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Abstract. Human hands play a central role in interacting with other
people and objects. For realistic replication of such hand motions,
high-fidelity hand meshes have to be reconstructed. In this study,
we firstly propose DeepHandMesh, a weakly-supervised deep encoder-
decoder framework for high-fidelity hand mesh modeling. We design our
system to be trained in an end-to-end and weakly-supervised manner;
therefore, it does not require groundtruth meshes. Instead, it relies on
weaker supervisions such as 3D joint coordinates and multi-view depth
maps, which are easier to get than groundtruth meshes and do not depen-
dent on the mesh topology. Although the proposed DeepHandMesh is
trained in a weakly-supervised way, it provides significantly more real-
istic hand mesh than previous fully-supervised hand models. Our newly
introduced penetration avoidance loss further improves results by repli-
cating physical interaction between hand parts. Finally, we demonstrate
that our system can also be applied successfully to the 3D hand mesh
estimation from general images. Our hand model, dataset, and codes are
publicly available(https://mks0601.github.io/DeepHandMesh/).

1 Introduction

Social interactions are vital to humans: every day, we spend a large amount of
time on interactions and communications with other people. While facial motion
and speech play a central role in communication, important non-verbal informa-
tion is also communicated via body motion, especially hand and finger motion,
to emphasize our speech, clarify our ideas, and convey emotions. Modeling and
replicating detailed hand geometry and motion is essential to enrich experience
in various applications, including remote communications in virtual/augmented
reality and digital storytelling such as movies and video games.
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(a) MANO (b) DeepHandMesh (ours) (c) 3D reconstruction

Fig. 1. Qualitative result comparison between (a) MANO [26], (b) our DeepHandMesh,
and (c) 3D reconstruction [5].

A pioneering work of hand geometry modeling is MANO by Romero et
al. [26], which consists of linear models of identity- and pose-dependent cor-
rectives with linear blend skinning (LBS) as an underlying mesh deformation
algorithm. The model is learned in a fully-supervised manner by minimizing the
per-vertex distance between output and groundtruth meshes that are obtained
by registering a template mesh to 3D hand scans [2,11].

Although MANO has been widely used for hand pose and geometry esti-
mation [1,3,9], there exist limitations. First, their method requires groundtruth
hand meshes (i.e., the method requires per-vertex supervision to train the linear
model). As the hand contains many self-occlusions and self-similarities, exist-
ing mesh registration methods [2,11] sometimes fail. To obtain the best quality
of groundtruth hand meshes, Romero et al. [26] manually inspected each reg-
istered mesh and discarded failed ones from the training data, which requires
extensive manual labor. Second, its fidelity is limited. As MANO uses the hand
parts of SMPL [19], its resolution is low (i.e., 778 vertices). This low resolution
could limit the expressiveness of the reconstructed hand meshes. Also, MANO
consists of linear models, optimized by the classical optimization framework.
As recent deep neural networks (DNNs) that consist of many non-linear mod-
ules show noticeable performance in many computer vision and graphics tasks,
utilizing the DNNs with recent deep learning optimization techniques can give
more robust and stable results. Finally, it does not consider physical interaction
between hand parts. A model without consideration of the physical interaction
could result in implausible hand deformation, such as penetration between hand
parts.

In this paper, we firstly present DeepHandMesh, a weakly-supervised deep
encoder-decoder framework for high-fidelity hand mesh modeling, that produces
high-fidelity hand meshes from single images. Unlike existing methods such as
MANO that require mesh registration for per-vertex supervision (i.e., full super-
vision), DeepHandMesh utilizes only 3D joint coordinates and multi-view depth
maps for supervision (i.e., weak supervision). Therefore, our method avoids
expensive data pre-processing such as registration and manual inspection. In
addition, obtaining the 3D joint coordinates and depth maps is much easier com-
pared with the mesh registration. The 3D joint coordinates can be obtained from
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powerful state-of-the-art multi-view 3D human pose estimation methods [17],
and the depth maps can be rendered from 3D reconstruction [5] based on the
solid mathematical theory about epipolar geometry. Furthermore, these are inde-
pendent of topology of a hand model, allowing us to use hand meshes with
various topology and to be free from preparing topology-specific data such as
registered meshes for each topology. To achieve high-fidelity hand meshes, Deep-
HandMesh is based on a DNN and optimized with recent deep learning optimiza-
tion techniques, which provides more robust and stable results. We also use a
high-resolution hand model to benefit from the expressiveness of the DNN. Our
DeepHandMesh can replicate realistic hand meshes with details such as creases
and skin bulging, as well as holistic hand poses. In addition, our newly designed
penetration avoidance loss further improves results by enabling our system to
replicate physical interaction between hand parts. Figure 1 shows that the pro-
posed DeepHandMesh provides significantly more realistic hand meshes than the
existing fully-supervised hand model (i.e., MANO [26]).

As learning a high-fidelity hand model only via weak supervisions is a chal-
lenging problem, we assume a personalized environment (i.e., assume the same
subject in the training and testing stage). We discuss the limitations of the
assumption and future research directions in the later section. To demonstrate
the effectiveness of DeepHandMesh for practical purposes, we combine our Deep-
HandMesh with 3D pose estimation to build a model-based 3D hand mesh esti-
mation system from a single image, as shown in Fig. 2, and train it on a public
dataset captured from general environments. The experimental results show that
our DeepHandMesh can be applied to 3D high-fidelity hand mesh estimation
from general images in real-time (i.e., 50 fps).

Our contributions can be summarized as follows.

• We firstly propose a deep learning-based weakly-supervised encoder-decoder
framework (DeepHandMesh) that is trained in an end-to-end, weakly-
supervised manner for high-fidelity hand mesh modeling. Our proposed Deep-
HandMesh does not require labor-intensive manual intervention, such as mesh
registration.

• Our weakly-supervised DeepHandMesh provides significantly more realis-
tic hand meshes than previous fully-supervised hand models. In addition,
we newly introduce a penetration avoidance loss, which can make Deep-
HandMesh firstly reproduce physical interaction between hand parts.

• We show that our framework can be applied to practical purposes, such as
3D hand mesh estimation from general images in real-time.

2 Related Works

3D Hand Pose Estimation. 3D hand pose estimation methods can be catego-
rized into depth map-based and RGB-based ones according to their input. Early
depth map-based methods are mainly based on a generative approach, which fits
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Fig. 2. (a) The hand model outputs meshes from the hand model parameters. Our
main goal is to train a high-fidelity hand model in a weakly-supervised way. (b) The
model-based 3D hand mesh estimation system outputs inputs of the hand model and
use a pre-trained hand model to produce final hand meshes.

a pre-defined hand model to the input depth map by minimizing hand-crafted
cost functions [28,32] using particle swarm optimization [28], iterative closest
point [31], or their combination [25]. Most of recent depth map-based methods
are based on a discriminative approach, which directly localizes hand joints from
an input depth map. Tompson et al. [33] utilized a neural network to localize
hand joints by estimating 2D heatmaps for each hand joint. Ge et al. [6] extended
this method by estimating multi-view 2D heatmaps. Moon et al. [20] designed a
3D CNN that takes a voxel representation of a hand as input and outputs a 3D
heatmap for each joint. Wan et al. [34] proposed a self-supervised system, which
can be trained from only an input depth map.

The powerful performance of the recent CNN makes 3D hand pose estima-
tion methods work well on RGB images. Zimmermann et al. [39] proposed a
DNN that learns an implicit 3D articulation prior. Mueller et al. [22] used an
image-to-image translation model to generate synthetic hand images for more
effective training of a pose prediction model. Cai et al. [4] and Iqbal et al. [12]
implicitly reconstruct depth map from an input RGB image and estimate 3D
hand joint coordinates from it. Spurr et al. [30] and Yang et al. [35] proposed
variational auto-encoders (VAEs) that learn a latent space of a hand skeleton
and appearance.

3D Hand Shape Estimation. Panteleris et al. [23] fitted a pre-defined hand
model by minimizing reprojection errors of 2D joint locations w.r.t. hand land-
marks detected by OpenPose [29]. Ge et al. [7] proposed a graph convolution-
based network which directly estimates vertices of a hand mesh. Many recent
methods are based on the MANO hand model. They train their new encoders and
use a pre-trained MANO model as a decoder to generate hand meshes. Baek et
al. [1] trained their network to estimate input vectors of the MANO model using
neural renderer [14]. Boukhayma et al. [3] proposed a network that takes a single
RGB image and estimates pose and shape vectors of MANO. Their network is
trained by minimizing the distance of the estimated hand joint locations and
groundtruth. Recently, Zimmermann et al. [40] proposed a marker-less captured
3D hand pose and mesh dataset.

3D Hand Model. MANO [26] is the most widely used hand model. It takes
pose and shape vectors (i.e., relative rotation of hand joint w.r.t. its parent joint
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Fig. 3. Overall pipeline of the proposed DeepHandMesh.

and principal component analysis coefficients of hand shape space, respectively)
as inputs and outputs deformed mesh using LBS and per-vertex correctives. It
is trained from registered hand meshes in a fully-supervised way by minimizing
the per-vertex distance between the output and the groundtruth hand meshes.
Recently, Kulon et al. [16] proposed a hand model that takes a mesh latent code
and outputs a hand mesh using mesh convolution. To obtain the groundtruth
meshes, they registered their new high-resolution hand model to 3D joint coor-
dinates of Panoptic dome dataset [29]. They also compute a distribution of valid
poses from the hand meshes registered to ∼1000 scans from the MANO dataset.
They use this distribution to sample groundtruth hand meshes and train their
hand model in a fully-supervised way using per-vertex mesh supervision.

All the above 3D hand models rely on mesh supervision (i.e., trained by mini-
mizing the per-vertex distance between output and groundtruth hand mesh) dur-
ing training. In contrast, our DeepHandMesh is trained in a weakly-supervised
setting, which does not require any groundtruth hand meshes. Although ours
is trained without mesh supervision, it successfully reconstructs significantly
more high-fidelity hand meshes, including creases and skin bulging, compared
with previous hand models. Also, our DeepHandMesh is the first hand model
that can replicate physical interaction between hand parts. This is a significant
advancement compared with previous hand models.

3 Hand Model

Our hand model is defined as M = {M̄,S;W,H}. M̄ = [m̄1, . . . , m̄V ]T ∈ R
V ×3

denotes vertex coordinates of a zero-pose template hand mesh, where m̄v is 3D
coordinates of vth vertex of M̄. V denotes the number of vertices. S ∈ R

J×3

means the translation vector of each hand joint from its parent joint, where J is
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the number of joints. W ∈ R
V ×J denotes skinning weights for LBS. Finally, H

denotes a hand joint hierarchy. Our template hand model is prepared by artists.
The parameters on the right of the semicolon do not change during training.
Thus, we omit them hereafter for simplicity.

4 Encoder

4.1 Hand Pose Vector

The encoder takes a single RGB image of a hand I and estimates its hand pose
vector θ ∈ R

NP , where NP = 28 denotes the degrees of freedom (DOFs) of it.
Among all the DOFs of the hand joint rotation 3J , we selected NP DOFs based
on the prior knowledge of human hand anatomical property and the hand models
of [36,38]. For the enabled DOFs, the estimated hand pose vector is used as a
relative Euler angle w.r.t. its parent joint. We set all the disabled DOFs to zero
and fixed them during the optimization.

4.2 Network Architecture

Our encoder consists of ResNet-50 [10] and two fully-connected layers. The
ResNet extracts a hand image feature from the input RGB image I. Then, the
extracted feature is passed to the two fully-connected layers, which outputs the
hand pose vector θ. The hidden activation size of the fully-connected layers is
512, and the ReLU activation function is used after the first fully-connected
layer. To ensure θ in the range of (−π, π), we apply a hyperbolic tangent acti-
vation function at the output of the second fully-connected layer and multiply
it by π.

5 Decoder

5.1 Hand Model Refinement

To replicate details on the hand model, we designed the decoder to estimate
three correctives from a pre-defined identity vector β ∈ R

NI and an estimated
hand pose vector θ, inspired by [19,26], as shown in Fig. 3. As the proposed Deep-
HandMesh assumes a personalized environment (i.e., assumes the same subject
in the training and testing stage), we pre-define β as a NI = 32 dimensional
randomly initialized normal Gaussian vector for each subject. β is fixed during
training and testing. Note that DeepHandMesh does not require a personal-
ized hand model to be given. Rather, it personalizes an initial hand mesh for a
training subject during training.

The first corrective is identity-dependent skeleton corrective ΔSβ ∈ R
J×3. As

hand shape and size vary for each person, 3D joint locations can be different for
each person. To personalize S to a training subject, we build two fully-connected
layers in our decoder and estimate ΔSβ from the pre-defined identity code β.
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(e) corresponding deformed mesh by LBS

(d)(c)(b)(a)

Fig. 4. (a)–(d): Visualized hand model refined by different combinations of correctives.
(e): Deformed hand model using LBS.

The hidden activation size of the fully-connected layer is 256. The estimated
ΔSβ is added to S, yielding S∗. Figure 4 (b) shows the effect of ΔSβ .

The second corrective is identity-dependent per-vertex corrective ΔMβ ∈
R

V ×3. In addition to the 3D joint locations, hand shape such as finger thickness
is also different for each person. To cope with the shape difference, we build two
fully-connected layers and estimate ΔMβ from the identity code β. The hidden
activation size of the fully-connected layer is 256. The estimated ΔMβ is added
to M̄. Figure 4 (c) shows the effect of ΔMβ .

The last corrective is pose-dependent per-vertex corrective ΔMθ ∈ R
V ×3.

When making a pose (i.e., θ varies), local deformation of hand geometry such
as skin bulging and crease appearing/disappearing also occurs. To recover such
phenomena, we build two fully-connected layers to estimate ΔMθ from the hand
pose vector θ. The hidden activation size of the fully-connected layer is 256. The
estimated ΔMθ is added to M̄. For stable training, we do not back-propagate
gradient from ΔMθ through θ. Figure 4 (d) shows the effect of ΔMθ.

The final refined hand model M∗ is obtained as follows:

M̄∗ = M̄ + ΔMθ + ΔMβ , S∗ = S + ΔSβ ,
M∗ = {M̄∗,S∗}.

5.2 Hand Model Deformation

We first perform 3D rigid alignment from the hand model space to the dataset
space for the global alignment using the wrist and finger root positions. Then,
we use the LBS algorithm to holistically deform our hand model. LBS is a widely
used algorithm to deform a mesh according to linear combinations of joint rigid
transformation [19,26]. Specifically, each vertex mv of a deformed hand mesh
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M ∈ R
V ×3 is obtained as follows:

mv = (I3,0) ·
J∑

j=1

wv,jTj(θ,S∗;H)
(
m̄∗

v

1

)

= LBS(θ,S∗, m̄∗
v), v = 1, . . . , V,

(1)

where Tj(θ,S∗;H) ∈ SE(3) denotes transformation matrix for joint j. It encodes
the rotation and translation from the zero pose to the target pose, constructed
by traversing the hierarchy H from the root to j. wv,j and m̄∗

v denote jth joint
of vth vertex skinning weight from W and vth vertex coordinate from M̄∗,
respectively. The visualization of a deformed mesh is shown in Fig. 4 (e).

6 Training DeepHandMesh

We use four loss functions to train DeepHandMesh. The Pose loss and Depth
map loss are responsible for the weak supervision. The Penetration loss helps
to reproduce physical interaction between hand parts and the Laplacian loss
acts as a regularizer to make output hand meshes smooth.

Pose Loss. We perform forward kinematics from the estimated hand pose vec-
tor θ and refined skeleton S∗ to get the 3D coordinates of the hand joints
P = [p1, . . . ,pJ ]T ∈ R

J×3. We minimize L1 distance between the estimated
and the groundtruth coordinates. The pose loss is defined as follows: Lpose =
1
J

∑J
j=1 ||pj − p∗

j ||1, where ∗ indicates the groundtruth.

Depth Map Loss. We render 2D depth maps D = (D1, . . . ,DCout) of M
from randomly selected Cout target views, and minimize SmoothL1 distance [8]
between the rendered and the groundtruth depth maps following Ge et al. [7].
To make the depth map loss differentiable, we use Neural Renderer [14]. The
depth map loss is defined as follows: Ldepth = 1

Cout

∑Cout
c=1 δc (SmoothL1(Dc,D∗

c)),
where ∗ indicates the groundtruth. δc is a binary map whose pixel value of each
grid is one if it is foreground (i.e., a depth value is defined in Dc and D∗

c), and
zero otherwise.

Penetration Loss. To penalize penetration between hand parts, we introduce
two penetration avoidance regularizers. We consider the fingers as rigid hand
parts and the palm as a non-rigid hand part. The regularizers are designed for
each of the rigid and non-rigid parts.

For the rigid parts (i.e., fingers), we use a regularizer similar to that in
Wan et al. [34], which represents each rigid part with a combination of spheres.
Specifically, we compute a pair of the center and radius of spheres {s

p(j),j
k =

(cp(j),j
k , r

p(j),j
k )}K

k=1 between joint j and its parent joint p(j), where K = 10
denotes the number of spheres between the adjacent joints. The center c

p(j),j
k

is computed by linearly interpolating p̄p(j) and p̄j , where c
p(j),j
1 = p̄p(j) and

c
p(j),j
K = p̄j . p̄j denotes the 3D coordinate of hand joint j obtained from forward
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inside palm palm vertex

Fig. 5. Visualized example of penetration between a finger and palm.

kinematics using θ = 0 and S∗. Each radius r
p(j),j
k is obtained by calculating the

distance between c
p(j),j
k and the closest vertex in LBS(0,S∗, M̄∗). Given these

spheres, the penetration avoidance term between the rigid hand parts Lr
penet is

defined as follows:

Lr
penet =

∑

k,k′
j �=j′,p(j′)
j′�=p(j)

max(rp(j),j
k + r

p(j′),j′
k′ − ||cp(j),j

k − c
p(j′),j′
k′ ||2, 0), (2)

which indicates that the distances of any pairs of the spheres except the ones
associated with adjacent joints are enforced to be greater than the sum of the
radii of the paired spheres. This prevents overlap between the spheres, thus
avoiding penetration between the rigid parts.

However, Lr
penet does not help prevent penetration at the non-rigid hand

part (i.e., the palm). The underlying assumption of Lr
penet is that surface geom-

etry can be approximated by many spheres. While this assumption holds for the
fingers due to the cylindrical shape, it does not often hold for the palm, i.e.,
the spheres along the joints in the palm cannot approximate the palm surface
particularly when pose-dependent corrective replicating skin bulging is applied.
Additionally, Lr

penet does not produce surface deformation, e.g., finger-palm col-
lision often makes large deformation to the palm surface. Lr

penet does not help
replicate such deformation.

To address those limitations, we propose a new penetration avoidance term
Lnr
penet for the non-rigid hand part. For this, we only consider penetration between

fingertips and palm as illustrated in Fig. 5. Among M, vertices whose most dom-
inant joint in the skinning weight W is the palm are considered as ones for the
palm Mγ . Then, the distance between c

p(t),t
k and Mγ is calculated, where t is one

of fingertip joints. Among the distances, the shortest one is denoted as d
p(t),t
k .

If there exists lt where d
p(t),t
lt

is smaller than r
p(t),t
lt

, we consider that c
p(t),t
lt

pen-
etrates Mγ . If there are more than one lt, we use the one closest to the p(t),
which is considered as a starting point of penetration. Based on human hand
anatomical property, we can conclude that the spheres from lt to the fingertip
{s

p(t),t
k }K

k=lt
are penetrating Mγ . Then, we enforce {d

p(t),t
k }K

k=lt
to be the same as
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{r
p(t),t
k }K

k=lt
. The penetration avoidance term for the non-rigid hand part Lnr

penet

is defined as follows:
Lnr
penet =

∑

t

g(t), (3)

where g(t) =

{∑K
k=lt

|dp(t),t
k − r

p(t),t
k |, if lt exists

0, otherwise.
(4)

The final penetration avoidance loss function is defined as follows: Lpenet =
Lr
penet + λnrL

nr
penet, where λnr = 5.

Laplacian Loss. To preserve local geometric structure of the deformed mesh
based on the mesh topology, we add a Laplacian regualarizer [18] as follows:
Llap = 1

V

∑V
v=1

(
mv − 1

||N (v)||
∑

v′∈N (v) mv′
)
, where N (v) denotes neighbor

vertices of mv.
Our DeepHandMesh is trained in an end-to-end manner. Note that although

our DeepHandMesh is trained without per-vertex mesh supervision, it can be
trained with a single regularizer Llap. The total loss function L is defined as
follows: L = Lpose + Ldepth + Lpenet + λlapLlap, where λlap = 5.

7 Implementation Details

PyTorch [24] is used for implementation. The ResNet in the encoder is initialized
with the publicly released weights pre-trained on the ImageNet dataset [27], and
the weights of the remaining part are initialized by Gaussian distribution with
zero mean and σ = 0.01. The weights are updated by the Adam optimizer [15]
with a mini-batch size of 32. The number of rendering views is Cout = 6. We use
256 × 256 as the size of I and depth maps of D. We observed that changing Cout

and resolution of I and depth maps of D does not affect much the quality of the
resulting mesh. The number of vertices in our hand model is 12,553. We train
our DeepHandMesh for 35 epochs with a learning rate of 10−4. The learning rate
is reduced by a factor of 10 at the 30th and 32nd epochs. We used four NVIDIA
Titan V GPUs for training, which took 9 h. Both the encoder and decoder of
our DeepHandMesh run at 100 fps, yielding real-time performance (50 fps).

8 Experiment

8.1 Dataset

We used the same data capture studio with Moon et al. [21]. The experimental
image data was captured by 80 calibrated cameras capable of synchronously
capturing images with 4096 × 2668 pixels at 30 frames per second. All cameras
lie on the front, side, and top hemisphere of the hand and are placed at a
distance of about one meter from it. During capture, each subject was instructed
to make a pre-defined set of 40 hand motions and 15 conversational gestures.
We pre-processed the raw video data by performing multi-view 3D hand pose
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(c) 3D recon. (d) without (e) with(b) with (f) 3D recon.(a) without 

Fig. 6. (a)–(c): Deformed hand mesh trained without and with Lpose, and correspond-
ing 3D reconstruction [5]. (d)–(f): Deformed hand mesh trained without and with
Lpenet, and corresponding 3D reconstruction [5].

(c) 3D recon.(b) with(a) without (c) 3D recon.(b) with(a) without (c) 3D recon.(b) with(a) without

Fig. 7. Deformed hand mesh trained without and with Lpenet, and corresponding 3D
reconstruction [5].

estimation [17] and multi-view 3D reconstruction [5]. We split our dataset into
training and testing sets. The training set 404 K images per subject with the 40
pre-defined hand poses, and the test set 80 K images per subject with the 15
conversational gestures. There are four subjects (one female and three males),
and we show more detailed description and various examples of our dataset in
the supplementary material.

8.2 Ablation Study

Effect of Each Loss Function. To investigate the effect of each loss func-
tion, we visualize test results from models trained with different combinations
of loss functions in Fig. 6. In the figure, (a), (b), (d), and (e) are the results of
our DeepHandMesh, and (c) and (f) are the results of 3D reconstruction [5],
respectively.

The model trained without Lpose (a) gives wrong joint locations. Also,
there are severe artifacts at occluded hand regions (e.g., the black area on the
palm region) because of skin penetration. This is because Ldepth cannot back-
propagate gradients through occluded areas. In contrast, Lpose can give gradi-
ents at the invisible regions, which makes more stable and accurate results, as
shown in (b). The model trained without Lpenet (d) cannot prevent penetration
between fingers and palm. However, Lpenet penalizes this, and the fingertip loca-
tions are placed more plausibly, and the palm vertices are deformed according to
the physical interaction between the fingers and palm, as shown in (e). Figure 7
additionally shows the effectiveness of the proposed Lpenet.

Effect of Identity-Dependent Correctives. To demonstrate the effectiveness
of our identity-dependent corrective (i.e., ΔSβ and ΔMβ), we visualize how
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Fig. 8. Visualized hand models of zero pose from different subjects.

(c) 3D recon.(a) (b)(c) 3D recon.(a) (b) (c) 3D recon.(a) (b)

Fig. 9. (a) Refined hand model, (b) deformed hand mesh, and (c) 3D reconstruction [5]
from various hand poses of a one subject.

our DeepHandMesh handles different identities in Fig. 8. The figures are drawn
by setting θ = 0 to normalize hand pose. As the figures show, our identity-
dependent corrective successfully personalizes the initial hand model to each
subject by adjusting the hand bone lengths and skin.

Effect of Pose-Dependent Corrective. To demonstrate the effectiveness of
our pose-dependent per-vertex corrective ΔMθ, we visualize the hand meshes
of different poses in Fig. 9. All the hand meshes are from the same subject to
normalize identity. For each hand pose, (a) shows the hand model after model
refinement with zero pose. (b) shows deformed (a) using LBS, and (c) shows
3D reconstruction meshes. As the figure shows, our pose-dependent correctives
successfully recover details according to the poses. Note that in (b), we approx-
imately reproduced local deformation based on the blood vessels.

8.3 Comparison with State-of-the-Art Methods

We compare our DeepHandMesh with widely used hand model MANO [26] on
our dataset. For comparison, we train a model whose encoder is the same one
as ours, and decoder is the pre-trained MANO model. The pre-trained MANO
model is fixed during the training, and we use the same loss functions as ours.
We pre-defined identity code β for each subject and estimate the shape vector of
MANO from the code using two fully-connected layers to compare both models
in the personalized environment. Figure 10 shows the proposed DeepHandMesh
provides significantly more realistic hand mesh from various hand poses and
identities. In the last row, MANO suffers from the unrealistic physical interaction
between hand parts such as finger penetration and flat palm skin. In contrast,
our DeepHandMesh does not suffer from finger penetration and can replicate
physical interaction between finger and palm skin. Table 1 shows the 3D joint
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(a) MANO (b) DeepHandMesh (ours) (c) 3D recon. (a) MANO (b) DeepHandMesh (ours) (c) 3D recon.

Fig. 10. Estimated hand mesh comparison from various hand poses and subjects with
the state-of-the-art method. The red circles in the last row show physical interaction
between hand parts. (Color figure online)

Table 1. 3D joint distance error Perr and mesh vertex error Merr comparison between
MANO and DeepHandMesh on test set consists of unseen hand poses.

Methods Perr (mm) Merr (mm)

MANO 13.81 8.93

DeepHandMesh (Ours) 9.86 6.55

coordinate distance error and mesh vertex error from the closest point on the 3D
reconstruction meshes for unseen hand poses, indicating that our DeepHandMesh
outperforms MANO on the unseen hand pose images. For more comparisons, we
experimented with lower-resolution hand mesh in the supplementary material.

We found that comparisons between DeepHandMesh and MANO with pub-
licly available 3D hand datasets [37,39] were difficult because DeepHandMesh
assumes a personalized environment (i.e., assumes the same subject in train-
ing and testing stages). However, we believe the qualitative and quantitative
comparisons in Fig. 10 and Table 1 still show the superiority of the proposed
DeepHandMesh.

8.4 3D Hand Mesh Estimation from General Images

To demonstrate a use case of DeepHandMesh for general images, we devel-
oped a model-based 3D hand mesh estimation system based on DeepHandMesh.
Figure 11 shows that our model-based 3D hand mesh estimation system gen-
erates realistic hand meshes without mesh supervision from the test set of the
RHD [39]. For this, we first pre-trained DeepHandMesh, and replaced its encoder
with a randomly initialized one that has exactly the same architecture with our
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Fig. 11. 3D hand mesh estimation results from general images.

encoder, as illustrated in Fig. 2. We trained the new encoder on the training
set of RHD, by minimizing Lpose. The RHD dataset 44 K images synthesized
by animating the 3D human models. During the training, the decoder is fixed,
which is a similar training strategy with that of MANO-based 3D hand mesh
estimation methods [1,3]. As our DeepHandMesh assumes a personalized envi-
ronment, we used a groundtruth bone length to adjust a bone length of the
output 3D joint coordinates. The inputs of the decoder are joint rotations and
identity code without any image appearance information like MANO; therefore,
the decoder can easily generalize to general images, although it is trained on the
data captured from the controlled environment.

9 Discussion

Our DeepHandMesh assumes a personalized environment. Future work should
consider cross-identity hand mesh modeling by estimating the Gaussian identity
code. However, training cross-identity hand mesh model in a weakly-supervised
way is very hard. As MANO is trained in a fully-supervised way, they could
perform principal component analysis (PCA) on the groundtruth hand meshes
in zero-pose and model the identity as coefficients of the principal components.
On the other hand, there is no groundtruth mesh under the weakly-supervised
setting, therefore performing PCA on meshes is not possible. Generative models
(e.g., VAE) can be designed to learn a latent space of identities from registered
meshes like [13]; however, training a generative model in a weakly supervised way
without registered meshes also remains challenging. We believe the extension of
DeepHandMesh to handle cross-identity in a weakly-supervised setting could be
an interesting future direction.

10 Conclusion

We presented a novel and powerful weakly-supervised deep encoder-decoder
framework, DeepHandMesh, for high-fidelity hand mesh modeling. In contrast
to the previous hand models [16,26], DeepHandMesh is trained in a weakly-
supervised setting; therefore, it does not require groundtruth hand mesh. Our
model successfully generates more realistic hand mesh compared with the previ-
ous fully-supervised hand models. The newly introduced penetration avoidance
loss makes the result even more realistic by replicating physical interactions
between hand parts.
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