraction. a) Original facade.
b) Division of a) into tiles and demonstra-
tion of how chips are formed. c) Apply b)
to a). d) The best chip.

Chip Extraction. To choose the best
chip to extract, we divide the original
facade image into a set of N tiles each
of size 6 × 6 m. Each chip is formed
by selecting a tile as the center and
then varying the chip size to 6, 12, or
18 m and varying the aspect ratio (e.g.,
1:1, 1:2, or 2:1). In total, 9N different
candidate chips are produced for each
facade. Please see Fig. 5 for a visual
depiction. We evaluate each chip by
passing it through our rejection network and evaluating its rejection score. The
chip with the lowest rejection score is considered to be the cleanest chip found
for the facade, and is selected to represent this facade further in the pipeline.

Segmentation. During segmentation, we only label each pixel as belonging
to window/door or non-window/non-door since other facade classes are usu-
ally not visible in satellite imagery. During development, we experimented with
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several state-of-the-art deep-network based semantic segmentation models (e.g.,
DeepLabv3+ [2], EncNet [31], and Pix2Pix [9]). Please see Segmentation models
in the Results section for quantitative and qualitative comparisons among these
architectures. We found that the architecture of Pix2Pix [9] performs among the
best ones, and in particular we specify the generator architecture to consist of
ResNet blocks, the discriminator architecture to be 34× 34 PatchGAN, and the
input image size to be 96× 96. We train the segmentation network from scratch
using our own manually created satellite facade dataset. Specifically, we train
with 120 facade images (960 after applying the aforementioned data augmenta-
tion) along with ground truth from our dataset.

After segmentation, we have binary segmented chip facades with two labels:
one representing windows and doors (black), and one representing the building
wall (white). Using a binary representation eases the burden for deep-network
based recognition and parameter estimation. In addition, we apply some image
processing techniques to further refine the segmented image. First we perform
a small amount of dilation (e.g. rectangular dilation with a kernel size of 3
pixels) to reduce some of the noisy black window/door pixels. Next, since some
facades are not perfectly rectified (due to errors in image registration and/or
geometry), we perform a global image rotation computed automatically to force
rows of windows/doors to be horizontal. Further, each window/door is replaced
by a filled-in version of its rectangular bounding box. The end result is a binary
image with rectangular windows and doors representing the facade, and serves
as the input to our recognition and estimation networks.

Grammar Classification and Estimation. We represent a synthetic facade
by one of six possible grammars each with a number of parameters, defined in
a systematic fashion. While a single grammar with many parameters might be
able to express more facades we found its generality to result in overall lower
quality given the low-resolution nature of our facade imagery. For our grammar
classification, a facade may contain doors and windows, or only windows. Fur-
ther, the windows can be arranged as a grid of disjoint windows, as columns of
vertically abutting windows, or as rows of horizontally abutting windows (see
Fig. 2 and Fig. 6). Since window shapes are hard to differentiate with satellite
data, we treat all windows as rectangles.

Which grammar a facade belongs to, along with the parameters for said gram-
mar, is determined with a set of deep networks based on ResNet [8]. There is a
classification network, which determines the grammar, followed by six parameter
estimation networks, for determining the parameters specific to each grammar.
The classification network is a ResNet [8] with modification of the last fully-
connected layer to the number of grammars. The final output layer of this net-
work yields confidence values for each of the aforementioned grammars. After
classifying a facade via this network, the segmented facade chip is then sent
through the parameter estimation network that corresponds to the highest con-
fidence value in the classification output.
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To robustly find the procedural parameters for the classified grammar, we
use a separate deep network for each individual grammar, all of which are also
based on ResNet [8]. They differ only in the last fully-connected layer, where
we modify the number of parameters to match that of the grammar. We also
use mean squared error as the loss function for our estimation networks. The
predicted parameters (e.g., window rows, columns, relative size, etc.) altogether
yield a synthetic facade that is similar to the input image.

c c

f

c

f

c

f
f

d d d

w

h
w

h
h

w

Fig. 6. Grammars. Our grammars of (1–3) three styles of only windows and (4–6) three
styles with doors at the base. “f” stands for the number of floors. “c” is the number of
column boundaries. “d” is the number of doors. “h” is the relative height and “w” is
the relative width. Please see the close-ups for additional parameters in the different
grammars.

To train the estimation networks by systematically iterating over possible
facade parameter configurations, we synthesized 200,000, 20,000, 20,000, 400,000,
50,000, and 50,000 facades from grammars 1 to 6 in Fig. 6, respectively, based
on the different number of parameters for each. We also perform data augmen-
tation accounting for noise and errors in the segmentation (i.e., up to 10% noise
such as perturbation of boundaries in windows/doors) and randomly remove
up to 10% of windows/doors. To train the classification network, we collected
108,000 images in total from the aforementioned training images, distributed
evenly among all six grammars.

Optimization. After recognition and parameter estimation, we perform a
coarse-to-fine refinement for each chip. Segmentation suffers from noise, shad-
ows, trees, and occlusions. Fortunately, our parameter estimation network is able
to recover a procedural facade that fills-in occluded content though there might
be an overall translation or scale error. Thus, we define an objective function,
using F-score [25], as:

F =
2 · precision · recall
precision + recall

P ∗ = argmax
P

F, (1)

In the above, P stands for the grammar parameters in Fig. 6, P ∗ is the
optimal parameter set, Accuracy is the percentage of pixels labelled accurately,
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Precision and Recall are computed by considering the label windows/doors as
positive and the label wall as negative. Precision is the number of true positives
divided by the sum of true and false positives (e.g., how correct is the windows
and doors labelling in our results). Recall is the number of true positives divided
by the sum of true positives and false negatives where for false negatives we use
the number of incorrectly labeled wall pixels (e.g., how many windows and doors
pixels our result can correctly label). Overall, F is essentially the harmonic mean
of Precision and Recall.

Our optimizer tries to maximize this function using Monte Carlo stochastic
optimization (e.g. altering P such as the number of floors, windows and window
size) so as to create a synthetic facade that improves the F -score with respect
to the segmentation result. Please see Optimization in Results section for details
and comparisons.

3.3 Completion

In a third and final stage, our method applies the estimated procedural parame-
ters to all facades and generates windows and doors with the estimated sizes and
spacing. Although the prior step determined parameters for rectangular chips,
the actual facades on the buildings are not limited to rectangles but instead may
have irregular shapes. To this end, we logically divide a building facade into a set
of horizontally-adjacent rectangular sections. Since doors only appear at the bot-
tom of a facade, we partition each rectangular section, that touches ground level,
into two subsections: a door subsection extending from the bottom of the facade
up to the door height, and a window subsection covering the remainder. Doors
are placed horizontally-centered in the door subsections and sized according to
the estimated parameters. The window subsections are then further subdivided
into window cells, also sized and spaced according to the estimated parameters,
with one window placed into each cell. The tallest window subsections determine
vertical window placement such that building floors are level across all sections.

Since each chip’s parameters are estimated independently, neighboring
facades will in general have different door/window sizes and spacing, and poten-
tially different grammars. To remedy this issue, we first group facades together
based on similar heights. All facades within each group are then forced to use
the grammar of the highest scoring facade in the group, scored according to the
grammar classification confidence value from the previous stage, with parameter
values averaged over matching grammars in the group.

The resulting facades have windows and doors, which are colored according
to the average window/door color as determined by the segmentation. Similarly,
the facade wall is colored according to the average non-window color.

4 Results

Our method is implemented using OpenCV, OpenGL, and PyTorch, and it runs
on an Intel i7 workstation with NVIDIA GTX 1080 cards. We have applied
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our method to six test areas in the United States captured by WorldView3
satellite images: a portion of (A1) Jacksonville, Florida (2.0 km2), (A2) UC San
Diego, California (1 km2), (A3) San Fernando, California (1 km2), (A4) Omaha,
Nebraska (2.2 km2), (A5) San Diego, California (1.2 km2) and (A6) USC, Cali-
fornia (2 km2). Collectively, the areas have a few hundred buildings and medium
to tall buildings and have from 20 to a few hundred windows/doors each. Our
method runs automatically yielding facades for 14 buildings per minute. The
training time for our classification network is about 12 h, and the training time
for our estimation networks from grammars 1) to 6) is about 20 h, 3 h, 3 h, 36 h,
8 h, and 8 h, respectively.

Dataset. In order to train our neural network models, evaluate our method,
and compare with other methods, we present a dataset of real satellite facades,
which includes about 400 rectified images of facades from the aforementioned
six areas, which have been manually annotated with two different labels: one
for windows/doors and the other for the walls. Because of the low-quality of
these facades, even humans can’t precisely do the segmentation. Thus, mis-
segmentation and misalignment always exist. Further, we carefully refine the
annotations for 61 facade images and use those facades as a test data set for
evaluating models/methods.

Pipeline Steps. We show example pipeline steps in Fig. 7 which includes chip
extraction results, segmentation results, image processing results and our final
facade completion results. Additional example facades are in supplemental fig-
ures. Our paper video also shows the pipeline and example results.

a)

b)

c)

d)

e)

Fig. 7. Pipeline steps. a) Selected facade images. b) Facade chips. c) Results of using
our segmentation model b). d) Images after applying dilation, rotation and replacement
of windows/doors with filled-in rectangular bounding boxes and then being fed to our
neural networks. e) Synthesized facades.
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Table 1. Segmentation quantitative comparison. Pixel accuracy, precision, recall and
F-score metrics evaluated on 61 facades for models from b) to g). Those terms are
defined in optimization section.

Model Accuracy Precision Recall F-score

b) 0.843665 0.756 0.747 0.742

c) 0.8482 0.795 0.712 0.742

d) 0.866343 0.836 0.741 0.771

e) 0.846425 0.802 0.696 0.732

f) 0.849911 0.776 0.725 0.740

g) 0.870966 0.864 0.709 0.766

Segmentation Models. We test satellite facade segmentation on three state-
of-the-art neural network architectures: Pix2Pix [9], Deep Labv3+ [2] and Enc-
Net [31]. We train these architectures from scratch using our data set and also
customize the hyper-parameters to fit our segmentation problem. For Pix2Pix we
also try different generator and discriminator architectures which could support
different sizes of input images. See supplemental table and supplement Fig. 2 for
specific configurations and qualitative comparisons. Please see Table 1 for quan-
titative comparisons. Based on this comparison, we perceive Pix2Pix 96 to work
best and it is the segmentation model we use in our approach.

a)

b)

c)

d)

Fig. 8. Optimization qualitative
results. a) Original facades. b) Man-
ually created ground truth. c) Our
results without optimization. d) Our
results with optimization.

Table 2. Optimization quantitative com-
parison. Pixel accuracy, precision, recall, F-
score and blob accuracy evaluated on 61
facades for models c) and d) in Fig. 8.

Method Accuracy Precision Recall F-score Blob

c) 0.725 0.556 0.673 0.597 0.810

d) 0.880 0.818 0.834 0.815 0.923

Optimization. We evaluate 61 facade images using both our method without
optimization and our method with optimization. Thus we show that we improve
pixel accuracy, precision, recall, F-score and blob accuracy by perturbing gram-
mar parameters. The blob accuracy is the window count accuracy defined as:

Blob = 1 − |Our Window Count−Ground Truth Window Count|
Ground Truth Window Count

, (2)

Please see Fig. 8 and Table 2 for qualitative and quantitative comparisons. In
summary, with optimization our metrics improve from 0.69 to 0.85, an improve-
ment of 16% on average.
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a)

b)

c)

d)

Fig. 9. Facade subdivision comparison.
We provide a) satellite-based facades to
b) an image-based approach, c) Nishida
et al. [20], and d) Ours.

Table 3. Facade quantitative comparison.
We evaluate Mean Absolute Error (MAE)
and Mean Relative Error (MRE) of the
number of floors and the number of win-
dows per floor on 61 facades for c) and d)
in Fig. 9.

Method MAE MRE

#floors #windows #floors #windows

c) 0.770 0.770 15.8% 12.1%

d) 0.246 0.164 4.2% 3.9%

Comparisons. We compare our approach to several state-of-the-art methods.
First, in Fig. 9 we show a visual comparison between the facade subdivision of
b) an image-gradient-based approach (e.g., [17]), c) Nishida et al. [20] (retrained
using the same training set as our approach), and d) our method. We highlight
that Nishida et al. [20] (and also Teboul et al. [27]) essentially make use during
their processing pipeline of an image-gradient based method similar to [17] (thus
we include the image-gradient comparison). We also include facade quantitative
comparisons in Table 3.

a)

c)

b)

PICNet DeepFill

Fig. 10. Image in-painting. a) Original facades. b) Rectangular areas to be filled-in. c)
Results after inpainting.

Second, we test two state-of-the-art neural network architectures for image
inpainting/completion: DeepFill [30] and PICNet [33]. With DeepFill determin-
ing which part to “fill” is an unaddressed challenge and thus for this comparison
we manually select occluded, shadowed and/or tree-covered areas. In PICNet, we
use the random rectangular mask generation method they provide (e.g., select
a sufficient number of rectangles within the image to most likely performed all
necessary in-filling). Please see Fig. 10 for visual results. While the methods are
able to place content in the occluded areas, there are still significant artifacts
which will hinder subsequent facade process.
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a)

c)

b)

d)

e)

Fig. 11. Facade comparisons. Comparison
to SOTA methods on facade parsing. a)
Input satellite facades. b) Manually cre-
ated ground truth. c) The results of apply-
ing Pix2Pix 96 to a). d) The results of
applying Pix2Pix 96 to image completed
by DeepFill [30]. e) Ours.

To evaluate the facade process-
ing ability directly using the segmen-
tation model and image in-painting
model, we evaluate performance using
our 61 test images qualitatively and
quantitatively. To be specific, for the
segmentation model, we choose the
aforementioned Pix2Pix 96 and apply
it to the facade images directly.
Then, we dilate each window/door to
occupy a rectangular bounding box.
For the image in-painting model, we
choose DeepFill [30] and complete the
facade images with manually selected
masks. Then we apply the segmenta-
tion model to the completed facade
images and we also use a version of
the windows/doors dilated to rectan-
gles. The quantitative metrics include
pixel accuracy, precision, recall, and blob accuracy. In Fig. 11 and Table 4, we
show details of comparing our method to the segmentation model and the image
in-painting model.

Table 4. Quantitative comparison. Pixel accuracy, precision, recall, F-score and blob
accuracy evaluated for models from c) to e) in Fig. 11. We evaluated c) and e) on 61
facades in the left table. However the right table shows applying d) to 22 facades (22
out of 61 facades are occluded and suitable for image in-painting.) and we manually
set the mask as best as possible.

Method Accuracy Precision Recall F-score Blob
c) 0.835 0.695 0.868 0.758 0.891
e) 0.880 0.818 0.834 0.815 0.923

Method Accuracy Precision Recall F-score Blob
c) 0.802 0.705 0.797 0.728 0.840
d) 0.806 0.803 0.612 0.677 0.875
e) 0.843 0.768 0.828 0.783 0.918

Examples. Finally, we show in Fig. 12 many close-ups of reconstructed buildings
as well as an overall view of one area (A1). Views of our additional areas (A2)
and more buildings are in supplemental figures.
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Fig. 12. Examples. We show a view of a reconstructed area A1 within Google Earth
and close-ups of our buildings.

5 Conclusions and Future Work

We have presented a method to automatically synthesize crisp and regular build-
ing facades from satellite imagery. Facades are classified into one of several
procedural grammars, and the corresponding parameters are estimated using
trained neural networks. The resulting grammars are applied to building mod-
els, resulting in complete, plausible facades that are free of the noise, occlusions,
and partial coverage that is inherent in satellite data. Our comparisons to other
approaches shows the improvement of our method. However, our approach has
some limitations. First, for facades whose styles are outside our defined gram-
mars, we could give our best guess. Second, for facades with logos, we didn’t
show those areas.

Our approach has several avenues of future work. First, we would like to incor-
porate more general grammar sets to capture finer details. Second, we would also
like to incorporate a more sophisticated wall/window color treatment. Finally,
we are also interested in estimated and procedural facade textures to give the
resulting buildings more details.
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