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Abstract. We introduce an approach for recovering the 6D pose of mul-
tiple known objects in a scene captured by a set of input images with
unknown camera viewpoints. First, we present a single-view single-object
6D pose estimation method, which we use to generate 6D object pose
hypotheses. Second, we develop a robust method for matching individ-
ual 6D object pose hypotheses across different input images in order
to jointly estimate camera viewpoints and 6D poses of all objects in
a single consistent scene. Our approach explicitly handles object sym-
metries, does not require depth measurements, is robust to missing or
incorrect object hypotheses, and automatically recovers the number of
objects in the scene. Third, we develop a method for global scene refine-
ment given multiple object hypotheses and their correspondences across
views. This is achieved by solving an object-level bundle adjustment prob-
lem that refines the poses of cameras and objects to minimize the repro-
jection error in all views. We demonstrate that the proposed method,
dubbed CosyPose, outperforms current state-of-the-art results for single-
view and multi-view 6D object pose estimation by a large margin on two
challenging benchmarks: the YCB-Video and T-LESS datasets. Code
and pre-trained models are available on the project webpage. (https://
www.di.ens.fr/willow/research/cosypose/.)

1 Introduction

The goal of this work is to estimate accurate 6D poses of multiple known objects
in a 3D scene captured by multiple cameras with unknown positions, as illus-
trated in Fig. 1. This is a challenging problem because of the texture-less nature
of many objects, the presence of multiple similar objects, the unknown number
and type of objects in the scene, and the unknown positions of cameras. Solving
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(a) Input: RGB images. (b) Output: full scene model including objects
and camera poses.

Fig. 1. CosyPose: 6D object pose estimation optimizing multi-view COnSis-
tencY. Given (a) a set of RGB images depicting a scene with known objects taken
from unknown viewpoints, our method accurately reconstructs the scene, (b) recov-
ering all objects in the scene, their 6D pose and the camera viewpoints. Objects are
enlarged for the purpose of visualization.

this problem would have, however, important applications in robotics where the
knowledge of accurate position and orientation of objects within the scene would
allow the robot to plan, navigate and interact with the environment.

Object pose estimation is one of the oldest computer vision problems [1–3],
yet it remains an active area of research [4–11]. The best performing methods
that operate on RGB (no depth) images [7,8,10–12] are based on trainable con-
volutional neural networks and are able to deal with symmetric or textureless
objects, which were challenging for earlier methods relying on local [3,13–16]
or global [17] gradient-based image features. However, most of these works con-
sider objects independently and estimate their poses using a single input (RGB)
image. Yet, in practice, scenes are composed of many objects and multiple images
of the scene are often available, e.g. obtained by a single moving camera, or in a
multi-camera set-up. In this work, we address these limitations and develop an
approach that combines information from multiple views and estimates jointly
the pose of multiple objects to obtain a single consistent scene interpretation.

While the idea of jointly estimating poses of multiple objects from multiple
views may seem simple, the following challenges need to be addressed. First,
object pose hypotheses made in individual images cannot easily be expressed
in a common reference frame when the relative transformations between the
cameras are unknown. This is often the case in practical scenarios where camera
calibration cannot easily be recovered using local feature registration because
the scene lacks texture or the baselines are large. Second, the single-view 6D
object pose hypotheses have gross errors in the form of false positive and missed
detections. Third, the candidate 6D object poses estimated from input images
are noisy as they suffer from depth ambiguities inherent to single view methods.
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In this work, we describe an approach that addresses these challenges. We
start from 6D object pose hypotheses that we estimate from each view using
a new render-and-compare approach inspired by DeepIM [10]. First, we match
individual object pose hypotheses across different views and use the resulting
object-level correspondences to recover the relative positions between the cam-
eras. Second, gross errors in object detection are addressed using a robust object-
level matching procedure based on RANSAC, optimizing the overall scene con-
sistency. Third, noisy single-view object poses are significantly improved using a
global refinement procedure based on object-level bundle adjustment. The out-
come of our approach that optimizes multi-view COnSistencY, hence dubbed
CosyPose, is a single consistent reconstruction of the input scene. Our single-
view single-object pose estimation method obtains state-of-the-art results on the
YCB-Video [18] and T-LESS [19] datasets, achieving a significant 33.8% absolute
improvement over the state-of-the-art [7] on T-LESS. Our multi-view framework
clearly outperforms [20] on YCB-Video while not requiring known camera poses
and not being limited to a single object of each class per scene. On both datasets,
we show that our multi-view solution significantly improves pose estimation and
6D detection accuracy over our single-view baseline.

2 Related Work

Our work builds on results in single-view and multi-view object 6D pose estima-
tion from RGB images and object-level SLAM.

Single-view Single-Object 6D Pose Estimation. The object pose estimation prob-
lem [15,16] has been approached either by estimating the pose from 2D-3D cor-
respondences using local invariant features [3,13], or directly by estimating the
object pose using template-matching [14]. However, local features do not work
well for texture-less objects and global templates often fail to detect partially
occluded objects. Both of these approaches (feature-based and template match-
ing) have been revisited using deep neural networks. A convolutional neural
network (CNN) can be used to detect object features in 2D [4,6,18,21,22] or
to directly find 2D-to-3D correspondences [5,7,8,23]. Deep approaches have also
been used to match implicit pose features, which can be learned without requir-
ing ground truth pose annotations [12]. The estimated 6D pose of the objects
can be further refined [4,10] using an iterative procedure that effectively moves
the camera around the object so that the rendered image of the object best
matches the input image. Such a refinement step provides important perfor-
mance improvements and is becoming common practice [8,11] as a final stage of
the estimation process. Our single-view single-object pose estimation described
in Sect. 3.2 builds on DeepIM [10]. The performance of 6D pose estimation can
be further improved using depth sensors [10,11,18], but in this work we focus
on the most challenging scenario where only RGB images are available.
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Multi-view Single-Object 6D Pose Estimation. Multiple views of an object can be
used to resolve depth ambiguities and gain robustness with respect to occlusions.
Prior work using local invariant features includes [15,16,24,25] and involves some
form of feature matching to establish correspondences across views to aggre-
gate information from multiple viewpoints. More recently, the multi-view single-
object pose estimation problem has been revisited with a deep neural network
that predicts an object pose candidate in each view [20] and aggregates informa-
tion from multiple views assuming known camera poses. In contrast, our work
does not assume the camera poses to be known. We experimentally demonstrate
that our approach outperforms [20] despite requiring less information.

Multi-view Multi-object 6D Pose Estimation. Other works consider all objects
in a scene together in order to jointly estimate the state of the scene in the
form of a compact representation of the object and camera poses in a common
coordinate system. This problem is known as object-level SLAM [26] where a
depth-based object pose estimation method [27] is used to recognize objects from
a database in individual images and estimate their poses. The individual objects
are tracked across frames using depth measurements, assuming the motion of the
sensor is continuous. Consecutive depth measurements also enable to produce
hypotheses for camera poses using ICP [28] and the poses of objects and cameras
are finally refined in a joint optimization procedure. Another approach [29] uses
local RGBD patches to generate object hypotheses and find the best view of a
scene. All of these methods, however, strongly rely on depth sensors to estimate
the 3D structure of the scene while our method only exploits RGB images. In
addition, they assume temporal continuity between the views, which is also not
required by our approach.

Other works have considered monocular RGB only object-level SLAM [30–
32]. Related is also [33] where semantic 2D keypoint correspondences across
multiple views and local features are used to jointly estimate the pose of a single
human and the positions of the observing cameras. All of these works rely on local
images features to estimate camera poses. In contrast, our work exploits 6D pose
hypotheses generated by a neural network which allows to recover camera poses
in situations where feature-based registration fails, as is the case for example
for the complex texture-less images of the T-LESS dataset. In addition, [31,32]
do not consider full 6D pose of objects, and [20,33] only consider scenes with a
single instance of each object. In contrast, our method is able to handle scenes
with multiple instances of the same object.

3 Multi-view Multi-object 6D Object Pose Estimation

In this section, we present our framework for multi-view multi-object pose esti-
mation. We begin with an overview of the approach (Sect. 3.1 and Fig. 2), and
then detail the three main steps of the approach in the remaining sections.
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Fig. 2. Multi-view multi-object 6D pose estimation. In the first stage, we obtain
initial object candidates in each view separately. In the second stage, we match these
object candidates across views to recover a single consistent scene. In the third stage,
we globally refine all object and camera poses to minimize multi-view reprojection
error.

3.1 Approach Overview

Our goal is to reconstruct a scene composed of multiple objects given a set of
RGB images. We assume that we know the 3D models of objects of interest.
However, there can be multiple objects of the same type in the scene and no
information on the number or type of objects in the scene is available. Further-
more, objects may not be visible in some views, and the relative poses between
the cameras are unknown. Our output is a scene model, which includes the num-
ber of objects of each type, their 6D poses and the relative poses of the cameras.
Our approach is composed of three main stages, summarized in Fig. 2.

In the first stage, we build on the success of recent methods for single-view
RGB object detection and 6D pose estimation. Given a set of objects with known
3D models and a single image of a scene, we output a set of candidate detections
for each object and for each detection the 6D pose of the object with respect
to the camera associated to the image. Note that some of these detections and
poses are wrong, and some are missing. We thus consider the poses obtained in
this stage as a set of initial object candidates, i.e. objects that may be seen in
the given view together with an estimate of their pose with respect to this view.
This object candidate generation process is described in Sect. 3.2.

In the second stage, called object candidate matching and described in detail
in Sect. 3.3, we match objects visible in multiple views to obtain a single consis-
tent scene. This is a difficult problem since object candidates from the first stage
typically include many errors due to (i) heavily occluded objects that might be
mis-identified or for which the pose estimate might be completely wrong; (ii)
confusion between similar objects; and (iii) unusual poses that do not appear
in the training set and are not detected correctly. To tackle these challenges,
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we take inspiration from robust patch matching strategies that have been used
in the structure from motion (SfM) literature [34,35]. In particular, we design a
matching strategy similar in spirit to [36] but where we match entire 3D objects
across views to obtain a single consistent 3D scene, rather than matching local
2D patches on a single 3D object [36].

The final stage of our approach, described in Sect. 3.4, is a global scene refine-
ment. We draw inspiration from bundle adjustment [37], but the optimization
is performed at the level of objects: the 6D poses of all objects and cameras are
refined to minimize a global reprojection error.

3.2 Stage 1: Object Candidate Generation

Our system takes as input multiple photographs of a scene {Ia} and a set of
3D models, each associated to an object label l. We assume the intrinsic param-
eters of camera Ca associated to image Ia are known as is usually the case in
single-view pose estimation methods. In each view Ia, we obtain a set of object
detections using an object detector (e.g. FasterRCNN [38], RetinaNet [39]), and
a set of candidate pose estimates using a single-view single-object pose estimator
(e.g. PoseCNN [18], DPOD [8], DeepIM [10]). While our approach is agnostic to
the particular method used, we develop our own single-view single-object pose
estimator, inspired by DeepIM [10], which improves significantly over state of the
art and which we describe in the next paragraph. Each 2D candidate detection in
view Ia is identified by an index α and corresponds to an object candidate Oa,α,
associated with a predicted object label la,α and a 6D pose estimate TCaOa,α

with respect to camera Ca. We model a 6D pose T ∈ SE(3) as a 4 × 4 homoge-
neous matrix composed of a 3D rotation matrix and a 3D translation vector.

Single-View 6D Pose Estimation. We introduce a method for single-view 6D
object pose estimation building on the idea of DeepIM [10] with some simplifi-
cations and technical improvements. First, we use a more recent neural-network
architecture based on EfficientNet-B3 [40] and do not include auxiliary signals
while training. Second, we exploit the rotation parametrization recently intro-
duced in [41], which has been shown to lead to more stable CNN training than
quaternions. Third, we disentangle depth and translation prediction in the loss
following [42] and handle symmetries explicitly as in [9] instead of using the
point-matching loss. Fourth, instead of fixing focal lengths to 1 during training
as in [10], we use focal lengths of the camera equivalent to the cropped images.
Fifth, in addition to the real training images supplied with both dataset, we
also render a million images for each dataset using the provided CAD models
for T-LESS and the reconstructed models for YCB-Video. The CNNs are first
pretrained using synthetic data only, then fine-tuned on both real and synthetic
images. Finally, we use data augmentation on the RGB images while training our
models, which has been demonstrated to be crucial to obtain good performance
on T-LESS [12]. We also note that this approach can be used for coarse estima-
tion simply by providing a canonical pose as the input pose estimate during both
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training and testing. We rendered objects at a distance of 1 m from the cam-
era and used this approach to perform coarse estimate on T-LESS. Additional
details are provided in the supplementary material.

Object Symmetries. Handling object symmetries is a major challenge for object
pose estimation since the object pose can only be estimated up to a symmetry.
This is in particular true for our object candidates pose estimates. We thus need
to consider symmetries explicitly together with the pose estimates. Each 3D
model l is associated to a set of symmetries S(l). Following the framework intro-
duced in [43], we define the set of symmetries S(l) as the set of transformations
S that leave the appearance of object l unchanged:

S(l) = {S ∈ SE(3) s.t ∀T ∈ SE(3),R(l, T) = R(l, TS)}, (1)

where R(l,X) is the rendered image of object l captured in pose X and S is the
rigid motion associated to the symmetry. Note that S(l) is infinite for objects
that have axes of symmetry (e.g. bowls).

Given a set of symmetries S(l) for the 3D object l, we define the symmetric
distance Dl which measures the distance between two 6D poses represented by
transformations T1 and T2. Given an object l associated to a set Xl of |Xl| 3D
points x ∈ Xl, we define:

Dl(T1,T2) = min
S∈S(l)

1
|Xl|

∑

x∈Xl

||T1Sx − T2x||2. (2)

Dl(T1, T2) measures the average error between the points transformed with T1

and T2 for the symmetry S that best aligns the (transformed) points. In practice,
to compute this distance for objects with axes of symmetries, we discretize S(l)
using 64 rotation angles around each symmetry axis, similar to [9].

3.3 Stage 2: Object Candidate Matching

As illustrated in Fig. 2, given the object candidates for all views {Oa,α}, our
matching module aims at (i) removing the object candidates that are not con-
sistent across views and (ii) matching object candidates that correspond to the
same physical object. We solve this problem in two steps detailed below: (A)
selection of candidate pairs of objects in all pairs of views, and (B) scene-level
matching.

A. 2-View Candidate Pair Selection. We first focus on a single pair of views
(Ia, Ib) of the scene and find all pairs of object candidates (Oa,α, Ob,β), one in
each view, which correspond to the same physical object in these two views. To
do so, we use a RANSAC procedure where we hypothesize a relative pose between
the two cameras and count the number of inliers, i.e. the number of consistent
pairs of object candidates in the two views. We then select the solution with
the most inliers which gives associations between the object candidates in the
two views. In the rest of the section, we describe in more detail how we sample
relative camera poses and how we define inlier candidate pairs.
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Sampling of Relative Camera Poses. Sampling meaningful camera poses is one
of the main challenges for our approach. Indeed, directly sampling at random
the space of possible camera poses would be inefficient. Instead, as usual in
RANSAC, we sample pairs of object candidates (associated to the same object
label) in the two views, hypothesize that they correspond to the same physical
object and use them to infer a relative camera pose hypothesis. However, since
objects can have symmetries, a single pair of candidates is not enough to obtain
a relative pose hypothesis without ambiguities and we thus sample two pairs of
object candidates, which in most cases is sufficient to disambiguate symmetries.

In detail, we sample two tentative object candidate pairs with pair-wise con-
sistent labels (Oa,α, Ob,β) and (Oa,γ , Ob,δ) and use them to build a relative cam-
era pose hypothesis, TCaCb

. We obtain the relative camera pose hypothesis by
(i) assuming that (Oa,α, Ob,β) correspond to the same physical object and (ii)
disambiguating symmetries by assuming that (Oa,γ , Ob,δ) also correspond to the
same physical object, and thus selecting the symmetry that minimize their sym-
metric distance

TCaCb
= TCaOa,α

S�T−1
CbOb,β

(3)

with S� = argmin
S∈S(l)

Dl(TCaOa,γ
, (TCaOa,α

ST−1
CbOb,β

)TCbOb,δ
), (4)

where l = la,α = lb,β is the object label associated to the first pair, and S� is the
object symmetry which best aligns the point clouds associated to the second pair
of objects (Oa,γ and Ob,δ). If the union of the two physical objects is symmetric,
e.g. two spheres, the pose computed may be incorrect but it would not be verified
by a third pair of objects, and the hypothesis would be discarded.

Counting Pairs of Inlier Candidates. Let’s assume we are given a relative
pose hypothesis between the cameras TCaCb

. For each object candidate Oa,α

in the first view, we find the object candidate in the second view Ob,β

with the same label l = la,α = lb,β that minimizes the symmetric distance
Dl(TCaOa,α

, TCaCb
TCbOb,β

). In other words, Ob,β is the object candidate in the
second view closest to Oa,α under the hypothesized relative pose between the
cameras. This pair (Oa,α, Ob,β) is considered an inlier if the associated symmetric
distance is smaller than a given threshold C. The total number of inliers is used
to score the relative camera pose TCaCb

. Note that we discard the hypothesis
which have fewer than three inliers.

B. Scene-Level Matching. We use the result of the 2-view candidate pair selection
applied to each image pair to define a graph between all candidate objects. Each
vertex corresponds to an object candidate in one view and edges correspond to
pairs selected from 2-view candidate pair selection, i.e. pairs that had sufficient
inlier support. We first remove isolated vertices, which correspond to object can-
didates that have not been validated by other views. Then, we associate to each
connected component in the graph a unique physical object, which corresponds
to a set of initial object candidates originating from different views. We call
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these physical objects P1, ...PN with N the total number of physical objects,
i.e. the number of connected components in the graph. We write (a, α) ∈ Pn to
denote the fact that an object candidate Oa,α is in the connected component of
object Pn. Since all the objects in a connected component share the same object
label (they could not have been connected otherwise), we can associate without
ambiguity an object label ln to each physical object Pn.

3.4 Stage 3: Scene Refinement

After the previous stage, the correspondences between object candidates in the
individual images are known, and the non-coherent object candidates have been
removed. The final stage aims at recovering a unique and consistent scene model
by performing global joint refinement of objects and camera poses.

In detail, the goal of this stage is to estimate poses of physical objects Pn,
represented by transformations TP1 , . . . , TPN

, and cameras Cv, represented by
transformations TC1 , . . . , TCV

, in a common world coordinate frame. This is sim-
ilar to the standard bundle adjustment problem where the goal is to recover the
3D points of a scene together with the camera poses. This is typically addressed
by minimizing a reconstruction loss that measures the 2D discrepancies between
the projection of the 3D points and their measurements in the cameras. In our
case, instead of working at the level of points as done in the bundle adjustment
setting, we introduce a reconstruction loss that operates at the level of objects.

More formally, for each object present in the scene, we introduce an object-
candidate reprojection loss accounting for symmetries. We define the loss for a
candidate object Oa,α associated to a physical object Pn (i.e. (a, α) ∈ Pn) and
the estimated candidate object pose TCaOa,α

with respect to Ca as:

L
(
TPn

, TCa
|TCaOa,α

)
= min

S∈S(l)

1
|Xl|

∑

x∈Xl

||πa(TCaOa,α
Sx) − πa(T−1

Ca
TPn

x)||, (5)

where ||·|| is a truncated L2 loss, l = ln is the label of the physical object Pn, TPn

the 6D pose of object Pn in the world coordinate frame, TCa
the pose of camera

Ca in the world coordinate frame, Xl the set of 3D points associated to the 3D
model of object l, S(l) the symmetries of the object model l, and the operator πa

corresponds to the 2D projection of 3D points expressed in the camera frame Ca

by the intrinsic calibration matrix of camera Ca. The inner sum in Eq. (5) is the
error between (i) the 3D points x of the object model l projected to the image
with the single view estimate of the transformation TCaOα

that is associated
with the physical object (i.e. (a, α) ∈ Pn) (first term, the image measurement)
and (ii) the 3D points TPn

x on the object Pn projected to the image by the
global estimate of camera Ca (second term, global estimates).

Recovering the state of the unique scene which best explains the measure-
ments consists in solving the following consensus optimization problem:

min
TP1 ,...,TPN

,TC1 ,...,TCV

N∑

n=1

∑

(a,α)∈Pn

L
(
TPn

, TCa
|TCaOa,α

)
, (6)
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Table 1. Single-view 6D pose estimation. Comparisons with state-of-the-art
methods on the YCB-Video (a) and T-LESS datasets (b).

AUC of AUC of

ADD-S ADD(-S)

PoseCNN [18] – 61.3

MCN [21] 75.1 -

PVNet [5] – 73.4

DeepIM [10] 88.1 81.9

Ours 89.8 84.5

(a) YCB-Video

evsd < 0.3

Implicit [12] 26.8

Pix2pose [7] 29.5

Ours 63.3

w/o loss 59.5

w/o network 58.9

w/o rot. 60.5

w/o data augm. 35.5

(b) T-LESS SiSo task

where the first sum is over all the physical objects Pn and the second one over
all object candidates Oa,α corresponding to the physical object Pn. In other
words, we wish to find global estimates of object poses TPn

and camera poses
TCa

to match the (inlier) object candidate poses TCaOa,α
obtained in the indi-

vidual views. The optimization problem is solved using the Levenberg-Marquart
algorithm. We provide more details in the supplementary.

4 Results

In this section, we experimentally evaluate our method on the YCB-Video [18]
and T-LESS [19] datasets, which both provide multiple views and ground truth
6D object poses for cluttered scenes with multiple objects. In Sect. 4.1, we first
validate and analyze our single-view single-object 6D pose estimator. We notably
show that our single-view single-object 6D pose estimation method already
improves state-of-the-art results on both datasets. In Sect. 4.2, we validate our
multi-view multi-object framework by demonstrating consistent improvements
over the single-view baseline.

4.1 Single-View Single-Object Experiments

Evaluation on YCB-Video. Following [5,10,18], we evaluate on a subset of 2949
keyframes from videos of the 12 testing scenes. We use the standard ADD-S and
ADD(-S) metrics and their area-under-the-curves [18] (please see supplementary
material for details on the metrics). We evaluate our refinement method using the
same detections and coarse estimates as DeepIM [10], provided by PoseCNN [18].
We ran two iterations of pose refinement network. Results are shown in Table 1a.
Our method improves over the current-state-of-the-art DeepIM [10], by approx-
imately 2 points on the AUC of ADD-S and ADD(-S) metrics.
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Evaluation on T-LESS. As explained in Sect. 3.2, we use our single-view app-
roach both for coarse pose estimation and refinement. We compare our method
against the two recent RGB-only methods Pix2Pose [7] and Implicit [12]. For a
fair comparison, we use the detections from the same RetinaNet model as in [7].
We report results on the SiSo task [44] and use the standard visual surface
discrepancy (vsd) recall metric with the same parameters as in [7,12]. Results
are presented in Table 1b. On the evsd < 0.3 metric, our {coarse + refinement}
solution achieves a significant 33.8% absolute improvement compared to existing
state-of-the-art methods. Note that [10] did not report results on T-LESS. We
also evaluate on this dataset the benefits of the key components of our single
view approach compared to the components used in DeepIM [10]. More precisely,
we evaluate the importance of the base network (our EfficientNet vs FlowNet
pre-trained), loss (our symmetric and disentangled vs. point-matching loss with
L1 norm), rotation parametrization (our using [41] vs. quaternions) and data
augmentation (our color augmentation, similar to [12] vs. none). Loss, network
and rotation parametrization bring a small but clear improvement. Using data
augmentation is crucial on the T-LESS dataset where training is performed only
on synthetic data and real images of the objects on dark background.

4.2 Multi-view Experiments

As shown above, our single-view method achieves state-of-the-art results on both
datasets. We now evaluate the performance of our multi-view approach to esti-
mate 6D poses in scenes with multiple objects and multiples views.

Implementation Details. On both datasets, we use the same hyper-parameters.
In stage 1, we only consider object detections with a score superior to 0.3 to
limit the number of detections. In stage 2, we use a RANSAC 3D inlier thresh-
old of C = 2 cm. This low threshold ensures that no outliers are considered while
associating object candidates. We use a maximum number of 2000 RANSAC iter-
ations for each pair of views, but this limit is only reached for the most complex
scenes of the T-LESS dataset containing tens of detections. For instance, in the
context of two views with six different 6D object candidates in each view, only 15
RANSAC iterations are enough to explore all relative camera pose hypotheses.
For the scene refinement (stage 3), we use 100 iterations of Levenberg-Marquart
(the optimization typically converges in less than 10 iterations).

Evaluation Details. In the single-view evaluation, the poses of the objects are
expressed with respect to the camera frame. To fairly compare with the single-
view baseline, we also evaluate the object poses in the camera frames, that we
compute using the absolute object poses and camera placements estimated by
our global scene refinement method. Standard metrics for 6D pose estimation
strongly penalize methods with low detection recall. To avoid being penalized
for removing objects that cannot be verified across several views, we thus add
the initial object candidates to the set of predictions but with confidence scores
strictly lower than the predictions from our full scene reconstruction.
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Table 2. Multi-view multi-object results. (a) Our approach significantly outper-
forms [20] on the YCB-Video dataset in both the single view and multi-view scenarios
while not requiring known camera poses. (b) Results on the T-LESS dataset. Using
multiple views clearly improves our results.

1 view 5 views

[21] 75.1 80.2

Ours 89.8 93.4

(a) YCB-Video (AUC of ADD-S)

1 view 4 views 8 views

AUC of ADD-S 72.1 76.0 78.9

ADD-S < 0.1d 62.7 66.6 70.9

evsd < 0.3 57.7 61.8 65.6

mAP@ADD-S<0.1d 55.0 61.6 69.0

(b) T-LESS ViVo task (ours, 1000 images)

Table 3. Benefits of the scene refinement stage. We report pose ADD-S errors (in
mm) for the inlier object candidates before and after global scene refinement. Scene-
refinement improves 6D pose estimation accuracy.

YCB dataset T-LESS dataset

Before refinement 6.40 4.43

After refinement 5.05 3.19

Multi-view Multi-object Quantitative Results. The problem that we consider,
recovering the 6D object poses of multiple known objects in a scene captured
by several RGB images taken from unknown viewpoints has not, to the best
of our knowledge, been addressed by prior work reporting results on the YCB-
Video and T-LESS datasets. The closest work is [20], which considers multi-
view scenarios on YCB-Video and uses ground truth camera poses to align the
viewpoints. In [20], results are provided for prediction using 5 views. We use our
approach with the same number of input images but without using ground truth
calibration and report results in Table 2a. Our method significantly outperforms
[20] in both single-view and multi-view scenarios.

We also perform multi-view experiments on T-LESS with a variable number
of views. We follow the multi-instance BOP [44] protocol for ADD-S<0.1d and
evsd < 0.3. We also analyze precision-recall tradeoff similar to the standard
practice in object detection. We consider positive predictions that satisfy ADD-
S<0.1d and report mAP@ADD-S<0.1d. Results are shown in Table 2b for the
ViVo task on 1000 images. To the best of our knowledge, no other method
has reported results on this task. As expected, our multi-view approach brings
significant improvements compared to only single-view baseline.
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Benefits of Scene Refinement. To demonstrate the benefits of global scene refine-
ment (stage 3), we report in Table 3 the average ADD-S errors of the inlier can-
didates before and after solving the optimization problem of Eq.(6). We note a
clear relative improvement, around 20% on both datasets..

Relative Camera Pose Estimation. A key feature of our method is that it does
not require camera position to be known and instead robustly estimates it from
the 6D object candidates. We investigated alternatives to our joint camera pose
estimation. First, we used COLMAP [45,46], a popular feature-based SfM soft-
ware, to recover camera poses. On randomly sampled groups of 5 views from
the YCB-Video dataset COLMAP outputs camera poses in only 67% of cases
compared to 95% for our method. On groups of 8 views from the more difficult
T-LESS dataset, COLMAP outputs camera poses only in 4% of cases, compared
to 74% for our method. Our method therefore demonstrates a significant interest
compared to COLMAP that uses features to recover camera poses, especially for
complex textureless scenes like in the T-LESS dataset. Second, instead of esti-
mating camera poses using our approach, we investigated using ground truth
camera poses available for the two datasets. We found that the improvements
using ground truth camera poses over the camera poses recovered automatically
by our method were only minor: within 1% for T-LESS (4 views) and YCB-
Video (5 views), and within 3% for T-LESS (8 views). This demonstrates that
our approach recovers accurate camera poses even for scenes containing only
symmetric objects as in the T-LESS dataset.

Qualitative Results. We provide examples of recovered 6D object poses in Fig. 3
where we show both object candidates and the final estimated scenes. Please
see the supplementary material for additional results, including detailed
discussion of failure modes and examples on the YCB-Video dataset.

Computational Cost. For a common case with 4 views and 6 2D detections
per view, our approach takes approximately 320 ms to predict the state of the
scene. This timing includes: 190 ms for estimating the 6D poses of all candidates
(stage 1, 1 iteration of the coarse and refinement networks), 40 ms for the object
candidate association (stage 2) and 90 ms for the scene refinement (stage 3).
Further speed-ups towards real-time performance could be achieved, for example,
by exploiting temporal continuity in a video sequence.
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Input images 2D detections Objects candidates Final scene

Fig. 3. Qualitative results. We present three examples of scene reconstructions. For
each scene, two (out of 4) views that were used to reconstruct the scene are shown
as two rows. In each row, the first column shows the input RGB image. The second
column shows the 2D detections. The third column shows all object candidates with
marked inliers (green) and outliers (red). The fourth column shows the final scene
reconstruction. Objects marked by red circles are not in the database, but are some-
times incorrectly detected. Notice how our method estimates accurate 6D object poses
for many objects in challenging scenes containing texture-less and symmetric objects,
severe occlusions, and where many objects are similar to each other. More examples
are in the supplementary material. (Color figure online)
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5 Conclusion

We have developed an approach, dubbed CosyPose, for recovering the 6D pose
of multiple known objects viewed by several non-calibrated cameras. Our main
contribution is to combine learnable 6D pose estimation with robust multi-view
matching and global refinement to reconstruct a single consistent scene. Our
approach explicitly handles object symmetries, does not require depth measure-
ments, is robust to missing and incorrect object hypothesis, and automatically
recovers the camera poses and the number of objects in the scene. These results
make a step towards the robustness and accuracy required for visually driven
robotic manipulation in unconstrained scenarios with moving cameras, and open-
up the possibility of including object pose estimation in an active visual percep-
tion loop.
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