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Abstract. Sketch-based image retrieval (SBIR) has been a popular
research topic in recent years. Existing works concentrate on mapping
the visual information of sketches and images to a semantic space at the
object level. In this paper, for the first time, we study the fine-grained
scene-level SBIR problem which aims at retrieving scene images satisfy-
ing the user’s specific requirements via a freehand scene sketch. We pro-
pose a graph embedding based method to learn the similarity measure-
ment between images and scene sketches, which models the multi-modal
information, including the size and appearance of objects as well as their
layout information, in an effective manner. To evaluate our approach,
we collect a dataset based on SketchyCOCO and extend the dataset
using Coco-stuff. Comprehensive experiments demonstrate the signifi-
cant potential of the proposed approach on the application of fine-grained
scene-level image retrieval.

Keywords: Sketch · Image retrieval · Graph convolutional network

1 Introduction

Sketching is an effective way for humans to express target objects. Using sketches
as a query to retrieve images [25] has drawn increasing interests in the last
decade. Especially with the aid of touch devices, users can easily draw a sketch
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Fig. 1. Illustration of the whole spectrum of SBIR problems. The proposed method,
focusing on retrieving the scene-level images satisfying the user’s specific requirements
via a freehand sketch, is in stark contrast to those of object-level SBIR methods [25,36]
and those focusing on retrieving scene-level images of the same scene class [7].

of the desired object, which facilitates the application of sketch-based image
retrieval (SBIR). However, it is more desired to retrieve scene-level images using
an input sketch in applications such as exploring a large number of landscape
photos on a phone, or online interior style selection for bedroom design, etc.

Most current SBIR works are limited to retrieving images of the same cat-
egory, while the shape, pose, and other fine-grained attributes of the retrieved
images are often neglected [25]. Researchers presented various global and local
descriptors to conduct the SBIR task, in which the key problem is to bridge
the domain gap between sketches and images. Recently, the problem of fine-
grained sketch-based image retrieval (FG-SBIR) was proposed in [36] (see the
upper part of Fig. 1): it still performs the instance-level SBIR task, but allows
users to not only query the target image with the same category, but also with
the desired instance details. Although existing works conduct inspiring retrieval
performance of images with a single object, to the best of our knowledge, sketch-
based retrieval of fine-grained scene-level images consisting of multiple objects
is still a new problem to explore.

In this paper, we address a new problem of fine-grained scene-level SBIR
(see Fig. 1), which aims to conduct scene-level (i.e. with multiple objects and
instances) sketch-based image retrieval, and enforces the layout of scenes and
objects’ visual attributes such as relative sizes and poses. Compared to fine-
grained scene-level SBIR, scene-level SBIR [32] overlooks the fine-grained details
of scene layout and visual attributes, and only enforces the category of scenes,
whereas (fine-grained) object-level SBIR [25,36] only retrieves a single instance
and overlooks the scene context of the object. Fine-grained scene-level SBIR can
facilitate novel SBIR applications. For example, if a user wants to pick specific
photos from the album on his mobile phone, he can first draw a scene sketch on
the mobile phone to interpret the query intention, and then retrieve the desired
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photos. Although text can be an alternative to query scene-level images, it is
hard to describe the layout and fine-grained details due to the inherent ambiguity
of text. Moreover, users can continuously adjust the shape, size and position of
the objects in the input scene sketch to obtain better retrieval results.

However, fine-grained scene-level SBIR is challenging. Firstly, the domain gap
between sketches and images is large, and intra-variations between sketches in
the same category or the same object can also be significant [33]. Secondly, it is
unclear how to simultaneously represent the layout and visual details of instances
in the scene sketch and scene image, and design an embedding network to narrow
down the domain difference between them.

In this paper, we propose a fine-grained scene-level SBIR method. To explic-
itly integrate the visual attributes and the layouts of target images, we present a
sketch scene graph, which is composed of nodes that represent object entities in
a sketch scene and edges that represent node distances and relationships. Then
we use a Graph Convolutional Network (GCN) to embed the sketch scene graph
into a feature space. To capture the size of instances, we design a category-
wise IoU (Intersection over Union) score as the metric to evaluate the similarity
between sketches and images. The proposed category-wise IoU can capture the
size of object instances better than the IoU used in image segmentation, which is
calculated by working out the IoU for each category and then taking the mean.
Finally, we design a triplet network using the graph embedding of the layout
and the size of object instances.

The main contributions of this work are as follows: 1) To the best of our
knowledge, the problem of fine-grained scene-level sketch-based image retrieval is
addressed for the first time, which can enable related SBIR research applications;
2) We propose to use a graph-based representation to explicitly model objects
and layouts of sketch scenes, and design a category-wise IoU score to evaluate
the similarity between sketches and images in terms of objects’ relative sizes; 3)
We integrate our sketch scene graph embedding and category-wise IoU score via
a triplet training process. Experiments show that our method achieves state-of-
the-art performance on our scene sketch database.

2 Related Work

Sketch-Based Image Retrieval (SBIR). Sketch-based image retrieval has
been extensively studied since 1990s [6], and has attracted more attention
recently due to the booming of touch devices. The early SBIR works aim to
retrieve images of the same category (category-level), usually using hand-crafted
image descriptors (e.g. SIFT, HOG etc.), to conduct shape matching between
sketches and edge maps of natural images [3,14,19,20]. Eitz et al. [15] present
a benchmark for evaluating the performance of large-scale SBIR systems, and
utilize descriptors based on the bag-of-features approach for SBIR. Recently,
several deep learning based SBIR methods [4,23,29,34] have been proposed and
refresh the performance of the major SBIR benchmarks. Sangkloy et al. [25]
present the Sketchy database, the first large-scale dataset of sketch-photo pairs,
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and use it to train cross-domain neural networks which embed sketches and
photos in a common feature space. Furthermore, a few methods of zero-shot
sketch-based image retrieval (ZS-SBIR) have been proposed to handle the data
deficiency of large-scale sketch-photo pairs. ZS-SBIR is an SBIR task that can
conduct the retrieval task on unseen object classes, and it is often treated as a
domain adaptation problem [12,38]. Dey et al. [11] construct a dataset named
QuickDraw-Extended to simulate ZS-SBIR of the real scenario, and exploit both
visual and semantic information to conduct feature embedding.

Fine-Grained Sketch-Based Image Retrieval (FG-SBIR). Compared to
object-level SBIR, FG-SBIR requires that the retrieved images contain fine-
grained details described in the input scene sketch. Yu et al. [36] introduce a
database of sketch-photo pairs with fine-grained annotations, in which only one
object exists in each sketch or image, and develop a deep triplet-ranking model
for instance-level FG-SBIR. Song et al. [26] propose a fine-grained SBIR model
that exploits semantic attributes and deep feature learning in a complemen-
tary way. Furthermore, a spatially aware model which combines coarse and fine
semantic information is proposed by [27]. Pang et al. [24] identify cross-category
generalization for FG-SBIR as a domain generalization problem and propose
an unsupervised learning approach to modeling a universal manifold of proto-
typical visual sketch traits. Though FG-SBIR research works achieve inspiring
progress, they focus on retrieving a single object, which may not fit well to SBIR
applications in real scenarios. In this paper, we explore a new scene-level fine-
grained SBIR, which utilizes local features such as object instances and their
visual detail, and global context such as the scene layout.

Scene Sketch. Existing scene sketch related work includes scene image syn-
thesis via sketches [8], scene image retrieval (not fine-grained) [7], and semantic
segmentation of scene sketches [40]. Chen et al. [8] composite a photo-realistic
scene image with a hand-drawn sketch and text as input. The key idea is to
retrieve initial candidates of object instances via the input text and sketch,
and then blend the whole scene’s images. Compared to [8], our work aims to
retrieve a specific image from an image gallery instead of compositing a syn-
thesized image. Similarly, Dey et al. [10] present a multi-object image retrieval
system using sketch and text as inputs at a coarse level. Castrejon et al. [7]
propose a cross-modal scene representation for multi-modal data, and apply the
class-agnostic representation in cross-modal retrieval. Xie et al. [32] introduce
an ZS-SBIR framework based on this cross-modal scene dataset. The method
mainly utilizes the overall visual features, while the layout and details in the
scene are overlooked. Zou et al. [40] present a scalable scene sketch dataset with
rich semantic and instance segmentation annotations, named SketchyScene, and
conduct a preliminary study of scene-level SBIR using an object-level SBIR
method [36].
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Fig. 2. Overview of our fine-grained scene-level SBIR framework. Our network mainly
consists of three phases: graph operations, distance computing and multi-modal match-
ing. We first construct graphs for sketches and images, and then utilize GCNs to encode
them. Finally, we integrate the graph information with our proposed category-wise IoU
score to conduct retrieval via a triplet training process.

Image Retrieval with Graph Convolutional Networks. Graph convo-
lutional networks (GCNs) [22] are an effective neural network architecture on
graphs, which extract features from graphs or nodes in graphs. GCNs have been
successfully applied in a variety of applications such as image matching [31],
action recognition [17], and text matching [39]. Tripathi et al. [30] adopt scene
graphs to model the layouts of images, and apply them to conduct image syn-
thesis. Khan et al. [21] use GCNs to solve the multi-label scene classification
problem of very high resolution satellite remote sensing images. Chen et al. [9]
develop a multi-label image recognition method, which integrates the dependen-
cies of object labels via a directed graph consisting of the object labels into the
extracted image features. Compared to these approaches, our method adopts
multi-modal information to construct the node embedding and edge weights,
including the size and appearance of objects as well as their layout.

3 Methods

3.1 Overview

In this section, we learn a feature embedding of scene sketches and images to
enforce the distance in the feature space to be closely related to the similarities
of the layout, appearance and semantic information between scene sketches and
images. For fine-grained scene-level SBIR, it is a key issue to model the correla-
tion context between the object instances and capture the fine-grained details of
each object instance. In this work, we propose to use graph convolutional net-
works (GCNs) and category-wise IoU to conduct the feature embedding of scene
sketches and images. Figure 2 shows an overview of our method. Our method
consists of graph encoders, a graph similarity function, category-wise IoU mea-
sures, and a triplet similarity network.
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3.2 Scene Graph Generation

We formulate a scene as a weighted, undirected scene graph, which models the
visual appearance, size, pose and other fine-grained details of the object instances
in a scene sketch or a scene image explicitly. Our scene graph can be represented
as G = (N,E), where N = {ni} is the node set and E = {ei,j} is the edge set,
where ei,j = (ni, nj) is the edge connecting nodes ni and nj . The category of
the node set is denoted as C = {ci}, where ci is the category of node ni. In this
work, the nodes N are defined as the object instances, and E are the edges that
link each pair of the nodes. The scene graph generation consists of two steps:
node construction and edge construction.

Node Construction. The node set N and the category set C of a scene graph
can be obtained by either human annotations, or any pretrained object detectors
(e.g. [40]). Each node ni contains visual features vi, object category label ci and
its spatial position pi. In order to get the visual feature of each node, we first
adopt a sketch classification task to fine-tune the Inception-V3 [28] pretrained on
the ImageNet using the object-level data from the collected dataset illustrated in
Fig. 4, and then use this model to extract the 2048-d feature of each object from
its bounding box. Category label ci of each node is encoded to a 300-d vector c̃i
by Word2Vec [1]. We denote the spatial information of the node by a 4-d vector
pi indicating the top left and bottom right coordinates of the node bounding box.
For each node, we get a fusion node feature xi by concatenating vi, c̃i and pi.
This fusion node feature captures the appearance feature, the semantic feature
of each object, as well as the spatial information.

Edge Construction. The object nodes are connected with undirected weighted
edges, and the edge weight between a pair of object nodes shows their correlation.
Given two object nodes ni and nj of the graph, we define the edge weight Ai,j ∈
(0, 1) between them using a normalized Euclidean distance as follows:

Ai,j =
Di,j∑

ep,q∈E,p<q Dp,q
(1)

where Di,j = ||xj − xi||2 is the Euclidean distance of the fusion features of the
nodes ni and nj .

3.3 Graph Encoder

After we generate the scene graphs for sketches and images, we adopt GCNs
to learn node-level representations for our scene graph by updating the node
features by propagating information between nodes. A GCN learns a function
f(·, ·) to extract features on a graph G = (N,E), which takes a feature matrix
H l−1 and the corresponding adjacency matrix A = {Aij} as inputs. The l-th
layer of the GCN can be formulated as
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H(0) = {xi}ni=1 (2)
H(l) = f(H(l−1), A), l > 1 (3)

Then we adopt the propagation rule introduced in [22], and the function
f(·, ·) can be written by

f(H(l), A) = σ(D̂− 1
2 ÂD̂− 1

2 H(l)W (l)) (4)

where σ(·) is the leaky relu activation function, Â = A+I, and D̂ is the diagonal
node degree matrix of Â, and W (l) is a weight matrix to be learned.

We denote the outputs of the last layer of graph convolution networks for
sketches and images to be two encoded feature graphs GS and GI , respectively,
with the encoded node features denoted as {x̂i

S} and {x̂j
I}.

3.4 Graph Similarity Function

After we get the encoded feature graphs GS and GI for a sketch and an image
(refer to Sect. 3.3), we utilize a graph matching function to measure the similarity
of the two graphs.

Denote NS and NI to be the node numbers in GS and GI , respectively. Firstly,
we compute a score matrix Ŝ of the size NS × NI by computing the similarity
between all node pairs in GS and GI , where cosine distance is used to calculate the
similarity between the features of two nodes. Secondly, we select the maximum
score of each row, i.e. for each encoded feature x̂i

S in GS , get the most similar
node feature x̂j

I in GI . Finally, we compute the overall similarity of GS and GI

by averaging the maximum scores of all rows as:

φGM (GS ,GI) =
1

NS

NS∑

p=1

max
q∈[1,NI ]

Cosine(x̂p
S , x̂q

I). (5)

3.5 Category-Wise IoU

To evaluate the similarity of the layout and sizes of object instances between a
sketch and an image, we design a category-wise IoU. Denote M i

S and M i
I to be

the union sets of the object masks for an object category label ci in a pair of
sketch S and image I, respectively. Then we compute the intersection and the
union of M i

S and M i
I by M i

S ∩ M i
I and M i

S ∪ M i
I .

Finally, we define the category-wise IoU score φIoU between sketch S and
image I as the division of the sum of the intersection masks of all object cate-
gories and the sum of the union masks of all object categories:

φIoU (S, I) =
∑|C|

i=1 M i
S ∩ M i

I
∑|C|

i=1 M i
S ∪ M i

I

(6)

where |C| the number of object categories.
The proposed category-wise IoU can capture the size of object instances

better than the IoU used in image segmentation, which is calculated by working
out the IoU for each category and then taking the mean (See Sect. 4.4).
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Table 1. Comparison of the existing sketch databases and our database.

Dataset # of sketches Any images? Is paired? Annotation type Multi-objects?

TU-Berlin [13] 20,000 No – Class label No

QuickDraw [18] over 50 million No – Class label No

The sketchy database [25] 75,471 Yes Yes Class label No

Shoes [36] 419 Yes Yes Class label No

Chairs [36] 297 Yes Yes Class label No

SketchyScene [40] 7265 Yes Yes Segmentation Yes

CMPlaces [7] 8694 Yes No Class label Yes

Our scene sketch database 1225 Yes Yes Segmentation Yes

3.6 Loss Function

Triplet Loss. Inspired by [25,36], we adopt the ranking triple loss that can
express the fine-grain relationship better than Siamese loss [25]. The triple loss
aims to enforce that the embedding features of two examples with the same label
are close and the embedding features of two examples with different labels are
far away.

The input of a triplet network is a triplet (S, I+, I−), where S is a scene
sketch, I+ is the corresponding image of S, and I− is an image of a different
scene. The triple loss Ltri of (S, I+, I−) can be computed by

Ltri = max(d(S, I+) − d(S, I−) + m, 0) (7)

where d(·, ·) is the distance function in the embedding space, and m is a margin
which is set to 0.4.

With three scene graphs GS , GI+ and GI− of the triplet (S, I+, I−), we
define d(S, I+) and d(S, I−) of Eq. (7) by integrating the graph similarity score
φGM in Eq.(5) and the category-wise IoU φIoU in Eq.(6) by

d(S, I) = 1 − λ1φGM (S, I) − λ2φIoU (S, I) (8)

where I is an image (which can be I+ or I−), λ1 and λ2 are the weights of φGM

and φIoU . In our experiments, we set λ1 = 1 and λ2 = 0.8.

4 Experiments

4.1 Datasets

Although several sketch datasets [7,13,18,25,36,40] are publicly available (shown
in Table 1 and Fig. 3), none of them are suitable to evaluate our method. TU-
Berlin [13], QuickDraw [18] and The Sketchy Database [25] are all datasets of
sketches of single object instances. Sketch me that shoe [36] is the first dataset
of fine-grained sketch-photo pairs, and facilitates the fine-grained sketch-related
applications. However, each sketch-photo pair in this dataset also contains only



726 F. Liu et al.

Fig. 3. Examples of the existing sketch databases.

Fig. 4. Examples of our fine-grained scene-level sketch dataset.

one object instance, where all the sketches and images have clean backgrounds.
Moreover, there are only a few hundred images in the database, which is insuf-
ficient for large-scale SBIR. SketchyScene [40] and CMPlaces [7] are the two
available scene-level sketch datasets. SketchyScene cannot be used to train and
evaluate our fine-grained scene-level SBIR network, which requires the visual
features of object instances, because it does not contain the bounding box or
object instance segmentation annotations. The images of SketchyScene are all
cartoon clips, while we intend to retrieve natural photos. CMPlaces, in which
only scene category labels are available, cannot be used for our problem either.
On the one hand, it does not contain paired image and sketch data. On the
other hand, it does not contain object instance segmentation annotations such
as SketchyScene.

Our Sketch Database. Existing benchmarks for SBIR do not fit our problem,
they either just contain a single object in one photo, or no fine-grain annotations
of objects are available. Thus, we collect a scene sketch-image database (referred
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Fig. 5. Top-10 fine-grained scene-level SBIR results with our method. The true matches
are highlighted with red rectangles. (Color figure online)

to as our sketch database) based on SketchyCOCO [16], and utilize the Scene
SBIR database for our fine-grained scene-level SBIR task. SketchyCOCO con-
tains over 14,000 scene-level sketch-photo pairwise examples, but most of them
only contain one foreground instance. We pick up 1,225 scene sketch-photo pairs
containing more than one object instance from SketchyCOCO, covering 14 object
categories (bicycle, car, motorcycle, airplane, traffic light, fire hydrant, cat, dog,
horse, sheep, cow, elephant, zebra, giraffe). Figure 4 shows several examples of
our database. In each row, we display three samples with the same object cate-
gories, and fine-grained SBIR models are needed to differentiate a specific scene.

4.2 Evaluation Metrics

We split our scene sketch dataset into training and testing sets, containing 1015
and 210 sketch-image pairs, respectively. We adopt a standard evaluation metric
for retrieval as [36], recall at rank K (Recall@K), which is computed with the
percentage of test queries where the target image is within the top K retrieved
images.

4.3 Comparison with Baselines

Fig. 5 shows several fine-grained SBIR examples with our method. For each query
sketch, there are typically a handful of visually very similar photos; the lower-
rank accuracy, especially at top-1, thus is a better indication on how well the
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Table 2. Comparison of scene-level SBIR performance with existing SBIR methods on
our database (210 testing images) and our extended database (5210 testing images).

Our sketch database Extended database

Recall@1 Recall@5 Recall@10 Recall@10 Recall@50 Recall@100

HOG+BoW+RankSVM [20] 0.48 1.43 4.76 0.48 0.48 0.48

Dense HOG+RankSVM [36] 0.48 3.81 5.71 0 0.95 1.91

Sketch-a-Net+RankSVM [37] 0.48 3.33 4.76 0 0.95 2.86

Sketch me that shoe [36] 6.19 17.15 32.86 1.90 6.19 8.57

DSSA [27] 0.48 3.81 7.62 0 0.95 1.90

SketchyScene [40] 1.43 4.76 8.57 0.48 0.95 2.86

Our model 31.91 66.67 86.19 38.10 68.10 82.86

Fig. 6. Comparison of scene-level SBIR results with our method and three state-of-
the-art SBIR methods: Sketch me that shoe [36], DSSA [27], SketchyScene [40]. The
ground truth matches are highlighted with red rectangles. (Color figure online)

model is capable of distinguishing fine-grained subtle differences between can-
didate photos. When collecting the dataset, some sketches do not match the
photos exactly, thus there are cases that no images in the database can fully
match the input sketch. Moreover, we investigate the performance of our fine-
grained scene-level SBIR by making images extremely similar in overall layout
of sketches, category of objects, and their position and shape, which makes the
task more challenging (see supplementary material).

We compare our model with several state-of-the-art (SOTA) object-level
SBIR and fine-grained SBIR approaches.

HOG-BoW+RankSVM [20] and Dense HOG+RankSVM [36] are two
methods using hand-crafted features. HOG-BoW descriptor is a popular visual
feature in SBIR [19,20]. We extract HOG features for each image, and feed them
to the BoW (Bag-of-Words) framework for feature encoding. Then, we train a
RankSVM model to rank the results as [35]. In the comparison, the used triplet
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annotations are the same as those we use in our experiment. We also compare
with the model [36] by extracting Dense HOG features via concatenating HOG
features over a dense grid. We follow the same setting in [36] to extract Dense
HOG features.

Sketch-a-Net+RankSVM [37], Sketch me that shoe [36], DSSA
[27], and SketchyScene [40] adopt deep features for SBIR. In Sketch-a-
Net+RankSVM [37], the deep features are ranked with RankSVM. And Sketch
me that shoe [36] presents a deep triplet ranking model for fine-grained SBIR,
where free-hand sketches are used as queries for instance-level retrieval of images.
We have achieved a better result with our data by loading the pre-trained model
and fine-tuning it. DSSA [27] utilizes a deep spatial-semantic attention mech-
anism for fine-grained SBIR, and it models the fine-grained details and their
spatial context instead of only adopting a coarse holistic matching strategy. We
also compare our method with SketchyScene, which conducts a scene-level SBIR
based on the triplet ranking network similar to the network in [36], using the
overall deep features of the scene sketch as input.

Table 2 shows the comparison of the retrieval recalls with our model and the
compared methods. Figure 6 compares the qualitative results with our method
and most related SOTAs: Sketch me that shoe [36], DSSA [27], and SketchyScene
[40]. The results indicate that our model achieves significantly higher recall
than the other baselines. Conventional SBIR methods with hand-crafted fea-
tures designed for SBIR with a single object get poor performance on our scene
sketch dataset. Sketch me that shoe [36] is a more related SOTA SBIR model,
which is also the first work on fine-grained SBIR task. However, the Recall@1,
Recall@5 and Recall@10 with our method are about 25%, 50% and 54% higher
than those with Sketch me that shoe. Therefore, our method achieves the best
retrieval performance on our database, which demonstrates that our method is
effective.

4.4 Ablation Study

Our fine-grained scene-level SBIR method adopts scene sketch graphs to explic-
itly model the layout and local details of each object in sketches and images, and
uses a category-wise IoU score between a pair of sketch and image to enforce the
size and position of object instances in sketch and image. In order to demon-
strate the contribution of each component, we compare our full model with the
following eight stripped-down models:

1. Visual features as graph only. When constructing the nodes in the sketch
scene graph, we only use visual features extracted by Inception-V3 as the
node feature. We use the same category-wise IoU loss as our full model.

2. Category labels as graph only. We only use the category label of each
object as the node feature, and visual features and spatial positions are not
included. The same category-wise IoU loss as our full model is used.

3. Visual features and category labels as graph. To show the effect of
spatial information, we use the visual features and category label of each
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object as the node feature, while no spatial positions of object bounding
boxes are included. The category-wise IoU loss as our full model is used.

4. Graph triplet loss only. We use the same graph generator and graph
encoder as our full model, but category-wise IoU loss is not used.

5. Category-wise IoU loss only. We use our category-wise IoU to rank the
pairs of sketch and image. The scene sketch graph is not used.

6. IoUcategory only. We replace the category-wise IoU loss in model (5.) by
IoUcategory [2], which is the major evaluation metric in semantic segmenta-

tion. IoUcategory is computed as φIoUcategory
(S, I) =

∑|C|
i=1

Mi
S∩Mi

I

Mi
S∪Mi

I
. The scene

sketch graph is not used.
7. Global IoU only. We replace the category-wise IoU loss in model (5.) by

global IoU [2]. Denote MS and MI to be the union sets of all the object masks
in sketch and image, respectively. Unlike our category-wise IoU, global IoU
ignores category information and is computed as φGlobal IoU (S, I) = MS∩MI

MS∪MI
.

The scene sketch graph is not used in this model.
8. IoUcategory + Graph feature. We replace our category-wise IoU with

IoUcategory [2], and combine it with the scene sketch graph via triplet training.
The graph feature of our full model is used in this setting.

The performances of our full models and the above eight models on the
fine-grained scene-level SBIR are shown in Table 3. 1) Compared to the recalls
with scene sketch graphs using different node features (1, 2, 3, 9 in Table 3), we
observe that the Recall@1, Recall@5 and Recall@10 using the node features with
visual information, category labels and spatial information (our full model) are
about 8%, 15% and 9% higher than those using only visual features, about 2%,
4% and 4% higher than those using only category labels, and about 1.5%, 2%
and 2% higher than those using visual features and category labels. Thus, visual
features, category labels and position information all contribute to enhancing the
retrieval performance. 2) By comparing the ranking results using our category-
wise IoU only, IoUcategory only and global IoU, we observe that the recall with
our category-wise IoU is better (5, 6, 7 in Table 3). When integrated with graph

Table 3. Effect of each components on the fine-grained scene-level SBIR on our scene
sketch database (210 testing images) and our extended database (5210 testing images).

Model settings Our sketch database Extended database

Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

1. Visual feature as graph only 24.29 51.90 77.14 8.09 18.09 25.23

2. Category label as graph only 29.52 62.86 82.38 8.57 20.95 30.00

3. Visual feature and category label as graph 30.48 64.76 83.81 11.43 23.33 30.95

4. Graph triplet loss only 13.33 30.00 47.62 2.38 6.67 10.00

5. Category-wise IoU only 28.10 61.90 80.0 6.67 19.05 24.29

6. IoUcategory only 23.82 59.05 76.19 4.76 16.19 23.81

7. Global IoU only 5.24 19.05 28.10 0 0.48 2.38

8. IoUcategory+Graph feature 24.76 59.05 78.57 4.76 16.67 23.81

9. Our model 31.91 66.67 86.19 12.38 26.67 38.10
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features (8, 9 in Table 3), category-wise IoU is still superior to IoUcategory. 3)
Compared to the recalls with graph features only, our full model gains about
18%, 36% and 39% on Recall@1, Recall@5 and Recall@10 (4, 9 in Table 3).
Thus, category-wise IoU is important for our network.

4.5 Results on Our Extended Scene Sketch Database

In order to investigate the performance of our method using a larger image
gallery, we extend our scene sketch database with natural images from Coco-
stuff [5], named our extended scene sketch database. We select 21,379 natural
images, the objects of which are within the 14 categories in our scene sketch
database. These natural images do not have corresponding sketches in our scene
sketch database. Then, we split these natural images into a test dataset with
5,000 images and a training dataset with 16,379 images, and combine them with
the images of the training and test dataset in our scene sketch database.

We compare the scene-level SBIR performance with the existing SOTA meth-
ods on our extended database (shown on the right three columns in Table 2).
Since Recall@5 of the compared methods is close to zero, we show the Recall@10,
Recall@50 and Recall@100 instead. Our method achieves significantly better
performance than the compared methods. Existing object-level SBIR methods
perform worse due to the fact that these methods directly compare the visual
features of sketches and images, but neglect the key scene contexts such as object
layout. Figure 7 shows the qualitative results of scene-level SBIR on our extended
database. Our model can capture details well and retrieve fine-grained images.

Fig. 7. Examples of scene sketch SBIR results on our extended database.

We also conduct an ablation study of each component of the proposed method
on our extended database (shown in Table 3). The results again demonstrate
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that the scene graph with nodes using visual features, category label and spatial
information, and category-wise IoU are both effective.

5 Conclusion

In this work, for the first time, we have addressed and explored the new problem
of scene-level fine-grained sketch-based image retrieval. A graph-based frame-
work has been proposed to explicitly model the layout and fine-grained details
of sketch scenes at the same time. A category-wise IoU was designed to enhance
the SBIR performance in a simple and effective manner. Experiments show that
our method is superior to the existing sketch-based image retrieval methods. In
the future, we would fuse semantic analysis and scene understanding to promote
the method to work on larger datasets.
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