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Abstract. Our objective is to transform a video into a set of discrete
audio-visual objects using self-supervised learning. To this end, we intro-
duce a model that uses attention to localize and group sound sources,
and optical flow to aggregate information over time. We demonstrate the
effectiveness of the audio-visual object embeddings that our model learns
by using them for four downstream speech-oriented tasks: (a) multi-
speaker sound source separation, (b) localizing and tracking speakers, (c)
correcting misaligned audio-visual data, and (d) active speaker detection.
Using our representation, these tasks can be solved entirely by training
on unlabeled video, without the aid of object detectors. We also demon-
strate the generality of our method by applying it to non-human speak-
ers, including cartoons and puppets. Our model significantly outperforms
other self-supervised approaches, and obtains performance competitive
with methods that use supervised face detection.

1 Introduction

When humans organize the visual world into objects, hearing provides cues that
affect the perceptual grouping process. We group different image regions together
not only because they look alike, or move together, but also because grouping
them together helps us explain the causes of co-occurring audio signals.

In this paper, our objective is to replicate this organizational capability, by
designing a model that can ingest raw video and transform it into a set of discrete
audio-visual objects. The network is trained using only self-supervised learning
from audio-visual cues. We demonstrate this capability on videos containing
talking heads.

This organizational task must overcome a number of challenges if it is to
be applicable to raw videos in the wild: (i) there are potentially many visually
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Fig. 1. We learn through self-supervision to represent a video as a set of discrete
audio-visual objects. Our model groups a scene into object instances and repre-
sents each one with a feature embedding. We use these embeddings for speech-
oriented tasks that typically require object detectors: (a) multi-speaker source sep-
aration, (b) speaker localization, (c) synchronizing misaligned audio and video,
and (d) active speaker detection. Using our representation, these tasks can be
solved without any labeled data, and on domains where off-the-shelf detectors are
not available, such as cartoons and puppets. Please see our webpage for videos:
http://www.robots.ox.ac.uk/˜vgg/research/avobjects.

similar sound generating objects in the scene (multiple heads in our case), and
the model must correctly attribute the sound to the actual sound source; (ii)
these objects may move over time; and (iii) there can be multiple other objects
in the scene (clutter) as well.

To address these challenges, we build upon recent works on self-supervised
audio-visual localization. These include video methods that find motions tem-
porally synchronized with audio onsets [13,40,44], and single-frame meth-
ods [6,31,46,52] that find regions that are likely to co-occur with the audio.
However, their output is a typically a “heat map” that indicates whether a given
pixel is likely (or unlikely) to be attributed to the audio; they do not group a
scene into discrete objects; and, if only using semantic correspondence, then they
cannot distinguish which, of several, object instances is making a sound.

Our first contribution is to propose a network that addresses all three of
these challenges; it is able to use synchronization cues to detect sound sources,
group them into distinct instances, and track them over time as they move. Our
second contribution is to demonstrate that object embeddings obtained from
this network facilitate a number of audio-visual downstream tasks that have
previously required hand-engineered supervised pipelines.

As illustrated in Fig. 1, we demonstrate that the embeddings enable: (a)
multi-speaker sound source separation [2,20]; (b) detecting and tracking talking
heads; (c) aligning misaligned recordings [12,15]; and (d) detecting active speak-
ers, i.e. identifying which speaker is talking [13,50]. In each case, we significantly
outperform other self-supervised localization methods, and obtain comparable
(and in some cases better) performance to prior methods that are trained using
stronger supervision, despite the fact that we learn to perform them entirely
from a raw audio-visual signal.

The trained model, which we call the Look Who’s Talking Network
(LWTNet), is essentially “plug and play” in that, once trained on unlabeled data

http://www.robots.ox.ac.uk/~vgg/research/avobjects
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(without preprocessing), it can be applied directly to other video material. It can
easily be fine-tuned for other audio-visual domains: we demonstrate this func-
tionality on active speaker detection for non-human speakers, such as animated
characters in The Simpsons and puppets in Sesame Street. This demonstrates
the generality of the model and learning framework, since this is a domain where
off-the-shelf supervised methods, such as methods that use face detectors, cannot
transfer without additional labeling.

2 Related Work

Sound Source Localization. Our task is closely related to the sound source
localization problem, i.e. finding the location in a video that is the source of
a sound. Early work performed localization [7,22,34,39] and segmentation [37]
by doing inference on simple probabilistic models, such as methods based on
canonical correlation analysis.

Recent efforts learn audio and video representations using self-supervised
learning [13,40,44] with synchronization as the proxy task: the network has to
predict whether video and audio are temporally aligned (or synthetically shifted).
Owens and Efros [44] show via heat-map visualizations that their network often
attends to sound sources, but do not quantitatively evaluate their model. Recent
work [38] added an attention mechanism to this model. Other work has detected
sound-making objects using correspondence cues [6,31,35,36,46,48,52,54], e.g.
by training a model to predict whether audio and a single video frame come from
the same (or different) videos. Since these models do not use motion and are
trained only to find the correspondence between object appearance and sound,
they would not be able to identify which of several objects of the same category
is the actual source of a sound. In contrast, our goal is to obtain discrete audio-
visual objects from a scene, even when they bellong to the same category (e.g.
multiple talking heads). In a related line of work, [25] distill visual object detec-
tors into an audio model using stereo sound, while [27] use spatial information
in a scene to convert mono sound to stereo.

Active Speaker Detection (ASD). Early work on active speaker detection
trained simple classifiers on hand-crafted feature sets [16]. Later, Chung and
Zisserman [13] used synchronization cues to solve the active speaker detection
problem. They used a hand-engineered face detection and tracking pipeline to
select candidate speakers, and ran their model only on cropped faces. In con-
trast, our model learns to do ASD entirely from unlabeled data. Chung et al.[11]
extended the pipeline by enrolling speaker models from visible speaking seg-
ments. Recently, Roth et al. [50] proposed an active speaker detection dataset
and evaluated a variety of supervised methods for it.

Source Separation. In recent years, researchers have proposed a variety of
methods for separating the voices of multiple speakers in a scene [2,20,23,44].
These methods either only handle a single on-screen speaker [44] or use hand-
engineered, supervised face detection pipelines. Afouras et al. [2] and Ephrat
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Fig. 2. The Look Who’s Talking Network (LWTNet): (1) Computes an audio-
visual attention map Sav by solving a synchronization task, (2) accumulates attention
over time, (3) selects audio-visual objects by computing the N highest peaks with non-
maximum suppression (NMS) from the accumulated attention map, each corresponding
to a trajectory of the pixel over time; (4) for every audio-visual object, it extracts
embedding vectors from a spatial window ρ, using the local attention map Sav to select
visual features, and (5) provides the audio-visual objects as inputs to downstream tasks.

et al. [20], for example, detect and track faces and extract visual representations
using off-the-shelf packages. In contrast, we use our model to separate multiple
speakers entirely via self-supervision.

Other recent work has explored separating the sounds of musical instruments
and other sound-making objects. Gao et al. [26,28] use semantic object detectors
trained on instrument categories, while [51,58] do not explicitly group a scene
into objects and instead either pool the visual features or produce a per-pixel
map that associates each pixel with a separated audio source. Recently, [57]
added motion information from optical flow. We, too, use flow in our model, but
instead of using it as a cue for motion, we use it to integrate information from
moving objects over time [24,47] in order to track them. In concurrent work [36]
propose a model that groups and separates sound sources.

Representation Learning. In recent years, researchers have proposed a
variety of self-supervised learning methods for learning representations from
images [10,18,32,33,41,43,55,56], videos [29,30] and multimodal data [5,40,42,
45,46]. Often the representation learned by these methods is a feature set (e.g.,
CNN weights) that can be adapted to downstream tasks by fine-tuning. By con-
trast, we learn an additional attention mechanism that can be used to group
discrete objects of interest for downstream speech tasks.
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3 From Unlabeled Video to Audio-Visual Objects

Given a video, the function of our model is to detect and track (possibly several)
audio-visual objects, and extract embeddings for each of them. We represent
an audio-visual object as the trajectory of a potential sound source through
space and time, which in the domain that we experiment on is often the track
of a “talking head”. Having obtained these trajectories, we use them to extract
embeddings that can be then used for downstream tasks.

In more detail, our model uses a bottom-up grouping procedure to propose
discrete audio-visual objects from raw video. It first estimates local (per-pixel
and per-frame) synchronization evidence, using a network design that is more
fine-grained in space and time than prior models. It then aggregates this evi-
dence over time via optical flow, thereby allowing the model to obtain robustness
to motions, and groups the aggregated attention into sound sources by detect-
ing local maxima. The model represents each object as a separate embedding,
temporal track, and attention map that can be adjusted in downstream tasks.

We will now give an overview of the model, which is shown in Fig. 2, followed
by the learning framework which uses self-supervision based on synchronization.
For architecture details, please refer to the the arXiv version.

3.1 Estimating Audio-Visual Attention

Before we group a scene into sound sources, we estimate a per-pixel attention
map that picks out the regions of a video whose motions have a high degree
of synchronization with the audio. We propose an attention mechanism that
provides highly localized spatio-temporal attention, and which is sensitive to
speaker motion. As in [6,31], we estimate audio-visual attention via a multimodal
embedding (Fig. 2, step 1). We learn vector embeddings for each audio clip and
embedding vectors for each pixel, such that if a pixel’s vector has a high dot
product with that of the audio, then it is likely to belong to that sound source.
For this, we use a two-stream architecture similar to those in other sound-source
localization work [6,31,52], with a network backbone similar to [11].

Video Encoder. Our video feature encoder is a spatio-temporal VGG-M [9]
with a 3D convolutional layer first, followed by a stack of 2D convolutions. Given
a T ×H×W ×3 input RGB video, it extracts a video embedding map fv(x, y, t)
with dimensions T × h × w × D.

Audio Encoder. The audio encoder is a VGG-M network operating on log-
mel spectrograms, treated as single-channel images. Given an audio segment, it
extracts a D-dimensional embedding fa(t) for every corresponding video frame t.

Computing Fine-Grained Attention Maps. For each space-time pixel, we
ask: how correlated is it with the events in the audio? To estimate this, we
measure the similarity between the audio and visual features at every spatial
location. For every space-time feature vector fv(x, y, t), we compute the cosine
similarity with the audio feature vector fa(t):

Sav(x, y, t) = fv(x, y, t)·fa(t), (1)
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Fig. 3. Intermediate representations from our model. We show the per-frame
attention maps Sav(t), the aggregated attention map Str

av and the two highest scoring
extracted audio-visual objects. We show the audio-visual objects for a single frame,
with a square of constant width.

where we first l2 normalize both features. We refer to the result, Sav(x, y, t), as
the audio-visual attention map.

3.2 Extracting Audio-Visual Objects

Given the audio-visual evidence, we parse a video into object representations.

Integrating Evidence Over Time. Audio-visual objects may only intermit-
tently make sounds. Therefore, we need to integrate sparse attention evidence
over time. We also need to group and track sound sources between frames, while
accounting for camera and object motion. To make our model more robust to
these motions, we aggregate information over time using optical flow (Fig. 2,
step 2). We extract dense optical flow for every frame, chain the flow values
together to obtain long-range tracks, and average the attention scores over these
tracks. Specifically, if T (x, y, t) is the tracked location of pixel (x, y) from frame
1 to the later frame t, we compute the score:

Str
av(x, y) =

1
T

T∑

t=1

Sav(T (x, y, t), t), (2)

where we perform the sampling using bilinear interpolation. The result is a 2D
map containing a score for the future trajectory of every pixel of the initial frame
through time. Note that any tracking method can be used in place of optical flow
(e.g. with explicit occlusion handling); we use optical flow for simplicity.

Grouping a Scene into Instances. To obtain discrete audio-visual objects, we
detect spatial local maxima (peaks) on the temporally aggregated synchroniza-
tion maps, and apply non-maximum suppression (NMS). More specifically, we
find peaks in the time-averaged synchronization map, Str

av(x, y), and sort them
in decreasing order; we then choose the peaks greedily, each time suppressing
the ones that are within a ρ × ρ box. The selected peaks can be now viewed
as distinct audio-visual objects. Examples of the intermediate representations
extracted at the steps described so far are shown in Fig. 3.

Extracting Object Embeddings. Now that the sound sources have been
grouped into distinct audio-visual objects, we can extract feature embeddings



214 T. Afouras et al.

for each one of them that we can use in downstream tasks. Before extracting
these features, we locate the position of the sound source in each frame. A simple
strategy for this would be to follow the object’s optical flow track throughout
the video. However, these tracks are imprecise and may not correspond precisely
to the location of the sound source. Therefore, we “snap” to the track location
to the nearest peak in the attention map. More specifically, in frame t, we search
in an area of ρ×ρ centered on the tracked location T (x, y, t), and select the pixel
location with largest attention value. Then, having tracked the sound source in
each frame, we select the corresponding spatial feature vector from the visual
feature map fv (Fig. 2, step 4). These per-frame embedding features, fatt

v (t),
can then be used to solve downstream tasks (Sect. 4). One can equivalently view
this procedure as an audio-visual attention mechanism that operates on fv.

3.3 Learning the Attention Map

Training our model amounts to learning the attention map Sav on which the
audio-visual objects are subsequently extracted. We obtain this map by solving
a self-supervised audio-visual synchronization task [13,40,44]: we encourage the
embedding at each pixel to be correlated with the true audio and uncorrelated
with shifted versions of it. We estimate the synchronization evidence for each
frame by aggregating the per-pixel synchronization scores. Following common
practice in multiple instance learning [6], we measure the per-frame evidence by
the maximum spatial response:

Satt
av (t) = max

x,y
Sav(x, y, t). (3)

We maximize the similarity between a video frame’s true audio track while
minimizing that of N shifted (i.e. misaligned) versions of the audio. Given visual
features fv and true audio ai, we sample N other audio segments from the same
video clip: a1, a2, ..., aN , and minimize the contrastive loss [15,43]:

L = − log
exp(Satt

av (v, ai))

exp(Satt
av (v, ai)) +

∑N
j=1 exp(Satt

av (v, aj))
. (4)

For the negative examples, we select all audio features (except for the true exam-
ple) in a temporal window centered on the video frame.

In addition to the synchronization task, we also consider the correspondence
task of Arandjelović and Zisserman [6], which chooses negatives audio samples
from random video clips. Since this problem can be solved with even a single
frame, it results in a model that is less sensitive to motion.

4 Applications of Audio-Visual Object Embeddings

We use our learned audio-visual objects for a variety of applications.

4.1 Audio-Visual Object Detection and Tracking

We can use our model for spatially localizing speakers. To do this, we use the
tracked location of an audio-visual object in each frame.
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Fig. 4. Multi-speaker separation. We isolate the sound of each speaker’s voice by
combining our audio-visual objects with a network similar to [2]. Given a spectrogram
of a noisy sound mixture, the network isolates the voice of each speaker, using the
visual features provided by their audio-visual object.

4.2 Active Speaker Detection

For every frame in our video, our model can locate potential speakers and decide
whether or not they are speaking. In our setting, this can be viewed as decid-
ing whether an audio-visual object has strong evidence of synchronization in a
given frame. For every tracked audio-visual object, we extract the visual features
fatt

v (t) (Sect. 3.2) for each frame t. We then obtain a score that indicates how
strong the audio-visual correlation for frame t is, by computing the dot product:
fatt

v (t)·fa(t). Following previous work [13], we threshold the result to make a
binary decision (active speaker or not).

4.3 Multi-speaker Source Separation

Our audio-visual objects can also be used for separating the voices of speakers
in a video. We consider the multi-speaker separation problem [2,20]: given a
video with multiple people speaking on-screen (e.g., a television debate show),
we isolate the sound of each speaker’s voice from the audio stream. We note that
this problem is distinct from on/off-screen audio separation [44], which requires
only a single speaker to be on-screen.

We train an additional network that, given a waveform containing an audio
mixture and an audio-visual object, isolates the speaker’s voice (Fig. 4, full
details in the the arXiv version of the paper). We use an architecture that is
similar to [2], but conditions on our self-supervised representations instead of
detections from a face detector. More specifically, the method of [2] runs a face
detection and tracking system on a video, computes CNN features on each crop,
and then feeds those to a source separation network. We, instead, simply provide
the same separation network with the embedding features fatt

v (t).

4.4 Correcting Audio-Visual Misalignment

We can also use our model to correct misaligned audio-visual data—a problem
that often occurs in the recording and television broadcast process. We follow
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the problem formulation proposed by Chung and Zisserman [13]. While this is
a problem that is typically solved using supervised face detection [13,15], we
instead tackle it with our learned model. During inference, we are given a video
with unsynchronized audio and video tracks, and we shift the audio to discover
the offset Δ̂t that maximizes the audio-visual evidence:

Δ̂t = arg max
Δt

1
T

T∑

t=1

Satt
Δt (t), (5)

where Satt
Δt (t) is the synchronization score of frame t after shifting the audio by

Δt. This can be estimated efficiently by recomputing the dot products in Eq. 1.
In addition to treating this alignment procedure as a stand-alone application,

we also use it as a preprocessing step for our other applications (a common
practice in other speech analysis work [2]). When given a test video, we first
compute the optimal offset Δ̂t, and use it to shift the audio accordingly. We
then recompute Sav(t) from the synchronized embeddings.

5 Experiments

5.1 Datasets

Human Speech. We evaluate our model on the Lip Reading Sentences (LRS2
and LRS3) datasets and the Columbia active speaker dataset. LRS2 [1] and
LRS3 [3] are audio-visual speech datasets containing 224 and 475 h of videos
respectively, along with ground truth face tracks of the speakers. The Columbia
dataset [8] contains footage from an 86-minute panel discussion, where multiple
individuals take turns in speaking, and contains approximate bounding boxes
and active speaker labels, i.e. whether a visible face is speaking at a given point
in time. All datasets provide (pseudo-)ground truth bounding boxes obtained
via face detection, which we use for evaluation. We resample all videos to a
resolution of H ×W = 270×480 pixels before feeding them to our model, which
outputs h×w = 18× 31 attention maps. We train all models on LRS2, and use
LRS3 and Columbia only for evaluation.

Non-human Speakers. To evaluate our method on non-human speakers,
we collected television footage from The Simpsons and Sesame Street shows
(Table 3a). For testing, we obtained ASD and speaker localization labels, using
the VIA tool [19]: we asked human annotators to label frames that they believed
to contain an active speaker and to localize them. For every dataset, we create a
single-head and a multi-head set, where clips are constrained to contain a single
active speaker or multiple heads (talking or not) respectively. We provide dataset
statistics in Table 3a and more details in the the arXiv version of the paper.

5.2 Training Details

Audio-Visual Object Detection Training. To make training easier, we fol-
low [40] and use a simple learning curriculum. At the beginning of training, we



Self-supervised Learning of Audio-Visual Objects from Video 217

Fig. 5. Talking head detection and tracking on LRS3 datasets. For each of
the 4 examples, we show the audio-visual attention score on every spatial location for
the depicted frame, and a bounding box centered on the largest value, indicating the
speaker location. Please see our webpage for video results.

Fig. 6. Handling motion: Talking head detection and tracking on continuous scenes
from the validation set of LRS2. Despite the significant movement of the speakers and
the camera, our method accurately tracks them.

sample negatives from random video clips, then switch to shifted audio tracks
later in training. To speed up training, we also begin by taking the mean dot
product (Eq. 3), and then switch to the maximum. We set ρ to 100 pixels.

Source Separation Training. Training takes place in two steps: we first train
our model to produce audio-visual objects by solving a synchronization problem.
Then, we train the multi-speaker separation network on top of these learned rep-
resentations. We follow previous work [2,20] and use a mix-and-separate learning
procedure. We create synthetic videos containing multiple talking speakers by
1) selecting two or three videos at random from the training set, depending on
the experiment, 2) summing their waveforms together, and 3) vertically concate-
nating the video frames together. The model is then tasked with extracting a
number of talking heads equal to the number of mixed videos and predicting an
original corresponding waveform for each.

Non-human Model Training. We fine-tune the best model from LRS2 sep-
arately on each of the two datasets with non-human speakers. The lip motion
for non-human speakers, such as the motion of a puppet’s mouth, is only loosely
correlated with speech, suggesting that there is less of an advantage to obtain-
ing our negative examples from temporally shifted audio. We therefore sample
our negative audio examples from other video clips rather than from misaligned
audio (Sect. 3.3) when computing attention maps (Fig. 7).

http://www.robots.ox.ac.uk/~vgg/research/avobjects
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Fig. 7. Active speaker detection on the Columbia dataset, and an example from
the Friends TV show. We show active speakers in blue and inactive speakers in red.
The corresponding detection scores are noted above the boxes (the threshold has been
subtracted so that positive scores indicate active speakers). (Color figure online)

Fig. 8. Active speaker detection for non-human speakers. We show the top 2
highest-scoring audio-visual objects in each scene, along with the aggregated attention
map. Please see our webpage for video results.

5.3 Results

1. Talking Head Detection and Tracking. We evaluate how well our model
is able to localize speakers, i.e. talking heads (Table 1a). First, we evaluate two
simple baselines: the random one, which selects a random pixel in each frame
and the center one, which always selects the center pixel. Next, we compared
with two recent sound source localization methods: Owens and Efros [44] and
AVE-Net [6]. Since these methods require input videos that are longer than most
of the videos in the test set of LRS2, we only evaluate them on LRS3. We also
perform several ablations of our model: To evaluate the benefit of integrating the
audio-visual evidence over flow trajectories, we create a variation of our model
called No flow that, instead, computes the attention Str

av by globally pooling over
time throughout the video. Finally, we also consider a variation of this model
that uses a larger NMS window (ρ = 150).

We found that our method obtains very high accuracy, and that it signif-
icantly outperforms all other methods. AVE-Net solves a correspondence task
that doesn’t require motion information, and uses a single video frame as input.
Consequently, it does not take advantage of informative motion, such as moving

http://www.robots.ox.ac.uk/~vgg/research/avobjects
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Table 1. (a): Talking head detection and tracking accuracy. A detection is con-
sidered correct if it lies within the true bounding box. (b): Active speaker detection
accuracy on the Columbia dataset [8]. F1 Scores (%) for each speaker, and the overall
average.

Method LRS2 LRS3

Random 2.8% 2.9%
Center 23.9% 25.9%
Owens & Efros [44] - 24.8%
AVE-Net [6] - 58.1%
No flow 98.4% 94.2%
No flow + large NMS 98.8% 97.2%
Full model 99.6% 99.7%

Method Speaker

Bell Boll Lieb Long Sick Avg.

Chakravarty [8] 82.9 65.8 73.6 86.9 81.8 80.2
Shahid [53] 87.3 96.4 92.2 83.0 87.2 89.2
SyncNet [13] 93.7 83.4 86.8 97.7 86.1 89.5
Ours 92.6 82.4 88.7 94.4 95.9 90.8

lips. As can be seen in Fig. 5, the localization maps produced by AVE-Net [6]
are less precise, as it only loosely associates appearance of a person to speech,
and won’t consistently focus on the same region. Owens and Efros [44], by con-
trast, has a large temporal receptive field, which results in temporally imprecise
predictions, causing very large errors when the subjects are moving. The No
flow baseline fails to track the talking head well outside the NMS area, and
its accuracy is consequently lower on LRS3. Enlarging the NMS window par-
tially alleviates this issue, but the accuracy is still lower than that of our model.
We note that the LRS2 test set contains very short clips (usually 1–2 seconds
long) with predominantly static speakers, which explains why using flow does
not provide an advantage. We show some challenging examples with significant
speaker and camera motion in Fig. 6. Please refer to the the arXiv version of
the paper for further analysis of camera and speaker motion.

2. Active Speaker Detection. Next, we ask how well our model can deter-
mine which speaker is talking. Following previous work that uses supervised face
detection [14,53], we evaluate our method on the Columbia dataset [8]. For each
video clip, we extract 5 audio-visual objects (an upper bound on the number of
speakers), each of which has an ASD score indicating the likelihood that it is
a sound source (Sect. 4.2). We then associate each ground truth bounding box
with the audio-visual object whose trajectory follows it the closest. For compari-
son with existing work, we report the F1 measure (the standard for this dataset)
per individual speaker as well as averaged over all speakers. For calculating the
F1 we set the ASD threshold to the one that yields the Equal Error Rate (EER)
for the pretext task on the LRS2 validation set. As shown in Table 1b, our model
outperforms all previously reported results on this dataset, even though (unlike
other methods) it does not use labeled face bounding boxes for training.

3. Multi-speaker Source Separation. To evaluate our model on speaker sep-
aration, we follow the protocol of [2]. We create synthetic examples from the test
set of LRS2, using only videos that are between 2−5 seconds long, and evaluate
performance using Signal-to-Distortion-Ratio (SDR) [21] and Perceptual Evalu-
ation of Speech Quality (PESQ, varies between 0 and 4.5) [49] (higher is better
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Table 2. (a): Source separation on LRS2. #Spk indicates the number of speakers.
The WER on the ground truth signal is 20.0%. (b): Audio-visual synchronization
accuracy (%) evaluation for a given number of input frames.

SDR PESQ WER %

Method \ # Spk. 2 3 2 3 2 3

Mixed input -0.3 -3.4 1.7 1.5 91.0 97.2
Conv.-Sync [2] 11.3 7.5 3.0 2.5 30.3 43.5

Frozen 10.7 7.0 3.0 2.5 30.7 44.2
Ours Oracle-BB 10.8 7.1 2.9 2.5 30.9 44.9

Small-NMS 10.6 6.8 3.0 2.5 31.2 44.7
Full 10.8 7.2 3.0 2.6 30.4 42.0

Input frames

Method 5 7 9 11 13 15

SyncNet [13] 75.8 82.3 87.6 91.8 94.5 96.1

PM [15] 88.1 93.8 96.4 97.9 98.7 99.1

Ours 78.8 87.1 92.1 94.8 96.3 97.3

for both). We also assess the intelligibility of the output by computing the Word
Error Rate (WER, lower is better) between the transcriptions obtained with the
Google Cloud speech recognition system. Following [3], we train and evaluate
separate models for 2 and 3 speakers, though we note that if the number of
speakers were unknown, it could be estimated using active speaker detection.

For comparison, we implement the model of Afouras et al. [2], and train it on
the same data. For extracting visual features to serve as its input, we use a state-
of-the-art audio-visual synchronization model [15], rather than the lip-reading
features from Afouras et al. [4]. We refer to this model as Conversation-Sync.
This model uses bounding boxes from a well-engineered face detection system,
and thus represents an approximate upper limit on the performance of our self-
supervised model. Our main model for this experiment is trained end-to-end and
uses ρ = 150. We also performed a number of ablations: a model that freezes the
pretrained audio-visual features and a model with a smaller ρ = 100.

We observed (Table 2a) that our self-supervised model obtains results close
to those of [2], which is based on supervised face detection. We also asked how
much error is introduced by lack of face detection. In this direction we extract
the local visual descriptors using tracks obtained with face detectors instead of
our audio-visual object tracks. This model, Oracle-BB, obtains results similar to
ours, suggesting that the quality of our face localization is high.

4. Correcting Misaligned Visual and Audio Data. We use the same metric
as [15] to evaluate on LRS2. The task is to determine the correct audio-to-
visual offset within a ±15 frame window. An offset is considered correct if it is
within 1 video frame from the ground truth. The distances are averaged over 5
to 15 frames. We compare our method to two state-of-the-art synchronization
methods: SyncNet [13] and the state-of-the-art Perfect Match [15]. We note that
[15] represents an approximate upper limit to what we would expect our method
to achieve, since we are using a similar network and training objective; the major
difference is that we use our audio-visual objects instead of image crops from a
face detector. The results (Table 2b) show that our self-supervised model obtains
comparable accuracy to these supervised methods.

5. Generalization to Non-human Speakers. We evaluate the LWTNet
model’s generalization to non-human speakers using the Simpsons and Sesame
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Table 3. (a): Label statistics for non-human test sets. S is single head and M multi-
head. (b): Non-human speaker evaluation for ASD and localization tasks on Simp-
sons and Sesame Street. MN: MobileNet; RN: ResNet50.

Source Type Clips Frames

The Simpsons S 41 87
The Simpsons M 582 251

Sesame Street S 57 120
Sesame Street M 143 424

Loc. Acc ASD AP
Single-head Single-head Multi-head

Method Simp. Ses. Simp. Ses. Simp. Ses.

Random 8.7 16.0 - - - -
Center 62.0 80.1 - - - -
RetinaFace RN 47.7 61.2 40.0 46.8 - -
RetinaFace MN 72.1 70.2 60.4 52.4 - -
Ours 98.8 81.0 98.7 72.2 85.5 55.6

Street datasets described in Sect. 5.1. The results of our evaluation are sum-
marized in Table 3b. Since supervised speech analysis methods are often based
on face detection systems, we compare our method’s performance to off-the-
shelf face detectors, using the single-head subset. As a face detector baseline,
we use the state-of-the-art RetinaFace [17] detector, with both the MobileNet
and ResNet-50 backbones. We report localization accuracy (as in Table 1a) and
Average Precision (AP). It is clear that our model outperforms the face detectors
in both localization and retrieval performance for both datasets.

The second evaluation setting is detecting active speakers in videos from
the multi-head test set. As expected, our model’s performance decreases in this
more challenging scenario; however, the AP for both datasets indicates that our
method can be useful for retrieving the speaker in this entirely new domain. We
show qualitative examples of ASD on the multi-head test sets in Fig. 8.

6 Conclusion

In this paper, we have proposed a unified model that learns from raw video to
detect and track speakers. The embeddings learned by the model are effective
for many downstream speech analysis tasks, such as source separation and active
speaker detection, that in previous work required supervised face detection.
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33. Hénaff, O.J., et al.: Data-efficient image recognition with contrastive predictive
coding. In: ICML (2020)

34. Hershey, J., Movellan, J.: Audio-vision: locating sounds via audio-visual synchrony.
In: NeurIPS, vol. 12 (1999)

35. Hu, D., Nie, F., Li, X.: Deep multimodal clustering for unsupervised audiovisual
learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019

36. Hu, D., Wang, Z., Xiong, H., Wang, D., Nie, F., Dou, D.: Curriculum audiovisual
learning. arXiv preprint arXiv:2001.09414 (2020)

37. Izadinia, H., Saleemi, I., Shah, M.: Multimodal analysis for identification and seg-
mentation of moving-sounding objects. IEEE Trans. Multimedia 15(2), 378–390
(2012)

38. Khosravan, N., Ardeshir, S., Puri, R.: On attention modules for audio-visual syn-
chronization. arXiv preprint arXiv:1812.06071 (2018)

39. Kidron, E., Schechner, Y.Y., Elad, M.: Pixels that sound. In: Proceedings of CVPR
(2005)

40. Korbar, B., Tran, D., Torresani, L.: Co-training of audio and video representations
from self-supervised temporal synchronization. CoRR (2018)

41. Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant repre-
sentations. In: CVPR (2020)

42. Nagrani, A., Chung, J.S., Albanie, S., Zisserman, A.: Disentangled speech embed-
dings using cross-modal self-supervision. In: Proceedings of ICASSP, pp. 6829–
6833. IEEE (2020)

43. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

https://doi.org/10.1007/978-3-030-01219-9_3
https://doi.org/10.1007/978-3-030-01219-9_3
http://arxiv.org/abs/1904.07750
https://doi.org/10.1007/978-3-030-01231-1_40
http://arxiv.org/abs/2001.09414
http://arxiv.org/abs/1812.06071
http://arxiv.org/abs/1807.03748


224 T. Afouras et al.

44. Owens, A., Efros, A.A.: Audio-visual scene analysis with self-supervised multisen-
sory features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV
2018. LNCS, vol. 11210, pp. 639–658. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01231-1 39

45. Owens, A., Isola, P., McDermott, J., Torralba, A., Adelson, E.H., Freeman, W.T.:
Visually indicated sounds. In: Computer Vision and Pattern Recognition (CVPR)
(2016)

46. Owens, A., Wu, J., McDermott, J.H., Freeman, W.T., Torralba, A.: Learning sight
from sound: ambient sound provides supervision for visual learning. Int. J. Comput.
Vis. (2018)

47. Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation
in videos. In: Proceedings of ICCV (2015)

48. Ramaswamy, J., Das, S.: See the sound, hear the pixels. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
March 2020

49. Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P.: Perceptual evaluation of
speech quality (PESQ)-a new method for speech quality assessment of telephone
networks and codecs. In: Proceedings of ICASSP, vol. 2, pp. 749–752. IEEE (2001)

50. Roth, J., et al.: AVA-ActiveSpeaker: An audio-visual dataset for active speaker
detection. arXiv preprint arXiv:1901.01342 (2019)

51. Rouditchenko, A., Zhao, H., Gan, C., McDermott, J., Torralba, A.: Self-supervised
audio-visual co-segmentation. In: Proceedings of ICASSP, pp. 2357–2361. IEEE
(2019)

52. Senocak, A., Oh, T.H., Kim, J., Yang, M.H., Kweon, I.S.: Learning to localize
sound source in visual scenes. In: Proceedings of CVPR (2018)

53. Shahid, M., Beyan, C., Murino, V.: Voice activity detection by upper body motion
analysis and unsupervised domain adaptation. In: The IEEE International Con-
ference on Computer Vision (ICCV) Workshops, October 2019

54. Tian, Y., Shi, J., Li, B., Duan, Z., Xu, C.: Audio-visual event localization in uncon-
strained videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11206, pp. 252–268. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01216-8 16

55. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint
arXiv:1906.05849 (2019)

56. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos.
In: Proceedings of ICCV, pp. 2794–2802 (2015)

57. Zhao, H., Gan, C., Ma, W.C., Torralba, A.: The sound of motions. In: Proceedings
of ICCV (2019)

58. Zhao, H., Gan, C., Rouditchenko, A., Vondrick, C., McDermott, J., Torralba, A.:
The sound of pixels. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11205, pp. 587–604. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01246-5 35

https://doi.org/10.1007/978-3-030-01231-1_39
https://doi.org/10.1007/978-3-030-01231-1_39
http://arxiv.org/abs/1901.01342
https://doi.org/10.1007/978-3-030-01216-8_16
https://doi.org/10.1007/978-3-030-01216-8_16
http://arxiv.org/abs/1906.05849
https://doi.org/10.1007/978-3-030-01246-5_35
https://doi.org/10.1007/978-3-030-01246-5_35

	Self-supervised Learning of Audio-Visual Objects from Video
	1 Introduction
	2 Related Work
	3 From Unlabeled Video to Audio-Visual Objects
	3.1 Estimating Audio-Visual Attention
	3.2 Extracting Audio-Visual Objects
	3.3 Learning the Attention Map

	4 Applications of Audio-Visual Object Embeddings
	4.1 Audio-Visual Object Detection and Tracking
	4.2 Active Speaker Detection
	4.3 Multi-speaker Source Separation
	4.4 Correcting Audio-Visual Misalignment

	5 Experiments
	5.1 Datasets
	5.2 Training Details
	5.3 Results

	6 Conclusion
	References




