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Abstract. In the recent quest for trustworthy neural networks, we
present Spiking Neural Network (SNN) as a potential candidate for
inherent robustness against adversarial attacks. In this work, we demon-
strate that adversarial accuracy of SNNs under gradient-based attacks
is higher than their non-spiking counterparts for CIFAR datasets on
deep VGG and ResNet architectures, particularly in blackbox attack sce-
nario. We attribute this robustness to two fundamental characteristics of
SNNs and analyze their effects. First, we exhibit that input discretization
introduced by the Poisson encoder improves adversarial robustness with
reduced number of timesteps. Second, we quantify the amount of adver-
sarial accuracy with increased leak rate in Leaky-Integrate-Fire (LIF)
neurons. Our results suggest that SNNs trained with LIF neurons and
smaller number of timesteps are more robust than the ones with IF
(Integrate-Fire) neurons and larger number of timesteps. Also we over-
come the bottleneck of creating gradient-based adversarial inputs in tem-
poral domain by proposing a technique for crafting attacks from SNN
(https://github.com/ssharmin/spikingNN-adversarial-attack).

Keywords: Spiking neural networks · Adversarial attack ·
Leaky-integrate-fire neuron · Input discretization

1 Introduction

Adversarial attack is one of the biggest challenges against the success of today’s
deep neural networks in mission critical applications [10,16,32]. The underlying
concept of an adversarial attack is to purposefully modulate the input to a neural
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network such that it is subtle enough to remain undetectable to human eyes, yet
capable of fooling the network into incorrect decisions. This malicious behavior
was first demonstrated in 2013 by Szegedy et al. [27] and Biggio et al. [4] in
the field of computer vision and malware detection, respectively. Since then,
numerous defense mechanisms have been proposed to address this issue. One
category of defense includes fine-tuning the network parameters like adversarial
training [11,18], network distillation [22], stochastic activation pruning [8] etc.
Another category focuses on preprocessing the input before passing through the
network like thermometer encoding [5], input quantization [21,31], compression
[12] etc. Unfortunately, most of these defense mechanisms have been proved futile
by many counter-attack techniques. For example, an ensemble of defenses based
on “gradient-masking” collapsed under the attack proposed in [1]. Defensive
distillation was broken by Carlini-Wagner method [6,7]. Adversarial training has
the tendency to overfit to the training samples and remain vulnerable to transfer
attacks [28]. Hence, the threat of adversarial attack continues to persist.

In the absence of adversarial robustness in the existing state-of-the-art net-
works, we feel there is a need for a network with inherent susceptibility against
adversarial attacks. In this work, we present Spiking Neural Network (SNN)
as a potential candidate due to two of its fundamental distinctions from the
non-spiking networks:

1. SNNs operate based on discrete binary data (0/1), whereas their non-spiking
counterparts, referred as Analog Neural Network (ANN), take in continuous-
valued analog signals. Since SNN is a binary spike-based model, input dis-
cretization is a constituent element of the network, most commonly done by
Poisson encoding.

2. SNNs employ nonlinear activation function of the biologically inspired
Integrate-Fire (IF) or Leaky-Integrate-Fire (LIF) neurons, in contrast to the
piecewise-linear ReLU activations used in ANNs.

Among the handful of works done in the field of SNN adversarial attacks [2,
19], most of them are restricted to either simple datasets (MNIST) or shallow
networks. However, this work extends to complex datasets (CIFAR) as well as
deep SNNs which can achieve comparable accuracy to the state-of-the-art ANNs
[23,24]. For robustness comparison with non-spiking networks, we analyze two
different types of spiking networks: (1) converted SNN (trained by ANN-SNN
conversion [24]) and (2) backpropagated SNN (an ANN-SNN converted network,
further incrementally trained by surrogate gradient backpropagation [23]). We
identify that converted SNNs fail to demonstrate more robustness than ANNs.
Although authors in [25] show similar analysis, we explain with experiments the
reason behind this discrepancy and, thereby, establish the necessary criteria for
an SNN to become adversarially robust. Moreover, we propose an SNN-crafted
attack generation technique with the help of the surrogate gradient method. We
summarize our contribution as follows:

• We show that the adversarial accuracies of SNNs are higher than ANNs under
a gradient-based blackbox attack scenario, where the respective clean accura-
cies are comparable to each other. The attacks were performed on deep VGG
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and ResNet architectures trained on CIFAR10 and CIFAR100 datasets. For
whitebox attacks, the comparison is dependent on the relative strengths of
the adversary.

• The increased robustness of SNN is attributed to two fundamental charac-
teristics: input discretization through Poisson encoding and non-linear acti-
vations of LIF (or IF) neurons.

◦ We investigate how adversarial accuracy changes with the number of
timesteps (inference latency) used in SNN for different levels of input
pre-quantization1. In case of backpropagated SNNs (trained with smaller
number of timesteps), the amount of discretization as well as adver-
sarial robustness increases as we reduce the number of timesteps. Pre-
quantization of the analog input brings about further improvement.
However, converted SNNs appear to depend only on the input pre-
quantization, but invariant to the variation in the number of timesteps.
Since these converted SNNs operate under larger number of timesteps
[24], discretization effect is minimized by input averaging, and hence, the
observed invariance.
◦ We show that piecewise-linear activation (ReLU) in ANN linearly prop-
agates the adversarial perturbation throughout the network, whereas LIF
(or IF) neurons diminish the effect of perturbation at every layer. Addi-
tionally, the leak factor in LIF neurons offers an extra knob to control the
adversarial perturbation. We perform a quantitative analysis to demon-
strate the effect of leak on the adversarial robustness of SNNs.

Overall, we show that SNNs employing LIF neurons, trained with surrogate
gradient-based backpropagation, and operating at less number of timesteps are
more robust than SNNs trained with ANN-SNN conversion that requires IF
neurons and more number of timesteps. Hence, the training technique plays a
crucial role in fulfilling the prerequisites for an adversarially robust SNN.

• Gradient-based attack generation in SNNs is non-trivial due to the discon-
tinuous gradient of the LIF (or IF) neurons. We propose a methodology to
generate attacks based on the approximate surrogate gradients.

2 Background

2.1 Adversarial Attack

Given a clean image x belonging to class i and a trained neural network M , an
adversarial image xadv needs to meet two criteria:

1. xadv is visually “similar” to x i.e. |x − xadv| = ε, where ε is a small number.
2. xadv is misclassified by the neural network, i.e. M(xadv) �= i

The choice of the distance metric |.| depends on the method used to create xadv

and ε is a hyper-parameter. In most methods, l2 or l∞ norm is used to measure

1 Full-precision analog inputs are quantized to lower bit precision values before under-
going the discretization process by the Poisson encoder of SNN.
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the similarity and the value of ε is limited to ≤ 8
255 where normalized pixel

intensity x ∈ [0, 1] and original x ∈ [0, 255].
In this work, we construct adversarial examples using the following two

methods:

Fast Gradient Sign Method (FGSM). This is one of the simplest methods
for constructing adversarial examples, introduced in [11]. For a given instance x,
true label ytrue and the corresponding cost function of the network J(x, ytrue),
this method aims to search for a perturbation δ such that it maximizes the
cost function for the perturbed input J(x + δ, ytrue), subject to the constraint
|δ|∞ < ε. In closed form, the attack is formulated as,

xadv = x + ε × sign
(∇xJ (x, ytrue)

)
(1)

Here, ε denotes the strength of the attack.

Projected Gradient Descent (PGD). This method, proposed in [18], pro-
duces more powerful adversary. PGD is basically a k-step variant of FGSM
computed as,

x
(k+1)
adv = Πx+ε

{(
x
(k)
adv + α × sign

(
∇x

(
J(x(k)

adv, ytrue)
))

)}
(2)

where x
(0)
adv = x and α(≤ ε) refers to the amount of perturbation used per itera-

tion or step, k is the total number of iterations. Πx+ε{.} performs a projection of
its operand on an ε-ball around x, i.e., the operand is clipped between x+ ε and
x − ε. Another variant of this method adds a random perturbation of strength ε
to x before performing PGD operation.

2.2 Spiking Neural Network (SNN)

The main difference between an SNN and an ANN is the concept of time. The
incoming signals as well as the intermediate node inputs/outputs in an ANN
are static analog values, whereas in an SNN, they are binary spikes with a
value of 0 or 1, which are also functions of time. In the input layer, a Poisson
event generation process is used to convert the continuous valued analog signals
into binary spike train. Suppose the input image is a 3-D matrix of dimension
h × w × l with pixel intensity in the range [0, 1]. At every time step of the SNN
operation, a random number (from the normal distribution N (0, 1)) is generated
for each of these pixels. A spike is triggered at that particular time step if the
corresponding pixel intensity is greater than the generated random number. This
process continues for a total of T timesteps to produce a spike train for each
pixel. Hence, the size of the input spike train is T ×h×w× l. For a large enough
T , the timed average of the spike train will be proportional to its analog value.
Every node of the SNN is accompanied with a neuron. Among many neuron
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models, the most commonly used ones are Integrate-Fire (IF) or Leaky-Integrate-
Fire (LIF) neurons. The dynamics of the neuron membrane potential at time t+1
is described by,

V (t + 1) = λV (t) +
∑

i

wixi(t) (3)

Here λ = 1 for IF neurons and < 1 for LIF neurons. wi denotes the synaptic
weight between current neuron and i-th pre-neuron. xi(t) is the input spike from
the i-th pre-neuron at time t. When V (t + 1) reaches the threshold voltage Vth,
an output spike is generated and the membrane potential is reset to 0, or in
case of soft reset, reduced by the amount of the threshold voltage. At the output
layer, inference is performed based on the cumulative membrane potential of the
output neurons after the total time T has elapsed.

One of the main shortcomings of SNNs is that they are difficult to train,
especially for deeper networks. Since the neurons in an SNN have discontinuous
gradients, standard gradient-descent techniques do not directly apply. In this
work, we use two of the supervised training algorithms [23,24], which achieve
ANN-like accuracy even for deep neural networks and on complex datasets.

ANN-SNN Conversion. This training algorithm was originally outlined in [9]
and subsequently improved in [24] for deep networks. Note that the algorithm
is suited for training SNNs with IF neurons only. They propose a threshold-
balancing technique that sequentially tunes the threshold voltage of each layer.
Given a trained ANN, the first step is to generate the input Poisson spike train
for the network over the training set for a large enough time-window so that
the timed average accurately describes the input. Next, the maximum value of∑

i wixi (term 2 in Eq. 3) received by layer 1 is recorded over the entire time
range for several minibatches of the training data. This is referred as the maxi-
mum activation for layer 1. The threshold value of layer 1 neuron is replaced by
this maximum activation keeping the synaptic weights unchanged. Such thresh-
old tuning operation ensures that the IF neuron activity precisely mimics the
ReLU function in the corresponding ANN. After balancing layer 1 threshold, the
method is continued for all subsequent layers sequentially.

LIF
u o

uVt

Linear
Exp

Fig. 1. Surrogate gradient
approximation of an LIF
neuron.

Conversion and Surrogate-Gradient Back-
propagation. In order to take advantage of
the standard backpropagation-based optimiza-
tion procedures, authors in [3,30,33] introduced
the surrogate gradient technique. The input-
output characteristics of an LIF (or IF) neu-
ron is a step function, the gradient of which
is discontinuous at the threshold point (Fig. 1).
In surrogate gradient technique, the gradient is
approximated by pseudo-derivatives like linear
or exponential functions. Authors in [23] pro-
posed a novel approximation function for these
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gradients by utilizing the spike time information in the derivative. The gradient
at timestep t is computed as follows:

∂ot

∂ut
= αe−βΔt (4)

Here, ot is the output spike at time t, ut is the membrane potential at t, Δt
is the difference between current timestep and the last timestep post-neuron
generated a spike. α and β are hyperparameters. Once the neuron gradients are
approximated, backpropagation through time (BPTT) [29] is performed using
the chain rule of derivatives. In BPTT, the network is unrolled over all timesteps.
The final output is computed as the cumulation of outputs at every timestep and
eventually, loss is defined on the summed output. During backward propagation
of the loss, the gradients are accumulated over time and used in gradient-descent
optimization. Authors in [23] proposed a hybrid training procedure in which the
surrogate-gradient training is preceded by an ANN-SNN conversion to initialize
the weights and thresholds of the network. The advantage of this method over
ANN-SNN conversion is twofold: one can train a network with both IF and LIF
neurons and the number of timesteps required for training is reduced by a factor
of 10 without losing accuracy.

3 Experiments

3.1 Dataset and Models

We conduct our experiments on VGG5 and ResNet20 for CIFAR10 dataset and
VGG11 for CIFAR100. The network topology for VGG5 consists of conv3,64-
avgpool-conv3,128 (×2)-avgpool-fc1024 (×2)-fc10. Here conv3,64 refers to a con-
volutional layer with 64 output filters and 3×3 kernel size. fc1024 is a fully-
connected layer with 1024 output neurons. VGG11 contains 11 weight layers
corresponding to the configuration A in [26] with maxpool layers replaced by
average pooling. ResNet20 follows the proposed architecture for CIFAR10 in
[13], except the initial 7 × 7 non-residual convolutional layer is replaced by a
series of two 3 × 3 convolutional layers. For ANN-SNN conversion of ResNet20,
threshold balancing is performed only on these initial non-residual units (as
demonstrated by [24]). The neurons (in both ANN and SNN) contain no bias
terms, since they have an indirect effect on the computation of threshold voltages
during ANN-SNN conversion. The absence of bias eliminates the use of batch
normalization [14] as a regularizer. Instead, a dropout layer is used after every
ReLU (except for those which are followed by a pooling layer).

3.2 Training Procedure

The aim of our experiment is to compare adversarial attack on 3 networks: 1)
ANN, 2) SNN trained by ANN-SNN conversion and 3) SNN trained by back-
propagation, with initial conversion. These networks will be referred as ANN,
SNN-conv and SNN-BP, respectively from this point onward.
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For both CIFAR10 and CIFAR100 datasets, we follow the data augmentation
techniques in [17]: 4 pixels are padded on each side, and a 32×32 crop is ran-
domly sampled from the padded image or its horizontal flip. Testing is performed
on the original 32 × 32 images. Both training and testing data are normalized
to [0, 1]. For training the ANNs, we use cross-entropy loss with stochastic gradi-
ent descent optimization (weight decay = 0.0001, mometum = 0.9). VGG5 (and
ResNet20) are trained for a total of 200 epochs, with an initial learning rate of
0.1 (0.05), which is divided by 10 at 100-th (80-th) and 150-th (120-th) epoch.
VGG11 with CIFAR100 is trained for 250 epochs with similar learning sched-
ule. During training SNN-conv networks, a total of 2500 timesteps are used for
all VGG and ResNet architectures. SNN-BP networks are trained for 15 epochs
with cross-entropy loss and adam [15] optimizer (weight decay = 0.0005). Initial
learning rate is 0.0001, which is halved every 5 epochs. A total of 100 timesteps
is used for VGG5 and 200 timesteps for ResNet20 & VGG11. Training is per-
formed with either linear surrogate gradient approximation [3] or spike time
dependent approximation [23] with α = 0.3, β=0.01 (in Eq. 4). Both techniques
yield approximately similar results. Leak factor λ is kept at 0.99 in all cases,
except in the analysis for the leak effect.

In order to analyze the effect of input quantization (with varying number of
timesteps) and leak factors, only VGG5 networks with CIFAR10 dataset is used.

3.3 Adversarial Input Generation Methodology

For the purpose of whitebox attacks, we need to construct adversarial samples
from all three networks (ANN, SNN-conv, SNN-BP). The ANN-crafted FGSM
and PGD attacks are generated using the standard techniques described in Eq. 1
and 2, respectively. We carry out non-targeted attacks with ε = 8/255. PGD
attacks are performed with iteration steps k = 7 and per-step perturbation
α = 2/255. FGSM or PGD method cannot be directly applied to SNN due to its
discontinuous gradient problem (described in Sect. 2.2). To that end, we outline a
surrogate-gradient based FGSM (and PGD) technique. In SNN, analog input X
is converted to Poisson spike train Xspike which is fed into the 1st convolutional
layer. If Xrate is the timed average of Xspike, the membrane potential of the 1st
convolutional layer Xconv1 can be approximated as

Xconv1 ≈ Conv(Xrate,Wconv1) (5)

Wconv1 is the weight of the 1st convolutional layer. From this equation, the sign
of the gradient of the network loss function J w.r.t. Xrate or X is described by
(detailed derivation is provided in supplementary),

sign
( ∂J

∂X

)
≈ sign

( ∂J

∂Xrate

)
= sign

(
Conv

( ∂J

∂Xconv1
,W 180rotated

conv1

))
(6)

Surrogate gradient technique yields ∂J
∂Xconv1

from SNN, which is plugged into
Eq. 6 to calculate the sign of the input gradient. This sign matrix is later used
to compute Xadv according to standard FGSM or PGD method. The algorithm
is summarized in Algorithm 1.
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Algorithm 1. SNN-crafted Xadv : FGSM

Require: Input (X, ytrue), Trained SNN (N) with loss function J.
Ensure: ∂J

∂Xconv1
← 0

for timestep t in total time T do
forward: Loss J(X, ytrue)
backward : Accumulate gradient ∂J

∂Xconv1
+ = Xconv1.grad

end for
post-processing: sign( ∂J

∂X
) = sign

(
Conv( ∂J

∂Xconv1
, W 180rotated

conv1 )
)

SNN-crafted adversary: XSNN
adv = X + ε × sign( ∂J

∂X
)

4 Results

4.1 ANN vs SNN

Table 1 summarizes our results for CIFAR10 (VGG5 & ResNet20) and CIFAR100
(VGG11) datasets in whitebox and blackbox settings. For each architecture, we
start with three networks: ANN, SNN-conv and SNN-BP, trained to achieve com-
parable baseline clean accuracy. Let us refer them as MANN , MSNN-conv and
MSNN-BP , respectively. During blackbox attack, we generate an adversarial test
dataset xadv from a separately trained ANN of the same network topology as the
target model but different initialization. It is clear that the adversarial accuracy
of SNN-BP during FGSM and PGD blackbox attacks is higher than the corre-
sponding ANN and SNN-conv models, irrespective of the size of the dataset or
network architecture (the highest value of the accuracy for each attack case is
highlighted by orange text). The amount of improvement in adversarial accuracy,
compared to ANN, is listed as Δ in the Table. If MANN and MSNN-BP yield
adversarial accuracy of pANN% and pSNN-BP %, respectively, the value of Δ
amounts to pSNN-BP % − pANN%. On the other hand, during whitebox attack,
we generate three sets of adversarial test dataset: xadv,ANN (generated from
MANN ), xadv,SNN-conv (generated from MSNN-conv) and so on. Since ANN and
SNN have widely different operating dynamics and constituent elements, the
strength of the constructed adversary varies significantly from ANN to SNN
during whitebox attack (demonstrated in Sect. 4.2). SNN-BP shows significant
improvement in whitebox adversarial accuracy (Δ ranging from 2% to 4.6%)
for both VGG and Resnet architectures with CIFAR10 dataset. In contrast,
VGG11 ANN with CIFAR100 manifests higher whitebox accuracy than SNN-
BP. We attribute this discrepancy to the difference in adversary-strength of ANN
& SNN for different dataset and network architectures. From Table 1, it is evi-
dent that SNN-BP networks exhibit the highest amount of adversarial accuracy
(orange text) among the three networks in all blackbox attack cases (attacked
by a common adversary), whereas SNN-conv and ANN demonstrate compara-
ble accuracy, irrespective of the dataset, network topology or attack generation
method. Hence, we conclude that SNN-BP is inherently more robust compared
to their non-spiking counterpart as well as SNN-conv models, when all three
networks are attacked by identical adversarial inputs. It is important to men-
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Table 1. A comparison of the clean and adversarial (FGSM and PGD) test accuracy
(%) among ANN, SNN-conv and SNN-BP networks. Highest value of the accuracy for
each attack case is marked in orange text. FGSM accuracy is calculated at ε = 8/255.
For PGD, ε = 8/255, α (per-step perturbation) = 2/255, k (number of steps) = 7. The
blackbox attacks are generated from a separately trained ANN of the same network
topology as the target model but different initialization

Whitebox Blackbox

ANN SNN-
conv

SNN-
BP

Δ† ANN SNN-
conv

SNN-
BP

Δ†

CIFAR10

V
G

G
5 Clean 90% 89.9% 89.3% — 90% 89.9% 89.3% —

FGSM 10.4% 7.7% 15% 4.6% 18.9% 19.3% 21.5% 2.6%

PGD 1.8% 1.7% 3.8% 2.0% 9.3% 9.6% 16.0% 6.7%

R
es

N
et

2
0

Clean 88.0% 87.5% 86.1% — 88.0% 87.5% 86.1% —

FGSM 28.9% 28.8% 31.3% 2.4% 56.7% 56.8% 56.8% 0.1%

PGD 1.9% 1.4% 4.9% 3.0% 41.5% 41.6% 46.5% 5.0%

CIFAR100

V
G

G
1
1 Clean 67.1% 66.8% 64.4% — 67.1% 66.8% 64.4% —

FGSM 17.1% 10.5% 15.5% -1.6% 21.2% 21.4% 21.4% 0.2%

PGD 8.5% 4.1% 6.3% -2.2% 15.6% 15.8% 16.5% 0.9%
†Δ = Adversarial accuracy (SNN-BP) - Adversarial accuracy (ANN)

tion here that our conclusion is validated for VGG & ResNet architectures and
gradient-based attacks only.

In the next two subsections, we explain two characteristics of SNNs con-
tributing towards this robustness, as well as the reason for SNN-conv not being
able to show similar behavior.

Effect of Input Quantization and Number of Timesteps. The main idea
behind non-linear input pre-processing as a defense mechanism is to discretize
continuous-valued input signals so that the network becomes non-transparent to
adversarial perturbations, as long as they lie within the discretization bin. SNN
is a binary spike-based network, which demands encoding any analog valued
input signal into binary spike train, and hence, we believe it has the inherent
robustness. In our SNN models, we employ Poisson rate encoding, where the out-
put spike rate is proportional to the input pixel intensity. However, the amount
of discretization introduced by the Poisson encoder varies with the number of
timesteps used. Hence, the adversarial accuracy of the network can be controlled
by varying the number of timesteps as long as the clean accuracy remains within
reasonable limit. This effect can be further enhanced by quantizing the analog
input before feeding into the Poisson encoder. In Fig. 2(a), we demonstrate the
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(a) (b) (c)

Fig. 2. Blackbox FGSM accuracy(%) versus total number of timesteps (T ) plot with
4-bit (blue) and 2-bit (orange) input quantization for (a) SNN-BP and (b) SNN-conv
networks. SNN-BP adversarial accuracy increases drastically with decreased number
of timesteps, whereas SNN-conv is insensitive to it. (c) A table summarizing the clean
accuracy of ANN, SNN-conv and SNN-BP for different input quantizations and number
of timesteps. (Color figure online)

FGSM adversarial accuracy of an SNN-BP network (VGG5) trained for 50, 75,
100 and 150 timesteps with CIFAR10 dataset. As number of timesteps drop
from 150 to 50, accuracy increases by ∼5% (blue line) for 4-bit input quantiza-
tion. Note that clean accuracy drops by only 1.4% within this range, from 88.9%
(150 timesteps) to 87.5% (50 timesteps), as showed in the table in Fig. 2(c).
Additional reduction of the number of timesteps leads to larger degradation of
clean accuracy. The adversarial accuracy for corresponding ANN (with 4-bit
input quantization) is showed in gray triangle in the same plot for comparison.
Further increase in adversarial accuracy is obtained by pre-quantizing the ana-
log inputs to 2-bits (orange line) and it follows the same trend with number
of timesteps. Thus varying the number of timesteps introduces an extra knob
for controlling the level of discretization in SNN-BP in addition to the input
pre-quantizations. In contrast, in Fig. 2(b), similar experiments performed on
SNN-conv network demonstrate little increase in adversarial accuracy with the
number of timesteps. Only pre-quantization of input signal causes improvement
of accuracy from ∼21% to ∼28%. Note that the range of the number of timesteps
used for SNN-conv (300 to 2000) is much higher than SNN-BP, because con-
verted networks have higher inference latency. The reason behind the invariance
of SNN-conv towards the number of timesteps is explained in Fig. 3. We plot the
input-output characteristics of the Poisson-encoder for 4 cases: (b) 4-bit input
quantization with smaller number of timesteps (50 and 150), (c) 4-bit quanti-
zation, larger number of timesteps (300 and 2000) and their 2-bit counterparts
in (d) and (e), respectively. It is evident from (c) and (e) that larger number of
timesteps introduces more of an averaging effect, than quantization, and hence,
varying the number of timesteps has negligible effect on the transfer plots (solid
dotted and dashed lines coincide), which is not true for (b) and (d). Due to this
averaging effect, Poisson output y for SNN-conv tends to follow the trajectory
of xquant (quantized ANN input), leading to comparable adversarial accuracy
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Fig. 3. The input-output characteristics of Poisson encoder to demonstrate the effect
of the total number of timseteps T used to generate the spike train with different levels
of pre-quantization of the analog input. When T is in the low value (between 50 to
150) regime (subplots (b) and (d)), the amount of quantization significantly changes
for varying the number of timesteps (solid dotted and dashed lines). But in the high
value regime of T (plots (c) and (e)), solid dotted and dashed lines almost coincide due
to the averaging effect. The flow of data from output y to input x is showed in the
schematic in (a)

to the corresponding ANN over the entire range of timesteps in Fig. 2(b). Note
that, in these plots input x refers to the analog input signal, whereas output y
is the timed average of the spike train (as showed in the schematic in Fig. 3(a)).

Effect of LIF (or IF) Neurons and the Leak Factor. Another major
contributing factor towards SNN robustness is their highly nonlinear neuron
activations (Integrate-Fire or Leaky-Integrate-Fire), whereas ANNs use mostly
piecewise linear activations like ReLU. In order to explain the effect of this non-
linearity, we perform a proof of concept experiment. We feed a clean and corre-
sponding adversarial input to a ReLU and an LIF neuron (λ = 0.99 in Eq. 3).
Both of the inputs are 32 × 32 images with pixel intensity normalized to [0, 1].
Row 1, 2 and 3 in Fig. 4 present the clean image, corresponding adversarial image
and their absolute difference (amount of perturbation), respectively. Note, the
outputs of the LIF neurons are binary at each timestep, hence, we take an aver-
age over the entire time-window to obtain corresponding pixel intensity. ReLU
passes both clean and adversarial inputs without any transformation, hence the
l2-norm of the perturbation is same at the input and ReLU output (bottom
table of the figure). However, the non-linear transformation in LIF reduces the
perturbation of 0.6 at input layer to 0.3 at its output. Basically, the output
images of LIF (column 3) neurons is a low pixel version of the input images, due
to the translation of continuous analog values into a binary spike representa-
tion. This behavior helps diminish the propagation of adversarial perturbation
through the network. IF neurons also demonstrate this non-linear transforma-
tion. However, the quantization effect is minimized due to their operation over
longer time-window (as explained in the previous section).
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Fig. 4. The input and output of ReLU and LIF neurons for each of clean and adversarial
image. Column 1 shows clean image, adversarial image and the absolute value of the
adversarial perturbation before passing through the neurons. Column 2 and 3 depict
the corresponding images after passing through a ReLU and an LIF, respectively. The
bottom table contains the l2-norm of the perturbation at the input, ReLU output and
LIF output

Fig. 5. Output of an LIF neuron for con-
stant input voltage.

Unlike SNN-conv, SNN-BP net-
works can be trained with LIF neu-
rons. The leak factor in an LIF neuron
provides an extra knob to manipulate
the adversarial robustness of these net-
works. In order to investigate the effect
of leak on the amount of robustness, we
develop a simple expression relating the
leak factor with neuron spike rate in an
LIF neuron. In this case, the membrane
potential Vt at timestep t is updated as Vt = λVt−1 + Vinput,t given the mem-
brane potential has not reached threshold yet, and hence, reset signal = 0. Here,
λ (< 1) is the leak factor and Vinput,t is the input to the neuron at timestep t. Let
us consider the scenario, where a constant voltage Vmem is fed into the neuron
at every timestep and the membrane potential reaches the threshold voltage Vth

after n timesteps. As explained in Fig. 5, membrane potential follows a geometric
progression with time. After replacing Vth

Vmem
with a constant r, we obtain the

following relation between the rate of spike (1/n) and leak factor (λ):

Spike rate,
1
n

=
logλ

log[rλ − (r − 1)]
, λ < 1 (7)

In Fig. 6(a), we plot the spike rate as a function of leak factor λ for different
values of Vmem according to Eq. 7, where λ is varied from 0.9999 to 0.75. In
every case, spike rate decreases (i.e. sparsity and hence, robustness increases)
with increased amount of leak (smaller λ). The plot in Fig. 6(b) justifies this
idea where we show the adversarial accuracy of an SNN-BP network (VGG5
with CIFAR10) trained with different values of leak. For both FGSM and PGD
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Fig. 6. (a) Spike rate versus leak factor λ for different values of Vmem
Vth

. Smaller value

of λ corresponds to more leak. (b) A bar plot showing the comparison of clean, FGSM
and PGD(ε = 8/255) accuracy for a VGG5 SNN-BP network trained on CIFAR10 for
different values of λ. These are blackbox attacks crafted from a VGG5 ANN model

attacks, adversarial accuracy increases by 3–6% as λ is decreased to 0.95. Note,
the clean accuracy of the trained SNNs with different leak factors lies within
a range of ∼2%. In addition to sparsity, leak makes the membrane potential
(in turn, the output spike rate) dependent on the temporal information of the
incoming spike train [20]. Therefore, for a given input, while the IF neuron
produces a deterministic spike pattern, the input-output spike mapping is non-
deterministic in an LIF neuron. This effect gets enhanced with increased leak.
We assume that this phenomenon is also responsible to some extent for the
increased robustness of backpropagated SNNs with increased leak. It is worth
mentioning here that Eq. 7 holds when input to the neuron remains unchanged
with the leak factor. In our experiments, we train SNN-BP with different values
of λ starting from the same initialized ANN-SNN converted network. Hence, the
parameters of SNN-BP trained with different leak factors do not vary much from
one another. Therefore, the assumption in the equation applies to our results.

4.2 ANN-Crafted vs SNN-Crafted Attack

Lastly, we propose an attack-crafting technique from SNN with the aid of the
surrogate gradient calculation. The details of the method is explained in Sect. 3.3.
Table 2 summarizes a comparison between ANN-crafted and SNN-crafted (our
proposed technique) attacks. Note, these are blackbox attacks, i.e., we train two
separate and independently initialized models for each of the 3 networks (ANN,
SNN-conv, SNN-BP). One of them is used as the source (marked as ANN-I,
SNN-conv-I etc.) and the other ones as the target (marked as ANN-II, SNN-
conv-II etc.). It is clear that SNN-BP adversarial accuracy (last row) is the
highest for both SNN-crafted and ANN-crafted inputs. Moreover, let us analyze
row 1 of Table 2 for FGSM attack. When ANN-II is attacked by ANN-I, FGSM
accuracy is 18.9%, whereas, if attacked by an SNN-conv-I (or SNN-BP-I), the
accuracy is 32.7% (or 31.3%). Hence, these results suggest that ANN-crafted
attacks are stronger than the corresponding SNN counterparts.
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Table 2. A comparison of the blackbox adversarial accuracy for ANN-crafted versus
SNN-crafted attacks. ANN-I and ANN-II are two separately trained VGG5 networks
with different initializations. The same is true for SNN-conv and SNN-BP.

FGSM PGD

Target

Source
ANN-I SNN-conv-I SNN-BP-I ANN-I SNN-conv-I SNN-BP-I

ANN-II 18.9% 32.7% 31.3% 4.7% 31.7% 13.8%

SNN-conv-II 19.2% 33.0% 31.4% 11.6% 32.4% 14.3%

SNN-BP-II 21.5% 38.8% 32.9% 9.7% 43.6% 17.0%

5 Conclusions

The current defense mechanisms in ANNs are incapable of preventing a range of
adversarial attacks. In this work, we show that SNNs are inherently resilient to
gradient-based adversarial attacks due to the discrete nature of input encoding
and non-linear activation functions of LIF (or IF) neurons. The resiliency can be
further improved by reducing the number of timesteps in the input-spike genera-
tion process and increasing the amount of leak of the LIF neurons. SNNs trained
using ANN-SNN conversion technique (with IF neurons) require larger number
of timesteps for inference than the corresponding SNNs trained with spike-based
backpropagation (with LIF neurons). Hence, the latter technique leads to more
robust SNNs. Our conclusion is validated only for gradient-based attacks on
deep VGG and ResNet networks with CIFAR datasets. Future analysis on more
diverse attack methods and architectures is necessary. We also propose a method
to generate gradient-based attacks from SNNs by using the surrogate gradients.
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