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Abstract. Graph Neural Network (GNN) has shown great power on
many practical tasks in the past few years. It is also considered to be a
potential technique in bridging the gap between machine learning and
symbolic reasoning. Experimental investigations have also shown that
some NP-Hard constraint satisfaction problems can be well learned
by the GNN models. In this paper, a GNN-based classification model
to learn the satisfiability of pseudo-Boolean (PB) problem is proposed.
After constructing the bipartite graph representation, a two-phase mes-
sage passing process is executed. Experiments on 0–1 knapsack and
weighted independent set problems show that the model can effectively
learn the features related to the problem distribution and satisfiabil-
ity. As a result, competitive prediction accuracy has been achieved with
some generalization to larger-scale problems. The studies indicate that
GNN has great potential in solving constraint satisfaction problems with
numerical coefficients.

Keywords: Pseudo-Boolean Problem · Graph Neural Network ·
Constraint satisfaction problem · Deep learning.

1 Introduction

Machine learning, especially deep learning, has shown great power over the
past few years. Deep learning systems have dramatically improved the state-
of-the-art standards of many tasks across domains, such as computer vision,
natural language processing, speech recognition and drug discovery [15]. The
tremendous success of deep learning has also inspired us to apply learning-based
approaches to solve constraint satisfiability problems (CSPs). There is an inter-
esting prospect that the end-to-end neural network models may have the ability
to capture the specific structures of the problem from a certain distribution,
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so that some effective implicit heuristics may be learned automatically. Some
previous works have implemented different (deep) neural network architectures
to represent such problems and try to learn full-stack solvers [23,26]. Thanks
to the latest progress in graph representation learning, it is promising to apply
graph neural networks to solve CSPs, because many of them have topology
characteristics, which can be naturally represented as graphs. There have been
recent efforts trying to set up end-to-end GNN models to solve the Boolean
Satisfiability Problem (SAT), one of the most fundamental problems of com-
puter science [22], and the Traveling Salesman Problem (TSP), an important
NP-Hard problem [20]. Experiments suggest that the GNN-based models can
effectively learn the structural features of these problems, thereby obtain pretty
high accuracy in predicting the satisfiability. Although such models are not yet
comparable with the traditional search-based solvers, it may also be useful to
combine them with traditional approaches to improve the solving performance.
For instance, the GNN-based classifier for the SAT problem NeuroSAT has been
further explored and observed to have some ability in finding unsatisfiable cores,
which has been used to improve the efficiency of modern SAT solvers such as
Glucose and Z3 [21]. We believe that, the GNN-based models also have great
potential in improving the efficiency of solving CSPs with numerical constraints.

As a natural and efficient mathematical programming model, pseudo-Boolean
(PB) problem, which is also known as 0–1 integer programming, has received
much attention in a large number of real-world applications for a long time.
Nowadays, techniques related to PB problem are crucial in many fields, such as
networked data mining, planning, scheduling, transportation, management and
engineering [8,11]. However, research in complexity theory indicates even solving
the satisfiability of PB constraints is an NP-complete problem [12], which means
it is hard to find sufficiently effective algorithms on various distributions. The
mainstream approaches for PB problem benefit from the development of both
Boolean Satisfiability (SAT) and Integer Programming solving techniques [6,25].
It can be found that fundamentally they are based on the backtracking search
frameworks, and largely rely on the heuristic strategies designed by experts in
specific domains. It is highly probable that PB solving techniques would also
benefit from heuristics learned automatically. For the aforementioned reasons,
PB problem provides an important setting for investigating the capability of
GNN in extracting features of numerical constraints.

In this paper, we investigate the question that whether an end-to-end GNN
model can be trained to solve the satisfiability of pseudo-Boolean problem as a
classification task. Other than the previous works, our setting is more univer-
sally applicable, because various NP-Hard CSPs can be easily formulated as PB
constraints. At first, we adopt some normalization rules to transform different
kinds of constraints into normalized form in order to build a weighted bipar-
tite graph, which can be accepted as the input of GNN. The constructed model
is basically a concrete implementation of the Message Passing Neural Network
[9]. The revised message passing process is applied to update the node embed-
ding vectors involving edge weights iteratively. Finally, the classification result
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is produced after a readout phase. Experiments on two well-known NP-Hard
CSPs, 0–1 knapsack and weighted independent set, demonstrate that our model
can well converge on different PB problems under some certain distributions,
and predict the satisfiability with high accuracy. The trained model can also be
extended to predict the problem instances of larger size than those appeared in
training set, which indicates that it has some generalization capability. We can
summarize our contribution in the following two points:

– We propose a GNN-based model to solve the decision pseudo-Boolean prob-
lem. To the best of our knowledge, it is the first end-to-end GNN model for
predicting the satisfiability of a general representation of CSPs with numeri-
cal constraints. It has been experimentally confirmed to achieve high accuracy
on different benchmarks.

– Compared with another GNN model NeuroSAT that intends to solve the
SAT problem, our model can be seen as a generalization of it. This is because
our model not only achieves the same performance on the SAT problem, but
also has ability to solve more general PB problems.

The remainder of this paper proceeds by the following parts. Section 2 sum-
marizes some related work. The problem definition and model architecture are
introduced in Sect. 3. The data generation method and training configuration are
detailed in Sect. 4, with some analysis about the experimental results. Finally,
conclusion and future work are discussed in Sect. 5.

2 Related Work

Although the mainstream algorithms for constraint satisfaction and combina-
torial optimization problems are based on reasoning and searching algorithms
from symbolism, there have always been attempts trying to solve these prob-
lems through machine learning techniques. A class of research is aiming to learn
effective heuristics under the backtracking search framework and has achieved
progress such as [3,14,17]. Here, we concentrate on another route: building end-
to-end neural network models which directly learn CSP solvers. The earliest
research work can be traced back to the Hopfield network [10], which has made
progress in solving TSP. It is guaranteed to converge to a local minimum, but the
computational power is quite limited. Recently, a series of efforts have attempted
to train deep learning models with different representations. [26] proposes CSP-
cNN, a convolutional neural network model, to solve binary CSPs in matrix
form. However, the majority of CSPs are non-binary. [23] introduces a sequence-
to-sequence neural network called Ptr-Net. [4,18] further review and extend the
model. However, the structural information of CSPs may be partially lost when
represented as sequential input. Structure2vec [13] adds graph embedding tech-
nique to the model, while it is still a sequential model which can only output
greedy-like solutions. In summary, it is necessary to find more powerful repre-
sentation models to solve various CSPs.
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Fig. 1. The model for solving decision pseudo-Boolean problem based on graph neu-
ral network. The pipeline is as follows: (a) A set of constraints is given as input in
which all variables can be assigned True or False, then (b) some normalization rules are
applied to transform the constraints into normalized form, which is done by equivalent
transformation and removing tautologies. From the normalized constraints we can (c)
construct a weighted bipartite graph to represent the topological relationship between
variables and constraints. Each node in the graph is represented as an embedding vec-
tor, which is updated iteratively through (d) the message passing mechanism. Finally,
the model (e) outputs prediction about the satisfiability.

Graph neural network has been considered as a promising deep learning tech-
nique operating on graphs. Because of its powerful characterization capability
for non-Euclidean structure data, the GNN models have made ground-breaking
performance on many difficult tasks such as text classification, relation extrac-
tion, object detection, semantic segmentation and knowledge graph mining in
recent years [27]. We believe graph is a suitable representation for CSPs. A
basic fact is that many of the famous NP-Hard problems are directly defined
on graphs such as TSP, Maximum Clique and Minimum Vertex Cover. There
have been some works trying to set up GNN-based models to solve SAT [1,22],
[2,5], Graph Coloring Problem [16] and TSP [20]. Our model is distinct from
the previous works in many ways. First, PB problem has the capability to con-
veniently formulate a larger number of CSPs compared with SAT, GCP and
TSP. Although SAT is also a well-known meta-problem, it is not intuitive to
translate the problem with numerical constraints into conjunction normal form.
Second, PB constraints involve integer coefficients and constant items, while
TSP has only one kind of numerical information (edge weights) that needs to be
processed. Third, [20] introduces edge embeddings to represent the information
about edge weights, which may lead to larger parameter space. Actually it takes
around 2,000 epochs to converge on the dataset of graphs while n ∼ U(20, 40)
as reported. However, the edge weights are considered in the updating process
of node embeddings in our model, therefore the required parameter space and
training epochs are relatively reduced.

3 Model Architecture

In this section, we first give a brief introduction to the pseudo-Boolean problem.
Next, components of the model are illustrated in detail, including the graph
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construction, the message passing and the readout phase. The whole pipeline of
the model is illustrated in Fig. 1.

3.1 Pseudo-Boolean Problem

Pseudo-Boolean problem is one of the most fundamental problems in mathe-
matical programming. Generally, a PB problem should contain a set of pseudo-
Boolean constraints. According to whether there is an objective function to opti-
mize, it may vary slightly in definition, which can be divided into the decision
problem and the optimization problem. In this paper, we focus on the decision
version, in which all the variables are restricted to True or False, and all the con-
straints must be satisfied, with no optimization target given. Here is the formal
definition: Given m constraints C1, C2, . . . , Cm in the form of Ci:

∑n
j=1 cijxj ≥ bi

where cij , bi ∈ Z, decide if a set of assignment to xi ∈ {0, 1} (1 ≤ i ≤ n) exists
so that all the constraints are satisfied.

The decision PB problem is worthy of investigation for many reasons. Firstly,
the bounded integer variables in linear programming can always be expressed as
a combination of 0–1 variables by [24]. Moreover, the decision problem can be
extended to the optimization version through simple binary search. In terms of
complexity, actually it has been proven to be a famous NP-Complete problem.

3.2 Graph Construction

There have been a series of works trying to apply GNN models to solve con-
straint satisfaction and combinatorial optimization problems. A critical step is
to set up appropriate graph structures for them. [22] characterizes SAT formulas
through undirected bipartite graphs, where each literal and clause corresponds
to a node and each affiliation relation between literal and clause corresponds
to an edge. This kind of representation is quite intuitive and reasonable with
at least two justifications. First, it holds the invariance of problem in permuta-
tion and negation through graph isomorphism. Second, it imitates the order of
reasoning in traditional solving techniques through the message passing process.

For PB problem, we would like to propose a bipartite graph structure which
is similar to the previous work. However, the problem structure of PB is quite
different from that of SAT in many ways. For instance, the coefficients of PB
constraint are arbitrary integers, which cannot be represented in unweighted
bipartite graph like NeuroSAT does. Besides, non-zero constant terms bi may
exist in PB problem. A question is how to deal with these constant terms in
graph construction. Considering the differences above, we propose a two-stage
graph construction method.

Constraint Normalization. Given a set of PB constraints, where each con-
straint Ci:

∑n
j=1 cijxj ≥ bi where cij , bi ∈ Z, the goal is to transform them into

a canonical expression. To achieve this, for a constraint Ci we first replace cijxi

with cij(1 − xi) when cij < 0, and move the constant item to the right side.
We denote the resulting constraint C ′′

i :
∑n

j=1 |cij |lxj
≥ b′

i, where lxj
∈ {xj , xj}.
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Later we check if the constant item b′
i > 0, otherwise the constraint can be

removed without changing the satisfiability. Finally we divide both sides of the
constraint by b′

i. After the process, all constraints are in normalized form

C ′
i :

n∑

j=1

c′
ij lxj

≥ 1 (1)

where c′
ij ∈ R

+ and lxj
∈ {xj , xj}.

Graph Generation. After the normalization stage above, every constraint Ci

(1 ≤ i ≤ m) in a PB problem is turned into normalized form C ′
i or removed

from the problem. For each variable xj (1 ≤ j ≤ n), we set up a pair of nodes
to represent xj and xj respectively, so we have a total of 2n nodes for variables.
Then we set up m nodes for constraints. Suppose a constraint C ′

i contains lxj

with the coefficient c′
ij , an edge connecting the nodes for C ′

i and lxj
is set up if

c′
ij ≥ 0 with the weight of c′

ij .

3.3 Message Passing

Now a PB problem has been represented as a weighted bipartite graph. The
next step is to construct a learning model. We consider the Message Passing
Neural Network (MPNN) [9] as the framework. Recently, MPNN has shown its
effectiveness in solving some famous combinatorial problems, such as SAT [22]
and TSP [20]. In this paper, we propose an MPNN-based model which is fit for
PB problem. The forward pass of the model has two phases, a message passing
phase and a readout phase.

Message Passing Phase. In the beginning, we parameterize each node in
the graph randomly as a d-dimensional vector Einit ∼ U(0, 1) which represents
the hidden state. We note the initial hidden states of variables and constraints
as V (0) and C(0) respectively. Let M be the adjacency matrix of the bipartite
graph defined in the graph generation paragraph above. S is a transformed
representation of the relevant nodes which aims to keep the consistency of node
embeddings representing the same variable. In this phase, the message passing
process runs for T time steps and the hidden states are updated iteratively
according to:

C(t+1), C
(t+1)
h = Cu(MVmsg(V (t)), C(t)

h )

V (t+1), V
(t+1)
h = Vu(M�Cmsg(C(t)), V (t)

h , S(t))
(2)

In the above rules, Cmsg and Vmsg are two message functions implemented
with multilayer perceptrons (MLP). Besides, Cu and Vu are two updating func-
tions implemented with LSTM networks, where all C

(t)
h and V

(t)
h are the hidden

cell states of LSTM.

Readout Phase. After T iterations of message passing, we apply a readout
function Vvote : Rd → R

1 (implemented with MLP) to compute the score that
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every variable node votes for the satisfiability of the problem instance. Then we
average all the scores to obtain the final result:

ŷ = mean(Vvote(V (T ))) (3)

The model is trained to minimize the sigmoid binary cross-entropy loss
between ŷ and the real satisfiability of the problem instance φ(P ) ∈ {0, 1}.

4 Experimental Evaluation

In order to evaluate the performance of our GNN-based model on PB problem,
we prepare two different problems for the experiments: 0–1 knapsack problem
(0–1KP) and weighted independent set problem (WIS). The above two problems
have exceedingly different structures when expressed as PB formulas, whether in
terms of the number or the average length of constraints. We generate random
datasets for these problems, and train the model on them respectively.

4.1 Data Generation

There are three steps for generating the datasets:

Step 1. Original instances are randomly created following some certain distri-
butions. The number of items in 0–1KP and the number of nodes in WIS are
denoted as n. For each problem we uniformly generate several subsets as train-
ing sets, each of which contains 100 K instances, with different range of n. Then
two datasets are generated in the same way as validation and testing sets, each
of which has 10 K instances. Therefore the size ratio of training, validation and
testing set is 10:1:1.
Step 2. Because the generated instances are all optimization problems, for each
instance we first call CPLEX to obtain its optimal solution φ, and then randomly
choose an integer offset δ from [−R/10, R/10] (R is an integer representing the
range of coefficients, and we set R = 100 in all experiments). Finally, let φ+δ be
a bound (i.e. the constant V in 0–1KP and W in WIS) to completely transform
the original instance into a decision problem. It is easy to find that satisfiable
and unsatisfiable instances should account for about half of each.
Step 3. The instances are formulated as PB constraints, normalized and turned
into graphs through the rules described in Sect. 3. After that the datasets can
be fed into the neural network as input for training.

0–1 Knapsack Problem. The 0–1 knapsack problem (KP) is well-known in
combinatorial optimization field with a very simple structure: Given a group of
items, each with a weight wi and a value vi. There is also a backpack with a
total weight limit C. The goal is to choose some items to put into the backpack,
so that the sum of their values is maximized, and the sum of their weights is not
exceeding the given limit of the knapsack. It is proved that the decision prob-
lem of 0–1KP is NP-Complete, so there is no known polynomial-time solving
algorithm. It can be naturally represented by the following PB formulas:
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n∑

i=1

wixi ≤ C

n∑

i=1

vixi ≥ V

(4)

The constant V represents a bound of the optimal objective. Variable xi ∈
{0, 1} indicates if an item is put into the backpack.

There have been some research works on generating difficult benchmarks of
0–1KP. Pisinger [19] proposes some randomly generated instances with multi-
ple distributions to demonstrate that the existing heuristics can not find good
solutions on all kinds of instances. The four kinds of distributions are named as:

– Uncorrelated: wi and vi are randomly chosen in [1, R].
– Weakly correlated: wi is randomly chosen in [1, R], and vi in [wi −R/10, wi +

R/10] such that vi ≥ 1.
– Strongly correlated: wi is randomly chosen in [1, R], and vi = wi + R/10.
– Subset sum: wi is randomly chosen in [1, R], and vi = wi.

We generate the datasets of 0–1KP under the above distributions with equal
probability. As for the capacity of knapsack C, it is also randomly selected in
range [1,

∑n
i=1 wi] independently in each instance, in order to ensure sufficient

data diversity.

Weighted Independent Set Problem. Given an undirected graph with a
weight for each node, an independent set is defined as a set of nodes where
any two of them are not connected with an edge. Then the maximum weighted
independent set (MWIS) requires the total weights of the selected nodes to be
maximized. We can model the decision problem of MWIS as PB formulas:

n∑

i=1

wixi ≥ W

xi + xj ≤ 1, ∀(i, j) ∈ E

(5)

The constant W is a bound of the optimal objective, and the variables xi ∈
{0, 1} indicates whether each node is selected into the independent set.

To generate the dataset, random graph instances are sampled from the
Erdős–Rényi model G(n, p) [7]. The model contains two parameters: the num-
ber of nodes n, and the existence probability p of an edge between every pair of
nodes. We set p = 0.5 while generating the dataset, which corresponds to the
case where all possible graphs on n nodes are chosen with equal probability.

4.2 Implementation and Training

In order to examine the model’s capability to predict the satisfiability of PB prob-
lem, we implement the model in Python, and several experiments are designed to
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train the model and evaluate its performance on different datasets for different
purposes. All the experiments are running on a personal computer with Intel
Core i7-8700 CPU (3.20 GHz) and NVIDIA GeForce RTX 2080Ti GPU.

For reproducibility, we would like to give the setting of hyper-parameters as
follows. In our configuration, The dimension of node embedding vectors d = 128,
and the time step of message passing T is set to 5 for 0–1KP and 50 for WIS.
Our model learns from the training sets in batches, with each batch containing
12 K nodes. The learning rate is set to 2 × 10−5.

4.3 Experimental Results

Classification Accuracy. As previously noted, the most direct and important
target of the model is to classify the satisfiability of PB problems. So we examine
it as the first step. There are 7 groups of experiments in total with different set-
tings. For 0–1KP, we set up 3 groups of experiments with different sizes, where
n is uniformly distributed in range [3, 10], [11, 40] and [41, 100] respectively. For
WIS, we set up 4 groups of experiments with different sizes, where n is uniformly
distributed in range [3, 10], [11, 20], [21, 30] and [31, 40] respectively. The reason
for lacking of the results in n > 40 is that for each instance the number of con-
straints is proportional to n2, so the graph is too hard to be fully trained in
no more than 1,000 epochs. The complete experimental configuration and clas-
sification accuracy on the validation and testing sets are shown in Table 1. The
first part is the description of datasets, which includes the number of variables,
the average number and length of constraints. The constraint length means the
number of variables with coefficients other than 0 in a constraint. The number of
epochs required for training to convergence is different from each other, and we
list the actual spent epochs. Finally, the classification accuracy on the validation
and testing sets are shown respectively.

Table 1. The experimental configuration and the classification accuracy results for
training our model on different PB problems and scales.

Problem
#Variables PB Cons.

Epochs
Accuracy

Train Valid Test #Cons. Length Valid Test

0–1KP
[3,10] 10 10 2.0 6.5 400 86.6% 86.1%
[11,40] 40 40 2.0 25.5 400 87.3% 88.2%
[41,100] 100 100 2.0 70.5 600 79.3% 79.5%

WIS

[3,10] 10 10 11.3 2.4 400 97.7% 97.9%
[11,20] 20 20 59.3 2.2 400 92.1% 93.3%
[21,30] 30 30 159.2 2.1 400 89.5% 88.9%
[31,40] 40 40 309.3 2.1 600 86.0% 85.8%

The experimental results show that our model can effectively accomplish the
classification task on unknown problems with similar distributions. In each group
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of n ≤ 40, the model can converge and obtain more than 85% accuracy both
on the validation set and the testing set. When n is expanded to 100 items in
0–1KP, the accuracy is still up to 79%. From the results, our model is believed to
have learned some features related to the satisfiability of problems. Furthermore,
it is worth noting that the generated PB instances under these problems have
very different distributions, whether in terms of the average number or length of
constraints. Therefore, it indicates that the model has wide availability to work
on different PB problems without changing the structure. This confirms one of
the main advantage of our model: general modeling capability.

Comparison with Other Approaches. As far as we know, the proposed
model is the first end-to-end GNN model to solve the satisfiability of PB prob-
lem. However, because of the close relationship between PB and SAT, we are
interested in the comparison between our model (denoted as PB-GNN ) and
NeuroSAT, a GNN-based model that predicts the satisfiability of SAT formu-
las. We train these two models on the same problems respectively, each for 200
epochs. To transform PB constraints into SAT clauses of equal satisfiability,
we call Minisat+1, a high-performance PB solver that achieves excellent ranks
in the PB competition2. The accuracy results on the validation sets are shown
in Table 2. Due to the inevitable introduction of new variables and clauses in
the transformation process, the effect of NeuroSAT is limited by the growth of
problem scales. For 0–1KP, the training accuracy on NeuroSAT with the trans-
formed SAT formulas is significantly lower than that of the original problems on
PB-GNN. And for WIS, when training on the original problems where n ≥ 10,
it is almost impossible to converge within 200 epochs. Besides, the accuracy
results of NeuroSAT when n = 40 are not available, because each epoch takes
more than 2 h, which makes the overall training time unacceptable. The results
indicate that PB-GNN has achieved better performance on general PB prob-
lems with numerical constraints. It is worth mentioning that when dealing with
SAT instances, we can easily transform SAT clauses into PB constraints. For
example, a clause l1 ∨ l2 ∨ · · · ∨ lk is equivalent to the constraint

∑k
i=1 li ≥ 1. In

this case, the message passing process of PB-GNN is almost the same as that
of NeuroSAT. To confirm this, we train the two models for 200 epochs on two
datasets SR(3, 10) and SR(10, 40) respectively as defined in [22]. It can be found
that the accuracy of PB-GNN and NeuroSAT is very close, which means the
performance of our model is also comparable with the state-of-the-art model on
SAT instances.

Another point of concern is the time spent for solving. The average time
costs taken by PB-GNN and CPLEX to solve per instance from the testing
sets are counted. Table 2 demonstrates the results in milliseconds. It can be seen
that compared with the classic CSP solver CPLEX, our model only takes less
than 10% of time to return the prediction of satisfiability. In addition to the
lower computational amount of the model, another reason is that the problem
instances can be input in batches, and the solving process is accelerated with
1 http://minisat.se/MiniSat+.html.
2 http://www.cril.univ-artois.fr/PB16/.

http://minisat.se/MiniSat+.html
http://www.cril.univ-artois.fr/PB16/
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parallelization. This is not to suggest that our model beats the classic solver in
time. After all CPLEX is able to work without any pre-training. As a matter
of fact, the results inspire us a promising scenario of the model when a large
number of similar instances need to be solved with high frequency.

Table 2. Comparison of the classification accuracy and the average solving time
between our model (PB-GNN ) and other approaches.

Problem
PB-GNN NeuroSAT CPLEX

#V ar. #Cons. Acc. T ime #V ar. #Clau. Acc. T ime

0–1KP

5 2.0 89.7% 0.0462 35.4 137.6 74.0% 9.1191
10 2.0 87.7% 0.0637 87.8 438.7 69.5% 10.7869
15 2.0 86.1% 0.0785 142.4 774.7 62.8% 12.1947
20 2.0 86.5% 0.0843 192.7 1084.5 63.7% 13.7513
40 2.0 85.2% 0.1252 418.1 2502.8 — 29.9405

WIS

5 6.0 99.0% 0.2747 26.7 108.4 66.3% 15.1882
10 23.5 96.4% 0.6946 65.5 345.1 51.0% 15.4741
15 53.5 95.7% 1.3177 101.0 585.4 51.1% 17.2223
20 95.9 92.5% 1.9140 136.3 836.2 51.4% 19.7416
40 390.9 82.1% 5.0624 275.9 1958.4 — 49.6992

SR
[3,10] 46.8 95.8% 0.6619 [3,10] 46.8 95.5% 11.3243
[11,40] 151.3 84.3% 2.4096 [11,40] 151.3 85.0% 15.7829

Generalization to Larger Scales. We are also interested in whether the
model trained on smaller-scale data can work on larger-scale data. We exam-
ine two models, one has been trained for 400 epochs on 0–1KP and the other
for 600 epochs on WIS, both of which are on the datasets where n ∈ [11, 40].
For each model, we set up 15 groups of data with n ∈ [10, 80] in steps
of 5. Within each group, 5 testing sets are generated with different offset
δ = {±1,±2,±5,±8,±10} as described in Sect. 4.1. The other configuration
of data generation is the same as that of validation sets. Such testing data can
show more clearly the learning effect and generalization ability of our model on
the instances of varying complexity.

Figure 2 shows the change in accuracy when testing our model on the above
datasets. On one hand, it is easy to find that the generalization ability is related
to the problem structure. For 0–1KP, since the structures of different scales
are similar, the accuracy can be maintained relatively well even if the problem
instances become larger. But for WIS, a larger-scale instance leads to a more
complicated graph. The accuracy drops rapidly outside the training set, because
the features learned in low dimensions are more likely to lose effectiveness. On
the other hand, the model also achieves different accuracy on the instances gen-
erated under different offsets. When δ = ±10, the accuracy greater than 80%
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Fig. 2. The change in accuracy of the model when predicting the satisfiability of larger-
scale instances than those appeared in the training sets.

can be kept to n = 65 for 0–1KP and n = 50 for WIS. However, the model
fails to learn effective features even on the training sets when δ = ±1 on both
problems. Eventually, when the number of variables continuously increases, the
accuracy is reduced to about 50%, which means it almost becomes a purely
random model. To conclude, the experimental results indicate that the general-
ization performance of the model is affected by both the structure and difficulty
of the problem.

5 Conclusion and Future Work

In this paper, we investigate whether a deep learning model based on GNN can
solve a general class of CSPs with numerical constraints: the Pseudo-Boolean
problem. More specially, the target is to correctly classify whether a decision PB
problem is satisfiable. We present an extensible architecture that accepts a set
of PB constraints with different lengths and forms as input. First, a weighted
bipartite graph representation is established on the normalized constraints. After
that, an iterative message passing process is executed. Finally, the satisfiability is
calculated and returned through a readout phase. Experiments on two represen-
tative PB problems, 0–1 knapsack and weighted independent set, show that our
model PB-GNN can successfully learn some features related to the structure
of specific problem within 600 epochs, and achieves high-quality classification
results on different distributions. Our model is shown to have several advantages
over the previous works. In the aspect of network structure, it integrates the
edge weights into the updating function of node embeddings, so that the param-
eter space is relatively small, making our model easier to converge. Regarding
the accuracy of prediction, PB-GNN outperforms NeuroSAT, a foundational
model in this field, on PB benchmarks with numerical coefficients, and is still
comparable with it when applied to SAT instances.

We hope the model can provide a basis for a series of future works on learn-
ing to solve different CSPs with numerical constraints. There are also several
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perspectives for further work. On one hand, it needs to be acknowledged that
the scale of learnable benchmarks by the current model is relatively small, and
it should be improved to learn larger-scale instances, even those benchmarks
that are difficult for the state-of-the-art solvers. On the other hand, we will try
to decode the assignment of variables from the trained model, so that it can
be called a real “solver”. There are reasons to believe that the development of
graph representation learning will help the model to obtain more accurate fea-
tures related to the problem structures, thereby reducing the heavy manual work
of designing specific heuristic algorithms.
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