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Abstract. People often create art by following an artistic workflow
involving multiple stages that inform the overall design. If an artist
wishes to modify an earlier decision, significant work may be required
to propagate this new decision forward to the final artwork. Motivated
by the above observations, we propose a generative model that follows
a given artistic workflow, enabling both multi-stage image generation as
well as multi-stage image editing of an existing piece of art. Furthermore,
for the editing scenario, we introduce an optimization process along with
learning-based regularization to ensure the edited image produced by the
model closely aligns with the originally provided image. Qualitative and
quantitative results on three different artistic datasets demonstrate the
effectiveness of the proposed framework on both image generation and
editing tasks.

1 Introduction

Creating artwork from scratch is a herculean task for people without years of
artistic experience. For novices to the world of art, it would be more feasible to
accomplish this task if there are clear creation steps to follow. Take a watercolor
painting for example. One may be guided to first sketch the outline with pencils,
then fill out areas with large brushes, and finalize details such as the color gradi-
ent and shadow with small brushes. At each stage, some aspects (i.e., variations)
of the overall design are determined to carry forward to the final piece of art.

Inspired by these observations, we aim to model workflows for creating art,
targeting two relevant artistic applications: multi-stage artwork creation and
multi-stage artwork editing. As shown in Fig. 1, multi-stage artwork generation
guides the user through the creation process by starting from the first stage then
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selecting the variation at each subsequent creation stage. In the multi-stage art-
work editing, we are given a final piece of artwork and infer all the intermediate
creation stages, enabling the user to perform different types of editing on various
stages and propagate them forward to modify the final artwork.

Fig. 1. We model the sequential creation stages for a given artistic workflow by learning
from examples. At test time, our framework can guide the user to create new artwork
by sampling different variations at each stage (left), and infer the creation stages of
existing artwork to enable the user to perform natural edits by exploring variations at
different stages (middle and right).

Existing artwork creation approaches use conditional generative adversar-
ial networks (conditional GANs) [20,28,49] to produce the artwork according
to user-provided input signals. These methods can take user inputs such as a
sketch image [7] or segmentation mask [34,43] and perform a single-step genera-
tion to synthesize the final artwork. To make the creation process more tractable,
recent frameworks adopt a multi-step generation strategy to accomplish the gen-
eration tasks such as fashion simulation [38] and sketch-to-image [12]. However,
these approaches typically do not support editing existing artwork. To manipu-
late an existing artwork image without degrading the quality, numerous editing
schemes [4,31,36,46,47] have been proposed in the past decade. Nevertheless,
these methods either are designed for specific applications [31,36,46] or lack flex-
ible controls over the editing procedure because of the single-stage generation
strategy [4,47].

In this paper, we develop a conditional GAN-based framework that 1) syn-
thesizes novel artwork via multiple creation stages, and 2) edits existing artwork
at various creation stages. Our approach consists of an artwork generation mod-
ule and a workflow inference module. The artwork generation module learns to
emulate each artistic stage by a series of multi-modal (i.e., one-to-many) condi-
tional GAN [49] networks. Each network in the artwork generation module uses
a stage-specific latent representation to encode the variation presented at the
corresponding creation stage. At test time, the user can determine the latent
representation at each stage sequentially for the artwork generation module to
synthesize the desired artwork image.

To enable editing existing artwork, we also design an inference module that
learns to sequentially infer the corresponding images at all intermediate stages.
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We assume a one-to-one mapping from the final to intermediate stages, and use a
series of uni-modal conditional GANs [20] to perform this inference. At test time,
we predict the stage-specific latent representations from the inferred images at
all intermediate stages. Depending on the desired type of edit, the user can edit
any stage to manipulate the stage-specific image or latent representation and
regenerate the final artwork from the manipulated representations.

We observe that directly applying our workflow inference module can cause
the reconstructed image to differ slightly from the initially provided artwork.
Such a reconstruction problem is undesirable since the user expects the gen-
erated image to be unchanged when no edits are performed. To address this
problem, we design an optimization procedure along with learning-based regu-
larization to refine the reconstructed image. This optimization aims to minimize
the appearance difference between the reconstructed and the original artwork
image, while the learning-based regularization seeks to guide the optimization
process and alleviate overfitting.

We collect three datasets with different creation stages to demonstrate the use
cases of our approach: face drawing, anime drawing, and chair design. We demon-
strate the creation process guided by the proposed framework and present editing
results made by artists. For quantitative evaluations, we measure the reconstruc-
tion error and Fréchet inception distance (FID) [14] to validate the effectiveness
of the proposed optimization and learning-based regularization scheme. We make
the code and datasets public available to stimulate the future research.1

In this work, we make the following three contributions:

– We propose an image generation and editing framework which models the
creation workflow for a particular type of artwork.

– We design an optimization process and a learning-based regularization func-
tion for the reconstruction problem in the editing scenario.

– We collect three different datasets containing various design stages and use
them to evaluate the proposed approach.

2 Related Work

Generative Adversarial Networks (GANs). GANs [2,5,13,22,23] model
the real image distribution via adversarial learning schemes. Typically, these
methods encode the distribution of real images into a latent space by learning
the mapping from latent representations to generated images. To make the latent
representation more interpretable, the InfoGAN [8] approach learns to disentan-
gle the latent representations by maximizing the mutual information. Similar
to the FineGAN [37] and VON [50] methods, our approach learns to synthesize
an image via multiple stages of generation, and encode different types of varia-
tion into separate latent spaces at various stages. Our framework extends these
approaches to also enables image editing of different types of artwork.

1 https://github.com/hytseng0509/ArtEditing.

https://github.com/hytseng0509/ArtEditing
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Conditional GANs. Conditional GANs learn to synthesize the output image
by referencing the input context such as text descriptions [44], scene graphs [42],
segmentation masks [15,34], and images [20]. According to the type of mapping
from the input context to the output image, conditional GANs can be categorized
as uni-modal (one-to-one) [20,48] or multi-modal (one-to-many) [17,29,32,49].
Since we assume there are many possible variations involved for the generation at
each stage of the artwork creation workflow, we use the multi-modal conditional
GANs to synthesize the next-stage image, and utilize the uni-modal conditional
GANs to inference the prior-stage image.

Image Editing. Image editing frameworks enable user-guided manipulation
without degrading the realism of the edited images. Recently, deep-learning-
based approaches have made significant progress on various image editing tasks
such as colorization [19,26,45,46], image stylization [16,31], image blending [18],
image inpainting [33,35], layout editing [30], and face editing [6,9,36]. Unlike
these task-specific methods, the task-agnostic iGAN [47] and GANPaint [4] mod-
els map the variation in the training data onto a low-dimensional latent space
using GAN models. Editing can be conducted by manipulating the representa-
tion in the learned latent space. Different from iGAN and GANPaint, we develop
a multi-stage generation method to model different types of variation at various
stages.

Optimization for Reconstruction. In order to embed an existing image to the
latent space learned by a GAN model, numerous approaches [10,25,49] propose
to train an encoder to learn the mapping from images to latent representations.
However, the generator sometimes fails to reconstruct the original image from the
embedded representations. To address this problem, optimization-based meth-
ods are proposed in recent studies. Abdal et al. [1] and Bau et al. [4] adopt the
gradient descent scheme to optimize the latent representations and modulations
for the feature activations, respectively. The goal is to minimize the appearance
distance between the generated and original images. We also utilize the optimiza-
tion strategy to reconstruct existing artwork images. In addition, we introduce
a learning-based regularization function to guide the optimization process.

Regularizations for Deep Learning. These approaches [11,24,27,39–41] aim
to prevent the learning function from overfitting to a specific solution. Partic-
ularly, the weight decay scheme [24] regularizes by constraining the magnitude
of learning parameters during the training phase. Nevertheless, regularization
methods typically involve hyper-parameters that require meticulous hand-tuning
to ensure the effectiveness. The MetaReg [3] method designs a learning-to-learn
algorithm to automatically find the hyper-parameters of the weight decay regu-
larization to address the domain generalization problem. Our proposed learning-
based regularization is trained with a similar strategy but different objectives to
alleviate the overfitting problem described in Sect. 3.2.
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3 Method

Our approach is motivated by the sequential creation stages of artistic work-
flows. We build a model that enables a user to 1) follow the creation stages to
generate novel artwork and 2) conduct edits at different stages. Our framework is
composed of an artwork generation and a workflow inference module. As shown
in Fig. 2(a), the artwork generation module learns to model the creations stages
of the artist workflow. To enable editing an existing piece of art, the workflow
inference module is trained to sequentially infer the corresponding images at all
creation stages. When editing existing artwork, it is important that the artwork
remains as close as possible to the original artwork, and only desired design deci-
sions are altered. To enable this, we design an optimization process together with
a learning-based regularization that allows faithful reconstruction of the input
image. We provide the implementation and training details for each component
in the proposed framework as supplemental material.

Fig. 2. Overview of the proposed framework. (a) Given N creation stages (N = 3
in this example), our approach consists of N −1 workflow inference networks and N −1
artwork generation networks. The workflow inference module produces the intermedi-
ate results of the input artwork at all creation stages. The artwork generation module
computes the latent representation z and transformation parameter zAda for each stage,
then reconstructs the input artwork images from these transformation parameters. (b)
The latent encoder EG

i extracts the stage-specific latent representation z from the
example, and computes the transformation parameters zAda for the AdaIN normal-
ization layers (c channels). (c) We introduce a cycle consistency loss for each stage
to prevent the artwork generation model (which accounts for detail coloring in this
example) from memorizing the variation determined at the previous stages (sketching
and flat coloring).

3.1 Artwork Generation and Workflow Inference

Preliminaries. The proposed approach is driven by the number of stages in the
training dataset and operates in a supervised setting with aligned training data.
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Denoting N as the number of stages, the training dataset is comprised of a set
of image groups {(x1, x2, · · · , xN )}, where xN denotes the artwork image at the
final stage. We construct the proposed framework with N −1 workflow inference
models {GI

i }Ni=1 as well as N − 1 artwork generation models {(EG
i , GG

i )}Ni=1. We
show an example of 3 stages in Fig. 2(a). Since the proposed method is based on
the observation that artists sequentially determine a design factor (i.e., variation)
at each stage, we assume that the generation from the image in the prior stage
to the later one is multi-modal (i.e., one-to-many mapping), while the inference
from the final to the previous stages is uni-modal (i.e., one-to-one mapping).

Artwork Generation. The artwork generation module aims to mimic the
sequential creation stages of the artistic workflow. Since we assume the gen-
eration from the prior stages to the following ones is multi-modal, we construct
a series of artwork generation networks by adopting the multi-modal conditional
GAN approach in BicycleGAN [49] and the network architecture of MUNIT [17].
As shown in Fig. 2(a) and (b), each artwork generation model contains two com-
ponents: latent encoder EG

i and generator GG
i . The latent encoder EG

i encodes
the variation presented at the i-th stage in a stage-specific latent space. Given an
input image xi and the corresponding next-stage image xi+1, the latent encoder
EG

i extracts the stage-specific latent representation zi from the image xi+1,
and computes the transformation parameter zAda

i . The generator GG
i then takes

the current-stage image xi as input and modulates the activations through the
AdaIN normalization layers [49] with the transformation parameter zAda

i to syn-
thesize the next-stage image x̂G

i+1, namely

x̂G
i+1 = GG

i (xi, E
G
i (xi+1)) i ∈ {1, 2, · · · , N − 1}. (1)

We utilize the objective introduced in the BicycleGAN [49], denoted as Lbicycle
i ,

for training the generation model. The objective Lbicycle
i is detailed in the sup-

plementary material.
Ideally, the artwork generation networks corresponding to a given stage would

encode only new information (i.e., incremental variation), preserving prior design
decisions from earlier stages. To encourage this property, we impose a cycle con-
sistency loss to enforce the generation network to encode the variation presented
at the current stage only, as shown in Fig. 2(c). Specifically, we use the inference
model GI

i to map the generated next-stage image back to the current stage. The
mapped image should be identical to the original image xi at the current stage,
namely

Lc
i = ‖GI

i (G
G
i (xi, E

G
i (zi))) − xi‖1 zi ∼ N(0, 1). (2)

Therefore, the overall training objective for the artwork generation model at the
i-th stage is

LG
i = Lbicycle

i + λcLc
i , (3)

where λc controls the importance of the cycle consistency.

Workflow Inference. To enable the user to edit the input artwork xN at differ-
ent creation stages, our inference module aims to hallucinate the corresponding
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images at all previous stages. For the i-th stage, we use a unimodal conditional
GAN network [20] to generate the image at i-th stage from the image at (i+1)-th
stage, namely

x̂I
i = GI

i (xi+1) i ∈ {1, 2, · · · , N − 1}. (4)

During the training phase, we apply the hinge version of GAN loss [5] to ensure
the realism of the generated image x̂I

i . We also impose an �1 loss between the
synthesized image x̂I

i and the ground-truth image xi to stabilize and accelerate
the training. Hence the training objective for the inference network at the i-th
stage is

LI
i = LGAN

i (x̂I
i ) + λ1‖x̂I

i − xi‖1, (5)

where λ1 controls the importance of the �1 loss.

Test-Time Inference. As shown in Fig. 2(a), given an input artwork image
xN , we sequentially obtain the images at all previous stages {x̂I

i }Ni=1 using
the workflow inference module (blue block). We then use the artwork gen-
eration module (green block) to extract the latent representations {zi}N−1

i=1

from the inferred images {x̂I
i }Ni=1, and compute the transformation parame-

ters {zAda
i }N−1

i=1 . Combining the first-stage image xG
1 = xI

1 and the transfor-
mation parameters {zAda

i }N−1
i=1 , the generation module consecutively generates

the images {x̂G
i }Ni=2 at the following stages. The user can choose the stage to

manipulate based on the type of edit desired. Edits at the i-th stage can be
performed by either manipulating the latent representation zi or directly mod-
ifying the image xG

i . For example, in Fig. 2(a), the user can choose to augment
the representation z1 to adjust the flat coloring. After editing, the generation
module generates the new artwork image at the final stage.

Fig. 3. Motivation of the AdaIN optimization and learning-based regular-
ization. The proposed AdaIN optimization and the learning-based regularization are
motivated by the observations that 1) using the computed transformation parameters
zAda in Fig. 2 cannot well reconstruct the original input image (red outline in 1-st row)),
and 2) the AdaIN optimization may degrade the quality of the editing results (yellow
outline in 2-nd row). (Color figure online)
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3.2 Optimization for Reconstruction

As illustrated in Sect. 3.1, the artwork generation module would ideally recon-
struct the input artwork image (i.e., x̂G

N = xN ) from the transformation param-
eters {zAda

i }N−1
i=1 before the user performs an edit. However, the reconstructed

image x̂G
N may be slightly different from the input image xN , as shown in the

first row of Fig. 3. Therefore, we adopt an AdaIN optimization algorithm to
optimize the transformation parameters {zAda

i }Ni=1 of the AdaIN normalization
layers in the artwork generation models. The goal of the AdaIN optimization
is to minimize the appearance distance between the reconstructed and input
image.

While this does improve the reconstruction of the input image, we observe
that the optimization procedure causes the generation module to memorize input
image details, which degrades the quality of some edited results, as shown in the
second row of Fig. 3. To mitigate this memorization, we propose a learning-based
regularization to improve the AdaIN optimization.

AdaIN Optimization. The AdaIN optimization approach aims to minimize the
appearance distance between the reconstructed image x̂G

N and the input artwork
image xN . There are many choices for what to optimize to improve reconstruc-
tion: we could optimize the parameters in the generation models or the extracted
representations {zi}Ni=1. Optimizing model parameters is inefficient because of
the large number of parameters to be updated. On the other hand, we find that
optimizing the extracted representation is ineffective, as validated in Sect. 4.3.
As a result, we choose to optimize the transformation parameters {zAda

i }Ni=1 of
the AdaIN normalization layers in the generation models, namely the AdaIN
optimization. Note that a recent study [1] also adopts a similar strategy.

We conduct the AdaIN optimization for each stage sequentially. The trans-
formation parameter at the early stage is optimized and then fixed for the opti-
mization at the later stages. Except for the last stage (i.e., i = N − 1) that uses
the input artwork image xN , the inferred image xI

i+1 by the inference model
serves as the reference image xref for the optimization. For each stage, we first
use the latent encoder EG

i to compute the transformation parameter zAda
i from

the reference image for generating the image. Since there are four AdaIN normal-
ization layers with c channels in each artwork generation model, the dimension
of the transformation parameter is 1 × 8c (a scale and a bias term for each
channel). Then we follow the standard gradient descent procedure to optimize
the transformation parameters with the goal of minimizing the loss function
LAda which measures the appearance distance between the synthesized image
x̂G
i by the generator GG

i and the reference image xref . The loss function LAda is
a combination of the pixel-wise �1 loss and VGG-16 perceptual loss [21], namely

LAda(x̂G
i , xref) = ‖x̂G

i − xref‖1 + λpLp(x̂G
i , xref), (6)

where λp is the importance term. We summarize the AdaIN optimization in Algo-
rithm 1. Note that in practice, we optimize the incremental term δAda

i for the
transformation parameter zAda

i , instead of updating the parameter itself.
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Fig. 4. Training process for learning-based regularization. For the i-th stage
(i = 2 in this example), we optimize the hyper-parameter wi for the weight decay
regularization (orange text) by involving the AdaIN optimization in the training pro-
cess: after the incremental term δAda

i is updated via one step of AdaIN optimization
and the weight decay regularization (blue arrow), the generation model should achieve
improved reconstruction as well as maintain the quality of the editing result (green
block). Therefore, we use the losses LAda, LGAN computed from the updated parame-
ter δ̃Ada

i to optimize the hyper-parameter wi (red arrow). (Color figure online)

Learning-Based Regularization. Although the AdaIN optimization scheme
addresses the reconstruction problem, it often degrades the quality of editing
operations, as shown in the second row of Fig. 3. This is because the AdaIN
optimization causes overfitting (memorization of the reference image xref). The
incremental term δAda

i for the transformation parameter zAda
i is updated to

extreme values to achieve better reconstruction, so the generator becomes sen-
sitive to the change (i.e., editing) on the input image and produces unrealistic
results.

To address the overfitting problem, we use weight decay regularization [24]
to constrain the magnitude of the incremental term δAda

i , as shown in Line 6
in Algorithm 1. However, it is difficult to find a general hyper-parameter setting
wi ∈ R1×8c for different generation stages of various artistic workflows. There-
fore, we propose a learning algorithm to optimize the hyper-parameter wi. The
core idea is that updating the incremental term δAda

i with the regularization
wiδ

Ada
i should 1) improve the reconstruction and 2) maintain the realism of

edits on an input image. We illustrate the proposed algorithm in Fig. 4. In each
iteration of training at the i-th stage, we sample an image pair (xi, xi+1) and an
additional input image x′

i from the training dataset. The image x′
i serves as the

edited image of xi. We first use the latent encoder EG
i to extract the transfor-

mation parameter zAda
i from the next-stage image xi+1. As shown in the grey

block of Fig. 4, we then update the incremental term from δAda
i to δ̃Ada

i via one
step of the AdaIN optimization and the weight decay regularization. With the
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Algorithm 1: AdaIN optimization at i-th stage
1 Require: reference image xref = xN or xref = x̂I

i+1, input image x̂G
i , learning

rate α, iterations T , regularization parameter wi

2 zAda
i = EG

i (xref), δAda
i = 0 ∈ R1×8c

3 while t = {1, . . . , T} do

4 x̂G
i+1 = GG

i (x̂G
i , zAda

i + δAda
i )

5 LAda = ‖x̂G
i+1 − xref‖1 + λpLp(x̂G

i+1, x
ref)

6 δAda
i = δAda

i − α
(
�δAda

i
LAda + wiδ

Ada
i

)

7 end

8 Return: zAda
i + δAda

i

updated incremental term δ̃Ada
i , we use the loss function LAda to measure the

reconstruction quality, and use the GAN loss to evaluate the realism of editing
results, namely

LL2R = LAda(GG
i (xi, z

Ada
i + δ̃Ada

i ), xi+1)

+ λGANLGAN(GG
i (x′

i, z
Ada
i + δ̃Ada

i )).
(7)

Finally, since the loss LL2R indicates the efficacy of the weight decay regulariza-
tion, we optimize the hyper-parameter wi by

wi = wi − η �wi
LL2R, (8)

where η is the learning rate of the training algorithm for the proposed learning-
based regularization.

4 Experimental Results

4.1 Datasets

To evaluate our framework, we manually process face drawing, anime drawing,
and chair design datasets. We describe details in the supplementary material.

4.2 Qualitative Evaluation

Generation. We present the generation results at all stages in Fig. 5. In this
experiment, we use the testing images at the first stage as inputs, and randomly
sample various latent representation z ∈ {zi}N−1

i=1 at each stage of the proposed
artwork generation module. The generation module sequentially synthesizes the
final result via multiple stages. It successfully generates variations by sampling
different random latent codes at different stages. For example, when generating
anime drawings, manipulating the latent code at the final stage produces detailed
color variations, such as modifying the saturation or adding the highlights to the
hair regions.
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Editing. Figure 6 shows the results of editing the artwork images at different
stages. Specifically, after the AdaIN optimization reconstructs the testing image
at the final stage (first row), we re-sample the representations z ∈ {zi}N−1

i=1 at
various stages. Our framework is capable of synthesizing the final artwork such
that its appearance only changes with respect to the stage with re-sampled latent
code. For example, for editing face drawings, re-sampling representations at the
flat coloring stage only affects hair color, while maintaining the haircut style and
details.

To evaluate the interactivity of our system, we also asked professional artists
to edit some example sketches (Fig. 7). First, we use the proposed framework to
infer the initial sketch from the input artwork image. Given the artwork image
and the corresponding sketch, we asked an artist to modify the sketch manually.
For the edited sketch (second row), we highlight the edits with the red outlines.
This experiment confirms that the proposed framework enables the artists to
adjust only some stages of the workflow, controlling only desired aspects of the
final synthesized image. Additional artistic edits are shown in Fig. 1.

Fig. 5. Results of image generation from the first stage. We use the first-stage
testing images as input and randomly sample the latent representations to generate
the image at the final stage.

Fig. 6. Re-sampling latent representation at each stage. After we use the AdaIN
optimization process to reconstruct the input image (1st row), we edit the reconstructed
image by re-sampling the latent representations at various stages.
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Fig. 7. Results of artistic editing. Given an input artwork image, we ask the artist
to edit the inferred sketch image. The synthesis model then produces the corresponding
edited artwork. The first row shows the input artwork and inferred images, and the red
outlines indicate the edited regions. (Color figure online)

AdaIN Optimization and Learning-Based Regularization. Figure 8
presents the results of the AdaIN optimization and the proposed learning-
based regularization. As shown in the first row, optimizing representations z
fails to refine the reconstructed images due to the limited capacity of the low-
dimensional latent representation. In contrast, the AdaIN optimization scheme
minimizes the perceptual difference between the input and reconstructed images.
We also demonstrate how the optimization process influences the editing results
in the second row. Although the AdaIN optimization resolves the reconstruc-
tion problem, it leads to overfitting and results in unrealistic editing results
synthesized by the generation model. By utilizing the proposed learning-based
regularization, we address the overfitting problem and improve the quality of the
edited images.

4.3 Quantitative Evaluation

Evaluation Metrics. We use the following evaluation metrics:

– Reconstruction error: Given the input artwork xN and the reconstructed
image x̂G

N , we use the �1 distance ‖x̂G
N − xN‖ to evaluate the reconstruction

quality.
– FID: We use the FID [14] score to measure the realism of generated images

x̂G
N . A smaller FID score indicates better visual quality.
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Fig. 8. Results of different optimization approaches. We show both the recon-
struction and editing results of various optimization approaches at the final stage for
the face drawing dataset.

Table 1. Quantitative results of reconstruction. We use the �1 pixel-wise dis-
tance (↓) and the FID (↓) score to evaluate the reconstruction ability. w and LR
indicates the hyper-parameter for the weight regularization and applying the learned
regularization, respectively.

Optimization w Face Anime Chair

�1 FID �1 FID �1 FID

None – 0.094 39.78 0.127 36.73 0.074 129.2

z 0 0.104 40.70 0.126 45.66 0.068 107.0

AdaIN 0 0.040 34.61 0.042 26.56 0.009 46.48

AdaIN 10−3 0.043 35.78 0.056 29.14 0.019 53.08

AdaIN 10−2 0.053 39.19 0.097 46.31 0.049 83.58

AdaIN LR 0.045 33.28 0.070 34.16 0.018 49.44

Reconstruction. As shown in Sect. 3.2, we conduct the AdaIN optimization
for each stage sequentially to reconstruct the testing image at the final stage.
We use both the reconstruction error and FID score to evaluate several baseline
methods and the AdaIN optimization, and show the results in Table 1. Results on
the 2-nd and 3-rd rows demonstrate that the AdaIN optimization is more effec-
tive than optimizing the latent representations {zi}N−1

i=1 . On the other hand,
applying stronger weight decay regularization (i.e., wi = 10−2) diminishes the
reconstruction ability of the AdaIN optimization. By applying the weight decay
regularization with learned hyper-parameter w (i.e., LR), we achieve comparable
reconstruction performance in comparison to the optimization without regular-
ization.

Editing. In this experiment, we investigate how various optimization methods
influence the quality of edited images. For each testing final-stage image, we first
use different optimization approaches to refine the reconstructed images. We then
conduct the editing by re-sampling the latent representation zi at a randomly
chosen stage. We adopt the FID score to measure the quality of the edited images
and show the results in Table 2. As described in Sect. 3.2, applying the AdaIN
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optimization causes overfitting that degrades the quality of the edited images.
For instance, applying the AdaIN optimization increases the FID score from
38.68 to 44.28 on the face drawing dataset. One straightforward solution to alle-
viate this issue is to apply strong weight decay regularizations (i.e., w = 10−2).
However, according to the results in 5-th row of Table 1, such strong regulariza-
tions reduce the reconstruction effectiveness of the AdaIN optimization. Com-
bining the results in Table 1 and Table 2, we conclude that applying the regular-
ization with the learned hyper-parameter w not only mitigates overfitting but
also maintains the efficacy of the AdaIN optimization. We conduct more analysis
of the proposed learning-based regularization in the supplementary materials.

4.4 Limitations

The proposed framework has several limitations (see supplemental material for
visual examples). First, since the model learns the multi-stage generation from
a training dataset, it fails to produce appealing results if the style of the input
image is significantly different from images in the training set. Second, the uni-
modal inference assumption may not be correct. In practice, the mapping from
later stages to previous ones can also be multi-modal. For instance, the style of
the pencil sketches by various artists may be different. Finally, artists may not
follow a well-staged workflow to create artwork in practice. However, our main
goal is to provide an example workflow to make the artwork creation and editing
more feasible, especially for the users who may not be experts in that type of
artwork.

Table 2. Quantitative results of editing. We use the FID (↓) score to evaluate
the quality of the edited images x̂G

N synthesized by the proposed framework. w and LR
indicates the hyper-parameter for the weight regularization and applying the learned
regularization, respectively.

Optimization w Face Anime Chair

None – 38.68 ± 0.44 35.59 ± 0.12 128.4 ± 1.50

AdaIN 0 44.28 ± 0.45 37.40 ± 0.36 97.90 ± 1.20

AdaIN 10−3 41.75 ± 0.49 38.95 ± 0.59 91.68 ± 4.23

AdaIN 10−2 38.57 ± 0.94 38.07 ± 0.54 99.36 ± 7.23

AdaIN LR 39.40 ± 0.21 35.73 ± 0.26 95.25 ± 0.73

5 Conclusions

In this work, we introduce an image generation and editing framework that mod-
els the creation stages of an artistic workflow. We also propose a learning-based
regularization for the AdaIN optimization to address the reconstruction problem
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for enabling non-destructive artwork editing. Qualitative results on three differ-
ent datasets show that the proposed framework 1) generates appealing artwork
images via multiple creation stages and 2) synthesizes the editing results made
by the artists. Furthermore, the quantitative results validate the effectiveness of
the AdaIN optimization and the learning-based regularization.

We believe there are many exciting areas for future research in this direction
that could make creating high-quality artwork both more accessible and faster.
We would like to study video sequences of artists as they create artwork to
automatically learn meaningful workflow stages that better align with the artistic
process. This could further enable the design of editing tools that more closely
align with the operations artists currently perform to iterate on their designs.

Acknowledgements. This work is supported in part by the NSF CAREER Grant
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