
Meta-Sim2: Unsupervised Learning
of Scene Structure for Synthetic

Data Generation

Jeevan Devaranjan1,3, Amlan Kar1,2,4(B), and Sanja Fidler1,2,4

1 NVIDIA, Waterloo, Canada
amlan@cs.toronto.edu

2 University of Toronto, Toronto, Canada
3 University of Waterloo, Waterloo, Canada

4 Vector Institute, Toronto, Canada

Abstract. Procedural models are being widely used to synthesize scenes
for graphics, gaming, and to create (labeled) synthetic datasets for ML.
In order to produce realistic and diverse scenes, a number of parameters
governing the procedural models have to be carefully tuned by experts.
These parameters control both the structure of scenes being generated
(e.g. how many cars in the scene), as well as parameters which place
objects in valid configurations. Meta-Sim aimed at automatically tuning
parameters given a target collection of real images in an unsupervised
way. In Meta-Sim2, we aim to learn the scene structure in addition to
parameters, which is a challenging problem due to its discrete nature.
Meta-Sim2 proceeds by learning to sequentially sample rule expansions
from a given probabilistic scene grammar. Due to the discrete nature
of the problem, we use Reinforcement Learning to train our model, and
design a feature space divergence between our synthesized and target
images that is key to successful training. Experiments on a real driving
dataset show that, without any supervision, we can successfully learn
to generate data that captures discrete structural statistics of objects,
such as their frequency, in real images. We also show that this leads
to downstream improvement in the performance of an object detector
trained on our generated dataset as opposed to other baseline simulation
methods. Project page: https://nv-tlabs.github.io/meta-sim-structure/.

1 Introduction

Synthetic datasets are creating an appealing opportunity for training machine
learning models e.g. for perception and planning in driving [18,53,55], indoor

J. Devaranjan and A. Kar—Contributed equally, work done during JD’s internship at
NVIDIA.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-58520-4 42) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. Vedaldi et al. (Eds.): ECCV 2020, LNCS 12362, pp. 715–733, 2020.
https://doi.org/10.1007/978-3-030-58520-4_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58520-4_42&domain=pdf
https://nv-tlabs.github.io/meta-sim-structure/
https://doi.org/10.1007/978-3-030-58520-4_42
https://doi.org/10.1007/978-3-030-58520-4_42
https://doi.org/10.1007/978-3-030-58520-4_42

716 J. Devaranjan et al.

Fig. 1. We present a method that learns to generate synthetic scenes from real imagery
in an unsupervised fashion. It does so by learning a generative model of scene struc-
ture, samples from which (with additional scene parameters) can be rendered to create
synthetic images and labels.

scene perception [46,57], and robotic control [61]. Via graphics engines, synthetic
datasets come with perfect ground-truth for tasks in which labels are expensive
or even impossible to obtain, such as segmentation, depth or material informa-
tion. Adding a new type of label to synthetic datasets is as simple as calling a
renderer, rather than embarking on a time consuming annotation endeavor that
requires new tooling and hiring, training and overseeing annotators.

Creating synthetic datasets comes with its own hurdles. While content, such
as 3D CAD models that make up a scene are available on online asset stores,
artists write complex procedural models that synthesize scenes by placing these
assets in realistic layouts. This often requires browsing through massive amounts
of real imagery to carefully tune a procedural model – a time consuming task.
For scenarios such as street scenes, creating synthetic scenes relevant for one city
may require tuning a procedural model made for another city from scratch. In
this paper, we propose an automatic method to carry out this task (Fig. 1).

Recently, Meta-Sim [30] proposed to optimize scene parameters in a synthet-
ically generated scene by exploiting the visual similarity of (rendered) generated
synthetic data with real data. They represent scene structure and parameters
in a scene graph, and generate data by sampling a random scene structure (and
parameters) from a given probabilistic grammar of scenes, and then modifying
the scene parameters using a learnt model. Since they only learn scene param-
eters, a sim-to-real gap in the scene structure remains. For example, one would
likely find more cars, people and buildings in Manhattan over a quaint village
in Italy. Other work on generative models of structural data such as graphs and
grammar strings [12,17,37,42] require large amounts of ground truth data for
training to generate realistic samples. However, scene structures are extremely
cumbersome to annotate and thus not available in most real datasets.

Meta-Sim2: Learning to Generate Synthetic Scene Structures 717

In this paper, we propose a procedural generative model of synthetic scenes
that is learned unsupervised from real imagery. We generate scene graphs object-
by-object by learning to sample rule expansions from a given probabilistic scene
grammar and generate scene parameters using [30]. Learning without supervision
here is a challenging problem due to the discrete nature of the scene structures
we aim to generate and the presence of a non-differentiable renderer in the
generative process. To this end, we propose a feature space divergence to compare
(rendered) generated scenes with real scenes, which can be computed per scene
and is key to allowing credit assignment for training with reinforcement learning.

We evaluate our method on two synthetic datasets and a real driving dataset
and find that our approach significantly reduces the distribution gap between
scene structures in our generated and target data, improving over human priors
on scene structure by learning to closely align with target structure distribu-
tions. On the real driving dataset, starting from minimal human priors, we show
that we can almost exactly recover the structural distribution in the real target
scenes (measured using GT annotations available for cars) – an exciting result
given that the model is trained without any labels. We show that an object
detector trained on our generated data outperforms those trained on data gen-
erated with human priors or by [30], and show improvements in distribution
similarity measures of our generated rendered images with real data.

2 Related Work

2.1 Synthetic Content Creation

Synthetic content creation has been receiving significant interest as a promising
alternative to dataset collection and annotation. Various works have proposed
generating synthetic data for tasks such as perception and planning in driv-
ing [2,14,18,48,53,55,68], indoor scene perception [4,24,46,57,59,70,75], game
playing [6,28], robotic control [6,56,61,63], optical flow estimation [7,58], home
robotics [20,34,49] amongst many others, utilizing procedural modeling, existing
simulators or human generated scenarios.

Learnt Scene Generation brings a data-driven nature to scene genera-
tion. [64,74] propose learning hierarchical spatial priors between furniture, that
is integrated into a hand-crafted cost used to generate optimized indoor scene
layouts. [50] similarly learn to synthesize indoor scenes using a probabilistic scene
grammar and human-centric learning by leveraging affordances. [64] learn to gen-
erate intermediate object relationship graphs and instantiate scenes conditioned
on them. [76] use a scene graph representation and learn adding objects into
existing scenes. [40,54,65] propose methods for learning deep priors from data
for indoor scene synthesis. [16] introduce a generative model that sequentially
adds objects into scenes, while [29] propose a generative model for object layouts
in 2D given a label set. [60] generate batches of data using a neural network that
is used to train a task model, and learn by differentiating through the learning
process of the task model. [30] propose learning to generate scenes by modifying
the parameters of objects in scenes that are sampled from a probabilistic scene

718 J. Devaranjan et al.

Fig. 2. Example scene graph (structure and parameters) and depiction of its rendering

grammar. We argue that this ignores learning structural aspects of the scene,
which we focus on in our work. Similar to [16,30], and contrary to other works,
we learn this in an unsupervised manner i.e. given only target images as input.
Learning with Simulators: Methods in Approximate Bayesian Inference have
looked into inferring the parameters of a simulator that generate a particular
data point [35,45]. [11] provide a great overview of advances in simulator based
inference. Instead of running inference per scene [35,69], we aim to generate new
data that resembles a target distribution. [44] learn to optimize non-differentiable
simulators using a variational upper bound of a GAN-like objective. [8] learn to
optimize simulator parameters for robotic control tasks by directly comparing
trajectories between a real and a simulated robot. [19,47] train an agent to paint
images using brush strokes in an adversarial setting with Reinforcement Learn-
ing. We learn to generate discrete scene structures constrained to a grammar,
while optimizing a distribution matching objective (with Reinforcement Learn-
ing) instead of training adversarially. Compared to [47], we generate large and
complex scenes, as opposed to images of single objects or faces.

2.2 Graph Generation

Generative models of graphs and trees [3,10,17,42,43,73] generally produce
graphs with richer structure with more flexibility over grammar based models,
but often fail to produce syntactically correct graphs for cases with a defined
syntax such as programs and scene graphs. Grammar based methods have
been used for a variety of tasks such as program translation [9], conditional
program generation [71,72], grammar induction [32] and generative modelling
on structures with syntax [12,37], such as molecules. These methods, however,
assume access to ground-truth graph structures for learning. We take inspiration
from these methods, but show how to learn our model unsupervised i.e. without
any ground truth scene graph annotations.

Meta-Sim2: Learning to Generate Synthetic Scene Structures 719

3 Methodology

We aim to learn a generative model of synthetic scenes. In particular, given a
dataset of real imagery XR, the problem is to create synthetic data D(θ) =
(X(θ), Y (θ)) of images X(θ) and labels Y (θ) that is representative of XR, where
θ represents the parameters of the generative model. We exploit advances in
graphics engines and rendering, by stipulating that the synthetic data D is
the output of creating an abstract scene representation and rendering it with
a graphics engine. Rendering ensures that low level pixel information in X(θ)
(and its corresponding annotation Y (θ)) does not need to be modelled, which
has been the focus of recent research in generative modeling of images [31,51].
Ensuring the semantic validity of sampled scenes requires imposing constraints
on their structure. Scene grammars use a set of rules to greatly reduce the space
of scenes that can be sampled, making learning a more structured and tractable
problem. For example, it could explicitly enforce that a car can only be on a road
which then need not be implicitly learned, thus leading us to use probabilistic
scene grammars. Meta-Sim [30] sampled scene graph structures (see Fig. 2) from
a prior imposed on a Probabilistic Context-Free Grammar (PCFG), which we
call the structure prior. They sampled parameters for every node in the scene
graph from a parameter prior and learned to predict new parameters for each
node, keeping the structure intact. Their generated scenes therefore come from
a structure prior (which is context-free) and the learnt parameter distribution,
resulting in an untackled sim-to-real gap in the scene structures. In our work,
we aim to alleviate this by learning a context-dependent structure distribution
unsupervised of synthetic scenes from images.

We utilize scene graphs as our abstract scene representation, that are ren-
dered into a corresponding image with labels (Sect. 3.1). Our generative model
sequentially samples expansion rules from a given probabilistic scene grammar
(Sect. 3.2) to generate a scene graph which is rendered. We train the model unsu-
pervised and with reinforcement learning, using a feature-matching based distri-
bution divergence specifically designed to be amenable to our setting (Sect. 3.3).

3.1 Representing Synthetic Scenes

In Computer Graphics and Vision, Scene Graphs are commonly used to
describe scenes in a concise hierarchical manner, where each node describes an
object in the scene along with its parameters such as the 3D asset, pose etc.
Parent-child relationships define the child’s parameters relative to its parent,
enabling easy scene editing and manipulation. Additionally, camera, lighting,
weather etc. are also encoded into the scene graph. Generating corresponding
pixels and annotations amounts to placing objects into the scene in a graphics
engine and rendering with the defined parameters (see Fig. 2).

Notation: A context-free grammar G is defined as a list of symbols (terminal
and non-terminal) and expansion rules. Non-terminal symbols have at least one
expansion rule into a new set of symbols. Sampling from a grammar involves

720 J. Devaranjan et al.

Fig. 3. Representation of our generative process for a scene graph. The logits and
mask are of shape Tmax × K. Green represents a higher value and red is lower. At
every time step, we autoregressively sample a rule and predict the logits for the next
rule conditioned on the sample (capturing context dependencies). The figure on the
right shows how sampled rules from the grammar are converted into a graph structure
(only objects that are renderable are kept from the full grammar string). Parameters
for every node can be sampled from a prior or optionally learnt with the method of [30].
A generated scene graph can be rendered as shown in Fig. 2. (Color figure online)

expanding a start symbol till only non-terminal symbols remain. We denote
the total number of expansion rules in a grammar G as K. We define scene
grammars and represent strings sampled from the grammar as scene graphs
following [30,48] (see Fig. 3). For each scene graph, a structure T is sampled
from the grammar G followed by sampling corresponding parameters α for every
node in the graph.

3.2 Generative Model

We take inspiration from previous work on learning generative models of graphs
that are constrained by a grammar [37] for our architecture. Specifically, we map
a latent vector z to unnormalized probabilities over all possible grammar rules
in an autoregressive manner, using a recurrent neural network till a maximum
of Tmax steps. Deviating from [37], we sample one rule rt at every time step
and use it to predict the logits for the next rule ft+1. This allows our model to
capture context-dependent relationships easily, as opposed to the context-free
nature of scene graphs in [30]. Given a list of at most Tmax sampled rules, the
corresponding scene graph is generated by treating each rule expansion as a node
expansion in the graph (see Fig. 3).

Sampling Correct Rules: To ensure the validity of sampled rules in each time
step t, we follow [37] and maintain a last-in-first-out (LIFO) stack of unexpanded
non-terminal nodes. Nodes are popped from the stack, expanded according to the
sampled rule-expansion, and the resulting new non-terminal nodes are pushed to
the stack. When a non-terminal is popped, we create a mask mt of size K which
is 1 for valid rules from that non-terminal and 0 otherwise. Given the logits for
the next expansion ft, the probability of a rule rt,k is represented as,

Meta-Sim2: Learning to Generate Synthetic Scene Structures 721

p(rt = k|ft) =
mt,kexp(ft,k)

∑K
j=1 mt,jexp(ft,j)

Sampling from this masked multinomial distribution ensures that only valid rules
are sampled as rt. Given the logits and sampled rules, (ft, rt)∀t ∈ 1 . . . Tmax, the
probability of the corresponding scene structure T given z is simply,

qθ(T |z) =
Tmax∑

t=1

p(rt|ft)

Putting it together, images are generated by sampling a scene structure T ∼
qθ(·|z) from the model, followed by sampling parameters for every node in the
scene α ∼ q(·|T) and rendering an image v′ = R(T, α) ∼ qI . For some v′ ∼ qI ,
with parameters α and structure T , we assume1,

qI(v′|z) = q(α|T)qθ(T |z)

3.3 Training

Training such a generative model is commonly done using variational infer-
ence [33,52] or by optimizing a measure of distribution similarity [22,30,39,41].
Variational Inference allows using reconstruction based objectives by introduc-
ing an approximate learnt posterior. Our attempts at using variational inference
to train this model failed due to the complexity coming from discrete sampling
and having a renderer in the generative process. Moreover, the recognition net-
work here would amount to doing inverse graphics – an extremely challenging
problem [36] in itself. Hence, we optimize a measure of distribution similarity
of the generated and target data. We do not explore using a trained critic due
to the clear visual discrepancy between rendered and real images that a critic
can exploit. Moreover, adversarial training is known to be notoriously difficult
for discrete data. We note that recent work [19,47] has succeeded in adversar-
ial training of a generative model of discrete brush strokes with reinforcement
learning (RL), by carefully limiting the critic’s capacity. We similarly employ RL
to train our discrete generative model of scene graphs. While two sample tests,
such as MMD [23] have been used in previous work to estimate and minimize the
distance between two empirical distributions [15,30,39,41], training with MMD
and RL resulted in credit-assignment issues as it is a single score for the simi-
larity of two full sets(batches) of data. Instead, our metric can be computed for
every sample, which greatly helps training as shown empirically in Sect. 4.

Distribution Matching: We train the generative model to match the distri-
bution of features of the real data in the latent space of some feature extractor
ϕ. We define the real feature distribution pf s.t F ∼ pf ⇐⇒ F = ϕ(v)
for some v ∼ pI . Similarly we define the generated feature distribution qf s.t

1 This equality does not hold in general for rendering, but it worked well in practice.

722 J. Devaranjan et al.

F ∼ qf ⇐⇒ F = ϕ(v) for some v ∼ qI . We accomplish distribution match-
ing by approximately computing pf , qf from samples and minimizing the KL
divergence from pf to qf . Our training objective is

min
θ

KL(qf ||pf)

min
θ

EF∼qf [log qf (F) − log pf (F)]

Using the feature distribution definition above, we have the equivalent objective

min
θ

Ev∼qI [log qf (ϕ(v)) − log pf (ϕ(v))] (1)

The true underlying feature distributions qf and pf are usually intractable to
compute. We use approximations q̃f (F) and p̃f (F), computed using kernel den-
sity estimation (KDE). Let V = {v1, . . . , vl} and B = {v′

1, . . . , v
′
m} be a batch

of real and generated images. KDE with B, V to estimate qf , pf yield

q̃f (F) =
1
m

m∑

j=1

KH(F − ϕ(v′
j))

p̃f (F) =
1
l

l∑

j=1

KH(F − ϕ(vj))

where KH is the standard multivariate normal kernel with bandwidth matrix
H. We use H = dI where d is the dimensionality of the feature space.

Our generative model involves making a discrete (non-differentiable) choice
at each step, leading us to optimize our objective using reinforcement learning
techniques2. Specifically, using the REINFORCE [67] score function estimator
along with a moving average baseline, we approximate the gradients of Eq. 1 as

∇θL ≈ 1
M

m∑

j=1

(log q̃f (ϕ(v′
j)) − log p̃f (ϕ(v′

j)))∇θ log qI(v′
j) (2)

where M is the batch size, q̃f (F) and p̃f (F) are density estimates defined above.
Notice that the gradient above requires computing the marginal probability

qI(v′) of a generated image v′, instead of the conditional qI(v′|z). Comput-
ing the marginal probability of a generated image requires an intractable
marginalization over the latent variable z. To circumvent this, we use a fixed
finite number of latent vectors from a set Z sampled uniformly, enabling easy
marginalization. This translates to,

qθ(T) =
1

|Z|
∑

z∈Z

qθ(T |z)

qI(v′) = q(α|T)qθ(T)

2 We did not explore sampling from a continuous relaxation of the discrete variable
here.

Meta-Sim2: Learning to Generate Synthetic Scene Structures 723

We find that this still has enough modeling capacity, since there are only finitely
many scene graphs of a maximum length Tmax that can be sampled from the
grammar. Empirically, we find using one latent vector to be enough in our exper-
iments. Essentially, stochasticity in the rule sampling makes up for lost stochas-
ticity in the latent space.

Pretraining is an essential step for our method. In every experiment, we
define a simple handcrafted prior on scene structure. For example, a simple prior
could be to put one car on one road in a driving scene. We pre-train the model
by sampling strings (scene graphs) from the grammar prior, and training the
model to maximize the log-likelihood of these scene graphs. We provide specific
details about the priors used in Sect. 4.

Feature Extraction for distribution matching is a crucial step since the fea-
tures need to capture structural scene information such as the number of objects
and their contextual spatial relationships for effective training. We describe the
feature extractor used and its training for each experiment in Sect. 4.

Ensuring Termination: During training, sampling can result in incomplete
strings generated with at most Tmax steps. Thus, we repeatedly sample a scene
graph T until its length is at most Tmax. To ensure that we do not require too
many attempts, we record the rejection rate rreject(F) of a sampled feature F as
the average failed sampling attempts when sampling the single scene graph used
to generate F . We set a threshold ε on rreject(F) (representing the maximum
allowable rejections) and weight λ and add it to our original loss as,

L′ = EF∼qF [log qf (F) − log pf (F) + λ1(ε,∞)(rreject(F))]

We found that λ = 10−2 and ε = 1 worked well for all of our experiments.

4 Experiments

We show two controlled experiments, on the MNIST dataset [38] (Sect. 4.1) and
on synthetic aerial imagery [30] (Sect. 4.2), where we showcase the ability of our
model to learn synthetic structure distributions unsupervised. Finally, we show
an experiment on generating 3D driving scenes (Sect. 4.3), mimicking structure
distributions on the KITTI [21] driving dataset and showing the performance
of an object detector trained on our generated data. The renderers used in each
experiment are adapted from [30]. For each experiment, we first discuss the
corresponding scene grammar. Then, we discuss the feature extractor and its
training. Finally, we describe the structure prior used to pre-train the model,
the target data, and show results on learning to mimic structures in the target
data without any access to ground-truth structures. Additionally, we show com-
parisons with learning with MMD [23] (Sect. 4.1) and show how our model can
learn to generate context-dependent scene graphs from the grammar (Sect. 4.2).

724 J. Devaranjan et al.

Fig. 4. Prior (Left) and Validation
(Right) example for MultiMNIST
experiments

Fig. 5. Prior (Left) and Validation
(Right) example for Aerial 2D exper-
iments

Fig. 6. Distributions of classes and
number of digits, in the prior, learned
and target scene structures

Fig. 7. Distributions of classes and
number of digits, comparing learning
with MMD, ours and the target

4.1 Multi MNIST

We first evaluate our approach on a toy example of learning to generate scenes
with multiple digits. The grammar defining the scene structure is:

Scene → bg Digits, Digits → Digit Digits | ε, Digit → 0 | 1 | 2 | · · · | 9

Sampled digits are placed onto a black canvas of size 256 × 256.

Feature Extraction Network: We train a network to determine the binary
presence of a digit class in the scene. We use a Resnet [26] made up of three
residual blocks each containing two 3 × 3 convolutional layers to produce an
image embedding and three fully connected layers from the image embedding
to make the prediction. We use the Resnet embeddings as our image features.
We train the network on synthetic data generated by our simple prior for both
structure and continuous parameters. Training is done with a simple binary
cross-entropy criterion for each class. The exact prior and target data used is
explained below.

Prior and Target Data: We sample the number of digits in the scene nd

uniformly from 0 to 10, and sample nd digits uniformly to place on the scene.
The digits are placed (parameters) uniformly on the canvas. The target data
has digits upright in a straight line in the middle of the canvas. Figure 4 shows
example prior samples, and target data. We show we can learn scene structures
with a gap remaining in the parameters by using the parameter prior during
training.

Meta-Sim2: Learning to Generate Synthetic Scene Structures 725

Fig. 8. #cars distribution learned in the Aerial 2D experiment. We can learn context
dependent relationships, placing different number of cars on different roads

We attempt learning a random distribution of number of digits with
random classes in the scene. Figure 6 shows the prior, target and learnt distribu-
tion of the number of digits and their class distribution. We see that our model
can faithfully approximate the target, even while learning it unsupervised. We
also train with MMD [23], computed using two batches of real and generated
images and used as the reward for every generated scene. Figure 7 shows that
using MMD results in the model learning a smoothed approximation of the tar-
get distribution, which comes from the lack of credit assignment in the score,
that we get with our objective.

4.2 Aerial 2D

Next, we evaluate our approach on a harder synthetic scenario of aerial views
of driving scenes. The grammar and the corresponding rendered scenes offer
additional complexity to test the model. The grammar here is as follows:

Scene → Roads, Roads → Road Roads | ε

Road → Cars, Cars → car Cars | ε

Feature Extraction Network: We use the same Resnet [26] architecture from
the MNIST experiment with the FC layers outputting the number of cars, roads,
houses and trees in the scene as 1-hot labels. We train by minimizing the cross
entropies these labels, trained on samples generated from the prior.

Prior: We sample the number of roads nr ∈ [0, 4] uniformly. On each road, we
sample c ∈ [0, 8] cars uniformly. Roads are placed sequentially by sampling a
random distance d and placing the road d pixels in front of the previous one.
Cars are placed on the road with uniform random position and rotation (Fig. 5).

Learning Context-Dependent Relationships: For the target dataset, we
sample the number of roads nr ∈ [0, 4] with probabilities (0.05, 0.15, 0.4, 0.4).
On the first road we sample n1 ∼ Poisson(9) cars and ni ∼ Poisson(3) cars for
each of the remaining roads. All cars are placed well spaced on their respective
road. Unlike the Multi-MNIST experiment, these structures cannot be modelled
by a Probabilistic-CFG, and thus by [30,37]. We see that our model can learn
this context-dependent distribution faithfully as well in Fig. 8.

726 J. Devaranjan et al.

4.3 3D Driving Scenes

We experiment on the KITTI [21] dataset, which was captured with a camera
mounted on top of a car driving around the city of Karlsruhe, Germany. The
dataset contains a wide variety of road scenes, ranging from urban traffic sce-
narios to highways and more rural neighborhoods. We utilize the same grammar
and renderer used for road scenes in [30]. Our model, although trained unsuper-
vised, can learn to get closer to the underlying structure distribution, improve
measures of image generation, and the performance of a downstream task model
(Fig. 9).

Fig. 9. Generated images (good prior expt.). (Left) Using both the structure and
parameter prior, (Middle) Using our learnt structure and parameters from [30], (Right)
Real KITTI samples. Our model (middle), although unsupervised, adds diverse scene
elements like vegetation, pedestrians, signs etc. to better resemble the real dataset.

Fig. 10. #cars/scene learned from a simple prior (left) and good prior (right) on KITTI

Prior and Training: Following SDR [48], we define three different priors to
capture three different modes in the KITTI dataset. They are the ‘Rural’, ‘Sub-
urban’ and ‘Urban’ scenarios, as defined in [48]. We train three different versions
of our model, one for each of the structural priors, and sample from each of them
uniformly. We use the scene parameter prior and learnt scene parameter model

Meta-Sim2: Learning to Generate Synthetic Scene Structures 727

Fig. 11. Generated images (simple prior expt.). (Left) Using both the structure and
parameter prior, (Middle) Using our learnt structure and parameters from [30], (Right)
Real samples from KITTI. Our model, although trained unsupervised, learns to add an
appropriate frequency and diversity of scene elements to resemble the real data, even
when trained from a very weak prior.

from [30] to produce parameters for our generated scene structures to get the
final scene graphs, which are rendered and used for our distribution matching.

Feature Extraction Network: We use the pool-3 layer of an Inception-V3
network, pre-trained on the ImageNet [13] dataset as our feature extractor. Inter-
estingly, we found this to work as well as using features from Mask-RCNN [25]
trained on driving scenes.

Distribution Similarity Metrics: In generative modeling of images, the
Frechet Inception Distance [27], and the Kernel Inception Distance [5] have been
used to measure progress. We report FID and KID in Table 1 and 2 between our
generated synthetic dataset and the KITTI-train set. We do so by generating
10K synthetic samples and using the full KITTI-train set, computed using the
pool-3 features of an Inception-v3 network. Figure 10 (left) shows the distri-
bution of the number of cars generated by the prior, learnt model and in the
KITTI dataset (since we have GT for cars). We do not have ground truth for
which KITTI scenes could be classified into rural/suburban/urban, so we com-
pare against the global distribution of the whole dataset. We notice that the
model bridges the gap between this particular distribution well after training.

Task Performance: We report average precision for detection at 0.5 IoU i.e.
AP@0.5 (following [30]) of an object detector trained to convergence on our
synthetic data and tested on the KITTI validation set. We use the detection
head from Mask-RCNN [25] with a Resnet-50-FPN backbone initialized with
pre-trained ImageNet weights as our object detector. The task network in each
result row of Table 1 is finetuned from the snapshot of the previous row. [30]
show results with adding Image-to-Image translation to the generated images to
reduce the appearance gap and results with training on a small amount of real

728 J. Devaranjan et al.

Table 1. AP@0.5 on KITTI-val and distribution similarity metrics between generated
synthetic data and KITTI-train. Learnt parameters are used from [30]. *Results from
[30] are our reproduced numbers, and we show learning the structure additionally helps
close the distribution gap and improves downstream task performance.

Method Structure Parameters Easy Medium Hard KID [5] FID [27]

Prob. grammar Prior Prior 63.7 63.7 62.2 0.066 106.6

Meta-Sim* [30] Prior Learnt 66.5 66.3 65.8 0.072 111.6

Ours Learnt Learnt 67.0 67.0 66.2 0.054 99.7

Table 2. Repeat of experiments in Table 1 with a *simple prior on the scene structure.
Parameters are learnt using [30]. We observe a significant boost in both task perfor-
mance and distribution similarity metrics, by learning the structure and parameters.

Method Structure Parameters Easy Medium Hard KID [5] FID [27]

Prob. grammar Prior* Prior 61.3 59.8 58.0 0.101 130.3

Ours Learnt Prior 63.2 62.5 61.2 0.059 100.0

Ours Learnt Learnt 65.2 64.7 63.4 0.060 101.7

data. We omit those experiments here and refer the reader to their paper for
a sketch of expected results in these settings. Training this model directly on
the full KITTI training set obtains AP@0.5 of 81.52(easy), 83.58(medium) and
84.48(hard), denoting a large sim-to-real performance gap left to bridge.

Using a Simple Prior: The priors on the structure in the previous experi-
ments were taken from [48]. These priors already involved some human inter-
vention, which we aim to minimize. Therefore, we repeat the experiments above
with a very simple and quick to create prior on the scene structure, where a few
instances of each kind of object (car, house etc.) is placed in the scene (see Fig. 11
(Left)). [30] requires a decently crafted structure prior to train the parameter
network. Thus, we use the prior parameters while training our structure genera-
tor in this experiment (showing the robustness of training with randomized prior
parameters), and learn the parameter network later (Table 2). Figure 10 (right)
shows that the method learned the distribution of the number of cars well (unsu-
pervised), even when initialized from a bad prior. Notice that the FID/KID of
the learnt model from the simple prior in Table 2 is comparable to that trained
from a tuned prior in Table 1, which we believe is an exciting result.

Discussion: We noticed that our method worked better when initialized with
more spread out priors than more localized priors (Table 1 and 2, Fig. 10) We
hypothesize this is due to the distribution matching metric we use being the
the reverse-KL divergence between the generated and real data (feature) dis-
tributions, which is mode-seeking instead of being mode-covering. Therefore,
an initialization with a narrow distribution around one of the modes has low
incentive to move away from it, hampering learning. Even then, we see a signif-

Meta-Sim2: Learning to Generate Synthetic Scene Structures 729

icant improvement in performance when starting from a peaky prior as shown
in Table 2. We also note the importance of pre-training the task network. Rows
in Table 1 and Table 2 were finetuned from the checkpoint of the previous row.
The first row (Prob. Grammar) is a form of Domain Randomization [48,62],
which has been shown to be crucial for sim-to-real adaptation. Our method, in
essence, reduces the randomization in the generated scenes (by learning to gener-
ate scenes similar to the target data), and we observe that progressively training
the task network with our (more specialized) generated data improves its perfor-
mance. [1,66] show the opposite behavior, where increasing randomization (or
environment difficulty) through task training results in improved performance.
A detailed analysis of this phenomenon is beyond the current scope and is left
for future work.

5 Conclusion

We introduced an approach to unsupervised learning of a generative model of
synthetic scene structures by optimizing for visual similarity to the real data.
Inferring scene structures is known to be notoriously hard even when annotations
are provided. Our method is able to perform the generative side of it without any
ground truth information. Experiments on two toy and one real dataset showcase
the ability of our model to learn a plausible posterior over scene structures,
significantly improving over manually designed priors. Our current method needs
to optimize for both the scene structure and parameters of a synthetic scene
generator in order to produce good results. This process has many moving parts
and is generally cumbersome to make work in a new application scenario. Doing
so, such as learning the grammar itself, requires further investigation, and opens
an exciting direction for future work.

References

1. Akkaya, I., et al.: Solving Rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113 (2019)

2. Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented
reality meets computer vision: efficient data generation for urban driving scenes.
Int. J. Comput. Vis. 126(9), 961–972 (2018)

3. Alvarez-Melis, D., Jaakkola, T.S.: Tree-structured decoding with doubly-recurrent
neural networks (2016)

4. Armeni, I., et al.: 3D scene graph: a structure for unified semantics, 3D space, and
camera. In: Proceedings of the IEEE International Conference on Computer Vision
(2019)

5. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD
GANs. In: ICLR (2018)

6. Brockman, G., et al.: OpenAI Gym. arXiv arXiv:1606.01540 (2016)
7. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie

for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33783-3 44

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-642-33783-3_44

730 J. Devaranjan et al.

8. Chebotar, Y., et al.: Closing the sim-to-real loop: Adapting simulation randomiza-
tion with real world experience. arXiv preprint arXiv:1810.05687 (2018)

9. Chen, X., Liu, C., Song, D.: Tree-to-tree neural networks for program transla-
tion. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31,
pp. 2547–2557. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7521-
tree-to-tree-neural-networks-for-program-translation.pdf

10. Chu, H., et al.: Neural turtle graphics for modeling city road layouts. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 4522–4530
(2019)

11. Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference.
arXiv preprint arXiv:1911.01429 (2019)

12. Dai, H., Tian, Y., Dai, B., Skiena, S., Song, L.: Syntax-directed variational autoen-
coder for structured data. arXiv preprint arXiv:1802.08786 (2018)

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

14. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: CORL, pp. 1–16 (2017)

15. Dziugaite, G.K., Roy, D.M., Ghahramani, Z.: Training generative neural networks
via maximum mean discrepancy optimization. In: UAI (2015)

16. Eslami, S.A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G.E.,
et al.: Attend, infer, repeat: fast scene understanding with generative models. In:
Advances in Neural Information Processing Systems, pp. 3225–3233 (2016)

17. Fan, S., Huang, B.: Labeled graph generative adversarial networks. CoRR
abs/1906.03220 (2019). http://arxiv.org/abs/1906.03220

18. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object
tracking analysis. In: CVPR (2016)

19. Ganin, Y., Kulkarni, T., Babuschkin, I., Eslami, S., Vinyals, O.: Synthesiz-
ing programs for images using reinforced adversarial learning. arXiv preprint
arXiv:1804.01118 (2018)

20. Gao, X., Gong, R., Shu, T., Xie, X., Wang, S., Zhu, S.: VRKitchen: an interactive
3D virtual environment for task-oriented learning. arXiv arXiv:1903.05757 (2019)

21. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: CVPR (2012)

22. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
23. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel

two-sample test. JMLR 13, 723–773 (2012)
24. Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Under-

standing real world indoor scenes with synthetic data. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4077–4085 (2016)

25. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

27. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs
trained by a two time-scale update rule converge to a local Nash equilibrium.
In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

28. Juliani, A., et al.: Unity: A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627 (2018)

http://arxiv.org/abs/1810.05687
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://arxiv.org/abs/1911.01429
http://arxiv.org/abs/1802.08786
http://arxiv.org/abs/1906.03220
http://arxiv.org/abs/1804.01118
http://arxiv.org/abs/1903.05757
https://arxiv.org/abs/1903.05757
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1809.02627

Meta-Sim2: Learning to Generate Synthetic Scene Structures 731

29. Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: LayoutVAE: stochastic scene
layout generation from a label set. In: The IEEE International Conference on
Computer Vision (ICCV) (October 2019)

30. Kar, A., et al.: Meta-Sim: learning to generate synthetic datasets. In: ICCV (2019)
31. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative

adversarial networks. arXiv preprint arXiv:1812.04948 (2018)
32. Kim, Y., Dyer, C., Rush, A.M.: Compound probabilistic context-free grammars

for grammar induction. CoRR abs/1906.10225 (2019). http://arxiv.org/abs/1906.
10225

33. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

34. Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A., Farhadi, A.: AI2-THOR:
An interactive 3D environment for visual AI. arXiv:1712.05474 (2017)

35. Kulkarni, T.D., Kohli, P., Tenenbaum, J.B., Mansinghka, V.: Picture: a proba-
bilistic programming language for scene perception. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4390–4399 (2015)

36. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional
inverse graphics network. In: NIPS, pp. 2539–2547 (2015)

37. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-
coder. In: Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, vol. 70, pp. 1945–1954. JMLR.org (2017). http://dl.acm.org/citation.
cfm?id=3305381.3305582

38. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/

39. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: MMD GAN: towards
deeper understanding of moment matching network. In: NIPS (2017)

40. Li, M., et al.: Grains: generative recursive autoencoders for indoor scenes. ACM
Trans. Graph. (TOG) 38(2), 12 (2019)

41. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: ICML
(2015)

42. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.: Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324 (2018)

43. Liao, R., et al.: Efficient graph generation with graph recurrent attention networks.
arXiv preprint arXiv:1910.00760 (2019)

44. Louppe, G., Cranmer, K.: Adversarial variational optimization of non-differentiable
simulators. arXiv preprint arXiv:1707.07113 (2017)

45. Mansinghka, V.K., Kulkarni, T.D., Perov, Y.N., Tenenbaum, J.: Approximate
Bayesian image interpretation using generative probabilistic graphics programs.
In: Advances in Neural Information Processing Systems, pp. 1520–1528 (2013)

46. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: SceneNet RGB-D: 5M
photorealistic images of synthetic indoor trajectories with ground truth. arXiv
preprint arXiv:1612.05079 (2016)

47. Mellor, J.F.J., et al.: Unsupervised doodling and painting with improved spiral
(2019)

48. Prakash, A., et al.: Structured domain randomization: Bridging the reality gap by
context-aware synthetic data. arXiv:1810.10093 (2018)

49. Puig, X., et al.: VirtualHome: simulating household activities via programs. In:
CVPR (2018)

50. Qi, S., Zhu, Y., Huang, S., Jiang, C., Zhu, S.C.: Human-centric indoor scene synthe-
sis using stochastic grammar. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5899–5908 (2018)

http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1906.10225
http://arxiv.org/abs/1906.10225
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1712.05474
http://dl.acm.org/citation.cfm?id=3305381.3305582
http://dl.acm.org/citation.cfm?id=3305381.3305582
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1803.03324
http://arxiv.org/abs/1910.00760
http://arxiv.org/abs/1707.07113
http://arxiv.org/abs/1612.05079
http://arxiv.org/abs/1810.10093

732 J. Devaranjan et al.

51. Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images
with VQ-VAE-2. arXiv preprint arXiv:1906.00446 (2019)

52. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082
(2014)

53. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth
from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 7

54. Ritchie, D., Wang, K., Lin, Y.A.: Fast and flexible indoor scene synthesis via deep
convolutional generative models. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2019)

55. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.: The SYNTHIA
dataset: a large collection of synthetic images for semantic segmentation of urban
scenes. In: CVPR (2016)

56. Sadeghi, F., Levine, S.: CAD2RL: Real single-image flight without a single real
image. arXiv preprint arXiv:1611.04201 (2016)

57. Savva, M., et al.: Habitat: A platform for embodied AI research. arXiv preprint
arXiv:1904.01201 (2019)

58. Shugrina, M., et al.: Creative flow+ dataset. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 5384–5393 (2019)

59. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene
completion from a single depth image. In: Proceedings of 30th IEEE Conference
on Computer Vision and Pattern Recognition (2017)

60. Such, F.P., Rawal, A., Lehman, J., Stanley, K.O., Clune, J.: Generative teaching
networks: Accelerating neural architecture search by learning to generate synthetic
training data. arXiv preprint arXiv:1912.07768 (2019)

61. Tassa, Y., et al.: DeepMind control suite. Technical report, DeepMind (January
2018). https://arxiv.org/abs/1801.00690

62. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: IROS (2017)

63. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control.
In: International Conference on Intelligent Robots and Systems (2012)

64. Wang, K., Lin, Y.A., Weissmann, B., Savva, M., Chang, A.X., Ritchie, D.: PlanIT:
planning and instantiating indoor scenes with relation graph and spatial prior
networks. ACM Trans. Graph. (TOG) 38(4), 132 (2019)

65. Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for
indoor scene synthesis. ACM Trans. Graph. (TOG) 37(4), 70 (2018)

66. Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Poet: open-ended coevolution of
environments and their optimized solutions. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 142–151 (2019)

67. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8, 229–256 (1992). https://doi.org/10.1007/
BF00992696

68. Wrenninge, M., Unger, J.: SynScapes: A photorealistic synthetic dataset for street
scene parsing. arXiv:1810.08705 (2018)

69. Wu, J., Tenenbaum, J.B., Kohli, P.: Neural scene de-rendering. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2017)

70. Wu, Y., Wu, Y., Gkioxari, G., Tiani, Y.: Building generalizable agents with a
realistic and rich 3D environment. arXiv arXiv:1801.02209 (2018)

http://arxiv.org/abs/1906.00446
http://arxiv.org/abs/1401.4082
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1007/978-3-319-46475-6_7
http://arxiv.org/abs/1611.04201
http://arxiv.org/abs/1904.01201
http://arxiv.org/abs/1912.07768
https://arxiv.org/abs/1801.00690
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1810.08705
http://arxiv.org/abs/1801.02209

Meta-Sim2: Learning to Generate Synthetic Scene Structures 733

71. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
CoRR abs/1704.01696 (2017). http://arxiv.org/abs/1704.01696

72. Yin, P., Zhou, C., He, J., Neubig, G.: StructVAE: Tree-structured latent vari-
able models for semi-supervised semantic parsing. CoRR abs/1806.07832 (2018).
http://arxiv.org/abs/1806.07832

73. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: GraphRNN: generating
realistic graphs with deep auto-regressive models. In: International Conference on
Machine Learning, pp. 5694–5703 (2018)

74. Yu, L.F., Yeung, S.K., Tang, C.K., Terzopoulos, D., Chan, T.F., Osher, S.: Make
it home: automatic optimization of furniture arrangement. ACM Trans. Graph.
30(4), 86 (2011)

75. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using
convolutional neural networks. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (July 2017)

76. Zhou, Y., While, Z., Kalogerakis, E.: SceneGraphNet: neural message passing for
3D indoor scene augmentation. In: The IEEE International Conference on Com-
puter Vision (ICCV) (October 2019)

http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1806.07832

	Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data Generation
	1 Introduction
	2 Related Work
	2.1 Synthetic Content Creation
	2.2 Graph Generation

	3 Methodology
	3.1 Representing Synthetic Scenes
	3.2 Generative Model
	3.3 Training

	4 Experiments
	4.1 Multi MNIST
	4.2 Aerial 2D
	4.3 3D Driving Scenes

	5 Conclusion
	References

