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Abstract. Satisfiability Modulo Theories (SMT) is a well-established
methodology that generalises propositional satisfiability (SAT) by adding
support for a variety of theories such as integer arithmetic and bit-vector
operations. SMT solvers have made rapid progress in recent years. In
part, the efficiency of modern SMT solvers derives from the use of spe-
cialised decision procedures for each theory. In this paper we explore
how the Essence Prime constraint modelling language can be translated
to the standard SMT-LIB language. We target four theories: bit-vectors
(QF BV), linear integer arithmetic (QF LIA), non-linear integer arith-
metic (QF NIA), and integer difference logic (QF IDL). The encodings
are implemented in the constraint modelling tool Savile Row. In an exten-
sive set of experiments, we compare our encodings for the four theories,
showing some notable differences and complementary strengths. We also
compare our new encodings to the existing work targeting SMT and SAT,
and to a well-established learning CP solver. Our two proposed encodings
targeting the theory of bit-vectors (QF BV) both substantially outper-
form earlier work on encoding to QF BV on a large and diverse set of
problem classes.

Keywords: Constraint modelling · SMT · Automated reformulation

1 Introduction

Constraint programming (CP) is a powerful paradigm for solving constraint sat-
isfaction and optimisation problems, with many diverse applications. Essence
Prime [22] is a solver-independent CP modelling language that offers decision
variables of Boolean and integer domains as well as arrays of these decision vari-
ables, arithmetic and logical operators for expressing constraints, and global con-
straints. Essence Prime is comparable in its modelling capabilities to MiniZ-
inc [17], OPL [25], Simply [6] and other similar languages. To solve a problem
instance described in Essence Prime, a problem class model and a parame-
ter file are translated by Savile Row [21] into input suitable for a backend
solver. Savile Row applies automated reformulation steps such as common
sub-expression elimination to improve the model [21].
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Satisfiability Modulo Theories (SMT) is a problem solving methodology that
decides the satisfiability of a propositional formula with respect to a selection of
theories in first order logic with equality [20]. SMT has its roots in the field of
hardware and software verification, but lately it is being used to solve a wider
range of problems. The Satisfiability Modulo Theories Library (SMT-LIB) [4]
provides a standard for the specification of benchmarks and theories for SMT.
Most SMT solvers are restricted to decidable quantifier free fragments of their
logics, which is sufficient for many applications. SMT solvers have made rapid
progress in recent years. In part, the efficiency of modern SMT solvers derives
from the use of specialised decision procedures for each theory. In this work we
will focus on four theories: QF LIA, QF NIA, QF IDL, and QF BV.

QF LIA and QF NIA are the theories of quantifier free linear and non-linear
integer arithmetic respectively. The formulas are Boolean combinations of con-
straints comparing expressions to a constant with respect to ≤ and ≥. Linear
expressions are typically enough to naturally express common problems in for-
mal verification and scheduling problems. SMT solvers typically use variants of
the Simplex algorithm to implement integer arithmetic theories [12].

QF IDL is the theory of quantifier free integer difference logic. It supports
Boolean combinations of inequalities of the form x − y < b where x and y
are integer variables and b is an integer constant. The renewed interest in this
fragment came from timed automata, where the verification conditions arising
take the form of difference logic formulas [18].

QF BV is the theory of quantifier-free formulas over fixed-size bit-vectors.
Bit-vector arithmetic is very commonly used for verification and equivalence
checking in the hardware industry. Current solvers [13] typically apply heavy
preprocessing techniques that ultimately flatten the formula to SAT, also known
as bit-blasting.

The main contribution of this paper is a new SMT backend for Savile Row
that is able to produce any one of the four theories listed above and at two differ-
ent levels of flattening, thus providing eight distinct SMT encodings. We exhaus-
tively evaluate the performance of these encodings, showing that our encodings
perform significantly better than existing SMT approaches [9] and that they are
complementary to the existing SAT and CP backends of Savile Row.

2 Related Work

There has been a great deal of work on translating declarative constraint mod-
elling languages to lower-level languages such as SAT, SMT, and MIP. We cannot
cover it all here so we cover all the most relevant work (on translation to SMT)
and give examples for the rest. One example of SAT encoding is FznTini [14],
which translates FlatZinc into SAT. The MiniZinc compiler is able to translate
the MiniZinc language into MIP [5]. There are several encodings of a constraint
language to SMT: Simply [6,8], fzn2smt [7], and FZN2OMT [9].

Simply [6] is a compiler from a custom constraint modelling language (com-
parable to Essence Prime) to SMT. It supports translations to QF LIA and
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QF IDL logics and was later extended to support meta-constraints and weighted
CSPs [8]. The same authors presented fzn2smt [7], an approach that translates
FlatZinc models to SMT, supporting the standard data types and constraints
of FlatZinc. The logic used for solving each instance is determined automati-
cally during the translation, and it handles optimisation problems by means of
a dichotomic (binary) search on the domain of the optimisation variable. As in
our approach, search annotations are ignored, as they do not make sense in the
context of SMT. Only the allDifferent and Cumulative global constraints are
supported by decomposing them into SMT.

FZN2OMT [9] can translate standard FlatZinc into suitable input for SMT
solvers, and back to FlatZinc. It supports the Z3 [16] and OptiMathSAT [24]
solvers, using either the QF BV or QF LIRA logics. When using OptiMathSAT,
it takes advantage of the fact that OptiMathSAT natively supports a subset of
the FlatZinc 1.6 language. Unlike fzn2smt, FZN2OMT is compatible with the
current MiniZinc toolchain. We compare our proposed SMT encodings to all four
configurations of FZN2OMT in Sect. 4 below.

3 Translating Essence Prime to SMT

The modelling tool Savile Row works by reading a problem class model written
in Essence Prime and optionally a parameter file that contains values defining
a problem instance. It instantiates the problem class model, unrolls comprehen-
sions and quantified expressions, and performs expression flattening where the
target solver language does not support nested expressions. Flattening is the task
of introducing auxiliary variables to represent nested subexpressions. Section 3.3
explains flattening in the SMT backend.

The input to Savile Row is a solver-independent model with nested expres-
sions. Savile Row already has existing backends to several CP/SAT/MIP
solvers, some of these via FlatZinc. Some of these backends require a lower
level output than others. For example, Minion’s input language allows a limited
form of nesting (for example, constraints may be contained in conjunctions and
disjunctions) but still requires a mostly flat structure, whereas FlatZinc-based
solvers do not allow this kind of nesting at all. SMT-LIB allows more kinds of
nested expressions than any other Savile Row backend. We implement a fully-
flat variant as well as a nested variant that only flattens when strictly necessary.
It is difficult to know which variant will perform better for a given theory, SMT
solver and problem class. Flattening introduces potentially useful new variables,
and preserving nesting gives solvers access to the high-level structure.

A model in Essence Prime consists of three main components: decision
variable declarations, constraint expressions, and an optional objective function.
The following sections explain how these components are translated to SMT.

3.1 Decision Variables and Their Domains

Essence Prime is a finite-domain language, where every decision variable is
associated with a finite domain of discrete values. It supports Booleans and
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integers as atomic types, and matrices of arbitrary dimensions of these atomic
types. Savile Row expands matrices to lists of atomic types so its output
languages do not need to support matrices or arrays. For example, given a matrix
M with three rows and columns, it will create 9 declarations M1,1, M1,2, . . .M3,3

of its declared type.
When targeting SMT, decision variable declarations are translated to their

equivalent variable declarations in SMT-LIB together with unary constraints to
define the bounds of the domain. For example, when using the LIA encoding,
a find x : int(1..10) declaration would be translated as the SMT integer
variable x and the constraint 1 ≤ x ≤ 10. When using the QF BV theory,
numerical variables are represented using fixed-size signed bit-vectors (i.e. binary
numbers in two’s-complement). We use as few bits as we can, governed by the
largest domain value in the union of all decision variables. Savile Row performs
domain shaving by enforcing a strong level of consistency (Singleton Arc Consis-
tency on the bounds of the variables) via Minion. This step helps in removing any
unnecessarily large values in the domains and reducing the number of variables
required after bit-blasting [15].

3.2 Constraints and the Objective

Constraint expressions are at the heart of a constraint model. We translate them
to SMT-LIB using specialised implementations per expression type and by falling
back to the standard SAT encodings available in Savile Row where necessary.
Boolean expressions (∧, ∨, →, . . . ) and relational operators over integers (<, ≤,
=, . . . ) are translated to use the corresponding operators in SMT-LIB. Arith-
metic operators (+, −, /, mod, abs, . . . ) are similarly translated depending on
the theory we use. Quantified expressions, such as the universally and existen-
tially quantified expression or quantified sums are unrolled and turned into ∧,
∨, and weighted sums. AllDifferent and Global Cardinality (GCC) are decom-
posed: for each value (or each constrained value in GCC) a linear constraint is
used to restrict the number of occurrences of the value. Table constraints use
the Bacchus encoding [3] and short tables are encoded similarly [1].

SMT solvers are typically implemented by augmenting an existing SAT solver
with implementations of theories. Hence, they allow SAT clauses in the input.
We implement our SMT encodings when they are specifically supported by a
backend theory and fall back to the existing SAT encodings in Savile Row for
the rest of the cases.

When targeting the QF BV logic, we use bvadd, bvor and bvneg as appropri-
ate for arithmetic and logical expressions. These operators are not restricted to
linear expressions, they support nested expressions with sums, multiplications,
divisions, and modulo operations. Modern QF BV solvers typically use a tech-
nique called bit-blasting (amongst others). Bit-blasting converts the problem to
SAT by introducing a SAT variable for each bit in a bit vector. This approach
can generate a smaller encoding when compared to the direct or order encod-
ings used by the SAT backend of Savile Row [23], since the direct and order
encodings scale linearly in domain size and bit-blasting scales sub-linearly.
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The objective function (if present) is represented by a single decision variable
and dichotomic search is applied to find the optimal solution. However, when Z3
is the target solver we use its built-in optimisation (regardless of the theory).
In our experiments we use Z3 for QF NIA and other solvers for the other three
theories, so solver built-in optimisation is only used with QF NIA.

3.3 Flat vs Nested Encodings

Essence Prime (like MiniZinc, OPL and other comparable constraint modelling
languages) allows stating nested constraints such as allDiff([x + 1, y + 2, z + 3])
directly. This constraint is considered nested because each element of the list
inside the allDiff constraint is an expression and not a decision variable.

Some of the backend solvers for Savile Row do not support nested con-
straints, and therefore constraints like these have to be flattened. In this case,
the flattening process would create auxiliary variables for each sub-expression
(aux1, aux2, aux3), post additional constraints aux1 = x + 1, aux2 = y + 2,
aux3 = z + 3, and replace the constraint with allDiff([aux1, aux2, aux3]). This
transformation will introduce additional variables and constraints.

Since SMT-LIB allows nested expressions we have an opportunity to evaluate
the effect of using Savile Row’s standard flattening process vs maintaining the
nested expressions and letting the SMT solver flatten them if needed. A nested
encoding is likely to be smaller in size and may allow the SMT solver to do a
better job if and when it chooses to flatten. We evaluate flat and nested encodings
for each of the four theories in Sect. 4.

4 Empirical Evaluation

In this section we compare our set of encodings (Savile Row-SMT, or SR-SMT )
with the state of the art on a wide range of problems, showing the advantages of
our approach. We compare SR-SMT to the SAT encoding implemented in Savile
Row [21] using the SAT solver CaDiCaL 1.3.0, and also to the well-established
learning constraint solver Chuffed 0.10.3. In each experiment we use the same
large set of problem instances and the same basic settings of Savile Row. We
have not been able to compare our approach to fzn2smt [7] or FznTini [14], as
they have become obsolete due to changes in the FlatZinc language. We compare
our approach to FZN2OMT [9], described in Sect. 2.

SR-SMT has eight configurations and FZN2OMT has four, which presents a
challenge when attempting to compare the two systems. We resolve this by using
the virtual best solver (VBS) approach for each system; i.e. for each problem
instance the best configuration is selected. We also look into which configurations
are contributing most to the VBS for each system.

4.1 Experimental Setup

As SR-SMT outputs standard SMT-LIB2 files, we are able to target many solvers
easily. For the QF LIA and QF IDL encodings we use Yices 2.6.2 [11], for the
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QF BV encoding we target Boolector 3.2.1 [19] and finally for QF NIA we use Z3
4.8.8 [16]. Experience of using SMT solvers for planning and scheduling problems
(expressed in QF LIA or QF IDL) led us to use Yices for those theories; Boolec-
tor is known to perform well on QF BV; and Z3 was chosen for QF NIA because
of its advanced preprocessing and heuristics (for example, as noted below, Z3
converts the QF NIA Discrete Tomography problem into QF BV). Regarding
optimisation, we handle it by means of a binary search on the domain of the
variable to optimise. The only exception is when the Z3 solver is used, as it has
native support for optimisation.

The set of problem classes used is an expanded version of the one used
in [21], with 63 problem classes and 757 instances in total1. Both satisfaction and
optimization problems are included, and optimization problems are reported as
solved when optimality of the last solution has been proven.

We used a time limit of 1 h total time (i.e. Savile Row time plus solver
time). We use PAR2 to summarise the performance of each configuration. PAR2
is the mean of total time, where the instances that timed out are assumed to
have taken two times the time limit (i.e. 2 h). Configurations with a lower PAR2
score are considered to be better.

The default set of optimisations in Savile Row are used for all solvers and
encodings: domain filtering, variable unification, aggregation and active CSE
[21]. A standard FlatZinc backend was added to Savile Row to be used for
experiments with FZN2OMT. Decompositions of global constraints closely follow
those in the MiniZinc std library. For example, allDifferent is decomposed into a
clique of pairwise not-equal constraints, and global cardinality into one sum for
each constrained value. The existing Chuffed FlatZinc backend is very similar
but does not decompose allDifferent or lexicographic ordering constraints.

4.2 Comparison to FZN2OMT

Figure 1 gives an overview of the results comparing the SR-SMT virtual best
solver (SR-SMT-VBS) to the FZN2OMT virtual best solver (FZN2OMT-VBS).
For SR-SMT-VBS, 685 instances were solved and for FZN2OMT-VBS 643 were
solved. In Table 1 we report the number of instances solved by the two virtual
best solvers as well as each configuration of both systems. The results show a clear
advantage for SR-SMT-VBS on the bulk of the instances. However, there are
confounding factors. First, SR-SMT-VBS is constructed from 8 configurations
rather than 4, potentially giving it an advantage. Second, different SMT solvers
are used. For example, Boolector was used to solve QF BV encodings in SR-
SMT-VBS, whereas Z3 and OptiMathSAT were used in FZN2OMT.

Many problem classes contain the allDifferent constraint. For these, SR-SMT
uses a decomposition where each value is constrained to have at most one occur-
rence using a linear constraint (in common with Savile Row’s SAT backend),

1 Experiment scripts, model and parameter files and raw results can be found at:
https://github.com/stacs-cp/CP2020-SRSMT [10].

https://github.com/stacs-cp/CP2020-SRSMT
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Fig. 1. SR-SMT-VBS vs FZN2OMT-VBS, solver time (left) and total time (right).

Table 1. Number of instances solved and PAR2 for each configuration. Bold indicates
the overall best configuration (by instances solved), red indicates the best configuration
of one system (SR-SMT or FZN2OMT).

Encoding Instances solved Mean PAR2

SR-SMT-VBS 685 803

SR-SMT-Nested-VBS 682 840

SR-SMT-Flat-VBS 682 839

FZN2OMT-VBS 643 1283

SR-SMT-BV-Nested 663 1092

SR-SMT-BV-Flat 661 1106

SR-SMT-NIA-Nested 499 2620

SR-SMT-NIA-Flat 511 2522

SR-SMT-LIA-Nested 590 1695

SR-SMT-LIA-Flat 586 1729

SR-SMT-IDL-Nested 592 1714

SR-SMT-IDL-Flat 591 1716

SR-SMT-BV-Nested-Z3 657 1138

SR-SMT-BV-Nested-Z3-PA 643 1228

FZN2OMT-LIA-Z3 508 2638

FZN2OMT-LIA-OptiMathSAT 517 2609

FZN2OMT-BV-Z3 587 1921

FZN2OMT-BV-OptiMathSAT 533 2454

SAT 671 931

Chuffed 637 1248
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whereas the standard FlatZinc backend used with FZN2OMT decomposes to
pairwise not-equal constraints. We compare the two decompositions below.
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Fig. 2. SR-SMT-Flat-VBS (i.e. virtual best solver of the 4 Flat configurations) vs
FZN2OMT-VBS, solver time (left) and total time (right).

To provide a fairer comparison between two portfolios of the same size, we
constructed two further virtual best solvers for SR-SMT, one using the four Flat
configurations (SR-SMT-Flat-VBS) and the other using the four Nested config-
urations (SR-SMT-Nested-VBS). As Table 1 shows, the Flat configuration solves
more instances for one theory (QF NIA) and is quite close to Nested in perfor-
mance for the other theories. On the other hand, Nested solves more instances
with the most promising theory (QF BV) and also QF LIA and QF IDL. It turns
out that SR-SMT-Flat-VBS is very slightly stronger (Table 1). Figure 2 com-
pares SR-SMT-Flat-VBS to FZN2OMT-VBS, and Table 1 contains the number
of instances solved and PAR2 score for both. Even with a smaller portfolio it is
clear that SR-SMT is performing better than FZN2OMT on these benchmarks.

Also, there is the issue that the solvers do not match for any theory. SR-SMT
uses Yices with QF LIA and Boolector with QF BV, whereas FZN2OMT uses Z3
and OptiMathSAT. To be able to compare just the encodings, we ran SR-SMT-
BV-Nested (the strongest configuration of SR-SMT measured by instances solved
and PAR2) with Z3 instead of Boolector, creating a configuration called SR-
SMT-BV-Nested-Z3. Table 1 shows that SR-SMT-BV-Nested-Z3 is somewhat
weaker than SR-SMT-BV-Nested on these benchmarks, solving 6 fewer instances
within 1 h and having a higher PAR2 score. Figure 3 compares SR-SMT-BV-
Nested-Z3 to FZN2OMT-BV-Z3. The results are mixed, with some instances
solving much faster with FZN2OMT-BV-Z3, and 15 solved only by FZN2OMT-
BV-Z3. However, the overall trend is that SR-SMT-BV-Nested-Z3 is stronger, it
solves 70 more instances and has a lower PAR2 score.
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Fig. 3. SR-SMT-BV-Nested-Z3 (i.e. SR-SMT-BV-Nested with Z3 instead of Boolector)
vs FZN2OMT-BV-Z3, solver time (upper left) and total time (upper right). The lower
plots are the same but with the pairwise AllDifferent decomposition (PA).

Finally, there is the issue that the decompositions of AllDifferent do not
match. We created another configuration SR-SMT-BV-Nested-Z3-PA, which is
SR-SMT-BV-Nested-Z3 with the pairwise decomposition of AllDifferent (match-
ing FZN2OMT). As Table 1 shows, the new configuration is weaker than SR-
SMT-BV-Nested-Z3, solving 14 fewer instances in total. Figure 3 compares SR-
SMT-BV-Nested-Z3-PA to FZN2OMT-BV-Z3. The two are quite strongly cor-
related but SR-SMT is stronger, solving 56 more instances in total.

4.3 Analysis of SR-SMT

In this section we look at which configurations of SR-SMT are most effective, and
how each configuration contributes to the virtual best solver. First we compare
Nested to Flat configurations, then we compare the four theories. Also, Table 2
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shows how each configuration contributed to the virtual best solver SR-SMT-
VBS, and how many additional instances were solved within multiples of 2 and
5 of the VBS time. This gives an overview of how strong the configurations are
relative to the VBS.

Table 2. Number of instances solved by each configuration within multiples of SR-
SMT-VBS or FZN2OMT-VBS total time. An instance is counted for configuration X
and multiple f if total time for X is within f× total time for the VBS. The highest
value in each column is highlighted in bold.

Configuration Multiple of SR-SMT-VBS Total Time

1 2 5 Any

SR-SMT-BV-Nested 76 350 465 663

SR-SMT-BV-Flat 62 319 473 661

SR-SMT-NIA-Nested 25 244 351 499

SR-SMT-NIA-Flat 60 294 365 511

SR-SMT-LIA-Nested 146 434 530 590

SR-SMT-LIA-Flat 86 433 534 586

SR-SMT-IDL-Nested 120 401 488 592

SR-SMT-IDL-Flat 149 403 486 591

Configuration Multiple of FZN2OMT-VBS Total Time

1 2 5 Any

FZN2OMT-LIA-Z3 148 318 362 508

FZN2OMT-LIA-OptiMathSAT 114 222 308 517

FZN2OMT-BV-Z3 239 439 498 587

FZN2OMT-BV-OptiMathSAT 150 282 378 533

Comparing Nested to Flat Translation. Figure 4 compares Nested to Flat
configurations for each theory. With the theory of bit-vectors the two configura-
tions are remarkably similar. Total number of instances solved and PAR2 score
from Table 1 suggest that Nested is slightly better, and Nested is also selected
more often in SR-SMT-VBS (Table 2).

With the QF NIA theory, Flat translation performs better overall, solving
12 more instances and with a lower PAR2 score. Some problem classes were
solved much better with Flat, such as BIBD (in green). For some instances
of EFPA (highlighted in blue), the two encodings are similar, and for others
Flat is significantly more efficient. BIBD exhibits increasing gains for Flat as the
instances become more difficult. However, Nested is more efficient for Langford’s
Problem, solving several instances that Flat cannot.
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For the QF LIA theory, we found that almost all problem classes were very
similar. There were three exceptions: Killer Sudoku (where the Flat encoding is
somewhat better), Car Sequencing, and Peg Solitaire (where the instances are
scattered and neither Nested nor Flat seem to have an advantage).
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Fig. 4. Nested vs Flat translation for each theory, total time.

Finally, with QF IDL for almost all problem classes the Nested and Flat
encodings were very similar in performance. There are no problem classes where
one encoding consistently outperforms the other by a substantial margin.

Comparing Theories. The four theories have quite different characteristics
and the ideal choice of theory might vary by problem class. To compare the
four theories, for each one we take the better configuration (of Nested or Flat),
so we compare SR-SMT-BV-Nested, SR-SMT-NIA-Flat, SR-SMT-LIA-Nested,
and SR-SMT-IDL-Nested. BV is the strongest theory in terms of instances solved
within 1 h and PAR2 score, therefore we use BV as the gold standard and com-
pare the other theories to it.
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Figure 5 (top left) plots NIA-Flat against BV-Nested. Many instances time
out with NIA-Flat, for example the majority of Aces-Up (in red), and all
instances of the block party metacube problem (BPMP, in blue). Langford’s
Problem is an example where the two theories are correlated, but BV is more
efficient on the bulk of the instances. In contrast, Discrete Tomography is solved
more efficiently by NIA-Flat. In this case, Z3 internal heuristics decide to con-
vert the QF NIA formula into a QF BV formula before solving, and this is more
efficient than Boolector directly applied to the BV-Nested formula. Also, both
NIA encodings contribute a relatively small number of instances to the VBS
(Table 2).

LIA-Nested is plotted against BV-Nested in Fig. 5 (top right). Langford’s
Problem and Discrete Tomography are examples where LIA-Nested performs
substantially better than BV-Nested. The constraints in these problems are well
suited to the QF LIA theory (in particular Discrete Tomography, where all con-
straints are linear). Car Sequencing is split, some instances are solved more
quickly by LIA-Nested while others time out. All instances of JPEncoding are
solved more efficiently by LIA-Nested. Overall BV-Nested has a substantial edge:
it is able to solve 73 more instances and its PAR2 score is much lower.

Finally, we compare IDL-Nested to BV-Nested in Fig. 5 (lower). MRCPSP
(the multi-mode resource-constrained project scheduling problem) has prece-
dence constraints that are naturally expressed in IDL. The most difficult
instances of MRCPSP are solved more efficiently by IDL-Nested. Langford’s
Problem is also solved more efficiently by IDL-Nested. OPD is mixed but shows
large speed-ups for BV for some of the most difficult instances. Many instances
time out for IDL-Nested and are solved with BV-Nested, e.g. all instances of the
JPEncoding problem. In total, 71 more instances are solved by BV-Nested.

In summary, we have seen several cases where NIA, LIA, or IDL performs
well on a problem class and in these cases the problem class has constraints that
are naturally expressed in the theory. For example, Discrete Tomography (with
linear constraints) is solved very well by LIA-Nested (and also by NIA-Flat,
where the solver converts it into a QF BV formula). In contrast, BV seems the
most robust. It performs well on a wide range of problem classes and in each
comparison solves many instances that the other configuration did not.

4.4 Analysis of FZN2OMT

Table 2 gives an overview of how each configuration of FZN2OMT contributes
to the virtual best solver, FZN2OMT-VBS. The BV encoding with Z3 is clearly
the strongest combination on these benchmarks, contributing the most instances
to the VBS and also solving the most within 1 h. Z3 was more effective than
OptiMathSAT on the BV formulas, however the picture is not so simple with
LIA. OptiMathSAT seems to be stronger overall on LIA formulas, solving more
instances within 1 h, however Z3 contributes more instances to the VBS.
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Fig. 5. Comparison of the four theories using the better configuration for each one (of
Nested or Flat). (Color figure online)

4.5 Comparison to SAT

As described in Sect. 3, all SR-SMT encodings are built on the default SAT
encoding of Savile Row, so comparison between SR-SMT and SAT is partic-
ularly relevant. We use CaDiCaL as the SAT solver and use the default options
for the SAT backend. Figure 6 (top left) plots SAT against the strongest SMT
configuration, SR-SMT-BV-Nested. The two are quite similar in overall perfor-
mance, with similar PAR2 scores. SAT solves 8 more of the benchmark instances
than SR-SMT-BV-Nested (Table 1). Some problem classes are solved more effi-
ciently by SAT, such as Discrete Tomography, Langford, and MRCPSP. In con-
trast, SR-SMT-BV-Nested is able to solve 6 out of 10 instances of JPEncoding
whereas SAT solves none. Car Sequencing is mixed but the majority of instances
are solved more efficiently by SAT. 644 instances are solved by both SAT and
BV-Nested, and of those the majority (510) are solved faster by SAT.

Figure 6 (top right) plots SAT against SR-SMT-VBS. The VBS solves a fur-
ther 22 instances compared to BV-Nested (14 more than SAT), and improves
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Fig. 6. Comparison of SAT to SR-SMT-BV-Nested (top left) and SR-SMT-VBS (top
right). Comparison of Chuffed to SR-SMT-BV-Nested (lower left) and SR-SMT-VBS
(lower right).

on various problem classes including Langford, Discrete Tomography, MRCPSP,
and Car Sequencing. For the 657 instances that are solved by both the VBS
and SAT, the majority (337) are solved more efficiently by SAT, however the
VBS has a better PAR2 score (by over 100 s). The VBS is of course a theoretical
solver, but these results show the value of selecting an appropriate theory for
a given instance. As part of our future work we intend to investigate algorithm
selection methods to construct a portfolio of the 8 SR-SMT configurations.

We found that the QF IDL encodings were the largest, with a median clause
ratio of 104.5% for both IDL-Nested and IDL-Flat compared to SAT. The
QF LIA encodings were more compact, with median clause ratios of 15.7% for
LIA-Flat and 5.2% for LIA-Nested. The more expressive theories of QF BV and
QF NIA allowed for the smallest encodings, with median clause ratios of 7.5%
for BV-Flat, 2.8% for BV-Nested, 7.3% for NIA-Flat, and 2.8% for NIA-Nested.
It is notable that one of the two smallest encodings (BV-Nested) has the highest
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performance. Also, Nested encodings are smaller than Flat with the exception
of IDL where they are very similar in size.

4.6 Comparison to Chuffed

Chuffed is a well-established learning CP solver that uses a similar learning
scheme as CDCL SAT and SMT solvers. The Chuffed backend of Savile Row
produces FlatZinc that is specific to Chuffed, i.e. it uses the global constraints
implemented in Chuffed. We use Chuffed’s free search option and also provide a
search annotation given in the model or a default search annotation (variable dec-
laration order). Figure 6 (lower left) plots Chuffed against SR-SMT-BV-Nested.

Results are mixed, with several problem classes solved much more efficiently
by Chuffed (such as OPD and Langford for a large majority of their instances).
Others are split, several Car Sequencing instances are solved substantially faster
by Chuffed but others time out for Chuffed and are only solved by BV-Nested.
The BV-Nested encoding performs well on Discrete Tomography (with linear
constraints) and some instances of Peg Solitaire. In terms of instances solved,
SR-SMT-BV-Nested performs better than Chuffed, solving 26 more instances
within 1 h. However Chuffed is more efficient for 510 of the 615 instances that
they both solve. The timeouts cause Chuffed to have a relatively high PAR2
score of 1248, compared to 1092 for BV-Nested.

Figure 6 (lower right) plots Chuffed against SR-SMT-VBS. The VBS solves 48
more instances than Chuffed, but Chuffed remains more efficient for the majority
of instances (380 out of 627) that they both solve. Comparing the two plots,
the VBS is more efficient than BV-Nested on many instances (including large
numbers of OPD, Langford and Car Sequencing instances) and has narrowed
the gap between SMT and Chuffed on instances where Chuffed is faster.

5 Conclusions and Future Work

We have presented SR-SMT, an SMT backend for Savile Row that is able
to target four SMT theories, each with two levels of flattening. We have per-
formed an extensive set of experiments comparing our encodings to each other
and also to FZN2OMT, SAT, and Chuffed. We found that SR-SMT with the
QF BV theory is a very robust approach: it solves more instances than other
theories, Chuffed, and FZN2OMT within the time limit. However, SR-SMT with
QF BV is not always the fastest approach, suggesting that it would be a useful
component of a portfolio of solvers.

While we found QF BV to be particularly robust, other theories (QF NIA,
QF LIA, and QF IDL) performed strongly when problem constraints are natu-
rally expressed in the theory, for example the LIA theory applied to the Discrete
Tomography problem (which is linear). Consequently, the virtual best solver
composed of all 8 SR-SMT configurations is significantly stronger than any one
configuration. As part of future work, we will look at algorithm selection methods
(such as the SUNNY algorithm used in the SUNNY-CP portfolio solver [2]) to
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construct a portfolio of SMT encodings, and investigate whether such a portfolio
has similar performance to the VBS.

In summary, encoding constraint problems to SMT via SR-SMT is a suc-
cessful approach, solving more instances of our benchmark set than the mature
learning CP solver Chuffed and the existing FZN2OMT system.

Acknowledgements. We thank Marc Roig Vilamala who worked on an early ver-
sion of the SMT backend of Savile Row. This work is supported by EPSRC grant
EP/P015638/1.
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