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Abstract. Conditioning analysis uncovers the landscape of an optimiza-
tion objective by exploring the spectrum of its curvature matrix. This has
been well explored theoretically for linear models. We extend this analy-
sis to deep neural networks (DNNs) in order to investigate their learning
dynamics. To this end, we propose layer-wise conditioning analysis, which
explores the optimization landscape with respect to each layer indepen-
dently. Such an analysis is theoretically supported under mild assump-
tions that approximately hold in practice. Based on our analysis, we show
that batch normalization (BN) can stabilize the training, but sometimes
result in the false impression of a local minimum, which has detrimental
effects on the learning. Besides, we experimentally observe that BN can
improve the layer-wise conditioning of the optimization problem. Finally,
we find that the last linear layer of a very deep residual network displays
ill-conditioned behavior. We solve this problem by only adding one BN
layer before the last linear layer, which achieves improved performance
over the original and pre-activation residual networks.
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1 Introduction

Deep neural networks (DNNs) have been extensively used in various domains
[26]. Their success depends heavily on the improvement of training techniques
[15,17,22], e.g., fine weight initialization [12,14,17,39], normalization of internal
representations [22,46], and well-designed optimization methods [24,49]. It is
believed that these techniques are well connected to the curvature of the loss [25,
38,39]. Analyzing this curvature is thus essential in determining various learning
behaviors of DNNs.
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In the interest of optimization, conditioning analysis uncovers the landscape
of an optimization objective by exploring the spectrum of its curvature matrix.
This has been well explored for linear models both in terms of regression [28] and
classification [44], where the convergence condition of the optimization problem
is controlled by the maximum eigenvalue of the curvature matrix [27,28], and
the learning time of the model is lower-bounded by its condition number [27,28].
However, in the context of deep learning, the conditioning analysis suffers from
several barriers: (1) the model is over-parameterized and whether the direction
with respect to small/zero eigenvalues contributes to the optimization progress
is unclear [34,37]; (2) the memory and computational costs are extremely
high [11,37].

This paper aims to bridge the gap between the theoretical analyses developed
by the optimization community and the empirical techniques used for train-
ing DNNs, in order to better understand the learning dynamics of DNNs. We
propose a layer-wise conditioning analysis, where we analyze the optimization
landscape with respect to each layer independently by exploring the spectra
of their curvature matrices. The motivation behind our layer-wise conditioning
analysis is based on the recent success of second curvature approximation tech-
niques in DNNs [1,3,31,32,41]. We show that the maximum eigenvalue and the
condition number of the block-wise Fisher information matrix (FIM) can be
characterized based on the spectrum of the covariance matrix of the input and
output-gradient, under mild assumptions, which makes evaluating optimization
behavior practical in DNNs. Another theoretical base is the recently proposed
proximal back-propagation [7,10,50] where the original optimization problem
can be approximately decomposed into multiple independent sub-problems with
respect to each layer [50]. We provide the connection between our analysis and
the proximal back-propagation [10].

Based on our layer-wise conditioning analysis, we show that batch normal-
ization (BN) [22] can adjust the magnitude of the layer activations/gradients,
and thus stabilizes the training. However, this kind of stabilization can drive
certain layers into a particular state, referred to as weight domination, where
the gradient update is feeble. This sometimes has detrimental effects on the
learning (Sect. 4.1). We also experimentally observe that BN can improve the
layer-wise conditioning of the optimization problem. Furthermore, we find that
the unnormalized network has several small eigenvalues in the layer curvature
matrix, which are mainly caused by the so-called dying neurons (Sect. 4.2),
while this behavior is almost entirely absent in batch normalized networks.

We further analyze the ignored difficulty in training very deep residual net-
works [15]. Using our layer-wise conditioning analysis, we show that the dif-
ficulty mainly arises from the ill-conditioned behavior of the last linear layer.
We solve this problem by only adding one BN layer before the last linear layer,
which achieves improved performance over the original [15] and pre-activation
[16] residual networks (Sect. 5).
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2 Preliminaries

Optimization Objective. Consider a true data distribution p∗(x,y) =
p(x)p(y|x) and the sampled training sets D ∼ p∗(x,y) of size N . We focus
on a supervised learning task aiming to learn the conditional distribution p(y|x)
using the model q(y|x), where q(y|x) is represented as a function fθ(x) parame-
terized by θ. From an optimization perspective, we aim to minimize the empirical
risk, averaged over the sample loss represented as �(y, fθ(x)) in training sets D:
L(θ) = 1

N

∑N
i=1(�(y

(i), fθ(x(i)))).

Gradient Descent. In general, the gradient descent (GD) update seeks to
iteratively reduce the loss L by θt+1 = θt − η ∂L

∂θ , where η is the learning rate.
For large-scale learning, stochastic gradient descent (SGD) is extensively used
to approximate the gradients ∂L

∂θ with a mini-batch gradient. In theory, the
convergence behaviors (e.g., the number of iterations required for convergence to
a stationary point) depend on the Lipschitz constant CL of the gradient function
of L, which characterizes the global smoothness of the optimization landscape. In
practice, the Lipschitz constant is either unknown for complicated functions or
too conservative to characterize the convergence behaviors [5]. Researchers thus
turn to the local smoothness, characterized by the Hessian matrix H = ∂L2

∂θ∂θ
under the condition that L is twice differentiable.

Approximate Curvature Matrices. The Hessian describes the local cur-
vature of the optimization landscape. Such curvature information intuitively
guides the design of second-order optimization algorithms [5,37], where the
update direction is adjusted by multiplying the inverse of a pre-conditioned
matrix G as: ∂ ̂L

∂θ = G−1 ∂L
∂θ . G is a positive definite matrix that approximates

the Hessian and is expect to sustain the its positive curvature. The second
moment matrix of sample gradient: M = ED( ∂�

∂θ
∂�
∂θ

T
) is usually used as the

pre-conditioned matrix [29,36]. Besides, Pascanu and Bengio [35] showed that
the FIM: F = Ep(x), q(y|x)( ∂�

∂θ
∂�
∂θ

T
) can be viewed as a pre-conditioned matrix

when performing the natural gradient descent algorithm [35]. Fore more analy-
ses on the connections among H, F, M please refer to [5,30]. In this paper, we
refer to the analysis of the spectrum of the (approximate) curvature matrices as
conditioning analysis.

Conditioning Analysis for Linear Models. Consider a linear regression
model with a scalar output fw(x) = wT x, and mean square error loss � =
(y−fθ(x))2. As shown in [27,28], the learning dynamics in such a quadratic sur-
face are fully controlled by the spectrum of the Hessian matrix H = ED(xxT ).
There are two statistical momentums that are essential for evaluating the conver-
gence behaviors of the optimization problem. One is the maximum eigenvalue
of the curvature matrix λmax, and the other is the condition number of the
curvature matrix, denoted by κ = λmax

λmin
, where λmin is the minimum nonzero

eigenvalue of the curvature matrix. Specifically, λmax controls the upper bound
and the optimal learning rate (e.g., the optimal learning rate is η = 1

λmax(H)
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and the training will diverge if η ≥ 2
λmax(H) ). κ controls the iterations required

for convergence (e.g., the lower bound of the iteration is κ(H) [28]). If H is
an identity matrix that can be obtained by whitening the input, the GD can
converge within only one iteration. It is easy to extend the solution of linear
regression from a scalar output to a vectorial output fW(x) = WT x. In this
case, the Hessian is represented as

H = ED(xxT ) ⊗ I, (1)

where ⊗ indicates the Kronecker product [13] and I denotes the identity matrix.
For the linear classification model with cross entropy loss, the Hessian is approx-
imated by [44]:

H = ED(xxT ) ⊗ S. (2)

S ∈ R
c×c is defined by S = 1

c (Ic − 1
c1c), where c is the number of classes and

1c ∈ R
c×c denotes a matrix in which all entries are 1. Equation 2 assumes the

Hessian does not significantly change from the initial region to the optimal region
[44].

3 Layer-Wise Conditioning Analysis for DNNs

Considering a multilayer perceptron (MLP), fθ(x) can be represented as a layer-
wise linear and nonlinear transformation, as follows:

hk = Wkxk−1, xk = φ(hk), k = 1, . . . , K, (3)

where x0 = x and the learnable parameters θ = {Wk ∈ R
dk×dk−1 , k = 1, . . . , K}.

To simplify the denotation, we set xK = hK as the output of the network fθ(x).
A conditioning analysis on the full curvature matrix for DNNs is difficult due

to the high memory and computational costs [11,34]. We thus seek to analyze an
approximation of the curvature matrix. One successful example in second-order
optimization over DNNs is approximating the FIM using the Kronecker product
(K-FAC) [1,3,31,41]. In the K-FAC approach, there are two assumptions: (1)
weight-gradients in different layers are assumed to be uncorrelated; (2) the input
and output-gradient in each layer are approximated as independent, so the full
FIM can be represented as a block diagonal matrix, F = diag(F1, . . . , FK), where
Fk is the sub-FIM (the FIM with respect to the parameters in a certain layer)
and computed as:

Fk = Ep(x), q(y|x)((xkxT
k ) ⊗ (

∂�

∂hk

T ∂�

∂hk
)) ≈ Ep(x)(xkxT

k ) ⊗ Eq(y|x)(
∂�

∂hk

T ∂�

∂hk
).

(4)

xk denotes the layer input, and ∂�
∂hk

denotes the layer output-gradient. We note
that Eq. 4 is similar to Eqs. 1 and 2, and all of them depend on the covariance
matrix of the (layer) input. The main difference is that, in Eq. 4, the covariance
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of output-gradient is considered and its value changes over different optimization
regions, while in Eqs. 1 and 2, the covariance of output-gradient is constant.

Based on this observation, we propose layer-wise conditioning analysis, i.e.,
we analyze each sub-FIM Fk’s spectrum λ(Fk) independently. We expect the
spectra of sub-FIMs: {λ(Fk)}K

k=1 to effectively reveal that of the full FIM: λ(F),
at least in terms of analyzing the learning dynamics of the DNNs. Specifically,
we analyze the maximum eigenvalue λmax(Fk) and condition number κ(Fk)1.
Based on the conclusion on the conditioning analysis of linear models shown
in Sect. 2, there are two remarkable properties that can be used to implicitly
uncover the landscape of the optimization problem:

– Property 1 : λmax(Fk) indicates the magnitude of the weight-gradient in each
layer, which shows the steepness of the landscape w.r.t.different layers.

– Property 2 : κ(Fk) indicates how easy it is to optimize the corresponding layer.

Discussion. One concern is the validity of the assumptions the K-FAC approx-
imation is based on. Note that [30,31] have provided some empirical evi-
dence to support their effectiveness in approximating the full FIM with block
diagonal sub-FIMs. [23,43] also exploited similar assumptions to derive the
mean&variance of eigenvalues (and maximum eigenvalue) of the full FIM, which
is calculated using information from layer inputs and output-gradients. Here, we
argue that the assumptions required for our analysis are weaker than those of
the K-FAC approximation, since we only care about whether or not the spec-
tra of sub-FIMs can accurately reveal the spectrum of full FIM. We conduct
experiments to analyze the training dynamics of the unnormalized (‘Plain’) and

(a) full FIM (b) sub-FIM (the 3rd layer) (c) sub-FIM (the 6th layer)

Fig. 1. Conditioning analysis for unnormalized (‘Plain’) and normalized networks
(‘BN’). We show the maximum eigenvalue λmax and the generalized condition number
κp for comparison between the full FIM F and sub-FIMs {Fk}. The experiments are
performed on an 8-layer MLP with 24 neurons in each layer, for MNIST classification.
The input image is center-cropped and resized to 12 × 12 to remove uninformative
pixels. We report the corresponding spectrum at random initialization [27]. Here, we
report the results of the 3rd and 6th layers in (b) and (c), respectively. We have similar
observations for other layers (See SM ).

1 We evaluate the general condition number with respect to the percentage: κp =
λmax

λp
, where λp is the pd-th eigenvalue (in descending order) and d is the number of

eigenvalues, e.g., κ100% is the original definition of the condition number.
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batch normalized [22] (‘BN’) networks, by looking at the spectra of full curva-
ture matrix and sub-curvature matrices. Figure 1 shows the results based on an
8-layer MLP with 24 neurons in each layer. By observing the results from the full
FIM (Fig. 1(a)), we find that: (1) the unnormalized network suffers from gradient
vanishing (the maximum eigenvalue is around 1e−5), while the batch normalized
network has an appropriate magnitude of gradient (the maximum eigenvalue is
around 1); (2) ‘BN’ has better conditioning than ‘Plain’, which suggests batch
normalization (BN) can improve the conditioning of the network, as observed in
[11,38]. We also obtain a similar conclusion when observing the results from the
sub-FIMs (Fig. 1(b) and (c)). This experiment demonstrates that our layer-wise
conditioning analysis has the potentiality to uncover the training dynamics of
the networks if the full conditioning analysis can. We also conduct experiments
on MLPs with different layers and neurons, and further analyze the spectrum
of the second moment matrix of sample gradient M (please refer to the Supple-
mentary Materials (SM) for details). We have the same observations as in the
first experiment.

Furthermore, we find that investigating {λ(Fk)}K
k=1 is more beneficial for

diagnosing the problems behind training DNNs than investigating λ(F), e.g., it
enables the gradient vanishing/explosion to be located with respect to a specific
layer from {λmax(Fk)}K

k=1, but not λmax(F). For example, we know that the 8-
layer unnormalized MLP described in Fig. 1 suffers from difficulty in training, but
we cannot accurately diagnose the problem by only investigating the spectrum
of the full FIM. However, by looking into the layer inputs and output-gradients,
we find that this MLP suffers from exponentially decreased magnitudes of inputs
(forward) and output-gradients (backward). This can be resolved this by using
a better initialization with appropriate variance [14] or using BN [22]. We fur-
ther elaborate on how to use the layer-wise conditioning analysis to ‘debug’ the
training of DNNs in the subsequent sections.

(a) λmax (b) κ50% (c) κ80%

Fig. 2. Validation in approximating the sub-FIMs. The experimental setups are the
same as in Fig. 1. We compare maximum eigenvalue λmax and generalized condition
number κp of the sub-FIMs (solid lines) and the approximated ones (dashed lines).

3.1 Efficient Computation

We denote the covariance matrix of the layer input as Σx = Ep(x)(xxT ) and the

covariance matrix of the layer output-gradient as Σ∇h = Eq(y|x)( ∂�
∂h

T ∂�
∂h ). The



390 L. Huang et al.

condition number and maximum eigenvalue of the sub-FIM F can be derived
based on the spectrum of Σx and Σ∇h, as shown in the following proposition.

Proposition 1. Given Σx, Σ∇h and F = Σx ⊗ Σ∇h, we have: 1) λmax(F ) =
λmax(Σx) · λmax(Σ∇h); and 2) κ(F ) = κ(Σx) · κ(Σ∇h).

The proof is shown in the SM . Proposition 1 provides an efficient way to calcu-
late the maximum eigenvalue and condition number of sub-FIM F by computing
those of Σx and Σ∇h. In practice, we use the empirical distribution D to approx-
imate the expected distribution p(x) and q(y|x) when calculating Σx and Σ∇h,
since this is very efficient and can be performed with only one forward and
backward pass, as has been shown in FIM approximation [1,31].

Note that Proposition 1 depends on the second assumption of Eq. 4. We
experimentally demonstrate the effectiveness of such an approximation in Fig. 2,
finding that the maximum eigenvalue and the condition number of the sub-FIMs
match well with the approximated ones.

3.2 Connection to Proximal Back-Propagation

Carreira-Perpinan and Wang [7] proposed to use auxiliary coordinates to redefine
the optimization object L(θ) with equality constraints imposed on each neuron.
They solved the constrained optimization by adding a quadratic penalty as:

L̃(θ, z) = L(y,fK(WK , zK−1)) +
K−1∑

k=1

λ

2
‖zk − fk(Wk, zk−1))‖2, (5)

where fk(·, ·) is a function with respect to each layer. As shown in [7], the solution
for minimizing L̃(θ, z) converges to the solution for minimizing L(θ) as λ → ∞,
under mild conditions. Furthermore, the proximal propagation [10] and the fol-
lowing back-matching propagation [50] reformulate each sub-problem indepen-
dently with a backward order, minimizing each layer object Lk(Wk, zk−1; ẑk),
given the target signal ẑk from the upper layer, as follows:

{
L(y,fK(WK , zK−1)), for k = K
1
2‖ẑk − fk(Wk, zk−1))‖2, for k = K − 1, ..., 1.

(6)

It has been shown that the produced Wk using gradient update w.r.t. L(θ) equals
to the Wk produced by the back-matching propagation (Procedure 1 in [50])
with one-step gradient update w.r.t. Eq. 6, given an appropriate step size. Note
that the target signal ẑk is obtained by back-propagation, which means the loss
L(θ) would be smaller if fk(Wk, zk−1) is more close to ẑk. The loss L(θ) will
be reduced more efficiently, if the sup-optimization problems in Eq. 6 are well-
conditioned. Please refer to [10,50] for more details. If we view the auxiliary
variable as the pre-activation in a specific layer, the sub-optimization problem
in each layer is formulated as:

{
L(y,WKzK−1), for k = K
1
2‖ẑk − Wkzk−1‖2, for k = K − 1, . . . , 1.

(7)
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It is clear that the sub-optimization problems with respect to Wk are actually
linear classification (for k = K) or regression (for k = 1, . . . , K−1) models. Their
conditioning analysis is thoroughly characterized in Sect. 2.

This connection suggests: (1) the quality (conditioning) of the full optimiza-
tion problem L(θ) is well correlated to its sub-optimization problems shown in
Eq. 7, whose local curvature matrix can be well explored; (2) We can diagnose
the ill behaviors of a DNN by speculating its spectra with respect to certain
layers.

4 Exploring Batch Normalized Networks

Let x denote the input for a given neuron in one layer of a DNN. Batch normal-
ization (BN) [22] standardizes the neuron within m mini-batch data by:

BN(x(i)) = γ
x(i) − μ√

σ2 + ε
+ β, (8)

where μ = 1
m

∑m
i=1 x(i) and σ2 = 1

m

∑m
i=1(x

(i) − μ)2 are the mean and variance,
respectively. The learnable parameters γ and β are used to recover the represen-
tation capacity. BN is a ubiquitously employed technique in various architectures
[15,19,22,48] due to its ability in stabilizing and accelerating training. Here, we
explore how BN stabilizes and accelerates training based on our layer-wise con-
ditioning analysis.

4.1 Stabilizing Training

From the perspective of a practitioner, two phenomena relate to the instability
in training a DNN: (1) the training loss first increases significantly and then
diverges; or (2) the training loss hardly changes, compared to the initial condi-
tion. The former is mainly caused by weights with large updates (e.g., exploded
gradients or optimization with a large learning rate). The latter is caused by
weights with few updates (vanished gradients or optimization with a small learn-
ing rate). In the following theorem, we show that the unnormalized rectifier
neural network is very likely to encounter both phenomena.

Theorem 1. Given a rectifier neural network (Eq. 3) with nonlinearity φ(αx) =
αφ(x) (α > 0), if the weight in each layer is scaled by Ŵk = αkWk (k =

1, . . . ,K and αk > 0), we have the scaled layer input: x̂k = (
k∏

i=1

αi)xk. Assuming

that ∂L
∂̂hK

= μ ∂L
∂hK

, we have the output-gradient: ∂L
∂̂hk

= μ(
K∏

i=k+1

αi) ∂L
∂hk

, and

weight-gradient: ∂L
∂̂Wk

= (μ
K∏

i=1,i �=k

αi) ∂L
∂Wk

, for all k = 1, . . . , K.
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The proof is shown in the SM . From Theorem 1, we observe that the scaled factor
αk of the weight in layer k will affect all other layers’ weight-gradients. Specif-
ically, if all αk > 1 (αk < 1), the weight-gradient will increase (decrease) expo-
nentially for one iteration. Moreover, such an exponentially increased weight-
gradient will be sustained and amplified in the subsequent iteration, due to the
increased magnitude of the weight caused by updating. That is why the unnor-
malized neural network will diverge, once the training loss increases over a few
continuous iterations. We show that such instability can be relieved by BN, based
on the following theorem.

Theorem 2. Under the same condition as Theorem1, for the normalized net-
work with hk = Wkxk−1 and sk = BN(hk), we have: x̂k = xk, ∂L

∂̂hk
= 1

αk

∂L
∂hk

,
∂L

∂̂Wk
= 1

αk

∂L
∂Wk

, for all k = 1, . . . ,K.

The proof is shown in the SM . From Theorem 2, the scaled factor αk of the
weight will not affect other layers’ activations/gradients. The magnitude of the
weight-gradient is inversely proportional to the scaled factor. Such a mechanism
will stabilize the weight growth/reduction, as shown in [22,47]. Note that the
behaviors when stabilizing training (Theorem2) also apply for other activation
normalization methods [2,18,45]. We note that the scale-invariance of BN in
stabilizing training has been analyzed in previous work [2]. Different to their
analyses on the normalization layer itself, we provide an explicit formulation of
weight-gradients and output-gradients in a network, which is more important
when characterizing the learning dynamics of DNNs.

Empirical Analysis. We further conduct experiments to show how the acti-
vation/gradient is affected by initialization in unnormalized DNNs (indicated as
‘Plain’) and batch normalized DNNs (indicated as ‘BN’). We train a 20-layer
MLP, with 256 neurons in each layer, for MNIST classification. The nonlinearity
is ReLU. We use the full gradient descent2, and report the results based on the
best training loss among learning rates in {0.05, 0.1, 0.5, 1}. In Fig. 3(a) and (b),
we observe that the magnitude of the layer input (output-gradient) of ‘Plain’ for
random initialization [27] suffers from exponential decrease during forward pass
(backward pass). The main reason for this is that the weight has a small mag-
nitude, based on Theorem 1. This problem can be relieved by He-initialization
[14], where the magnitude of the input/output-gradient is stable across layers
(Fig. 3(c) and (d)). We observe that BN can well preserve the magnitude of the
input/output-gradient across different layers for both initialization methods.

Weight Domination. It was shown the scale-invariant property of BN has
an implicit early stopping effect on the weight matrices [2], helping to stabilize
learning towards convergence. Here, we show that this layer-wise ‘early stop-
ping’ sometimes results in the false impression of a local minimum, which has
detrimental effects on the learning, since the network does not well learn the
2 We also perform SGD with a batch size of 1024, and further perform experiments on

convolutional neural networks (CNNs) for CIFAR-10 and ImageNet. The results are
shown in SM , in which we have the same observation as the full gradient descent.
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(a) λmax(Σx) (b) λmax(Σ h) (c) λmax(Σx) (d) λmax(Σ h)

Fig. 3. Analysis of the magnitude of the layer input (indicated by λmax(Σx)) and layer
output-gradient (indicated by λmax(Σ∇h)). The experiments are performed on a 20-
layer MLP with 256 neurons in each layer, for MNIST classification. The results of (a)
(b) are under random initialization [27], while (c) (d) He-initialization [14].

(a) Training loss (b) Training error (c) Test error

Fig. 4. Exploring the effectiveness of weight domination. We run the experiments on
a 5-layer MLP with BN and the number of neuron in each layer is 256. We simulate
weight domination in a given layer by blocking its weight updates. We denote ‘0’ in
the legend as the state of weight domination (the first digit represents the first layer).

representation in the corresponding layer. For illustration, we provide a rough
definition termed weight domination, with respect to a given layer.

Definition 1. Let Wk and ∂L
∂Wk

be the weight matrix and its gradient in layer
k. If λmax( ∂L

∂Wk
) � λmax(Wk), where λmax(·) indicates the maximum singular

value of a matrix, we refer to layer k has a state of weight domination.

Weight domination implies a smoother gradient with respect to the given layer.
This is a desirable property for linear models (the distribution of the input is
fixed), where the optimization objective targets to arrive the stationary points
with smooth (zero) gradient. However, weight domination is not always desirable
for a given layer of a DNN, since such a state of one layer is possibly caused by
the increased magnitude of the weight matrix or decreased magnitude of the
layer input (the non-convex optimization in Eq. 7), not necessary driven by the
optimization objective itself. Although BN ensures a stable distribution of layer
inputs, a network with BN still has the possibility that the magnitude of the
weight in a certain layer is significantly increased. We experimentally observe
this phenomenon, as shown in the SM . A similar phenomenon is also observed
in [47], where BN results in large updates of the corresponding weights.

Weight domination sometimes harms the learning of the network, because
this state limits its ability to learn the representation in the corresponding layer.
To investigate this, we conduct experiments on a 5-layer MLP and show the
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(a) κ50%(Σx) (b) κ50%(Σ h) (c) κ80%(Σx) (d) κ80%(Σ h)

Fig. 5. Analysis on the condition number of the layer input (κp(Σx)) and layer output-
gradient (κp(Σ∇h)). The experimental setups are the same as in Fig. 3.

results in Fig. 4. We observe that the network with weight domination in certain
layers, can still decrease the loss, but has degenerated performance. We also
conduct experiments on CNNs for CIFAR-10 datasets, shown in the SM .

4.2 Improved Conditioning

One motivation behind BN is that whitening the input can improve the con-
ditioning of the optimization [22] (e.g., the Hessian will be an identity matrix
under the condition that ED(xxT ) = I for a linear model, based on Eq. 1, and
thus can accelerate training [9,21]. However, such a motivation is seldom vali-
dated by either theoretical or empirical analysis on the context of DNNs [9,38].
Furthermore, it only holds under the condition that BN is placed before the
linear layer, while, in practice, BN is typically placed after the linear layer, as
recommended in [22]. In this section, we will empirically explore this motivation
using our layer-wise conditioning analysis for the scenario of training DNNs.

We first experimentally observe that BN not only improves the conditioning
of the layer input’s covariance matrix, but also improves the conditioning of
the output-gradient’s covariation, as shown in Fig. 5. It has been shown that
centered data is more likely to be well-conditioned [20,28,33,40]. This suggests
that placing BN after the linear layer can improve the conditioning of the output-
gradient, because centering the activation, with the gradient back-propagating
through such a transformation [22], also centers the gradient.

We also observe that the unnormalized network (‘Plain’) has several small
eigenvalues. For further exploration, we monitor the output of each neuron in
each layer, and find that ‘Plain’ has some neurons that are not activated (zero
output of ReLU) for all training examples. We refer to these neurons as dying
neurons. We also observe that ‘Plain’ has some neurons that are always activated
for every training example, which we refer to as full neurons. This observation is
most obvious in the initial iterations. The number of dying/full neurons increases
as the layer number increases (Please refer to SM for details). We conjecture
that the dying neurons causes ‘Plain’ to have numerous small/zero eigenvalues.
In contrast, batch normalized networks have no dying/full neurons, because the
centering operation ensures that half the examples get activated. This further
suggests that placing BN before the nonlinear activation can improve the con-
ditioning.
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5 Training Very Deep Residual Networks

Residual networks [15] have significantly relieved the difficulty of training deep
networks by their introduction of the residual connection, which makes training
networks with hundreds or even thousands of layers possible. However, residual
networks also suffer from degenerated performance when the model is extremely
deep (e.g., the 1202-layer residual network has worse performance than the 110-
layer one), as shown in [15]. He et al. [15] argued that this is from over-fitting,
not optimization difficulty. Here, we show that a very deep residual network may
also suffer difficulty in optimization.

We perform experiments on CIFAR-10 with residual networks, following the
same experimental setup as in [15], except that we run the experiments on one
GPU. We vary the network depth, ranging in {56, 110, 230, 1202}, and show the
training loss in Fig. 6(a). We observe the residual networks have an increased
loss in the initial iterations, which is amplified for deeper networks. Later, the
training gets stuck in a state of randomly guessing (the loss stays at ln 10).
Although the networks can escape such a state with enough iterations, they
suffer from degenerated training performance, especially if they are very deep.

Analysis of Learning Dynamics. To explore why residual networks have
such a mysterious behavior, we perform the layer-wise conditioning analysis on
the last linear layer (before the cross entropy loss). We monitor the maximum
eigenvalue of the covariance matrix λΣx , the maximum eigenvalue of the sec-
ond moment matrix of the weight-gradient λΣ ∂L

∂W

, and the norm of the weight

(‖W‖2).
We observe that the initial increase in loss is mainly caused by the large

magnitude of λΣx
3 (Fig. 6(b)), which results in a large magnitude for λΣ ∂L

∂W

(Fig. 6(c)), and thus a large magnitude for ‖W‖2 (Fig. 6(d)). The increased
‖W‖2 further facilities the increase of the loss. However, the learning objec-
tive is to decrease the loss, and thus it should decrease the magnitude of W or
x (based on Eq. 7) in this case. Apparently, W is harder to adjust, because the
landscape of its loss surface is controlled by x, and all the values of x are non-
negative with large magnitude. The network thus tries to decrease x based on
the given learning objective. We experimentally find that the learnable param-
eters of BN have a large number of negative values, which causes the ReLUs
(positioned after the residual adding operation) deactivated. Such a dynamic
results in a significant reduction in the magnitude of λΣx . The small x and large
W drive the last linear layer of the network into the state of weight domination,
and make the network display a random guess behavior. Although the residual
network can escape such a state with enough iterations, the weight domination
hinders optimization and results in degenerated training performance.

3 The large magnitude of λΣx is caused mainly by the addition of multiple residual
connections from the previous layers with ReLU output.
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(a) Training loss (b) λΣx (c) λΣ ∂L
∂W

(d) ‖W‖2

Fig. 6. Analysis on the last linear layer in residual networks for CIFAR-10 classification.
We vary the depth ranging in {56, 110, 230, 1202} and analyze the results over the
course of training. We show (a) the training loss; (b) the maximum eigenvalue of the
input’s covariance matrix; (c) the maximum eigenvalue of the second moment matrix
of the weight-gradient; and (d) the F2-norm of the weight. Note that both the x- and
y-axes are in log scale.

(a) Training loss (b) λΣx (c) λΣ ∂L
∂W

(d) ‖W‖2

Fig. 7. Analysis of how ResNetLastBN solves the ill-conditioned problem of its last
linear layer on the 1202-layer network for CIFAR-10 classification.

5.1 Proposed Solution

Based on the above analysis, it is essential to reduce the large magnitude
of λ(Σx). We propose a simple solution and add one BN layer before the
last linear layer to normalize its input. We refer to this residual network as
‘ResNetLastBN ’, and the original one as ‘ResNet’. We also conduct an analysis
on the last linear layer of ResNetLastBN , providing a comparison between ResNet
and ResNetLastBN on the 1202-layer in Fig. 7. We observe that ResNetLastBN

can be steadily trained. It does not reach the state of weight domination or
encounter a large magnitude of x in the last linear layer.

We try a similar solution where a constant is divided before the linear layer,
and we find it also benefits the training. However, the main disadvantage of this
solution is that the value of the constant has to be finely tuned on networks with
different depths. We also try putting one BN before the average pooling, which
has similar effects as putting it before the last linear layer. We note that Bjorck
et al. [4] proposed to train a 110-layer residual network with only one BN layer,
which is placed before the average pooling. They showed that this achieves good
results. However, we argue that this does not hold for very deep networks. We
perform an experiment on the 1202-layer residual network, and find that the
model always fails in training with various hyper-parameters.

ResNetLastBN , a simple revision of ResNet, achieves significant improve-
ment in performance for very deep residual networks. Figure 8(a) and (b) show
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Fig. 8. Training loss comparison between (a) ResNet and (b) ResNetLastBN with dif-
ferent depth on CIFAR-10. We evaluate the training loss with respect to the epochs.

Table 1. Comparison of test error (%) on CIFAR-10. The results are shown in the
format of ‘mean ± std’ computed over five random seeds.

Method Depth-56 Depth-110 Depth-230 Depth-1202

ResNet [15] 7.52 ± 0.30 6.89 ± 0.52 7.35 ± 0.64 9.42 ± 3.10

PreResNet [16] 6.89 ± 0.09 6.25 ± 0.08 6.12 ± 0.21 6.07 ± 0.10

PreResNetv1 6.75 ± 0.26 6.37 ± 0.24 6.32 ± 0.21 7.89 ± 0.58

ResNetLastBN 6.50 ± 0.22 6.10 ± 0.09 5.94 ± 0.18 5.68 ± 0.14

the training loss of ResNet and ResNetLastBN , respectively, on the CIFAR-10
dataset. We observe that ResNet, with a depth of 1202, appears to have degen-
erated training performance, especially in the initial phase. Note that, as the
depth increases, ResNet obtains worse training performance in the first 80 epochs
(before the learning rate is reduced), which coincides with our previous analy-
sis. ResNetLastBN obtains nearly the same training loss for the networks with
different depths in the first 80 epochs. Moreover, ResNetLastBN shows lower
training loss with increasing depth. Comparing Fig. 8(b) to (a), we observe that
ResNetLastBN has better training loss than ResNet for all depths (e.g., at a
depth of 56, the loss of ResNet is 0.081, while for ResNetLastBN it is 0.043.).

Table 1 shows the test errors. We observe that ResNetLastBN achieves better
test performance with increasing depth, while ResNet has degenerated perfor-
mance. Compared to ResNet, ResNetLastBN has consistently improved perfor-
mance over different depths. Particularly, ResNetLastBN reduces the absolute
test error of ResNet by 1.02%, 0.79%, 1.41% and 3.74% at depths of 56, 110, 230
and 1202, respectively. Due to ResNetLastBN ’s optimization efficiency, the train-
ing performance is likely improved if we amplify the regularization of the train-
ing. Thus, we set the weight decay to 0.0002 and double the training iterations,
finding that the 1202-layer ResNetLastBN achieves a test error of 4.79 ± 0.12.
We also train a 2402-layer network. We observe that ResNet cannot converge,
while ResNetLastBN achieves a test error of 5.04 ± 0.30.

We further perform the experiment on CIFAR-100 and use the same experi-
mental setup as CIFAR-10. Table 2 shows the test errors. ResNetLastBN reduces
the absolute test error of ResNet by 0.78%, 1.25%, 3.45% and 4.98% at depths
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of 56, 110, 230 and 1202, respectively. We also validate the effectiveness of
ResNetLastBN on the large-scale ImageNet classification, with 1000 classes [8].
ResNetLastBN has better optimization efficiency and achieves better test perfor-
mance, compared to ResNet. Please refer to the SM for more details.

5.2 Revisiting the Pre-activation Residual Network

We note that He et al. [16] tried to improve the optimization and generaliza-
tion of the original residual network [15] by re-arranging the activation functions
(using the pre-activation). By looking into the implementation of [16], we find
that it also uses an extra BN layer before the last average pooling. It is inter-
esting to investigate which component in [16] (e.g., the pre-activation or the
extra BN layer) benefits the optimization behaviors, using our analysis. Here,
we denote ‘PreResNet’ as the pre-activation residual network [16], and denote
‘PreResNetv1’ as the PreResNet without the extra BN layer. We use the condi-
tioning analysis on the last linear layer of the 1202-layer network (see SM for
details). We observe that: (1) PreResNetv1 also gets stuck in the weight domi-
nation state with its last linear layer, even though it escapes this states faster
than ResNet; (2) PreResNet, like our proposed ResNetLastBN , does not suffer
the ill-conditioned problem in its last linear layer. These observations suggest
that the pre-activation can relieve the ill-conditioned problem to some degree,
but more importantly, the extra BN layer is key to improving the optimization
efficiency of PreResNet [16] for very deep networks.

Table 2. Comparison of test error (%) on CIFAR-100. The results are shown in the
format of ‘mean ± std’, computed over five random seeds.

Method Depth-56 Depth-110 Depth-230 Depth-1202

ResNet [15] 29.60 ± 0.41 28.3 ± 1.09 29.25 ± 0.44 30.49 ± 4.44

PreResNet [16] 29.29 ± 0.44 27.58 ± 0.12 26.72 ± 0.33 26.23 ± 0.26

PreResNetv1 29.60 ± 0.21 28.54 ± 0.26 27.92 ± 0.34 30.07 ± 2.04

ResNetLastBN 28.82 ± 0.38 27.05 ± 0.23 25.80 ± 0.10 25.51 ± 0.27

We report the test errors of PreResNet and PreResNetv1 in Tables 1
and 2. We find that ‘PreResNet’ generally has better test performance than
PreResNetv1, especially for very deep networks (e.g., the 1202-layer one). This
supports our arguments that the extra BN layer is the key component of Pre-
ResNet [16] for very deep networks. Interestingly, we further observe that our
proposed ResNetLastBN is consistently better than PreResNet [16] over different
layers and datasets. This demonstrates the effectiveness of our proposed architec-
ture. We believe that our analysis method can be further used to improve residual
architectures by looking into the intermediate (inner) layers of networks.
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6 Conclusion and Future Work

We proposed a layer-wise conditioning analysis to investigate the learning
dynamics of DNNs. Such an analysis is theoretically derived under mild assump-
tions that approximately hold in practice. Based on our layer-wise conditioning
analysis, we showed how batch normalization stabilizes training and improves
the conditioning of the optimization problem. We further found that very deep
residual networks still suffer difficulty in optimization, which is caused by the
ill-conditioned state of the last linear layer. We remedied this by adding only
one BN layer before the last linear layer.

We believe there are many potential applications of our method, e.g., inves-
tigating the training dynamics of other normalization methods (layer normaliza-
tion [2] and instance normalization [42]) and comparing them to BN. We also
believe it would be interesting to analyze the training dynamics of GANs [6]
using our method. We expect our method to provide new insights for analyzing
and understanding training techniques for DNNs.
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