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Abstract. The abundance of multimodal data (e.g. social media
posts) has inspired interest in cross-modal retrieval methods. Popular
approaches rely on a variety of metric learning losses, which prescribe
what the proximity of image and text should be, in the learned space.
However, most prior methods have focused on the case where image and
text convey redundant information; in contrast, real-world image-text
pairs convey complementary information with little overlap. Further,
images in news articles and media portray topics in a visually diverse
fashion; thus, we need to take special care to ensure a meaningful image
representation. We propose novel within-modality losses which encour-
age semantic coherency in both the text and image subspaces, which does
not necessarily align with visual coherency. Our method ensures that not
only are paired images and texts close, but the expected image-image
and text-text relationships are also observed. Our approach improves
the results of cross-modal retrieval on four datasets compared to five
baselines.

1 Introduction

Vision-language tasks such as image captioning [2,27,58] and cross-modal gen-
eration and retrieval [40,60,63] have seen increased interest in recent years. At
the core of methods in this space are techniques to bring together images and
their corresponding pieces of text. However, most existing cross-modal retrieval
methods only work on data where the two modalities (images and text) are well
aligned, and provide fairly redundant information. As shown in Fig. 1, caption-
ing datasets such as COCO contain samples where the overlap between images
and text is significant (both image and text mention or show the same objects).
In this setting, cross-modal retrieval means finding the manifestation of a single
concept in two modalities (e.g. learning embeddings such that the word “banana”
and the pixels for “banana” project close by in a learned space).

In contrast, real-world news articles contain image and text pairs that cover
the same topic, but show complementary information (protest signs vs informa-
tion about the specific event; guns vs discussion of rights; rainbow flag vs LGBT
rights). While a human viewer can still guess which images go with which text,
the alignment between image and text is abstract and symbolic. Further, images
in news articles are ambiguous in isolation. We show in Fig. 2 that an image
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Fig. 1. Image-text pairs from COCO [25] and Politics [49]. Traditional image captions
(top) are descriptive of the image, while we focus on the more challenging problem of
aligning images and text with a non-literal complementary relationship (bottom).

Fig. 2. The image on the left symbolizes justice and may be paired with text about a
variety of subjects (e.g. abortion, same sex marriage). Similarly, text regarding immi-
gration (right) may be paired with visually dissimilar images. Our approach enforces
that semantically similar content (images on the right) is close in the learned space. To
discover such content, we use semantic neighbors of the text and their paired images.
(Color figure online)

might illustrate multiple related texts (shown in green), and each text in turn
could be illustrated with multiple visually distant images (e.g. the four images
on the right-hand side could appear with the border wall text). Thus, we must
first resolve any ambiguities in the image, and figure out “what it means”.

We propose a metric learning approach where we use the semantic relation-
ships between text segments, to guide the embedding learned for corresponding
images. In other words, to understand what an image “means”, we look at what
articles it appeared with. Unlike prior approaches, we capture this information
not only across modalities, but within the image modality itself. If texts yi and
yj are semantically similar, we learn an embedding where we explicitly encour-
age their paired images xi and xj to be similar, using a new unimodal loss. Note
that in general xi and xj need not be similar in the original visual space (Fig. 2).
In addition, we encourage texts yi and yj , who were close in the unimodal space,
to remain close.
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Fig. 3. We show how our method enforces cross-modal semantic coherence. Circles
represent text and squares images. In (a), we show the untrained cross-modal space.
Note yi and yj are neighbors in Doc2Vec space and thus semantically similar. (b) shows
the space after triplet loss training. yi and xi, and yj and xj , are now close as desired,
but yi and yj have moved apart, and xi and xj remain distant. (c) shows our loss’s
effect. Now, all semantic neighbors (both images and text) are pulled closer.

Our novel loss formulation explicitly encourages within-modality semantic
coherence. Figure 3 shows the effect. On the left, we show the proximity of sam-
ples before cross-modal learning; specifically, while two texts are close in the
document space, their paired articles may be far from the texts. In the middle,
we show the effect of using a standard triplet loss, which pulls image-text pairs
close, but does not necessarily preserve the similarity of related articles; they
are now further than they used to be in the original space. In contrast, on the
right, we show how our method brings paired images and text closer, while also
preserving a semantically coherent region, i.e. the texts remained close.

In our approach, we use neighborhoods in the original text document space,
to compute semantic proximity. We also experiment with an alternative app-
roach where we compute neighborhoods using the visual space, then guide the
corresponding texts to be close. This approach is a variant of ours, and is novel
in the sense that it uses proximity in one unimodal space, to guide the other
space/modality. While unimodal losses based on visual similarity are helpful over
a standard cross-modal loss (e.g. triplet loss), our main approach is superior.

Next, we compare to a method [52] which utilizes the set of text annotations
available for an image in COCO, to guide the structure of the learned space.
We show that when these ground-truth annotations are available, using them to
compute neighborhoods in the textual space is the most reliable. However, on
many datasets, such sets of annotations (more than one for the same image) are
not available. We show that our approach offers a comparable alternative.

Finally, we test the contribution of our additional losses using PVSE [48], a
state-of-the-art visual semantic embedding model, as a backbone. We show that
our proposed loss further improves the performance of this model.

To summarize, our contributions are as follows.

– We preserve relationships in the original semantic space. Because images do
not clearly capture semantics, we use the semantic space (from text) to guide
the image representation, through a unimodal (within-modality) loss.
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– We perform detailed experimental analysis of our proposed loss function,
including ablations, on four recent large-scale image-text datasets. One [3]
contains multimodal articles from New York Times, and another contains
articles from far-left/right media [49]. We also conduct experiments on [25,43].
Our approach significantly improves the state-of-the-art in most cases. The
more abstract the dataset/alignment, the more beneficial our approach.

– We tackle a new cross-modal retrieval problem where the visual space is
much less concrete. This scenario is quite practical, and has applications
ranging from automatic caption generation for news images, to detection of
fake multimodal articles (i.e. detecting whether an image supports the text).

2 Related Work

Cross-Modal Learning. A fundamental problem in cross-modal inference is the
creation of a shared semantic manifold on which multiple modalities may be
represented. The goal is to learn a space where content about related semantics
(e.g. images of “border wall” and text about “border wall”) projects close by,
regardless of which modality it comes from. Many image-text embedding meth-
ods rely on a two-stream architecture, with one stream handling visual content
(e.g. captured by a CNN) and the other stream handling textual content (e.g.
through an RNN). Both streams are trained with paired data, e.g. an image and
its captions, and a variety of loss functions are used to encourage both streams
to produce similar embeddings for paired data. Recently, purely attention-based
approaches have been proposed [6,26]. One common loss used to train retrieval
models is triplet loss, which originates in the (single-modality) metric learning
literature, e.g. for learning face representations [42]. In cross-modal retrieval, the
triplet loss has been used broadly [9,32,34,38,57,66]. Alternative choices include
angular loss [51], N-pairs loss [47], hierarchical loss [11], and clustering loss [36].

While single-modality losses like triplet, angular and N-pairs have been used
across and within modalities, they are not sufficient for cross-modal retrieval.
These losses do not ensure that the general semantics of the text are preserved
in the new cross-modal space; thus, the cross-modal matching task might distort
them too much. This phenomenon resembles forgetting [14,24] but in the cross-
modal domain. Our method preserves within-modal structure, and a similar
effect can be achieved by leveraging category labels as in [5,31,50,64]; however,
such labels are not available in the datasets we consider, nor is it clear how
to define them, since matches lie beyond the presence of objects. Importantly,
classic retrieval losses do not tackle the complementary relationship between
images and text, which makes the space of topically related images more visually
diffuse. In other words, two images might depict substantially different visual
content but nonetheless be semantically related.

Note that we do not propose a new model for image-text alignment, but
instead propose cross-modal embedding constraints which can be used to train
any such model. For example, we compare to Song et al. [48]’s recent polysemous
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visual semantic embedding (PVSE) model, which uses global and local features
to compute self-attention residuals. Our loss improves [48]’s performance.

Our work is also related to cross-modal distillation [10,12,15,46], which trans-
fers supervision across modalities, but none of these approaches exploit the
semantic signal that text neighborhoods carry to constrain the visual repre-
sentations. Finally, [1,22,61] detect different types of image-text relationships
(e.g. parallel, complementary) but do not retrieve across modalities.

Metric Learning approaches learn distance metrics which meaningfully mea-
sure the similarity of objects. These can be broadly categorized into: 1) sampling-
based methods [17,18,28,29,36,44,45,53,54,56,59], which intelligently choose
easy/hard samples or weight samples; or 2) loss functions [8,11,16,42,47,51,55]
which impose intuitions regarding neighborhood structure, data separation, etc.
Our method relates to the second category. Triplet loss [20,42] takes into account
the relative similarity of positives and negatives, such that positive pairs are
closer to each other than positives are to negatives. [62] generalize triplet loss
by fusing it with classification loss. [37] integrate all positive and negative pairs
within a minibatch, such that all pair combinations are updated jointly. Simi-
larly, [47]’s N-pair loss pushes multiple negatives away in each triplet. [52] pro-
pose a structural loss, which pulls multiple text paired with the same image
together, but requires more than one ground truth caption per image (which
most datasets lack). In contrast, our approach pulls semantically similar images
and text together and only requires a single caption per image. More recently,
[51] propose an angular loss which leverages the triangle inequality to constrain
the angle between points within triplets. We show how cross-modal complemen-
tary information (semantics paired with diverse visuals) can be leveraged to
improve the learned embedding space, regardless of the specific loss used.

3 Method

Consider two image-text pairs, {xi, yi} and {xj , yj}. To ground the “meaning” of
the images, we use proximity in a generic, pre-trained textual space between the
texts yi and yj . If yi and yj are semantically close, we expect that they will also
be relatively close in the learned space, and further, that xi and xj will be close
also. We observed that, while intuitive, this expectation does not actually hold in
the learned cross-modal space. The problem becomes more severe when image
and paired text do not exhibit literal alignment, as shown in Fig. 1, because
images paired via text neighbors could be visually different.

We describe how several common existing loss functions tackle cross-modal
retrieval, and discuss their limitations. We then propose two constraints which
pull within-modality semantic neighbors close to each other. Fig. 4 illustrates
how our approach differs from standard metric learning losses.

3.1 Problem Formulation and Existing Approaches

We assume a dataset D = {I,T} of n image-text pairs, where I =
{x1, x2, . . . , xn} and T = {y1, y2, . . . , yn} denote the set of paired images and
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Fig. 4. (a): Ltext and Limg pull semantic neighbors of the same modality closer. The
images are visually distinct, but semantically similar. (b): Pull connections are shown
in green, and push in red. Ltrip and Lang operate cross-modally, but impose no within-
modality constraints. (c): Lours (which combines all three losses above) exploits the
paired nature of the data to enforce the expected inter/intra-modal relationships. Solid
lines indicate connections that our loss enforces but triplet/angular do not. (Color figure
online)

text, respectively. By pairs, we mean yi is text related to or co-occurring with
image xi. Let fI denote a convolutional neural network which projects images
into the joint space and fT a recurrent network which projects text. We use the
notational shorthand fT (y) = y and fI (x) = x. The goal of training fI and fT

is to learn a cross-modal manifold M where semantically similar samples are
close. At inference time, we wish to retrieve a ground-truth paired text given an
input image, or vice versa. One common technique is triplet loss [42] which posits
that paired samples should be closer to one another than they are to non-paired
samples. Let T =

(
xa

i , yp
i , yn

j

)
denote a triplet of samples consisting of an anchor

(a), positive or paired sample (p), and negative or non-paired sample (n) chosen
randomly such that i �= j. Let m denote a margin. The triplet loss Ltrip is then:

Ltrip (T ) =
[
‖xa

i − yp
i ‖22 − ‖xa

i − yn
j ‖22 + m

]

+
(1)

This loss is perhaps the most common one used in cross-modal retrieval
tasks, but it has some deficiencies. For example, the gradient of the triplet loss
wrt. each point only considers two points, but ignores their relationship with the
third one; for example, ∂Ltrip

∂xa
i

= 2
(
yn

j − yp
i

)
. This allows for degenerate cases, so

angular loss Lang [51] accounts for the angular relationship of all three points:

Lang (T ) =
[
‖xa

i − yp
i ‖22 − 4 tan2 α‖yn

j − Ci‖22
]

+
(2)

where Ci = (xa
i + yp

i ) /2 is the center of a circle through anchor and positive.
One challenging aspect of these losses is choosing a good negative term in

the triplet. If the negative is too far from the anchor, the loss becomes 0 and
no learning occurs. In contrast, if negatives are chosen too close, the model may
have difficulty converging to a reasonable solution as it continuously tries to
move samples to avoid overlap with the negatives. How to best sample triplets
to avoid these issues is an active area of research [8]. One recent technique, the
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N-pairs loss [47], proposes that instead of a single negative sample being used, all
negatives within the minibatch should be used. The N-pairs loss LNP

ang pushes the
anchor and positive embedding away from multiple negatives simultaneously:

LNP
ang (T ) =

∑

yj∈minibatch, j �=i

Lang

(
xa

i , yp
i , yn

j

)
(3)

The symmetric constraint [65] can also be added to explicitly account for
bidirectional retrieval, i.e. text-to-image, by swapping the role of images and
text to form symmetric triplets Tsym = (ya

i , xp
i , x

n
i ):

LNP+SY M
ang (T , Tsym) = LNP

ang (T ) + LNP
ang (Tsym) (4)

Limitations. While these loss functions have been used for cross-modal retrieval,
they do not take advantage of several unique aspects of the multi-modal setting.
Only the dashed pull/push connections in Fig. 4 (c) are part of triplet/angular
loss. The solid connections are intuitive, but only enforced in our novel formula-
tion. We argue the lack of explicit within-modality constraints allows discontinu-
ities within the space for semantically related content from the same modality.

3.2 Our Proposed Loss

The text domain provides a semantic fingerprint for the image-text pair, since
vastly dissimilar visual content may still be semantically related (e.g. image of
White house, image of protest), while similar visual content (e.g. crowd in church,
crowd at mall) could be semantically unrelated. We thus use the text domain to
constrain within-modality semantic locality for both images and text.

To measure ground-truth semantic similarity, we pretrain a Doc2Vec [23]
model Ω on the train set of text. Specifically, let d be the document embedding
of article yi, T denote the number of words in yi, wt represent the embedding
learned for word t, p(·) be the probability of the given word, and k denote
the look-around window. Ω learns word embeddings and document embeddings
which maximize the average log probability: 1

T

∑T
t=1 log p (wt|d,wt−k, . . . , wt+k).

After training Ω, we use iterative backpropagation to compute the document
embedding which maximizes the log probability for every article in the dataset:
Ω(T) = {Ω (y1) , . . . , Ω (yn)}.

Because Doc2Vec has been shown to capture latent topics within text doc-
uments well [35], we seek to enforce that locality originally captured in Ω(T)’s
space also be preserved in the cross-modal space M. Let

Ψ (Ω(yi)) = 〈xi′ , yi′〉 (5)

denote a nearest neighbor function over Ω(T), where 〈·, ·〉 is an image-text pair
in the train set randomly sampled from the k = 200 nearest neighbors to yi, and
i �= i′. Ψ (Ω(yi)) thus returns an image-text pair semantically related to yi.
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We formulate two loss functions to enforce within-modality semantic locality
in M. The first, Ltext, enforces locality of the text’s projections:

T ′
text =

(
ya

i , yp
i′ , y

n
j

)

Ltext (T ′
text) = Lang (T ′

text)

Lang (T ′
text) =

[
‖ya

i − yp
i′‖22 − 4 tan2 α‖yn

j − Ci‖22
]

+

(6)

where yn
j is the negative sample chosen randomly such that i �= j and Ci =

(ya
i + yp

i ) /2. Ltext is the most straightforward transfer of semantics from Ω(T)’s
space to the joint space: nearest neighbors in Ω should remain close in M.

As Fig. 4 (c) shows, Ltext also indirectly causes semantically related images to
move closer in M: there is now a weak connection between xi and xi′ through the
now-connected yi and yi′ . To directly ensure smoothness and semantic coherence
between xi and xi′ , we propose a second constraint, Limg:

T ′
img =

(
xa

i , xp
i′ , x

n
j

)

Limg

(
T ′

img

)
= Lang

(
T ′

img

)

Lang

(
T ′

img

)
=

[
‖xa

i − xp
i′‖22 − 4 tan2 α‖xn

j − Ci‖22
]

+

(7)

where xn
j is the randomly chosen negative sample such that i �= j and Ci =

(xa
i + xp

i ) /2. Note that xi and xi′ are often not going to be neighbors in the
original visual space. We use N-pairs over all terms to maximize discriminativity,
and symmetric loss to ensure robust bidirectional retrieval:

LOURS
ang

(
T , Tsym, T ′

text, T ′
img

)
=

LNP+SY M
ang (T , Tsym) + αLNP

text (T ′
text) + βLNP

img

(
T ′

img

)
(8)

where α, β are hyperparameters controlling the importance of each constraint.

Second Variant. We also experiment with a variant of our method where the
nearest neighbor function in Eq. 5 (computed in Doc2Vec space) is replaced with
one that computes nearest neighbors in the space of visual (e.g. ResNet) features.
Now xi, xi′ are neighbors in the original visual space before cross-modal training,
and yi, yi′ are their paired articles (which may not be neighbors in the original
Doc2Vec space). We denote this method as Ours (Img NNs) in Table 1, and
show that while it helps over a simple triplet- or angular-based baseline, it is
inferior to our main method variant described above.

Discussion. At a low level, our method combines three angular losses. However,
note that our losses in Eq. 6 and Eq. 7 do not exist in prior literature. While [52]
leverages ground-truth neighbors (sets of neighbors provided together for the
same image sample in a dataset), we are not aware of prior work that estimates
neighbors. Importantly, we are not aware of prior work that uses the text space
to construct a loss over the image space, as Eq. 7 does. We show that the choice
of space in which semantic coherency is computed is important; doing this in the
original textual space is superior than using the original image space. We show
the contribution of both of these losses in our experiments.
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3.3 Implementation Details

All methods use a two-stream architecture, with the image stream using a
ResNet-50 [19] architecture initialized with ImageNet features, and the text
stream using Gated Recurrent Units [7] with hidden state size 512. We use image
size 224 × 224 and random horizontal flipping, and initialize all non-pretrained
learnable weights via Xavier init. [13]. Text models are initialized with word
embeddings of size 200 learned on the target dataset. We apply a linear trans-
formation to each model’s output features (R2048×256 for image, R

512×256 for
text) to get the final embedding, and perform L2 normalization. We use Adam
[21] with minibatch size 64, learning rate 1.0e−4, and weight decay 1e−5. We
decay the learning rate by a factor of 0.1 after every 5 epochs of no decrease in
val. loss. We use a train-val-test split of 80-10-10. For Doc2Vec, we use [41] with
d ∈ R

200 and train using distributed memory [23] for 20 epochs with window
k = 20, ignoring words that appear less than 20 times. We use hierarchical soft-
max [33] to compute p(·). To efficiently compute approximate nearest neighbors
for Ψ , we use [30]; our method adds negligible computational overhead as neigh-
bors are computed prior to training. We choose α = 0.3, β = 0.1 for LOURS

trip , and
α = 0.2, β = 0.3 for LOURS

ang , on a held-out val. set.

4 Experiments

We compare our method to five baselines on four recent large-scale datasets. Our
results consistently demonstrate the superiority of our approach at bidirectional
retrieval. We also show our method better preserves within-modality semantic
locality by keeping neighboring images and text closer in the joint space.

4.1 Datasets

Two datasets feature challenging indirect relations between image and text, com-
pared to standard captioning data. These also exhibit longer text paired with
images: 59 and 18 words on average, compared to 11 in COCO.

Politics. [49] consists of images paired with news articles. In some cases, multiple
images were paired with boilerplate text (website headliner, privacy policy) due
to failed data scraping. We removed duplicates using MinHash [4]. We were left
with 246,131 unique image-text pairs. Because the articles are lengthy, we only
use the first two sentences of each. [49] do not perform retrieval.

GoodNews. [3] consists of ∼466k images paired with their captions. All data
was harvested from the New York Times. Captions often feature abstract or
indirect text in order to relate the image to the article it appeared with. The
method in [3] takes image and text as input, hence cannot serve as a baseline.

We also test on two large-scale standard image captioning datasets, where
the relationship between image and text is typically more direct:
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Table 1. We show retrieval results for image to text (I→T) and text to image (T→I)
on all datasets. The best method per group is shown in bold.

Img-Text Non-Literal Img-Text Literal

Politics [49] GoodNews [3] ConcCap [43] COCO [25]

Method I→T T→I I→T T→I I→T T→I I→T T→I

Ang+NP+Sym 0.6270 0.6216 0.8704 0.8728 0.7687 0.7695 0.6976 0.6964

Ours (Img NNs) 0.6370 0.6378 0.8840 0.8852 0.7636 0.7666 0.6819 0.6876

Ours 0.6467 0.6492 0.8849 0.8865 0.7760 0.7835 0.6900 0.6885

PVSE 0.6246 0.6199 0.8724 0.8709 0.7746 0.7809 0.6878 0.6892

PVSE+Ours 0.6264 0.6314 0.8867 0.8864 0.7865 0.7924 0.6932 0.6925

Trip+NP+Sym 0.4742 0.4801 0.7203 0.7216 0.5413 0.5332 0.4957 0.4746

Ours (Trip) 0.4940 0.4877 0.7390 0.7378 0.5386 0.5394 0.4790 0.4611

COCO. [25] is a large dataset containing numerous annotations, such as objects,
segmentations, and captions. The dataset contains ∼120k images with captions.
Unlike our other datasets, COCO contains more than one caption per image,
with each image paired with four to seven captions.

Conceptual Captions. [43] is composed of ∼3.3M image-text pairs. The text
comes from automatically cleaned alt-text descriptions paired with images har-
vested from the internet and has been found to represent a much wider variety
of style and content compared to COCO.

4.2 Baselines

We compare to N-Pairs Symmetric Angular Loss (Ang+NP+Sym, a com-
bination of [47,51,65], trained with LNP+SY M

ang ). For a subset of results, we
also replace the angular loss with the weaker but more common triplet loss
(Trip+NP+Sym). We show the result of choosing to enforce coherency within
the image and text modalities by using images rather than text; this is the second
variant of our method, denoted Ours (Img NNs).

We also compare our approach against the deep structure preserving loss [52]
(Struc), which enforces that captions paired with the same image are closer to
each other than to non-paired captions.

Finally, we show how our approach can improve the performance of a state-
of-the-art cross-modal retrieval model. PVSE [48] uses both images and text to
compute a self-attention residual before producing embeddings.

4.3 Quantitative Results

We formulate a cross-modal retrieval task such that given a query image or text,
the embedding of the paired text/image must be closer to the query embed-
ding than non-paired samples also of the target modality. We sample random
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(non-paired) samples from the test set, along with the ground-truth paired sam-
ple. We then compute Recall@1 within each task: that is, whether the ground
truth paired sample is closer to its cross-modal embedding than the non-paired
embeddings. For our most challenging datasets (GoodNews and Politics), we use
a 5-way task. For COCO and Conceptual Captions, we found this task to be too
simple and that all methods easily achieved very high performance due to the
literal image-text relationship. Because we wish to distinguish meaningful per-
formance differences between methods, we used a 20-way task for Conceptual
Captions and a 100-way task for COCO. Task complexities were chosen based
on the baseline’s performance, before our method’s results were computed.

We report the results in Table 1. The first and second group of results all use
angular loss, while the third set use triplet loss. We observe that our method
significantly outperforms all baselines tested for both directions of cross-modal
retrieval for three of the four datasets. Our method achieves a 2% relative boost
in accuracy (on average across both retrieval tasks) vs. the strongest baseline on
GoodNews, and a 4% boost on Politics. We also observe recall is much worse
for all tasks on the Politics dataset compared to GoodNews, likely because the
images and article text are much less well-aligned. The performance gap seems
small but note that given the figurative use of images in these datasets, often
there may not be a clear ground-truth answer. In Fig. 2, Themis may be con-
strained to be close to protestors or border wall. At test time, the ground-truth
text paired with Themis may be about the Supreme Court, but one of the “incor-
rect” answers could be about immigration or freedom, which still make sense.
Our method keeps more neighbors closer to the query point as shown next, thus
may retrieve plausible, but technically “incorrect” neighbors for a query.

Importantly, we see that while the variant of our method using neighborhoods
computed in image space (Ours Img NNs) does outperform Ang+NP+Sym,
it is weaker than our main method variant (Ours). We also observe that when
adding our loss on top of the PVSE model [48], accuracy of retrieval improves.
In other words, our loss is complementary to advancements accomplished by
network model-based techniques such as attention.

Our method outperforms the baselines on ConcCap also, but not on COCO,
since COCO is the easiest, least abstract of all datasets, with the most lit-
eral image-text alignment. Our approach constrains neighboring texts and their
images to be close, and for datasets where matching is on a more abstract,
challenging level, the benefit of neighbor information outweighs the disadvan-
tage of this inexact similarity. However, for more straightforward tasks (e.g. in
COCO), it may introduce noise. For example, for caption “a man on a bicycle
with a banana”, the model may pull that image and text closer to images with
a banana in a bowl of fruit. Overall, our approach of enforcing within-modality
semantic neighborhoods substantially improves cross-view retrieval, particularly
when the relationship between image and text is complementary, rather than
redundant.

To better ground our method’s performance in datasets typically used for
retrieval, we also conducted an experimented on Flickr30K [39]. Since that
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Table 2. We show retrieval results for image to text (I→T) and text to image (T→I)
on COCO using [52]’s loss vs. ours. GT requires multiple Ground Truth captions per
image, while NN uses Nearest Neighbors. The best method per row is shown in bold,
while the best method which does not require a set of neighboring text is underlined.

Ours (Trip) Struc (GT, Text) Struc (NNΩ , Text) Struc (NNΩ , Img)

COCO I→T 0.4790 0.4817 0.4635 0.4752

T→I 0.4611 0.4867 0.4594 0.4604

Table 3. We test how well each method preserves the semantic neighborhood (see
text) of Ω in M. Higher values are better. Best method is shown in bold.

Method GoodNews [3] Politics [49]

I T I T

Trip+NP+Sym 0.1183 0.1294 0.1135 0.1311

Ours (Trip) 0.1327 0.1426 0.1319 0.1483

Ang+NP+Sym 0.1032 0.1131 0.1199 0.1544

Ours (Ang) 0.1270 0.1376 0.1386 0.1703

dataset does not exhibit image-text complementarity, we do not expect our
method to improve performance, but it should not significantly reduce it. We
compared the original PVSE against PVSE with our novel loss. We observed
that our method slightly outperformed the original PVSE, on both text-to-image
and image-to-text retrieval (0.5419 and 0.5559 for ours, vs 0.5405 and 0.5539 for
PVSE).

In Table 2, we show a result comparing our method to Deep Structure Pre-
serving Loss [52]. Since this method requires a set of annotations (captions) for
an image, i.e. it requires ground-truth neighbor relations for texts, we can only
apply it on COCO. In the first column, we show our method. In the second,
we show [52] using ground-truth neighbors. Next, we show using [52] with esti-
mated neighbors, as in our method. We see that as expected, using estimated
rather than ground-truth text neighbors reduces performance (third vs. second
columns). When estimated neighbors are used in [52]’s structural constraint, our
method performs better (third vs. first columns). Interestingly, we observe that
defining [52]’s structural constraint in image rather than text space is better
(fourth vs. third columns). In both cases, neighborhoods are computed in text
space (Eq. 5). This may be because the structural constraint, which requires the
group of neighbors to be closer together than to others, is too strict for estimated
text neighbors. That is, the constraint may require the text embeddings to lose
useful discriminativity to be closer to neighboring text. Neighboring images are
likely to be much more visually similar in COCO than in GoodNews or Politics
as they will contain the same objects.

We next test how well each method preserves the semantic neighborhood
given by Ω, i.e. Doc2Vec space. We begin by computing the embeddings in



Preserving Semantic Neighborhoods for Robust Cross-Modal Retrieval 329

Table 4. We show an ablation of our method where we remove either component of
our loss. The best method is shown in bold and the best ablation is underlined.

Method GoodNews [3] Politics [49]

I→T T→I I→T T→I

Ours (Ang) 0.8849 0.8865 0.6467 0.6492

Ours (Ang)-Ltext 0.8786 0.8813 0.6387 0.6467

Ours (Ang)-Limg 0.8782 0.8817 0.6390 0.6413

Fig. 5. Uncurated results showing image/text samples that our method keeps closest

in M compared to the baseline, i.e. pairs where dours(s1,s2)
dbaseline(s1,s2)

is smallest. Our method
keeps semantically related images and text closer in the space, relative to the baseline.
While the images are not visually similar, they are semantically similar (EU and Merkel;
judge’s gavel and Supreme Court).

M (cross-modal space) for all test samples. For each such sample si (either
image or text), we compute ΨM (si), that is, we retrieve the neighbors (of
the same modality as si) in M. We next retrieve the neighbors of si in
Ω, ΨΩ (si), described in Sect. 3.2. For each sample, we compute |ΨM (si) ∩
ΨΩ (si)| / |ΨΩ (si)|, i.e. the percentage of the nearest neighbors of the sample in
Ω which are also its neighbors in M. That is, we measure how well each method
preserves within-modality semantic locality through the number of neighbors in
Doc2Vec space which remain neighbors in the learned space. We consider the
200 nearest neighbors. We report the result for competitive baselines in Table 3.
We find that our constraints are, indeed, preserving within-modality semantic
locality, as sample proximity in Ω is more preserved in M with our approach
than without it, i.e. we better reconstruct the semantic neighborhood of Ω in M.
We believe this allows our model to ultimately perform better at cross-modal
retrieval.

We finally test the contribution of each component of our proposed loss. We
test two variants of our method, where we remove either Ltext or Limg. We
present our results in Table 4. In every case, combining our losses for our full
method performs the best, suggesting that each loss plays a complementary role
in enforcing semantic locality for its target modality.

4.4 Qualitative Results

In this section, we present qualitative results illustrating how our constraints
both improve semantic proximity and demonstrate superior retrieval results.
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Fig. 6. We show cross-modal retrieval results on Politics [49] using our method and the
strongest baseline. We bold text aligning with the image. For text retrieval, ours returns
more relevant (and semantically consistent) results. For image retrieval, our method
exhibits more consistency (e.g. drug images are marijuana, immigration images show
arrests), while the baseline returns more inconsistent and irrelevant images.

Semantic Proximity: In Fig. 5, we perform an experiment to discover what
samples our constraints affect the most. We randomly sampled 10k image-image
and text-text neighbor pairs (in Ω) and computed their distance in M using
features from our method vs. the baseline Ang+NP+Sym. Small ratios indicate
the samples were closer in M using our method, relative to the baseline, while
larger indicate the opposite. We show the samples with the two smallest ratios for
images and text. We observe that visually dissimilar, but semantically similar
images have the smallest ratio (e.g. E.U. flag and Merkel, Judge’s gavel and
Supreme Court), which suggests our Limg constraint has moved the samples
closer than the baseline places them. For text, we observe articles about the
same issue are brought closer even though specifics differ.

Cross-Modal Retrieval Results: In Fig. 6 we show the top-3 results for a set
of queries, retrieved by our method vs. Ang+NP+Sym. We observe increased
semantic homogeneity in the returned samples compared with the baseline.
For example, images retrieved for “drugs” using our method consistently fea-
ture marijuana, while the baseline returns images of pills, smoke, and incorrect
retrievals; “wall” results in consistent images of the border wall; “immigration”
features arrests. For text retrieval, we find that our method consistently performs
better at recognizing public figures and returning related articles.
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5 Conclusions

We proposed a novel loss function which improves semantic coherence for cross-
modal retrieval. Our approach leverages a latent space learned on text alone, in
order to enforce proximity within samples of the same modality, in the learned
cross-modal space. We constrain text and image embeddings to be close in joint
space if they or their partners were close in the unimodal text space. We exper-
imentally demonstrate that our approach significantly improves upon several
state-of-the-art loss functions on multiple challenging datasets. We presented
qualitative results demonstrating increased semantic homogeneity of retrieval
results. Applications of our method include improving retrieval of abstract, non-
literal text, visual question answering over news and multimodal media, news
curation, and learning general-purpose robust visual-semantic embeddings.
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