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Abstract. We investigate the problem of learning to generate 3D para-
metric surface representations for novel object instances, as seen from
one or more views. Previous work on learning shape reconstruction from
multiple views uses discrete representations such as point clouds or vox-
els, while continuous surface generation approaches lack multi-view con-
sistency. We address these issues by designing neural networks capable
of generating high-quality parametric 3D surfaces which are also con-
sistent between views. Furthermore, the generated 3D surfaces preserve
accurate image pixel to 3D surface point correspondences, allowing us
to lift texture information to reconstruct shapes with rich geometry and
appearance. Our method is supervised and trained on a public dataset
of shapes from common object categories. Quantitative results indicate
that our method significantly outperforms previous work, while qualita-
tive results demonstrate the high quality of our reconstructions.

Keywords: 3D reconstruction · Multi-view · Single-view ·
Parametrization

1 Introduction

Reconstructing the 3D shape of an object from one or more views is an impor-
tant problem with applications in 3D scene understanding, robotic navigation
or manipulation, and content creation. Even with multi-view images, the prob-
lem can be challenging when camera baselines are large, or when lighting and
occlusions are inconsistent across the views. Recent developments in supervised
deep learning have demonstrated the potential to overcome these challenges.

https://geometry.stanford.edu/projects/pix2surf.
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Fig. 1. Pix2Surf learns to generate a continuous parametric 3D surface of an object
seen in one or more views. Given a single image, we can reconstruct a continuous partial
3D shape (top row). When multiple views are available, we can aggregate the views
to form a set of consistent 3D surfaces (bottom row). Our reconstructions preserve 2D
pixel to 3D shape correspondence that allows the transport of textures, even from real
images (last column).

Ideally, a multi-view surface reconstruction algorithm should have the fol-
lowing desirable 3C properties: surface continuity, multi-view consistency
and 2D-3D correspondence. First, it should be able to reconstruct high-
quality shapes that can be readily used in downstream applications. While
much progress has been made in learning shape representations such as point
clouds [9,15,23,37], volumetric grids [7,39,40], and meshes [42,45], their geo-
metric quality is limited by the discrete nature of the underlying representation.
Therefore, representations such as implicit functions [6,32,35], and UV surface
parametrizations [8,13] are preferable, since they can represent a continuous
surface at arbitrary resolution. Second, the algorithm should be able to recon-
struct objects from a sparse set of views while ensuring that the combined shape
is consistent across the views. Recent approaches exploit geometric constraints
to solve this problem but require additional supervision through knowledge of
the exact camera geometry [5]. Finally, the algorithm should provide accurate
correspondences between 2D pixels and points on the 3D shape, so as to accu-
rately transport object properties (e.g., texture) directly from 2D and support
aggregation across views. While some extant methods satisfy a subset of these
properties, we currently lack any method that has all of them.

In this paper, we present Pix2Surf, a method that learns to reconstruct
continuous and consistent 3D surface from single or multiple views of novel
object instances, while preserving accurate 2D–3D correspondences. We build
upon recent work on category-specific shape reconstruction using Normalized
Object Coordinate Space (NOCS) [37,41], which reconstructs the 3D point cloud
as a NOCS map – an object-centered depth map – in a canonical space that
is in accurate correspondence with image pixels. Importantly, NOCS maps do
not require knowledge of camera geometry. However, these maps do not directly
encode the underlying surface of the object. In this paper, we present a method
that incorporates a representation of the underlying surface by predicting a
continuous parametrization that maps a learned UV parameter space to 3D
NOCS coordinates, similar in spirit to AtlasNet [13]. Unlike AtlasNet, however,
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our approach also provides accurate 2D–3D correspondences and an emergent
learned chart that can be used to texture the object directly from the input
image.

When multiple views of an object are available, we also present a version
of Pix2Surf that is capable of reconstructing an object by predicting an atlas,
i.e., view-specific charts assembled to form the final shape. While in the NOCS
approach [37] individual views can also be directly aggregated since they live in
the same canonical space, this näıve approach can lead to discontinuities at view
boundaries. Instead, for view-consistent reconstruction, we aggregate multiple
views at the feature level and explicitly enforce consistency during training.

Extensive experiments and comparisons with previous work show that
Pix2Surf is capable of reconstructing high-quality shapes that are consistent
within and across views. In terms of reconstruction error, we outperform state-
of-the-art methods while maintaining the 3C properties. Furthermore, accurate
2D–3D correspondences allow us to texture the reconstructed shape with rich
color information as shown in Fig. 1. In summary, the primary contributions of
our work are:

– a method to generate a set of continuous parametric 3D surfaces represent-
ing the shape of a novel object observed from single or multiple views;

– the unsupervised extraction of a learned UV parametrization that retains
accurate 2D to 3D surface point correspondences, allowing lifting of texture
information from the input image; and

– a method to consistently aggregate such parametrizations across different
views, using multiple charts.

Emergent Properties: A notable emergent property of our network is that
the learned UV parametrization domains are consistent across different views
of the same object (i.e., corresponding pixels in different views have similar UV
coordinates) – and even across views of related objects in the same class. This
is despite the UV domain maps only being indirectly supervised for consistency,
through 3D reconstruction.

Scope: In this work, our focus is on continuity, consistency, and 2D image–3D
surface correspondences. We focus on the case when the multi-view images have
little overlap, a setting where traditional stereo matching techniques fail. Our
method only requires supervision for the input views and their corresponding
NOCS maps but does not require camera poses or ground truth UV parametriza-
tion. We note that the generated surfaces need not be watertight, and continuity
at the seams between views is not guaranteed.

2 Related Work

There is a large body of work on object reconstruction which we categorize
broadly based on the underlying shape representation.
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Voxels: The earliest deep-learning-based methods predict a voxel representation
of an object’s shape. Many of these methods are trained as generative models
for 3D shapes, with a separate image encoder to obtain the latent code for
a given image [12]. Later methods use more efficient data structures, such as
octrees [34,38,43] to alleviate the space requirements of explicit voxels. Multiple
views can also be aggregated into a voxel grid using a recurrent network [7]. Sev-
eral methods use supervision in the form of 2D images from different viewpoints,
rather than a 3D shape, to perform both single-view and multi-view voxel recon-
struction [14,17,40,47]. These methods usually use some form of a differentiable
voxel renderer to obtain a 2D image that can be compared to the ground truth
image. The quality gap of these methods to their counterparts that use 3D super-
vision is still quite large. Voxels only allow for a relatively coarse representation
of a shape, even with the more efficient data representations. Additionally, voxels
do not explicitly represent an object’s surface prompting the study of alternative
representations.

Point Clouds: To recover the point cloud of an object instance from a single
view, methods with 3D supervision [9,23] and without 3D supervision [15] have
been proposed. These methods encode the input image into a latent code thus
losing correspondences between the image pixels and the output points. Some
methods establish a coarse correspondence implicitly by estimating the camera
parameters, but this is typically inaccurate. A recent method reconstructs a
point cloud of a shape from multiple views [5], but requires ground truth camera
parameters. A large body of monocular or stereo depth estimation methods
obtain a point cloud for the visible parts of the scene in an image, but do not
attempt to recover the geometry of individual object instances in their local
coordinate frames [3]. NOCS [37,41] obtains exact correspondences between 2D
pixels and 3D points by predicting the 3D coordinates of each pixel in a canonical
coordinate frame. NOCS can even be extended to reconstruct unseen parts of
an object [37] (X-NOCS). All these approaches that output point clouds do not
describe the connectivity of a surface, which has to be extracted separately – a
classical and difficult geometry problem. We extend NOCS to directly recover
continuous surfaces and consistently handle multiple views.

Implicit Functions: Poisson Surface Reconstruction [20,21] has long been the
gold standard for recovering an implicit surface from a point cloud. More recently,
data-driven methods have been proposed that model the implicit function with a
small MLP [6,29,32], with the implicit function representing the occupancy prob-
ability or the distance to the surface. These methods can reconstruct an implicit
function directly from a single image, but do not handle multiple views and do
not establish a correspondence between pixels and the 3D space. PiFU [35] and
DISN [46] are more recent methods that establish a correspondence between pix-
els and 3D space and use per-pixel features to parameterize an implicit function.
Both single and multiple views can be handled, but the methods either require
ground truth camera poses as input [35], or use a network to get a coarse approxi-
mation of the camera poses, giving only approximate correspondences [46]. Some
recent works integrate the neural rendering with deep implicit functions [27,30],
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but they depend on the known camera information. Furthermore, to obtain an
explicit surface from an implicit function, an expensive post-processing step is
needed, such as Marching Cubes [28] or ray tracing.

Parametric Surfaces or Templates: Several methods attempt to directly
reconstruct a parametric representation of a shape’s surface. These parametric
representations range from class-specific templates [16,22], general structured
templates [11], or more generic surface representations, such as meshes or con-
tinuous functions. Pixel2Mesh and its sequel [42,45] deform a genus-zero mesh
based on local image features at each vertex, obtained by projecting the ver-
tices to the image plane(s). Camera parameters are assumed to be known for
this projection. 3DN [44] deforms a given source mesh to approximate a single
target image, using global features for both the source and the target, with-
out establishing correspondences to the target pixels. Several methods use 2D
images instead of 3D meshes as supervisory signal [18,19,26,33] using differ-
entiable mesh renderers. This makes it easier to collect training data, but the
accuracy of these methods still lags behind methods with 3D supervision. Atlas-
Net [13] represents shapes with continuous 2D patches that can be inferred from
a single input image, or from a video clip [24]. Mesh DeformNet [31] introduces
topology modification to AtlasNet. Similar to AtlasNet, we use a 2D patch as a
UV parametrization, but we handle multiple non-adjacent views and establish
correspondences between 2D pixels and 3D surface points.

3 Preliminaries

We build our approach upon two previous ideas that we describe below.

(X-)NOCS: Normalized object coordinate space (NOCS) is a canonicalized
unit container space used for category-level reasoning of object pose, size, and
shape [37,41]. Instances from a given object category are normalized for their
position, orientation, and size, thus disentangling intra-category shape variation
from the exact pose and size of instances. NOCS maps (see Fig. 2) are perspective
projections of the 3D NOCS shape onto a specific camera and can be interpreted
as object-centered depth maps that simultaneously encode mask and partial
shape of the object. When used to predict 3D point cloud from images, NOCS
maps retain correspondences from 2D pixels to 3D points, and can be used to
transport image texture directly to 3D. X-NOCS is an extension of NOCS maps
to also encode the occluded parts of a shape [37]. However, using NOCS maps
for reconstruction results in a discontinuous point cloud.

Surface Parametrization: A two-manifold surface in 3D can be mapped to a
2D plane (chart) parametrized by two coordinates (u, v). This UV parametriza-
tion of a 3D surface is widely used in computer graphics and, more recently, in 3D
shape reconstruction [13,22]. The parameterization can be limited in expressing
complex shapes, depending on the functional formulation used.
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Fig. 2. Given a single image, X-
NOCS [37] reconstructs a point
cloud preserving pixel–3D cor-
respondece. AtlasNet [13] learns
shape as a continuous surface.

For example, in typical CAD settings, low-
degree polynomial or rational functions are
used to represent the mappings. In our case,
instead, we use a fully connected network to
overcome the limitation of expressibility. A
single map, however, still lacks the ability to
describe complicated shapes with high-genus
topology. Thus, multiple charts are often used,
where multiple 2D planar patches are mapped
by separate maps to a 3D surface – effectively
partitioning the surfaces into parts, each of
which is the image of a different map in the
chart. We show how a single chart can be used
for 3D shape reconstruction while multiple charts allow consistent reconstruction
over multiple views while still preserving pixel to 3D correspondence.

4 Pix2Surf: Pixels to Surface

Our goal is to predict a continuous and consistent parametric 3D surface for a
novel object instance observed from one or more views. The word “continuous”
parametric surfaces in our method refers to parametric C0 continuity (similar
to AtlasNet [13]), i.e., any continuous trajectory over the chart space maps to a
continuous curve in 3D space. Additionally, we would like to preserve correspon-
dences between 2D pixels and 3D surface points. We first describe our approach
for reconstructing a 3D surface from a single image using a single chart, and
then generalize it to multiple views using an atlas.

4.1 Single-View Single-Chart Pix2Surf

At inference time, the single-view version of Pix2Surf takes an RGB image of an
object observed from an arbitrary camera as input. We use a CNN to extract
image features that compactly encode object shape. The features are then pro-
cessed by two branches: (1) the NOCS-UV branch is a CNN that estimates a
mask, a learned UV map, and a NOCS map and (2) the Surface Parametriza-
tion (SP) branch is an MLP that generates a continuous 3D surface. This
single-view, single-chart architecture is shown in Fig. 3.

(1) NOCS-UV Branch: Similar to X-NOCS [37], we predict the NOCS map
and mask that encode the partial shape of the object observed in the image. We
use an encoder-decoder architecture building on top of SegNet [1] and VGG [36].
Our network uses skip connections and shares pool indices between the encoder
and the decoder. The predicted NOCS maps and masks are the same size as
the input image. During training, the object mask is supervised with a binary
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Fig. 3. Single-View Single-chart Pix2Surf network architecture. The input image is
processed using an encoder-decoder architecture to predict a NOCS map, object mask,
and a learned chart (top right two channels, color coded). The Surface Parameterization
branch takes sampled and amplified chart coordinates p and a latent image code z to
predict the final continuous surface. Unwrapped chart (bottom right) refers to a visu-
alization of foreground colors using the predicted two-channel learned chart (top right)
as coordinate. The colors of the input image can be transported to all intermediate
steps (× and arrows). (Color figure online)

cross entropy loss and the NOCS map is supervised with an L2 loss. Note that
the NOCS map here is not our final 3D output, but acts as an intermediate
supervision signal for the network.

Emergence of a Chart: Different from previous work, we predict a 2-channel
output in additional to the NOCS map and mask. These 2 channels are not
explicitly supervised during training, so the network can predict any value
between 0 and 1. However, when jointly trained with the other branches, we
observe the emergence of a learned chart in these 2 channels (see Fig. 4). The
network discovers how to unwrap an object shape onto a flat surface. Remark-
ably, this learned chart is (almost) consistent across multiple views
and even across instances. During reconstruction, each image pixel’s learned
chart coordinates are passed on to the SP branch. We show that using the learned
chart coordinates is superior to using arbitrary UV coordinates like AtlasNet [13],
or alternatively using the original image coordinates (Image2Surf, Sect. 5.1).
Additionally, we preserve exact correspondences between input image pixels and
the learned chart.
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Fig. 4. Given an object image (row 1, col 1), our
network predicts a 2-channel image without explicit
supervision (row 1, col 2, color coded). Remarkably,
the output of these two channels visualized in a UV
space (row 1, col 3) show that the network has learned
to unwrap the 3D shape onto a plane (corresponding
patches shown in red). This unwrapping is consistent
over multiple views, and even across multiple object
instances (last row). For more unwrapped charts of
cars and airplanes please see supplementary Fig. S.3.
(Color figure online)

(a) Code Extractor (CE):
We use a small CNN to
reduce the high dimensional
feature map extracted by
the encoder to make a more
compact global code for the
SP branch. This CNN con-
tains two convolutional lay-
ers (512 and 1024 output
channels), batch normaliza-
tion, and ELU activation.
The output is a latent code
z of size 1024 and is passed
to the SP branch.

(b) UV Amplifier: Before
we use the learned chart
coordinates as an input to
the SP branch, we process
each UV coordinate with
a UV amplifier MLP. The
motivation for this comes
from the information imbal-
ance the two inputs to the
SP branch – one input is the global latent code z which has 1024 dimensions,
while the UV coordinates would have only 2 dimensions. To overcome this, we
amplify the UV coordinates to p (256 dimensions) using a 3-layer MLP that pro-
gressively amplifies the 2 coordinates (2, 64, 128, 256). This allows the SP branch
to make use of the image and UV information in a more balanced manner.

(2) SP Branch: Similar to AtlasNet [13], our surface parametrization (SP)
branch takes the global latent code z from the code extractor (CE) and the
amplified coordinates p as input and produces a continuous 3D position as the
output. Note that the learned chart coordinates can be continuously sampled at
inference time. The continuity of the output 3D surface emerges from our use of
a continuous MLP mapping function between the uv coordinates and the output
3D positions [13]. Our SP branch is a MLP with 9 layers and skip connection
every 2 layers (input: 1024+256, intermediate: 512, last: 3). Since we train on
canonically oriented ShapeNet models, the predicted 3D surface also lies within
the canonical NOCS container [41].

Our approach has three key differences to AtlasNet. First, we use a UV
amplifier to transform the 2D UV coordinates to higher dimensions allowing
better information balancing. Second, the learned chart is in direct correspon-
dence with the pixels of the input image (see Fig. 4). This allows us to transport
appearance information directly from the image to the 3D surface. Third, our
sampling of the UV chart is learned by a network (NOCS-UV branch) instead of
uniform sampling, which enables us to reconstruct complex topologies. Our infer-
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ence processing allows us to sample any continuous point in the learned chart
space within the predicted object mask allowing the generation of continuous
textured 3D surface.

Training: The encoder and decoder CNNs are first initialized by training them
on the NOCS map and mask prediction tasks using only the L2 and BCE losses.
Subsequently, we jointly train the NOCS-UV and SP branches, code extractor,
and UV amplifier end-to-end. The joint loss is given as,

LI = w1 (wn Ln + wm Lm) + w2 Ls, (1)

where Ln and Lm are the L2 NOCS map and BCE losses respectively, wn, wm

are the weights for the NOCS map and mask prediction respectively, and w1, w2

are the weights for the NOCS-UV and SP branches respectively. For the SP
branch we supervise on K points sampled randomly from within the foreground
mask. For each sampled point, a corresponding amplified chart coordinate p is
predicted without any supervision. This is concatenated with the global latent
code z to predict the final 3D surface position. Empirically, we found the best
hyperparameters to be: K = 4096, w1 = 0.1, w2 = 0.9, wn = 0.7, wm = 0.3. The
loss for the SP branch is given as, Ls = 1

K

∑K
i=1 ‖xi − x̂i‖2, where x and x̂

are the ground truth and predicted 3D surface position obtained from the 3D
ShapeNet models (same as ground truth NOCS map values). During inference,
we can predict a continuous 3D surface for any given image and its learned chart
coordinate. Please see the supplementary document for more details on inference
and final 3D model generation.

4.2 Multi-view Atlas Pix2Surf

Fig. 5. Given 3 views, näıve aggregation of individ-
ual charts leads to discontinuities or double surfaces
(left). Our multi-view atlas method produces more
consistent surfaces (right), for instance, at the legs
and backrest.

The method described above is
suitable when we have a single
view of the object. When mul-
tiple views are available, we
could naively extend the sin-
gle view network and combine
the generated surfaces using
a union operation. However,
this leads to sharp discontinu-
ities (Fig. 5). To overcome this
issue, we propose a generaliza-
tion of our single-view single-
chart method to consistently
aggregate 2D surface informa-
tion from multiple views, using
an atlas i.e., a separate learned
chart (UV map) for each view. Figure 6 shows an overview of our multi-view
network. This design shares similarities with the single view network but has
additional multi-view consistency which is enforced both at the feature level
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through a feature pooling step, and using a consistency loss for better 3D sur-
face generation.

Multi-view Feature Pooling: The goal of this step is to promote multi-view
information sharing at the feature level (see Fig. 6). Different from the single
view network, the latent codes zi extracted for each view i (using a shared
encoder and code extractor) are maxpooled into a common shared multi-view
latent code zm. Intuitively, this shared latent code captures the most salient
information from each view.

Fig. 6. Multi-view atlas network architecture. The multi-view network allows multiple
charts to be consistently aggregated. This network has two main features: (1) the
MaxPool operation to pool features between views, and (2) a multi-view consistency
loss LC that ensures corresponding points produce 3D surface points that are nearby.
Only two views are shown in this figure, but we use multiple views during training and
inference. The encoder, NOCS-UV branch, CE branch, and SP branches share weights.

Atlas: Similar to the single view network, we learn a chart for each view. The
chart coordinates for each view pi are extracted using the NOCS-UV branch with
weights shared between the views. Although the NOCS-UV branch weights are
shared, one chart is predicted for each view – thus, we have an atlas. Note that
the network is free to predict different chart coordinates for each view. However,
we observe that similar parts of objects in different images map to similar loca-
tions on their respective charts (see Fig. S3 in supplementary document). This
indicates that our network is discovering the notion of image cross-view
correspondence (note that this is different from 2D-3D correspon-
dence). As in the single-view network, chart coordinates are passed through a
shared UV amplifier.

We concatenate the shared latent code zm to each of the per-view latent
codes zi. This concatenated multi-view code and the learned per-view chart
coordinates pi are passed to the SP branch. The UV amplifier, code extractor
and structure of the learned UV map are similar to the single view network.

Multi-view Loss: In addition to the L2 loss function on the 3D surface gen-
erated by the SP branch, we also have a multi-view consistency loss. This loss
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enforces corresponding points on multiple views to predict similar 3D surface
positions. To obtain correspondence information at training time, we sample
a random set of foreground points within the mask and find the exact match
of the ground truth NOCS values of that pixel in the other input views. Note
that this correspondence information is not provided as additional supervision
– the ground truth NOCS maps already contain this information since corre-
sponding points multiple views have the same NOCS position. Given these cor-
respondences, the multi-view consistency loss for a pair of views is given as,
LC = 1

|P|
∑

(i,j)∈P ‖xi − xj‖2, where xi,j are the paired predicted xyz from two
different views and the set P contains all matched correspondence pair from
these two views. During training, within each mini-batch, we sample multiple
views per object and compute the loss for all possible pairs.

Training: The multi-view network is trained similar to the single view model.
The NOCS-UV branch is first trained and subsequently the whole network is
trained end-to-end. The loss function we use is LM = LI + w3

a

∑a
j=0 LC , where

a denotes the number of pairs of views within that batch, and w3 is the cor-
respondence loss weight empirically set to 0.9. We set wn, wm to 0.1 inside LI .
Please see the supplementary document for more details on inference and final
3D model generation.

5 Experiments

We present extensive experimental comparison of Pix2Surf with several recent
single- and multi-view reconstruction methods, and validate our design choices.
We do so by focusing on the 3C properties (consistency, correspondence and
continuity) for visible surface reconstruction (Sect. 5.1). Since we learn a strong
prior over shapes, we can also estimate surfaces that are hidden in the input
image (Sect. 5.2). For the details of training, inference, and evaluation metrics,
and also ablations, more comparisons, and results with real images, refer to the
supplementary document.

Dataset: For quantitative comparisons, we use ShapeNetPlain [37] dataset
which consists of 5 random views for each shape in ShapeNet [4] with a white
background. For additional robustness to the background found in real-world
images, we train Pix2Surf on ShapeNetCOCO [37] which consists of 20 random
views of each ShapeNet object with a random background from MS COCO [25].
We use this dataset for all qualitative results and for real-world results. Each
shape category is trained separately in all experiments.

Experimental Setting: We follow the experimental setup of X-NOCS [37]. Our
ground truth for each input image is the point cloud represented by the NOCS
map (or X-NOCS map for hidden surface) provided in the dataset [37]. The
outputs of all methods are converted to a NOCS map (using the ground truth
camera pose) allowing us to compute metrics even for partial shapes. Multi-view
experiments use all 5 views in the dataset to reconstruct a surface, using the
same dataset as the single-view experiments. All metrics are computed per-view
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Table 1. Visible surface reconstruction. We compare our method to a baseline and
three state-of-the-art methods evaluating reconstruction accuracy and the 3C proper-
ties. The top half of the table shows single-view reconstruction, the bottom half is multi-
view reconstruction. Note how Pix2Surf is close to the top performance in each of the
metrics, while all other methods have significant shortcomings. The Recons. Error
and Correspond. Error, Consistency Error are all multiplied by 103.

Recons. Error ↓ Correspond. Error ↓ Consistency Error ↓ Disconti. Score ↑
car chairplaneavg. car chairplane avg. car chair plane avg. car chairplaneavg.

Im.2Surf 2.23 3.81 2.66 2.90 8.49 9.54 8.76 8.93 13.08 12.5510.75 12.13 0.46 0.39 0.35 0.40
X-NOCS 2.25 2.95 2.08 2.43 12.82 8.63 8.93 10.13 18.93 12.0010.59 13.84 0.59 0.47 0.59 0.55
AtlasNet 1.54 3.36 3.15 2.68 – – – – – – – – 0.68 0.39 0.64 0.57
Pix2Surf 1.67 1.91 1.61 1.73 9.52 5.79 7.19 7.50 12.72 7.75 8.48 9.65 0.69 0.43 0.65 0.59

X-NOCS 2.89 2.80 2.19 2.63 14.30 9.48 8.95 10.91 22.18 14.2611.65 16.03 0.67 0.48 0.54 0.56
P2M++ 2.88 5.59 3.24 3.90 – – – – – – – – 0.67 0.36 0.63 0.55
Pix2Surf 1.41 1.78 1.38 1.52 8.49 5.84 7.06 7.13 10.98 6.65 7.50 8.38 0.66 0.43 0.66 0.58

and then averaged up, making the single- and multi-view values comparable in
our quantitative experiments.

Metrics: We quantify the quality of reconstructed surfaces with several met-
rics. The reconstruction error of predictions is computed as the Chamfer
distance [2,10] between the estimated surface and the ground truth NOCS map
(interpreted as a point cloud). To obtain points on a reconstructed surface, we
convert it into a NOCS map using the ground truth camera pose.

In addition to the accuracy of reconstructed surfaces, we quantify the 3C
properties of a surface with the following metrics. The 2D–3D correspondence
error measures the accuracy of the estimated correspondence between input pix-
els and 3D points on the reconstructed surface. The error for each foreground
pixel is the distance between the estimated 3D location of the pixel and the
ground truth location. Unlike the Chamfer distance, this uses the 2D–3D cor-
respondence to compare points. We average over all foreground pixels to obtain
the correspondence error of a surface. The multi-view consistency error was
defined in Sect. 4.2 as the 3D distance between corresponding points in different
views. We average the distance for a given point over all pairs of views that
contain the point. Corresponding points are found based on the ground truth
NOCS map. The continuity is measured based on the surface connectivity.
While the continuity of Pix2Surf is induced by our use of a continous MLP as
mapping from uv space to 3D space [13], the mapping from the input image to
the 3D space should not be C0-continuous everywhere, due to self occlusions and
boundaries of the 3D shape. The reconstructed surface should have the same C0

discontinuities as the ground truth surface. We define a C0 discontinuity as large
difference in the 3D locations of the neighboring pixels in a NOCS map (above
a threshold of 0.05). We take a statistical approach to measure the surface con-
nectivity, by computing a histogram over the 3D distances between neighboring
pixels that are discontinuous. The discontinuity score is the correlation of this
histogram to a histogram of the ground truth surface. A higher score indicates
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a distribution of discontinuities that is more similar to the ground truth surface.
Note that continuity is a property induced from method design itself, and the
score can penalize the over-smooth case from methods that produces continuous
prediction.

5.1 Visible Surface Reconstruction

We compare the quality of single- and multi-view reconstructions to one base-
line [Image2Surf (single-view)], and three state-of-the-art methods [AtlasNet [13]
(single-view), X-NOCS [37] (single- and multi-view), Pixel2Mesh++ [45] (multi-
view)]. Note that Pix2Surf deals with a more challenging problem compared to
AtlasNet and Pixel2Mesh++: (1) we predict 2D–3D correspondences (AtlasNet
does not), and (2) we do not require camera geometry information as input
(Pixel2Mesh++ does). In this section, we only focus on reconstructing visible
surfaces, but we also report hidden surface generation in the next section.

The single-view performance of each method in all of our metrics is shown in
the first four rows of Table 1, and the multi-view performance in the last three
rows. Metrics are comparable across single- and multi-view methods. For each
of the four metrics, we show the performance on each dataset category, and an
average over all categories.

Image2Surf: This baseline is similar to Pix2Surf, but takes image UV coordi-
nates (normalized by predicted mask) as input to the UV amplifier instead of the
learned UV chart, i.e., the input image is the chart. We observe that it is hard for
the network to learn depth discontinuities, resulting in over-smoothed occlusion
boundaries (see supplementary document). The over-smoothing is reflected in a
high reconstruction error, and particularly low discontinuity correlation score.
This comparison justifies our design to include a learned UV chart.

X-NOCS: This is a state-of-the-art reconstruction method that predicts a 3D
point cloud, i.e., a 3D point for each foreground pixel. Since X-NOCS has no
notion of surface connectivity, there is no coordination between neighboring
points, resulting in poor reconstruction accuracy and noisy output point clouds
(see Fig. 7).

Fig. 7. Our results (left) compared with
surface-agnostic X-NOCS (right), visualized
with image connectivity. Pix2Surf produces
significantly smoother results.

Note that the output point cloud
from X-NOCS can capture the right
discontinuity. However, it can only
produce discrete noisy point cloud
instead of continuous surfaces.

AtlasNet: This method also uses an
explicit surface parametrization, giv-
ing it a low reconstruction error on
the Car category. However, since the
parametrization is not learned and has a fixed layout and connectivity, the recon-
struction error increases significantly for categories with more complex shapes
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and topologies, such as Chair and Airplane. Correspondence and multi-view con-
sistency are not evaluated, since AtlasNet lacks pixel-to-point correspondences
and works only for a single view.

Pixel2Mesh++: This method deforms a given starting mesh in a coarse-to-fine
approach to approximate an object shown from multiple views. In each refine-
ment step, a mesh vertex is deformed based on a small image neighborhood
around the projection of the vertex in each view. Unlike in our method, ground
truth camera positions need to be known for this projection. The fixed connec-
tivity and topology of the starting mesh results in a higher reconstruction error.
Since correspondence and multi-view consistency are trivial given a ground truth
camera model, we do not evaluate these properties.

Unlike the previous methods, Pix2Surf learns a continuous parametrization
of the surface that does not have a fixed topology or connectivity. This gives us
more flexibility to approximate complex surfaces, for instance, to correctly place
holes that can model C0 discontinuities. This explains our high discontinuity
correlation scores which also benefits the accuracy of reconstruction and 2D-3D
correspondence. In the multi-view setting, Pix2Surf shares information across
the views, improving the overall reconstruction accuracy. For example, surfaces
that are only visible at a very oblique angle in one view can benefit from addi-
tional views. Our use of a consistency loss additionally ensures an improvement
of the multi-view consistency over the baselines, and a lower consistency error
compared to single view Pix2Surf (Fig. 5). We observe that Pix2Surf is the only
method that has top performance on all quality metrics (reconstruction and 3 C
properties), all other methods reconstruct surfaces that fall short in at least some
of the metrics.

5.2 Hidden Surface Generation

Since Pix2Surf learns a strong prior of the shapes it was trained on, we can gen-
erate plausible estimates for surfaces in parts of the object that are not directly
visible in the image (see Fig. 8). Similar to X-NOCS, we represent a 3D object
with two layers: a visible layer that we reconstruct in the experiments described
previously, and a hidden layer denoting the last intersection of camera rays [37].
Pix2Surf can be easily extended to reconstruct hidden surface farthest from the
camera by adding additional output channels to the NOCS-UV branch. The
rest of the architecture remains the same with the learned UV parametrization
additionally also learning about the hidden surface. In Table 2, we show our per-
formance when jointly reconstructing the visible and hidden surfaces from an
image. We compare to both the single- and multi-view version of X-NOCS on
all categories. The improvement in accuracy for our method shows that hidden
surfaces benefits from our learned parametrization as well. Comparing the per-
formance of the visible surface reconstruction to Table 1, we see that the joint
reconstruction of visible and hidden surfaces does not significantly decrease the
reconstruction accuracy of the visible surfaces.
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Table 2. We compare the reconstruction error
of visible and hidden surfaces (trained jointly)
for Pix2Surf and X-NOCS [single view (sv.) and
multi-view (mv.)]. The learned parametrization of
Pix2Surf also benefits from hidden surface genera-
tion, and the additional reconstruction of the hid-
den surface does not adversely affect the accuracy
of the visible surfaces.

Visible Error ↓ Hidden Error ↓
Car Chair Plane Avg. Car Chair Plane Avg.

X-NOCS (sv.) 2.25 2.95 2.08 2.43 1.86 3.34 2.25 2.48

X-NOCS (mv.) 2.89 2.80 2.19 2.63 3.11 3.32 2.03 2.82

Pix2Surf 1.66 2.01 1.66 1.78 1.52 2.47 1.77 1.92

Fig. 8. Pix2Surf can reconstruct
both visible (textured) and hidden
parts (color coded). (Color figure
online)

6 Conclusion

We have presented Pix2Surf, a method for predicting 3D surface from a single- or
multi-view images. Compared with the previous work, Pix2Surf simultaneously
achieves three properties in the prediction: continuity of the surface, consis-
tency across views, and pixel-level correspondences from the images to the
3D shape. By attaining these properties, our method enables the generation of
high-quality parametric surfaces, readily integrating the output surfaces from
multi-views, and lifting texture information from images to the 3D shape. In
future work, we will explore ways of guaranteeing continuity even across differ-
ent views and improving the quality of mapped textures. Another interesting
direction is to exploit the intermediate learned chart as a container for mate-
rial properties. A longer-term goal would be to investigate how the network can
generalize across multiple categories.
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