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Abstract. Estimating 3D hand pose from 2D images is a difficult,
inverse problem due to the inherent scale and depth ambiguities. Cur-
rent state-of-the-art methods train fully supervised deep neural networks
with 3D ground-truth data. However, acquiring 3D annotations is expen-
sive, typically requiring calibrated multi-view setups or labour intensive
manual annotations. While annotations of 2D keypoints are much eas-
ier to obtain, how to efficiently leverage such weakly-supervised data to
improve the task of 3D hand pose prediction remains an important open
question. The key difficulty stems from the fact that direct application
of additional 2D supervision mostly benefits the 2D proxy objective but
does little to alleviate the depth and scale ambiguities. Embracing this
challenge we propose a set of novel losses that constrain the prediction
of a neural network to lie within the range of biomechanically feasible
3D hand configurations. We show by extensive experiments that our pro-
posed constraints significantly reduce the depth ambiguity and allow the
network to more effectively leverage additional 2D annotated images.
For example, on the challenging freiHAND dataset, using additional 2D
annotation without our proposed biomechanical constraints reduces the
depth error by only 15%, whereas the error is reduced significantly by
50% when the proposed biomechanical constraints are used.

Keywords: 3D hand pose · Weakly-supervised · Biomechanical
constraints

1 Introduction

Vision-based reconstruction of the 3D pose of human hands is a difficult problem
that has applications in many domains. Given that RGB sensors are ubiquitous,
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recent work has focused on estimating the full 3D pose [6,18,25,34,44] and
dense surface [5,13,15] of human hands from 2D imagery alone. This task is
challenging due to the dexterity of the human hand, self-occlusions, varying
lighting conditions and interactions with objects. Moreover, any given 2D point
in the image plane can correspond to multiple 3D points in world space, all of
which project onto that same 2D point. This makes 3D hand pose estimation
from monocular imagery an ill-posed inverse problem in which depth and the
resulting scale ambiguity pose a significant difficulty.

Front
weivpoTweiv
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Fig. 1. Impact of the proposed biomechanical constraints (BMC). (b,e) Supplement-
ing fully supervised data with 2D annotated data yields 3D poses with correct 2D
projections, yet they are anatomically implausible. (c,f) Adding our biomechanical
constraints significantly improves the pose prediction quantitatively and qualitatively.
The resulting 3D poses are anatomically valid and display more accurate depth/scale
even under severe self- and object occlusions, thus are closer to the ground-truth (d,g).

Most of the recent methods use deep neural networks for hand pose esti-
mation and rely on a combination of fully labeled real and synthetic training
data (e.g., [4,6,15,15,18,25,34,46,48]). However, acquiring full 3D annotations
for real images is very difficult as it requires complex multi-view setups and
labour intensive manual annotations of 2D keypoints in all views [14,45,49]. On
the other hand, synthetic data does not generalize well to realistic scenarios due
to domain discrepancies. Some works attempt to alleviate this by leveraging
additional 2D annotated images [5,18]. Such kind of weakly-supervised data is
far easier to acquire for real images as compared to full 3D annotations. These
methods use these annotations in a straightforward way in the form of a repro-
jection loss [5] or supervision for the 2D component only [18]. However, we find
that the improvements stemming from including the weakly-supervised data in
such a manner are mainly a result of 3D poses that agree with the 2D pro-
jection. Yet, the uncertainties arising due to depth ambiguities remain largely
unaddressed and the resulting 3D poses can still be implausible. Therefore, these
methods still rely on large amounts of fully annotated training data to reduce
these ambiguities. In contrast, our goal is to minimize the requirement of 3D
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annotated data as much as possible and maximize the utility of weakly-labeled
real data.

To this end, we propose a set of biomechanically inspired constraints (BMC)
which can be integrated in the training of neural networks to enable anatomi-
cally plausible 3D hand poses even for data with 2D supervision only. Our key
insight is that the human hand is subject to a set of limitations imposed by its
biomechanics. We model these limitations in a differentiable manner as a set of
soft constraints. Note that this is a challenging problem. While the bone length
constraints have been used successfully [37,47], capturing other biomechanical
aspects is more difficult. Instead of fitting a hand model to the predictions, we
extract the quantities in question directly from the predictions to impose our
constraints. As such, the method of extraction has to be carefully designed to
work under noisy and malformed 3D joint predictions while simultaneously being
fully differentiable under any pose. We propose to encode these constraints into
a set of losses that are fully differentiable, interpretable and which can be incor-
porated into the training of any deep learning architecture that predicts 3D joint
configurations. Due to this integration, we do not require a post-refinement step
during test time. More specifically, our set of soft constraints consists of three
equations that define i) the range of valid bone lengths, ii) the range of valid palm
structure, and iii) the range of valid joint angles of the thumb and fingers. The
main advantage of our set of constraints is that all parameters are interpretable
and can either be set manually, opening up the possibility of personalization, or
be obtained from a small set of data points for which 3D labels are available. As
backbone model, we use the 2.5D representation proposed by Iqbal et al. [18] due
to its superior performance. We identify an issue in absolute depth calculation
and remedy it via a novel refinement network. In summary, we contribute:

– A novel set of differentiable soft constraints inspired by the biomechanical
structure of the human hand.

– Quantitative and qualitative evidence that demonstrates that our proposed
set of constraints improves 3D prediction accuracy in weakly supervised set-
tings, resulting in an improvement of 55% as opposed to 32% as yielded by
straightforward use of weakly-supervised data.

– A neural network architecture that extends [18] with a refinement step.
– Achieving state-of-the-art performance on Dexter+Object using only syn-

thetic and weakly-supervised real data, indicating cross-data generalizability.

The proposed constraints require no special data nor are they specific to a par-
ticular backbone architecture.

2 Related Work

Hand pose estimation from monocular RGB has gained traction in recent years
due numerous possible applications. Generally there are two trains of thought.

Model-based methods ensure plausible poses by fitting a hand model to
the observation via optimization. As they are not learning-based, they are sen-
sitive to initial conditions, rely on temporal information [17,26–28] or do not
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take the image into consideration during optimization [28]. Whereas some make
use of geometric primitives [26–28], other simply model the joint angles directly
[8,11,20,22,31,41], learn a lower dimensional embedding of the joints [23], pose
[17] or go a step further and model muscles of the hand [1]. Different to these
methods, we propose to incorporate these constraints directly into the training
procedure of a neural network in a fully differentiable manner. As such, we do not
fit a hand model to the prediction, but extract and constrain the biomechanical
quantities from them directly. The resulting network predicts biomechanically-
plausible poses and does not suffer from the same disadvantages.

Learning-based methods utilize neural networks that either directly
regress the 3D positions of the hand keypoints [18,25,34,38,44,48] or predict the
parameters of a deformable hand model [4,5,15,42,46]. Zimmermann et al. [48]
are the first to use deep neural network for root-relative 3D hand pose estimation
from RGB images via a multi-staged approach. Spurr et al. [34] learn a unified
latent space that projects multiple modalities into the same space, learning a
lower level embedding of the hands. Similarly, Yang et al. [44] learn a latent
space that disentangles background, camera and hand pose. However, all these
methods require large numbers of fully labeled training data. Cai et al. [6] try to
alleviate this problem by introducing an approach that utilizes paired RGB-D
images to regularize the depth predictions. Mueller et al. [25] attempt to improve
the quality of synthetic training data by learning a GAN model that minimizes
the discrepancies between real and synthetic images. Iqbal et al. [18] decompose
the task into learning 2D and root-relative depth components. This decompo-
sition allows to use weakly-labeled real images with only 2D pose annotations
which are cheap to acquire. While these methods demonstrate better gener-
alization by adding a large number weakly-labeled training samples, the main
drawback of this approach is that the depth ambiguities remain unaddressed. As
such, training using only 2D pose annotations does not impact the depth pre-
dictions. This may result in 3D poses with accurate 2D projections, but due to
depth ambiguities the 3D poses can still be implausible. In contrast, in this work,
we propose a set of biomechanical constraints that ensures that the predicted
3D poses are always anatomically plausible during training (see Fig. 1). We for-
mulate these constraints in form of a fully-differentiable loss functions which can
be incorporated into any deep learning architecture that predicts 3D joint con-
figurations. We use a variant of Iqbal et al. [18] as a baseline and demonstrate
that the requirement of fully labeled real images can be significantly minimized
while still maintaining performance on par with fully-supervised methods.

Other recent methods directly predict the parameters of a deformable hand
model, e.g., MANO [32], from RGB images [5,15,29,42,46]. The predicted
parameters consist of the shape and pose deformations wrt. a mean shape and
pose that are learned using large amounts of 3D scans of the hand. Alterna-
tively, [13,21] circumvent the need for a parametric hand model by directly
predicting the mesh vertices from RGB images. These methods require both
shape and pose annotations for training, therefore obtaining such kind of training
data is even harder. Hence, most methods rely on synthetic training data. Some
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methods [4,5,46] alleviate this by introducing re-projection losses that measure
the discrepancy between the projection of 3D mesh with labeled 2D poses [5]
or silhouettes [4,46]. Even though they utilize strong hand priors in form of
a mean hand shape and by operating on a low-dimensional PCA space, using
re-projection losses with weakly-labeled data still does not guarantee that the
resulting 3D poses will be anatomically plausible. Therefore, all these methods
rely on a large number of fully labeled training data. In body pose estimation,
such methods generally resort to adversarial losses to ensure plausibility [19].

Biomechanical constraints have also been used in the literature to encour-
age plausible 3D poses by imposing biomechanical limits on the structure of the
hands [9,10,12,24,33,36,39,40,43] or via a learned refinement model[7]. Most
methods [2,9,10,24,33,36,39,43] impose these limits via inverse kinematic in
a post-processing step, therefore the possibility of integrating them for neural
network training remains unanswered. Our proposed soft-constraints are fully
integrated into the network, which does not require a post-refinement step dur-
ing test time. Similar to our method, [12,40] also penalize invalid bone lengths.
However, we additionally model the joint limits and palmar structure.

3 Method

Our method is summarized in Fig. 2. Our key contribution is a set of novel con-
straints that constitute a biomechanical model of the human hand and capture
the bone lengths, joint angles and shape of the palm. We emphasize that we do
not fit a kinematic model to the predictions, but instead extract the quantities
in question directly from the predictions in order to constrain them. Therefore
the method of extraction is carefully designed to work under noisy and mal-
formed 3D joint predictions while simultaneously being fully differentiable in
any configuration. These biomechanical constraints provide an inductive bias to
the neural network. Specifically, the network is guided to predict anatomically
plausible hand poses for weakly-supervised data (i.e. 2D only), which in turn
increases generalizability. The model can be combined with any backbone archi-
tecture that predicts 3D keypoints. We first introduce the notations used in this
paper followed by the details of the proposed biomechanical losses. Finally, we
discuss the integration with a variant of [18].

Fig. 2. Method overview. A model takes an RGB image and predicts the 3D joints on
which we apply our proposed BMC. These guide the model to predict plausible poses.
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Notation. We use bold capital font for matrices, bold lowercase for vector
and roman font for scalars. We assume a right hand. The joints [j3D

1 , . . . , j3D
21 ] =

J3D ∈ IR21×3 define a kinematic chain of the hand starting from the root joint
j3D
1 and ending in the fingertips. For the sake of simplicity, the joints of the

hands are grouped by the fingers, denoted as the respective set F1, . . . , F5,
visualized in Fig. 3a. Each j3D

i , except the root joint (CMC), has a parent,
denoted as p(i). We define a bone bi = j3D

i+1 − j3D
p(i+1) as the vector pointing

from the parent joint to its child joint. Hence [b1, . . . ,b20] = B ∈ IR20×3. The
bones are named according to the child joint. For example, the bone connecting
MCP to PIP is called PIP bone. We define the five root bones as the MCP
bones, where one endpoint is the root j3D

1 . Intuitively, the root bones are those
that lie within and define the palm. We define the bones bi with i = 1, . . . , 5
to correspond to the root bones of fingers F1, . . . , F5. We denote the angle
α(v1, v2) = arccos

( vT
1 v2

||v1||2 ||v2||2
)

between the vectors v1,v2. The interval loss is
defined as I(x; a, b) = max(a − x, 0) + max(x − b, 0). The normalized vector is
defined as norm(x) = x

||x||2 . Lastly, Pxy(v) is the orthogonal projection operator,
projecting v orthogonally onto the x-y plane where x,y are vectors.

F1

F2 F3 F4

F5

CMC: 1
MCP: 2
PIP: 3
DIP: 4
TIP: 5

a) Joint skeleton structure b) Root bone structure c) Angles. Flexion: Left – Abduction: Right

Fig. 3. Illustration of our proposed biomechanical structure.

3.1 Biomechanical Constraints

Our goal is to integrate our biomechanical soft constraints (BMC) into the train-
ing procedure that encourages the network to predict feasible hand poses. We
seek to avoid iterative optimization approaches such as inverse kinematics in
order to avert significant increases in training time.

The proposed model consists of three functional parts, visualized in Fig. 3.
First, we consider the length of the bones, including the root bones of the palm.
Second, we model the structure and shape of the palmar region, consisting of a
rigid structure made up of individual joints. To account for inter-subject vari-
ability of bones and palm structure, it is important to not enforce a specific mean
shape. Instead, we allow for these properties to lie within a valid range. Lastly,
the model describes the articulation of the individual fingers. The finger motion
is described via modeling of the flexion and abduction of individual bones. As
their limits are interdependent, they need to be modeled jointly. As such, we
propose a novel constraint that takes this interdependence into account.
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The limits for each constraint can be attained manually from measurements,
from the literature (e.g. [9,33]), or acquired in a data-driven way from 3D anno-
tations, should they be available.

Bone Length. For each bone i, we define an interval [bmin
i , bmax

i ] of valid bone
length and penalize if the length ||bi||2 lies outside of this interval:

LBL(J3D) =
1
20

20∑

i=1

I(||bi||2; bmin
i , bmax

i )

This loss encourages keypoint predictions that yield valid bone lengths. Figure 3a
shows the length of a bone in blue.

Root Bones. To attain valid palmar structures we first interpret the root bones
as spanning a mesh and compute its curvature by following [30]:

ci =
(ei+1 − ei)T (bi+1 − bi)

||bi+1 − bi||2 , for i ∈ {1, 2, 3, 4} (1)

Where ei is the edge normal at bone bi:

ni = norm(bi+1 × bi), for i ∈ {1, 2, 3, 4}

ei =

⎧
⎪⎨

⎪⎩

n1, if i = 1
norm(ni + ni−1), if i ∈ {2, 3, 4}
n4, if i = 5

(2)

Positive values of ci denote an arched hand, for example when pinky and thumb
touch. A flat hand has no curvature. Figure 3b visualizes the mesh in dashed
yellow and the triangle over which the curvature is computed in dashed purple.

We ensure that the root bones fall within correct angular ranges by defining
the angular distance between neighbouring bi,bi+1 across the plane they span:

φi = α(bi,bi+1) (3)

We constrain both the curvature ci and angular distance φi to lie within a valid
range [cmin

i , cmax
i ] and [φmin

i , φmax
i ]:

LRB(J3D) =
1
4

4∑

i=1

(I(ci; cmin
i , cmax

i ) + I(φi;φmin
i , φmax

i )
)

LRB ensures that the predicted joints of the palm define a valid structure, which
is crucial since the kinematic chains of the fingers originate from this region.

Joint Angles. To compute the joint angles, we first need to define a consis-
tent frame Fi of a local coordinate system for each finger bone bi. Fi must be
consistent with respect to the movements of the finger. In other words, if one
constructs Fi given a pose J3D

1 , then moves the fingers and corresponding Fi
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into pose J3D
2 , the resulting Fi should be the same as if constructed from J3D

2

directly.
We assume right-handed coordinate systems. To construct Fi, we define two

out of three axes based on the palm. We start with the first layer of fingers
bones (PIP bones). We define their respective z-component of Fi as the nor-
malized bone of their respective parent bone (in this case, the root bones):
zi = norm(bp(i)). Next, we define the x-axis, based on the plane normals spanned
by two neighbouring root bones:

xi =

⎧
⎪⎨

⎪⎩

−np(i), if p(i) ∈ {1, 2}
−norm(np(i) + np(i)−1), if p(i) ∈ {3, 4}
−n4, if p(i) = 5

(4)

Where ni is defined as in Eq. 2. Lastly, we compute the last axis yi = norm(zi ×
xi). Given Fi, we can now define the flexion and abduction angles. Each of these
angles are given with respect to the local z-axis of Fi. Given bi in its local
coordinates bFi

i wrt. Fi, we define the flexion and abduction angles as:

θfi = α(Pxz(bFi
i ), zi)

θai = α(Pxz(bFi
i ),bFi

i )
(5)

Figure 3c visualizes Fi and the resulting angles. Note that this formulation leads
to ambiguities, where different bone orientations can map to the same (θfi , θai )-
point. We resolve this via an octant lookup, which leads to angles in the intervals
θfi ∈ [−π, π] and θai ∈ [−π/2, π/2] respectively. See appendix for more details.

Given the angles of the first set of finger bones, we can then construct the
remaining two rows of finger bones. Let Rθi denote the rotation matrix that
rotates by θfi and θai such that Rθizi = bFi

i , then we iteratively construct the
remaining frames along the kinematic chain of the fingers:

Fi = RθiFp(i) (6)

This method of frame construction via rotating by θfi and θai ensures consistency
across poses. The remaining angles can be acquired as described in Eq. 5.

Lastly, the angles need to be constrained. One way to do this is to con-
sider each angle independently and penalize them if they lie outside an interval.
This corresponds to constraining them within a box in a 2D space, where the
endpoints are the min/max of the limits. However, finger angles have inter-
dependency, therefore we propose an alternative approach to account for this.
Given points θi = (θfi , θ

a
i ) that define a range of motion, we approximate their

convex hull on the (θf , θa)-plane with a fixed set of points Hi. The angles are
constrained to lie within this structure by minimizing their distance to it:

LA(J3D) =
1
15

15∑

i=1

DH(θi,Hi) (7)

Where DH is the distance of point θi to the hull Hi. Details on the convex hull
approximation and implementation can be found in the appendix.
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3.2 Zroot Refinement

The 2.5D joint representation allows us to recover the value of the absolute
pose Zroot up to a scaling factor. This is done by solving a quadratic equation
dependent on the 2D projection J2D and relative depth values zr, as proposed in
[18]. In practice, small errors in J2D or zr can result in large deviations of Zroot.
This leads to big fluctuations in the translation and scale of the predicted pose,
which is undesirable. To alleviate these issues, we employ an MLP to refine and
smooth the calculated Ẑroot:

Ẑroot
ref = Ẑroot + MMLP(zr,K−1J2D, Ẑroot;ω) (8)

Where MMLP is a multilayered perceptron with parameters ω that takes the
predicted and calculated values zr ∈ IR21, K−1J2D ∈ IR21×3, Zroot ∈ IR and
outputs a residual term. Alternatively, one could predict Zroot directly using
an MLP with the same input. However, as the exact relationship between the
predicted variables and Zroot is known, we resort to the refinement approach
instead of requiring a model to learn what is already known.

3.3 Final Loss

The biomechanical soft constraints is constructed as follows:

LBMC = λBLLBL + λRBLRB + λALA (9)

Our final model is trained on the following loss function:

L = λJ2DLJ2D + λzrLzr + λZroot
ref

LZroot + LBMC (10)

where LJ2D , Lzr and LZroot are the L1 loss on any available J2D, zr and Zroot

labels respectively. The weights λi balance the individual loss terms.

4 Implementation

We use a ResNet-50 backbone [16]. The input to our model is a 128 × 128 RGB
image from which the 2.5D representation is directly regressed. The model and
its refinement step is trained on fully supervised and weakly-supervised data.
The network was trained for 70 epochs using SGD with a learning rate of 5e−3
and a step-wise learning rate decay of 0.1 after every 30 epochs. We apply the
biomechanical constraints directly on the predicted 3D keypoints J3D.

5 Evaluation

Here we introduce the datasets used, show the performance of our proposed
LBMC and compare in extensive settings. Specifically, we study the effect of
adding weakly supervised data to complement fully supervised training. All
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experiments are conducted in a setting where we assume access to a fully super-
vised dataset, as well as a supplementary weakly supervised real dataset. There-
fore we have access to 2D ground-truth annotations and the computed constraint
limits. We study two cases of 3D supervision sources:

Synthetic Data. We choose RHD. Acquiring fully labeled synthetic data is
substantially easier as compared to real data. Section 5.3–5.5 consider this set-
ting.

Partially Labeled Real Data. In Sect. 5.6 we gradually increase the number
of real 3D labeled samples to study how the proposed approach works under
different ratio of fully to weakly supervised data.

To make clear what kind of supervision is used we denote 3DA if 3D anno-
tation is used from dataset A. We indicate usage of 2D from dataset A as 2DA.
Section 5.3 and 5.4 are evaluated on FH.

5.1 Datasets

Table 1. Overview of datasets used for
evaluation.

Name Type joints # train/test #

Rendered Hand Pose (RHD) [48] Synth 21 42k/2.7k

FreiHAND (FH) [49] Real 21 33k/4.0k

Dexter+Object (D+O) [35] Real 5 -/3.1k

Hand-Object 3D (HO-3D) [14] Real 21 11k/6.6k

Each dataset that provides 3D labels
comes with the camera intrinsics.
Hence the 2D pose can be easily
acquired from the 3D pose. Table 1
provides an overview of datasets used.
The test set of HO-3D and FH are
available only via a submission sys-
tem with limited number of total submissions. Therefore for the ablation study
(Sect. 5.4) and inspecting the effect of weak-supervision (Sect. 5.3), we divide the
training set into a training and validation split. For these sections, we choose to
evaluate on FH due to its large number of samples and variability in both hand
pose and shape.

5.2 Evaluation Metric

HO-3D. The error given by the submission system is the mean joint error in
mm. The INTERP is the error on test frames sampled from training sequences
that are not present in the training set. The EXTRAP is the error on test samples
that have neither hand shapes nor objects present in the training set. We used
the version of the dataset that was available at the time [3].

FH. The error given by the submission system is the mean joint error in mm.
Additionally, the area under the curve (AUC) of the percentage of correct key-
points (PCK) plot is reported. The PCK values lie in an interval 0 mm 50 mm
with 100 equally spaced thresholds. Both the aligned (using procrustes analysis)
and unaligned scores are given. We report the aligned score. The unaligned score
can be found in the appendix.
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Table 2. The effect of weak-supervision on the validation split of FH. Training on
synthetic data (RHD) leads to poor accuracy on real data (FH). Adding real 2D labeled
data reduces 3D prediction error due to better alignment with the 2D projection.
Adding our proposed LBMC significantly reduces the 3D error due to more accurate Z.

Effect of weak-supervision Description Mean Error ↓
2D (px) Z (mm) 3D (mm)

3DRHD + 3DFH Fully supervised, synthetic+real 3.72 5.69 8.78

+ LBMC (ours) +BMC 3.70 5.44 8.60

3DRHD Fully supervised, synthetic only 12.35 20.02 30.82

+ 2DFH + Weakly supervised, real 3.80 17.02 20.92

+ LBMC (ours) +BMC 3.79 9.97 13.78

D+O. We report the AUC for the PCK thresholds of 20 to 50 mm comparable
with prior work [5,46,49]. For [18,25,34,48] we report the numbers as presented
in [46] as they consolidate all AUC of related work in a consistent manner using
the same PCK thresholds. For [4], we recomputed the AUC for the same interval
based on the values provided by the authors.

5.3 Effect of Weak-Supervision

We first inspect how weak-supervision affects the performance of the model. We
decompose the 3D prediction error on the validation set of FH in terms of its 2D
(J2D) and depth component (Z) via the pinhole camera model Z−1KJ3D = J2D

and evaluate their individual error.
We train four models using different data sources. 1) Full 3D supervision on

both synthetic RHD and real FH (3DRHD + 3DFH), which serves as an upper
bound for when all 3D labels are available 2) Fully supervised on RHD which
constitutes our lower bound on accuracy (3DRHD) 3) Fully supervised on RHD
with naive application of weakly-supervised FH (+2DFH) 4) Like setting 3) but
adding our proposed constraints (+LBMC).

Table 2 shows the results. The model trained with full 3D supervision from
real and synthetic data reflects the best setting. Adding LBMC during training
slightly reduces 3D error (8.78 mm to 8.6 mm) primarily due to a regularization
effect. When the model is trained only on synthetic data (3DRHD) we observe
a significant rise (8.78mm to 30.82 mm) in 3D error due to the poor generaliza-
tion from synthetic data. When weak-supervision is provided from the real data
(+2DFH), the error is reduced (30.82 mm to 20.92 mm). However, inspecting this
more closely we observe that the improvement comes mainly from 2D error reduc-
tion (12.35px to 3.8px), whereas the depth component is improved marginally
(20.02 mm to 17.02 mm). Observing these samples qualitatively (Fig. 1), we see
that many do not adhere to biomechanical limits of the human hand. By penal-
izing such violations via our proposed losses LBMC to the weakly supervised
setting we see a significant improvement in 3D error (20.92mm to 13.78mm)
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which is due to improved depth accuracy (20.02mm to 9.97mm). Inspecting
(e.g. Fig. 1) closer, we see that the model predicts the correct 3D pose in chal-
lenging settings such as heavy self- and object occlusion, despite having never
seen such samples in 3D. Since LBMC describes a valid range, rather than a spe-
cific pose, slight deviations from the ground truth 3D pose have to be expected
which explains the small remaining quantitative gap from the fully supervised
model.

5.4 Ablation Study

We quantify the individual contributions of our proposals on the validation set of
FH and reproduce these results on HO-3D in supplementary. Each error metric
is computed for the root-relative 3D pose.

Table 3. Effect of Zroot refinement

Ablation Study EPE (mm) AUC ↑
mean ↓ median ↓

w/o refinement 11.20 8.62 0.95

w. refinement (ours) 9.76 8.14 0.97

Refinement Network. Table 3 shows
the impact of Zroot refinement (Sect. 3.2).
We train two models that include (w.
refinement) or omit (w/o refinement) the
refinement step, using full supervision on
FH (3DFH). Using refinement, the mean
error is reduced by 1.44mm which indicates that refining effectively reduces
outliers.

Fig. 4. Impact of our proposed losses. (a) All predicted 3D poses project to the same 2D
pose. (b) Ground-truth pose. (c) LBL results in poses that have correct bone lengths,
but may have invalid angles and palm structure. (d) Including LRB imposes a correct
palm, but the fingers are still articulated wrong. (e) Adding LA leads to the finger bones
having correct angles. The resulting hand is plausible and close to the ground-truth.
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Table 4. Effect of BMC components.

Ablation Study EPE (mm) AUC ↑
mean ↓ median ↓

3DRHD + 2DFH 20.92 16.93 0.81

+ LBL (ours) 17.58 14.81 0.88

+ LRB (ours) 15.48 13.49 0.91

+ LA (ours) 13.78 11.61 0.92

3DRHD + 3DFH 8.78 7.25 0.98

Components of BMC. In Table 4, we
perform a series of experiments where
we incrementally add each of the pro-
posed constraints. For 3D guidance, we
use the synthetic RHD and only use the
2D labels of FH. We first run the baseline
model trained only on this data (3DRHD+
2DFH). Next, we add the bone length loss
LBL, followed by the root bone loss LRB

and the angle loss LA. An upper bound is given by our model trained fully super-
vised on both datasets (3DRHD+3DFH). Each component contributes positively
towards the final performance, totalling a decrease of 6.24mm in mean error as
compared to our weakly-supervised baseline, significantly closing the gap to the
fully supervised upper bound. A qualitative assessment of the individual losses
can be seen in Fig. 4.

Table 5. Effect of angle constraints

Ablation Study EPE (mm) AUC ↑
mean ↓ median ↓

Independent 15.57 13.45 0.91

Dependent 13.78 11.61 0.92

Co-dependency of Angles. In Table 5,
we show the importance of modeling
the dependencies between the flexion and
abduction angle limits (Sect. 3), instead
of regarding them independently. Co-
dependent angle limits yield a decrease in
mean error of 1.40 mm.

Constraint Limits. In Table 6, we investigate the effect of the used limits
on the final performance, as one may have to resort to approximations. For
this, we instead take the hand parameters from RHD and perform the same
weakly-supervised experiment as before (+LBMC). Approximating the limits
from another dataset slightly increases the error, but still clearly outperforms
the 2D baseline.

5.5 Bootstrapping with Synthetic Data

Table 6. Effect of limits

Ablation Study EPE (mm) AUC ↑
mean ↓ median ↓

Approximated 16.14 13.93 0.90

Computed 13.78 11.61 0.92

We validate LBMC on the test set of
FH and HO-3D. We train the same four
models like in Sect. 5.3 using fully super-
vised RHD and weakly-supervised real
data R∈[FH,HO-3D].

For all results here we perform train-
ing on the full dataset and evaluate on
the official test split via the online submission system. Additionally, we evaluate
the cross-dataset performance on D+O dataset to show how our proposed con-
straints improves generalizability and compare with prior work [4,5,18,25,46].

FH. The second column of Table 7 shows the dataset performance for R =
FH. Training solely on RHD (3DRHD) performs the worst. Adding real data
(+2DFH) with 2D labels reduces the error, as we reduce the real/synthetic
domain gap. Including the proposed LBMC results in an accuracy boost.
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Table 7. Results on the respective test split, evaluated by the submission systems.
Training on RHD leads to poor accuracy on both FH and HO-3D. Adding weakly-
supervised data improves results, as expected. By including our proposed LBMC, our
model incurs a significant boost in accuracy, especially evident for the INTERP score.

Description R=FH R=HO-3D

mean ↓ AUC ↑ EXTRAP ↓ INTERP ↓
3DRHD + 3DR Fully sup.

upper bound
0.90 0.82 18.22 5.02

3DRHD Fully sup. lower
bound

1.60 0.69 20.84 33.57

+2DR + Weakly sup 1.26 0.75 19.57 25.16

+ LBMC (ours) + BMC 1.13 0.78 18.42 10.31

Table 8. Datasets used by prior work for evaluation on D+O. With solely fully-
supervised synthetic and weakly-supervised real data, we outperform recent works and
perform on par with [46]. All other works rely on full supervision from real and synthetic
data. *These works report unaligned results.

D+O Annotations used

Synth Real Scans AUC ↑
Ours (weakly sup.) 3D 2D only 0.82

Zhang (2019) [46] 3D 3D 3D 0.82

Boukhayma (2019) [5] 3D 3D 3D 0.76

Iqbal (2018)* [18] 3D 3D 0.67

Baek (2019)* [4] 3D 3D 3D 0.61

Zimmermann (2018)[48] 3D 3D 0.57

Spurr (2018) [34] 3D 3D 0.51

Mueller (2018)* [25] 3D Unlabeled 0.48

HO-3D. The third column of Table 7 shows a similar trend for R = HO-3D.
Most notably, our constraints yield a decrease of 14.85 mm for INTERP. This is
significantly larger than the relative decrease the 2D data adds (-8.41mm). For
EXTRAP, BMC yields an improvement of 1.15mm, which is close to the 1.27mm
gained from 2D data. This demonstrates that LBMC is beneficial in leveraging
2D data more effectively in unseen scenarios.

D+O. In Table 8 we demonstrate the cross-data performance on D+O for R
= FH. Most recent works have made use of MANO [4,5,46], leveraging a low-
dimensional embedding of highly detailed hand scans and require custom syn-
thetic data [4,5] to fit the shape. Using only fully supervised synthetic data and
weakly-supervised real data in conjunction with LBMC, we reach state-of-the-art.
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5.6 Bootstrapping with Real Data

We study the impact of our biomechanical constrains on reducing the number
of labeled samples required in scenarios where few real 3D labeled samples are
available. We train a model in a setting where a fraction of the data contains
the full 3D labels and the remainder contains only 2D supervision.

Fig. 5. Number of 3D samples required to
reach a certain aligned AUC on FH.

Here we choose R = FH, use
the entire training set and evaluate
on the test set. For each fraction
of fully labelled data we evaluate
two models. The first is trained on
both the fully and weakly labeled
samples. The second is trained
with the addition of our proposed
constraints. We show the results
in Fig. 5. For a given AUC, we
plot the number of labeled samples
required to reach it. We observe
that for lower labeling percent-
ages, the amount of labeled data
required is approximately half using LBMC. This showcases its effectiveness
in low label settings and demonstrates the decrease in requirement for fully
annotated training data.

6 Conclusion

We propose a set of fully differentiable biomechanical losses to more effectively
leverage weakly supervised data. Our method consists of a novel procedure to
encourage anatomically correct predictions of a backbone network via a set of
novel losses that penalize invalid bone length, joint angles as well as palmar
structures. Furthermore, we have experimentally shown that our constraints can
more effectively leverage weakly-supervised data, which show improvement on
both within- and cross-dataset performance. Our method reaches state-of-the-
art performance on the aligned D+O objective using 3D synthetic and 2D real
data and reduces the need of training data by half in low label settings on FH.

Acknowledgments. We are grateful to Christoph Gebhardt and Shoaib Ahmed Sid-
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