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Abstract. We propose a novel framework for training neural networks
which is capable of learning 3D information of non-rigid objects when
only 2D annotations are available as ground truths. Recently, there have
been some approaches that incorporate the problem setting of non-rigid
structure-from-motion (NRSfM) into deep learning to learn 3D structure
reconstruction. The most important difficulty of NRSfM is to estimate
both the rotation and deformation at the same time, and previous works
handle this by regressing both of them. In this paper, we resolve this
difficulty by proposing a loss function wherein the suitable rotation is
automatically determined. Trained with the cost function consisting of
the reprojection error and the low-rank term of aligned shapes, the net-
work learns the 3D structures of such objects as human skeletons and
faces during the training, whereas the testing is done in a single-frame
basis. The proposed method can handle inputs with missing entries and
experimental results validate that the proposed framework shows supe-
rior reconstruction performance to the state-of-the-art method on the
Human 3.6M, 300-VW, and SURREAL datasets, even though the under-
lying network structure is very simple.

1 Introduction

Inferring 3D poses from several 2D observations is inherently an undercon-
strained problem. Especially, for non-rigid objects such as human faces or bodies,
it is harder to retrieve the 3D shapes than for rigid objects due to their shape
deformations.
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Fig. 1. Illustration of PRN. During the training, sequences of images or 2D poses are
fed to the network, and their 3D shapes are estimated as the network outputs. The
network is trained using the cost function which is based on an NRSfM algorithm.
Testing is done by a simple feed-forward operation in a single-frame basis.

There are two distinct ways to retrieve 3D shapes of non-rigid objects from
2D observations. The first approach is to use a 3D reconstruction algorithm.
Non-rigid structure from motion (NRSfM) algorithms [2,4,9,12,21] are designed
to reconstruct 3D shapes of non-rigid objects from a sequence of 2D observations.
Since NRSfM algorithms are not based on any learned models, the algorithms
should be applied to each individual sequence, which makes the algorithm time-
consuming when there are numerous number of sequences. The second approach
is to learn the mappings from 2D to 3D with 3D ground truth training data. Prior
knowledge can be obtained by dictionary learning [43,44], but neural networks
or convolutional neural networks (CNNs) are the most-used methods to learn
the 2D-to-3D or image-to-3D mappings [24,30], recently. However, 3D ground
truth data are essential to learn those mappings, which requires large amounts
of costs and efforts compared to the 2D data acquisition.

There is another possibility: With the framework which combines those two
different frameworks, i.e., NRSfM and neural networks, it is possible to over-
come the limitations and to take advantages of both. There have been a couple
of works that implement NRSfM using deep neural networks [6,19], but these
methods mostly focus on the structure-from-category (SfC) problem, in which
the 3D shapes of different rigid subjects in a category are reconstructed, and the
deformation between subjects are not very diverse. Experiments on the CMU
MoCap data in [19] show that, for data with diverse deformations, its general-
ization performance is not very good. Recently, Novotny et al . [27] proposed a
neural network that reconstructs 3D shapes from monocular images by canon-
icalizing 3D shapes so that the 3D rigid motion is registered. This method has
shown successful reconstruction results for data with more diverse deformations,
which has been used in traditional NRSfM research. Wang et al . [38] also pro-
posed knowledge distillation method that incorporate NRSfM algorithms as a
teacher, which showed promising results on learning 3D human poses from 2D
points.

The main difficulty of NRSfM is that one has to estimate both the
rigid motion and the non-rigid shape deformation, which has been discussed
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extensively in the field of NRSfM throughout the past two decades. Especially,
motion and deformation can get mixed up and some parts of rigid motions
can be mistaken to be deformations. This has been first pointed out in [21],
in which conditions derived from the generalized Procrustes analysis (GPA) has
been adopted to resolve the problem. Meanwhile, all recent neural-network-based
NRSfM approaches attempt to regress both the rigid motion and non-rigid defor-
mation at the same time. Among these, only Novotny et al . [27] deals with the
motion-deformation-separation problem in NRSfM, which is addressed as “shape
transversality.” Their solution is to register motions of different frames using an
auxiliary neural network.

In this paper, we propose an alternative to this problem: First, we prove
that a set of Procrustes-aligned shapes is transversal. Based on this fact, rather
than explicitly estimating rigid motions, we propose a novel loss, in which suit-
able motions are determined automatically based on Procrustes alignment. This
is achieved by modifying the cost function recently proposed in Procrustean
regression (PR) [29], an NRSfM scheme that shares similar motivations with
our work, which is used to train neural networks via back-propagation. Thanks
to this new loss function, the network can concentrate only on the 3D shape
estimation, and accordingly, the underlying structure of the proposed neural
network is quite simple. The proposed framework, Procrustean Regression Net-
work (PRN), learns to infer 3D structures of deformable objects using only 2D
ground truths as training data.

Figure 1 illustrates the flow of the proposed framework. PRN accepts a set
of image sequences or 2D point sequences as inputs at the training phase. The
cost function of PRN is formulated to minimize the reprojection error and the
nuclear norm of aligned shapes. The whole training procedure is done in an
end-to-end manner, and the reconstruction result for an individual image is
generated at the test phase via a simple forward propagation without requiring
any post processing step for 3D reconstruction. Unlike the conventional NRSfM
algorithms, PRN robustly estimates 3D structure of unseen test data with feed-
forward operations in the test phase, taking the advantage of neural networks.
The experimental results verify that PRN effectively reconstructs the 3D shapes
of non-rigid objects such as human faces and bodies.

2 Related Works

The underlying assumption of NRSfM methods is that the 3D shape or the 3D
trajectory of a point is interpreted as a weighted sum of several bases [2,4]. 3D
shapes are obtained by factorizing a shape matrix or a trajectory matrix so that
the matrix has a pre-defined rank. Improvements have been made by several
works which use probabilistic principal components analysis [34], metric con-
straints [28], course-to-fine reconstruction algorithm [3], complementary-space
modeling [12], block sparse dictionary learning [18], or force-based models [1].
The major disadvantage of early NRSfM methods is that the number of basis
should be determined explicitly while the optimal number of bases is usually
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unknown and is different from sequence to sequence. NRSfM methods using
low-rank optimization have been proposed to overcome this problem [9,11].

It was proven that shape alignment also helps to increase the performance
of NRSfM [7,20–22]. Procrustean normal distribution (PND) [21] is a power-
ful framework to separate rigid shape variations from the non-rigid ones. The
expectation-maximization-based optimization algorithm applied to PND, EM-
PND, showed superior performance to other NRSfM algorithms. Based on this
idea, Procrustean Regression (PR) [29] has been proposed to optimize an NRSfM
cost function via a simple gradient descent method. In [29], the cost function con-
sists of a data term and a regularization term where low-rankness is imposed not
directly on the reconstructed 3D shapes but on the aligned shapes with respect
to the reference shape. Any type of differentiable function can be applied for
both terms, which has allowed its applicability to perspective NRSfM.

On the other hand, along with recent rise of deep learning, there have been
efforts to solve 3D reconstruction problems using CNNs. Object reconstruction
from a single image with CNNs is an active field of research. The densely recon-
structed shapes are often represented as 3D voxels or depth maps. While some
works use ground truth 3D shapes [8,33,39], other works enable the networks
to learn 3D reconstruction from multiple 2D observations [10,36,41,42]. The
networks used in aforementioned works include a transformation layer that esti-
mates the viewpoint of observations and/or a reprojection layer to minimize the
error between input images and projected images. However, they mostly restrict
the class of objects to ones that are rigid and have small amounts of deformations
within each class, such as chairs and tables.

The 3D interpreter network [40] took a similar approach to NRSfM meth-
ods in that it formulates 3D shapes as the weighted sum of base shapes, but it
used synthetic 3D models for network training. Warpnet [16] successfully recon-
structs 3D shapes of non-rigid objects without supervision, but the results are
only provided for birds datasets which have smaller deformations than human
skeletons. Tulsiani et al . [35] provided a learning algorithm that automatically
localize and reconstruct deformable 3D objects, and Kanazawa et al . [17] also
infer 3D shapes as well as texture information from a single image. Although
those methods output dense 3D meshes, the reconstruction is conducted on rigid
objects or birds which do not contain large deformations. Our method provides
a way to learn 3D structure of non-rigid objects that contain relatively large
deformations and pose variations such as human skeletons or faces.

Training a neural network using the loss function based on NRSfM algorithms
has been rarely studied. Kong and Lucey [19] proposed to interpret NRSfM as
multi-layer sparse coding, and Cha et al . [6] proposed to estimate multiple basis
shapes and rotations from 2D observations based on a deep neural network.
However, they mostly focused on solving SfC problems which have rather small
deformations, and the generalization performance of Kong and Lucey [19] is not
very good for unseen data with large deformations. Recently, Novotny et al . [27]
proposed a network structure which factors object deformation and viewpoint
changes. Even though many existing ideas in NRSfM are nicely implemented in
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[27], this in turn makes the network structure quite complicated. Unlike [27],
the 3D shapes are aligned to the mean of aligned shapes in each minibatch in
PRN, which enables the use of a simple network structure. Moreover, PRN does
not need to set the number of basis shapes explicitly, because it is adjusted
automatically in the low-rank loss.

3 Method

We briefly review PR [29] in Sect. 3.1, which is a regression problem based on
Procrustes-aligned shapes and is the basis of PRN. Here, we also introduce the
concept of “shape transversality” proposed by Novotny et al . [27] and prove that
a set of Procrustes-aligned shapes is transversal, which means that Procrustes
alignment can determine unique motions and eliminate the rigid motion compo-
nents from reconstructed shapes. The cost function of PRN and its derivatives
are explained in Sect. 3.2. The data term and the regularization term for PRN
are proposed in Sect. 3.3. Lastly, network structures and training strategy is
described in Sect. 3.4.

3.1 Procrustean Regression

NRSfM aims to recover 3D positions of the deformable objects from 2D corre-
spondences. Concretely, given 2D observations of np points Ui(1 ≤ i ≤ nf ) in
nf frames, NRSfM reconstructs 3D shapes of each frame Xi. PR [29] formu-
lated NRSfM as a regression problem. The cost function of PR consists of data
term that corresponds to the reprojection error and the regularization term that
minimizes the rank of the aligned 3D shapes, which has the following form:

J =
nf∑

i=1

f(Xi) + λg(X̃,X). (1)

Here, Xi is a 3 × np matrix of the reconstructed 3D shapes on the ith frame,
and X is a reference shape for Procrustes alignment. X̃ is a 3np × nf matrix
which is defined as X̃ � [vec(X̃1) vec(X̃2) · · · vec(X̃nf

)], where vec(·) is a vec-
torization operator. X̃i is an aligned shape of the ith frame. The aligned shapes
are retrieved via Procrustes analysis without scale alignment. In other words,
the aligning rotation matrix for each frame is calculated as

Ri = argmin
R

‖RXiT − X‖ s.t. RTR = I. (2)

Here, T � Inp
− 1

np
1np

1T
np

is the translation matrix that makes the shape cen-
tered at origin. In is an n×n identity matrix, and 1n is an all-one vector of size
n. The aligned shape of the ith frame becomes X̃i = RiXiT.

In [29], (1) is optimized for variables Xi and X and it is shown that their gra-
dients for (1) can be analytically derived. Hence, any gradient-based optimization
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method can be applied for large choices of f and g. What the above formulation
implies is that we can impose a regularization loss based on the alignment of
reconstructed shapes, and therefore, we can enforce certain properties only to
non-rigid deformations in which rigid motions are excluded.

To back up the above claim, we introduce the transversal property introduced
in [27]:

Definition 1. The set X0 ⊂ R
3×np has the transversal property if, for any pair

X,X′ ∈ X0 related by a rotation X′ = RX, then X = X′.

The above definition basically defines a set of shapes that do not contain any
non-trivial rigid transforms of its elements, and its elements can be interpreted
as having canonical rigid poses. In other words, if two shapes in the set are
distinctive, then they should not be identical up to a rigid transform. Here, we
prove that the set of Procrustes-aligned shapes is indeed a transversal set. First,
we need an assumption: Each shape should have a unique Procrustes alignment
w.r.t. the reference shape. This condition might not be satisfied in some cases,
e.g ., degenerate shapes such as co-linear shapes.

Lemma 1. A set XP of Procrustes-aligned shapes w.r.t. a reference shape X is
transversal if the shapes are not degenerate.

Proof. Suppose that there are X,X′ ∈ XP that satisfy X′ = RX. Based on
the assumption, minR′ ‖R′X′T − X‖2 will have a unique minimum at R′ = I.
Hence, minR′ ‖R′RXT − X‖2 will also have a unique minimum at the same
point, which indicates that minR′′ ‖R′′XT − X‖2 will have one at R′′ = R.
Based on the assumption, R′′ has to be I, and hence R = I. ��

In [27], an arbitrary registration function f is introduced to ensure the
transversality of a given set, which is implemented as an auxiliary neural network
that has to be trained together with the main network component. We can inter-
pret the Procrustes alignment in this work as a replacement of f that does not
need training and has analytic gradients. Accordingly, the underlying network
structure of PRN can become much simpler at the cost of a more complicated
loss function.

3.2 PR Loss for Neural Networks

One may directly use the gradients of (1) to train neural networks by designing a
neural network that estimates both the 3D shapes Xi and the reference shape X.
However, the reference shape here incurs some problems when we are to handle
it in a neural network. If the class of objects that we are interested in does
not contain large deformations, then imposing this reference shape as a global
parameter can be an option. On the contrary, if there can be a large deformation,
then optimizing the cost function with minibatches of similar shapes or sequences
of shapes can be vital for the success of training. In this case, a separate network
module to estimate a good 3D reference shape is inevitable. However, designing
a network module that estimates mean shapes may make the network structure



Procrustean Regression Networks 7

more complex and training procedure harder. To keep it concise, we excluded
the reference shape from (1) and defined the reference shape as the mean of
the aligned output 3D shapes. The mean shape X in (1) is simply replaced
with

∑nf

j=1 RjXjT. Now, Xi is the only variable in the cost function, and the
derivative of the cost function with respect to the estimated 3D shapes, ∂J

∂Xi
, is

derived analytically.
The cost function of PRN can be written as follows:

J =
nf∑

i=1

f(Xi) + λg(X̃). (3)

The alignment constraint is also changed to

R = argmin
R

nf∑

i=1

‖RiXiT − 1
nf

nf∑

j=1

RjXjT‖ s.t. RT
i Ri = I. (4)

where R is the concatenation of all rotation matrices, i.e., R = [R1,

R2, · · · ,Rnf
]. Let us define X and X̃ as X � [vec(X1), vec(X2), · · · , vec(Xnf

)]
and X̃ � [vec(X̃1), vec(X̃2), · · · , vec(X̃nf

)] respectively. The gradient of J with
respect to X while satisfying the constraint (4) is

∂J
∂X

=
∂f

∂X
+ λ

〈
∂g

∂X̃
,
∂X̃
∂X

〉
, (5)

where 〈·, ·〉 denotes the inner product. ∂f
∂X and ∂g

∂ ˜X
are derived once f and g

are determined. The derivation process of ∂ ˜X
∂X is analogous to [29]. We explained

detailed process in the supplementary material and provide only the results here,
which has the form of

∂X̃
∂X

= (AB−1C + I3npnf
)D. (6)

A is a 3npnf × 3nf block diagonal matrix expressed as

A = blkdiag((X′T
1 ⊗ I3)L, (X′T

2 ⊗ I3)L, · · · , (X′T
nf

⊗ I3)L), (7)

where blkdiag(·) is the block-diagonal operator, ⊗ denotes the Kronecker prod-
uct. X′T

i = R̂iXiT, where R̂i is the current rotation matrix before the gradient
evaluation, and L is a 9 × 3 matrix that implies the orthogonality constraint of
a rotation matrix [29], whose values are

L =

⎡

⎣
0 0 0 0 0 −1 0 1 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0

⎤

⎦
T

. (8)

B is a 3nf × 3nf matrix whose block elements are

bij =

{
LT(

∑
k �=i X

′T
k X′T

i ⊗ I3)L i = j

LT(I3 ⊗ X′
iX

′T
j )EL i �= j

(9)
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where bij means the (i, j)-th 3 × 3 submatrix of B, i and j are integers ranging
from 1 to nf , and E is a permutation matrix that satisfies Evec(H) = vec(HT ).
C is a 3nf × 3nfnp matrix whose block elements are

cij =

{
−LT(

∑
k �=i X

′
k ⊗ I3) i = j

−LT(I3 ⊗ X′
i)E i �= j

(10)

where cij means the (i, j)-th 3×3 submatrix of C. Finally, D is a 3nfnp ×3nfnp

block-diagonal matrix expressed as

D = blkdiag(T ⊗ R̂1,T ⊗ R̂2, · · · ,T ⊗ R̂nf
). (11)

Even though the size of ∂X̃/∂X is quite large, i.e., 3nfnp × 3nfnp, we don’t
actually have to construct it explicitly since the only thing we need is the ability
to backpropagate. Memory space and computations can be largely saved based
on clever utilization of batch matrix multiplications and reshapes. In the next
section, we will discuss about the design of the functions f and g and their
derivatives.

3.3 Design of f and g

In PRN, the network produces the 3D position of each joint of a human body. The
network output is fed into the cost function, and the gradients are calculated to
update the network. For the data term f , we use the reprojection error between
the estimated 3D shapes and the ground truth 2D points. We only consider the
orthographic projection in this paper, but the framework can be easily extended
to the perspective projection. The function f corresponding to the data term
has the following form.

f(X) =
nf∑

i=1

1
2
‖(Ui − PoXi) � Wi‖2F . (12)

Here, Po =
[
1 0 0
0 1 0

]
is an 2×3 orthographic projection matrix, and Ui is a 2×np

2D observation matrix (ground truth). Wi is a 2 × np weight matrix whose ith
column represents the confidence of the position of ith point. Wi has values
between 0 and 1, where 0 means the keypoint is not observable due to occlusion.
Scores from 2D keypoint detectors can be used as values of Wi. Lastly, ‖·‖F

and � denotes the Frobenius norm and element-wise multiplication respectively.
The gradient of (12) is

∂f

∂X
=

nf∑

i=1

PT
o ((PoXi − Ui) � Wi � Wi). (13)

For the regularization term, we imposed a low-rank constraint to the aligned
shapes. Log-determinant or the nuclear norm are two widely used functions and
we choose the nuclear norm, i.e.,

g(X̃) = ‖X̃‖∗, (14)
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where ‖·‖∗ stands for the nuclear norm of a matrix. The subgradient of a nuclear
norm can be calculated as

∂g

∂X̃
= Usign(Σ)VT , (15)

where UΣVT is the singular value decomposition of X̃ and sign(·) is the sign
function. Note that the sign function is to deal with zero singular values. ∂g/∂X̃i

is easily obtained by reordering ∂g/∂X̃.

Fig. 2. Structure of FCNs used in this paper. Structure of CNNs are the same except
that ResNet-50 is used as a backbone network instead of a fully connected ResBlock.

3.4 Network Structure

By susbstituting (6), (13), and (15) into (5), the gradient of the cost function of
PRN with respect to the 3D shape Xi can be calculated. Then, the gradient for
the entire parameters in the network can also be calculated by back-propagation.
We experimented two different structures of PRN in Sect. 4: fully connected net-
works (FCNs) and convolutional neural networks (CNNs). For the FCN struc-
ture, inputs are the 2D point sequences. Each minibatch has a size of 2np × nf ,
and the network produces the 3D positions of the input sequences. We use two
stacks of residual modules [13] as the network structure. The prediction parts of
x, y coordinates and z coordinates in the network are separated as illustrated in
Fig. 2, which achieved better performance in our empirical experience.

For the CNNs, sequences of RGB images are fed into the networks. ResNet-
50 [13] is used as a backbone network. The features of the final convolutional
layers consisting of 2,048 feature maps of 7 × 7 size are connected to a network
with the same structure as in the previous FCN to produce the final 3D output.
We initialize the weights in the convolutional layers to those of the ImageNet [31]
pre-trained network. More detailed hyperparameter settings are described in the
supplementary material.
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4 Experiments

The proposed framework is applied to reconstruct 3D human poses, 3D human
faces, and dense 3D human meshes, all of which are the representative types of
non-rigid objects. Additional qualitative results and experiments of PRN includ-
ing comparison with the other methods on the datasets can be found in the
supplementary materials.

4.1 Datasets

Human 3.6M [15] contains large-scale action sequences with the ground truth
of 3D human poses. We downsampled the frame rate of all sequences to 10
frames per second (fps). Following the previous works on the dataset, we used
five subjects (S1, S5, S6, S7, S8) for training, and two subjects (S9, S11) are used
as the test set. Both 2D points and RGB images are used for experiments. For
the experiments with 2D points, we used ground truth projections provided in
the dataset as well as the detection results of a stacked hourglass network [26].

300VW [32] has 114 video clips of faces with 68 landmarks annotations. We
used the subset of 64 sequences from the dataset. The dataset is splitted into
train and test sets, each of which consists of 32 sequences. 63,205 training images
and 60,216 test images are used for the experiment. Since 300-VW dataset only
provides 2D annotations and no 3D ground truth data exists, we used the data
provided in [5] as 3D ground truths.

SURREAL [37] dataset is used to validate our framework on dense 3D human
shapes. It contains 3D human meshes which are created by fitting SMPL body
model [23] on CMU Mocap sequences. Each mesh is comprised of 6,890 vertices.
We selected 25 sequences from the dataset and split into training and test sets
which consist of 5,000 and 2,401 samples respectively. The meshes are randomly
rotated around y-axis, and orthographic projection is applied to generate 2D
points.

4.2 Implementation Details

The parameter λ is set to λ = 0.05 for all experiments. The datasets used for our
experiment consist of video sequences from fixed monocular cameras. However,
most NRSfM algorithms including PRN requires moderate rotation variations
in a sequence. To this end, for the Human 3.6M dataset where the sequences
are taken by 4 different cameras, we alternately sample the frames or 2D poses
from different cameras for consecutive frames. We set the time interval of the
samples from different cameras to 0.5 s. Meanwhile, 300-VW dataset does not
have multi-view sequences, and each sequence does not have enough rotations.
Hence, we randomly sample the inputs in a minibatch from different sequences.
For SURREAL datasets, we used 2D poses from consecutive frames.

On the other hand, the rotation alignment is applied to the samples within
the same mini-batch. Therefore, if we select the samples in a mini-batch from a
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single sequence, the samples within the mini-batch does not have enough vari-
ations which affects training speed and performance. To alleviate this problem,
we divided a mini-batch into 4 groups and calculated the gradients of the cost
function for each group during the training of Human 3.6 M and SURREAL
datasets. In addition, since only a small number of different sequences are used
in each mini-batch during the training and frames in the same mini-batch are
highly correlated as a result, batch normalization [14] may make the training
unstable. Hence, we train the networks using batch normalization with moving
average for the 70% of the training, and the rest of the iterations are trained
with fixed average values as in the test phase.

4.3 Results

The performance of PRN on Human3.6M is evaluated in terms of mean per joint
position error (MPJPE) which is the widely used metric in the literature. Mean-
while, we used normalized error as the error metric of 300-VW and SURREAL
datasets since the dataset does not provide absolute scales of 3D points. MPJPE
and normalized error(NE) are defined as

MPJPE(X̂i,X∗
i ) =

1
np

np∑

j=1

‖X̂ij − X∗
ij‖, NE(X̂i,X∗

i ) =
‖X̂i − X∗

i ‖F

‖X∗
i ‖F

, (16)

where X̂i and X∗
i denote the reconstructed 3D shape and the ground truth 3D

shape on the ith frame, respectively, and X̂ij and X∗
ij are the jth keypoint of

X̂i and X∗
i , respectively. Since orthographic projection has reflection ambiguity,

we measure the error also for the reflected shapes and choose the shape that has
a smaller error.

To verify the effectiveness of PRN in the fully-connected network architecture
(PRN-FCN), we first applied PRN to the task of 3D reconstruction given an
input of 2D points. First, we trained PRN-FCN on the Human 3.6M dataset
using either ground truth 2D generated by orthographic projection or perspective
projection (GT-ortho, GT-persp) or keypoints detected using Stacked hourglass
networks (SH). The detailed results for different actions are illustrated in Table 1.
For comparison, we also show the results of C3DPO from [27] under the same
training setting. As a baseline, we also provide the performance of FCN trained
only on the reprojection error (PRN w/o reg). We also trained the neural nets
using the 3D shapes reconstructed from existing NRSfM methods, CSF2 [12]
and SPM [9] to compare our framework with NRSfM methods. We applied the
NRSfM methods to each sequence with the same strides and camera settings as
done in training PRN. The trained networks also have the same structure as the
one used for PRN.

Here, we can confirm that the regularization term helps estimating depth
information more accurately and drops the error significantly. Moreover, PRN-
FCN significantly outperforms the NRSfM methods and is also superior to the



12 S. Park et al.

T
a
b
le

1
.

M
P

J
P

E
w

it
h

2
D

in
p
u
ts

o
n

H
u
m

a
n

3
.6

M
d
a
ta

se
t

w
it

h
d
iff

er
en

t
2
D

in
p
u
ts

:
(G

T
-o

rt
h
o
)

O
rt

h
o
g
ra

p
h
ic

p
ro

je
ct

io
n

o
f

3
D

G
T

p
o
in

ts
.
(G

T
-p

er
sp

)
P
er

sp
ec

ti
v
e

p
ro

je
ct

io
n

o
f
3
D

G
T

.
(S

H
)

2
D

k
ey

p
o
in

t
d
et

ec
ti

o
n

re
su

lt
s

o
f
a

st
a
ck

ed
h
o
u
rg

la
ss

n
et

w
o
rk

ei
th

er
fr

o
m

[2
7
]

(S
H

[2
7
])

o
r

fr
o
m

th
e

n
et

w
o
rk

fi
n
e-

tu
n
ed

o
n

H
u
m

a
n

3
.6

M
(S

H
-F

T
).

P
R

N
-F

C
N

-W
u
se

d
w

ei
g
h
te

d
re

p
ro

je
ct

io
n

er
ro

r
b
a
se

d
o
n

th
e

k
ey

p
o
in

t
d
et

ec
ti

o
n

sc
o
re

.

M
e
th

o
d

(G
T
-o

rt
h
o
)

D
ir
e
c
t

D
is
c
u
ss

E
a
ti
n
g

G
re

e
t

P
h
o
n
e

P
o
se

P
u
rc

h
S
it
ti
n
g

S
it
in

g
D

S
m

o
k
e

P
h
o
to

W
a
it

W
a
lk

W
a
lk

D
W

a
lk

T
A
v
g

P
R
N

w
/
o

re
g

1
3
8
.1

1
3
9
.7

1
4
6
.5

1
4
5
.2

1
4
0

1
2
7
.6

1
4
9
.4

1
7
0
.4

1
8
8
.4

1
3
8
.3

1
5
0
.9

1
3
3
.1

1
2
5
.6

1
4
3
.9

1
3
9
.3

1
4
4
.8

C
S
F
2

[1
2
]
+

N
N

8
7
.2

9
0
.1

9
6
.1

9
5
.9

1
0
2
.9

9
2
.1

9
9
.3

1
2
9
.8

1
3
6
.7

9
9
.5

1
2
0
.1

9
5
.2

9
0
.8

1
0
2
.4

8
9
.2

1
0
1
.6

S
P
M

[9
]
+

N
N

6
5
.3

6
8
.7

8
2
.0

7
0
.1

9
5
.3

6
5
.1

7
1
.9

1
1
7
.0

1
3
6
.0

8
4
.3

8
8
.9

7
1
.2

5
9
.5

7
3
.3

6
8
.3

8
2
.3

C
3
D

P
O

[2
7
]

5
6
.1

5
5
.6

6
2
.2

6
6
.4

6
3
.2

6
2
.0

6
2
.9

7
6
.3

8
5
.8

5
9
.9

8
8
.7

6
3
.3

7
1
.1

7
0
.7

7
2
.3

6
7
.8

P
R
N
-F

C
N

6
5
.3

5
8
.2

6
0
.5

7
3
.8

6
0
.7

7
1
.5

6
4
.6

7
9
.8

9
0
.2

6
0
.3

8
1
.2

6
7
.1

5
4
.4

6
1
.2

6
5
.6

6
6
.7

M
e
th

o
d

(G
T
-p

e
rs

p
)

D
ir
e
c
t

D
is
c
u
ss

E
a
ti
n
g

G
re

e
t

P
h
o
n
e

P
o
se

P
u
rc

h
S
it
ti
n
g

S
it
in

g
D

S
m

o
k
e

P
h
o
to

W
a
it

W
a
lk

W
a
lk

D
W

a
lk

T
A
v
g

C
3
D

P
O

[2
7
]

9
6
.8

8
5
.7

8
5
.8

1
0
7
.1

8
6
.0

9
6
.8

9
3
.9

9
4
.9

9
6
.7

8
6
.0

1
2
4
.3

9
0
.7

9
5
.2

9
3
.4

1
0
1
.3

9
5
.6

P
R
N
-F

C
N

9
3
.1

8
3
.3

7
6
.2

9
8
.6

7
8
.8

9
1
.7

8
1
.4

8
7
.4

9
1
.6

7
8
.2

1
0
4
.3

8
9
.6

8
3
.0

8
0
.5

9
5
.3

8
6
.4

M
e
th

o
d

(S
H
)

D
ir
e
c
t

D
is
c
u
ss

E
a
ti
n
g

G
re

e
t

P
h
o
n
e

P
o
se

P
u
rc

h
S
it
ti
n
g

S
it
in

g
D

S
m

o
k
e

P
h
o
to

W
a
it

W
a
lk

W
a
lk

D
W

a
lk

T
A
v
g

C
3
D

P
O

[2
7
]

1
3
1
.1

1
3
7
.4

1
2
5
.2

1
4
6
.4

1
4
3
.2

1
4
1
.4

1
3
7
.3

1
4
1
.4

1
6
3
.8

1
3
6
.2

1
6
1

1
4
3
.4

1
4
5
.9

1
5
3
.2

1
6
8
.6

1
4
5
.0

P
R
N
-F

C
N

(S
H

[2
7
])

1
2
7
.2

1
1
5
.1

1
0
9
.2

1
3
0
.0

1
2
6
.9

1
2
2
.3

1
1
6
.4

1
2
8
.4

1
4
9
.3

1
1
7
.3

1
4
0
.7

1
2
4
.0

1
2
3
.9

1
1
5
.3

1
4
0
.4

1
2
4
.5

P
R
N
-F

C
N

(S
H

F
T
)

1
0
0
.2

8
9
.4

8
3
.8

1
0
5
.5

9
3
.0

9
7
.2

8
9
.2

1
1
4
.0

1
4
1
.2

8
9
.1

1
1
4
.8

9
7
.3

9
1
.0

8
8
.3

1
0
7
.2

9
9
.1

P
R
N
-F

C
N
-W

(S
H

F
T
)

1
0
0
.3

8
8
.8

8
2
.8

1
0
5
.2

9
1
.4

9
6
.7

8
8
.1

1
0
2
.1

1
1
3
.2

8
7
.4

1
1
5
.1

9
6
.5

9
1
.7

8
7
.6

1
0
6
.4

9
5
.9



Procrustean Regression Networks 13

2D inputs PRN-FCN GT 2D inputs PRN-FCN GT

Fig. 3. Qualitative results of PRN-FCN on Human 3.6M dataset. PRN successfully
reconstructs 3D shapes from 2D points under various rotations and poses. Left arms
and legs are shown in blue, and right arms and legs are shown in red. (Color figure
online)

recently proposed work [27] for both ground truth inputs and inputs from key-
point detectors, which proves the effectiveness of the alignment and the low-
rank assumption for similar shapes. While PRN-FCN is silghtly better than [27]
under orthographic projections, it largely outperforms [27] when trained using
2D points with perspective projections, which indicates that PRN is also robust
to the noisy data. The results from the neural networks trained with NRSfM
tend to have large variations depending on the types of sequences. This is mainly
because the label data comes from NRSfM methods does not show prominent
reconstruction results, and this erroneous signal limits the performance of the
network in difficult sequences. On the other hand, PRN-FCN robustly recon-
struct 3D shapes across all sequences. More interestingly, when the scores of
keypoint detectors are used as a weight(PRN-FCN-W), PRN showed improved
performance. This result implies that PRN is also robust to inputs with struc-
tured missing points since occluded keypoints have lower scores. Although we
did not provide the confidence information as input signals, lower weight in the
cost function makes the keypoints with lower confidence rely more on the regu-
larization term. As a consequence, PRN-FCN-W performs especially better on
the sequences that have complex pose variations such as Sitting or SittingDown.

Qualitative results for PRN and comparison with the ground truth shapes
are illustrated in Fig. 3. It is shown that PRN accurately reconstructs 3D shapes
of human bodies from various challenging 2D poses.

Next, we apply PRN to the CNNs to learn the 3D shapes directly from
RGB images. MPJPE on the Human 3.6M test set are provided in Table 2. For
comparison, we also trained the networks using only the reprojection error and
excluding the regularization term in the cost function of PRN (PRN w/o reg).
Moreover, we also trained the networks using the 3D shapes reconstructed from
existing NRSfM methods, CSF2 [12] and PR [29] since SPM [9] diverged for
many sequences in this dataset. Estimating 3D poses from RGB images directly
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Table 2. MPJPE with RGB
image inputs on the Human
3.6M dataset.

Method MPJPE

PRN w/o reg 164.5

CSF2 [12] + CNN 130.6

SPM [9] + CNN 114.4

PRN-CNN 108.9

GT 3D 98.8

Table 3. Normalized
error with 2D inputs on
the 300-VW dataset.

Method NE

PRN w/o reg 0.5201

CSF2 [12] + NN 0.2751

PR [29] + NN 0.2730

C3DPO [27] 0.1715

PRN-FCN 0.1512

GT 3D 0.0441

Table 4. Normalized
error with 2D inputs on
the SURREAL dataset.

Method NE

PRN w/o reg 0.3565

C3DPO [27] 0.3509

PRN-FCN 0.1377

is more challenging than using 2D points as inputs because 2D information
as well as depth information should also be learned, and images also contain
photometric variations or self-occlusions. PRN largely outperforms the model
without regularization term and shows better results than the CNNs trained
using NRSfM reconstruction results. It can be observed that the CNN trained
with ground truth 3D still has large errors. The performance may be improved if
recently-proposed networks for 3D human pose estimation [25,30] is applied here.
However, a large network structure reduces the batch size, which can ruin the
entire training process of PRN. Therefore, we instead used the largest network we
can afford with maintaining the batch size to at least 16. Even though this limits
the performance gain due to network structure, we can still compare the results
from other similar-sized networks to verify that the proposed training strategy
is effective. Qualitative results of PRN-CNN are provided in the supplementary
materials.

Next, for the task of 3D face reconstruction, we used the 300-VW dataset [32]
which has a video sequence of human faces. We used the reconstruction results
from [5] as 3D ground truths. The reconstruction performance is evaluated in
terms of normalized error, and the results are illustrated in Table 3. PRN-FCN is
also superior to the other methods, including C3DPO [27], in 300-VW datasets.
Qualitative results are shown in the two leftmost columns of Fig. 4. Both PRN
and C3DPO output plausible results, but C3DPO tends to have larger depth
ranges than ground truth depths, which led to increase the normalized errors.

Lastly, we validated the effectiveness of PRN on dense 3D models. Human
meshes in SURREAL datasets consist of 6890 3D points for each shape. Since
calculating the cost function on dense 3D data imposes heavy computational
burden, we subdivided the 3D points into a few groups and compute the cost
function for a small set of points. The groups are randomly organized in every
iteration. Normalized errors on the SURREAL dataset is shown in Table 4. As
it can be seen in Table 4 and the two rightmost columns of Fig. 4, PRN-FCN
effectively reconstruct 3D human mesh models from 2D inputs while C3DPO [27]
fails to recover depth information.
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300-VW dataset SURREAL datset

2D inputs

C3DPO [27]

PRN-FCN

GT

Fig. 4. Qualitative results of PRN-FCN on 300-VW datasets (two leftmost columns)
and SURREAL datasets (two rightmost columns).

5 Conclusion

In this paper, a novel framework for training neural networks to estimate 3D
shapes of non-rigid objects based on only 2D annotations is proposed. 3D shapes
of an image can be rapidly estimated using the trained networks unlike exist-
ing NRSfM algorithms. The performance of PRN can be improved by adopting
different network architectures. For example, CNNs based on heatmap represen-
tations may provide accurate 2D poses and improve reconstruction performance.
Moreover, the flexibility for designing the data term and the regularization term
in PRN makes it easier to extend the framework to handle perspective projection.
Nonetheless, the proposed PRN with simple network structures outperforms the
existing state-of-the-art. Although solving NRSfM with deep learning still has
some challenges, we believe that the proposed framework establishes the con-
nection between NRSfM algorithms and deep learning which will be useful for
future research.
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