
Pure MaxSAT and Its Applications
to Combinatorial Optimization via Linear

Local Search

Shaowei Cai1,2(B) and Xindi Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{caisw,zhangxd}@ios.ac.cn
2 School of Computer Science and Technology,

University of Chinese Academy of Sciences, Beijing, China

Abstract. Maximum Satisfiability (MaxSAT) is a general model for
formulating combinatorial optimization problems. MaxSAT formulas
encoded from different domains have different features, yet most
MaxSAT solvers are designed for general formulas. This work consid-
ers an important subclass of MaxSAT, named as Pure MaxSAT, which
characterizes a wide range of combinatorial optimization problems par-
ticularly subset problems. We design a novel local search method for Pure
MaxSAT, which combines the idea of linear search and local search and is
dubbed as linear local search. Our algorithm LinearLS significantly out-
performs state of the art MaxSAT solvers on Pure MaxSAT instances,
including instances from MaxSAT Evaluations and those encoded from
three famous NP hard combinatorial optimization problems. Moreover,
LinearLS outperforms state of the art algorithms for each tested combi-
natorial optimization problem on the popular benchmarks.

Keywords: Pure MaxSAT · Combinatorial optimization · Linear local
search

1 Introduction

Maximum Satisfiability (MaxSAT) is an optimisation version of Boolean Satisfi-
ability (SAT), and its general form contains both hard clauses and soft clauses,
where the soft clauses can be unweighted or weighted. Solving such a MaxSAT
instance involves finding a truth assignment that satisfies the hard clauses along
with a maximum number (resp. weight) of soft clauses. MaxSAT is a natural
model for formulating combinatorial optimization problems, and has been used
to efficiently solve many combinatorial optimization problems that appear in
industrial domains.

Most MaxSAT algorithms are developed for general purpose and focus on
achieving better performance on a wide range of benchmarks which come from

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 90–106, 2020.
https://doi.org/10.1007/978-3-030-58475-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-58475-7_6

Pure MaxSAT and Its Applications to Combinatorial Optimization 91

diverse domains, and they are usually tested on benchmarks from MaxSAT Eval-
uations (MSEs). The most popular and effective approach for MaxSAT is the
SAT-based approach [1,17,35], which reformulates the MaxSAT optimization
problem into a sequence of SAT decision problems and solves them by iteratively
calling a SAT solver. SAT-based MaxSAT algorithms can be divided into two
types: linear [6,7,26,32] and core-guided [2,21,36,39]. SAT-based algorithms
are essentially complete: they can prove the optimality of the solutions they find
when they terminate. Some SAT-based solver such as the linear search ones and
the hybrid ones [3,4], refine the upper bound during the search, and can be used
for incomplete solving. SAT-based solvers have shown strong performance in the
MSEs.

There has been growing interest in incomplete MaxSAT algorithms in recent
years, with a surge of new methods at the two recent MSEs. A main incomplete
approach for MaxSAT is local search, which aims to find high quality solutions
quickly. Local search algorithms typically maintain a complete assignment and
modify it iteratively by flipping the value of variables to quickly visit the search
space and look for solutions of increasing quality. Local search for MaxSAT has
witnessed significant progress during recent years [10,20,27,30]. Particularly, a
dynamic local search algorithm named SATLike [27] is competitive with SAT-
based solvers on solving unweighted industrial instances.

When solving combinatorial optimization problems by MaxSAT, most works
utilize the general solvers off the shelf [5,13,14,22]. However, MaxSAT instances
from different domains have their own characteristics, which we believe should be
taken into account. Very limited works have been done on developing MaxSAT
solvers for specific problems such as Maximum Weight Clique [16,23]. But such
algorithms are limited to just one specific problem. An important fact is that
many combinatorial optimization problems share the same feature when they are
formulated in MaxSAT. Therefore, a significant direction is to develop effective
algorithms for important subclasses of MaxSAT, which can have better perfor-
mance than general MaxSAT algorithms while at the same time can be applied
to a wide range of problems.

In this work, we introduce an important subclass of MaxSAT called Pure
MaxSAT (PureMS for short), which characterizes a wide range of combinatorial
optimization problems, particularly including subset problems. In fact, a consid-
erable portion of the benchmarks in recent MSEs belong to this subclass. For
solving PureMS, we propose a new search paradigm named linear local search,
which is inspired by the great success of the linear SAT-based solvers. The core
idea is that, whenever finding a better solution, the algorithm only visits assign-
ments with strictly lower soft cost (i.e., with smaller weight of falsified soft
clauses). Thus, every feasible solution visited during the search has a lower cost
than previously found solutions. This is the first time that the idea of linear
search is integrated to local search for MaxSAT, and our experiments show that
the linear local search is powerful for solving PureMS formulas.

Our linear local search is a two-phase local search algorithm, which consists of
two phases in each iteration. The first one is dedicated to decrease the soft cost,

92 S. Cai and X. Zhang

while the second focuses on satisfying hard clauses, subject to keeping the soft
cost lower than the cost of the previously found best solution. To improve the
local search, we propose a variant of the Variable Neighbourhood Descent (VND)
method [34]. VND is a variant of Variable Neighbourhood Search (VNS), which
benefits from the advantages of large neighbourhoods without incurring a high
time complexity of the search steps. VND employs small neighbourhoods until
a local optimum is encountered, at which point the search process switches to a
larger neighbourhood (corresponding to flipping more variables in one iteration
in the context of MaxSAT), which might allow further improvement. Different
from previous VND or VNS methods which only consider the number of elements
to change values, we also take into account a structure parameter, i.e., the total
degree of the chosen variables.

We carry out experiments to evaluate our algorithm dubbed LinearLS on a
wide range of benchmarks, including all PureMS instances in recent MSEs, as
well as the benchmarks from three famous combinatorial optimization problems,
namely maximum clique (MaxClq), minimum vertex cover (MinVC) and set
cover problem (SCP). Our results show that LinearLS is significantly better
than state of the art MaxSAT solvers, including SAT-based and local search
ones on all the benchmarks. Moreover, LinearLS outperforms state of the art
algorithms for MaxClq, MinVC and SCP. Note that, our algorithm is general for
combinatorial optimization problems that can be formulated as PureMS, while
the competitors are tailored for each specific problem respectively.

The remainder of this paper is structured as follows. The next section intro-
duces background knowledge. Section 3 introduces the Pure MaxSAT problem,
and Sect. 4 presents the linear local search method. Experiment results are pre-
sented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminary

Given a set of n Boolean variables X = {x1, x2, ..., xn}, a literal is either a
variable xi (positive literal) or its negation ¬xi (negative literal). The polarity
of a positive literal is 1, while the polarity of a negative literal is 0. A clause is
a disjunction of literals (i.e. Ci = li1 ∨ li2 ∨ ... ∨ lij), and can be viewed as a set
of literals. A unit clause is a clause with only one literal. A Conjunctive Normal
Form (CNF) formula F = C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses.

A mapping α : X → {0, 1} is called an assignment, and a complete
assignment is a mapping that assigns to each variable either 0 or 1. Given
an assignment α, a clause is satisfied if it has at least one true literal, and is
falsified if all its literals are false under α.

Given a CNF formula, the Maximum Satisfiability (MaxSAT) problem con-
cerns about finding an assignment to satisfy the most clauses. In its general
form, the clauses are divided into hard clauses and soft clauses, where the soft
clauses can be unweighted or weighted, and the goal is to find an assignment
that satisfies all hard clauses and maximizes the number (resp. weight) of satis-
fied soft clauses. Such formulas are referred to as (Weighted) Partial MaxSAT.
Hereafter, when we say MaxSAT, we refer to this kind of formulas.

Pure MaxSAT and Its Applications to Combinatorial Optimization 93

Given a MaxSAT formula F and an assignment α to its variables, two impor-
tant sets are defined here.

– Hf (α) = {c|c is a hard clause falsified under α}.
– Sf (α) = {c|c is a soft clause falsified under α}.

The cost functions are defined below.

– the hard cost of α, denoted as costh(α), is the number of falsified hard clauses
under α.

– the soft cost of α, denoted as costs(α), is the number (or total weight) of
falsified soft clauses under α.

– the cost of α is cost(α) = +∞ · costh(α) + costs(α).

An assignment α is feasible iff it satisfies all hard clauses in F . It is easy to see
cost(α) = costs(α) for feasible assignments, while cost(α) = +∞ for infeasible
assignments.

Two variables are neighbors if they occur in at least one clause, and N(x)
denotes all the neighboring variables of x. The degree of x is denoted as
degree(x) = |N(x)|. We use Δ(F) to denote the averaged degree of formula
F .

Below we give the definitions of the three combinatorial optimization prob-
lems studied in our experiments.

MaxClq and MinVC: Given an undirected graph G = (V,E), a clique is a
subset K ⊆ V whose elements are pairwise adjacent, while a vertex cover is a
subset C ⊆ V such that every edge has at least one endpoint in C. Given a graph,
the Maximum Clique (MaxClq) problem is to find a maximum sized clique, while
the Minimum Vertex Cover (MinVC) problem is to find the minimum sized
vertex cover.

SCP: Given an ground set U and a set S of subsets of U with ∪∀s∈S = U ,
where each element in S is associated with a weight w(s), the goal of Set Cover
Problem (SCP) is to find a set F ⊆ S of the smallest total weight but still
contains all elements in U , that is, ∪∀s∈F = U . In the unweighted version of
SCP, also known as uniform cost SCP, each element in S has the same weight 1,
and thus the goal is to find F ⊆ S such that the cardinality of F is the smallest.

3 The Pure MaxSAT Problem

We propose a new variant of MaxSAT named Pure MaxSAT, which is an impor-
tant subclass of the MaxSAT problem.

Definition 1 (pure clause). A clause is a pure clause if all its literals are of
the same polarity (either positive or negative). The polarity of a pure clause is
defined as the polarity of its literals.

94 S. Cai and X. Zhang

Definition 2 (Pure MaxSAT). The Pure MaxSAT problem is a special type of
Partial MaxSAT where all hard clauses are pure clauses with the same polarity,
and all soft clauses are pure clauses with the opposite polarity. In the weighted
Pure MaxSAT, each soft clause has a positive number as its weight.

When formulated as the language of MaxSAT, many combinatorial opti-
mization problems naturally fall into the class of Pure MaxSAT. We give three
examples, which are famous NP hard problems with wide applications of their
own.

– MaxClq: For each vertex i ∈ V , the PureMS instance has a boolean variable
xi that indicates whether vertex i is chosen in the clique. For each vertex
pair (i, j) /∈ E (E is the edge set), generate a hard clause ¬xi ∨ ¬xj ; for each
vertex i ∈ V , generate a unit soft clause {xi}.

– MinVC: For each vertex i ∈ V , the PureMS instance has a boolean variable
xi that indicates whether vertex i is chosen in the vertex cover. For each edge
(i, j) ∈ E, generate a hard clause xi ∨ xj ; for each vertex i ∈ V , generate a
unit soft clause {¬xi}.

– SCP: For each element (a subset) s ∈ S, the PureMS instance has a boolean
variable xs that indicates whether s is chosen in the solution. For each element
e ∈ U , generate a hard clause {xs|s ∈ S, e ∈ s}, to ensure that each element
in U is covered by at least one subset in S. For each element s ∈ S, generate
a soft clause {¬xs} and its weight is equal to w(s).

Observing the feature of PureMS, we can gain some insights on local search
algorithms for this problem. Since the polarity of hard clauses is opposite to
that of the soft clauses, the goal of satisfying more hard clauses and the goal
of satisfying more soft clauses are obviously conflicting. Whenever we flip a
variable to reduce costs, it causes an increase on costh, although sometimes the
increment can be 0 (rarely happens). Similarly, a flip of a variable which reduces
costh potentially goes along with an increase on costs. This observation leads us
to design linear local search for PureMS.

4 Linear Local Search for Pure MaxSAT

In this section, we propose a linear local search algorithm for PureMS. We firstly
introduce the linear local search framework and the scoring function, and then
present the algorithm.

4.1 Linear Local Search and Its Scoring Function

We propose a two-phase local search framework (Algorithm 1), which allows
to implement a linear search that visits solutions with monotonically decreasing
cost. First, we note that, for PureMS, since the polarity of literals in hard clauses
are the same, we can produce a feasible initial assignment with guarantee. At
the trivial case, we can simply assign 0 to all variables if hard clauses consist

Pure MaxSAT and Its Applications to Combinatorial Optimization 95

of negative literals, and 1 on the contrary. Nevertheless, there are better initial-
ization algorithms. After the initialization, the algorithm executes a loop until
reaching a time limit. Each iteration of the loop consists of two phases.

Algorithm 1: A Linear Local Search Framework for PureMS
1 Input: MaxSAT instance F , the cutoff time
2 Output: A feasible assignment α∗

3 begin
4 α ← InitAssignment();
5 while elapsed time < cutoff do
6 if Hf (α) = ∅ then
7 α∗ ← α, cost∗ ← cost(α);

8 flip some variables to decrease costs(α);
9 while Hf (α) �= ∅ do

10 choose a variable y from falsified hard clauses;
11 if flipping y would cause costs(α) ≥ cost∗ then break;
12 flip(α, y);

13 return (α∗, cost∗)

– In the first phase, the algorithm chooses some variables to flip, with the
purpose of decreasing the soft cost. This phase produces some newly falsified
hard clauses.

– In the second phase, the algorithm tries to satisfy as many hard clauses as
possible, with a constraint that keeps the soft cost strictly lower than cost∗

(the cost of the best found solution). Thus, if all hard clauses are satisfied
(i.e., Hf (α) = ∅), that means a better solution is found.

Local search algorithms are typically guided by scoring functions, which are
used to evaluate variables and critical in selecting the variable to flip. We design
a scoring function which cooperates well with the linear local search framework.

Our scoring function is related to a clause weighting scheme. Most local search
algorithms for MaxSAT employ constraint weighting techniques, which serve as
a form of diversification. Our algorithm utilizes a clause weighting scheme that
works on hard clauses (the details will be described in the LinearLS algorithm in
Sect. 4.2). We associate each hard clause c with a positive integer weight hw(c)1,
which are initialized to 1 and updated during the search. Note that the weights
of soft clauses are not changed in our algorithm. Our scoring function relies on
two basic functions which are defined below.

1 To distinguish with the weight of soft clauses w(c) in the original formula, we use
hw(c) to denote the hard clause weight introduced by our method.

96 S. Cai and X. Zhang

Definition 3 (hard score, soft score). Given a MaxSAT formula and let α
be a complete assignment, the hard score of a variable x w.r.t. α is defined as

hscore(α, x) =
∑

c∈Hf (α)

hw(c) −
∑

c∈Hf (α′)

hw(c),

and the soft score of x w.r.t. α is defined as

sscore(α, x) = costs(α) − costs(α′),

where α′ differs from α only in the value of x.

In this work, the α in scoring functions always refers to the current assign-
ment and can be omitted. Hence, hscore(α, x) and sscore(α, x) can be written
as hscore(x) and sscore(x). Intuitively, hscore(x) and sscore(x) are the incre-
mental changes in the objective for flipping x w.r.t. the current assignment.

Lemma 1. Given any PureMS formula F , and α is a complete assignment to
F , for any variable x, we have

hscore(α, x) · sscore(α, x) ≤ 0.

Proof: According to the definition of PureMS, all clauses in F are pure clauses
and the literals in hard clauses have the opposite polarity to those in soft clauses.
Without loss of generality, let us assume the hard clauses contain only positive
literals, and the soft clauses contain only negative literals. If hscore(α, x) > 0,
which indicates that the flip of x make at least one falsified hard clause become
satisfied, then it must flip the value of x from 0 to 1. Such a 0→ 1 flip never
makes any falsified soft clause become satisfied, as all soft clauses have negative
literals. Therefore, hscore(α, x) and sscore(α, x) cannot be positive at the same
time. ��

Based on these two basic functions and Lemma 1, we derive a novel scoring
function as follows.

Definition 4 (ratio score). The ratio score of a variable x is defined as

rscore(x) =
hscore(x)

|sscore(x)| + 1
.

This rscore measures the ratio of hscore and sscore. We add one to the
denominator to avoid the “divide by 0” error. Also, we adopt the absolute value
of sscore for convenient usage—by doing this, we can prefer larger rscore no
matter in the first or second phase. In the first phase, we focus on satisfying
soft clauses, and the chosen variables have sscore(x) > 0 and hscore(x) ≤ 0,
and thus rscore(x) ≤ 0. For equal hscore, a larger rscore means a larger sscore,
which means satisfying more soft clauses; for equal sscore, a larger rscore means
breaking fewer hard clauses. In the second phase, we focus on satisfying hard
clauses, and the chosen variables have hscore(x) > 0 and sscore(x) ≤ 0, and thus

Pure MaxSAT and Its Applications to Combinatorial Optimization 97

rscore(x) ≥ 0. For equal sscore, a larger rscore means a larger hscore, which
leads to more satisfied hard clauses; for equal hscore, a larger rscore means a
smaller |sscore|, which means breaking fewer soft clauses. Our algorithm employs
rscore in both phases of local search, and prefers to pick the variables with larger
rscore.

4.2 The LinearLS Algorithm

Based on the linear local search framework and the rscore function, we develop
an algorithm named LinearLS (Algorithm2). The algorithm is described in
details below.

Initialization: Unlike previous local search algorithms for SAT/MaxSAT which
generate the initial solution randomly, our algorithm employs a greedy strategy.
Firstly, all variables are assigned with the value equal to the polarity of the soft
clauses. This makes all hard clauses falsified and all soft clauses satisfied. Then,
the algorithm iteratively picks a random falsified hard clause and flips a variable
with highest hscore in the clause, until there is no falsified hard clause. Thus the
initial assignment is feasible. At the worst case, all variables are flipped in order
to make all hard clauses satisfied, then the cost would be the largest among
feasible solutions as all soft clauses are falsified in this situation. In practice,
however, this initialization procedure usually finds a much better solution than
the worst case.

After initialization, the local search loop (lines 5–20) is executed until a given
cutoff time is reached. During the search, the best found solution α∗ and its cost
are updated. An important feature of our linear local search algorithm is that,
whenever we find a feasible solution, we are sure that it is better than α∗, as
the algorithm always keeps costs(α) strictly lower than cost∗. Thus, whenever α
becomes feasible, α∗ is updated to α and cost∗ is updated accordingly (lines 6–
7). When the algorithm reaches the time limit, it returns the best found solution
α∗ and its cost.

The local search is based on the two-phase framework, and we propose a
variant of Variable Neighbourhood Descent (VND) method for striking a good
balance between exploitation and exploration.

In the first phase (lines 8–13), we flip K variables, where K is adjusted
according to the algorithm’s behavior. If the algorithm has not found a better
solution for a long period (which is set to 2·104 steps for SCP benchmarks and 104

for the others in LinearLS), then K increases by 1 for improving exploration,
while once the algorithm finds a solution, K is reset to 1 for fast converge.
This is implemented in the Adjust flip num phase1(K) function. Each flipping
variable in the first phase is chosen from all falsified soft clauses by picking the
variable with the highest rscore (line 10), breaking ties by preferring the one
that is least recently flipped. Additionally, we set a dynamic maximum limit
to K by considering the total degree of the flipping variables in the first phase
(line 12). Once this value achieves a threshold (t × Δ(F), where t is set to 1 for

98 S. Cai and X. Zhang

Algorithm 2: LinearLS
1 Input: Pure MaxSAT instance F , the cutoff time
2 Output: A feasible assignment α∗ and its cost
3 begin
4 α ← InitSolution();
5 while elapsed time < cutoff do
6 if Hf (α) = ∅ then
7 α∗ ← α, cost∗ ← cost(α);

8 SumDegree ← 0;
9 for i ← 1 to K do

10 x ← a variable in Sf (α) with highest rscore;
11 flip(α, x);
12 SumDegree+ = degree(x);

13 if SumDegree ≥ t × Δ(F) then break ;

14 while Hf (α) �= ∅ do
15 c ← a random falsified hard clause;
16 y ← a variable in c with highest rscore;
17 if costs(α) − sscore(α, y) ≥ cost∗ then break ;
18 flip(α, y);

19 Adjust flip num phase1(K);
20 Update hard clause weights();

21 return (α∗, cost∗)

MaxClq and SCP benchmarks, 2 for the rest), the first phase is stopped and the
algorithm goes to the second phase (line 13).

Here we provide the intuition of limiting VND with a degree based upper
bound. Generally, the more variables flipped in the first phase, the more candi-
date variables are generated for the second phase. However, the other factor to
the number of candidate flipping variables (thus the size of search area) in the
second phase is the degree of the variables flipped in the first phase. We take
into account both factors in our VND method.

The second phase (lines 14–18) is dedicated to satisfy hard clauses, and thus
each flipping variable is chosen from a random falsified hard clause. The variable
with highest rscore is picked, breaking ties by preferring the one that is least
recently flipped. For each selected variable, LinearLS checks whether its flip
would cause costs(α) greater than or equal to cost∗, and if this is the case, it
leaves the second phase immediately without flipping the variable. By doing this,
we guarantee that costs(α) < cost∗ always holds during the search.

In the end of each iteration, the K value is updated when necessary according
to our VND method. Also, the hard clause weights are updated (line 20): the
weight of each falsified hard clause is increased by 1, and when the average weight
achieves a threshold (which is set to n

2), early weighting decisions are forgotten
as hw(c) ← ρ · hw(c), where ρ ∈ (0, 1) is a constant factor and set to 0.3.

Pure MaxSAT and Its Applications to Combinatorial Optimization 99

4.3 More Optimizations

An effective strategy to avoid the cycle phenomenon (i.e., revisiting some search
areas) in local search is the Configuration Checking (CC) strategy [12], which
forbids flipping a variable x, if after the last time x was flipped, none of its
neighboring variables has changed its value. The CC strategy has proved effective
in local search for SAT [11] and MaxSAT [30,31]. LinearLS also employs CC.
Variables flipped in last iteration are also forbidden to be flipped again. These
are common techniques in local search to reduce the cycle phenomenon.

5 Experiments

We carry out experiments to compare LinearLS with state of the art algorithms
on a wide range of benchmarks. LinearLS is implemented in C++ and com-
piled by g++ with -O3 option. Our all experiments were conducted on a server
using Intel Xeon Platinum 8153 @2.00 GHz, 512G RAM, running Centos 7.7.1908
Linux operation system. The time limit for all algorithms is 300 s, except that
we additionally test an exact MaxSAT solver for one hour.

5.1 Results on PureMS Benchmarks from MSEs

We collect all PureMS instances from both unweighted and weighted benchmarks
in MaxSAT Evaluations (MSEs) 2017, 2018 and 2019. There are several dupli-
cate instances in the unweighted benchmarks of the three MSEs. We compare
LinearLS with 4 state of the art MaxSAT solvers, from which are 1 local search
solver and 3 SAT-based solvers.

Table 1. Results on Pure MaxSAT benchmarks from MaxSAT Evaluations 2017–2019,
including unweighted benchmarks and weighted benchmarks.

Benchmark#inst.LinearLS SATLike(w)Loandra TT-OpenWBORC2 RC2(1h)

#winTime#winTime #winTime#winTime #winTime#winTime

Unweighted

MSE17 113 111 6.1 48 31.6 57 27.5 57 40.9 57 15.1 64 153.9

MSE18 110 100 16.2 46 29.5 46 23.7 36 44.1 61 56.0 70 235.2

MSE19 101 88 22.8 28 17.0 33 51.6 25 59.4 42 84.2 49 264.4

MSEall 284 261 14.2 112 29.6 121 28.0 105 41.9 148 50.4 168 206.7

Weighted

MSE17 40 40 <0.1 31 0.1 33 16.7 20 0.1 25 25.5 37 372.8

MSE18 15 15 <0.1 15 0.1 14 29.5 0 N/A 4 151.7 14 859.2

MSE19 51 51 30.7 30 6.1 21 10.7 8 27.4 19 45.7 25 238.7

MSEall 106 106 14.8 76 2.5 68 17.5 28 7.9 48 44.0 76 418.3

100 S. Cai and X. Zhang

– SATLike [27] is the best local search MaxSAT solver, which won the two
unweighted categories of incomplete track in MSE 2018 and placed 2nd in
the 300 s unweighted category of incomplete track in MSE 2019. SATLike
has another version optimized for weighted categories, which is denoted as
SATLike w.

– Loandra [6] won the two unweighted categories, and was ranked 2nd in two
weighted categories of incomplete track in MSE 2019.

– TT-Open-WBO-inc [38] won the two weighted categories of incomplete track
in MSE 2019.

– RC2 (implementing the relaxable cardinality constraints method) [37] won
both weighted and unweighted categories of complete track in MSE 2019.
Since RC2 is an exact solver, in our experiments, we test RC2 with 2 time
limits, 300 s (as with other solvers) and one hour. We note that local search
and exact solvers have different advantages and it is better to see them as
complementary alternatives. The comparisons with exact solvers are just for
reference, which may give us some insights.

Table 2. Averaged SCORE results of MaxSAT solvers on each family of MSE bench-
marks. We also report the results of the complete solver RC2 with 1 h time limit for
reference.

Domain(#inst.) LinearLS Linear init SATLike(w) Loandra TTOpenWBO RC2 RC2(1h)

Unweighted

maxclique(68) 1.0 0.978 0.995 0.995 0.997 0.441 0.485

aes(14) 1.0 0.882 0.895 0.769 0.303 0.143 0.143

frb(40) 1.0 0.978 0.994 0.999 1.0 0.975 1.0

bcp-syn(53) 1.0 0.469 0.996 0.955 0.92 0.396 0.509

optic(69) 1.0 0.904 0.989 0.961 0.835 0.333 0.377

drmx-cryptogen(40) 0.991 0.827 0.984 0.955 0.881 0.825 1.0

Weighted

auc-paths(35) 1.0 0.98 1.0 1.0 0.993 0.257 0.886

auc-scheduling(20) 1.0 0.996 0.996 0.999 1.0 1.0 1.0

MinimumWeight

DominatingSetProblem(7)

1.0 0.966 0.402 0.708 0.705 0.0 0.0

auctions(16) 1.0 0.985 0.996 0.996 0.995 0.312 0.625

set-covering(28) 1.0 0.888 0.996 0.981 0.949 0.5 0.536

For each algorithm on each instance family, we report the number of instances
where the solver finds the best solution among all solvers (“#win”) and the mean
time of doing so over such winning instances. These results (Table 1) clearly show
the superiority of LinearLS over other MaxSAT solvers. Particularly, the “#win”
number of LinearLS is always significantly larger than other solvers.

To show how far the solution provided by a solver are from the best solution
found by all the solvers, for each algorithm A on each fomula F , we calculate a
metric measured as SCORE(F,A) = BEST COST (F)+1

COST (F,αA)+1
, where αA is the solution

found by algorithm A while BEST COST (F) denotes the lowest cost found in

Pure MaxSAT and Its Applications to Combinatorial Optimization 101

the time limit by any of the solvers. These benchmarks consists formulas encoded
from different domains, and we report the averaged SCORE for each algorithm
on each domain in Table 2. The SCORE of LinearLS is 1.0 (full score) for all
domains except 0.991 for the cryptogen domain. Nevertheless, the best SCORE
is obtained by RC2 for one hour time limit. If we compare all the solvers with the
time limit of 300 s, then LinearLS is still the best, achieving a full score, which
indicates its strong performance on a wide range of benchmarks from diverse
domains.

We also calculate the SCORE of the initial solutions of LinearLS. As can be
seen from the table, the initial solutions of LinearLS are better than the solutions
returned by TTOpenWBO and RC2 on most of the Pure MaxSAT instances.
Besides, although the initial solutions are not as good as those returned by the
incomplete solvers SATLike and Loandra, the gaps are not large. This indicates
that the design of the problem is an important factor to the good performance
on Pure MaxSAT. By executing the local search procedure of LinearLS, the
solutions are further improved.

Table 3. Results on MaxClq benchmarks. This table reports results for three Max-
Clq benchmarks, including Kidney Exchange (Kidney), Research Excellence Network
(REN) and DIMACS. The error-correcting codes (ECC) benchmark instances are too
easy that all algorithms find the optimal solution quickly and not reported.

Solvers Kidney(120) REN(129) DIMACS(37) MaxClq all(286)

Win Time Win Time Win Time Win Time

LinearLS 120 0.1 129 0.1 33 11.1 282 1.4

LSCC 118 0.8 127 <0.1 33 <0.1 278 0.3

BBMS 98 27.4 129 4.8 26 9.3 253 14.0

IncMaxCLQ 106 36.9 110 5.2 26 32.1 242 22.0

IncMC2 110 3.4 107 <0.1 26 10.9 243 2.7

MaxClqDyn 74 3.7 114 0.6 21 15.6 209 3.2

MCS 108 2.8 115 0.6 20 13.6 243 2.7

SATLike 84 13.3 115 10.6 8 19.0 207 12.0

Loandra 88 5.3 101 2.4 16 19.7 205 5.0

TT-OpenWBO 86 16.5 102 8.3 17 56.6 205 15.8

5.2 Results on Maximum Clique Benchmarks

We evaluate LinearLS on 4 popular MaxClq benchmarks which are mostly from
applications [33]:

– Kidney Exchange, where the clique stands for a maximally desirable set of
donor/patient exchanges. The instances were generated using data from [15].

102 S. Cai and X. Zhang

– Error-correcting Codes (ECC), where the clique stands for a set of words
maximally pair-wise distant [40].

– Research Excellence Network (REN) [33], where the clique stands for the
optimal set of publications that a university department can provide to the
authority assessing it.

– DIMACS, the MaxClq benchmark from Second DIMACS Implementation
Challenge (1992–1993)2. Thirty seven graphs were selected by the organizers
to be the Second DIMACS Challenge Test Problems.

Besides the MaxSAT algorithms, we compare with the following MaxClq
algorithms. According to [28], state of the art MaxClq algorithms include
IncMC2 [28], BBMC [42,43], IncMaxCLQ [29], MCS[44], MaxCliqueDyn [25].
We also compare with LSCC [46], which is a recent local search algorithm that
performs well on both unweighted and weighted MaxClq benchmarks.

The ECC instances are so easy that all algorithms find the optimal solu-
tion quickly, and the local search algorithms do so within one second, and thus
are not reported. The results (Table 3) show that Our LinearLS gives the best
performance in terms of the solution quality, and is the best algorithm for the
two application benchmarks namely Kidney and REN. Although the other local
search LSCC is fast, it fails to find the best solution for some instances in these
two benchmarks. The MaxSAT solvers, including SATLike, Loandra and TT-
OpenWBO, perform much worse than LinearLS.

5.3 Results on Minimum Vertex Cover Benchmark

Recently, MinVC algorithms focus on solving massive graphs. Particularly, the
Network Repository [41], which collects massive graphs from various areas, has
become the most popular benchmark for testing MinVC algorithms in recent
years [8,9,24,45]. FastVC [8] is an efficient local search for massive graphs, and
afterwards it is improved by a preprocessor, resulting in the FastVC2+p algo-
rithm [9]. Seen from the literature, FastVC2+p is currently the best algorithm
for solving MinVC on the Network Repository instances.

On these massive MinVC instances, all the MaxSAT solvers perform signifi-
cantly worse than LinearLS on almost all instances, and thus we do not report
their results here. We focus on the comparison with MinVC algorithms FastVC
and FastVC2+p. For fair comparison, when compared with FastVC2+p, Lin-
earLS also utilizes the preprocessor in FastVC2+p to preprocess the graphs.
We choose the graphs with at least 105 vertices, resulting in 65 graphs. Each
algorithm is performed 10 runs on each graph with random seed from 1 to 10.
We report the number of instances where the algorithm gives better results in
terms of the minimum cost (‘min’) and the averaged cost (‘avg’) among the 10
runs. Seen from Table 4, the performance of LinearLS is surprisingly good on
these massive MinVC instances, pushing the state of the art in MinVC solving
on massive graphs.

2 ftp://dimacs.rutgers.edu/pub/challenges.

ftp://dimacs.rutgers.edu/pub/challenges

Pure MaxSAT and Its Applications to Combinatorial Optimization 103

Table 4. Results on large MinVC instances in Network Repository

LinearLS FastVC

Min Avg Min Avg

#better-solution 42 42 12 13

#equal-solution 11 10 11 10

LinearLS+p FastVC2+p

Min Avg Min Avg

#better-solution 22 27 17 14

#equal-solution 26 24 26 24

5.4 Results on Set Cover Benchmarks

We evaluate LinearLS on 2 important SCP benchmarks, including (1) the STS
benchmark [18], which contains unweighted SCP instances from Steiner triple
systems; (2) the Rail benchmark3, which contains weighted SCP instances that
arise from an application in Italian railways and have been contributed by Paolo
Nobili.

LinearLS is compared with SATLike(w) and the best SAT-based solver for
each SCP benchmark. Also, it is compared with the SCP algorithm from [19],
which is the best SCP algorithm on both unweighted and weighted SCP (the
algorithm was not given a name, and is denoted by the paper [19]). Since the
number of instances is limited, each algorithm is performed 10 runs on each
instance, and we report the minimum cost and averaged cost, and the aver-

Table 5. Results on unweighted and weighted SCP instances

Instance LinearLS [19] SATLike Loandra

Min(avg) Time Min(avg) Time Min(avg) Time Min(avg) Time

STS135 103(103.0) 3.3 103(103.0) 3.7 104(104.0) 292.6 104(104.0) 62.3

STS243 198(198.0) <0.1 198(198.0) 0.1 198(201.8) 285.4 202(202.0) 258

STS405 335(335.0) 3.8 335(335.8) 31.0 342(344.0) 288.4 347(347.0) 4.9

STS729 617(617.0) 7.0 617(619.0) 26.5 646(647.4) 270.3 643(643.0) 5.7

LinearLS [19] SATLike w TT-OpenWBO

rail507 176(176.0) 3.6 176(176.3) 101.5 194(196.0) 114.4 248(248.0) 64.8

rail516 182(182.0) 33.8 182(182.1) 128.8 188(189.4) 170.4 226(226.0) 21.1

rail582 213(213.0) 1.9 213(213.9) 136.4 223(225.2) 176.5 286(286.0) 25.4

rail2536 716(716.0) 93.3 764(772.1) 288.1 N/A(N/A) N/A 1125(1125.0) 3.9

rail2586 990(990.0) 30.2 1036(1055.0) 292.8 N/A(N/A) N/A 1463(1463.0) 3.2

rail4284 1117(1117.0) 173.8 1203(1221.8) 287.5 N/A(N/A) N/A 1734(1734.0) 4.1

rail4872 1589(1589.0) 55.8 1688(1733.2) 295.0 N/A(N/A) N/A 2355(2355.0) 3.5

3 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/files/.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/

104 S. Cai and X. Zhang

aged run time to find the final solution in each run. The results (Table 5) show
that LinearLS outperforms the MaxSAT competitors significantly. Moreover,
LinearLS finds better solutions than the SCP algorithm [19] and is much faster.

6 Conclusions

We introduced the Pure MaxSAT problem, which is an important subclass of
MaxSAT and characterizes many combinatorial optimization problems particu-
larly subset problems. We proposed the linear local search method for PureMS,
which is the first work exploiting linear search in local search for MaxSAT prob-
lems. Experiments on benchmarks from MaxSAT Evaluations and benchmarks
of three famous NP hard problems showed that our algorithm significantly out-
performs previous MaxSAT algorithms, and achieves better results than state of
the art specific algorithms for the three problems.

It is interesting to develop exact algorithms for Pure MaxSAT that can
achieve better results than general MaxSAT solvers. Also, we would like to study
the inference rules and reduction rules for Pure MaxSAT, which can be used to
further improve the performance of Pure MaxSAT solvers.

Acknowledgments. This work is partially supported by Youth Innovation Promotion
Association of Chinese Academy of Sciences [No. 2017150] and Beijing Academy of
Artificial Intelligence (BAAI).

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

2. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in MaxSAT. In: Proceedings of IJCAI 2015, pp. 283–289 (2015)

3. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial
MaxSAT. Artif. Intell. 250, 37–57 (2017)

4. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-
based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016). https://doi.org/10.
1007/s10732-015-9300-7

5. Benedetti, M., Mori, M.: On the use of Max-SAT and PDDL in RBAC main-
tenance. Cybersecurity 2(1) (2019). Article number: 19. https://doi.org/10.1186/
s42400-019-0036-9

6. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 3

7. Berre, D.L., Parrain, A.: The SAT4J library, release 2.2. JSAT 7(2–3), 59–64 (2010)
8. Cai, S.: Balance between complexity and quality: local search for minimum vertex

cover in massive graphs. In: Proceedings of IJCAI 2015, pp. 747–753 (2015)
9. Cai, S., Lin, J., Luo, C.: Finding a small vertex cover in massive sparse graphs:

construct, local search, and preprocess. J. Artif. Intell. Res. 59, 463–494 (2017)

https://doi.org/10.1007/s10732-015-9300-7
https://doi.org/10.1007/s10732-015-9300-7
https://doi.org/10.1186/s42400-019-0036-9
https://doi.org/10.1186/s42400-019-0036-9
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3

Pure MaxSAT and Its Applications to Combinatorial Optimization 105

10. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial MaxSAT.
In: Proceedings of AAAI 2014, pp. 2623–2629 (2014)

11. Cai, S., Su, K.: Local search for Boolean Satisfiability with configuration checking
and subscore. Artif. Intell. 204, 75–98 (2013)

12. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artif. Intell. 175(9–10), 1672–1696
(2011)

13. Demirovic, E., Musliu, N.: MaxSAT-based large neighborhood search for high
school timetabling. Comput. OR 78, 172–180 (2017)

14. Demirovic, E., Musliu, N., Winter, F.: Modeling and solving staff scheduling with
partial weighted MaxSAT. Ann. OR 275(1), 79–99 (2019). https://doi.org/10.
1007/s10479-017-2693-y

15. Dickerson, J.P., Procaccia, A.D., Sandholm, T.: Optimizing kidney exchange with
transplant chains: theory and reality. In: AAMAS 2012, pp. 711–718 (2012)

16. Fang, Z., Li, C., Xu, K.: An exact algorithm based on MaxSAT reasoning for the
maximum weight clique problem. J. Artif. Intell. Res. 55, 799–833 (2016)

17. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814948 25

18. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.: Two computationally difficult set
covering problems that arise in computing the 1-width of incidence matrices of
Steiner triple systems. In: Balinski, M.L. (ed.) Approaches to Integer Programming.
MATHPROGRAMM, vol. 2, pp. 72–81. Springer, Heidelberg (1974). https://doi.
org/10.1007/BFb0120689

19. Gao, C., Weise, T., Li, J.: A weighting-based local search heuristic algorithm for
the set covering problem. In: Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2014, pp. 826–831 (2014)

20. Guerreiro, A.P., Terra-Neves, M., Lynce, I., Figueira, J.R., Manquinho, V.:
Constraint-based techniques in stochastic local search MaxSAT solving. In: Schiex,
T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 232–250. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30048-7 14

21. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of AAAI 2011 (2011)

22. Huang, W., et al.: Finding and proving the exact ground state of a generalized Ising
model by convex optimization and MAX-SAT. Phys. Rev. B 94, 134424 (2016)

23. Jiang, H., Li, C., Liu, Y., Manyà, F.: A two-stage MaxSAT reasoning approach for
the maximum weight clique problem. In: Proceedings of AAAI 2018, pp. 1338–1346
(2018)

24. Katzmann, M., Komusiewicz, C.: Systematic exploration of larger local search
neighborhoods for the minimum vertex cover problem. In: Proceedings of AAAI
2017, pp. 846–852 (2017)

25. Konc, J., Janezic, D.: An improved branch and bound algorithm for the maximum
clique problem. Commun. Math. Comput. Chem. 58, 569–590 (2007)

26. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-
SAT solver. JSAT 8(1/2), 95–100 (2012)

27. Lei, Z., Cai, S.: Solving (weighted) partial MaxSAT by dynamic local search for
SAT. In: Proceedings of IJCAI 2018, pp. 1346–1352 (2018)

28. Li, C., Fang, Z., Jiang, H., Xu, K.: Incremental upper bound for the maximum
clique problem. INFORMS J. Comput. 30(1), 137–153 (2018)

29. Li, C., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental upper
bound for the maximum clique problem. In: ICTAI 2013, pp. 939–946 (2013)

https://doi.org/10.1007/s10479-017-2693-y
https://doi.org/10.1007/s10479-017-2693-y
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/BFb0120689
https://doi.org/10.1007/BFb0120689
https://doi.org/10.1007/978-3-030-30048-7_14

106 S. Cai and X. Zhang

30. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: an efficient local search algorithm
for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

31. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algo-
rithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843
(2015)

32. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

33. McCreesh, C., Prosser, P., Simpson, K., Trimble, J.: On maximum weight clique
algorithms, and how they are evaluated. In: Beck, J.C. (ed.) CP 2017. LNCS, vol.
10416, pp. 206–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66158-2 14

34. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. OR 24(11),
1097–1100 (1997)

35. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints Int. J. 18(4),
478–534 (2013). https://doi.org/10.1007/s10601-013-9146-2

36. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary
search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol.
7317, pp. 284–297. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31612-8 22

37. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided MaxSAT
solving. JSAT 9, 129–134 (2014)

38. Nadel, A.: Tt-Open-WBO-Inc.: Tuning polarity and variable selection for anytime
SAT-based optimizatio. In: Proceedings of MaxSAT Evaluation 2019: Solver and
Benchmark Description, p. 29 (2019)

39. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of AAAI 2014, pp. 2717–2723 (2014)

40. Österg̊ard, P.R.J.: A new algorithm for the maximum-weight clique problem. Elec-
tron. Notes Discrete Math. 3, 153–156 (1999)

41. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: Proceedings of AAAI 2015, pp. 4292–4293 (2015)

42. Segundo, P.S., Lopez, A., Batsyn, M., Nikolaev, A., Pardalos, P.M.: Improved
initial vertex ordering for exact maximum clique search. Appl. Intell. 45(3), 868–
880 (2016). https://doi.org/10.1007/s10489-016-0796-9

43. Segundo, P.S., Rodŕıguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm
for the maximum clique problem. Comput. OR 38(2), 571–581 (2011)

44. Tomita, E., Sutani, Y., Higashi, T., Wakatsuki, M.: A simple and faster branch-and-
bound algorithm for finding a maximum clique with computational experiments.
IEICE Trans. 96-D(6), 1286–1298 (2013)

45. Wagner, M., Friedrich, T., Lindauer, M.: Improving local search in a minimum
vertex cover solver for classes of networks. In: IEEE Congress on Evolutionary
Computation, CEC 2017, pp. 1704–1711 (2017)

46. Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum
weight clique problem. In: Proceedings of AAAI 2016, pp. 805–811 (2016)

https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/978-3-319-66158-2_14
https://doi.org/10.1007/978-3-319-66158-2_14
https://doi.org/10.1007/s10601-013-9146-2
https://doi.org/10.1007/978-3-642-31612-8_22
https://doi.org/10.1007/978-3-642-31612-8_22
https://doi.org/10.1007/s10489-016-0796-9

	Pure MaxSAT and Its Applications to Combinatorial Optimization via Linear Local Search
	1 Introduction
	2 Preliminary
	3 The Pure MaxSAT Problem
	4 Linear Local Search for Pure MaxSAT
	4.1 Linear Local Search and Its Scoring Function
	4.2 The LinearLS Algorithm
	4.3 More Optimizations

	5 Experiments
	5.1 Results on PureMS Benchmarks from MSEs
	5.2 Results on Maximum Clique Benchmarks
	5.3 Results on Minimum Vertex Cover Benchmark
	5.4 Results on Set Cover Benchmarks

	6 Conclusions
	References

