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Abstract. Prior work in visual dialog has focused on training deep neu-
ral models on VisDial in isolation. Instead, we present an approach to
leverage pretraining on related vision-language datasets before transfer-
ring to visual dialog. We adapt the recently proposed ViLBERT model
for multi-turn visually-grounded conversations. Our model is pretrained
on the Conceptual Captions and Visual Question Answering datasets,
and finetuned on VisDial. Our best single model outperforms prior pub-
lished work by >1% absolute on NDCG and MRR.

Next, we find that additional finetuning using “dense” annotations
in VisDial leads to even higher NDCG – more than 10% over our base
model – but hurts MRR – more than 17% below our base model! This
highlights a trade-off between the two primary metrics – NDCG and
MRR – which we find is due to dense annotations not correlating well
with the original ground-truth answers to questions.

Keywords: Vision & Language · Visual dialog

1 Introduction

Recent years have seen incredible progress in Visual Dialog [1–22], spurred in
part by the initial efforts of Das et al . [2] in developing a concrete task defini-
tion – given an image, dialog history consisting of a sequence of question-answer
pairs, and a follow-up question about the image, to predict a free-form natural
language answer to the question – along with a large-scale dataset and evaluation
metrics. The state-of-the-art on the task has improved by more than 20% abso-
lute (∼54% → ∼74% NDCG) and the original task has since been extended to
challenging domains, e.g . video understanding [23], navigation assistants [24–26].

While this is promising, much of this progress has happened in isolation,
wherein sophisticated neural architectures are trained and benchmarked solely
on the VisDial dataset. This is limiting – since there is a significant amount of
shared abstraction and visual grounding in related tasks in vision and language
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Fig. 1. First, the language stream of our model is pretrained on English Wikipedia and
the BooksCorpus [27] datasets with the masked language modeling (MLM) and next
sentence prediction (NSP) losses. Next, the entire model is trained on the Conceptual
Captions [28] and VQA [29] datasets with the masked image region (MIR), MLM and
NSP losses. Finally, we finetune the model on sparse annotations from VisDial [2] with
the MIR, MLM and NSP losses, and optionally finetune on dense annotations.

(e.g . captioning, visual question answering) that can benefit Visual Dialog – and
wasteful – since it is expensive and dissatisfying to have to collect a large-scale
dataset for every new task. In this work, we explore an approach to pretrain our
model on other related vision and language datasets and then transfer to Visual
Dialog (Fig. 1).

Our work is inspired by prior work in transfer learning in computer vision
and natural language understanding where large models [30–40] are pretrained
on large datasets [27,41,42] with simple yet powerful self-supervised objec-
tives to learn powerful representations that are then transferred to downstream
tasks, leading to state-of-the-art results on a variety of benchmarks [41,43].
Recent work has extended this to vision and language tasks [44–50], leading
to compelling results in Visual Question Answering [29], Commonsense Rea-
soning [51], Natural Language Visual Reasoning [52], Entailment [53], Image-
Text Retrieval [54,55], Referring Expressions [56], and Vision-Language Naviga-
tion [57].

In this work, we adapt ViLBERT [44] to Visual Dialog. ViLBERT uses two
Transformer-based[34] encoders, one for each of the two modalities – language
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and vision – and interaction between the two modalities is enabled by co-
attention layers i.e. attention over inputs from one modality conditioned on
inputs from the other. Note that adapting ViLBERT to Visual Dialog is not
trivial. The Visual Dialog dataset has image-grounded conversation sequences
that are up to 10 rounds long. These are significantly longer than captions (which
are ≤2 sentences) from the Conceptual Captions dataset [28] or question-answer
pairs from VQA [29] used to pretrain ViLBERT, and thus requires a differ-
ent input representation and careful reconsideration of the masked language
modeling and next sentence prediction objectives used to train BERT [35] and
ViLBERT [44].

This adapted model outperforms prior published work by > 1% absolute
and achieves state-of-the-art on Visual Dialog. Next, we carefully analyse our
model and find that additional finetuning on ‘dense’ annotations1 i.e. relevance
scores for all 100 answer options corresponding to each question on a subset of
the training set, highlights an interesting trade-off – the model gets to ∼74.5%
NDCG (outperforming the 2019 VisDial Challenge winner), but an MRR of
∼52% (∼17% below our base model!). We find this happens because dense
annotations in VisDial do not correlate well with the ground-truth answers to
questions, often rewarding the model for generic, uncertain responses.

Concretely, our contributions are as follows:

– We introduce an adaptation of the ViLBERT [44] model for Visual Dialog,
thus making use of the large-scale Conceptual Captions [28] and Visual Ques-
tion Answering (VQA) [29] datasets for pretraining and learning powerful
visually-grounded representations before finetuning on VisDial [2]. Since cap-
tioning and VQA differ significantly from Visual Dialog in input size (≤2 sen-
tence descriptions vs. ≤10 question-answer rounds), this requires rethinking
the input representation to learn additional segment embeddings represent-
ing questions-answer pairs. Our adapted model improves over prior published
work by >1% and sets a new state-of-the-art.

– We next finetune our model on dense annotations i.e. relevance scores for
all 100 answer options corresponding to each question on a subset of the
training set, leading to even higher NDCG – more than 10% over our base
model – but hurting MRR – more than 17% below our base model! This
highlights a stark trade-off between the two primary metrics for this task –
NDCG and MRR. Through qualitative and quantitative results, we show that
this happens because dense annotations do not correlate well with the orig-
inal ground-truth answers, often rewarding the model for generic, uncertain
responses.

– Our PyTorch [58] code is publicly available2 to encourage further work in
large-scale transfer learning for VisDial.

1 Publicly available on visualdialog.org/data.
2 github.com/vmurahari3/visdial-bert/.

https://visualdialog.org/data
https://github.com/vmurahari3/visdial-bert/
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2 Related Work

Our work is related to prior work in visual dialog [1–22], and self-supervised
pretraining and transfer learning in computer vision and language [30–40].

Visual Dialog. Das et al . [2] and de Vries et al . [1] introduced the task of Visual
Dialog – given an image, dialog history consisting of a sequence of question-
answer pairs, and a follow-up question, predict a free-form natural language
answer to the question – along with a dataset, evaluation metrics, and base-
line models. Follow-up works on visual dialog have explored the use of deep
reinforcement learning [3,4,17], knowledge transfer from discriminative to gen-
erative decoders [5], conditional variational autoencoders [6], generative adver-
sarial networks [7], attention mechanisms for visual coreference resolution [9,11],
and modeling the questioner’s theory of mind [10]. Crucially, all of these works
train and evaluate on the VisDial dataset in isolation, without leveraging related
visual grounding signals from other large-scale datasets in vision and language.
We devise a unified model that can be pretrained on the Conceptual Captions [28]
and VQA [29] datasets, and then transferred and finetuned on VisDial.

Self-supervised Learning in Vision and Language. Building on the success
of transfer learning in natural language understanding [33–40] leading to state-
of-the-art results on a broad set of benchmarks [41,43], recent work has extended
this to vision and language tasks [44–50]. These works pretrain single [45,48,49]
or two [44,46]-stream Transformer [34]-based models with self-supervised objec-
tives, such as next-sentence prediction and masked language/image modeling, on
large-scale image-text datasets and have led to compelling results in Visual Ques-
tion Answering [29], Commonsense Reasoning [51], Natural Language Visual
Reasoning [52], Entailment [53], Image-Text Retrieval [54,55], and Referring
Expressions [56], and Vision-Language Navigation [57].

3 Adapting ViLBERT [44] for Visual Dialog

Lu et al . [44] introduced ViLBERT3, which extended BERT [35] to a two-stream
multi-modal architecture for jointly modeling visual and linguistic inputs. Inter-
action between the two modalities was enabled through co-attention layers, i.e.
attending to one modality conditioned on the other – attention over language
conditioned on visual input, and attention over image regions conditioned on
linguistic input. This was operationalized as swapping the key and value matri-
ces between the visual and linguistic Transformer [34] blocks. We next discuss
our changes to adapt it for Visual Dialog followed by our training pipeline.

Input Representation. Recall that the model gets image I, dialog history
(including image caption C) H = (C, (Q1, A1), ..., (Qt−1, At−1)), question Qt,
and a list of 100 answer options At = {A

(1)
t , A

(2)
t , ..., A

(100)
t } as input, and is

asked to return a sorting of At. We concatenate the t rounds of dialog history

3 Along with code released at github.com/jiasenlu/ViLBERT beta.

https://github.com/jiasenlu/ViLBERT_beta
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and follow-up question Qt, with each question and answer separated by a <SEP>

token. The overall input to the language stream is represented as:

<CLS> C <SEP> Q1 <SEP> A1 <SEP>, ..., <SEP> Qt <SEP> At <SEP> (1)

Similar to Wolf et al . [59], we use different segment embeddings for questions
and answers to help the model distinguish between the two and understand
question and answer boundaries in the input. Captions and answers share the
same segment embeddings. To represent the image, we follow [44,60] and extract
object bounding boxes and their visual features for top-36 detected objects in the
image from a Faster R-CNN [61] (with a ResNet-101 [30] backbone) object detec-
tion network pretrained on the Visual Genome dataset [42]. The feature vector
for each detected object is computed as mean-pooled convolutional features from
the regions of that object. A 5-d feature vector, consisting of normalized top-left
and bottom-right object coordinates, and the fraction of image area covered, is
projected to the same dimensions as the feature vector for the detected object,
and added to it, giving us the final visual features {v1, ..., v36}. The beginning
of this image region sequence (consisting of object detection features) is demar-
cated by an IMG token with mean-pooled features from the entire image. The
overall input to ViLBERT can be written as the following sequence:

<IMG> v1, ..., v36 <CLS> C <SEP> Q1 <SEP> A1 <SEP>, ..., <SEP> Qt <SEP> At <SEP> (2)

3.1 Pretraining on Conceptual Captions [28]

To pretrain the model, we follow [44] and train on the Conceptual Captions (CC)
dataset, which is a large corpus (with ∼3M samples) of aligned image-caption
pairs. During pretraining, the sum of the masked language modeling (MLM)
loss [35] and the masked image region (MIR) loss is optimized. To compute the
MLM loss, a set of tokens in the input sequence are masked and the model is
trained to predict these tokens given context. We mask around 15% of the tokens
in the input sequence. For the MIR loss, similar to the MLM loss, we zero out
15% of the image features and the model learns to predict the semantic category
of the masked out object (out of 1601 classes from Visual Genome [42,60]).

3.2 Pretraining on VQA [29]

The VQA dataset is quite related to Visual Dialog in that it can be interpreted
as independent visually-grounded question-answer pairs with no dialog history,
and thus is a natural choice for further pretraining prior to finetuning on VisDial.
Similar to Lu et al . [44], we pretrain on VQA by learning a small decoder – a
two-layer MLP – on top of the element-wise product between the image and text
representations to predict a distribution over 3129 answers.
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3.3 Finetuning on Visual Dialog [2]

To finetune on Visual Dialog, we use the MLM loss along with the next sen-
tence prediction (NSP) and MIR losses. For MLM, we mask 10% of the tokens
in the dialog sequence. For MIR, similar to pretraining, we mask 15% of the
image features. Note that the discriminative task in visual dialog is to identify
the ground-truth answer from a list of 100 answer options consisting of popu-
lar, nearest neighbors, and random answers from the dataset. We achieve this
through the NSP loss. The NSP head is trained to predict 1 when the ground-
truth answer is appended to the input sequence, and 0 when a negative answer
sampled from the remaining answer options is appended to it. Each image in
VisDial has 10 rounds of dialog, leading to 10 sets of positive and negative sam-
ples for the NSP loss per mini-batch. Since these are fairly correlated samples,
we randomly sub-sample 2 out of these 20 during training. At test time, we use
log-probabilities from the NSP head to rank the 100 answer options per round.

3.4 Finetuning with Dense Annotations

The authors of [2] recently released dense annotations4 i.e. relevance scores for
all 100 answer options from At corresponding to the question on a subset of the
training set. These relevance scores range from 0 to 1 and are calculated as the
ratio of number of human annotators who marked a particular answer option
as correct to the total number of human annotators (= 4). So 1 means that the
answer option was considered correct by 4 human annotators. In our final stage of
training, we utilize these dense annotations to finetune our model. Concretely, we
use the NSP head to predict likelihood scores �̂

(i)
t for each answer option A

(i)
t at

round t, normalize these to form a probability distribution over the 100 answers
ŷt = [ŷ(1)

t , ..., ŷ
(100)
t ], and then compute a cross-entropy (CE) loss against the

normalized ground-truth relevance scores yt, given by −∑
i y

(i)
t log ŷ

(i)
t .

4 Experiments

To compare to previous research, we conduct experiments on VisDial v1.0 [2].
The dataset contains human-human dialogs on ∼130k COCO [62]-like images.
We follow the original splits and use ∼120k for training, ∼2k for validation, and
∼8k for testing. We next describe the various settings we experiment with.

Evaluation Metrics. We use metrics introduced in [2]. Specifically, given the
predicted ranking of 100 answer options from a model at each round, we compute
retrieval metrics – mean rank (MR) of the ground-truth answer, mean reciprocal
rank (MRR), and recall@k (k = {1, 5, 10}). Additionally, along with the release
of dense annotations, i.e. relevance scores ∈ [0, 1] for all 100 answer options,
a new metric – NDCG – was introduced. NDCG accounts for multiple correct
answers in the option set and penalizes low-ranked but correct answer options.
4 Publicly available on visualdialog.org/data.

https://visualdialog.org/data
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4.1 Language-Only

We begin with a ‘blind’ setting, where given the dialog history and follow-up
question, and without access to the image, the model is tasked with predicting
the answer. We do not use the ViLBERT formulation for these experiments, and
finetune the BERT model released in [35] and pretrained on BooksCorpus [27]
and English Wikipedia. For the MLM loss, we mask 15% of tokens and sub-
sample 8 out of 20 sequences per mini-batch during training. We experiment with
two variants – training only with NSP, and training with both NSP and MLM.
See Table 3 for language-only results (marked ‘L-only’). This setting helps us
benchmark gains coming from switching to Transformer [34]-based architectures
before the added complexity of incorporating visual input.

Varying Number of Dialog Rounds. We train ablations of our language-
only model (with NSP and MLM losses) where we vary the number of rounds
in dialog history, starting from 0, where the input sequence only contains the
follow-up question and answer, to 2, 4, and 6 and 10 rounds of dialog history
(Table 1).

Zero-Shot and ‘Cheap’ Finetuning. We report performance for ablations
of our NSP+MLM model with no/minimal training in Table 2. First, we do
a zero-shot test where we initialize BERT with weights from Wikipedia and
BooksCorpus pretraining and simply run inference on VisDial. Second, with the
same initialization, we freeze all layers and finetune only the MLM and NSP loss
heads.

4.2 Finetuning on VisDial

We finetune ViLBERT on VisDial with four different weight initializations –
1) with randomly initialized weights, 2) from the best language-only weights
(from Sect. 4.1) for the language stream (visual stream and co-attention lay-
ers initialized randomly), 3) from a model pretrained on CC [28] (as described
in Sect. 3.1) and 4) from a model pretrained on CC [28] +VQA [29] (as described
in Sect. 3.2). 1) helps us benchmark improvements due to pretraining, 2) helps us
benchmark performance if the model learns visual grounding solely from VisDial,
3) quantifies effects of learning visual grounding additionally from CC, and 4)
helps us quantify improvements with additional exposure to visually-grounded
question-answering data. See Table 3 for results.

4.3 Finetuning with Dense Annotations

Finally, we finetune our best model from Sect. 4.2 – marked ‘w/ CC+VQA’
in Table 3 – on dense annotations, as described in Sect. 3.4. Note that computing
the CE loss requires a separate forward pass for each of the 100 answer options,
since dialog history, question, answer are all concatenated together before passing
as input. This is memory-expensive, and so in practice, we sub-sample and only
use 80 options, and use gradient accumulation to (artificially) construct a larger
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mini-batch. Finetuning with the CE loss only leads to significant improvements
on NDCG but hurts other metrics (see Table 3). We discuss and analyse this
in more detail later. But to control for this ‘metric-overfitting’, we also train a
variant with both the CE and NSP losses.

5 Results

We list findings from all experiments described in Sect. 4 below.

Table 1. Performance of the NSP + MLM language-only model on VisDial v1.0 val
as the number of dialog history rounds is varied

# history rounds NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ MR ↓
0 50.54 54.29 38.88 72.67 83.09 5.90

2 53.69 61.31 46.83 78.96 88.15 4.51

4 55.10 62.83 48.36 80.61 89.57 4.19

6 55.69 63.73 49.31 81.13 90.06 4.04

10 57.22 64.10 50.05 81.09 90.00 4.16

Table 2. Performance of the NSP + MLM language-only model on VisDial v1.0 val
with no/minimal training (described in Sect. 4.1)

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ MR ↓
No training 11.63 6.88 2.63 7.17 11.30 46.90

Loss heads only 19.69 9.81 3.42 10.44 18.85 31.38

– Language-only performs well. The language-only model gets to 57.22 on
NDCG and 64.10 on MRR (Table 3), which is already competitive with several
prior published works (Table 4). These trends are consistent with high human
performance on VisDial [2] with just language (question and dialog history)
– 48.5 on MRR – which further improves to 63.5 on MRR with image.

– Increasing dialog history rounds helps. We report performance of the
language-only model as a function of dialog history rounds in Table 1 and
Fig. 2a. Note that the change in performance from including 0 to 4 rounds of
dialog history (+4.56 on NDCG, +8.54 on MRR) is much more than from 4
to 10 dialog history rounds (+2.12 on NDCG, +1.27 on MRR). Thus, perfor-
mance continues to go up with increasing dialog history rounds but starts to
plateau with ≥4 history rounds. We believe these improvements are largely
indicative of the Transformer’s ability to model long-term dependencies.

– Zero-shot model performs poorly. Running inference with the language-
only model pretrained on BooksCorpus [27] and Wikipedia without any fine-
tuning on VisDial only gets to 11.63 on NDCG and 6.88 on MRR (Table 2).
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Finetuning the loss heads with all other layers frozen leads to an improve-
ment of ∼8 NDCG points over this. This low performance can be attributed
to significantly longer sequences in VisDial than the model was pretrained
with.

– VQA initialization helps more than random or CC initialization.
Finetuning ViLBERT on VisDial with weights initialized from VQA pretrain-
ing gets to 64.82 on NDCG and 68.97 on MRR, ∼3 points better than random
initialization on NDCG and ∼2 points better than CC pretraining (Table 3).
We believe poorer transfer from CC is because both VQA and VisDial have
images from COCO and are more closely related tasks than captioning on
CC.

– Dense annotations boost NDCG, hurt MRR. Finetuning with the CE
loss leads to 74.47 on NDCG – a ∼10% improvement over the ‘w/ CC + VQA’
base model – but 50.74 on MRR, a ∼17% decline below the base model
(Table 4). This is a surprising finding! We carefully analyze this behavior
in Sect. 6.

– Ensembling does not improve performance. We trained 3 models initial-
ized with different random seeds for each of the 3 variants (‘w/ CC + VQA’,
‘CE’ and ‘CE + NSP’) and aggregated results by averaging the normalized
scores from the 3 models. We did not observe any significant improvement.

Table 3. Results on VisDial v1.0 val (with 95% CI). ↑ indicates higher is better.

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ MR ↓

L
-o

n
ly

{
NSP 55.80 ±0.9 63.37 ±0.5 49.28 ±0.7 80.51 ±0.5 89.22 ±0.4 4.32 ±0.1

NSP + MLM 57.22 ±0.9 64.10 ±0.5 50.05 ±0.7 81.09 ±0.5 90.00 ±0.4 4.16 ±0.1

+
v
is
io
n

⎧⎪⎪⎨
⎪⎪⎩

Random init 61.88 ±0.9 67.04 ±0.5 53.51 ±0.7 83.94 ±0.5 92.27 ±0.4 3.55 ±0.1

w/ L-only 62.08 ±0.9 67.73 ±0.5 54.67 ±0.7 84.02 ±0.5 92.07 ±0.4 3.58 ±0.1

w/ CC [28] 62.99 ±0.9 68.64 ±0.5 55.55 ±0.7 85.04 ±0.5 92.98 ±0.4 3.36 ±0.1

w/ CC [28]+VQA [29] 64.82 ±0.968.97 ±0.555.78 ±0.785.34 ±0.593.11 ±0.43.35 ±0.1

+
d
e
n
se

{
CE 75.10 ±1.1 52.12 ±0.6 39.84 ±0.7 64.93 ±0.7 80.47 ±0.5 6.26 ±0.1

CE + NSP 69.11 ±1.0 65.76 ±0.5 53.30 ±0.7 80.77 ±0.5 90.00 ±0.4 4.33 ±0.1

We report results from the Visual Dialog evaluation server5 for our best
models – ‘w/ CC + VQA’, ‘CE’ and ‘CE + NSP’ – on the unseen test-std split
in Table 4. We compare against prior published results and top entries from the
leaderboard. Our models outperform prior results and set a new state-of-the-art –
ViLBERT with CC + VQA pretraining on MRR, R@k, MR metrics, and further
finetuning with a CE loss on dense annotations on NDCG. Finally, adding NSP
loss along with CE (as in Sect. 4.3) offers a balance between optimizing metrics
that reward both sparse (original ground-truth answers) and dense annotations.
5 evalai.cloudcv.org/web/challenges/challenge-page/161/leaderboard/483.

https://evalai.cloudcv.org/web/challenges/challenge-page/161/leaderboard/483
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Table 4. Results on VisDial v1.0 test-std. ↑ indicates higher is better. ↓ indicates
lower is better. † denotes ensembles. Best single-model results are bolded and best
ensemble results are underlined. � denotes the winning team of the 2019 Visual Dialog
Challenge.

Model NDCG ↑ MRR ↑ R@1 ↑ R@5 ↑ R@10 ↑ MR ↓

P
u
b
li
sh

ed
R
es
u
lt
s

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GNN [12] 52.82 61.37 47.33 77.98 87.83 4.57

CorefNMN [9] 54.70 61.50 47.55 78.10 88.80 4.40

RvA [11] 55.59 63.03 49.03 80.40 89.83 4.18

HACAN [19] 57.17 64.22 50.88 80.63 89.45 4.20

NMN [9] 58.10 58.80 44.15 76.88 86.88 4.81

DAN [14] 57.59 63.20 49.63 79.75 89.35 4.30

DAN† [14] 59.36 64.92 51.28 81.60 90.88 3.92

ReDAN [15] 61.86 53.13 41.38 66.07 74.50 8.91

ReDAN+† [15] 64.47 53.74 42.45 64.68 75.68 6.64

DualVD [22] 56.32 63.23 49.25 80.23 89.70 4.11

FGA [13] 56.93 66.22 52.75 82.92 91.08 3.81

FGA† [13] 57.20 69.30 55.65 86.73 94.05 3.14

DL-61 [20] 57.32 62.20 47.90 80.43 89.95 4.17

DL-61† [20] 57.88 63.42 49.30 80.77 90.68 3.97

MReal - BDAI� [21] 74.02 52.62 40.03 68.85 79.15 6.76

L
ea

d
er
b
o
a
rd

E
n
tr
ie
s

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LF 45.31 55.42 40.95 72.45 82.83 5.95

HRE 45.46 54.16 39.93 70.45 81.50 6.41

MN 47.50 55.49 40.98 72.30 83.30 5.92

MN-Att 49.58 56.90 42.43 74.00 84.35 5.59

LF-Att 51.63 60.41 46.18 77.80 87.30 4.75

MS ConvAI 55.35 63.27 49.53 80.40 89.60 4.15

USTC-YTH 56.47 61.44 47.65 78.13 87.88 4.65

UET-VNU 57.40 59.50 45.50 76.33 85.82 5.34

square 60.16 61.26 47.15 78.73 88.48 4.46

MS D365 AI 64.47 53.73 42.45 64.68 75.68 6.63

O
u
rs

⎧
⎪⎨

⎪⎩

Random init 60.40 65.53 51.03 83.45 91.83 3.60

w/ CC [28]+VQA [29] 63.87 67.50 53.85 84.68 93.25 3.32

CE 74.47 50.74 37.95 64.13 80.00 6.28

CE + NSP 68.08 63.92 50.78 79.53 89.60 4.28

6 Analysis

As described in Sect. 5, finetuning on dense annotations leads to a significant
increase in NDCG, but hurts the other 5 metrics – MRR, R@1, R@5, R@10 and
MR – which depend on the original sparse annotations in VisDial i.e. follow-up
answers provided in human-human dialog.
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(a) Change in metrics
for varying number of
rounds in dialog history
for the language-only
model trained with
NSP + LM

(b) Distribution of
dense annotation
relevance scores for
ground-truth answers in
VisDial v1.0 val. ∼50%
ground-truth answers
have relevance scores
< 0.8, and ∼10% have
scores < 0.2

Relevance Score w/ CC + VQA CE CE + NSP

0.0 − 0.2 6.47 14.88 10.79
0.2 − 0.4 4.77 11.11 6.62
0.4 − 0.6 4.02 8.49 4.86
0.6 − 0.8 3.12 6.63 3.77
0.8 − 1.0 1.95 3.26 2.21

(c) Mean rank (lower is better) of
the GT answers on VisDial v1.0
val split across model variants
and ranges of relevance scores

Fig. 2. Analysis plots of dense annotations in Visdial v1.0 val split and dialog history
ablations.

We begin by visualizing the distribution of dense relevance scores for these
sparse ground-truth (GT) answers in Fig. 2b and observe that ∼50% GT answers
have relevance ≤0.8, and ∼30% have relevance ≤0.6. Thus, there is some degree
of misalignment between dense and sparse annotations – answers originally pro-
vided during human-human dialog in VisDial were not always judged to be
relevant by all humans during the post-hoc dense annotation phase.

Why are GT and Dense Annotations Misaligned? We notice that many
questions with discrepancy between GT and dense annotations are somewhat
subjective. For e.g ., in row 1, round 7 (Fig. 5), Q: ‘what color is the chair?’, the
GT answer is ‘black’ but the chair is in shadow and it is difficult to accurately
identify its color. And thus, we expect to see variance when multiple humans
are polled for the answer. Instead, the GT answer is just one sample from the
human answer distribution, not necessarily from its peak. In general, the dense
annotations seem less wrong than GT (as they are sourced by consensus) since
they are safer – often resolving to answers like ‘I cannot tell’ when there is
uncertainty/subjectivity – but also uninformative – not conveying additional
information e.g . ‘I think 3 but they are occluded so it is hard to tell’ – since
such nuanced answers are not part of the list of answer options in VisDial [2].

Model Performance on GT vs. Dense annotations. Table 2c shows mean
ranks of these GT answers as predicted by three model variants – ViLBERT w/
CC + VQA, CE, and CE + NSP – grouped by dense relevance scores. The ‘CE’
model gets worse mean ranks than ‘w/ CC + VQA’ for all GT answers, since it
is no longer trained with these GT answers during dense annotation finetuning.
The CE model assigns low mean ranks to GT answers with higher relevance
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Fig. 3. Mean relevance scores and counts for top-50 most-relevant answers from VisDial
v1.0 val dense annotations. These contain several sets of paraphrases – {“yes it’s in
color”, “yes this picture is in color”, “the picture is in color”, “yes the picture is in
color”, “yes, it is in color”, “yes it is in color”, “yes, it’s in color”, “yes in color”}, etc.
and have a bias towards binary answers (Color figure online)

scores (≥0.8), which translates to a high NDCG score (Table 3). But it assigns
poor mean ranks to GT answers with relatively lower relevance scores (≤0.8),
and since ∼50% GT answers have relevance scores ≤0.8, this hurts MRR, R@k,
MR for the CE model (Table 3).

Next, we consider the top-50 most-relevant answer options (occurring ≥10
times) as per dense annotations in VisDial v1.0 val (not restricting ourselves
to only GT answers). Figure 3 shows the mean relevance scores for this set,
and Fig. 4 shows the mean ranks assigned to these answers by our models. The
CE model gets better mean ranks in this set compared to Base, leading to high
NDCG.

Qualitative Examples. Finally, we present uniformly sampled example answer
predictions on VisDial v1.0 val from our models along with the ground-truth dia-
log sequences in Fig. 5 and present additional samples in the appendix. In these
examples, consistent with the Visual Dialog task definition [2], at every round of
dialog, the model gets the image, ground-truth human dialog history (including
caption), and follow-up question as input, and predicts the answer. Specifically,
the model ranks 100 answer options. Here we show the top-1 prediction.

We make a few observations. 1) The Base model is surprisingly accurate, e.g .
in row 2, round 1 (Fig. 5), Q: ‘can you see any people?’, predicted answer: ‘part
of a person’, in row 2, round 10, Q: ‘anything else interesting about the photo?’,
predicted answer: ‘the dog is looking up at the person with his tongue out’. 2)
The CE model often answers with generic responses (such as ‘I cannot tell’),
especially for questions involving some amount of subjectivity/uncertainty, e.g .
in row 1, round 7, Q: ‘what color is the chair?’, predicted answer: ‘I cannot tell’
(the chair seems to be in shadow in the image), in row 2, round 7, Q: ‘does the
dog look happy?’, predicted answer: ‘I can’t tell’ (subjective question). 3) This
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Fig. 4. Predicted mean rank for each of the top-50 most relevant answers as per dense
annotations (from Fig. 3) by three model variants – ViLBERT w/ CC + VQA (called
‘Base’), CE, and CE + NSP. The CE model gets lower mean ranks for most answers
in this set compared to Base. This leads to significantly higher NDCG, as reported
in Table 3 and Table 4, but low MRR, since these relevant answers as per dense anno-
tations do not correlate well with the set of original ground-truth answers, as shown
in Fig. 2b

Fig. 5. Qualitative samples for three model variants – ViLBERT w/ CC + VQA (called
‘Base’), Base + CE, and Base + CE + NSP
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also highlights a consequence of misalignment between ground-truth and dense
annotations. While the ground-truth answer provides one reasonable response
for the question asked, it is answerer-specific to quite an extent and there may
be other correct answers (annotated in the dense annotations). A negative effect
of this misalignment is that when finetuned on dense annotations (CE), the
model gets rewarded for generic answers (e.g . ‘cannot tell’). While being able
to capture and reason about uncertainty is a desirable property models should
have, it would be more helpful if these agents can convey more information with
appropriate qualifiers (e.g . ‘I think 3 but they are occluded so it is hard to tell’)
than a blanket ‘I cannot tell’. We aim to study this in future work.

7 Implementation

We use the BERTBASE model [35] for the linguistic stream. We use 6 layers
of Transformer blocks (with 8 attention heads and a hidden state size of 1024)
for the visual stream. The co-attention layers connect the 6 Transformer layers
in the visual stream to the last 6 Transformer layers in the linguistic stream.
We train on dialog sequences with atmost 256 tokens as most sequences had
atmost 256 tokens. During inference, we truncate longer sequences by removing
rounds starting from round 1 (we keep the caption). We set all loss coefficients
to 1. We use a batch size of 128 for language-only experiments and 80 for other
experiments. We use Adam [63] and linearly increase learning rate from 0 to
2e−5 over 10k iterations and decay to 1e−5 over 200k iterations. Our code is
available at github.com/vmurahari3/visdial-bert/.

8 Conclusion

We introduce a model for Visual Dialog that enables pretraining on large-scale
image-text datasets before transferring and finetuning on VisDial. Our model
is an adaptation of ViLBERT [44], and our best single model is pretrained on
BooksCorpus [27], English Wikipedia (at the BERT stage), and on Conceptual
Captions [28], VQA [29] (at the ViLBERT stage), before finetuning on Vis-
Dial, optionally with dense annotations. Our model outperforms prior published
results by > 1% absolute on NDCG and MRR, achieving state-of-the-art results,
and providing a simple baseline for future ‘pretrain-then-transfer’ approaches.

Through careful analysis of our results, we find that the recently released
dense annotations for the task do not correlate well with the original ground-
truth dialog answers, leading to a trade-off when models optimize for metrics
that take into account these dense annotations (NDCG) vs. the original sparse
annotations (MRR). This opens up avenues for future research into better eval-
uation metrics.

Finally, note that our model is discriminative – it can pick a good answer
from a list of answer options – but cannot generate an answer. In the future,
we aim to develop robust decoding techniques, based on decoding strategies for
transformer-based models introduced in [33,64], for a strong generative model.

https://github.com/vmurahari3/visdial-bert/
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