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Abstract. As machine learning is increasingly used to help make deci-
sions, there is a demand for these decisions to be explainable. Arguably,
the most explainable machine learning models use decision rules. This
paper focuses on decision sets, a type of model with unordered rules,
which explains each prediction with a single rule. In order to be easy
for humans to understand, these rules must be concise. Earlier work on
generating optimal decision sets first minimizes the number of rules, and
then minimizes the number of literals, but the resulting rules can often
be very large. Here we consider a better measure, namely the total size of
the decision set in terms of literals. So we are not driven to a small set of
rules which require a large number of literals. We provide the first app-
roach to determine minimum-size decision sets that achieve minimum
empirical risk and then investigate sparse alternatives where we trade
accuracy for size. By finding optimal solutions we show we can build
decision set classifiers that are almost as accurate as the best heuristic
methods, but far more concise, and hence more explainable.

1 Introduction

The world has been changed by recent rapid advances in machine learning.
Decision tasks that seemed well beyond the capabilities of artificial intelli-
gence have now become commonly solved using machine learning [32,35,41].
But this has come at some cost. Most machine learning algorithms are opaque,
unable to explain why decisions were made. Worse, they can be biased by
their training data, and behave poorly when exposed to data outside that
which they were trained on. Hence the rising interest in explainable artificial
intelligence (XAI) [4,14,16,18,22,23,26,29,30,36–38,42,43,48,49,52], including
research programs [3,24] and legislation [17,21].

In this paper we will focus on classification problems, where the input is
a set of instances with features and, as a label, a class to predict. For these
problems, some of the most explainable forms of machine learning formalism are
decisions sets [11,12,15,20,31,34,39]. A decision set is a set of decision rules,
each with conditions C and decision X, such that if an instance satisfies C,
then its class is predicted to be X. An advantage of decision sets over the more
popular decision trees and decision lists is that each rule may be understood
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independently, making this formalism one of the easiest to explain. Indeed, in
order to explain a particular decision on instance D, we can just refer to a single
decision rule C ⇒ X s.t. D satisfies C.

For decision sets to be clear and explainable to a human, individual rules
should be concise. Previous work has examined building decision sets which
involve the fewest possible rules, and then minimizes the number of literals in
the rules [31]; or building a CNF classifer that fixes the number of rules, and
then minimizes the number of literals [20,39] to explain the positive instances of
the class. This work also suffers from the limitation that the rules only predict
class 1, and the model predicts class 0 if no rule applies. Unfortunately, in order
to explain a class 0 instance, we need to use (the negation of) all rules, making
the explanations not succinct.

In this work we argue the number of rules is the wrong measure of explain-
ability, since, for example, 3 rules each involving 100 conditions are most likely
less comprehensible than, say, 5 rules each involving 20 conditions. Indeed, since
the explanation of a single instance is just a single decision rule, the number of
rules is nowhere near as important as the size of the individual rules. So previous
work on building minimum-size decision sets has not used the best measure of
size for explainability.

In this work we examine directly constructing decision sets of the smallest
total size, where the size of a rule with conditions C is |C| + 1 (the additional
1 is for the class descriptor X). This leads to smaller decision sets (in terms of
literals) which seem far more appealing for explaining decisions.

It turns out that this definition of size leads to SAT models that are exper-
imentally harder to solve, but the resulting decision sets can be significantly
smaller. However, for sparse decision sets, where we are allowed to consider a
smaller rule set if it does not make too many errors in the classification, this new
measure is no more difficult to compute than the traditional rule count measure,
and gives finer granularity decisions on sparseness.

The contributions of this paper are

– The first approach to building optimal decision sets in terms of the total
number of literals required to define the entire set,

– Alternate SAT and MaxSAT models to tackle this problem, and sparse vari-
ations which allow an accuracy versus size trade-off,

– Detailed experimental results showing the applicability of this approach,
which demonstrate that our best approach can generate optimal sparse deci-
sion sets quickly with accuracy comparable to the best heuristic methods, but
much smaller.

The paper is organized as follows. Section 2 introduces the notation and defi-
nitions used throughout the paper. Related work is outlined in Sect. 3. Section 4
describes the novel SAT- and MaxSAT-based encodings for the inference of deci-
sion sets. Experimental results are analyzed in Sect. 5. Finally, Sect. 6 concludes
the paper.
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2 Preliminaries

Satisfiability and Maximum Satisfiability. We assume standard definitions
for propositional satisfiability (SAT) and maximum satisfiability (MaxSAT) solv-
ing [9]. A propositional formula is said to be in conjunctive normal form (CNF)
if it is a conjunction of clauses. A clause is a disjunction of literals. A literal
is either a Boolean variable or its negation. Whenever convenient, clauses are
treated as sets of literals. Moreover, the term clausal will be used to denote
formulas represented as sets of sets of literals, i.e. in CNF. A truth assignment
maps each variable to {0, 1}. Given a truth assignment, a clause is satisfied if at
least one of its literals is assigned value 1; otherwise, it is falsified. A formula is
satisfied if all of its clauses are satisfied; otherwise, it is falsified. If there exists
no assignment that satisfies a CNF formula F , then F is unsatisfiable.

In the context of unsatisfiable formulas, the maximum satisfiability
(MaxSAT) problem is to find a truth assignment that maximizes the number
of satisfied clauses. A number of variants of MaxSAT exist [9, Chapter 19].
Hereinafter, we will be mostly interested in Partial Weighted MaxSAT, which
can be formulated as follows. The formula can be represented as a conjunction
of hard clauses (which must be satisfied) and soft clauses (which represent a
preference to satisfy those clauses) each with a weight. Whenever convenient,
a soft clause c with weight w will be denoted by (c, w). The Partial MaxSAT
problem consists in finding an assignment that satisfies all the hard clauses and
maximizes the total weight of satisfied soft clauses.

Classification Problems and Decision Sets. We follow the notation used
in earlier work [8,31,34,44]. Consider a set of features F = {f1, . . . , fK}. All
the features are assumed to be binary (non-binary and numeric features can be
mapped to binary features using standard techniques [46]). Hence, a literal on
a feature fr can be represented as fr (or ¬fr, resp.), denoting that feature fr

takes value 1 (value 0, resp.). The complete space of feature values (or feature
space [25]) is U �

∏K
r=1{fr,¬fr}.

A standard classification scenario is assumed, in which one is given training
data E = {e1, . . . , eM}. Each data instance (or example) ei ∈ E is a 2-tuple
(πi, ci) where πi ∈ U is a set of feature values and c ∈ C is a class (This work
focuses on binary classification problems, i.e. C = {0, 1} but the proposed ideas
are easily extendable to the case of multiple classes.). An example ei can be
seen as associating a set of feature values πi with a class ci ∈ C. Moreover, we
assume without loss of generality in our context that dataset E partially defines
a Boolean function φ : U → C, i.e. there are no two examples ei and ej in E
associating the same set of feature values with the opposite classes (Any two
such examples can be removed from a dataset, incurring an error of 1.).

The objective of classification in machine learning is to devise a function φ̂
that matches the actual function φ on the training data E and generalizes suitably
well on unseen test data [19,25,40,47]. In many settings (including sparse deci-
sion sets), function φ̂ is not required to match φ on the complete set of examples



Computing Optimal Decision Sets with SAT 955

E and instead an accuracy measure is considered; this imposes a requirement
that φ̂ should be a relation defined on U ×C. Furthermore, in classification prob-
lems one conventionally has to deal with an optimization problem, to optimize
either with respect to the complexity of φ̂, or with respect to the accuracy of the
learnt function (to make it match the actual function φ on a maximum number
of examples), or both.

This paper focuses on learning representations of φ̂ corresponding to decision
sets (DS). A decision set is an unordered set of rules. For each example e ∈ E ,
a rule of the form π ⇒ c, c ∈ C is interpreted as if the feature values of e agree
with π then the rule predicts that e has class c. Note that as the rules in decision
sets are unordered, it is often the case that some rules may overlap, i.e. multiple
rules may agree with an example e ∈ E .

Example 1. Consider the following set of 8 items (shown as columns)

Item No. 1 2 3 4 5 6 7 8

Fe
at

ur
es L 1 1 0 1 0 1 0 0

C 0 0 0 1 0 1 1 0
E 1 0 1 0 0 1 1 1
S 0 1 0 0 1 1 0 1

Class H 0 0 1 0 1 0 0 1

A valid decision set for this data for the class H is

L ⇒ ¬H

¬L ∧ ¬C ⇒ H

C ⇒ ¬H

The size of this decision set is 7 (one for each literal on the left hand and right
hand side, or alternatively, one for each literal on the left hand side and one
for each rule). Note how rules can overlap, both the first and third rule classify
items 4 and 6. ��

3 Related Work

Interpretable decision sets are a rule-based predictive model that can be traced
at least to [11,12]. To the best of our knowledge, the first logic-based approach
to the problem of decision set inference was proposed in [33]. Concretely, this
work proposed a SAT model for synthesizing a formula in disjunctive normal
form that matches a given set of training samples, which is then tackled by the
interior point approach. Later, [34] considered decision sets as a more explainable
alternative to decision trees [10] and decision lists [50]. The method of [34] yields
a set of rules and heuristically minimizes a linear combination of criteria such
as the number of rules, the maximum size of a rule, the overlap of the rules, and
error.
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The closest related work that produces decision sets as defined in [11] is by
Ignatiev et al. [31]. Here the authors construct an iterative SAT model to learn
minimal, in terms of number of rules, perfect decision sets, that is where the
decision set agrees perfectly with the training data (which is assumed to be con-
sistent). Afterwards, they lexicographically minimize the total number of literals
used in the decision set. As will be shown later, they generate larger decision sets
than our model, which minimizes the total size of the target decision set. Their
approach is more scalable for solving the perfect decision set problem, since the
optimization measure in use, i.e. the number of rules, is more coarse-grained.
The SAT-based approach of [31] was also shown to extensively outperform the
heuristic approach of [34].

In [39], the authors define a MaxSAT model for binary classification, where
the number of rules is fixed, and the size of the model is measured as the total
number of literals across all clauses. Rather than build a perfect binary classifier,
they consider a model that minimizes a linear combination of size and Hamming
loss, to control the trade-off between accuracy and intrepretability. The scala-
bility of this approach is improved in [20], where rules are learned iteratively
on partitions of the training set. Note that they do not create a decision set
as defined in [11,31,34], but rather a single formula that defines the positive
instances. The negative instances are specified by default as the instances not
captured by the positive formula. This limits their approach to binary classifi-
cation, and also makes the representation smaller. For example, on the data of
Example 1 (and assuming the target number of rules was 1) they would produce
the decision set comprising a single rule ¬L∧¬C. It also means the explainabil-
ity is reduced for negative instances, since we need to use the (negation of the)
entire formula to explain their classification.

Integer Programming (IP) has also been used to create optimal rule-based
models which only have positive rules. In [15], the authors propose an IP model
for binary classification, where an example is classified as positive if and only
if it satisfies at least one clause of the model. The objective function of the IP
minimizes a variation on the Hamming loss, which is the number of incorrectly
classified positive examples, plus, for each incorrectly classified negative example,
the number of clauses incorrectly classifying it. The complexity of the model is
controlled by a bound on the size of each clause, defined as in this paper. Since
the IP model has one binary variable for each possible clause, the authors use
column generation [6]. Even so, as the pricing problem can be too expensive, it
is solved heuristically for large data sets.

4 Encoding

This section describes two SAT-based approaches to the problem of computing
decision sets of minimum total size, defined as the total number of literals used
in the model. It is useful to recall that the number of training examples is M ,
while the number of features is K. Hereinafter, it is convenient to treat a class
label as an additional feature having index K +1. We first introduce models that
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define perfect decision sets that agree perfectly with the training data, and then
extend these to define sparse decision sets that can trade off size of decision set
with classification accuracy on the training set.

4.1 Iterative SAT Model

We first design a SAT model which determines whether there exists a decision set
of given size N . To find the minimum N , we then iteratively call this SAT model
while incrementing N , until it is satisfied. For every value of N , the problem of
determining if a model of size N exists is encoded into SAT as shown below.
The idea of the encoding is that we list the rules in one after the other across
the N nodes, associating a literal to each node. The end of a rule (a leaf node)
is denoted by a literal associated to the class. We track which examples of the
dataset are valid at each node (i.e., they match all the previous literals for this
rule), and check that examples that reach the end of a rule match the correct
class. The encoding uses a number of Boolean variables described below:

– sjr: node j is a literal on feature fr ∈ F ∪ C;
– tj : truth value of the literal for node j;
– vij : example ei ∈ E is valid at node j;

The model is as follows:

– A node uses only one feature (or the class feature):

∀j∈[N ]

K+1∑

r=1

sjr = 1 (1)

– The last node is a leaf:
sNc (2)

– All examples are valid at the first node:

∀i∈[M ] vi1 (3)

– An example ei is valid at node j + 1 iff j is a leaf node, or ei is valid at node
j and ei and node j agree on the value of the feature sjr selected for that
node:

∀i∈[M ]∀j∈[N−1] vij+1 ↔ sjc ∨ (vij ∧
∨

r∈[K]

(sjr ∧ (tj = πi[r]))) (4)

– If example ei is valid at a leaf node j, they should agree on the class feature:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij) → (tj = ci) (5)

– For every example there should be at least one leaf literal where it is valid:

∀i∈[M ]

∨

j∈[N ]

(sjc ∧ vij) (6)
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The model shown above represents a non-clausal Boolean formula, which
can be classified with the use of auxiliary variables [54]. Also note that any
of the known cardinality encodings can be used to represent constraint (1) [9,
Chapter 2] (also see [1,5,7,53]). Finally, the size (in terms of the number of
literals) of the proposed SAT encoding is O(N × M × K), which results from
constraint (4).

Example 2. Consider a solution for 7 nodes for the data of Example 1. The rep-
resentation of the rules, as a sequence of nodes is shown below:

1 2 3 4 5 6 7

�������	L �� 
������¬H 
������¬L �� 
������¬C �� �������	H �������	C �� 
������¬H

The interesting (true) decisions for each node are given in the following table

1 2 3 4 5 6 7

sjr s1L s2H s3L s4C s5H s6C s7H

tj 1 0 0 0 1 1 0

vij v11 v12 v13 v34 v35 v16 v47
... v22

... v54 v55
... v67

v81 v42 v83 v74 v85 v86 v77
v62 v84

Note how at the end of each rule, the selected variable is the class H. Note
that at the start and after each leaf node all examples are valid, and each fea-
ture literal reduces the valid set for the next node. In each leaf node j the
valid examples are of the correct class determined by the truth value tj of that
node. ��

The iterative SAT model tries to find a decision set of size N . If this fails, it
tries to find a decision set of size N + 1. This process continues until it finds a
decision set of minimal size, or a time limit is reached. The reader may wonder
why we do not use binary search instead. The difficulty with this is that the
computation grows (potentially) exponentially with size N , so guessing a large
N can mean the whole problem fails to solve.

Example 3. Consider the dataset shown in Example 1. We initially try to find a
decision set of size 1, which fails, then of size 2, etc. until we reach size 7 where
we determine the decision set: ¬L ∧ ¬C ⇒ H, L ⇒ ¬H, C ⇒ ¬H of size 7 by
finding the model shown in Example 2. ��

4.2 MaxSAT Model

Rather than using the described iterative SAT-based procedure, which iterates
over varying size N of the target decision set, we can allocate a predefined
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number of nodes, which serves as an upper bound on the optimal solution, and
formulate a MaxSAT problem minimizing the number of nodes used. Let us add
a flag variable uj for every available node. Variable uj is true whenever the node
j is unused and false otherwise. Consider the following constraints:

1. A node either decides a feature or is unused:

∀j∈[N ] uj +
∑

r∈[K+1]

sjr = 1 (7)

2. If a node j is unused then so are all the following nodes

∀j∈[N−1] uj → uj+1 (8)

3. The last used node is a leaf

∀j∈[N−1] uj+1 → uj ∨ sjc (9)
uN ∨ sNc (10)

The constraints above together with constraints (3), (4), (5), and (6) comprise
the hard part of the MaxSAT formula, i.e. every clause of it must be satisfied.
As for the optimization criterion, we maximize

∑
j∈[N ] uj , which can be trivially

represented as a list of unit soft clauses of the form (uj , 1).
The model is still used iteratively in the worst case. We guess an upper bound

N on the size of the decision set. We use the model to search for a decision set
of size less than or equal to N . If this fails we increase N by some number (say
10) and retry, until the time limit is reached.

Example 4. Revisiting the solution shown in Example 1 when N is set to 9 we
find the solution illustrated in Example 2 extended so that the last two nodes
are unused: u8 = u9 = true. The last used node 7 is clearly a leaf. Note that
validity (vij) and truth value (tj) variables are irrelevant to unused nodes j. ��

4.3 Separated Models and Multi-classification

A convenient feature of minimal decision sets is the following. The union of a
minimal decision set that correctly classifies the positive instances (and doesn’t
misclassify any negative instances as positive) and a minimal decision set that
correctly classifies the negative instances (and doesn’t misclassify any positive
instances as negative) is a minimal decision set for the entire problem.

We can construct a separate SAT model for the positive rules and negative
rules by simply restricting constraint (6) to only apply to examples in [M ] of
the appropriate class.

Clearly, the “separated models” are not much smaller than the complete
model described in Sect. 4.1; each separated model still includes constraint (4)
for each example leading to the size O(N×M×K). The advantage arises because
the minimal size required for each half is smaller.
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Example 5. Consider the data set shown in Example 1. We can iteratively con-
struct decision rules for the positive instances: ¬L ∧ ¬C ⇒ H of size 3, and the
negative instances: L ⇒ ¬H,C ⇒ ¬H of size 4. This is faster than solving the
problems together, iterating from size 1 to size 7 to eventually find the same
solution. ��

The same applies for multi-classification rules, where we need to decide on |C|
different classes. Assuming the class feature has been binarised into |C| different
class binary variables, we can modify our constraints to build a model Mc for
each separate class c ∈ C as follows:

– We restrict constraint (6) to the examples i in the class c, e.g.

∀i∈[M ],ci=c

∨

j∈[N ]

(sjc ∧ vij) (11)

– We restrict leaf nodes to only consider true examples of the class

∀j∈[N ] sjc → tj (12)

This modification is correct for both the iterative SAT and the MaxSAT models.

4.4 MaxSAT Model for Sparse Decision Sets

We can extend the MaxSAT model rather than to find minimal perfect deci-
sion sets to look for sparse decisions sets that are accurate for most of the
instances. We minimize the objective of number of misclassifications (including
non-classifications, where no decision rule gives information about the item) plus
the size of the decision set in terms of nodes multiplied by a discount factor Λ
which records that Λ fewer misclassifications are worth the addition of one node
to the decision set. Typically we define Λ = �λM where λ is the regularized
cost of nodes in terms of misclassifications.

We introduce variable mi to represent that example i ∈ [M ] is misclassified.
The model is as follows:

– If example ei is valid at a leaf node j then they agree on the class feature or
the item is misclassified:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij) → (tj = ci ∨ mi) (13)

– For every example there should be at least one leaf literal where it is valid or
the item is misclassified (actually non-classified):

∀i∈[M ] mi ∨
∨

j∈[N ]

(sjc ∧ vij) (14)
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together with all the MaxSAT constraints from Sect. 4.2 except constraints (5)
and (6). The objective function is

∑

i∈[M ]

mi +
∑

j∈[N ]

Λ(1 − uj) + NΛ

represented as soft clauses (¬mi, 1), i ∈ [M ], and (uj , Λ), j ∈ [N ].
Note that the choice of regularized cost λ is crucial. As λ gets higher values,

the focus of the problem shifts more to “sparsification” of the target decision
set, instead of its accuracy. In other words, by selecting higher values of λ (and
hence of Λ as well), a user opts for simple decision sets, thus, sacrificing their
quality in terms of accuracy. If the value of λ is too high, the result decision set
may be empty as this will impose a high preference of the user to dispose of all
literals in the decision set.

4.5 Separated Sparse Decision Sets

We can modify the definition of misclassifications in order to support a separated
solution. Suppose that an example ei ∈ E is of class ci ∈ C then we count the
number of misclassifications of that example as follows:

– If example ei is not classified as class ci that counts as one misclassification.
– If example ei is classified as class cj ∈ C, cj �= ci, then this counts as one

misclassification per class.

With this definition we can compute the optimal decisions sets per class inde-
pendently and join them together afterwards. The model for each class c ∈ C is
identical to that of Sect. 4.4 with the following change: we include constraint (12)
and modify constraint (14) to

– For every example in the class c there should be at least one leaf literal where
it is valid or the example is misclassified (actually non-classified):

∀i∈[M ],ci=c mi ∨
∨

j∈[N ]

(sjc ∧ vij) (15)

Note that there is still an mi variable for every example in every class. For
examples of class c this counts as if they were not correctly classified as class c,
while for examples not in class c it counts as if they were incorrectly classified
as class c.

5 Experimental Results

This section aims at assessing the proposed SAT-based approaches for computing
optimal decision sets from the perspective of both scalability and test accuracy
for a number of well-known datasets.
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Experimental Setup. The experiments were performed on the StarExec clus-
ter1. Each process was run on an Intel Xeon E5-2609 2.40 GHz processor with
128 GByte of memory, in CentOS 7.7. The memory limit for each individual
process was set to 16 GByte. The time limit used was set to 1800 s for each
individual process to run.

Implementation and Other Competitors. Based on the publicly available
implementation of MinDS [31,51], all the proposed models were implemented
in a prototype as a Python script instrumenting calls to the Glucose 3 SAT
solver [2,27]. The implementation targets the models proposed in the paper,
namely, (1) the iterative SAT model studied in Sect. 4.1 and (2) its MaxSAT
variant (see Sect. 4.2) targeting minimal perfect decision set but also (3) the
MaxSAT model for computing sparse decision sets as described in Sect. 4.4. All
models target independent computation of each class2, as discussed in Sect. 4.3
and Sect. 4.5. As a result, the iterative SAT model and its MaxSAT variant in
the following are referred to as opt and mopt. Also, to illustrate the advantage
of separated models over the model aggregating all classes, an aggregated SAT
model was tested, which is referred to as opt∪. Finally, several variants of the
MaxSAT model targeting sparse decision sets called sp[λi] were tested with three
values of regularized cost: λ1 = 0.005, λ2 = 0.05, and λ3 = 0.5. One of the con-
sidered competitors were MinDS2 and MinDS�

2 [31], which in the following are
referred to as mds2 and mds�

2, respectively. While the former tool minimizes the
number of rules, the latter does lexicographic optimization, i.e. it minimizes the
number of rules first and then the total number of literals. Additionally, MinDS
was modified to produce sparse decision sets, similarly to what is described in
Sect. 4.4. This extension also makes use of MaxSAT to optimize the sparse objec-
tive rather than SAT, which was originally used. In the following comparison,
the corresponding implementation is named mds2[ρi], with regularization cost
ρ1 = 0.05, ρ2 = 0.1, and ρ3 = 0.5. Note that ρi �= λi, i ∈ [3] since the measures
used by the two models are different. One targets rules and the other – literals.
In order to, more or less, fairly compare the scalability of the new model sp and
of the sparse variant of mds�

2, we considered a few configurations of sp[ρi] with
ρi = λi

K , where K is the number of features in a dataset, where we consider a
rule equivalent to K literals. To tackle the MaxSAT models, the RC2-B MaxSAT
solver was used [28].

A number of state-of-the-art algorithms were additionally considered includ-
ing the heuristic methods CN2 [11,12], and RIPPER [13], as well as MaxSAT-
based IMLI [20] (which is a direct successor of MLIC [39]). The implementation
of CN2 was taken from Orange [45] while a publicly available implementation of
RIPPER [56] was used. It should be noted that given a training dataset, IMLI
and RIPPER compute only one class. To improve the accuracy reported by both
of these competitors, we used a default rule that selects a class (1) different from

1 https://www.starexec.org/.
2 The prototype adapts all the developed models to the case of multiple classes, which

is motivated by the practical importance of non-binary classification.

https://www.starexec.org/
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Fig. 1. Scalability of all competitors on the complete set of instances and the quality
of solutions i terms of decision set size.

the computed one and (2) represented by the majority of data instances in the
training data. The default rule is applied only if none of the computed rules
can be applied. Finally, IMLI takes a constant value k of rules in the clausal
representation of target class to compute. We varied k from 1 to 16. The best
results (both in terms of performance and test accuracy) were shown by the con-
figuration targeting the smallest possible number of rules, i.e. k = 1; the worst
results were demonstrated for k = 16. Thus, only these extreme values of k were
used below represented by imli1 and imli16, respectively.

Datasets and Methodology. Experimental evaluation was performed on a
subset of datasets selected from publicly available sources. These include datasets
from UCI Machine Learning Repository [55] and Penn Machine Learning Bench-
marks. Note that all the considered datasets were previously studied in [20,31].
The number of selected datasets is 71. Ordinal features in all datasets were
quantized so that the domain of each feature gets to 2, 3, or 4. This resulted
in 3 families of benchmarks, each of size 71. Whenever necessary, quantization
was followed by one-hot encoding [46]. In the datasets used, the number of data
instances varied from 14 to 67557 while the number of features after quantization
varied from 3 to 384.

Finally, we applied the approach of 5-fold cross validation, i.e. each dataset
was randomly split into 5 chunks of instances; each of these chunks served as
test data while the remaining 4 chunks were used to train the classifiers. This
way, every dataset (out of 71) resulted in 5 individual pairs of training and
test datasets represented by 80% and 20% of data instances. Therefore, each
quantized family of datasets led to 355 pairs of training and test datasets. Hence,
the total number of benchmark datasets considered is 1065. Every competitor in
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Fig. 2. Accuracy of the considered approaches.

the experiment was run to compute a decision set for each of the 1065 training
datasets, which was then tested for accuracy on the corresponding test data.

It is important to mention that the accuracy for all the tools was tested by an
external script in a unified way. Concretely, (1) if a rule “covers” a data instance
of a wrong class, the instance is deemed misclassified (even if there is another rule
of the right class covering this data instance); (2) if none of the rules of a given
class covers a data instance of that class, the instance is deemed misclassified.
Afterwards, assuming the total number of misclassified instances is denoted by
E while the total number of instances is M , the accuracy is computed as a value
M−E

M × 100%.

Testing Scalability. Figure 1a shows the performance of the considered com-
petitors on the complete set of benchmark instances. As one can observe, ripper
outperforms all the other tools and is able to train a classifier for 1048 of the
considered datasets given the 1800 s time limit. The proposed MaxSAT models
for sparse decision sets sp[λ3] and mds�

2[ρ3] (which are the configurations with
the largest constant parameters) come second and third with 1024 and 1000
instances solved, respectively. The fourth place is taken by cn2, which can suc-
cessfully deal with 975 datasets. The best configuration of imli, i.e. imli1, finishes
with 802 instances solved while the worst configuration imli16 copes with only
620 datasets. Finally, the worst results are demonstrated by the approaches that
target perfectly accurate decision sets opt, mopt, and opt∪ but also by the sparse
approaches with low regularized cost sp[ρ1] and sp[ρ2]. For instance, opt∪ solves
only 196 instances. This should not come as surprise since the problem these
tools target is computationally harder than what the other approaches solve.



Computing Optimal Decision Sets with SAT 965

100 101 102

sp[λ3]

100

101

102

ri
pp

er

100 101 102 103

sp[λ3]

100

101

102

103
ri
pp

er

(a) Solution quality (b) Accuracy

Fig. 3. Comparison of sp[λ3] and ripper.

Testing Accuracy. Having said that, perfectly accurate decision sets once
computed have the highest possible accuracy. This is confirmed by Fig. 2b, which
depicts the accuracy obtained by all the tools for the datasets solved by all the
tools. Indeed, as one can observe, the virtual perfect tool, which acts for all
the approaches targeting perfectly accurate decision sets, i.e. opt, mopt, opt∪,
mds2, and mds�

2, beats the other tools in terms of test accuracy. Their average
test accuracy on these datasets is 85.89%3. In contrast, the worst accuracy is
demonstrated by cn2 (43.73%). Also, the average accuracy of ripper, sp[λ3],
mds�

2[ρ3], imli1, imli16 is 80.50%, 67.42%, 61.71%, 76.06%, 77.42%, respectively.
The picture changes drastically if we compare test accuracy on the com-

plete set of benchmark datasets. This information is shown in Fig. 2a. Here, if
a tool does not solve an instance, its accuracy for the dataset is assumed to be
0%. Observe that the best accuracy is achieved by ripper (68.13% on average)
followed by the sparse decision sets computed by sp[λ3] and mds�

2[ρ3] (60.91%
and 61.23%, respectively). The average accuracy achieved by imli1 and imli16 is
50.66% and 28.26% while the average accuracy of cn2 is 47.49%.

Testing Interpretability (Size). From the perspective of interpretability, the
smaller a decision set is the easier it is for a human decision maker to compre-
hend. This holds for the number of rules in a decision set but also (and more
importantly) for the total number of literals used. Figure 1b depicts a cactus
plots illustrating the size of solutions in terms of the number of literals obtained
by each of the considered competitors. A clear winner here is sp[λ3]. As can be

3 This average value is the highest possible accuracy that can be achieved on these
datasets whatever machine learning model is considered.
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Fig. 4. Comparison of sp[λ3] and imli1.

observed, for more than 400 datasets, decision sets of sp[λ3] consist of only one
literal4. Another bunch of almost 400 datasets are represented by sp[λ3] with 3
literals. Getting these small decision sets is a striking achievement in light of the
overall high accuracy reached by sp[λ3]. The average size of solutions obtained
by sp[λ3] is 4.18. Note that imli1 gets close to this with 5.57 literals per dataset
on average although it always compute only one rule. In clear contrast with this,
the average solution size of ripper is 35.14 while the average solution of imli16
has 46.29 literals. Finally, the result of cn2 is 598.05 literals.

It is not surprising that perfectly accurate decision sets, i.e. those computed
by opt, opt∪, mopt, as well as mds2 and mds�

2, in general tend to be larger. It is
also worth mentioning that mds�

2[ρ3] obtains sparse decision sets of size 14.52 on
average while the original (non-sparse) version gets 40.70 literals per solution.

A Few More Details. Figure 3 and Fig. 4 detail a comparison of sp[λ3] with
ripper and imli1, respectively. All these plots are obtained for the datasets solv-
able by each pair of competitors. Concretely, as can be seen in Fig. 4a and Fig. 4b,
the size and accuracy of sp[λ3] and imli1 are comparable. However, as imli1 com-
putes solutions representing only one class and it is significantly outperformed
by sp[λ3], the latter approach is deemed a better alternative. Furthermore and
although the best performance overall is demonstrated by ripper, its accuracy
is comparable with the accuracy of sp[λ3] (see Fig. 3b) but the size of solutions
produced by ripper can be several orders of magnitude larger than the size of
solutions of its rival, as one can observe in Fig. 3a.

4 In a unit-size decision set, the literal is meant to assign a constant class. This can
be seen as applying a default rule.
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Finally, a crucial observation to make is that since both RIPPER and IMLI
compute a representation for one class only, they cannot provide a user with a
succinct explanation for the instances of other (non-computed) classes. Indeed,
an explanation in that case includes the negation of the complete decision set.
This is in clear contrast with our work, which provides a user with a succinct
representation of every class of the dataset.

6 Conclusion

We have introduced the first approach to build decision sets by directly min-
imizing the total number of literals required to describe them. The approach
can build perfect decision sets that match the training data exactly, or sparse
decision sets that trade off accuracy on training data for size. Experiments show
that sparse decision sets can be preferred to perfectly accurate decision sets.
This is caused by (1) their high accuracy overall and (2) the fact that they are
much easier to compute. Second, it is not surprising that the regularization cost
significantly affects the efficiency of sparse decision sets – the smaller the cost is,
the harder it is compute the decision set and the more accurate the result deci-
sion set is. This fact represents a reasonable trade-off that can be considered in
practice. Note that points 1 and 2 hold for the models proposed in this paper but
also for the sparse variants of prior work targeting minimization of the number
of rules [31]. Third, although heuristic methods like RIPPER may scale really
well and produce accurate decision sets, their solutions tend to be much larger
than sparse decision sets, which makes them harder to interpret. All in all, the
proposed approach to sparse decision sets embodies a viable alternative to the
state of the art represented by prior logic-based solutions [20,31,39] as well as
by efficient heuristic methods [11–13].

There are number of interesting directions to extend this work. There is con-
siderable symmetry in the models we propose, and while we tried adding sym-
metry breaking constraints to improve the models, what we tried did not make
a significant difference. This deserves further exploration. Another interesting
direction for future work is to consider other measures of interpretability, for
example the (possibly weighted) average length of a decision rule, where we are
not concerned about the total size of the decision set, but rather its succinctness
in describing any particular instance.

Acknowledgments. This work is partially supported by the Australian Research
Council through Discovery Grant DP170103174.

References
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