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Abstract. Domain reduction is an essential tool for solving the con-
straint satisfaction problem (CSP). In the binary CSP, neighbourhood
substitution consists in eliminating a value if there exists another value
which can be substituted for it in each constraint. We show that the
notion of neighbourhood substitution can be strengthened in two dis-
tinct ways without increasing time complexity. We also show the theo-
retical result that, unlike neighbourhood substitution, finding an optimal
sequence of these new operations is NP-hard.

1 Introduction

Domain reduction is classical in constraint satisfaction. Indeed, eliminating
inconsistent values by what is now known as arc consistency [27] predates the
first formulation of the constraint satisfaction problem [23]. Maintaining arc con-
sistency, which consists in eliminating values that can be proved inconsistent by
examining a single constraint together with the current domains of the other
variables, is ubiquitous in constraint solvers [1]. In binary CSPs, various algo-
rithms have been proposed for enforcing arc consistency in O(ed2) time, where
d denotes maximum domain size and e the number of constraints [3,24]. Generic
constraints on a number of variables which is unbounded are known as global
constraints. Arc consistency can be efficiently enforced for many types of global
constraints [18]. This has led to the development of efficient solvers providing a
rich modelling language. Stronger notions of consistency have been proposed for
domain reduction which lead to more eliminations but at greater computational
cost [1,2,28].

In parallel, other research has explored methods that preserve satisfiability
of the CSP instance but do not preserve the set of solutions. When searching
for a single solution, all but one branch of the explored search tree leads to a
dead-end, and so any method for faster detection of unsatisfiability is clearly
useful. An important example of such methods is the addition of symmetry-
breaking constraints [4,17]. In this paper we concentrate on domain-reduction
methods. One family of satisfiability-preserving domain-reduction operations is
value merging. For example, two values can be merged if the so-called broken
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triangle (BT) pattern does not occur on these two values [11]. Other value-
merging rules have been proposed which allow less merging than BT-merging
but at a lower cost [22] or more merging at a greater cost [12,25]. Another
family of satisfiability-preserving domain-reduction operations are based on the
elimination of values that are not essential to obtain a solution [15]. The basic
operation in this family which corresponds most closely to arc consistency is
neighbourhood substitution: a value b can be eliminated from a domain if there
is another value a in the same domain such that b can be replaced by a in each
tuple in each constraint relation (reduced to the current domains of the other
variables) [14]. In binary CSPs, neighbourhood substitution can be applied until
convergence in O(ed3) time [7]. In this paper, we study notions of substitutability
which are strictly stronger than neighbourhood substitutability but which can
be applied in the same O(ed3) time complexity. We say that one elimination
rule R1 is stronger than (subsumes) another rule R2 if any value in a non-trivial
instance (an instance with more than one variable) that can be eliminated by R2

can also be eliminated by R1, and is strictly stronger (strictly subsumes) if there
is also at least one non-trivial instance in which R1 can eliminate a value that
R2 cannot. Two rules are incomparable if neither is stronger than the other.

To illustrate the strength of the new notions of substitutability that we intro-
duce in this paper, consider the instances shown in Fig. 1. These instances are
all globally consistent (each variable-value assignment occurs in a solution) and
neighbourhood substitution is not powerful enough to eliminate any values. In
this paper, we introduce three novel value-elimination rules, defined in Sect. 2:
SS, CNS and SCSS. We will show that snake substitution (SS) allows us to
reduce all domains to singletons in the instance in Fig. 1(a). Using the notation
D(xi) for the domain of the variable xi, conditioned neighbourhood-substitution
(CNS), allows us to eliminate value 0 from D(x2) and value 2 from D(x3) in
the instance shown in Fig. 1(b), reducing the constraint between x2 and x3 to a
null constraint (the complete relation D(x2)×D(x3)). Snake-conditioned snake-
substitution (SCSS) subsumes both SS and CNS and allows us to reduce all
domains to singletons in the instance in Fig. 1(c) (as well as in the instances in
Fig. 1(a), (b)).

Fig. 1. (a) A 4-variable CSP instance over boolean domains; (b) a 3-variable CSP
instance over domains {0, 1, 2} with constraints x1 �= x2, x1 �= x3 and x2 ≥ x3; (c)
A 4-variable CSP instance over domain {0, 1, 2, 3} with constraints x1 �= x2, x1 �= x3,
x1 �= x4, x2 ≤ x3, x2 ≥ x4 and x4 ≤ x3.
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In Sect. 2 we define the substitution operations SS, CNS and SCSS. In Sect. 3
we prove the validity of these three substitution operations, in the sense that
they define satisfiability-preserving value-elimination rules. In Sect. 4 we explain
in detail the examples in Fig. 1 and we give other examples from the semantic
labelling of line drawings. Section 5 discusses the complexity of applying these
value-elimination rules until convergence: the time complexity of SS and CNS
is no greater than neighbourhood substitution (NS) even though these rules
are strictly stronger. However, unlike NS, finding an optimal sequence of value
eliminations by SS or CNS is NP-hard: this is shown in Sect. 6.

2 Definitions

We study binary constraint satisfaction problems.
A binary CSP instance I = (X,D, R) comprises

• a set X of n variables x1, . . . , xn,
• a domain D(xi) for each variable xi (i = 1, . . . , n), and
• a binary constraint relation Rij for each pair of distinct variables xi, xj (i, j ∈

{1, . . . , n})

For notational convenience, we assume that there is exactly one binary relation
Rij for each pair of variables. Thus, if xi and xj do not constrain each other, then
we consider that there is a trivial constraint between them with Rij = D(xi) ×
D(xj). Furthermore, Rji (viewed as a boolean matrix) is always the transpose
of Rij . A solution to I is an n-tuple s = 〈s1, . . . , sn〉 such that ∀i ∈ {1, . . . , n},
si ∈ D(xi) and for each distinct i, j ∈ {1, . . . , n}, (si, sj) ∈ Rij .

We say that vi ∈ D(xi) has a support at variable xj if ∃vj ∈ D(xj) such that
(vi, vj) ∈ Rij . A binary CSP instance I is arc consistent (AC) if for all pairs of
distinct variables xi, xj , each vi ∈ D(xi) has a support at xj [21].

In the following we assume that we have a binary CSP instance I = (X,D, R)
over n variables and, for clarity of presentation, we write j �= i as a shorthand
for j ∈ {1, . . . , n}\{i}. We use the notation b

ij−→ a for

∀c ∈ D(xj), (b, c) ∈ Rij ⇒ (a, c) ∈ Rij

(i.e. a can be substituted for b in any tuple (b, c) ∈ Rij).

Definition 1 [14]. Given two values a, b ∈ D(xi), b is neighbourhood substi-

tutable (NS) by a if ∀j �= i, b
ij−→ a.

It is well known and indeed fairly obvious that eliminating a neighbourhood
substitutable value does not change the satisfiability of a binary CSP instance.
We will now define stronger notions of substitutability. The proofs that these
are indeed valid value-elimination rules are not directly obvious and hence are
delayed until Sect. 3. We use the notation b

ik� a for

∀d ∈ D(xk), (b, d) ∈ Rik ⇒ ∃e ∈ D(xk)((a, e) ∈ Rik ∧ ∀� /∈ {i, k}, d
k�−→ e).
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Fig. 2. An illustration of the definition of b
ik� a.

This is illustrated in Fig. 2, in which ovals represent domains, bullets represent
values, a line joining two values means that these two values are compatible
(so, for example, (a, e) ∈ Rik), and the ⇓ means that (d, f) ∈ Rk� ⇒ (e, f) ∈
Rk�. Since e in this definition is a function of i, k, a and d, if necessary, we will
write e(i, k, a, d) instead of e. In other words, the notation b

ik� a means that
a can be substituted for b in any tuple (b, d) ∈ Rik provided we also replace
d by e(i, k, a, d). It is clear that b

ik−→ a implies b
ik� a since it suffices to set

e(i, k, a, d) = d since, trivially, d
k�−→ d for all � /∈ {i, k}. In Fig. 1(a), the value

0 ∈ D(x1) is snake substitutable by 1: we have 0 12� 1 by taking e(1, 2, 1, 0) = 1
(where the arguments of e(i, k, a, d) are as shown in Fig. 2), since (1, 1) ∈ R12

and 0 23−→ 1; and 0 14� 1 since 0 14−→ 1. Indeed, by a similar argument, the value
0 is snake substitutable by 1 in each domain.

Definition 2. Given two values a, b ∈ D(xi), b is snake substitutable (SS) by
a if ∀k �= i, b

ik� a.
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Fig. 3. An illustration of the definition of conditioned neighbourhood-substitutability
of b by a (conditioned by xj).

In the following two definitions, b can be eliminated from D(xi) because it
can be substituted by some other value in D(xi), but this value is a function of
the value assigned to another variable xj . Definition 3 is illustrated in Fig. 3.

Definition 3. Given b ∈ D(xi), b is conditioned neighbourhood-substitutable
(CNS) if for some j �= i, ∀c ∈ D(xj) with (b, c) ∈ Rij, ∃a ∈ D(xi)\{b} such that

((a, c) ∈ Rij ∧ ∀k /∈ {i, j}, b
ik−→ a).
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A CNS value b ∈ D(xi) is substitutable by a value a ∈ D(xi) where a is
a function of the value c assigned to some other variable xj . In Fig. 1(b), the
value 0 ∈ D(x2) is conditioned neighbourhood-substitutable (CNS) with x1 as
the conditioning variable (i.e. j = 1 in Definition 3): for the assignments of 0 or
1 to x1, we can take a = 2 since 0 23−→ 2, and for the assignment 2 to x1, we
can take a = 1 since 0 23−→ 1. By a symmetrical argument, the value 2 ∈ D(x3)
is CNS, again with x1 as the conditioning variable. We can note that in the
resulting CSP instance, after eliminating 0 from D(x2) and 2 from D(x3), all
domains can be reduced to singletons by applying snake substitutability.

Observe that CNS subsumes arc consistency; if a value b ∈ D(xi) has no
support c in D(xj), then b is trivially CNS (conditioned by the variable xj).
It is easy to see from their definitions that SS and CNS both subsume NS (in
instances with more than one variable), but that neither NS nor SS subsume arc
consistency.

We now integrate the notion of snake substitutability in two ways in the
definition of CNS: the value d (see Fig. 3) assigned to a variable k /∈ {i, j} may
be replaced by a value e (as in the definition of b

ik� a, above), but the value c
(see Fig. 3) assigned to the conditioning variable xj may also be replaced by a
value g. This is illustrated in Fig. 4.

Fig. 4. An illustration of snake-conditioned snake-substitutability of b by a.

Definition 4. A value b ∈ D(xi) is snake-conditioned snake-substitutable
(SCSS) if for some j �= i, ∀c ∈ D(xj) with (b, c) ∈ Rij, ∃a ∈ D(xi)\{b} such

that (∀k /∈ {i, j}, b
ik� a ∧ (∃g ∈ D(xj)((a, g) ∈ Rij ∧ ∀m /∈ {i, j}, c

jm−−→ g))).

In Fig. 1(c), the value 3 ∈ D(x1) is snake-conditioned snake-substitutable
(SCSS) with x2 as the conditioning variable: for the assignment of 0 or 2 to x2,
we can take a = 1 since 3 13� 1 (taking e(1, 3, 1, d) = 3 for d = 0, 1, 2) and 3 14� 1
(taking e(1, 4, 1, d) = 0 for d = 0, 1, 2), and for the assignment of 1 to x2, we
can take a = 2 since 3 13� 2 (again taking e(1, 3, 2, d) = 3 for d = 0, 1, 2) and
3 14� 2 (again taking e(1, 4, 2, d) = 0 for d = 0, 1, 2). By similar arguments, all
domains can be reduced to singletons following the SCSS elimination of values
in the following order: 0 from D(x1), 0, 1 and 2 from D(x3), 0, 1 and 2 from
D(x2), 1, 2 and 3 from D(x4) and 2 from D(x1).
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We can see that SCSS subsumes CNS by setting g = c in Definition 4 and by
recalling that b

ik−→ a implies that b
ik� a. It is a bit more subtle to see that SCSS

subsumes SS: if b is snake substitutable by some value a, it suffices to choose a
in Definition 4 to be this value (which is thus constant, i.e. not dependent on the
value of c), then the snake substitutability of b by a implies that b

ik� a for all

k �= i, j and b
ij� a, which in turn implies that (a, g) ∈ Rij ∧ ∀m /∈ {i, j}, c

jm−−→ g
for g = e(i, j, a, c); thus b is snake-conditioned snake-substitutable.

3 Value Elimination

It is well-known that NS is a valid value-elimination property, in the sense that
if b ∈ D(xi) is neighbourhood substitutable by a then b can be eliminated from
D(xi) without changing the satisfiability of the CSP instance [14]. In this section
we show that SCSS is a valid value-elimination property. Since SS and CNS are
subsumed by SCSS, it follows immediately that SS and CNS are also valid value-
elimination properties.

Theorem 1. In a binary CSP instance I, if b ∈ D(xi) is snake-conditioned
snake-substitutable then b can be eliminated from D(xi) without changing the
satisfiability of the instance.

Proof. By Definition 4, for some j �= i, ∀c ∈ D(xj) with (b, c) ∈ Rij , ∃a ∈
D(xi)\{b} such that

∀k /∈ {i, j}, b
ik� a (1)

∧ ∃g ∈ D(xj)((a, g) ∈ Rij ∧ ∀m /∈ {i, j}, c
jm−−→ g). (2)

We will only apply this definition for fixed i, j, and for fixed values a and c, so we
can consider g as a constant (even though it is actually a function of i, j, a, c).
Let s = 〈s1, . . . , sn〉 be a solution to I with si = b. It suffices to show that
there is another solution t = 〈t1, . . . , tn〉 with ti �= b. Consider c = sj . Since s
is a solution, we know that (b, c) = (si, sj) ∈ Rij . Thus, according to the above
definition of SCSS, there is a value a ∈ D(xi) that can replace b (conditioned by
the assignment xj = c = sj) in the sense that (1) and (2) are satisfied. Now, for

each k /∈ {i, j}, b
ik� a, i.e.

∀d ∈ D(xk), (b, d) ∈ Rik ⇒ ∃e ∈ D(xk)((a, e) ∈ Rik ∧ ∀� /∈ {i, k}, d
k�−→ e).

Recall that e is a function of i, k, a and d. But we will only consider fixed i, a
and a unique value of d dependant on k, so we will write e(k) for brevity. Indeed,
setting d = sk we can deduce from (b, d) = (si, sk) ∈ Rik (since s is a solution)
that

∀k �= i, j, ∃e(k) ∈ D(xk)((a, e(k)) ∈ Rik ∧ ∀� /∈ {i, k}, sk
k�−→ e(k)). (3)
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Define the n-tuple t as follows:

tr =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a if r = i

sr if r �= i ∧ (a, sr) ∈ Rir

g if r = j ∧ (a, sr) /∈ Rir

e(r) if r �= i, j ∧ (a, sr) /∈ Rir

Clearly ti �= b and tr ∈ D(xr) for all r ∈ {1, . . . , n}. To prove that t is a solution,
it remains to show that all binary constraints are satisfied, i.e. that (tk, tr) ∈ Rkr

for all distinct k, r ∈ {1, . . . , n}. There are three cases: (1) k = i, r �= i, (2) k = j,
r �= i, j, (3) k, r �= i, j.

(1) There are three subcases: (a) r = j and (a, sj) /∈ Rij , (b) r �= i and (a, sr) ∈
Rir, (c) r �= i, j and (a, sr) /∈ Rir. In case (a), ti = a and tj = g, so from
Eq. 2, we have (ti, tr) = (a, g) ∈ Rij . In case (b), ti = a and tr = sr and so,
trivially, (ti, tr) = (a, sr) ∈ Rir. In case (c), ti = a and tr = e(r), so from
Eq. 3, we have (ti, tr) = (a, e(r)) ∈ Rir.

(2) There are four subcases: (a) (a, sr) ∈ Rir and (a, sj) ∈ Rij , (b) (a, sr) /∈ Rir

and (a, sj) ∈ Rij , (c) (a, sr) ∈ Rir and (a, sj) /∈ Rij , (d) (a, sr) /∈ Rir and
(a, sj) /∈ Rij . In case (a), tj = sj and tr = sr, so (tj , tr) ∈ Rjr since s
is a solution. In case (b), tj = sj and tr = e(r); setting k = r, � = j in
Eq. 3, we have (tj , tr) = (sj , e(r)) ∈ Rjr since (sj , sr) ∈ Rjr. In case (c),
tj = g and tr = sr; setting c = sj and m = r in Eq. 2 we can deduce that
(tj , tr) = (g, sr) ∈ Rjr since (sj , sr) ∈ Rjr. In case (d), tj = g and tr = e(r).
By the same argument as in case 2(b), we know that (sj , e(r)) ∈ Rjr, and
then setting c = sj and m = r in Eq. 2, we can deduce that (tj , tr) =
(g, e(r)) ∈ Rjr.

(3) There are three essentially distinct subcases: (a) (a, sr) ∈ Rir and (a, sk) ∈
Rik, (b) (a, sr) /∈ Rir and (a, sk) ∈ Rik, (c) (a, sr) /∈ Rir and (a, sk) /∈ Rik. In
cases (a) and (b) we can deduce (tk, tr) ∈ Rkr by the same arguments as in
cases 2(a) and 2(b), above. In case (c), tk = e(k) and tr = e(k). Setting � = r

in Eq. 3, we have sk
kr−→ e(k) from which we can deduce that (e(k), sr) ∈ Rkr

since (sk, sr) ∈ Rkr. Reversing the roles of k and r in Eq. 3 (which is possible
since they are distinct and both different to i and j), we also have that
sr

rk−→ e(r). We can then deduce that (tk, tr) = (e(k), e(r)) ∈ Rkr since we
have just shown that (e(k), sr) ∈ Rkr.

We have thus shown that any solution s with si = b can be transformed into
another solution t that does not assign the value b to xi and hence that the
elimination of b from D(xi) preserves satisfiability.

Corollary 1. In a binary CSP instance I, if b ∈ D(xi) is snake-substitutable
or conditioned neighbourhood substitutable, then b can be eliminated from D(xi)
without changing the satisfiability of the instance.
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4 Examples

We have already illustrated the power of SS, CNS and SCSS using the examples
given in Fig. 1.

Fig. 5. The six different types of trihedral vertices: A, B, C, D, E, F .

To give a non-numerical example, we considered the impact of SS and CNS in
the classic problem of labelling line-drawings of polyhedral scenes composed of
objects with trihedral vertices [5,19,27]. There are six types of trihedral vertices:
A, B, C, D, E and F , shown in Fig. 5. The aim is to assign each line in the
drawing a semantic label among four possibilities: convex (+), concave (−) or
occluding (← or → depending whether the occluding surface is above or below
the line). Some lines in the top middle drawing in Fig. 5 have been labelled
to illustrate the meaning of these labels. This problem can be expressed as a
binary CSP by treating the junctions as variables. The domains of variables are
given by the catalogue of physically realisable labellings of the corresponding
junction according to its type. This catalogue of junction labellings is obtained
by considering the six vertex types viewed from all possible viewpoints [5,19].
For example, there are 6 possible labellings of an L-junction, 8 for a T-junction,
5 for a Y-junction and 3 for a W-junction [9]. There is a constraint between
any two junctions joined by a line: this line must have the same semantic label
at both ends. We can also apply binary constraints between distant junctions:
the 2Reg constraint limits the possible labellings of junctions such as A and D
in Fig. 6, since two non-colinear lines, such as AB and CD, which separate the
same two regions cannot both be concave [8,9].

The drawing shown in Fig. 6 is ambiguous. Any of lines AB, BC or CD could
be projections of concave edges (meaning that the two blocks on the left side
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Fig. 6. An example from a family of line drawings whose exponential number of
labellings is reduced to one by snake substitution.

of the figure are part of the same object) or all three could be projections of
occluding edges (meaning that these two blocks are, in fact, separate objects).
The drawing shown in Fig. 6 is an example of a family of line drawings. In this
figure there are four copies of the basic structure, but there is a clear generalisa-
tion to drawings containing n copies of the basic structure. The ambiguity that
we have pointed out above gives rise to an exponential number of valid labellings
for this family of drawings. However, after applying arc consistency and snake
substitution until convergence, each domain is a singleton in this family of line
drawings. We illustrate this by giving one example of a snake substitution. After
arc consistency has been established, the labelling (−,+,−) for junction E in
Fig. 6 is snake substitutable by (←,+,←): snake substitutability follows from
the fact that the labelling (−,+,−) for E can be replaced by (←,+,←) in any
global labelling, provided the labelling (↑,−) for F is also replaced by (↑,←)
and the labelling (←,−,←) for D is also replaced by (←,←,←).

Of course, there are line drawings where snake substitution is much less
effective than in Fig. 6. Nevertheless, in the six drawings in Fig. 5, which are a
representative sample of simple line drawings, 22 of the 73 junctions have their
domains reduced to singletons by arc consistency alone and a further 20 junc-
tions have their domains reduced to singletons when both arc consistency and
snake substitution are applied. This can be compared with neighbourhood sub-
stitution which eliminates no domain values in this sample of six drawings. It
should be mentioned that we found no examples where conditioned neighbour-
hood substitution could lead to the elimination of labellings in the line-drawing
labelling problem.

5 Complexity

In a binary CSP instance (X,D, R), we say that two variables xi, xj ∈ X
constrain each other if there is a non-trivial constraint between them (i.e.
Rij �= D(xi) × D(xj)). Let E ⊆ {1, . . . , n} × {1, . . . , n} denote the set of pairs
{i, j} such that xi, xj constrain each other. We use d to denote the maximum
size of the domains D(xi) and e = |E| to denote the number of non-trivial
binary constraints. We have designed algorithms for applying CNS, SS and SCSS
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until convergence using classical propagation techniques and data structures. The
proofs of the following results can be found in the long version of this paper [10].

Theorem 2. Value eliminations by snake substitution or conditioned neighbour-
hood substitution can be applied until convergence in O(ed3) time and O(ed2)
space.

Theorem 3. It is possible to verify in O(ed3) time and O(ed2) space whether or
not any value eliminations by SCSS can be performed on a binary CSP instance.
Value eliminations by SCSS can then be applied until convergence in O(end5)
time and O(ed2) space.

We now investigate the interaction between arc consistency and the substi-
tution operations we have introduced in this paper. It is well known that arc
consistency eliminations can provoke new eliminations by neighbourhood sub-
stitution (NS) but that NS eliminations cannot destroy arc consistency [7]. It
follows that arc consistency eliminations can provoke new eliminations by SS,
CNS and SCSS (since these notions subsume NS). It is easily seen from Defini-
tion 3 that eliminations by CNS cannot destroy arc consistency, since each value
c for xj which had b as a support at xi has another support a at xi and this
value a is also a support for all values d for other variable xk which had b as
a support at xi. We therefore establish arc consistency before looking for elim-
inations by any form of substitution. Nonetheless, unlike CNS, eliminations by
SS (or SCSS) can provoke new eliminations by arc consistency; however, these
eliminations cannot themselves propagate. To see this, suppose that b ∈ D(xi)
is eliminated since it is snake-substitutable by a. If b is the only support of
d ∈ D(xk) at xi, then d can then be eliminated by arc consistency. However,
the elimination of d cannot provoke any new eliminations by arc consistency. To
see this, recall that, by Definition 2 of SS, there is a value e ∈ D(xk) such that
for all � �= i, k, for all f ∈ D(x�), if d was a support for f at xk then so was e
(as illustrated in Fig. 2). Furthermore, since b was the only support for d at xi,
no other value in D(xi) can lose its support when d is eliminated from D(xk).
In conclusion, the algorithm for applying SS has to apply this limited form of
arc-consistency (without propagation) whereas the algorithm to apply CNS does
not need to test for arc consistency since we assume that it has already been
established. Furthermore, since AC is, in fact, subsumed by SCSS we do not
explicitly need to test for it in the algorithm to apply SCSS.

We now consider the interaction between neighbourhood substitution and
CNS. Recall that CNS subsumes neighbourhood substitution. It is also clear
from Definition 3 of CNS that eliminating values by neighbourhood substitution
cannot prevent elimination of other values by CNS. However, the converse is not
true: eliminations by CNS can prevent eliminations of other values by NS. To
see this, consider a 2-variable instance with constraint (x1 = x2) ∨ (x2 = 0) and
domains D(x1) = {1, . . . , d−1}, D(x2) = {0, . . . , d−1}. The value 0 ∈ D(x2) can
be eliminated by CNS (conditioned by the variable x1) since ∀c ∈ D(x1), ∃a =
c ∈ D(x2)\{0} such that (a, c) ∈ R12. After eliminating 0 from D(x2), no further
eliminations are possible by CNS or neighbourhood substitution. However, in
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the original instance we could have eliminated all elements of D(x2) except 0
by neighbourhood substitution. Thus, in our algorithm to apply CNS, we give
priority to eliminations by NS.

In this section we have seen that it is possible to apply CNS and SS until
convergence in O(ed3) time and that it is possible to check SCSS in O(ed3)
time. Thus, the complexity of applying the value-elimination rules CNS, SS and
SCSS is comparable to the O(ed3) time complexity of applying neighbourhood
substitution (NS) [7]. This is interesting because (in instances with more than
one variable) CNS, SS and SCSS all strictly subsume NS.

6 Optimal Sequences of Eliminations

It is known that applying different sequences of neighbourhood operations until
convergence produces isomorphic instances [7]. This is not the case for CNS,
SS or SCSS. Indeed, as we show in this section, the problems of maximising
the number of value-eliminations by CNS, SS or SCSS are all NP-hard. These
intractability results do not detract from the utility of these operations, since
any number of value eliminations reduces search-space size regardless of whether
or not this number is optimal.

Theorem 4. Finding the longest sequence of CNS value-eliminations or SCSS
value-eliminations is NP-hard.

Proof. We prove this by giving a polynomial reduction from the set cover prob-
lem [20], the well-known NP-complete problem which, given sets S1, . . . , Sm ⊆ U
and an integer k, consists in determining whether there are k sets Si1 , . . . , Sik

which cover U (i.e. such that Si1 ∪ . . . ∪ Sik = U). We can assume that
S1 ∪ . . . ∪ Sm = U and k < m, otherwise the problem is trivially solv-
able. Given sets S1, . . . , Sm ⊆ U , we create a 2-variable CSP instance with
D(x1) = {1, . . . , m}, D(x2) = U and R12 = {(i, u) | u ∈ Si}. We can eliminate
value i from D(x1) by CNS (with, of course, x2 as the conditioning variable) if
and only if S1, . . . , Si−1, Si+1, . . . , Sm cover U . Indeed, we can continue eliminat-
ing elements from D(x1) by CNS provided the sets Sj (j ∈ D(x1)) still cover U .
Clearly, maximising the number of eliminations from D(x1) by CNS is equivalent
to minimising the size of the cover. To prevent any eliminations from the domain
of x2 by CNS, we add variables x3 and x4 with domains {1, . . . , m}, together
with the three equality constraints x2 = x3, x3 = x4 and x4 = x2. To complete
the proof for CNS, it is sufficient to observe that this reduction is polynomial.

It is easily verified that in this instance, CNS and SCSS are equivalent. Hence,
this proof also shows that finding the longest sequence of SCSS value-eliminations
is NP-hard.

In the proof of the following theorem, we need the following notion: we say
that a sequence of value-eliminations by snake-substitution (SS) is convergent if
no more SS value-eliminations are possible after this sequence of eliminations is
applied.
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Theorem 5. Finding a longest sequence of snake-substitution value-
eliminations is NP-hard.

Proof. It suffices to demonstrate a polynomial reduction from the problem Max
2-Sat which is known to be NP-hard [16]. Consider an instance I2SAT of Max
2-Sat with variables X1, . . . , XN and M binary clauses: the goal is to find a
truth assignment to these variables which maximises the number of satisfied
clauses. We will construct a binary CSP instance ICSP on O(N + M) variables,
each with domain of size at most four, such that the convergent sequences S of
SS value-eliminations in ICSP correspond to truth assignments to X1, . . . , XN

and the length of S is αN + βm where α, β are constants and m is the number
of clauses of I2SAT satisfied by the corresponding truth assignment.

We require four constructions (which we explain in detail below):

1. the construction in Fig. 7 simulates a Max 2-Sat literal X by a path of CSP
variables joined by greater-than-or-equal-to constraints.

2. the construction in Fig. 8 simulates the relationship between a Max 2-Sat
variable X and its negation X.

3. the construction in Fig. 9 allows us to create multiple copies of a Max 2-Sat
literal X.

4. the construction in Fig. 10 simulates a binary clause X ∨ Y where X,Y are
Max 2-Sat literals.

In each of these figures, each oval represents a CSP variable with the bullets
inside the oval representing the possible values for this variable. If there is a non-
trivial constraint between two variables xi, xj this is represented by joining up
with a line those pairs of values a, b such that (a, b) ∈ Rij . Where the constraint
has a compact form, such as x1 ≥ x2 this is written next to the constraint. In
the following, we write b

xi� a if b ∈ D(xi) is snake substitutable by a ∈ D(xi).
Our constructions are such that the only value that can be eliminated from any
domain by SS is the value 2.

Fig. 7. A construction to simulate a Max 2-Sat variable X: (a) X = 0, (b) X = 1.
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Figure 7(a) shows a path of CSP variables constrained by greater-than-or-
equal-to constraints. The end variables x1 and x5 are constrained by other vari-
ables that, for clarity of presentation, are not shown in this figure. If value 2 is
eliminated from D(x1), then we have 2 x2� 3. In fact, 2 is neighbourhood substi-
tutable by 3. Once the value 2 is eliminated from D(x2), we have 2 x3� 3. Indeed,
eliminations of the value 2 propagate so that in the end we have the situation
shown in Fig. 7(b). By a symmetrical argument, the elimination of the value 2
from D(x5) propagates from right to left (this time by neighbourhood substitu-
tion by 1) to again produce the situation shown in Fig. 7(b). It is easily verified
that, without any eliminations from the domains D(x1) or D(x5), no values for
the variables x2, x3, x4 are snake-substitutable. Furthermore, the values 1 and 3
for the variables x2, x3, x4 are not snake-substitutable even after the elimination
of the value 2 from all domains. So we either have no eliminations, which we
associate with the truth assignment X = 0 (where X is the Max 2-Sat literal
corresponding to this path of variables in ICSP ) or the value 2 is eliminated from
all domains, which we associate with the truth assignment X = 1.

Fig. 8. A construction to simulate a Max 2-Sat variable X and its negation X.

The construction in Fig. 8 joins the two path-of-CSP-variables constructions
corresponding to the literals X and X. This construction ensures that exactly
one of X and X are assigned the value 1. It is easy (if tedious) to verify that
the only snake substitutions that are possible in this construction are 2 x0� 3
and 2 x̃0� 3, but that after elimination of the value 2 from either of D(x0) or
D(x̃0), the other snake substitution is no longer valid. Once, for example, 2 has
been eliminated from D(x0), then this elimination propagates along the path
of CSP variables (x1, x2, x3, . . .) corresponding to X, as shown in Fig. 7(b). By
a symmetrical argument, if 2 is eliminated from D(x̃0), then this elimination
propagates along the path of CSP variables (x̃1, x̃2, x̃3, . . .) corresponding to X.
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Thus, this construction simulates the assignment of a truth value to X and its
complement to X.

Fig. 9. A construction to create two copies X ′ and X ′′ of the Max 2-Sat variable X.

Since any literal of I2SAT may occur in several clauses, we need to be able
to make copies of any literal. Figure 9 shows a construction that creates two
copies X ′,X ′′ of a literal X. This construction can easily be generalised to make
k copies of a literal, if required, by having k identical paths of greater-than-
equal-to constraints on the right of the figure all starting at the pivot variable
x3. Before any eliminations are performed, no snake substitutions are possible
in this construction. However, once the value 2 has been eliminated from D(x1),
eliminations propagate, as in Fig. 7: the value 2 can successively be eliminated
from the domains of variables x2, x3, x′

4, x′
5, and x′′

4 , x′′
5 . Each elimination is in

fact by neighbourhood substitution, as in Fig. 7. These eliminations mean that
we effectively have two copies X ′, X ′′ of the literal X. The triangle of equality
constraints at the top left of this construction is is there simply to prevent
propagation in the reverse direction: even if the value 2 is eliminated from the
domains of x′

5, x
′
4 and x′′

5 , x′′
4 by the propagation of eliminations from the right,

this cannot provoke the elimination of the value 2 from the domain of the pivot
variable x3.

Finally, the construction of Fig. 10 simulates the clause X ∨ Y . In fact, this
construction simply joins together the paths of CSP-variables corresponding to
the two literals X,Y , via a variable z. It is easily verified that the elimination
of the value 2 from the domain of x1 allows the propagation of eliminations of
the value 2 from the domains of x2, z, y2, y1 in exactly the same way as the
propagation of eliminations in Fig. 7. Similarly, the elimination of the value 2
from the domain of y1 propagates to all other variables in the opposite order y2,
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z, x2, x1. Thus, if one or other of the literals X or Y in the clause is assigned 1,
then the value 2 is eliminated from all domains of this construction. Eliminations
can propagate back up to the pivot variable (x3 in Fig. 9) but no further, as
explained in the previous paragraph.

Fig. 10. A construction to simulate a
Max 2-Sat clause X ∨ Y .

Putting all this together, we can see
that there is a one-to-one correspondence
between convergent sequences of SS value-
eliminations and truth assignments to the
variables of the Max 2-Sat instance.
Furthermore, the number of SS value-
eliminations is maximised when this truth
assignment maximises the number of sat-
isfied clauses, since it is αN + βm where
α is the number of CSP-variables in
each path of greater-than-or-equal-to con-
straints corresponding to a literal, β is the
number of CSP-variables in each clause
construction and m is the number of satis-
fied clauses. This reduction is clearly poly-
nomial.

7 Discussion and Conclusion

Both snake substitutability (SS) and conditioned neighbourhood substitutabil-
ity (CNS) strictly subsume neighbourhood substitution but nevertheless can be
applied in the same O(ed3) time complexity. We have also given a more general
notion of substitution (SCSS) subsuming both these rules that can be detected
in O(ed3) time. The examples in Fig. 1 show that these three rules are strictly
stronger than neighborhood substitution and that SS and CNS are incomparable.

An avenue of future research is the generalisation to valued CSPs. The notion
of snake substitutability has already been generalised to binary valued CSPs and
it has been shown that it is possible to test this notion in O(ed4) time if the
aggregation operator is addition over the non-negative rationals [13]. However,
further research is required to determine the complexity of applying this opera-
tion until convergence.

It is possible to efficiently find all (or a given number of) solutions to a CSP
after applying NS: given the set of all solutions to the reduced instance, it is
possible to find K ≥ 1 solutions to the original instance I (or to determine that
I does not have K solutions) in O(K(de + n2)) time [7]. This also holds for
CNS, since, as for NS, for each solution s found and for each value b eliminated
from some domain D(xi), it suffices to test each putative solution obtained by
replacing si by b. Unfortunately, the extra strength of snake substitution (SS)
is here a drawback, since, by exactly the same argument as for the ∃2snake
value-elimination rule (which is a weaker version of SS) [6], we can deduce that
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determining whether a binary CSP instance has two or more solutions is NP-
hard, even given the set of solutions to the reduced instance after applying SS.
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