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Abstract. We introduce a solution to large scale Augmented Reality
for outdoor scenes by registering camera images to textured Digital
Elevation Models (DEMs). To accommodate the inherent differences in
appearance between real images and DEMs, we train a cross-domain
feature descriptor using Structure From Motion (SFM) guided recon-
structions to acquire training data. Our method runs efficiently on a
mobile device and outperforms existing learned and hand-designed fea-
ture descriptors for this task.

1 Introduction

Augmented reality systems rely on some approximate knowledge of physical
geometry to facilitate the interaction of virtual objects with the physical scene,
and tracking of the camera pose in order to render the virtual content correctly.
In practice, a suitable scene is tracked with the help of active depth sensors,
stereo cameras, or multiview geometry from monocular video (e.g. SLAM). All
of these approaches are limited in their operational range, due to constraints
related to light falloff for active illumination, and stereo baselines and camera
parallax for multiview methods.

In this work, we propose a solution for outdoor landscape-scale augmented
reality applications by registering the user’s camera feed to large scale textured
Digital Elevation Models (DEMs). As there is significant appearance variation
between the DEM and the camera feed, we train a data driven cross-domain fea-
ture descriptor that allows us to perform efficient and accurate feature matching.
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Photograph DEM Augmented photograph

Fig. 1. Our method matches a query photograph to a rendered digital elevation model
(DEM). For clarity, we visualize only four matches (dashed orange). The matches
produced by our system can then be used for localization, which is a key component
for augmented reality applications. In the right image (zoomed-in for clarity), we render
countour lines (white), gravel roads (red), and trails (black) using the estimated camera
pose. (Color figue online)

Using this approach, we are able to localize photos based on long-distance cues,
allowing us to display large scale augmented reality overlays such as altitude con-
tour lines, map features (roads and trails), or 3D created content, such as edu-
cational geographic-focused features. We can also augment long-distance scene
content in images with DEM derived features, such as semantic segmentation
labels, depth values, and normals.

Since modern mobile devices as well as many cameras come with built-in
GPS, compass and accelerometer, we could attempt to compute alignment from
this data. Unfortunately, all of these sensors are subject to various sources of
imprecision; e.g., the compass suffers from magnetic variation (irregularities of
the terrestrial magnetic field) as well as deviation (unpredictable irregularities
caused by deposits of ferrous minerals, or even by random small metal objects
around the sensor itself). This means that while the computed alignment is usu-
ally close enough for rough localization, the accumulated error over geographical
distances results in visible mismatches in places such as the horizon line.

The key insight of our approach is that we can take advantage of a robust
and readily available source of data, with near-global coverage, that is DEM
models, in order to compute camera location using reliable, 3D feature matching
based methods. However, registering photographs to DEMs is challenging, as
both domains are substantially different. For example, even high-quality DEMs
tend to have resolution too rough to capture local high-frequency features like
mountain peaks, leading to horizon mismatches. In addition, photographs have
(often) unknown camera intrinsics such as focal length, exhibit seasonal and
weather variations, foreground occluders like trees or people, and objects not
present in the DEM itself, like buildings.

Our method works by learning a data-driven cross-domain feature embed-
ding. We first use Structure From Motion (SFM) to reconstruct a robust 3D
model from internet photographs, aligning it to a known terrain model. We then
render views at similar poses as photographs, which lets us extract cross-domain
patches in correspondence, which we use as supervision for training. At test
time, no 3D reconstruction is needed, and features from the query image can be
matched directly to renderings of the DEM.
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Registration to DEMs only makes sense for images that observe a significant
amount of content farther away than ca 100 m. For this reason, we focus on
mountainous regions, where distant terrain is often visible. While buildings would
also provide a reasonable source for registration, in this work we do not test on
buildings, as building geometry is diverse, and 3D data and textures for urban
areas are not freely available.

Our method is efficient and runs on a mobile device. As a demonstration, we
developed a mobile application that performs large-scale visual localization to
landscape features locally on a recent iPhone, and show that our approach can
be used to refine localization when embedded device sensors are inaccurate.

In summary, we present the following contributions:

– A novel data-driven cross-domain embedding technique suitable for com-
puting similarity between patches from photographs and a textured terrain
model.

– A novel approach to Structure-from-Motion using terrain reference to align
internet photographs with the terrain model (using D2Net detector & descrip-
tor). Using our technique, a dataset of 16k images has been built and was used
for training our method; it is by far the largest dataset of single image precise
camera poses in mountainous regions. The dataset and source is available on
our project website1.

– A novel weakly supervised training scheme for positive/negative patch gen-
eration from the SfM reconstruction aligned with a DEM.

– We show that our novel embedding can be used for matching photographs to
the terrain model to estimate respective camera position and orientation.

– We implement our system on the iPhone, showing that mobile large scale
localization is possible on-device.

2 Related Work

2.1 Visual Localization

Localizing cameras in a 3D world is a fundamental component of computer
vision and is used in a wide variety of applications. Classic solutions involve
computing absolute pose between camera images and a known set of 3D points,
typically solving the Perspective-n-Point [14] algorithm, or computing relative
pose between two cameras observing the same scene, which can be computed
solving the 5-point problem [28]. These approaches are founded in 3D projec-
tive geometry and can yield very accurate results when dealing with reliable
correspondence measurements.

Recently, deep learning has been proposed as a solution to directly try to pre-
dict the camera location from scene observations using a forward pass through a
CNN [21,38]. However, recent analysis has shown that these methods operate by
image retrieval, computing the pose based on similarity to known images, and

1 http://cphoto.fit.vutbr.cz/LandscapeAR/.

http://cphoto.fit.vutbr.cz/LandscapeAR/
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still do not exceed those from classic approaches to this problem [31]. Addition-
ally, such approaches require the whole scene geometry to be represented within
the network weights, and can only work on scenes that were seen during training.
Our method leverages 3D geometric assumptions external to the model, making
it more generalizable and accurate.

Existing approaches to outdoor camera orientation assessment [4,8,27], on
the other hand, require a precise camera position. Accordingly, these works are
insufficient in our scenario where the camera location is often inaccurate.

2.2 Local Descriptors

A key part of camera localization is correspondence finding. Most classical
solutions to this problem involve using descriptors computed from local win-
dows around feature points. These descriptors can be either hand-designed, e.g.,
SIFT [25], SURF [6], ORB [30], or learned end-to-end [12,15,26,35,39]. While
our method is also a local descriptor, it is designed to deal with additional
appearance and geometry differences, which is not the case for these methods.

Of these, HardNet++ [26] and D2Net [12] have been trained on outdoor
images (HardNet on Brown dataset and HPatches, D2Net on Megadepth which
contains 3D reconstructed models in the European Alps and Yosemite). Since
it is possible that a powerful enough single-domain method might be able to
bridge the domain gap (as demonstrated for D2Net and sketches), and these
two methods are compatible with our use-case, we chose them as baselines to
compare with our method.

2.3 Cross-Domain Matching

A large body of research work has been devoted to alignment of multi-sensor
images [19,20,36] and to modality-invariant descriptors [11,18,23,32,33]. These
efforts often focus on optical image alignment with e.g., its infra-red counterpart.
However, our scenario is much more challenging, because we are matching an
image with a rendered DEM where the change in appearance is considerable.

With the advent of deep-learning, several CNN-based works on matching
multimodal patches emerged and outperformed previous multimodal descrip-
tors [1,2,5,13,16]. However, cross-spectral approaches [1,2,5,13] need to account
only for rapid visual appearance change, compared to our scenario, which needs
to cover also the differences in scene geometry, caused by limited DEM resolu-
tion. On the other hand, RGB to depth matching approaches, such as Georgakis
et al. [16] lack the texture information and need to focus only on geometry, which
is not our case.

3 Method

Our goal is to estimate the camera pose of a query image with respect to the syn-
thetic globe, which can be cast as a standard Perspective-n-Point problem [14]
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Fig. 2. Structure-from-motion with a terrain reference for automatic cross-
domain dataset generation. In the area of interest, camera positions are sampled on
a regular grid (red markers). At each position, 6 views covering the full panorama are
rendered. A sparse 3D model is created from the synthetic data using known camera
poses and scene geometry. Each photograph is localized to the synthetic sparse 3D
model. Image credit, photographs left to right: John Bohlmeyer (https://flic.kr/p/
gm3zRQ), Tony Tsang (https://flic.kr/p/gWmPbU), distantranges (https://flic.kr/p/
gJCPui). (Color figure online)

given accurate correspondences. The main challenge is therefore, to establish
correspondences between keypoints in the query photograph and a rendered
synthetic frame. We bridge this appearance gap by training an embedding func-
tion which projects local neighborhoods of keypoints from either domain into a
unified descriptor space.

3.1 Dataset Generation

The central difficulty of training a robust cross-domain embedding function is
obtaining accurately aligned pairs of photographs and DEM renders. Manually
annotating camera poses is tedious and prone to errors, and capturing diverse
enough data with accurate pose information is challenging. Instead, we use inter-
net photo collections, which are highly diverse, but contain unreliable location
annotations. For each training photograph, we therefore need to retrieve precise
camera pose P = K[R|t], which defines the camera translation t, rotation R,
and intrinsic parameters K with respect to the reference frame of the virtual
globe.

In previous work [9,37], Structure-from-Motion (SfM) techniques have been
used in a two-step process to align the photographs into the terrain. These meth-
ods reconstruct a sparse 3D model from photographs and then align it to the
terrain model using point cloud alignment methods, such as Iterative Closest

https://flic.kr/p/gm3zRQ
https://flic.kr/p/gm3zRQ
https://flic.kr/p/gWmPbU
https://flic.kr/p/gJCPui
https://flic.kr/p/gJCPui
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Points. However, significant appearance variation and relatively low density of
outdoor photographs makes photo-to-photo matching difficult, leading to recon-
struction which is highly unstable, imprecise, and prone to drift. In many areas,
coverage density is too low for the method to work at all.

Instead, we propose a registration step where photographs are aligned via a
DEM-guided SfM step, in which the known camera parameters and geometry
of the DEM domain help overcome ambiguous matches and lack of data in the
photo domain. As input, we download photographs within a given rectangle of
10×10 km from an online service (Fig. 2-1), such as Flickr.com. For the same area,
we also render panoramic images sampled 1 km apart on a regular grid (Fig. 2-2).
For each sampled position, we render 6 images with 60◦ field-of-view each rotated
60◦ around the vertical axis, where for each rendered image, we store a depth
map, full camera pose and detected keypoints and descriptors using a baseline
feature descriptor D2Net [12]. For rendered images, we calculate matches directly
from the terrain geometry using the stored camera poses and depth maps – no
descriptor matching between rendered images is needed (Fig. 2-3). We obtain an
initial sparse 3D model directly from the synthetic data (Fig. 2-4).

In the next step, we extract keypoints and descriptors from the input pho-
tographs using D2Net. The input photographs are matched to every other pho-
tograph and to rendered images using descriptor matching (Fig. 2-5), and local-
ized to the terrain model using Structure-from-Motion (Fig. 2-6). Global bundle
adjustment is used to refine camera parameters belonging to photographs and
3D points, while the rendered cameras have fixed all parameters, since they are
known precisely.

Importantly, while existing single-domain feature descriptors are not robust
to the photo-DEM domain gap, we can overcome this limitation by sheer volume
of synthetic data. Most of the matches will be within the same domain (e.g.,
photo to photo), and only a small handful need to successfully match to DEM
images for the entire photo domain model to be accurately registered. This
procedure relies on having a collection of photos from diverse views and extensive
processing, therefore doing so at inference time would be prohibitive. However,
we can use this technique to build a dataset for training, after which our learned
descriptor can be used to efficiently register a single photograph.

Finally, we check the location for each reconstructed photograph from the
terrain model and prune photographs that are located below, or more than
100 m above the terrain since they are unlikely to be localized precisely. This
approach proved to be much more robust and drift-free, and was able to geo-
register photographs in every area we tested. To illustrate this, we reconstructed
6 areas accross the European Alps region, and 1 area in South American Andes.
In total, we localized 16,611 photographs using this approach.

3.2 Weakly Supervised Cross-domain Patch Sampling

While the rendered image is assumed to contain a similar view as the photo-
graph, it is not exact. Therefore, our embedding function should be robust to
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Fig. 3. 1. For a pair of images Ir1 (render), Ip2 (photograph), 2D image points are
un-projected into 3D using the rendered depth maps D1, D2, and the ground truth
camera poses P1, P2, respectively. 2. Only points visible from both views are kept. 3. A
randomly selected subset of 3D points is used to form patch centers, and corresponding
patches are extracted. Image credit: John Bohlmeyer (https://flic.kr/p/gm3xwP).

slight geometric deformations caused by viewpoint change, weather and sea-
sonal changes, and different illumination. Note that these phenomena do not
occur only in the photograph, but also in the ortho-photo textures. Previous
work on wide baseline stereo matching, patch verification and instance retrieval
illustrate that these properties could be learned directly from data [3,12,26,29].
For efficient training process, an automatic selection of corresponding (positive)
and negative examples is crucial. In contrast with other methods, which rely on
the reconstructed 3D points [12,26] dependent on a keypoint detector, we instead
propose a weakly supervised patch sampling method completely independent of
a preexisting keypoint detector to avoid any bias that might incur. This is an
important and desirable property for our cross-domain approach, since (I) the
accuracy of existing keypoint detectors in the cross domain matching task is
unknown, (II) our embedding function may be used with any keypoint detector
in the future without the need for re-training.

Each photograph in our dataset contains ground truth camera pose P =
K[R|t] transforming the synthetic world coordinates into the camera space. For
each photograph Ip1, we render a synthetic image Ir1 and a depth map D1,
see Fig. 3. We pick all pairs of cameras which have at least 30 corresponding
3D points in the SfM reconstruction described in Sect. 3.1. For each pair, the
camera pose and depth map are used to un-project all image pixels into a dense
3D model (Fig. 3-1). Next, for each domain, we keep only the 3D points visible in
both views (Fig. 3-2). Finally, we uniformly sample N random correspondences
(Fig. 3-3), each defining the center of a local image patch.

3.3 Architecture

In order to account for the appearance gap between our domains, we employ
a branched network with one branch for each of the input domains followed

https://flic.kr/p/gm3xwP
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Fig. 4. Architecture of our two branch network with partially shared weights for cross-
domain descriptor extraction. Photo and render branches contain four 3 × 3 2D con-
volutions with stride 2; weights are not shared between branches. The last two convo-
lutions form a trunk of the network with shared weights to embed both domains into
a single space. Output is 128-d descriptor. Either one or the other branch is used, each
branch is specific for its own domain. Image credit: John Bohlmeyer (https://flic.kr/
p/gm3xwP).

by a shared trunk. A description of the architecture is shown in Fig. 4. The
proposed architecture is fully convolutional and has a receptive field of 63 px. To
get a single descriptor, we use an input patch of size 64 × 64 px. We use neither
pooling nor batch normalization layers. Similarly to HardNet [26], we normalize
each input patch by subtracting its mean and dividing by its standard deviation.
Thanks to the structure of our task formulation and the simplicity of the chosen
architecture, our network is quite compact and contains only 261,536 trainable
parameters, compared to VGG-16 [34] used by D2Net [12] which contains more
than 7.6 million of trainable parameters. The small size allows our architecture
to be easily deployed to a mobile device like the iPhone, enabling a wider scale
of applications.

3.4 Training

We use a standard triplet loss function adjusted to our cross-domain scenario:

L(ah, pr, nr) =
∑

i

max(||fh(ah
i ) − fr(pri )||2 − ||fh(ah

i ) − fr(nr
i )||2 + α, 0)),

(1)
where a, p, n denotes a mini-batch of anchor, positive, and negative patches,
respectively, superscript denotes photograph (h), or render (r), fh and fr

denotes our embedding functions for photograph and render branches respec-
tively, and α denotes the margin.

Previous work on descriptor learning using the triplet loss function [26] illus-
trated the importance of sampling strategy for selecting negative examples. In
this solution, for each patch in a mini-batch, we know its 3D coordinate in an

https://flic.kr/p/gm3xwP
https://flic.kr/p/gm3xwP
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euclidean world space x(pj) ∈ R3. Given a mini-batch of anchor and positive
descriptors fh(ah

i ), fr(pri ), i ∈ [0, N ] where N is a batch size, we first select subset
of possible negatives nr from all positive samples within a current batch, which
are farther than m meters from the anchor: nr = {prj |(||x(prj) − x(ah

i )||2) > m}.
In HardNet [26], for each positive only a hardest negative from the subset of
possible negatives should be selected. However, we found that this strategy led
the embedding function to collapse into a singular point. Therefore, we propose
an adaptive variant of hard negative sampling inspired by a prior off-line mining
strategy [17], modified to operate on-line.

We introduce a curriculum to increase the difficulty of the randomly sam-
pled negatives during training. In classic hard negative mining, for each anchor
descriptor ai we randomly choose descriptor pj as a negative example nj , if and
only if the triplet loss criterion is violated:

||ai − pj ||2 < ||ai − pi||2 + α, (2)

where we denote ai = fh(ah
i ) as an anchor descriptor calculated from a photo

patch using the photo encoder, and similarly for pj = fr(prj), and pi = fr(pri ).
We build on this, and for each anchor descriptor ai, randomly choose a descriptor
pj as a negative example nj iff:

||ai − pj ||2 < d+ − (d+ − (nmin + ε)) · λ, (3)

where λ is a parameter in [0, 1] defining the difficulty of the negative mining,
ε → 0+ is a small positive constant, d+ is the distance between anchor and
positive plus margin: d+ = ||ai − pi||2 + α, and nmin is the distance between
the anchor and the hardest negative: nmin = minpj

||ai − pj ||2. Intuitively, when
λ = 0, Eq. 3 is reduced to random hard negative sampling defined in Eq. 2, and
when λ = 1, the Eq. 3 is forced to select pj as a negative only if it is equal to the
hardest negative nmin, reducing the sampling method to HardNet [26]. Thus, λ
allows us to select harder negatives throughout the training. For details, please
see the supplementary material.

So far, we defined our loss function to be a cross-domain triplet loss, having
an anchor as a photograph, and the positive and negative patches as renders.
However, this loss function optimizes only the distance between the photograph
and render descriptors. As a result, we use a variant with auxiliary loss functions
optimizing also the distances between photo-photo and render -render descrip-
tors:

Laux = L(ah, pr, nr) + L(ah, ph, nh) + L(ar, pr, nr). (4)

As we illustrate by our experiments, this variant performs the best in the cross-
domain matching scenario.

3.5 Pose Estimation

We illustrate the performance of our descriptor on a camera pose estimation task
from a single query image. For each query image, we render a fan of 12 images
from the initial position estimate (using GPS in our application and using ground
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truth position in our experiments) with FOV = 60◦ rotated by 30◦ around the
vertical axis, similarly to Fig. 2-2. The input photograph is scaled by a factor
s proportional to its FOV f : s = (f · M)/(π · Iw), where M is the maximum
resolution corresponding to FOV = 180◦ and Iw is the width of the image. We
use the SIFT keypoint detector (although any detector could be used), take a
64 × 64 px patch around each keypoint, and calculate a descriptor using our
method.

We start by finding the top candidates from the rendered fan using a sim-
ple voting strategy: for each rendered image we calculate the number of mutual
nearest neighbor matches with the input photograph. We use the top-3 can-
didates, since the photograph is unlikely to span more than three consecutive
renders, covering a FOV of 120◦. For each top candidate, we un-project the 2D
points from the rendered image to 3D using rendered camera parameters and a
depth map; then we compute full camera pose of the photograph with respect to
the 3D coordinates using OpenCV implementation of EPnP [24] algorithm with
RANSAC. From the three output camera poses, we select the best pose which
minimizes the reprojection error while having reasonable number of inliers; if
any candidate poses have more than N = 60 inliers, we select the one with the
lowest reprojection error. If none are found, we lower the threshold N and check
for the best pose in a new iteration. If there is no candidate pose with at least
N = 20 inliers, we end the algorithm as unsuccessfull. Finally, we reproject all
the matches – not only inliers – into the camera plane using the best pose, and
select those that are within frame. We repeat the matching proces and EPnP to
obtain the refined pose.

4 Experiments

We present majority of the results as cumulative error plots, where we count
the fraction of images localized below some distance or rotation error threshold.
An ideal system is located at the top-left corner, where all the images are local-
ized with zero distance and rotation errors. Througout the experiments section,
we denote our architecture and its variants trained on our training dataset as
Ours-*. In addition, we report results for a larger single-branch architecture
based on VGG-16 fine-tuned on our data (denoted as VGG-16-D2-FT). Simi-
larly as D2Net, we cut the VGG-16 at conv 4-3, load the D2Net weights, and add
two more convolutional layers to subsample the result descriptor to 128 dimen-
sions. The newly added layers as well as the conv 4-3 were fine-tuned using our
training method and data.

Our methods are compared with state-of-the-art deep local descriptors or
matchers: HardNet++ [26], D2Net [12] and NCNet [29], which we use with
original weights. Initially, we tried to train the HardNet and D2Net methods on
our training dataset using their original training algorithms, but the results did
not exhibit any improvements. We did not try to train the NCNet, since this
method outputs directly matches and consumes a lot of computational resources,
which is undesirable with our target applications capable of running on a mobile
device.
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Fig. 5. Comparison between the best pose (bp) and the refined pose (rp) using different
descriptors on GeoPose3K using cross-domain matches between the query photograph
and synthetically rendered panorama. Left: translation error, right: rotation error.

4.1 Test Datasets

For evaluation of our method in a cross-domain scenario, we use the publicly
available dataset GeoPose3K [7] spanning an area of the European Alps. We
used the standard publicly available test split of 516 images [8]. We note that we
were very careful while constructing our training dataset not to overlap with the
test area of the GeoPose3K dataset. To illustrate that our method generalizes
over the borders of the European Alps, on which it was trained, we also intro-
duce three more test sets: Nepal (244 images), Andes Huascaran (126 images),
and Yosemite (644 images). The Nepal and Yosemite datasets were constructed
using SfM reconstruction using SIFT keypoints aligned to the terrain model
with the iterative closest points algoritm as described by Brejcha et al. [9]. The
Huascaran dataset has been constructed using our novel approach, as described
in Sec. 3.1. Please note that this particular dataset may therefore be biased
towards D2Net [12] matchable points, while Nepal and Yosemite datasets might
be biased towards SIFT matchable points. Unlike the training images, camera
poses in the test sets were manually inspected and outliers were removed.

4.2 Ablation Studies

Best Pose and Refined Pose. We study the behavior of our cross-domain
pose estimation approach on the GeoPose3K dataset, on which we evaluate the
best pose (solid) and the refined pose (dashed) for three different embedding
algorithms as illustrated in Fig. 5. In the left plot, we can see that the refined
pose improves over the best pose for both HardNet++ and our method for well
registered images (up to distance error around 300 m), whereas it decreases result
quality with D2Net. We hypothesize that this is because in the pose refinment
step, the descriptor needs to disambiguate between more distractors compared
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Table 1. Comparison of different training strategies of our network on the pose estima-
tion task on GeoPose3K dataset using cross-domain matches between the query photo-
graph and the rendered panorama. The higher number the better. Adaptive semihard
(ASH) performs better than random semihard (RSH).

Position error [m] Rotation error [◦]

Method 100 300 500 700 900 1 3 5 7 9

Cumulative fraction of photographs

Ours-RSH 0.29 0.53 0.61 0.65 0.67 0.34 0.56 0.60 0.63 0.64

Ours-ASH 0.30 0.54 0.63 0.67 0.70 0.39 0.60 0.65 0.68 0.69

to the case of the best pose, where a single photograph is matched with a sin-
gle rendered image, and D2Net seems to be more sensitive to these distractors
than other approaches. Furthermore, the right plot of the Fig. 5 shows that the
rotation error is improved on the refined pose for all three methods up to the
threshold of 5◦. Since points from multiple rendered views are already matched,
the subsequent matching step covers a wider FOV, and thus a more reliable rota-
tion can be found. For the following experiments, we use the refined pose, which
seems to estimate camera poses with slightly better accuracy in the low-error
regime.

Random Semi-hard and Adaptive Semi-hard Negative Mining. We
analyze the difference between the baseline random semi-hard negative mining
and adaptive semi-hard negative mining in Table 1. The experiment illustrates
that adaptive semi-hard negative mining improves the random semi-hard nega-
tive mining baseline in both position and orientation errors, so we use it in all
experiments.

Auxiliary Loss. Our network trained with the auxiliary loss function per-
forms the best in the cross-domain scenario evaluated on the GeoPose3K dataset
(Fig. 6, see Ours-aux). On this task, it outperforms the cross-domain variant of
our network trained with the basic loss function (Ours). We also report the result
of our network using a single encoder for both domains (Ours-render) which is
consistently worse than the cross-domain variant. Furthermore, we see here that
our network significantly outperforms both D2Net and HardNet++ in this task.

Stability with Respect to DEM Sampling Density. One question is how
close does our DEM render have to be to the true photo location, for us to
still find a correct pose estimate. To evaluate this, for each query photograph
(with known ground truth location), we render a synthetic reference panorama
offset from the photo location by a random amount (the “baseline”), sampled
from a gaussian distribution with parameters N (0m, 1000m). We then estimate
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Fig. 6. Comparison of variants of our network with HardNet++ and D2Net for pose
estimation task on GeoPose3K using cross-domain matches between query photograph
and synthetically rendered panorama. Left: translation error, right: rotation error.

the pose of the query photograph by registering it with the render, and com-
pare the predicted location to the known ground truth location. In Fig. 7-left
we show the percentage of cases where the distance from ground truth to the
predicted location was predicted to be less than the baseline. This gives us a
measure for example, of how incorrect the GPS signal from a photo could be
such that our approach improves localization. With low baselines, we see that
the geometry mismatch to the DEM dominates and the position is difficult to
improve on. With baselines over 200 m, we are able to register the photo, and
then performance slowly degrades with increased baselines as matching becomes
more difficult. Figure 7-right shows that the cross-over point where the position
no longer improves over reference is around 700 m.

4.3 Comparison with State-of-the-Art

We compare our two-branch method and single-branch method based on VGG-16
with three state-of-the-art descriptors and matchers: HardNet [26], D2Net [12],
and NCNet [29] in four different locations across the Earth. According to the
results in Fig. 8, our two-branch method trained with auxiliary loss function
(Ours-aux) exhibits the best performance on GeoPose3K, Nepal, and Yosemite
datasets. The only dataset where our two-branch architecture is on-par with
D2Net is Andes Huascaran (where the ground truth was created by D2Net
matching), and where the single-branch VGG-16 architecture trained using our
method and data performs the best. This is most probably due to differences
in the ortho-photo texture used to render synthetic images. As the larger, pre-
trained VGG-16 backbone has most likely learned more general filters than our
two-branch network, which was trained solely on our dataset.
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Fig. 7. Evaluation of robustness to baseline. Left: Fraction of improved (green), worsen
(yellow), and failed (red) positions when matching query photo to a synthetic panorama
as a function of baseline. The baseline is the distance between the ground truth position
and a reference position generated by adding a gaussian noise N (0m, 1000m) to the
ground truth position. Position is considered improved when the estimated distance to
ground truth is less than the baseline. The numbers at the bottom of each bar give the
total number of images within each bar. Right: Cumulative fraction of query photos
with an estimated position less than a given distance from ground truth (Ours-aux in
pink) versus the cumulative fraction of reference positions within a given distance of
ground truth (sp-gt in yellow). Pink line above yellow line means our method improves
over the sampled reference position at that baseline. (Color figue online)

5 Applications

Mobile Application. To demonstrate the practicality of our method, we imple-
mented it in an iPhone application. The application takes a camera stream, an
initial rotation and position derived from on-board device sensors, and renders
synthetic views from the local DEM and ortho-photo textures. It then computes
SIFT keypoints on both a still image from the camera stream and the synthet-
ically rendered image and uses our trained CNN to extract local features on
the detected keypoints. These features are matched across domains and are then
unprojected from the rendered image using the camera parameters and the depth
map. Finally, matches between the 2D still keypoints and 3D rendered keypoints
are used to estimate the camera pose using PnP method with RANSAC. This
estimated camera pose is used to update the camera position and rotation to
improve the alignment of the input camera stream with the terrain model (see
Fig. 9).

Automatic Photo Augmentation. Furthermore, we demonstrate another
use-case of our camera pose estimation approach by augmenting pictures from
the internet for which the prior orientation is unknown and GPS position impre-
cise, see Fig. 9. Please note that many further applications of our method are
possible, e.g., image annotation [4,22], dehazing, relighting [22], or refocusing
and depth-of-field simulation [10].
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Fig. 8. Comparison of our method with state-of-the-art descriptors in four different
locations across the Earth. Our method (dashed red and blue) outperforms Hard-
Net [26] on all datasets and D2Net [12] on GeoPose3K, Nepal and Yosemite. Our
method seems to be on par with D2Net on Andes Huascaran dataset which has sig-
nificantly less precise textures (from ESA RapidEye satellite) in comparison to other
datasets. (Color figure online)

Fig. 9. An iPhone application (in the left) is used to capture the photograph (in the
middle) for which precise camera pose is estimated using our method. The estimated
camera pose (in the right) is used to augment the query photograph with contour lines
(white) and rivers (blue). (Color figure online)

6 Conclusion and Future Work

We have presented a method for photo-to-terrain alignment for use in augmented
reality applications. By training a network on a cross-domain feature embedding,
we were able to bridge the domain gap between rendered and real images. This
embedding allows for accurate alignment of a photo, or camera view, to the
terrain for applications in mobile AR and photo augmentation.
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Our approach compares favorably to the state-of-art in alignment accuracy,
and is much smaller and more performant, facilitating mobile applications. We
see this method as especially applicable when virtual information is to be visu-
ally aligned with real terrain, e.g., for educational purposes in scenarios where
sensor data is not sufficiently accurate for the purpose. Going forward, we expect
that our method could be made more performant and robust by developing a
dedicated keypoint detector capable of judging which real and synthetic points
are more likely to map across the domain gap.
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4. Baboud, L., Čad́ık, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain
alignment for the annotation of mountain pictures. In: Proceedings of the 2011
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011,
pp. 41–48. IEEE Computer Society, Washington (2011). https://doi.org/10.1109/
CVPR.2011.5995727

5. Baruch, E.B., Keller, Y.: Multimodal matching using a hybrid convolutional neural
network. CoRR abs/1810.12941 (2018). http://arxiv.org/abs/1810.12941

6. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023 32
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