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Abstract. Event-based cameras display great potential for a variety of
tasks such as high-speed motion detection and navigation in low-light
environments where conventional frame-based cameras suffer critically.
This is attributed to their high temporal resolution, high dynamic range,
and low-power consumption. However, conventional computer vision
methods as well as deep Analog Neural Networks (ANNs) are not suited
to work well with the asynchronous and discrete nature of event cam-
era outputs. Spiking Neural Networks (SNNs) serve as ideal paradigms
to handle event camera outputs, but deep SNNs suffer in terms of per-
formance due to the spike vanishing phenomenon. To overcome these
issues, we present Spike-FlowNet, a deep hybrid neural network archi-
tecture integrating SNNs and ANNs for efficiently estimating optical flow
from sparse event camera outputs without sacrificing the performance.
The network is end-to-end trained with self-supervised learning on Multi-
Vehicle Stereo Event Camera (MVSEC) dataset. Spike-FlowNet outper-
forms its corresponding ANN-based method in terms of the optical flow
prediction capability while providing significant computational efficiency.

Keywords: Event-based vision · Optical flow estimation · Hybrid
network · Spiking neural network · Self-supervised learning

1 Introduction

The dynamics of biological species such as winged insects serve as prime sources
of inspiration for researchers in the field of neuroscience, machine learning as
well as robotics. The ability of winged insects to perform complex, high-speed
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maneuvers effortlessly in cluttered environments clearly highlights the efficiency
of these resource-constrained biological systems [5]. The estimation of motion
patterns corresponding to spatio-temporal variations of structured illumination
- commonly referred to as optical flow, provides vital information for estimating
ego-motion and perceiving the environment. Modern deep Analog Neural Net-
works (ANNs) aim to achieve this at the cost of being computationally inten-
sive, placing significant overheads on current hardware platforms. A competent
methodology to replicate such energy efficient biological systems would greatly
benefit edge-devices with computational and memory constraints (Note, we will
be referring to standard deep learning networks as Analog Neural Networks
(ANNs) due to their analog nature of inputs and computations. This would
help to distinguish them from Spiking Neural Networks (SNNs), which involve
discrete spike-based computations).

Over the past years, the majority of optical flow estimation techniques
relied on images from traditional frame-based cameras, where the input data is
obtained by sampling intensities on the entire frame at fixed time intervals irre-
spective of the scene dynamics. Although sufficient for certain computer vision
applications, frame-based cameras suffer from issues such as motion blur during
high speed motion, inability to capture information in low-light conditions, and
over- or under-saturation in high dynamic range environments.

Event-based cameras, often referred to as bio-inspired silicon retinas, over-
come these challenges by detecting log-scale brightness changes asynchronously
and independently on each pixel-array element [20], similar to retinal ganglion
cells. Having a high temporal resolution (in the order of microseconds) and a frac-
tion of power consumption compared to frame-based cameras make event cam-
eras suitable for estimating high-speed and low-light visual motion in an energy-
efficient manner. However, because of their fundamentally different working prin-
ciple, conventional computer vision as well as ANN-based methods become no
longer effective for event camera outputs. This is mainly because these meth-
ods are typically designed for pixel-based images relying on photo-consistency
constraints, assuming the color and brightness of object remain the same in all
image sequences. Thus, the need for development of handcrafted-algorithms for
handling event camera outputs is paramount.

SNNs, inspired by the biological neuron model, have emerged as a promising
candidate for this purpose, offering asynchronous computations and exploiting
the inherent sparsity of spatio-temporal events (spikes). The Integrate and Fire
(IF) neuron is one spiking neuron model [8], which can be characterized by an
internal state, known as the membrane potential. The membrane potential accu-
mulates the inputs over time and emits an output spike whenever it exceeds a set
threshold. This mechanism naturally encapsulates the event-based asynchronous
processing capability across SNN layers, leading to energy-efficient computing
on specialized neuromorphic hardware such as IBM’s TrueNorth [24] and Intel’s
Loihi [9]. However, recent works have shown that the number of spikes drasti-
cally vanish at deeper layers, leading to performance degradations in deep SNNs
[18]. Thus, there is a need for an efficient hybrid architecture, with SNNs in the
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initial layers, to exploit their compatability with event camera outputs while
having ANNs in the deeper layers in order to retain performance.

In regard to this, we propose a deep hybrid neural network architecture,
accommodating SNNs and ANNs in different layers, for energy efficient opti-
cal flow estimation using sparse event camera data. To the best of our knowl-
edge, this is the first SNN demonstration to report the state-of-art performance
on event-based optical flow estimation, outperforming its corresponding fully-
fledged ANN counterpart.

The main contributions of this work can be summarized as:

– We present an input representation that efficiently encodes the sequences of
sparse outputs from event cameras over time to preserve the spatio-temporal
nature of spike events.

– We introduce a deep hybrid architecture for event-based optical flow estima-
tion referred to as Spike-FlowNet, integrating SNNs and ANNs in different
layers, to efficiently process the sparse spatio-temporal event inputs.

– We evaluate the optical flow prediction capability and computational effi-
ciency of Spike-FlowNet on the Multi-Vehicle Stereo Event Camera dataset
(MVSEC) [33] and provide comparison results with current state-of-the-art
approaches.

The following contents are structured as follows. In Sect. 2, we elucidate the
related works. In Sect. 3, we present the methodology, covering essential back-
grounds on the spiking neuron model followed by our proposed input event
(spike) representation. This section also discusses the self-supervised loss, Spike-
FlowNet architecture, and the approximate backpropagation algorithm used for
training. Section 4 covers the experimental results, including training details and
evaluation metrics. It also discusses the comparison results with the latest works
in terms of performance and computational efficiency.

2 Related Work

In recent years, there have been an increasing number of works on estimating
optical flow by exploiting the high temporal resolution of event cameras. In
general, these approaches have either been adaptations of conventional computer
vision methods or modified versions of deep ANNs to encompass discrete outputs
from event cameras.

For computer vision based solutions to estimate optical flow, gradient-based
approaches using the Lucas-Kanade algorithm [22] have been highlighted in [4,
7]. Further, plane fitting approaches by computing the slope of the plane for
estimating optical flow have been presented in [1,3]. In addition, bio-inspired
frequency-based approaches have been discussed in [2]. Finally, correlation-based
approaches are presented in [12,32] employing convex optimization over events.
In addition, [21] interestingly uses an adaptive block matching technique to
estimate sparse optical flow.
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For deep ANN-based solutions, optical flow estimation from frame-based
images has been discussed in Unflow [23], which utilizes a U-Net [28] architec-
ture and computes a bidirectional census loss in an unsupervised manner with
an added smoothness term. This strategy is modified for event camera outputs
in EV-FlowNet [34] incorporating a self-supervised loss based on gray images as
a replacement for ground truth. Other previous works employ various modifica-
tions to the training methodology, such as [15], which imposes certain brightness
constancy and smoothness constraints to train a network and [17] which adds
an adversarial loss over the standard photometric loss. In contrast, [35] presents
an unsupervised learning approach using only event camera data to estimate
optical flow by accounting for and then learning to rectify the motion blur.

All the above strategies employ ANN architectures to predict the optical
flow. However, event cameras produce asynchronous and discrete outputs over
time, and SNNs can naturally capture their spatio-temporal dynamics, which are
embedded in the precise spike timings. Hence, we posit that SNNs are suitable
for handling event camera outputs. Recent SNN-based approaches for event-
based optical flow estimation include [13,25,27]. Researchers in [25] presented
visual motion estimation using SNNs, which accounts for synaptic delays in
generating motion-sensitive receptive fields. In addition, [13] demonstrated real-
time model-based optical flow computations on TrueNorth hardware for eval-
uating patterns including rotating spirals and pipes. Authors of [27] presented
a methodology for optical flow estimation using convolutional SNNs based on
Spike-Time-Dependent-Plasticity (STDP) learning [11]. The main limitation of
these works is that they employ shallow SNN architectures, because deep SNNs
suffer in terms of performance. Besides, the presented results are only evaluated
on relatively simple tasks. In practice, they do not generally scale well to com-
plex and real-world data, such as that presented in MVSEC dataset [33]. In view
of these, a hybrid approach becomes an attractive option for constructing deep
network architectures, leveraging the benefits of both SNNs and ANNs.

3 Method

3.1 Spiking Neuron Model

The spiking neurons, inspired by biological models [10], are computational primi-
tives in SNNs. We employ a simple IF neuron model, which transmits the output
signals in the form of spike events over time. The behavior of IF neuron at the
lth layer is illustrated in Fig. 1. The input spikes are weighted to produce an
influx current that integrates into neuronal membrane potential (V l).

V l[n + 1] = V l[n] + wl ∗ ol−1[n] (1)

where V l[n] represents the membrane potential at discrete time-step n, wl rep-
resents the synaptic weights and ol−1[n] represents the spike events from the
previous layer at discrete time-step n. When the membrane potential overcomes
the firing threshold, the neuron emits an output spike and resets the membrane
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potential to the initial state (zero). Over time, these mechanisms are repeatedly
carried out in each IF neuron, enabling event-based computations throughout
the SNN layers.

Fig. 1. The dynamics of an Integrate and Fire (IF) neuron. The input events are mod-
ulated by the synaptic weight to be integrated as the current influx in the membrane
potential. Whenever the membrane potential crosses the threshold, the neuron fires an
output spike and resets the membrane potential.

3.2 Spiking Input Event Representation

An event-based camera tracks the changes in log-scale intensity (I) at every
element in the pixel-array independently and generates a discrete event whenever
the change exceeds a threshold (θ):

‖ log(It+1) − log(It)‖ ≥ θ (2)

A discrete event contains a 4-tuple {x, y, t, p}, consisting of the coordinates: x, y;
timestamp: t; and polarity (direction) of brightness change: p. This input rep-
resentation is called Address Event Representation (AER), and is the standard
format used by event-based sensors.

There are prior works that have modified the representations of asynchronous
event camera outputs to be compatible with ANN-based methods. To overcome
the asynchronous nature, event outputs are typically recorded for a certain
time period and transformed into a synchronous image-like representation. In
EV-FlowNet [34], the most recent pixel-wise timestamps and the event counts
encoded the motion information (within a time window) in an image. However,
fast motions and dense events (in local regions of the image) can vastly overlap
per-pixel timestamp information, and temporal information can be lost. In addi-
tion, [35] proposed a discretized event volume that deals with the time domain as
a channel to retain the spatio-temporal event distributions. However, the num-
ber of input channels increases significantly as the time dimensions are finely
discretized, further aggravating the computation and parameter overheads.

In this work, we propose a discretized input representation (fine-grained in
time) that preserves the spatial and temporal information of events for SNNs.
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Fig. 2. Input event representation. (Top) Continuous raw events between two consec-
utive grayscale images from an event camera. (Bottom) Accumulated event frames
between two consecutive grayscale images to form the former and the latter event
groups, serving as inputs to the network.

Our proposed input encoding scheme discretizes the time dimension within a
time window into two groups (former and latter). Each group contains N number
of event frames obtained by accumulating raw events from the timestamp of the
previous frame till the current timestamp. Each of these event frames is also
composed of two channels for ON/OFF polarity of events. Hence, the input to
the network consists of a sequence of N frames with four channels (one frame
each from the former and the latter groups having two channels each). The
proposed input representation is displayed in Fig. 2 for one channel (assuming
the number of event frames in each group equals to five). The main characteristic
of our proposed input event representation (compared to ANN-based methods)
are as follows:

– Our spatio-temporal input representations encode only the presence of events
over time, allowing asynchronous and event-based computations in SNNs. In
contrast, ANN-based input representation often requires the timestamp and
the event count images in separate channels.

– In Spike-FlowNet, each event frame from the former and the latter groups
sequentially passes through the network, thereby preserving and utilizing the
spatial and temporal information over time. On the contrary, ANN-based
methods feed-forward all input information to the network at once.

3.3 Self-Supervised Loss

The DAVIS camera [6] is a commercially available event-camera, which simulta-
neously provides synchronous grayscale images and asynchronous event streams.
The number of available event-based camera datasets with annotated labels
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suitable for optical flow estimation is quite small, as compared to frame-based
camera datasets. Hence, a self-supervised learning method that uses proxy labels
from the recorded grayscale images [15,34] is employed for training our Spike-
FlowNet.

The overall loss incorporates a photometric reconstruction loss (Lphoto) and
a smoothness loss (Lsmooth) [15]. To evaluate the photometric loss within each
time window, the network is provided with the former and the latter event groups
and a pair of grayscale images, taken at the start and the end of the event time
window (It, It+dt). The predicted optical flow from the network is used to warp
the second grayscale image to the first grayscale image. The photometric loss
(Lphoto) aims to minimize the discrepancy between the first grayscale image and
the inverse warped second grayscale image. This loss uses the photo-consistency
assumption that a pixel in the first image remains similar in the second frame
mapped by the predicted optical flow. The photometric loss is computed as
follows:

Lphoto(u, v; It, It+dt) =
∑

x,y

ρ(It(x, y) − It+dt(x + u(x, y), y + v(x, y))) (3)

where, It, It+dt indicate the pixel intensity of the first and second grayscale
images, u, v are the flow estimates in the horizontal and vertical directions, ρ is
the Charbonnier loss ρ(x) = (x2 + η2)r, which is a generic loss used for outlier
rejection in optical flow estimation [30]. For our work, r = 0.45 and η =1e-3
show the optimum results for the computation of photometric loss.

Furthermore, a smoothness loss (Lsmooth) is applied for enhancing the spa-
tial collinearity of neighboring optical flow. The smoothness loss minimizes the
difference in optical flow between neighboring pixels and acts as a regularizer on
the predicted flow. It is computed as follows:

Lsmooth(u, v) =
1

HD

H∑

j

D∑

i

(‖ui,j − ui+1,j‖ + ‖ui,j − ui,j+1‖

+‖vi,j − vi+1,j‖ + ‖vi,j − vi,j+1‖) (4)

where H is the height and D is the width of the predicted flow output. The
overall loss is computed as the weighted sum of the photometric and smoothness
loss:

Ltotal = Lphoto + λLsmooth (5)

where λ is the weight factor.

3.4 Spike-FlowNet Architecture

Spike-FlowNet employs a deep hybrid architecture that accommodates SNNs
and ANNs in different layers, enabling the benefits of SNNs for sparse event
data processing and ANNs for maintaining the performance. The use of a hybrid
architecture is attributed to the fact that spike activities reduce drastically with
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Fig. 3. Spike-FlowNet architecture. The four-channeled input images, comprised of
ON/OFF polarity events for former and latter groups, are sequentially passed through
the hybrid network. The SNN-block contains the encoder layers followed by output
accumulators, while the ANN-block contains the residual and decoder layers. The loss
is evaluated after forward propagating all consecutive input event frames (a total of N
inputs, sequentially taken in time from the former and the latter event groups) within
the time window. The black arrows denote the forward path, green arrows represent
residual connections, and blue arrows indicate the flow predictions. (Color figure online)

growing the network depth in the case of full-fledged SNNs. This is commonly
referred to as the vanishing spike phenomenon [26], and potentially leads to
performance degradation in deep SNNs. Furthermore, high numerical precision
is essentially required for estimating the accurate pixel-wise network outputs,
namely the regression tasks. Hence, very rare and binary precision spike signals
(in input and intermediate layers) pose a crucial issue for predicting the accurate
flow displacements. To resolve these issues, only the encoder block is built as an
SNN, while the residual and decoder blocks maintain an ANN architecture.

Spike-FlowNet’s network topology resembles the U-Net [28] architecture, con-
taining four encoder layers, two residual blocks, and four decoder layers as shown
in Fig. 3. The events are represented as the four-channeled input frames as pre-
sented in Sect. 3.2, and are sequentially passed through the SNN-based encoder
layers over time (while being downsampled at each layer). Convolutions with a
stride of two are employed for incorporating the functionality of dimensionality
reduction in the encoder layers. The outputs from encoder layers are collected
in their corresponding output accumulators until all consecutive event images
have passed. Next, the accumulated outputs from final encoder layer are passed
through two residual blocks and four decoder layers. The decoder layers upsam-
ple the activations using transposed convolution. At each decoder layer, there
is a skip connection from the corresponding encoder layer, as well as another
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convolution layer to produce an intermediate flow prediction, which is concate-
nated with the activations from the transposed convolutions. The total loss is
evaluated after the forward propagation of all consecutive input event frames
through the network and is applied to each of the intermediate dense optical
flows using the grayscale images.

Algorithm 1. Backpropagation Training in Spike-FlowNet for an Iteration.
Input: Event-based inputs (inputs), total number of discrete time-steps (N), num-
ber of SNN/ANN layers (LS/LA), SNN/ANN outputs (o/oA) membrane potential
(V ), firing threshold (Vth), ANN nonlinearity (f)
Initialize: V l[n] = 0, ∀l = 1, ..., LS

// Forward Phase in SNN-blocks
for n ← 1 to N do

o1[n] = inputs[n]
for l ← 2 to LS − 1 do

V l[n] = V l[n − 1] + wlol−1[n]//weighted spike-inputs are integrated to V
if V l[n] > Vth then

ol[n] = 1, V l[n] = 0 //if V exceeds Vth, a neuron emits a spike and reset V
end if

end for
oLS

A = V LS [n] = V LS [n − 1] + wLSoLS−1[n] //final SNN layer does not fire
end for
// Forward Phase in ANN-blocks
for l ← LS + 1 to LS + LA do

ol
A = f(wlol−1

A )
end for
// Backward Phase in ANN-blocks
for l ← LS + LA to LS do

�wl = ∂Ltotal

∂ol
A

∂ol
A

∂wl

end for
// Backward Phase in SNN-blocks
for n ← N to 1 do

for l ← LS − 1 to 1 do
//evaluate partial derivatives of loss w.r.t. wS by unrolling the SNN over time

�wl[n] = ∂Ltotal

∂ol[n]

∂ol[n]

∂V l[n]

∂V l[n]

∂wl[n]

end for
end for

3.5 Backpropagation Training in Spike-FlowNet

The spike generation function of an IF neuron is a hard threshold function that
emits a spike when the membrane potential exceeds a firing threshold. Due to
this discontinuous and non-differentiable neuron model, standard backpropaga-
tion algorithms cannot be applied to SNNs in their native form. Hence, several
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approximate methods have been proposed to estimate the surrogate gradient
of spike generation function. In this work, we adopt the approximate gradient
method proposed in [18,19] for back-propagating errors through SNN layers. The
approximate IF gradient is computed as 1

Vth
, where the threshold value accounts

for the change of the spiking output with respect to the input. Algorithm 1
illustrates the forward and backward pass in ANN-block and SNN-block.

In the forward phase, neurons in the SNN layers accumulate the weighted sum
of the spike inputs in membrane potential. If the membrane potential exceeds
a threshold, a neuron emits a spike at its output and resets. The final SNN
layer neurons just integrate the weighted sum of spike inputs in the output
accumulator, while not producing any spikes at the output. At the last time-
step, the integrated outputs of SNN layers propagate to the ANN layers to
predict the optical flow. After the forward pass, the final loss (Ltotal) is evaluated,
followed by backpropagation of gradients through the ANN layers using standard
backpropagation.

Next, the backpropagated errors (∂Ltotal

∂oLS
) pass through the SNN layers

using the approximate IF gradient method and BackPropagation Through Time
(BPTT) [31]. In BPTT, the network is unrolled for all discrete time-steps, and
the weight update is computed as the sum of gradients from each time-step. This
procedure is displayed in Fig. 4 where the final loss is back-propagated through
an ANN-block and a simple SNN-block consisting of a single input IF neuron.
The parameter updates of the lth SNN layers are described as follows:

�wl =
∑

n

∂Ltotal

∂ol[n]
∂ol[n]
∂V l[n]

∂V l[n]
∂wl

, where
∂ol[n]
∂V l[n]

=
1

Vth
(ol[n] > 0) (6)

where ol represents the output of spike generation function. This method enables
the end-to-end self-supervised training in the proposed hybrid architecture.

Fig. 4. Error backpropagation in Spike-FlowNet. After the forward pass, the gradients
are back-propagated through the ANN block using standard backpropagation whereas
the backpropagated errors ( ∂L

∂ol ) pass through the SNN layers using the approximate
IF gradient method and BPTT technique.
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4 Experimental Results

4.1 Dataset and Training Details

We use the MVSEC dataset [33] for training and evaluating the optical flow
predictions. MVSEC contains stereo event-based camera data for a variety
of environments (e.g., indoor flying and outdoor driving) and also provides
the corresponding ground truth optical flow. In particular, the indoor and
outdoor sequences are recorded in dissimilar environments where the indoor
sequences (indoor flying) have been captured in a lab environment and the out-
door sequences (outdoor day) have been recorded while driving on public roads.

Even though the indoor flying and outdoor day scenes are quite different, we
only use outdoor day2 sequence for training Spike-FlowNet. This is done to pro-
vide fair comparisons with prior works [34,35] which utilized only outdoor day2
sequence for training. During training, input images are randomly flipped hori-
zontally and vertically (with 0.5 probability) and randomly cropped to 256×256
size. Adam optimizer [16] is used, with the initial learning rate of 5e-5, and scaled
by 0.7 every 5 epochs until 10 epoch, and every 10 epochs thereafter. The model
is trained on the left event camera data of outdoor day2 sequence for 100 epochs
with a mini-batch size 8. Training is done for two different time windows lengths
(i.e, 1 grayscale image frame apart (dt = 1) and 4 grayscale image frames apart
(dt = 4)). The number of event frame (N) and weight factor for the smoothness
loss (λ) are set to 5, 10 for a dt = 1 case and 20, 1 for a dt = 4 case, respectively.
The threshold of the IF neurons are set to 0.5 (dt = 4) and 0.75 (dt = 1) in SNN
layers.

4.2 Algorithm Evaluation Metric

The evaluation metric for optical flow prediction is the Average End-point Error
(AEE), which represents the mean distance between the predicted flow (ypred)
and the ground truth flow (ygt). It is given by:

AEE =
1
m

∑

m

‖(u, v)pred − (u, v)gt‖2 (7)

where m is the number of active pixels in the input images. Because of the
highly sparse nature of input events, the optical flows are only estimated at
pixels where both the events and ground truth data is present. We compute the
AEE for dt = 1 and dt = 4 cases.

4.3 Average End-Point Error (AEE) Results

During testing, optical flow is estimated on the center cropped 256 × 256 left
camera images of the indoor flying 1,2,3 and outdoor day 1 sequences. We use all
events for the indoor flying sequences, but we take events within 800 grayscale
frames for the outdoor day1 sequence, similar to [34]. Table 1 provides the AEE
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Fig. 5. Optical flow evaluation and comparison with EV-FlowNet. The samples are
taken from (top) outdoor day1 and (bottom) indoor day1. The Masked Spike-FlowNet
Flow is basically a sparse optical flow computed at pixels at which events occurred. It
is computed by masking the predicted optical flow with the spike image.

evaluation results in comparison with the prior event camera based optical flow
estimation works. Overall, our results show that Spike-FlowNet can accurately
predict the optical flow in both the indoor flying and outdoor day1 sequences.
This demonstrates that the proposed Spike-FlowNet can generalize well to dis-
tinctly different environments. The grayscale, spike event, ground truth flow
and the corresponding predicted flow images are visualized in Fig. 5 where the
images are taken from (top) outdoor day1 and (bottom) indoor day1, respec-
tively. Since event cameras work based on changing light intensity at pixels, the
regions having low texture produce very sparse events due to minimal intensity
changes, resulting in scarce optical flow predictions in the corresponding areas
such as the flat surfaces. Practically, the useful flows are extracted by using flow
estimations at points where significant events exist in the input frames.

Moreover, we compare our quantitative results with the recent works [34,35]
on event-based optical flow estimation, as listed in Table 1. We observe that
Spike-FlowNet outperforms EV-FlowNet [34] in terms of AEE results in both
the dt = 1 and dt = 4 cases. It is worth noting here that EV-FlowNet employs
a similar network architecture and self-supervised learning method, providing a

Table 1. Average Endpoint Error (AEE) comparisons with Zhu et al. [35] and EV-
FlowNet [34].

dt = 1 frame dt = 4 frame

indoor1 indoor2 indoor3 outdoor1 indoor1 indoor2 indoor3 outdoor1

Zhu et al.
[35]

0.58 1.02 0.87 0.32 2.18 3.85 3.18 1.30

EV-
FlowNet
[34]

1.03 1.72 1.53 0.49 2.25 4.05 3.45 1.23

This
work

0.84 1.28 1.11 0.49 2.24 3.83 3.18 1.09

* EV-FlowNet also uses a self-supervised learning method, providing the fair
comparison baseline compared to Spike-FlowNet.
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fair comparison baseline for fully ANN architectures. In addition, Spike-FlowNet
attains AEE results slightly better or comparable to [35] in the dt = 4 case,
while underperforming in the dt = 1 case. [35] presented an image deblurring
based unsupervised learning that employed only the event streams. Hence, it
seems to not suffer from the issues related to grayscale images such as motion
blur or aperture problems during training. In view of these comparisons, Spike-
FlowNet (with presented spatio-temporal event representation) is more suitable
for motion detection when the input events have a certain minimum level of
spike density. We further provide the ablation studies for exploring the optimal
design choices in the supplementary material.

4.4 Computational Efficiency

To further analyze the benefits of Spike-FlowNet, we estimate the gain in com-
putational costs compared to a fully ANN architecture. Typically, the number
of synaptic operations is used as a metric for benchmarking the computational
energy of neuromorphic hardware [18,24,29]. Also, the required energy consump-
tion per synaptic operation needs to be considered. Now, we describe the proce-
dures for measuring the computational costs in SNN and ANN layers.

In a neuromorphic hardware, SNNs carry out event-based computations only
at the arrival of input spikes. Hence, we first measure the mean spike activities
at each time-step in the SNN layers. As presented in the first row of Table 2, the
mean spiking activities (averaged over indoor1,2,3 and outdoor1 sequences) are

Table 2. Analysis for Spike-FlowNet in terms of the mean spike activity, the total
and normalized number of SNN operations in an encoder-block, the encoder-block and
overall computational energy benefits.

indoor1 indoor2 indoor3 outdoor1

dt = 1 dt = 4 dt = 1 dt = 4 dt = 1 dt = 4 dt = 1 dt = 4

Encoder spike
activity (%)

0.33 0.87 0.65 1.27 0.53 1.11 0.41 0.78

Encoder SNN #
operation (×108)

0.16 1.69 0.32 2.47 0.26 2.15 0.21 1.53

Encoder
normalized #
operation (%)

1.68 17.87 3.49 26.21 2.81 22.78 2.29 16.23

Encoder
compute-energy
benefit (×)

305 28.6 146.5 19.5 182.1 22.44 223.2 31.5

Overall
compute-energy
reduction (%)

17.57 17.01 17.51 16.72 17.53 16.84 17.55 17.07

* For an ANN, the number of synaptic operations is 9.44 × 108 for the
encoder-block and 5.35 × 109 for overall network.
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0.48% and 1.01% for dt = 1 and dt = 4 cases, respectively. Note that the neuronal
threshold is set to a higher value in dt = 1 case; hence the average spiking activity
becomes sparser compared to dt = 4 case. The extremely rare mean input spiking
activities are mainly due to the fact that event camera outputs are highly sparse
in nature. This sparse firing rate is essential for exploiting efficient event-based
computations in SNN layers. In contrast, ANNs execute dense matrix-vector
multiplication operations without considering the sparsity of inputs. In other
words, ANNs simply feed-forward the inputs at once, and the total number of
operations are fixed. This leads to the high energy requirements (compared to
SNNs) by computing both zero and non-zero entities, especially when inputs are
very sparse.

Essentially, SNNs need to compute the spatio-temporal spike images over
a number of time-steps. Given M is the number of neurons, C is number of
synaptic connections and F indicates the mean firing activity, the number of
synaptic operations at each time-step in the lth layer is calculated as Ml×Cl×Fl.
The total number of SNN operations is the summation of synaptic operations in
SNN layers during the N time-steps. Hence, the total number of SNN and ANN
operations become

∑
l(Ml × Cl × Fl) × N and

∑
l Ml × Cl, respectively. Based

on these, we estimate and compare the average number of synaptic operations
on Spike-FlowNet and a fully ANN architecture. The total and the normalized
number of SNN operations compared to ANN operations on the encoder-block
are provided in the second and the third row of Table 2, respectively.

Due to the binary nature of spike events, SNNs perform only accumulation
(AC) per synaptic operation. On the other hand, ANNs perform the multiply-
accumulate (MAC) computations since the inputs consist of analog-valued enti-
ties. In general, AC computation is considered to be significantly more energy-
efficient than MAC. For example, AC is reported to be 5.1× more energy-efficient
than a MAC in the case of 32-bit floating-point numbers (45 nm CMOS pro-
cess) [14]. Based on this principle, the computational energy benefits of encoder-
block and overall Spike-FlowNet are obtained, as provided in the fourth and
the fifth rows of Table 2, respectively. These results reveal that the SNN-based
encoder-block is 214.2× and 25.51× more computationally efficient compared to
ANN-based one (averaged over indoor1,2,3 and outdoor1 sequences) for dt = 1
and dt = 4 cases, respectively. The number of time-steps (N) is four times less
in dt = 1 case than in dt = 4 case; hence, the computational energy benefit is
much higher in dt = 1 case.

From our analysis, the proportion of required computations in encoder-block
compared to the overall architecture is 17.6%. This reduces the overall energy
benefits of Spike-FlowNet. In such a case, an approach of interest would be to
perform a distributed edge-cloud implementation where the SNN- and ANN-
blocks are administered on the edge device and the cloud, respectively. This
would lead to high energy benefits on edge devices, which are limited by resource
constraints while not compromising on algorithmic performance.
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5 Conclusion

In this work, we propose Spike-FlowNet, a deep hybrid architecture for energy-
efficient optical flow estimations using event camera data. To leverage the bene-
fits of both SNNs and ANNs, we integrate them in different layers for resolving
the spike vanishing issue in deep SNNs. Moreover, we present a novel input
encoding strategy for handling outputs from event cameras, preserving the spa-
tial and temporal information over time. Spike-FlowNet is trained with a self-
supervised learning method, bypassing expensive labeling. The experimental
results show that the proposed architecture accurately predicts the optical flow
from discrete and asynchronous event streams along with substantial benefits in
terms of computational efficiency compared to the corresponding ANN architec-
ture.
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