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Abstract. Existing methods of 3D dthus limiting the scope of their
practical applications. In this paper, we propose a novel regression frame-
work which makes a balance among speed, accuracy and stability. Firstly,
on the basis of a lightweight backbone, we propose a meta-joint optimiza-
tion strategy to dynamically regress a small set of 3DMM parameters,
which greatly enhances speed and accuracy simultaneously. To further
improve the stability on videos, we present a virtual synthesis method to
transform one still image to a short-video which incorporates in-plane
and out-of-plane face moving. On the premise of high accuracy and
stability, our model runs at 50 fps on a single CPU core and outper-
forms other state-of-the-art heavy models simultaneously. Experiments
on several challenging datasets validate the efficiency of our method.
The code and models will be available at https://github.com/cleardusk/
3DDFA V2.

Keywords: 3D dense face alignment · 3D face reconstruction

1 Introduction

3D dense face alignment is essential for many face related tasks, e.g., recogni-
tion [6,12,23,25,41], animation [9], avatar retargeting [8], tracking [46], attribute
classification [3,20,21], image restoration [10,11,47], anti-spoofing [24,37,45,49,
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50]. Recent studies are mainly divided into two categories: 3D Morphable Model
(3DMM) parameters regression [22,31,33,44,54,55,57] and dense vertices regres-
sion [17,26]. Dense vertices regression methods directly regress the coordinates
of all the 3D points (usually more than 20,000) through a fully convolutional net-
work [17,26], achieving the state-of-the-art performance. However, the resolution
of reconstructed faces relies on the size of the feature map and these methods
rely on heavy networks like hourglass [35] or its variants, which are slow and
memory-consuming in inference. The natural way of speeding it up is to prune
channels. We try to prune 77.5% channels on the state-of-the-art PRNet [17]
to achieve real-time speed on CPU, but find the error greatly increases 44.8%
(3.62% vs. 5.24%). Besides, an obvious disadvantage is the presence of checker-
board artifacts due to the deconvolution operators, which is present in the sup-
plementary material. Another strategy is to regress a small set of 3DMM param-
eters (usually less than 200). Compared with dense vertices, 3DMM parameters
have low dimensionality and low redundancy, which are appropriate to regress
by a lightweight network. However, different 3DMM parameters influence the
reconstructed 3D face [54] differently, making the regression challenging since
we have to dynamically re-weight each parameter according to their importance
during training. Cascaded structures [33,54,55] are always adopted to progres-
sively update the parameters but the computation cost is increased linearly with
the number of cascaded stages.

Fig. 1. A few results from our MobileNet (M+R+S) model, which runs at 50 fps on a
single CPU core or 130 fps on multiple CPU cores.

In this paper, we aim to accelerate the speed to CPU real time and achieve
the state-of-the-art performance simultaneously (Fig. 1). To this end, we choose
to regress 3DMM parameters with a fast backbone, e.g. MobileNet. To handle the
optimization problem of the parameters regression framework, we exploit two dif-
ferent loss terms WPDC and VDC [54] (see Sect. 2.2) and propose our meta-joint
optimization to combine the advantages of them. The meta-joint optimization
looks ahead by k-steps with WPDC and VDC on the meta-train batches, then
dynamically selects the better one according to the error on the meta-test batch.
By doing so, the whole optimization converges faster and achieves better perfor-
mance than the vanilla-joint optimization. Besides, a landmark-regression regu-
larization is introduced to further alleviate the optimization problem to achieve
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higher accuracy. In addition to single image, 3D face applications on videos
are becoming more and more popular [8,9,27,28], where reconstructing stable
results across consecutive frames is important, but it is often ignored by recent
methods [17,26,54,55]. Video-based training [16,32,36,40] is always adopted to
improve the stability in 2D face alignment. However, no video databases are
publicly available for 3D dense face alignment. To address it, we propose a 3D
aided short-video-synthesis method, which simulates both in-plane and out-of-
plane face moving to transform one still image to a short video, so that our
network can adjust results of consecutive frames. Experiments show our short-
video-synthesis method significantly improves the stability on videos.

In general, our proposed methods are (i) fast : It takes about 7.2ms with an
single image as input (almost 24× faster than PRNet) and runs at over 50fps
(19.2ms) on a single CPU core or over 130fps (7.2ms) on multiple CPU cores
(i5-8259U processor), (ii) accurate: By dynamically optimizing 3DMM parame-
ters through a novel meta-optimization strategy combining the fast WPDC and
VDC, we surpass the state-of-the-art results [17,26,54,55] under a strict com-
putation burden in inference, and (iii) stable: In a mini-batch, one still image is
transformed slightly and smoothly into a short synthetic video, involving both
in-plane and out-of-plane rotations, which provides temporal information of adja-
cent frames for training. Extensive experimental results on four datasets show
that the overall performance of our method is the best.

2 Methodology

Input images
A lightweight backbone: e.g. MobileNet

3D aided short-video-synthesis

FC-lmk

Llrr

FC-param

Lfpwdc

Lvdc

Meta-joint optimization

Conv.+BN.+Relu

Depthwise block

Global pooling

FC

Loss

62-d param

136-d landmark

k+1 batches for

meta-train/test

Selector

Landmark-regression regularization
Sampling

In-plane rotation

Out-of-plane 
rotation

Noise

Motion blur

Fig. 2. Overview of our method. Our architecture consists of four parts: the lightweight
backbone like MobileNet for predicting 3DMM parameters, the meta-joint optimiza-
tion of fWPDC and VDC, the landmark-regression regularization and the short-video-
synthesis for training. The landmark-regression branch is discarded in inference, thus
not increasing any computation burden.

This section details our proposed approach. We first discuss 3D Mor-
phable Model (3DMM) [5]. Then, we introduce the proposed methods of the
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meta-joint optimization, landmark-regression regularization and 3D aided short-
video-synthesis. The overall pipeline is illustrated in Fig. 2 and the algorithm is
described in Algorithm 1.

Algorithm 1: The overall algorithm of our proposed methods.
Input: Training data X = {(xl, pl)}M

l=1 .
Init: Model parameters θ initialized randomly, the learning rate α, look-ahead step k, length

of 3D aided short-video-synthesis n, and batch-size of B.
1 for i in max iterations do

2 Randomly sampling k batches {X l
mtr}k

l=1 for meta-train and one disjoint batch Xmte

for meta-test, each batch contains B pairs: {(xl, pl)}B
l=1.

// short-video-synthesis
3 for each x ∈ Xmtr or Xmte do
4 Synthesize a short-video with n adjacent frames: {(x0, p0|x0)|x0 =

x} ∪ {(x′
j , p′

j |x′
j)|x′

j = (M ◦ P )(xj), xj = (T ◦ F )(xj−1), 1 ≤ j ≤ n − 1}.
5 end

// Meta-joint optimization with landmark-regression regularization

6 Let θf
i , θv

i ← θi;
7 for j = 1 · · · k do

8 θf
i+j ← α∇

θ
f
i+j-1

(
Lfwpdc(θ

f
i+j-1, X j

mtr) +
|lfwpdc|

|llrr| · Llrr(θ
f
i+j-1, X j

mtr)
)
;

θv
i+j ← α∇θv

i+j-1

(
Lvdc(θ

v
i+j-1, X j

mtr) +
|lvdc|
|llrr| · Llrr(θ

v
i+j-1, X j

mtr)
)
;

9 end

10 Select θi+1 ← argminθi+k

(
Lvdc(θ

f
i+k, Xmte), Lvdc(θ

v
i+k, Xmte)

)
;

11 end

2.1 Preliminary of 3DMM

The original 3DMM can be described as:

S = S + Aidαid + Aexpαexp, (1)

where S is the 3D face mesh, S is the mean 3D shape, αid is the shape parameter
corresponding to the 3D shape base Aid, Aexp is the expression base and αexp is
the expression parameter. After the 3D face is reconstructed, it can be projected
onto the image plane with the scale orthographic projection:

V2d(p) = f ∗ Pr ∗ R ∗ (
S + Aidαid + Aexpαexp

)
+ t2d, (2)

where V2d(p) is the projection function generating the 2D positions of model
vertices, f is the scale factor, Pr is the orthographic projection matrix, R
is the rotation matrix constructed by Euler angles including pitch, yaw, roll
and t2d is the translation vector. The complete parameters of 3DMM are
p = [f,pitch, yaw, roll, t2d,αid,αexp].

However, the three Euler angles will cause the gimbal lock [30] when faces are
close to the profile view. This ambiguity will confuse the regressor to degrade the
performance, so we choose to regress the similarity transformation matrix instead
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of [f,pitch, yaw, roll, t2d] to reduce the regression difficulty: T = f [R; t3d], where
T ∈ R

3×4 is constructed by a scale factor f , a rotation matrix R and a trans-

lation vector t3d =
[
t2d

0

]
. Therefore, the scale orthographic projection in Eq. 2

can be simplified as:

V2d(p) = Pr ∗ T ∗
[
S + Aα

1

]
, (3)

where A = [Aid,Aexp] and α = [αid,αexp]. Our regression objective is described
as p = [T,α].

The high-dimensional parameters αshp ∈ R
199, αexp ∈ R

29 are redundant,
since 3DMM models the 3D face shape with PCA and the last parts of param-
eters have little effect on the face shape. We choose only the first 40 dimen-
sions of αshp and the first 10 dimensions of αexp as our regression target, since
the NME increase is acceptable and the reconstruction can be greatly acceler-
ated. The NME error heatmap caused by different size of shape and expression
dimensions is present in the supplementary material. Therefore, our complete
regression target is simplified as p = [T3×4,α50], with 62 dimensions in total,
where α = [α40

shp,α
10
exp]. To eliminate the negative impact of magnitude dif-

ferences between T and α, Z-score normalizing is adopted: p = (p − μp)/σp,
where μp ∈ R

62 is the mean of parameters and σp ∈ R
62 indicates the standard

deviation of parameters.

2.2 Meta-Joint Optimization

We first review the Vertex Distance Cost (VDC) and Weighted Parameter Dis-
tance Cost (WPDC) in [54], then derivate the meta-joint optimization to facili-
tate the parameters regression.

The VDC term Lvdc directly optimizes p by minimizing the vertex distances
between the fitted 3D face and the ground truth:

Lvdc = ‖V3d (p) − V3d (pg)‖2 , (4)

where pg is the ground truth parameter, p is the predicted parameter and V3d(·)
is the 3D face reconstruction formulated as:

V3d(p) = T ∗
[
S + Aα

1

]
. (5)

Different from VDC, the WPDC term [54] Lwpdc assigns different weights to
each parameter:

Lwpdc = ‖w · (p − pg)‖2 , (6)

where w indicates the importance weight as follows:

w = (w1, w2, . . . , wi, . . . , wn) ,

wi =
∥
∥V3d(pde,i) − V3d(pg)

∥
∥ /Z,

pde,i = (pg
1,p

g
2, . . . ,pi, . . . ,pg

n) ,

(7)
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where n is the number of parameters (n = 62 in our regression framework), pde,i

is the i-degraded parameter whose i-th element is from the predicted p, Z is the
maximum of w for regularization. The term

∥
∥V3d(pde,i) − V3d(pg)

∥
∥ models the

importance of i-th parameter.

Algorithm 2: fWPDC: Fast WPDC Algorithm.
Input : Shape and expression base: A = [Aid,Aexp] ∈ R

3N×50

Mean shape: S ∈ R
3×N

Predicted parameters: p = [T ∈ R
3×4, α ∈ R

50]

Ground truth parameters: pg = [Tg ∈ R
3×4, αg ∈ R

50]
Scale factor scalar: f

Output: WPDC item
1 Initialize the weights of the parameter T and α : wT ∈ R

3×4, wα ∈ R
50;

// Calculating the weight of transform matrix

2 Reconstruct the vertices without projection: S = S + Aα ∈ R
3×N ;

3 for i = 1, 2, 3 do
4 wT (:, i) =

(
T(:, i) − Tg(:, i)

) · ‖S (i, :)‖;
5 end

6 wT (:, 4) =
(
T(:, 4) − Tg(:, 4)

) · √
N/3 and then flatten wT to the vector form in row-major

order;
// Calculating the weight of shape and expression parameters

7 for i = 1 . . . 50 do
8 wα(i) = f · (

α(i) − αg(i)
) · ‖A (:, i)‖;

9 end
// Calculating the fWPDC item

10 Get the maximum value Z of the weights (wT ,wα) and normalize them: wT = wT /Z,
wα = wα/Z;

11 Calculate the WPDC item: Lfwpdc = ‖wT · (T − Tg)‖2 + ‖wα · (α − αg)‖2

fWPDC. The original calculation of w in WPDC is rather slow as the calcula-
tion of each wi needs to reconstruct all the vertices once, which is a bottleneck
for fast training. We find that the vertices can be only reconstructed once by
decomposing the weight calculation into two parts: the similarity transformation
matrix T, and the combination of shape and expression parameters α. Therefore,
we design a fast implementation of WPDC named fWPDC: (i) reconstructing
the vertices without projection S = S+Aα and calculating wT using the norm
of row vectors; (ii) calculating wα using the norm of column vectors of A and
the input scale f : wα(i) = f · (α(i) − αg(i)

) · ‖A (:, i)‖; (iii) Combining them to
calculate the final cost. The detailed algorithm of fWPDC is described in Algo-
rithm2. fWPDC only reconstructs dense vertices once, not 62 times as WPDC,
thus greatly reducing the computation cost. With 128 samples as a batch input,
the original WPDC takes 41.7 ms while fWPDC only takes 3.6 ms. fWPDC is
over 10× faster than the original WPDC while preserving the same outputs.

Exploitation of VDC and fWPDC. Through Eq. 4 and Eq. 6, we find:
WPDC/fWPDC is suitable for parameters regression since each parameter is
appropriately weighted, while VDC can directly reflect the goodness of the 3D
face reconstructed from parameters. In Fig. 3, we investigate how these two losses
converge as the training progresses. It is shown that the optimization is difficult
for VDC since the vertex error is still over 15 when training converges. The work
in [55] also demonstrates that optimizing VDC with gradient descent converges
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Fig. 3. The vertex error in training on 300W-LP supervised by different loss terms.
VDC from scratch has the highest error, fWPDC is lower than VDC, and VDC from
fWPDC is better than both. When combining VDC and fWPDC, the proposed meta-
joint optimization converges faster and reaches lower error than vanilla-joint, and
achieves even better convergence when incorporating the landmark-regression regu-
larization.

very slowly due to the “zig-zagging” problem. In contrast, the convergence of
fWPDC is much faster than VDC and the error is about 7 when training con-
verges. Surprisingly, if the fWPDC-trained model is fine-tuned by VDC, we can
get a much lower error than fWPDC. Based on the above observation, we con-
clude that: training from scratch with VDC is hard to converge and the network
is not fully trained by fWPDC in the late stage.

Meta-Joint Optimization. Based on above discussions, it is natural to weight
two terms to perform a vanilla-joint optimization: Lvanilla-joint = βLfwpdc+(1−
β) |lfwpdc|

|lvdc| · Lvdc, where β ∈ [0, 1] controls the importance between fWPDC and
VDC. However, the vanilla-joint optimization relies on the manually set hyper-
parameter β and does not achieves satisfactory results in Fig. 3. Inspired by
Lookahead [52] and MAML [18], we propose a meta-joint optimization strategy
to dynamically combine fWPDC and VDC. The overview of the meta-joint opti-
mization is shown in Fig. 4. In the training process, the model looks ahead by
k-steps with the cost fWPDC or VDC on k meta-train batches Xmtr, then selects
the better one between fWPDC and VDC according to the vertex error on the
meta-test batch. Specifically, the whole meta-joint optimization consists of four
steps: (i) sampling k batches of training samples Xmtr for meta-train and one
batch Xmte for meta-test; (ii) meta-train: updating the current model param-
eters θi with fWPDC and VDC on Xmtr by k-steps, respectively, getting two
parameter states θf

i+k and θv
i+k; (iii) meta-test: evaluating the vertex error θf

i+k

and θv
i+k on Xmte; (iv) selecting the parameters which have the lower error to

update θi. The proposed meta-joint optimization can be directly embedded into
the standard training regime. From Fig. 3, we can observe that the meta-joint
optimization converges faster than vanilla-joint and has the lower error.
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2.3 Landmark-Regression Regularization

In 3D face reconstruction [14,15,19,42,43], the 2D sparse landmarks after pro-
jecting are usually used as an extra regularization to facilitate the parameters
regression. In our regression framework, we find that treating 2D sparse land-
marks as a auxiliary regression task benefits more.

meta-train

k-step ahead/forward

current parameters

updated parameters by fWPDC

updated parameters by VDC

θiθi

θiθi

θf
i+kθf
i+k

θv
i+kθv
i+k

meta-test

θi+kθi+k

Update
arg min

θi+k

(
Lvdc(θ

f
i+k, Xmte), Lvdc(θv

i+k, Xmte)
)

∇θiLfwpdc(θi,Xmtr)

∇θi
Lvdc(θi,Xmtr)

θv
i+kθv
i+k

θf
i+kθf
i+k

SelectorSelector

Fig. 4. Overview of the meta-joint optimization.

As shown in Fig. 2, we add an additional landmark-regression task on the
global pooling layer, trained by L2 loss. The difference between the former
landmark-regularization and the latter landmark-regression regularization is that
the latter introduces extra parameters to regress the landmarks. In other words,
the landmark-regression regularization is a task-level regularization. From the
tomato curve in Fig. 3, we get a lower error by incorporating the landmark-
regression regularization. The comparative results in Table 3 show our pro-
posed landmark-regression regularization is better than landmark-regularization
(3.59% vs. 3.71% on AFLW2000-3D). The landmark-regression regularization is
formulated as: Llrr = 1

N

∑N
i=1 ‖li − lgi ‖22, where N is 136 here as we utilize 68

2D landmarks and flatten them into a 136-d vector.

2.4 3D Aided Short-video-synthesis

Video based 3D face applications have become more and more popular [8,9,27,
28] recently. In these applications, 3D dense face alignment methods are required
to run on videos and provide stable reconstruction results across adjacent frames.
The stability means that the changing of the reconstructed 3D faces across adja-
cent frames should be consistent with the true face moving in a fine-grained
level. However, most of existing methods [17,26,54,55] omit this requirenment
and the predictions suffer from random jittering. In 2D face alignment, post-
processing like temporal filtering is a common strategy to reduce the jittering,
but it degrades the precision and causes the frame delay. Besides, since no pub-
lic video databases for 3D dense face alignment are available, the video training
strategies [16,32,36,40] cannot work here. A challenge arises: can we improve
the stability on videos with only still images available when training?

To address this challenge, we propose a batch-level 3D aided short-video-
synthesis strategy, which expands one still image to several adjacent frames,
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forming a short synthetic video in a mini-batch. The common patterns in a video
can be modelled as: (i) Noise. We model noise as P (x) = x + N (0, Σ), where
Σ = σ2I. (ii) Motion Blur. Motion blur can be formulated as M(x) = K ∗ x,
where K is the convolution kernel (the operator ∗ denotes a convolution). (iii)
In-plane rotation. Given two adjacent frames xt and xt+1, the in-plane temporal
change from xt to xt+1 can be described as a similarity transform T (·):

T (·) = Δs

[
cos(Δθ) − sin(Δθ) Δt1
sin(Δθ) cos(Δθ) Δt2

]
, (8)

where Δs is the scale perturbation, Δθ is the rotation perturbation, Δt1 and Δt2
are translation perturbations. (iv) Since human faces share similar 3D structure,
we are also able to synthesize the out-of-plane face moving. Face profiling [54]
F (·), which is originally proposed to solving large-pose face alignment, is utilized
to progressively increase the yaw angle Δφ and pitch angle Δγ of the face.
Specifically, we sample several still images in a mini-batch and for each still image
x0, we transform it slightly and smoothly to generate a synthetic video with n
adjacent frames: {x′

j |x′
j = (M ◦P )(xj), xj = (T ◦F )(xj−1), 1 ≤ j ≤ n−1}∪{x0}.

In Fig. 5, we give an illustration of how these transformations are applied on an
image to generate several adjacent frames.

x0 F (x0)

Out-of-plane rotation In-plane rotation Noise Motion blur
Δφ = 5◦,Δγ = 2◦ Δs = 1.05,Δθ = 3◦, (Δt1,Δt2) = (3, 3) σ = 3 kernel size = 5

x1 = (T ◦ F )(x0)

F (x1) x2 = (T ◦ F )(x1)

P (x1)

P (x2)

S
ynthetic ad

jacent fram
es

x′
1 = (M ◦ P )(x1)

x′
2 = (M ◦ P )(x2)

Fig. 5. An illustration of how two adjacent frames are synthesized in our 3D aided
short-video-synthesis.

3 Experiments

In this section, we first introduce the datasets and protocols; then, we give
comparison experiments on the accuracy and stability; thirdly, the complexity
and running speed are evaluated; extensive discussions are finally made. The
implementation details, generalization and scaling-up ability of our proposed
method are in the supplementary material.
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3.1 Datasets and Evaluation Protocols

Five datasets are used in our experiments: 300W-LP [54] (300W Across Large
Poses) is composed of the synthesized large-pose face images from 300W [38],
including AFW [56], LFPW [2], HELEN [53], IBUG [38], and XM2VTS [34].
Specifically, the face profiling method [54] is adopted to generate 122,450 sam-
ples across large poses. AFLW [29] consists of 21,080 in-the-wild faces (following
[22,55]) with large poses (yaw from -90◦ to 90◦). Each image is annotated up to
21 visible landmarks. AFLW2000-3D [54] is constructed by [54] for evaluating
3D face alignment performance, which contains the ground truth 3D faces and
the corresponding 68 landmarks of the first 2,000 AFLW samples. Florence [1] is
a 3D face dataset containing 53 subjects with its ground truth 3D mesh acquired
from a structured-light scanning system. For evaluation, we generate render-
ings with different poses for each subject following VRN [26] and PRNet [17].
Menpo-3D [51] provides a benchmark for evaluating 3D facial landmark local-
ization algorithms in the wild in arbitrary poses. Specifically, Menpo-3D provides
3D facial landmarks for 55 videos from 300-VW [39] competition.

Fig. 6. Ablative results of the vanilla-joint optimization with different β and meta-joint
optimization with different k. Lower NME (%) is better.

Protocols. The protocol on AFLW follows [54] and Normalized Mean Error
(NME) by bounding box size is reported. Two protocols on AFLW2000-3D are
applied: the first one follows AFLW, and the other one follows [17] to evaluate
the NME of 3D face reconstruction normalized by the bounding box size. For
Florence, we follow [17,26] to evaluate the NME of 3D face reconstruction nor-
malized by outer interocular distance. As for Menpo-3D, we evaluate the NME
on still frames and the stability across adjacent frames. We calculate the sta-
bility following [40] by measuring the NME between the predicted offsets and
the ground-truth offsets of adjacent frames. Specifically, at frame t − 1 and t,
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Table 1. The NME (%) of different methods on AFLW2000-3D and AFLW. The first
and the second best results are highlighted. M, R, S denote the meta-joint optimization,
landmark-regression regularization and short-video-synthesis, respectively.

Method AFLW2000-3D (68 pts) AFLW (21 pts)

[0, 30] [30, 60] [60, 90] Mean [0, 30] [30, 60] [60, 90] Mean

ESR [13] 4.60 6.70 12.67 7.99 5.66 7.12 11.94 8.24

SDM [46] 3.67 4.94 9.67 6.12 4.75 5.55 9.34 6.55

3DDFA [54] 3.78 4.54 7.93 5.42 5.00 5.06 6.74 5.60

3DDFA+SDM [54] 3.43 4.24 7.17 4.94 4.75 4.83 6.38 5.32

Yu et al. [48] 3.62 6.06 9.56 6.41 – – – –

DeFA [33] – – – 4.50 – – – –

3DSTN [4] 3.15 4.33 5.98 4.49 3.55 3.92 5.21 4.23

3D-FAN [7] 3.15 3.53 4.60 3.76 4.40 4.52 5.17 4.69

3DDFA-TPAMI [55] 2.84 3.57 4.96 3.79 4.11 4.38 5.16 4.55

PRNet [17] 2.75 3.51 4.61 3.62 4.19 4.69 5.45 4.77

MobileNet (M+R) 2.75 3.49 4.53 3.59 4.06 4.41 5.02 4.50

MobileNet (M+R+S) 2.63 3.42 4.48 3.51 3.98 4.31 4.99 4.43

Table 2. The NME (%) on Florence, AFLW2000-3D (Dense), NME (%) / Stability
(%) on Menpo-3D, running complexity and time with different methods. Our method
outputs 3D dense vertices with only 2.1 ms (2 ms for parameters prediction and 0.1 ms
for vertices reconstruction) in GPU or 7.2 ms in CPU (6.2 ms for parameters prediction
and 1 ms for vertices reconstruction). The first and second best results are highlighted.

Methods Florence AFLW2000-3D

(Dense)

Menpo-3D Params MACs Run time (ms)

3DDFA [54] 6.38 6.56 – – – 75.7= 23.2 (GPU)+52.5 (CPU)

VRN [26] 5.27 – – – – 69.0 (GPU)

DeFA [33] – 6.04 – – 1426M 35.4=11.8 (GPU)+23.6 (CPU)

PRNet [17] 3.76 4.41 1.90 / 0.54 13.4M 6190M 9.8 (GPU) / 175.0 (CPU)

MobileNet (M+R) 3.59 4.20 1.86 / 0.52 3.27M 183M 2.1 (GPU) / 7.2 (CPU)

MobileNet (M+R+S) 3.56 4.18 1.71 / 0.48

the ground-truth landmark offset is Δp = pt − pt−1, the prediction offset is
Δq = qt − qt−1, the error Δp − Δq normalized by the bounding box size repre-
sents the stability. Since 300W-LP only has the indices of 68 landmarks, we use
68 landmarks of Menpo-3D for consistency.

3.2 Ablation Study

To evaluate the effectiveness of the meta-joint optimization and the landmark-
regression regularization, we carry out comparative experiments including our
two baselines: VDC and fWPDC, three joint options: (i) VDC from fWPDC :
fine-tune the model with VDC loss from the pre-trained model by fWPDC; (ii)
Vanilla-joint : weight VDC and fWPDC by the best scalar β = 0.5; (iii) Meta-
joint : the proposed meta-joint optimization with best k = 100 and four options
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Table 3. The comparative and ablative results on AFLW2000-3D and AFLW. The
mean NMEs (%) across small, medium and large poses on AFLW2000-3D and AFLW
are reported. lmk. indicates landmark constraint on the parameter regression like [43]
and lrr. is the proposed landmark-regression regularization.

Method AFLW2000-3D AFLW

Baseline VDC 5.23 6.37

fWDPC 4.04 5.10

Joint-optimization options VDC from fWPDC 3.88 4.83

Vanilla-joint 3.80 4.80

Meta-joint 3.73 4.64

Utilization of 2D landmarks VDC w/ lrr 3.92 4.92

fWPDC w/ lrr 3.89 4.84

Meta-joint w/ lmk 3.71 4.80

Meta-joint w/ lrr. 3.59 4.50

Table 4. Comparisons of NME (%)/Stability (%) on Menpo-3D. svs. indicates short-
video-synthesis, rnd. indicates applying in-plane and out-of-plane rotations randomly
in one mini-batch.

Method Menpo-3D

fWPDC w/o svs 1.96 / 0.54

fWPDC w/ svs 1.84 / 0.51

Meta-joint+lrr. w/o svs 1.86 / 0.52

Meta-joint+lrr. w/ rnd 1.76 / 0.50

Meta-joint+lrr. w/ svs 1.71/0.48

of how the 2D landmarks are utilized. From Table 3, Table 4, Fig. 3 and Fig. 6,
we can draw the following conclusions:

Meta-Joint Optimization Performs Better. Comparing with two baselines
VDC and fWPDC, all three joint optimization methods perform better. Among
three joint optimization methods, the proposed meta-joint performs better than
VDC from fWPDC and vanilla-joint : the mean NME drops from 4.04% to 3.73%
on AFLW2000-3D and 5.10% to 4.64% on AFLW when compared with the base-
line fWPDC. Furthermore, we conduct ablative experiments with different β
for vanilla-joint and different look-ahead step k in Fig. 6. We can observe that
β = 0.5 is the best setting for vanilla-joint, but meta-joint still outperforms it
and k = 100 performs best on both AFLW2000-3D and AFLW. Overall, the pro-
posed meta-joint optimization is effective in alleviate the training and promoting
the performance.
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Landmark-Regression Regularization Benefits. Another contribution is
the landmark-regression regularization, which can also be regarded as an auxil-
iary task to parameters regression. From Table 3, the improvements from fWPDC
to fWPDC w/ lrr. on AFLW2000-3D and AFLW are 0.15% and 0.26%, and
the improvements from Meta-joint to Meta-joint w/ lrr. on AFLW2000-3D and
AFLW are 0.14% and 0.14%. We also compare the proposed landmark-regression
regularization with prior methods [42,43] which directly impose landmark con-
straint on the parameter regression, the results show ours is significantly better:
3.59% vs. 3.71% on AFLW2000-3D. We further evaluate the performance of the
landmark-regression branch on AFLW2000-3D and AFLW. The performances
are 3.58% and 4.52% respectively, which are close to the parameter branch.
It indicates that these two tasks are highly related. Overall, the landmark-
regression regularization benefits the training and promotes the performance.

Short-Video-Synthesis Improves Stability. The last contribution is 3D
aided short-video-synthesis, which is designed to enhance stability on videos
by augmenting one still image to a short video in a mini-batch. The results in
Table 4 indicate that short-video-synthesis works for both the fWPDC and meta-
joint optimization. With short-video-synthesis and landmark-regression regular-
ization, the performance on still frames improves from 1.86% to 1.71% and the
stability improves from 0.52% to 0.48%. We also evaluate the performance by
randomly applying in-plane and out-of-plane rotations in each mini-batch and
find it is worse than short-video-synthesis: 1.76%/0.50% v.s. 1.71%/0.48%. These
results validate the effectiveness of the 3D aided short-video-synthesis.

3.3 Evaluations of Accuracy and Stability

Sparse Face Alignment. We use AFLW2000-3D and AFLW to evaluate sparse
face alignment performance with small, medium and large yaw angles. The
results in Table 1 indicate that our method performs better than PRNet (3.51%
vs. 3.62%) in AFLW2000-3D and better than 3DDFA-TPAMI [55] in AFLW
(4.43% vs. 4.55%). Note that these results are achieved with only 3.27M param-
eters (24% of PRNet) and it takes 6.2 ms (3.5% of PRNet) in CPU. The sampling
of 68/21 landmarks from 3DMM is extremely fast, only 0.01 ms (CPU), which
can be ignored.

Dense Face Alignment. Dense face alignment is evaluated on Florence and
AFLW2000-3D. Our evaluation settings follow [17] to keep consistency. The
results in Table 2 show that the proposed method significantly outperforms oth-
ers. As for 3D dense vertices reconstruction, 45K vertices only takes 1 ms in CPU
(0.1 ms in GPU) with our regression framework.

Video-based 3D Face Alignment. We use Menpo-3D to evaluate both the
accuracy and stability. Table 4 has already shown the superiority of short-video-
synthesis. We choose to compare our method with recent PRNet [17] in Table 2.
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The results indicate that our method significantly surpasses PRNet in both the
accuracy and stability on videos of Menpo-3D with a much lower computation
cost.

3.4 Evaluations of Speed

We compare parameter numbers, MACs (Multiply-Accumulates) measuring the
number of fused Multiplication and Addition operations, and the running time of
our method with others in Table 2. As for the running speed, 3DDFA [54] takes
23.2 ms (GPU) for predicting parameters and 52.5 ms (CPU) for PNCC construc-
tion, DeFA [17] needs 11.8 ms (GPU) to predict 3DMM parameters and 23.6 ms
(CPU) for post-processing, VRN [26] detects 68 2D landmarks with 28.4 ms
(GPU) and regresses the 3D dense vertices with 40.6 ms (GPU), PRNet [17]
predicts the 3D dense vertices with 9.8 ms (GPU) or 175 ms (CPU). Compared
with them, our method takes only 2 ms (GPU) or 6.2 ms (CPU) to predict 3DMM
parameters and 0.1 ms (GPU) or 1 ms (CPU) to reconstruct 3D dense vertices.

Specifically, compared with the recent PRNet [17], the parameters of our
model (3.27M) are less than one-quarter of PRNet (13.4M), and the MACs
are less than 1/30 (183.5M vs. 6190M). We measure the overall running time
on GeForce GTX 1080 GPU and i5-8259U CPU with 4 cores. Note that our
method takes only 7.2 ms, which is almost 24× faster than PRNet (175 ms).
Besides, we benchmark our method on a single CPU core (using only one thread)
and the running speed of our method is about 19.2ms (over 50 fps), including
the reconstruction time. The specific CPU configuration is i5-8259U CPU @
2.30 GHz on a 13-inch MacBook Pro.

3.5 Analysis of Meta-Joint Optimization

We visualize the auto-selection result of fWPDC and VDC in the meta-joint
optimization, as shown in Fig. 7. We can observe that both k = 100 and k = 200
show the same trend: fPWDC dominates in the early stage and VDC guides in
the late stage. This trend is consistent with the previous observations and gives
a clear description of why our proposed meta-joint optimization works.

Fig. 7. Auto-selection result of the selector in the meta-joint optimization.
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4 Conclusion

In this paper, we have successfully pursued the fast, accurate and stable 3D dense
face alignment simultaneously. Towards this target, we make three main efforts:
(i) proposing a fast WPDC named fWPDC and the meta-joint optimization to
combine fWPDC and VDC to alleviate the problem of optimization; (ii) imposing
an extra landmark-regression regularization to promote the performance to state-
of-the-art; (iii) proposing the 3D aided short-video-synthesis method to improve
the stability on videos. The experimental results demonstrate the effectiveness
and efficiency of our proposed methods. Our promising results pave the way for
real-time 3D dense face alignment in practical use and the proposed methods
may improve the environment by reducing the amount of carbon dioxide released
by the huge amounts of energy consumed by GPUs.
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