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Contemporary deep learning methods now provide excellent performance across
a variety of computer vision tasks when ample annotated training data is avail-
able. However, this performance often degrades rapidly if models are applied to
novel domains with very different data statistics from the training data, which
is a problem known as domain shift. Meanwhile, data collection and annotation
for every possible domain of application is expensive and sometimes impossible.
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Abstract. Domain adaptation (DA) is the topical problem of adapt-
ing models from labelled source datasets so that they perform well on
target datasets where only unlabelled or partially labelled data is avail-
able. Many methods have been proposed to address this problem through
different ways to minimise the domain shift between source and target
datasets. In this paper we take an orthogonal perspective and propose
a framework to further enhance performance by meta-learning the ini-
tial conditions of existing DA algorithms. This is challenging compared
to the more widely considered setting of few-shot meta-learning, due to
the length of the computation graph involved. Therefore we propose an
online shortest-path meta-learning framework that is both computation-
ally tractable and practically effective for improving DA performance.
We present variants for both multi-source unsupervised domain adapta-
tion (MSDA), and semi-supervised domain adaptation (SSDA). Impor-
tantly, our approach is agnostic to the base adaptation algorithm, and
can be applied to improve many techniques. Experimentally, we demon-
strate improvements on classic (DANN) and recent (MCD and MME)
techniques for MSDA and SSDA, and ultimately achieve state of the art
results on several DA benchmarks including the largest scale DomainNet.
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This challenge has motivated extensive study in the area of domain adaptation
(DA), which addresses training models that work well on a target domain using
only unlabelled or partially labelled target data from that domain together with
labelled data from a source domain.
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Fig. 1. Left: Exact meta-learning of initial condition with inner loop training DA
to convergence is intractable. Right: Online meta-learning alternates between meta-
optimization and domain adaptation.

Several variants of the domain adaptation problem have been studied. Single-
source domain adaptation (SDA) considers adaptation from a single source
domain [5,6], while multi-source domain adaptation (MSDA) considers improv-
ing cross-domain generalization by aggregating information across multiple
sources [35,47]. Unsupervised domain adaptation (UDA) learns solely from unla-
belled data in the target domain [16,43], while semi-supervised domain adap-
tation (SSDA) learns from a mixture of labelled and unlabelled target domain
data [9,10]. The main means of progress has been developing improved meth-
ods for aligning representations between source(s) and the target in order to
improve generalization. These methods span distribution alignment, for exam-
ple by maximum mean discrepancy (MMD) [27,48], domain adversarial training
[16,43], and cycle consistent image transformation [18,26].

In this paper we adopt a novel research perspective that is complementary
to all these existing methods. Rather than proposing a new domain adapta-
tion strategy, we study a meta-learning framework for improving these existing
adaptation algorithms. Meta-learning (a.k.a. learning to learn) has a long his-
tory [44,45], and has re-surged recently, especially due to its efficacy in improv-
ing few-shot deep learning [12,40,50]. Meta-learning pipelines aim to improve
learning by training some aspect of a learning algorithm such a comparison
metric [50], model optimizer [40] or model initialisation [12], so as to improve
outcomes according to some meta-objective such as few-shot learning efficacy
[12,40,50] or learning speed [1]. In this paper we provide a first attempt to
define a meta-learning framework for improving domain adaptive learning.

We take the perspective of meta-optimizing the initial condition [12,33] of
domain adaptive learning!. While there are several facets of algorithms that can
be meta-learned such as hyper-parameters [14] and learning rates [24]; these are
somewhat tied to the base learning algorithm (domain adaptive algorithm in our

! One may not think of domain adaptation as being sensitive to initial condition, but
given the lack of target domain supervision to guide learning, different initialization
can lead to a significant 10-15% difference in accuracy (see Supplementary material).
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case). In contrast, our framework is algorithm agnostic in that it can be used to
improve many existing gradient-based domain adaptation algorithms.
Furthermore we develop variants for both unsupervised multi-source adapta-
tion, as well as semi-supervised single source adaptation, thus providing broad
potential benefit to existing frameworks and application settings. In particular
we demonstrate application of our framework to the classic domain adversarial
neural network (DANN) [16] algorithm, as well as the recent maxmium-classifier
discrepancy (MCD) [43], and min-max entropy (MME) [41] algorithms.
Meta-learning can often be cleanly formalised as a bi-level optimization prob-
lem [14,39]: where an outer loop optimizes the meta-parameter of interest (such
as the initial condition in our case) with respect to some meta-loss (such as per-
formance on a validation set); and the inner loop runs the learning algorithm
conditioned on the chosen meta-parameter. This is tricky to apply directly in
a domain adaptation scenario however, because: (i) The computation graph of
the inner loop is typically long (unlike the popular few-shot meta-learning set-
ting [12]), making meta-optimization intractable, and (ii) Especially in unsu-
pervised domain adaptation, there is no labelled data in the target domain to
define a supervised learning loss for the outer-loop meta-objective. We surmount
these challenges by proposing a simple, fast and efficient meta-learning strategy
based on online shortest path gradient descent [36], and defining meta-learning
pipelines suited for meta-optimization of domain adaptation problems. Although
motivated by initial condition learning, our online algorithm ultimately has the
interpretation of intermittently performing meta-update(s) of the parameters in
order to achieve the best outcome from the following DA updates (Fig. 1).
Overall, our contributions are: (i) Introducing a meta-learning framework
suitable for both multi-source and semi-supervised domain adaptation settings,
(ii) We demonstrate the algorithm agnostic nature of our framework through
its application to several base domain adaptation methods including MME [41],
DANN [16] and MCD [43], (iii) Applying our meta-learner to these base adap-
tation methods, we achieve state of the art performance on several MSDA and
SSDA benchmarks, including the largest-scale DA benchmark, DomainNet [38].

2 Related Work

Single-Source Domain Adaptation. Single-source unsupervised domain
adaptation (SDA) is a well established area [5,6,16,19,27,29-31,43,48]. The-
oretical results have bound the cross-domain generalization error in terms of
domain divergence [4], and numerous algorithms have been proposed to reduce
the divergence between source and target features. Representative approaches
include minimising MMD distribution shift [27,48] or Wasserstein distance
[2,51], adversarial training [16,20,43] or alignment by cycle-consistent image
translation [18,26]. Given the difficulty of SDA, studies have considered exploit-
ing semi-supervised or multi-source adaptation where possible.

Semi-supervised Domain Adaptation. This setting assumes that besides
the labelled source and unlabelled target domain data, there are a few labelled
samples available in the target domain. Exploiting the few target labels allows
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better domain alignment compared to purely unsupervised approaches. Repre-
sentative approaches are based on regularization [9], subspace learning [54], label
smoothing [10] and entropy minimisation in the target domain [17]. The state
of the art method in this area, MME, extends the entropy minimisation idea to
adversarial entropy minimisation in a deep network setting [41].

Multi-source Domain Adaptation. This setting assumes there are multiple
labelled source domains for training. In deep learning, simply aggregating all
source domains data together often already improves performance due to big-
ger datasets learning a stronger representation. Theoretical results based on H-
divergence [4] can still apply after aggregation, and existing SDA methods that
attempt to reduce source-target divergence [5,16,43] can be used. Meanwhile,
new generalization bounds for MSDA have been derived [38,55], which motivate
algorithms that align amongst source domains as well as between source and
target. Nevertheless, practical deep network optimization is non-convex, and the
degree of alignment achieved depends on the details of the optimization strategy.
Therefore our paradigm of meta-learning the initial condition of optimization is
compatible with, and complementary to, all this prior work.

Meta-learning for Neural Networks. Meta-Learning (learning to learn) [44,
46] has experienced a recent resurgence. This has largely been driven by its
efficacy for few-shot deep learning via initial condition learning [12], optimizer
learning [40] and embedding learning [50]. More generally it has been applied to
improve optimization efficiency [1], reinforcement learning [37], gradient-based
hyperparameter optimization [14] and neural architecture search [25]. We start
from the perspective of MAML [12], in terms of focusing on learning initial
conditions of neural network optimization. However besides the different appli-
cation (domain adaptation vs few-shot learning), our resulting algorithm is very
different as we end up performing meta-optimization online while solving the
target task rather than in advance of solving it [12,39]. A few recent studies
also attempted online meta-learning [13,53], but these are designed specifically
to backprop through RL [53] or few-shot supervised [13] learning. Meta-learning
with domain adaptation in the inner loop has not been studied before now.

In terms of learning with multiple domains a few studies [3,11,21] have con-
sidered meta-learning for multi-source domain generalization, which evaluates
the ability of models to generalise directly without adaptation. In practice these
methods use supervised learning in their inner optimization. No meta-learning
method has been proposed for the domain adaptation problem addressed here.

3 Methodology

3.1 Background

Unsupervised Domain Adaptation. Domain adaptation techniques aim to
reduce the domain shift between source domain(s) Dg and target domain Dy, in
order that a model trained on labels from Dg performs well when deployed on
Dr. Commonly such algorithms train a model © with a loss L4, that breaks
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Algorithm 1. Meta-Update Initial Condition
Function UpdatelC(Og, Dir, Dyal, Linner, Louter) :

forj=1,2,...,J do // Inner-level optimization
0; =0;-1—aVe, ; Linner(0j-1,(Dur);)

end for

Oo = Og — aV e, Louter (0.7, Dyal) //Outer-level step

Output: Og

down into a term for supervised learning on the source domain Ly, and an
adaptation loss £, that attempts to align the target and source data

Euda(@7DSaﬁT) = ‘Csup(@aDS) + )“Ca(@7DSa§T)' (1)

We use notation Dg and Dy to indicate that the source and target domains
contain labelled and unlabelled data respectively. Many existing domain adap-
tation algorithms [16,38,43,48] fit into this template, differing in their definition
of the domain alignment loss £,. In the case of multi-source adaptation [38], Dg
may contain several source domains Dg = {D1, ..., Dy} and the first supervised
learning term Lg,, sums the performance on all of these.

Semi-supervised Domain Adaptation. In the SSDA setting [41], we assume
a sparse set of labelled target data D is provided along with a large set of
unlabelled target data Dy. The goal is to learn a model that fits both the source
and few-shot target labels Lg,,, while also aligning the unlabelled target data
to the source with an adaptation loss L,.

['ssda(@v DS; 5Ta DT) :Lsup (@7 DS) + Esup(Qa DT)

= (2)

+ )\‘Cd(@a DS) DT)
Several existing algorithms [16,28,41] fit this template and hence can potentially
be optimized by our framework.

Meta Learning Model Initialisation. The problem of meta-learning the
initial condition of an optimization can be seen as a bi-level optimization prob-
lem [14,39]. In this view there is a standard task-specific (inner) algorithm of
interest whose initial condition we wish to optimize, and an outer-level meta-
algorithm that optimizes that initial condition. This setup can be described as

Inner-level

—_—
0= argmin Eouter(cinner (@7 Dtr)a Dval) (3)
e

Outer-level

where Linner (0, Dy, ) denotes the standard loss of the base task-specific algorithm
on its training set. Louter (O*, Dya1) denotes the validation set loss after Lipner has
been optimized, (0* = argmin Linner), when starting from the initial condition
set by the outer optimization. The overall goal in Eq. 3 above is thus to set
the initial condition of base algorithm L., such that it achieves minimum
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Algorithm 2. Meta-Update Initial Condition: SPG

I')Jnction UpdateIC(@o, Dtr, Dval, Einner, Eouter) :
©o = copy(6o)

forj=1,2,...,Jdo B // Inner-level optimization
@j - @j—l - avéjilﬁinner(@j—h (Dtr)j)

end for

VErt =0, — O, //Outer-level step

Oy =6y — av@glcouter(@O - vs@h(?rt’ Dval)

Output: Og

loss on the validation set. When both losses are differentiable we can in principle
solve Eq. 3 by taking gradient steps on Loyuter as shown in Algorithm 1. However,
such exact meta-learning requires backpropagating through the path of the inner
optimization, which is costly and inaccurate for a long computation graph.

3.2 Meta-learning for Domain Adaptation

Overview. For meta domain adaptation, we would like to instantiate the initial
condition learning idea summarised earlier in Eq. 3 in order to initialize popular
domain adaptation algorithms such as [16,41,43] that can be represented as
problems in the form of Egs. 1 and 2, so as to maximise the resulting performance
in the target domain upon deployment. To this end we will introduce in the
following section appropriate definitions of the inner and outer tasks, as well as
a tractable optimization strategy.

Multi-source Domain Adaptation. Suppose we have an adequate algorithm
to optimize for initial conditions as required in Eq. 3. How could we apply this
idea to multi-source unsupervised domain adaptation setting, given that there
is no target domain training data to take the role of Dy, in providing the metric
for outer loop optimization of the initial condition? Our idea is that in the
multi-source domain adaptation setting, we can split available source domains
into disjoint meta-training and meta-testing domains Dg = D" U D2, where
we actually have labels for both. Now we can let Lo be an unsupervised
domain method [16,43] Linner := Luda, and ask it to adapt from meta-train to
the unlabelled meta-test domain. In the outer loop, we can then use the labels of
the meta-test domain as a validation set to evaluate the adaptation performance
via a supervised loss Loyter := Lsup, such as cross-entropy. Thus we aim to find
an initial condition for our base domain adaptation method L4, that enables it
to adapt effectively between source domains

—mte

6O = argmin Z Leup(Luaa(DE", Dy 560y), D) (4)
GODg‘tr,DthNDS

where we use L(+;0q) to denote optimizing a loss from starting point ©y. This
initial condition could be optimized by taking gradient descent steps on the outer
supervised loss using UpdatelC from Algorithm 1. The resulting Oy is suited to
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adapting between all source domains hence should also be good for adapting to
the target domain. Thus we would finally instantiate the same UDA algorithm
using the learned initial condition, but this time between the full set of source
domains, and the true unlabelled target domain Dr.

6= argmin Luda(DSa5T§ @0) (5)
o

An Online Solution. While conceptually simple, the problem with the direct
approach above is that it requires completing domain-adaptive training multiple
times in the inner optimization. Instead we propose to perform online meta-
learning [53,56] by alternating between steps of meta-optimization of Eq. 4 and
steps on the final unsupervised domain adaptation problem in Eq. 6. That is,
we iterate

—mte

© = UpdatelC(O, (DF*")U (Dg ), (DE*), Ludas Lsup)

s (6)
O =0 —aVeLua(©,(Ds), (Dr))

where (D) denotes minibatch sampling from the corresponding dataset, and we
call UpdateIC(-) with a small number of inner-loop optimizations such as J = 1.

Our method, summarised in Fig. 1 and Algorithm 3, performs meta-learning
online, by simultaneously solving the meta-objective and the target task. It trans-
lates to tuning the initial condition between taking optimization steps on the
target DA task. This avoids the intractability and instability of backpropagating
through the long computational graph in the exact approach that meta-optimizes
Oy to completion before doing DA. Online meta-learning is also potentially
advantageous in practice due to improving optimization throughout training
rather than only at the start — c.f. the vanilla exact method, where the impact
of the initial condition on the final outcome is very indirect.

Semi-supervised Domain Adaptation. We next consider how to adapt the
ideas introduced previously to the semi-supervised domain adaptation setting.
In the MSDA setting above, we divided source domains into meta-train and
meta-test, used unlabeled data from meta test to drive adaptation, and then
used meta-test labels to validate the adaptation performance. In SSDA we do
not have multiple source domains with which to use such a meta-train/meta-test
split strategy, but we do have a small amount of labeled data in the target domain
that we can use to validate adaptation performance and drive initial condition
optimization. By analogy to Eq. 4, we can aim to find the initial condition for
the unsupervised component L4, of an SSDA method. But now we can use the
few labelled examples D to validate the adaptation in the outer loop.

6y = argomin Z Esup(ﬁuda(Ds,fT; ©y), Dr) (7)
o

The learned initial condition can then be used to instantiate the final semi-
supervised domain adaptive training.

e = argmin Essda(@v Ds,ﬁT, DT; @0) (8)
e
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Algorithm 3. Online Meta learning: Multi-Source DA

Input: N source domains Dg = [Dl7 Do,..., DN] and unlabelled target domain Dr.
Initialise: Model parameters ©, learning rate «, task loss Lesup, UDA method Luqa-
fori=1,2,...,1do

© = UpdateIC(0, DX UDS", DE* Luda, Loup)

fors=1,2,...,Sdo

O =0 — aVeLwa(O,(Ds)i, (Dr)i) // Domain Adaptation Training

end for
end for
Output: ©

An Online Solution. The exact meta SSDA approach above suffers from the
same limitations as exact MetaMSDA. So we again apply online meta-learning
by iterating between meta-optimization of Eq. 7 and the final supervised domain
adaptation problem of Eq. 9.

e = UpdateIC(@, (DS) U (51“), (DT), Luda, Esup)

— 9
@ = 8 - av@‘assda(@7DSaDT7DT; 8) ( )

The final procedure is summarized in Algorithm 4.

3.3 Shortest Path Optimization

Meta-learning Model Initialisation. As described so far, our meta-learning
approach to domain adaptation relies on the ability meta-optimize initial con-
ditions using gradient descent steps as described in Algorithm 1. Such steps
evaluate a meta-gradient that depends on the parameter ©* output by the base
domain adaptation algorithm

Meta Gradient

9O = 90 -« v(~)£sup(9*7 Dval)

(10)

Evaluating the meta-gradient directly is impractical because: (i) The inner loop
that runs the base domain adaptation algorithm may take multiple gradient
descent iterations j = 1...J. This will trigger a large chain of higher-order gra-
dients Vo, Linner(*)s---» Vo,_, Linner(+). (ii) More fundamentally, several state
of the art domain adaptation algorithms [41,43] use multiple optimization steps
when making updates on Linner- For example, to adversarially train the deep fea-
ture extractor and classifier modules of the model in @. Taking gradient steps
on Louter (0*) thus triggers higher-order gradients, even if one only takes a single
step J = 1 of domain adaptation optimization.

Shortest Path Optimization. To obtain the meta gradient in Eq. 10 effi-
ciently, we use shortest-path gradient (SPG) [36]. Before optimising the innner
loop, we copy parameters Oy as @y and use Oy in the inner-level algorithm.
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Algorithm 4. Online Meta Learning: Semi-Supervised DA

Input: N source domains Dg = [D1, Ds,...,Dn], labelled and unlabelled target
domain data Dz and Dr.
Initialise: Model params O, learning rate o, task loss Leup, UDA method Luda-
fori=1,2,...,1do

O = UpdateIC(@, Ds U ﬁT, Dr, Luda, ﬁsup)

fors=1,2,...,Sdo

0=0-aVe (Lsup(O, (DPr)i)+Luda(O, (Ds)i, (Dr)i))

// Domain Adaptation Training

end for
end for
Output: 6

Then, after finishing the inner loop we get the shortest-path gradient between
O and 6.

Vet =9, -6, (11)
Each meta-gradient step (Eq. 10) is then approximated as
By =6y — av@o£$ﬂp(90 - vs(;l(?rt» Dval) (12)

Summary. We now have an efficient implementation of UpdatelC for updating

initial conditions as summarised in Algorithm 2. This shortest path approxi-
mation has the advantage of allowing efficient initial condition updates both
for multiple iterations of inner loop optimization J > 1, as well as for inner
loop domain adaptation algorithms that use multiple steps [41,43]. We use this
implementation for the MSDA and SSDA methods in Algorithms 3 and 4.

4 Experiments

Datasets. We evaluate our method on several multi-source domain adaptation
benchmarks including PACS [22], Office-Home [49] and DomainNet [38]; as well
as on the semi-supervised setting of Office-Home and DomainNet.

Base Domain Adaptation Algorithms and Ablation. Our Meta-DA
framework is designed to complement existing base domain adaptation algo-
rithms. We evaluate it in conjunction with Domain Adversarial Neural Networks
(DANN, [16]) — as a representative classic approach to deep domain adaptation;
as well as Maximum Classifier Discrepancy (MCD, [43]) and MinMax Entropy
(MME, [41]) — as examples of state of the art multi-source and semi-supervised
domain adaptation algorithms respectively. Our goal is to evaluate whether our
Meta-DA framework can improve these base learners. We note that the MCD
algorithm has two variants: (1) A multi-step variant that alternates between
updating the classifiers and several steps of updating the feature extractor and
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(2) A one-step variant that uses a gradient reversal [16] layer so that classifier
and feature extractor can be updated in a single gradient step. We evaluate both
of these. Sequential Meta-Learning: As an ablation, we also consider an alter-
native fast meta-learning approach that performs all meta-updates at the start
of learning, before doing DA; rather than performing meta-updates online with
DA as in our proposed Meta-DA algorithms.

4.1 Multi-source Domain Adaptation

PACS: Dataset. PACS [22] was initially proposed for domain generalization
and had been subsequently been re-purposed [7,34] for multi-source domain
adaptation. This dataset has four diverse domains: (A)rt painting, (C)artoon,
(P)hoto and (S)ketch with seven object categories ‘dog’, ‘elephant’, ‘giraffe’,
‘guitar’, ‘house’, ‘horse’ and ‘person’ with 9991 images in total. Setting. We
follow the setting in [7] and perform leave-one-domain out evaluation, setting
each domain as the adaptation target in turn. As per [7], we use the ImageNet
pre-trained ResNet-18 as our feature extractor for fair comparison. We train
with M-SGD (batch size = 32, learning rate = 2 x 1072, momentum = 0.9,
weight decay = 10~%). All the models are trained for 5k iterations before testing.
Results. From the results in Table 1, we can see that: (i) Several recent methods
with published results on PACS achieve similar performance, with JiGen [7]

Table 1. Multi-source DA results on PACS. Bold: Best. Red: Second Best.

Method C,P,S— A A,P,S—C A, C,S—P A, C,P— S| Ave.

Source-only 77.85 74.86 95.73 67.74 79.05
DIAL [34] 87.30 85.50 97.00 66.80 84.15
DDiscovery [34] 87.70 86.90 97.00 69.60 85.30
JiGen [7] 84.88 81.07 97.96 79.05 85.74
DANN [16] 84.77 83.83 96.29 69.61 83.62
Meta-DANN (Ours) 87.30 84.90 96.89 73.22 85.58
MCD (n = 4) [43] 86.32 84.51 97.31 71.01 84.79
Meta-MCD (n = 4) (Ours) | 87.40 86.18 97.13 78.26 87.24
MCD (os) [43] 85.99 82.89 97.24 74.49 85.15
Meta-MCD (o0s) (Ours) 86.67 84.94 96.23 77.70 86.39

Table 2. Multi-source domain adaptation on office-home.

Method C,Pb,R—-A APR—C AJCCR—P A C, P+— R | Ave.
Source-only 67.04 56.04 80.74 82.86 71.67
DSBN [8] - - - 83.00 -
M3SDA-3 [38] 67.20 58.58 79.05 81.18 71.50
DANN [16] 68.23 58.90 79.70 83.08 72.48
Meta-DANN (Ours) | 70.62 59.13 80.24 82.79 73.20
MCD [43] 69.84 59.84 80.92 82.67 73.32
Meta-MCD (Ours) 70.21 60.50 81.17 83.43 73.83
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performing best. We additionally evaluate DANN and MCD including one-step
MCD (os) and multi-step MCD (n = 4) variants, and find that one-step MCD
performs similarly to JiGen. (ii) Applying our Meta-DA framework to DANN
and MCD boosts all three base domain adaptation methods by 1.96%, 2.5%
and 1.2% respectively. (iii) In particular, our Meta-MCD surpasses the previous
state of the art performance set by JiGen. Together these results show the broad
applicability and absolute efficacy of our method. Based on these results we focus
on the better performing single-step MCD in the following evaluations.

Office-Home: Dataset and Settings. Office-Home was initially proposed
for the single-source domain adaptation, containing = 15,500 images from four
domains ‘artistic’, ‘clip art’, ‘product’ and ‘real-world’ with 65 different cate-
gories. We follow the setting in [8] and use ImageNet pretrained ResNet-50 as
our backbone. We train all models with M-SGD (batch size = 32, learning rate
= 1073, momentum = 0.9 and weight decay = 10~%) for 3k iterations. Results.
From Table 2, we see that MCD achieves the best performance among the base-
lines. Applying our meta-learning framework improves both baselines by a small
amount, and Meta-MCD achieves state-of-the-art performance on this bench-
mark.

Table 3. Multi-source domain adaptation on DomainNet dataset.

inf,pnt,qdr, clp,pnt,qdr, clp,inf,qdr, clp,inf,qdr  clp,inf,qdr, clp,inf,qdr,

Method rel,skt — clp rel,skt — inf rel,;skt — pnt rel,skt — qdr qdr,skt — rel qdr,rel — skt Ave.
Source-only 47.6+£0.52  13.0+£0.41  38.1+0.45 13.3+£0.39 51.94+0.85 33.740.54 | 32.940.54
2DAN [27] 45.440.49  12.840.86  36.2+0.58 15.3+£0.37  48.6+0.72 34.0+0.54 | 32.140.59
gRTN [29] 44.2+0.57  12.6+£0.73  35.3+£0.59 14.6+0.76 48.44+0.67 31.7+0.73 | 31.14+0.68
EJAN [30] 40.940.43  11.1£0.61  35.4+0.50 12.1+£0.67  45.840.59 32.3+0.63 | 29.64+0.57
S DANN [16] 45.5+£0.59  13.1+0.72  37.0+0.69 13.2+£0.77  48.940.65 31.8+0.62 | 32.61+0.68
EADDA [47) 47.5+£0.76  11.4+0.67  36.74+0.53 14.7£0.50 49.14+0.82 33.5+0.49 | 32.240.63
~SE [15] 24.7+0.32 3.940.47  12.7£0.35 7.1£0.46  22.840.51 9.14+0.49 | 16.1£0.43
.EMCD [43] 54.3+£0.64  22.14+0.70  45.7+0.63 7.6+£0.49  58.4£0.65 43.5+0.57 | 38.5+0.61
ZDCTN [52] 48.6+£0.73  23.5+0.59  48.84+0.63 7.240.46  53.54+0.56  47.3+£0.47 | 38.2+0.57
>MS'SDA—ﬂ [38] 58.6+0.53  26.0+£0.89  52.34+0.55 6.3+£0.58  62.7+0.51 49.5+0.76 | 42.6+0.64
o« Source-only 56.58+0.16 18.97+0.10 45.95+0.16 11.52+0.15 60.79+0.17  43.70+0.03 | 39.58+0.09
7 DANN [16] 56.344+0.12 18.66+0.09 47.094£0.08 12.27+0.12  61.3440.07 45.26+0.34 | 40.16+0.12
> Meta-DANN (Ours)| 57.26£0.17 19.24£0.09 47.29+0.16 13.38+0.15 61.21£0.13  45.53+0.17 | 40.65%0.04
EMCD [43] 57.64+£0.28 18.71+£0.10 47.82+0.09 12.64+0.16 61.69+0.10 45.61+0.01 | 40.69+0.05
Meta-MCD (Ours) |58.37+0.21 19.09+0.08 47.63+0.12 13.70+0.14 61.30+0.18 45.90+0.18 |41.00-0.05
~ Source-only 61.50£0.06 21.10+0.07 49.13+0.06 13.03+£0.18 64.14+0.10 48.194+0.12 | 42.85+0.05
‘E DANN [16] 60.95+0.05 20.914+0.11 50.35+0.08 14.53+0.06 64.73+0.02  49.88+0.27 | 43.56+0.04
= Meta-DANN (Ours)| 61.39+£0.03 21.53+£0.14 50.49+0.29 15.31+0.28 64.33+£0.09  49.87+0.25 | 43.8240.07
$MCD [43] 62.21+0.12 20.49+0.08 50.87+0.10 14.66+0.30 64.784+0.06 50.10+0.11 | 43.85+0.05
Meta-MCD (Ours) |62.81+0.22 21.37+0.07 50.53+0.08 15.47+0.22 64.58+0.16 50.40+0.12 44.19+0.07

DomainNet: Dataset. DomainNet is a recently benchmark [38] for multi-
source domain adaptation in object recognition. It is the largest-scale DA bench-
mark so far, with ~ 0.6 m images across six domains and 345 categories.

Settings. We follow the official train/test split protocol [38]2. Various feature
extraction backbones were used in the original paper [38], making it hard to

2 Other settings such as optimizer, iterations and data augmentation are not clearly
stated in [38], making it hard to replicate their results.
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Table 4. Semi-supervised domain adaptation: Office-home.

Method R—C P—-C P—-A A—C C—A Ave.
AlexNet | S+T 44.6 444 361 388 375  40.3
DANN [16] 47.2 44.4 36.1 39.8 38.6 41.2
ADR [42] 45.0 38.9 36.3 40.0 37.3 39.5
CDAN [28] 41.8 35.8 32.0 34.5 27.9 34.4
ENT [17] 44.9 41.2 34.6 37.8 31.8 38.1
MME [41] 51.2 47.2 40.7 43.8 44.7 455
Meta-MME (Ours) | 50.3 48.3 40.3 44.5 44.5 45.6
ResNet-34 | S+T 57.4 54.5 59.9 56.2 57.6 57.1
ENT [17] 62.8 61.8 65.4 62.1 65.8 63.6
MME [41] 64.9 63.8  65.0 63.0 66.6 64.7
Meta-MME (Ours) | 65.2 64.5 66.7 63.3 67.5 654
Table 5. Semi-supervised DA on DomainNet.
Method R——CR—PP—-CC—SS—PR—S P~ R|Ave.
S+T 471 45.0 44.9 36.4 38.4 33.3 58.7 |43.4  ins :

+ DANNJ[16]|46.1 43.8 41.0 36.5 389 33.4 573 [424  §no e e e .

Z ADR [42] |46.2 44.4 43.6 364 389 324 57.3 |427 % — Tt Accurmey o o L

§ CDAN [28]46.8 45.0 42.3 29.5 33.7 31.3 58.7 |41.0 et >

< ENT [17] |45.5 42.6 40.4 31.1 29.6 29.6 60.0 |39.8
MME [41] [55.6 49.0 51.7 39.4 43.0 37.9 60.7 482
Meta- 56.4 50.2 51.9 39.6 43.7 38.7 60.7 48.8 I»

(Ours) b e Ten Acracy ofSequenti L
SHT 600 622 594 550 595 501 73.9 [60.0 Ll —revemmes |

% DANN [16]59.8 62.8 59.6 554 59.9 549 722 [60.7 Faing rerson

< ADR [42] |60.7 61.9 60.7 544 59.9 51.1 742 [60.4

Z CDAN [28]/69.0 67.3 684 57.8 653 59.0 78.5 |66.5 Fig.2. Vanilla DA vs

S ENT [17] |71.0 69.2 71.1 60.0 62.1 61.1 78.6 |67.6 ;

& MME [41]|722 69.7 717 61.8 66.8 61.9 785 (68.9 o and - online meta
Meta-  |73.5 70.3 72.8 62.8 68.0 63.8 79.2 70.1 (T:MSDA, B:SSDA).
MME
(Ours)

compare results. We use ImageNet pre-trained ResNet-18 and ResNet-34 for our
own implementations to facilitate direct comparison. We use M-SGD to train all
the competitors (batch size = 32, learning rate = 0.001, momentum = 0.9, weight
decay = 0.0001) for 10k iterations®. We re-train the model three times to gener-
ate standard deviations. Results. From the results in Table 3, we can see that:
(i) The top group of results from [38] show that the dataset is a much more chal-
lenging domain adaptation benchmark than previous ones. Most existing domain
adaptation methods (typically tuned on small-scale benchmarks) fail to improve
over the source-only baseline according to the results in [38]. (ii) The middle

3 We tried training with up to 50k, and found it did not lead to clear improvement.
So, we train all models for 10k iterations to minimise cost.
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Table 6. Comparison between DG and DA methods on PACS.

Setting | Method C,P,S—A A, P,S—>C A, C, S—P A, C, P—S| Ave.
DG | MetaReg [3] | 83.7 77.2 95.5 70.3 81.7
Epi-FCR [23] | 82.1 77.0 93.9 73.0 81.5
MASF [11] | 80.3 77.2 95.0 71.7 81.0
DA | MCD [43]  86.3 84.5 97.3 71.0 84.8
Meta-MCD | 87.4 86.2 97.1 78.3 87.2

group of ResNet-18 results show that our MCD experiment achieves comparable
results to those in [38]. (iii) Our Meta-MCD and Meta-DANN methods provide
a small but consistent improvement over the corresponding MCD and DANN
baselines for both ResNet-18 and ResNet-34 backbones. While the improvement
margins are relatively small, this is a significant outcome as the results show
that the base DA methods already struggle to make a large improvement over
the source-only baseline when using ResNet-18/34; and also the multi-run stan-
dard deviation is small compared to the margins. (iv) Overall our Meta-MCD
achieves state-of-the-art performance on the benchmark by a small margin.

4.2 Semi-supervised Domain Adaptation

Office-Home: Setting. We follow the setting in [41]. We focus on 3-shot learn-
ing in the target domain (three annotated examples only per category), and focus
on the five most difficult source-target domain pairs. We use the ImageNet pre-
trained AlexNet and ResNet-34 as backbone models. We train all the models
with M-SGD, with batch size 24 for labelled source and target domains and
48 for the unlabelled target as in [41], learning rate is 1072 and 102 for the
fully-connected and the rest trainable layers. We also use horizontal-flipping and
random-cropping data augmentation for training images. Results. From the
results in Table 4, we can see that our Meta-MME does not impact performance
on AlexNet. However, for a modern ResNet-34 architecture, Meta-MME pro-
vides a visible ~0.8% accuracy gain over the MME baseline, which results in the
state-of-the-art performance of SSDA on this benchmark.

Test Accuracy
074
o 65
o8
o.s0
0.2
o34
026
018
o.10
o.o2

Test accuracy on target. DA loss, Lg. Supervised loss Lgup.-

Fig. 3. Performance across weight space slices defined by a common initial condition
©p and MCD and Meta-MCD solutions (Oneta-mcp and Gvep respectively). MSDA
PACS benchmark with Sketch target.
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DomainNet: Settings. We evaluate DomainNet for 1-1 few-shot domain adap-
tation as in [41]. We evaluate both AlexNet and modern ResNet-34 backbones,
and apply our meta-learning method on MME. As per [41], we train our models
using M-SGD where the initial learning rate is 0.01 for the fully-connected layers
and 0.001 for the rest of trainable layers. During the training we use the anneal-
ing strategy in [16] to decay the learning rate, and use the same batch size as [41].
Results. From the results in Table 5, we can see our Meta-MME improves on
the accuracy of the base MME algorithm in all pairwise transfer choices, and
also for both backbones. These results show the consistent effectiveness of our
method, as well as improving state-of-the-art for DomainNet SSDA.

4.3 Further Analysis

Discussion. Our final online algorithm can be understood as performing DA
with periodic meta-updates that adjust parameters to optimize the impact of
the following DA steps. From the perspective of any given DA step, the role of
the preceding meta-update is to tune its initial condition.

Non-meta vs Sequential vs Online Meta. This work is the first to propose
meta-learning to improve domain adaptation, and in particular to contribute an
efficient and effective online meta-learning algorithm for initial condition train-
ing. Exact meta learning is intractable to compare. However, this section we
compare our online meta update with the alternative sequential approximation,
and non-meta alternatives for both MSDA and SSDA using A, C, P—S and
R — C as examples. For fair comparison, we control the number of meta-updates
(UpdatelC) and base DA updates available to both sequential and online meta-
learning methods to the same amount. Figure 2 shows that: (1) Sequential meta-
learning method already improves the performance on the target domain com-
paring to vanilla domain adaptation, which confirms the potential for improve-
ment by refining model initialization. (2) The sequential strategy has a slight
advantage early in DA training, which makes sense, as all meta-updates occur in
advance. But overall our online method that interleaves meta-updates and DA
updates leads to higher test accuracy.

Computational Cost. Our Meta-DA imposes only a small computational
overhead over the base DA algorithm. For example, comparing Meta-MCD
and MCD on ResNet-34 DomainNet, the time per iteration is 2.96s vs 2.49s
respectively?.

Weight-Space Illustration. To investigate our method’s mechanism, we train
MCD and Meta-MCD from a common initial condition on MSDA PACS when
‘Sketch’ is the target domain. We use the initial condition @y and two different
solutions (Opeta-mcp and Onep) to define a plane in weight-space and colour
it according to the performance at each point. We can see from Fig. 3(a) that
Meta-MCD finds a solution with greater test accuracy. Figures 3(b) and (c)
break down the training loss components. We can see that, in this slice, both
methods managed to minimize MCD’s adaptation (classifier discrepancy) loss

4 Using GeForce RTX 2080 GPU. Xeon Gold 6130 CPU @ 2.10GHz.
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L, adequately, but MCD failed to minimize the supervised loss as well as Meta-
MCD (Ometa-McD is closer to the minima than @yep). Note that both methods
were trained to convergence in generating these solutions. This suggests that
Meta-MCD’s meta-optimization step using meta-train/meta-test splits materi-
ally benefits the optimization dynamics of the downstream MSDA task.

Model Agnostic. We emphasize that, although we focused on DANN, MCD
and MME, our MetaDA framework can apply to any base DA algorithm. Sup-
plementary C shows some results for JiGen and M?SDA algorithms.

Comparison Between DA and DG Methods. As a highly related topical
problem to domain adaptation, domain generalization assumes no access to the
target domain data during the training. DA and DG methods are rarely directly
compared. Now we compare our Meta-MCD and MCD with some state of the
art DG methods on PACS as shown in Table 6. From the results, we can see that
generally DA methods outperform the DG methods with a noticeable margin,
which is expected as DA methods ‘see’ the target domain data at training.

5 Conclusion

We proposed a meta-learning pipeline to improve domain adaptation by initial
condition optimization. Our online shortest-path solution is efficient and effec-
tive, and provides a consistent boost to several domain adaptation algorithms,
improving state of the art in both multi-source and semi-supervised settings.
Our approach is agnostic to the base adaptation method, and can potentially be
used to improve many DA algorithms that fit a very general template. In future
we aim to meta-learn other DA hyper-parameters beyond initial conditions.

A Short-Path Gradient Descent

Optimizing Eq. 3 naively by Algorithm 1 would be costly and ineffective. It
is costly because in the case of domain adaptation (unlike for example, few-
shot learning [12], the inner loop requires many iterations). So back-propagating
through the whole optimization path to update the initial @ in the outer loop
will produce multiple high-order gradients. For example, if the inner loop applies
j iterations, we will have

9(1) — @ — OZVQ(O)ACuda(')

O =0U=Y _ aVgi-1) Ludal.)
then the outer loop will update the initial condition as
Meta Gradient
(14)

0" =0 — aVeLep(@Y), Dya)

where higher-order gradient will be required for all items v_)Luda(.),..,
V(-1 Luaa() in the update of Eq. 14.
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One intuitive way of eliminating higher-order gradients for computing Eq. 14
is making Vg Luda(.),---, Voiu-1) Ludal(.) constant during the optimization.
Then, Eq. 14 is equivalent to

First-order Meta Gradient

O"=60 -« v@(j)ﬁsup(e(j)v Dval)

(15)

However, in order to compute Eq. 15, one still needs to store the optimization
path of Eq. 13 in memory and back-propagate through it to optimize @, which
requires high computational load. Therefore, we propose a practical solution an
iterative meta-learning algorithm to iteratively optimize the model parameters
during training.

Shortest Path Optimization. To obtain the meta gradient in Eq. 15 in a more
efficient way, we propose a more scalable and efficient meta-learning method

using shortest-path gradient (S-P.G.) [36]. Before the optimization of Eq. 13, we
copy the parameters © as O and use O©) in the inner-level algorithm.

@(O) — aV@(o)ﬁuda(@ Dtr)
ou =¢{ .. (16)
é(j_l) - OéV@(o) Euda<é(j_1)7 Dtr)

then, after finishing the optlmlzatlon in Eq. 16, we can get the shortest-path

gradient between two items @ and O;.
vshort 6 — @(] (17)

Different from Eq. 15, we use this shortest-path gradient V%lort and initial
parameter © to compute Lgp(.) as,

Lsup(0i = V& Dyat) (18)
Then, one-step meta update of Eq. 18 will be,
0; = 0; — aVe, Lup(0; — VE D)
=0; — aVe,_ygor Laup(0; — V& Dyal) (19)

(9)

= 9 aV@ (]),Csup(@ Dval)

Effectiveness: We can see that one update of Eq. 19 corresponds to that of
Eq. 15, which proves that using shortest-path optimization has the equivalent
effectiveness to the first-order meta optimization. Scalability /Efficiency: The
computation memory of the first-order meta-learning increases linearly with the
inner-loop update steps, which is constrained by the total GPU memory. How-
ever, for the shortest-path optimization, storing the optimization graph is no
longer necessary, which makes it scalable and efficient. We also experimentally
evaluate that one step shortest-path optimization is 7x faster than one-step first-
order meta optimization in our setting. The overall algorithm flow is shown in
Algorithm 2.
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B  Additional Illustrative Schematics

To better explain the contrast between our online meta-learning domain adapta-
tion approach with the sequential meta-learning approach, we add a schematic
illustration in Figure 4. The main difference between sequential and online meta-
learning approaches is how do we distribute the meta and DA updates. Sequen-
tial meta-learning approach performs meta updates and DA updates sequen-
tially. And online meta-learning conducts the alternative meta and DA updates
throughout the whole training procedure.

C Additional Experiments

Visualization of the Learned Features. We visualize the learned features
of MCD and Meta-MCD on PACS when sketch is the target domain as shown
in Fig. 5. We can see that both MCD and Meta-MCD can learn discriminative
features. However, the features learned by Meta-MCD is more separable than
vanilla MCD. This explains why our Meta-MCD performs better than the vanilla
MCD method.

Effect of Varying S. Our online meta-learning method has iteration hyper-
parameters S and J. We fix J = 1 throughout, and analyze the effect of varying
S here using the DomainNet MSDA experiment with ResNet-18. The result in
Table 7 shows that MetaDA is rather insensitive to this hyperparameter.

20

[Sequential Meta Update for DA ._ \

£4a(602,

— DA Update ® Vanilla Init ® Online Meta Init \
— Meta Update ® Sequential Meta Init % Solution

Fig. 4. Illustrative schematics of sequential and online meta domain adaptation. Left:
Optimization paths of different approaches on domain adaptation loss (shading). (Solid
line) Vanilla gradient descent on a DA objective from a fixed start point. (Multi-
segment line) Online meta-learning iterates meta and gradient descent updates. (Two
segment line) Sequential meta-learning provides an alternative approximation: update
initial condition, then perform gradient descent. Right: (Top) Sequential meta-learning
performs meta updates and DA updates sequentially. (Bottom) Online meta-learning
alternates between meta-optimization and domain adaptation.
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Varying the Number of Source Domains in MSDA. For multi-source
DA, the performance of both Meta-DA and the baselines is expected to drop
with fewer sources (same for SSDA if fewer labeled target domain points). To
disentangle the impact of the number of sources for baseline vs Meta-DA we
compare MSDA by Meta-MCD on PACS with 2 vs 3 sources. The results for
Meta-MCD vs vanilla MCD are 82.30% vs 80.07% (two source, gap 2.23%) and
87.24% vs 84.79% (three source, gap 2.45%). Meta-DA margin is similar with
reduction of domains. Most difference is accounted for by the impact on the base
DA algorithm.

Fig. 5. t-SNE [32] visualization of learned MCD (left) and Meta-MCD (right) features
on PACS (sketch as target domain). Different colors indicate different categories.

Table 7. MetaDA is insensitive to the update ratio hyperparameter S — Results for
MSDA ResNet-18 performance on DomainNet.

Method Meta-MCD (S = 3) | Meta-MCD (S = 5) | Meta-MCD (S = 10)
DomainNet (ave.) | 41.02 40.98 40.93

Table 8. Test accuracy on PACS. * our run.

Method C,P,S—=A|A P, S—C|A C,S—P|A C,P—S|Ave.
JiGen [7] 84.88 81.07 97.96 79.05 85.74
JiGen* 81.54 85.88 97.25 68.21 83.22
Meta-JiGen | 85.21 86.13 97.31 77.91 86.64 (+3.42)

Other Base DA Methods. Besides the base DA methods evaluated in the
main paper (DANN, MCD and MME), our method is applicable to any base
domain adaptation method. We use the published code of JiGen® and M3SDAS,
and further apply our Meta-DA on the existing code. The results are shown in

5 https://github.com/fmcarlucci/JigenDG.
5 https://github.com/VisionLearningGroup/VisionLearningGroup.github.io.
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Table 9. Test accuracy on Digit-Five.

Method mt, up, |mm, up, | mt, mm, | mt, mm, | mt, mm, | Ave.

SV, sy — |sv, Sy — |sv, sy — | up, sy up, sv

mm mt up — SV —8y
M?3SDA-3 [38] |72.82 98.43 96.14 81.32 89.58 87.65
Meta-M3SDA-3 | 71.73 98.79 97.80 84.81 91.12 88.85 (+1.2)

Table 8 and 9. From the results, we can see that our Meta-JiGen and Meta-
M3SDA-3 improves over the base methods by 3.42% and 1.2% accuracy respec-
tively, which confirms our Meta-DA’s generality. The reason we excluded these
from the main results is that: (i) Re-running JiGen’s published code on our com-
pute environment failed to replicate their published numbers. (ii) M3SDA as a
base algorithm is very slow to run comprehensive experiments on. Nevertheless,
these results provide further evidence that Meta-DA can be a useful module
going forward to plug in and improve future new base DA methods as well as
those evaluated here.

Table 10. Test accuracy of MCD on PACS (sketch) with different initialization.

Classifier Init | Kaiming U | Xavier U Kaiming N Xavier N/
74.49 73.02 64.27 73.66

Feat. Extr. Init | No perturb | + € € A(0,0.01) | + € € N (0,0.02) | + € € N(0,0.03)
74.49 71.85 59.99 52.18

Initialization Dependence of Domain Adaptation. One may not think
of domain adaptation as being sensitive to initial condition, but given the lack
of target domain supervision to guide learning, different initialization can lead
to a significant difference in accuracy. To illustrate this we re-ran MCD-based
DA on PACS with sketch target using different initializations. From the results
in Table 10, we can see that both different classic initialization heuristics, and
simple perturbation of a given initial condition with noise can lead to significant
differences in final performance. This confirms that studying methods for tuning
initialization provide a valid research direction for advancing DA performance.
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