
Verifying Equivalence Properties
of Neural Networks with ReLU

Activation Functions

Marko Kleine Büning(B), Philipp Kern, and Carsten Sinz

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{marko.kleinebuening,carsten.sinz}@kit.edu,

ufedz@student.kit.edu

Abstract. Neural networks have become popular methods for tackling
various machine learning tasks and are increasingly applied in safety-
critical systems. This necessitates verified statements about their behav-
ior and properties. One of these properties is the equivalence of two
neural networks, which is important, e.g., when neural networks shall be
reduced to smaller ones that fit space and memory constraints of embed-
ded or mobile systems.

In this paper, we present the encoding of feed-forward neural networks
with ReLU activation functions and define novel and relaxed equiva-
lence properties that extend previously proposed notions of equivalence.
We define ε- and top-k -equivalence and employ it in conjunction with
restricting the input space by hierarchical clustering. Networks and prop-
erties are encoded as mixed integer linear programs (MILP). We evaluate
our approach using two existing reduction methods on a neural network
for handwritten digit recognition.

1 Introduction

The popularity of neural networks (NNs) for solving machine learning tasks has
strongly increased with the availability of high performance computers and large
data sets produced by today’s society. Nowadays, NNs are considered state of the
art solutions for many machine learning tasks, including machine translation [2],
image processing [19] or playing games like Go and chess [23]. The complex struc-
ture of layers and weights, however, renders them incomprehensible to humans.
While this does not have serious consequences when it comes to playing games,
it can have a severe impact when neural networks are applied to safety-critical
systems like self-driving cars [3]. Validation and verification procedures are thus
needed to provide safety guarantees.

The verification of NNs is a relatively young field. Among the first papers
published is the work by Pulina and Tacchella [22], where the authors checked
bounds on the output of multilayer perceptrons. Most current publications (e.g.,
[10,16,26]) focus on proving the adversarial robustness of NNs, meaning that
a network assigns the label of a known reference input-point to all points in a
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 868–884, 2020.
https://doi.org/10.1007/978-3-030-58475-7_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_50&domain=pdf
https://doi.org/10.1007/978-3-030-58475-7_50

Verifying Equivalence Properties of Neural Networks 869

small region around it. To prove this property, the NNs are often encoded as
constraint systems solved with SAT, SMT or MILP solvers. Over the last years,
the size of NNs used in practical applications grew rapidly, and today’s net-
works often require huge amounts of memory space. Their execution causes high
energy consumption, rendering them impractical for use on mobile or embedded
devices. As a consequence, methods have been developed to reduce the size of
NNs [14,27]. The question then arises whether the reduced NN is suitable as a
replacement for the original one, in the sense that it behaves “sufficiently equiv-
alent” on relevant inputs. Narodytska et al. [21] consider two feed-forward NNs
equivalent if, for all valid1 inputs of the input domain, the NNs produce the
same output labels. They are able to prove this property for the specialized class
of binarized NNs, which allows them to produce a SAT formula representing the
equivalence of two NNs. Kumar et al. [20] denote this equivalence property by
local equivalence over a domain, and use the term equivalence for NNs that give
the same output for all inputs. Based on these notions they collapse layers of a
given NN while guaranteeing the equivalence to the original NN.

Unfortunately, exact equivalence is hard to fulfill for two NNs, even if they
have the same structure and have been generated using the same training data,
due to the stochastic nature of the training process. In this paper, we study
feed-forward NNs with the ReLU activation function, which is the most used
activation function in modern NNs [11]. We present a new relaxed equivalence
property for NNs and show, how it—along with existing equivalence properties—
can be encoded in MILP. Additionally, we show an encoding for the verification
of equivalence, as well as maximizing the size of equivalent regions, when the
input domain is restricted to radii around a point in input space. We evaluate our
approach using the constraint solver Gurobi [13] and a NN trained on the Optical
Recognition of Handwritten Digits dataset [7]. The evaluation of our approach
marks the first time, that NN compression methods have been examined by
verification methods with respect to generating equivalent NNs.

2 Foundations

We give short introductions into NNs and MILP. Afterwards, we present the
encoding of NNs into MILP formulae.

Neural Networks. NNs consist of a number of interconnected units, sometimes
called neurons. One single neuron j computes its output yj as a function of
input values x0, ..., xn according to yj = σ(

∑n
i=0 wijxi) , where σ is called the

activation function and x0 is commonly set to 1, such that w0j encodes the bias
of the neuron. The weights wij can be learned from training data. To enable the
NN to capture non-linear functions, the activation function also has to be non-
linear. While there are many choices like the tanh or sigmoid function, we focus
on the rectified linear unit : ReLU(x) = max(0, x), which is the most commonly

1 Validity just ascertains that inputs are suitably bounded, e.g. to a range of [0, 255]
for greyscale pixels.

870 M. Kleine Büning et al.

used activation function in modern NNs [11]. A NN is formed by connecting
neurons via directed links, such that the outputs yk of previous neurons serve
as inputs xi of the current neuron. In this paper, we focus on feed-forward NNs,
where the graph formed by these connections is acyclic. The neurons in these
NNs can be organized in layers, such that each neuron only uses outputs of
the neurons in the layer directly preceding it as its inputs. The first layer—
called input layer—is just a place holder for the inputs to be fed into the NN,
the subsequent layers are called hidden layers, while the last layer—the output
layer—holds the function value computed by the NN. In a regression setting, the
output value represents the NN’s estimate of the respective latent function value
for the given input. For a classification task, however, the output yi of neuron i
represents the probability of the NN’s input belonging to class i. To ensure that
the resulting distribution over the outputs is normalized, each output neuron i
uses the softmax activation function

softmax(x)i =
exi

∑
j exj

.

Mixed Integer Linear Programs. A MILP problem is an optimization prob-
lem for a linear objective function under additional linear constraints. Some
variables are constrained to be integers, while others range over R.

Definition 1. A mixed integer linear programming problem consists of

1. a linear objective function f(x1, ..., xk) =
∑k

i=1 cixi over decision variables
xi that is to be minimized or maximized,

2. a set of linear constraints
∑k

i=1 aijxi �� bj , �� ∈ {≤,=,≥}, where aij and bj
are constants,

3. and an integrality constraint xi ∈ Z for some variables.

Solving MILPs is in general NP-hard. Algorithms for solving them include branch
and bound, cutting planes, or methods based on relaxations.

2.1 Encoding of Neural Networks as MILP

To argue over properties of NNs, we encode them in MILP utilizing the big-M
encoding presented in [5]. Our encoding is equal under transformation to the
ReLU-encodings of [9].

For a NN to be encoded, we first have to encode a single neuron. A
neuron j applies a non-linear activation function σ to a linear combination
sj =

∑n
i=0 wijxi of its inputs x0, ..., xn. Given fixed weights wij , this equa-

tion can be directly encoded in a mixed integer linear program. The non-linear
ReLU activation function yj = max(0, sj) can be encoded using given bounds
m ≤ sj ≤ M , which can be calculated knowing the bounds for the inputs xi

and weights wij of the NN. The ReLU function can be encoded using a new
zero-one variable δ ∈ {0, 1}, with δ = 0 representing the case (sj ≤ 0 ∧ yj = 0)

Verifying Equivalence Properties of Neural Networks 871

and δ = 1 representing (sj ≥ 0 ∧ yj = sj). The ReLU function is then encoded
by the following set of linear inequalities:

yj ≥ 0 sj ≥ m(1 − δ)
yj ≥ sj yj − sj ≤ −m(1 − δ)
sj ≤ Mδ yj ≤ Mδ .

Given tight bounds m ≤ sj ≤ M , the encoding can be further simplified [5]. If
M ≤ 0, we can directly encode the ReLU function as yj = 0, and if m > 0,
we encode the output of the activation function as yj = sj . These reductions in
complexity are particularly valuable as they do not use any integer variables, on
whom we might have to branch when solving the resultant mixed integer linear
program. Therefore, we employ the approach of [5] to generate tighter bounds by
means of interval arithmetic and also solve for bounds on intermediate variables
by maximizing or minimizing their values using smaller mixed integer linear
programs only covering a low number of layers of the NN at a time.

Based on the encoding of a single neuron, we can encode a whole NN.
Each input of the NN is represented by a variable xi with associated bounds
li ≤ xi ≤ ui. These li and ui can be set according to physical limitations or
might be obtained from the respective training dataset and can be used for the
calculation of subsequent bounds in the encoding. The neurons in the first layer
are then encoded according to the previous description. The same procedure is
applied to the neurons of the next layers with the outputs yi of the neurons of
the previous layer taking the role of the inputs above, until the output layer is
reached. In classification NNs, the neurons in the output layer use the softmax
activation function. Due to its exponential functions, an exact encoding in MILP
is impossible. However, since the softmax function is monotonic, we are able to
reason about the order of the outputs by encoding the linear combination of the
input values for the neurons of the output layer in a classification NN.

3 Equivalence Properties

Let R be a reference and T a test NN computing functions fR, fT : Rm → R
n.

We further assume that the inputs to these NNs come from the same domain X
and that the i-th component of the output vector of fR(x) and fT (x) has the
same meaning in the encoding of the output neurons. Proving exact equivalence
of the test NN T and the reference NN R would then mean to ascertain that

∀x ∈ X : fR(x) = fT (x) . (1)

However, the training procedure of NNs is highly non-deterministic and training
could be on different datasets, thus leading to differences in the learned weights,
even if the NNs share the same number of layers and neurons. It is therefore
unlikely for two NNs to fulfill the exact equivalence property stated above. Hence,
we need to relax it to obtain a more practical notion of equivalence. In general,
this can either be achieved by (1) relaxing the exact equality of the function

872 M. Kleine Büning et al.

values in Eq. 1 through a less strict relation �, or (2) restricting the domain
of the inputs to the NNs to smaller subsets, for which equality is more likely.
The first approach is described below, while we discuss the input restriction in
Sect. 4.

3.1 Relaxed Equivalence Properties

The definition of exact equivalence in Eq. 1 can be written as a difference: ∀x ∈
X : fR(x) − fT (x) = 0. An easy relaxation would be to consider two functions
equivalent, if their difference is at least close to zero within some threshold.

Definition 2 (ε-Equivalence). We consider R and T to be ε-equivalent with
respect to a norm ‖·‖, if ‖fR(x) − fT (x)‖ ≤ ε for all x ∈ X.

While this is a valid relaxation in the context of regression NNs, the functions
fR and fT compute class probability distributions when it comes to classification
problems. In most of these cases, one is not interested in the full class probability
distribution, but only in the classification result—the class assigned the highest
probability by the NN. In that case, we can obtain a relaxed equivalence property
by comparing only the classification results.

Definition 3 (One-Hot Equivalence) . We call R and T one-hot equivalent,
if fR(x) = r and fT (x) = t satisfy arg maxiri = arg maxiti for all x ∈ X.

The name stems from the representation of the true label for each input
in the training data as a one-hot vector for classification NNs. We note that
this definition is closely related to the property of adversarial robustness [26],
however we compare the classification results of two NNs instead of comparing
the classification result of one NN with the ground-truth.

The notion of one-hot equivalence can be relaxed even further when we con-
sider not only the most likely class, which is the classification result, but instead
take the k most likely classes into account (the definition is motivated by a
similar idea in [5]).

Definition 4 (Top-k Equivalence). A test NN T is equivalent to a reference
NN R, if fR(x) = r and fT (x) = t satisfy

arg maxiri = j =⇒ pos(tj , t) ≤ k ,

where pos(wj ,w) returns i, if wj is the i-th largest value in vector w, and rj is
the unique maximum component of vector r.

Informally, a testing NN T is top-k equivalent to a reference NN R, if the
classification result of R is amongst the top k largest results of T . This can be
interpreted in a way, such that the NN, even if it differs from the classification
result of the original NN, at least only makes sensible errors. One-hot equivalence
can also be seen as a special case of top-k-equivalence for k = 1.

Note that, while exact equality and one-hot-equality are equivalence relations
in the mathematical sense, neither ε-equivalence, nor top-k-equivalence for k > 1
meet that criterion, as both are not transitive and the latter additionally is not
symmetric.

Verifying Equivalence Properties of Neural Networks 873

3.2 Encoding of Equivalence Properties in MILP

In the context of adversarial robustness, properties are often encoded as MILP
problems [4,18], a formalism we also employ for our equivalence properties.
Searching for an input that maximizes the violation of these equivalence con-
straints has the advantage that we get information about the extent to which
the corresponding NNs are not equivalent. With an encoding as a satisfiability
problem, we would only get a single and possibly very small violation. In general,
we encode equivalence of two NNs R and T as the following mixed integer linear
program

max d (2)
s.t. r = encR(i) (3)

t = encT (i) (4)
d = f(r, t) (5)

where Eqs. 3 and 4 encode a reference NN R and the testing NN T on the
common inputs i as described in Sect. 2.1, yielding the respective outputs of
the NNs r and t. As we are dealing with MILP, some of these variables are real
numbers, while others are restricted to be integers. Below we are going to discuss
the encoding of the function f , which calculates the scalar violation score d for
a given equivalence property, for top-k and then for ε-equivalence.

Top-k-Equivalence. We can encode the violation score of the top-k-equivalence
R � T (or T is equivalent to R) as a simple difference

d = t̂k − tj , (6)

where arg maxiri = j. The variable t̂k denotes the k-th largest component of t. If
d = t̂k−tj ≤ 0, then we have t̂k ≤ tj , meaning that the output of T corresponding
to the classification result of R is larger or equal to the k-th largest output of T .
Therefore tj would be amongst the k largest outputs of T and thus satisfy top-
k-equivalence. The main difficulty in encoding top-k-equivalence lies in encoding
the sorting of the outputs of the NNs according to their activation value. We
can encode the calculation of the descendingly sorted vector x̂ = Πx of a NN’s
output values x by using a permutation matrix Π = (πij)ni,j=1 similar to [17]
and then adding the necessary ordering constraints (Constraint 10):

x̂i =
∑

j

πijxj ∀i ≤ n (7)

∑

i

πij = 1 ∀j ≤ n (8)

∑

j

πij = 1 ∀i ≤ n (9)

x̂i ≥ x̂i+1 ∀i ≤ n − 1 (10)
πij ∈ {0, 1} ∀i, j ≤ n , (11)

874 M. Kleine Büning et al.

where the Constraints 8 and 9 together with the binary constraint on the πij ,
ensuring that each column and each row only contain one 1 and only 0 elsewhere,
are sufficient to characterize Π as a permutation matrix. While multiplications
of two variables are in general non-linear, we can utilize that the πij are binary
variables, to encode the products πijxj in the above formulation. Binary multipli-
cations δx = y, where δ ∈ {0, 1}, can be linearized by encoding the implications
δ = 0 → y = 0 and δ = 1 → y = x as linear inequalities.

Using the above information, we can retrieve sorted vectors r̂, t̂ ∈ R
n of the

outputs of two NNs. To find the component of tj of t that corresponds to the
largest component of r, one can apply the permutation matrix to calculate r̂
to t and extract its first component. However, we don’t need to generate two
full permutation matrices. Realizing that we are only interested in the largest
value of r and the k largest values of t, it is sufficient to encode the first row
of the permutation matrix for r and the first k rows of the permutation matrix
for t, thus reducing the number of binary variables. When multiple outputs
ri of NN R share the highest activation value, valid permutations could be
obtained, such that in one of them component rj and in the other rj′ is the top
component in r̂. Assume that we compare a reference NN R to a testing NN T ,
that assigns the highest activation only to tj , when given the same input as R.
Then, we would use this input as a counterexample to their equivalence, since we
maximize the violation of the equivalence property and the solver would chose
the permutation of R’s outputs, that assigned rj′ as the top component. The
classification results of R and T however could still be the same. Therefore, we
require R to have a unique highest output activation. Since we are not allowed
to use strict inequalities in MILP, we use an ε > 0 to ensure a unique greatest
output activation. We then arrive at the final encoding of top-k-equivalence.
First, we obtain R’s unique top output r̂1:

r̂1 =
∑

i
ρiri (12)

r̂1 ≥ ri ∀i ≤ n (13)
ρi = 0 → r̂1 ≥ ri + ε ∀i ≤ n (14)

∑

i
ρi = 1 and ρi ∈ {0, 1} ∀i ≤ n , (15)

where ρ = (ρ1, ..., ρn)T is used just as the first row of a permutation matrix.
Then, we can solve for T ’s activation tr for the component of R’s largest output,
by applying ρ to the output of T .

tr =
∑

i
ρiti (16)

The k greatest outputs of T are computed as follows:

t̂i =
∑

j
πijtj ∀i ≤ k t̂i ≥ t̂i+1 ∀i ≤ k − 1

zj =
∑

i
πij ≤ 1 ∀j ≤ n zj = 0 → tj ≤ t̂k ∀j ≤ n

∑

j
πij = 1 ∀i ≤ k πij ∈ {0, 1}∀i ≤ k, j ≤ n ,

Verifying Equivalence Properties of Neural Networks 875

where the (πij)
(k,n)
i,j=(1,1) form the first k rows of the permutation matrix for T ’s

outputs and zi indicates, whether ti is amongst T ’s k largest outputs. Finally,
we can compute the violation of the top-k-equivalence property as the difference

d = t̂k − tr , (17)

which is then maximised to find the counterexample resulting in the largest
possible violation of the equivalence property.

Interval Arithmetic. We assume that lower and upper bounds are given for
the input variables and use existing interval extensions for the sum and multi-
plication to generate bounds on the linear combinations of inputs. The ReLU
function is then applied to these bounds to generate bounds on the output of the
neuron. This process is repeated throughout the network. Naively applying this
kind of interval arithmetic to the equations defining r̂1, tr and the t̂i respectively
would produce large overestimates. In Eq. 12 for example, the upper bound on
r̂1 would be the sum instead of the maximum of the upper bounds of the ri
(only one entry is equal to 1 in a row of the permutation matrix). Therefore, we
use context groups to compute tighter bounds for these variables. Assume, we
are choosing a variable x from a set X = {x1, ..., xn}, where xi ∈ [li, ui]. Let l̂
and û denote the vectors containing the lower, respectively upper bounds sorted
in decreasing order. If we choose x to be the k-th largest variable out of X, we
can combine x in a top-k-group and assign tighter lower and upper bounds for
x according to: x ∈ [l̂k, ûk].

ε-Equivalence. We encode ε-equivalence and exact equivalence as maximizing

d = ‖r − t‖. (18)

The equivalence property is satisfied, if max d ≤ ε for ε-equivalence. The value of
ε has be chosen according to the dataset. The “optimal” value can be determined
by incrementally looking at counterexamples for the equivalence and deciding
if, from the user-perspective, the outputs are equivalent. For exact equivalence
ε = 0 is required. In order to use Eq. (18) in MILP, we need to encode the
non-linear ‖·‖ operator. We restricted ourselves to the Manhattan ‖·‖1 and the
Chebyshev norm ‖·‖∞ defined as

Manhattan: ‖x‖1 =
∑

i
|xi|, Chebyshev: ‖x‖∞ = max

i
|xi| , (19)

because they are piecewise linear functions and can thus be encoded in MILP.
Just as we have done earlier, y = |x| can also be expressed as cases x ≤

0 ∧ y = −x and x ≥ 0 ∧ y = x, that can be encoded as linear inequalities by
introducing a binary variable. If the bounds lx ≤ x ≤ ux indicate, that the
domain of x contains only positive (lx ≥ 0) or only negative (ux ≤ 0) values, we
can just set y = x or y = −x, respectively.

In case of the Manhattan norm, we just sum over the absolute values of
the components. The maximum operator used in the Chebyshev norm can be

876 M. Kleine Büning et al.

represented in the same way, as we have done to obtain the output with the
highest activation for a NN in Eqs. (12)–(15) in the previous section.

However a unique largest value is not required in this case, so Eq. (14) is
not needed in this encoding. We can also use the top-k-group we introduced in
Sect. refsssec:ia above with a value of k = 1 to allow for the calculation of tighter
bounds on the result of this maximum operator.

4 Input Restriction

As mentioned in Sect. 3, exact equivalence can also be relaxed by restricting the
input domain, for which the equivalence property has to hold. In practice, it
is especially useful to restrict the input domain to values, that are covered by
the training dataset of the respective NNs. Differences in the output of NNs in
the neighborhood of their training samples are far more meaningful than differ-
ences in regions, where they would not have been applied anyway. Furthermore,
restricting the input values allows for the calculation of tighter bounds.

Below, we give a quick overview of the hierarchical clustering approach of [12],
we used for restricting the input space to regions within a radius around cluster-
centers of training data. Subsequently, we show MILP encodings for proving
equivalence of two NNs for the restricted input regions. We also show, how this
process can be modified for maximizing the radius around a point, such that the
violation of a chosen equivalence property is smaller than a specified threshold.

4.1 Hierarchical Clustering

The hierarchical clustering method of [12] starts by clustering a set of labelled
data-points {(xi, yi)}ni=1, with k distinct labels into k clusters. If a cluster con-
tains input points of different labels, the method is recursively applied to that
cluster, until all clusters only contain inputs of a common label. Every clus-
ter is then characterized by its cluster center and its radius, which denotes the
maximum distance from the cluster center to its input points. The underlying
assumption for this clustering is, that all points, not just the training data-points,
in a dense cluster should be assigned the same label. As points close to a cluster
boundary might lie on a real decision boundary between two classes, [12] set the
radius rc of a cluster to the average distance of the input-points to the cluster
center. Note, that the above assumption only holds for clusters of high density
n/rc, where n is the number of training data-points in the respective cluster.

4.2 Encoding of Clusters

As each cluster is characterized by its center c and radius rc, one can place a
norm restriction ‖i − c‖ ≤ rc on the vector of inputs i, to reduce the domain
of the verification procedure to only inputs from that cluster. Thus, we can
encode the input restriction by extending the encoding of NN equivalence given
in Sect. 3.2 through adding the norm restriction to Eqs. (3)–(5).

Verifying Equivalence Properties of Neural Networks 877

Again, we restrict ourselves to encoding the Manhattan and Chebyshev
norms (Eq. 19). The encoding of the Chebyshev norm for input restriction is
less complicated than its encoding needed for ε-equivalence, as we do not need
to actually calculate the value of the norm, but just ensure, that all input values
are within a set distance of the cluster center. Which leads to a box constraint
on the input variables i. Therefore the lower and upper bounds lj and uj of
variable ij can be updated to l′j = max(cj − rc, lj) and u′

j = min(cj + rc, uj)
respectively. The Manhattan norm ‖·‖1 however has to be encoded just as in
Sect. 3.2. Nonetheless, we can use the fact that ‖x‖1 ≥ ‖x‖∞ ∀x , to achieve
faster tightening of the variable bounds by adding the bounds calculated in the
encoding of the Chebyshev norm.

4.3 Searching for a Maximal Radius

In order to find the largest radius around a center c in input-space, where NNs
R and T are equivalent, it is not possible to just use the equivalence encoding
adding the presented norm and set rc to be maximized. Since the solver finds
an assignment to the input variables i, such that the objective, in that case
the radius, is maximized, the NNs are still equivalent and ‖i − c‖ ≤ rc. In that
situation the solver could choose i = c. Therefore, the equivalence constraint
would be met, if the NNs are equivalent on the center, and the maximum of the
radius would be arbitrarily large. Hence, we search for the smallest radius rv,
for which a counterexample to the equivalence of T and R can be found. This
optimization problem is similar to the one proposed in [25] for finding adversarial
examples for a single NN close to training inputs, which they approximately solve
using gradient based methods. Our MILP formulation reads:

min rv (20)
s.t. r = encR(i) (21)

t = encT (i) (22)
f(r, t) ≥ εv (23)
‖i − c‖ ≤ rv . (24)

Note that we used a small threshold value of εv > 0 for the violation.
If r∗ is the optimal solution for the above minimization problem, the two NNs

are not equivalent for radii r′ ≥ r∗, as the solver could generate a counterexample
for r∗. But we cannot guarantee that the NNs are equivalent for r′ < r∗ because
of the use of the threshold value. For small values of εv, the NNs are likely to
be equivalent for radii r′ ≤ r∗ − εr for small εr. This can then be verified using
the methods for fixed radii described in Sect. 4.2. If verification tasks for fixed
radii have been carried out beforehand, the largest (smallest) radius, for which
the NNs were (not) equivalent can be used as a lower (upper) bound on rv in
the radius-minimization problem.

878 M. Kleine Büning et al.

5 Application: Neural Network Compression

The huge number of parameters in modern NNs lead to large amounts of mem-
ory – AlexNet [19], for example uses 200 MB of disk space. Hence, it is desirable
to reduce the number of parameters of a NN, without compromising its perfor-
mance on the task it is designed to solve. Our approach for verifying equivalence
properties of NNs in combination with the presented input restrictions could be
used to verify the equivalence, or at least quantify the similarity, of the original
NN and the smaller NN, which is the result of the reduction in parameters. This
reduction is usually done by pruning unimportant weights - setting their value
to zero - essentially removing insignificant connections between neurons. In the
context of magnitude based pruning, weights of small absolute value are consid-
ered negligible [24]. The NN may be retrained after pruning, to correct for the
missing connections [24]. During this step and the following iterations of pruning
and retraining, the weights of the pruned connections are fixed at zero. Another
way to reduce the number of parameters, applicable only to classification tasks,
is to directly train a smaller NN on the outputs of a well performing large NN,
which is called student-teacher training [1,15].

6 Evaluation

We have implemented our approach in Python 3 and are able to automatically
generate MILP encodings together with input restrictions. Our program is able
to read in NNs exported by Keras [6] and uses version 8.1.1 of Gurobi [13] to solve
the generated instances. We used this implementation to analyze the equivalence
between compressed and original NNs, as well as between compressed NNs.

Neural Networks. Our original NN consists of an input layer, hidden layers
of 32 and 16 ReLU units and an output layer of size 10 (denoted: 32-16-10). It
was trained using the Optical Recognition of Handwritten Digits Dataset [7].

The dataset consists of 8 × 8 pixel labeled images of handwritten digits, giving
us 64 input variables, whose values are in the closed interval [0, 16], which can be
used as naive bounds on the input variables. We implemented bounds tightening
and interval arithmetic to increase scalability, yet the applicability for larger
networks as well as further optimizations or combinations with approximated
approaches are part of future work.

Reduced size NNs were obtained by pruning and retraining the original NN
in 10% increments. Additionally, NNs with less ReLU units were learned using
student-teacher training. All NNs were trained using the Keras machine learning
framework [6]. The achieved accuracy values on the training and testing datasets
are shown in Fig. 1 for the pruned NNs, as well as for different structures of
student NNs. After the training process, we removed the softmax activation
function in the output layer of the NNs to allow for their encoding in MILP.

Experiments. Verification tasks for top-k-equivalence were conducted with and
without input restricted around the cluster centers shown in Fig. 2. These clus-
ters were the five most dense clusters obtained by hierarchical clustering, when

Verifying Equivalence Properties of Neural Networks 879

Fig. 1. Accuracy values for original NN, low magnitude weight pruning NNs (left) NNs
trained by student-teacher training (right).

applied to the Optical Recognition of Handwritten Digits dataset using Manhat-
tan distance. Each cluster contains between 66 and 91 training images.

Experiments were conducted for k ∈ {1, 2, 3} without input restriction and
for fixed radii, while the experiments for searching maximal equivalence radii
were conducted for k ∈ {1, 2}. Due to space limitations, we present the experi-
mental results for searching maximal radii. The tool and instructions how to pro-
duce the results can be found under https://github.com/phK3/NNEquivalence.

cluster (a) cluster (b) cluster (c) cluster (d) cluster (e)

Fig. 2. The cluster-centers of the five most dense clusters obtained from hierarchical
clustering of the Optical Recognition of Handwritten Digits dataset.

Before the problem encoding was passed to Gurobi, bounds tightening was
performed using interval arithmetic and optimization of two-layer subproblems
for each linear combination of ReLU inputs. Each subproblem solution-process
was stopped after a maximum of 20 s. All experiments were conducted on a
computer with an Intel Core i5-3317U 1.70 GHz processor, which has 2 physical
and 4 logical cores, and 8 GB of RAM running an x64 version of Windows 10.

6.1 Equivalent Neural Networks

We want to verify the equivalence of compressed NNs, by calculating the maximal
equivalence radii for the chosen input clusters. Figure 3 shows the development
of maximal radii for top-1 equivalence for both compression methods. The indi-
vidual radius depends on training data and is reflected by the total number for
the maximal radius for all reduction methods.

https://github.com/phK3/NNEquivalence

880 M. Kleine Büning et al.

Fig. 3. Maximal equivalence radii for top-1-equivalence to the full NN for weight pruned
NNs (left) and student-teacher trained NNs (right)

When pruning a larger percentage of parameters, the equivalence radius fluc-
tuates around a constant level for each cluster up until the 50% reduced NN. If
too many parameters were set to zero, the pruned NNs are no longer equivalent
to the original NN and the equivalence radius deteriorates, as can be seen for
the 80% and 90% pruned NNs. For the 60% and 70% pruned NNs however, one
notices, that the equivalence radii for clusters b, d drop as expected. Radii for
the clusters a, c and e, on the other hand, either stay on the same level or even
increase. An explanation for the observed behavior could be, that about 50% of
the original NN’s parameters are sufficient to capture the underlying knowledge
in the data for the tested clusters. If more parameters are pruned, the reduced
NNs focus on the obviously classifiable clusters to still achieve a low training
error. When the NNs are pruned even further, their capacity is clearly too low.

Examining the student-teacher trained NNs, we notice, that the equivalence
radii not only depend on the number of ReLU nodes, but also the structure of
the NNs. While the 12-12-12-10 student has more ReLU units than the 30-10
student and the same number as all other student NNs, it exhibits sometimes
significantly smaller equivalence radii on all clusters. Among the student NNs, it
also exhibited the lowest accuracy on the training and testing datasets, indicating
that 12 neurons per layer are not best suited for this classification task. The 18-
18-10 student and the 36-10 student show however, that good accuracy and large
equivalence radii can be obtained for this number of ReLU nodes.

Comparing the different compression algorithms for top-1-equivalence, we
notice, that most student NNs achieve similar radii as the up to 50% pruned
NNs on clusters a, b, c and d and radii as large as that of the 70% pruned NN on
cluster e. For the 12-12-12-10 student on clusters b and c and additionally the 30-
10 student on cluster b, significantly smaller radii indicate a lack of capacity for
the student NNs, although this effect is less severe than for the 70%, respectively
80% pruned NNs.

Figure 4 represents the same data for the top-2 equivalence. The verification
of top-2 equivalence is harder, thus our approach only returns upper (dotted
lines) and lower (normal lines) for the given timeout. In general, the maximal
equivalence radii are, as expected, larger then for the top-1 equivalence. This

Verifying Equivalence Properties of Neural Networks 881

indicates that the NNs still assign large probabilities to the correct classification
result for the cluster regions. It is also possible to observe, that for example the
12-12-12-10 student network does not lag as far behind the other student NNs as
before, indicating, that it at least captured a rough understanding of the data.

Fig. 4. Maximal equivalence radii for top-2-equivalence to the full NN for weight pruned
NNs (left) and student-teacher trained NNs (right)

6.2 Remarks

The runtime of the verification procedure depends on the complexity of the MILP
encoding, where the number of integer variables seemed to have the largest effect.
For our experiments runtime fluctuated between a minute and 30 min for top-1
equivalence. For top-2 equivalence, we set a timeout of 3 h. Verification of equiv-
alence for student-teacher trained NNs with fewer ReLU nodes was in most cases
faster, than for the pruned NNs, as fewer integer variables had to be introduced.
Only considering pruned NNs, sparser NNs proved to be verified faster than their
less sparse counterparts. Overall, verification of equivalence for small fixed radii
is faster, than for larger radii, as tighter bounds for all variables in the encoding
can be obtained via bounds tightening. For very large radii, however, some NNs
seem to be obviously not equivalent and large counterexamples are quickly found
by the solver. In the extreme case without input restrictions, counterexamples
to equivalence were all found within a minute.

The presented approach is able to search for a maximal radius for which
NNs are equivalent and returns an input at the edge of the radius for which
the networks are not. We denote this input as a counterexample, which can be
analyzed by a potential user. He then has to decide, whether the counterexample
should be classified as an valid input. If it is valid, the maximal radius is too
small and the NNs are not equivalent, otherwise the NNs are equivalent w.r.t. the
cluster. Three kinds of counterexample are shown in Fig. 5. The leftmost picture
shows an input picture for unrestricted input. This kind of counterexample is
negligible in practice and should not be seen as valid input. It demonstrates
the necessity for input restrictions when verifying NNs. The counterexample in

882 M. Kleine Büning et al.

the middle shows a picture of a (in our opinion) zero which is misclassified by
the 20% pruned NN. Such a result could indicate that the pruned NN does not
fit the wanted equivalence criterion. The left picture on the other hand, shows
a digit that is misclassified by the original NN, which could indicate that the
original NN should be retrained with the given counterexample.

full NN: 5
50% pruned NN: 6

full NN: 0
20% pruned NN: 6

full NN: 5
50% pruned NN: 0

Fig. 5. Counterexamples to one hot equivalence: Without input restriction (left), input
within a 13.6 (middle) and 27.2 (right) radius in Manhattan norm around the center
of cluster (a).

7 Conclusion

With top-k-equivalence, we presented a novel relaxed equivalence property for
NNs and showed, how it, as well as pre-existing notions of equivalence can be
encoded in MILP for NNs using the ReLU activation function. Despite the relax-
ation, NNs rarely meet these equivalence properties, when the whole input space
is considered, as their training only encourages them to agree on areas close to
training data. Therefore we used the restriction of inputs to regions around clus-
ters of training data, as proposed in [12]. We then developed MILP formulations,
of equivalence for inputs within a fixed radius around obtained cluster-centers,
as well as maximizing that radius, such that the NNs are still equivalent. Exper-
iments with a NN trained on the Optical Recognition of Handwritten Digits
Dataset [7] and its downsized counterparts obtained by student-teacher training
or weight pruning showed the validity of our approach. As compression algo-
rithms for NNs are typically only evaluated empirically by measuring the per-
formance of the resultant NNs on a test dataset, this marks the first verification
based examination of such methods. The notion of verified equivalence in a given
cluster radius can be used to give guarantees for smaller networks. Furthermore,
it can be utilized for finding meaningful counterexamples for the pruned and
original network which can than be used for further training.

Our approach could also be applied, when numerous verification tasks have
to be carried out for a large NN. In this case, a smaller NN could be obtained
by compression algorithms. We could then prove its equivalence to the large NN

Verifying Equivalence Properties of Neural Networks 883

within the input space of interest and subsequently perform the initial verifica-
tion tasks on the smaller NN, requiring less computation time. For this scenario
further improvements in scalability are needed. A first step could be using ded-
icated solvers for piecewise linear NNs like Reluplex [18] or the assistance of
approximate methods [8].

References

1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems, vol. 27, pp. 2654–2662. Curran Asso-
ciates, Inc. (2014). http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-
be-deep.pdf

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate (2014)

3. Bojarski, M., et al.: End to end learning for self-driving cars (2016)
4. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: A unified view of

piecewise linear neural network verification (2017)
5. Cheng, C.H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural

networks. In: D’Souza, D., Narayan Kumar, K. (eds.) Automated Technology for
Verification and Analysis ATVA 2017. LNCS, vol. 10482, pp. 251–268. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 18

6. Chollet, F., et al.: Keras (2015). https://keras.io
7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.

edu/ml
8. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach

to scalable verification of deep networks. In: UAI (2018)
9. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:

D’Souza, D., Narayan Kumar, K. (eds.) Automated Technology for Verification and
Analysis, pp. 269–286. Springer International Publishing, Cham (2017). https://
doi.org/10.1007/978-3-319-68167-2 19

10. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

12. Gopinath, D., Katz, G., Pasareanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for checking adversarial robustness in neural networks (2017)

13. Gurobi Optimization LLC: Gurobi. https://www.gurobi.com/
14. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-

works with pruning, trained quantization and Huffman coding (2015)
15. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.

In: NIPS Deep Learning and Representation Learning Workshop (2015). http://
arxiv.org/abs/1503.02531

16. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp.
3–29. Springer International Publishing, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 1

17. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://doi.org/10.1007/978-3-319-68167-2_18
https://keras.io
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/s10601-018-9285-6
http://www.deeplearningbook.org
https://www.gurobi.com/
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1

884 M. Kleine Büning et al.

18. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/
10.1145/3065386

20. Kumar, A., Serra, T., Ramalingam, S.: Equivalent and approximate transforma-
tions of deep neural networks (2019)

21. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

22. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer
Aided Verification, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

23. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018). https://
science.sciencemag.org/content/362/6419/1140

24. Ström, N.: Phoneme probability estimation with dynamic sparsely connected arti-
ficial neural networks. Free Speech J. 5, 1–41 (1997)

25. Szegedy, C., et al.: Intriguing properties of neural networks (2013)
26. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming (2017)
27. Yang, T.J., Chen, Y.H., Sze, V.: Designing energy-efficient convolutional neural

networks using energy-aware pruning (2016)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/362/6419/1140

	Verifying Equivalence Properties of Neural Networks with ReLU Activation Functions
	1 Introduction
	2 Foundations
	2.1 Encoding of Neural Networks as MILP

	3 Equivalence Properties
	3.1 Relaxed Equivalence Properties
	3.2 Encoding of Equivalence Properties in MILP

	4 Input Restriction
	4.1 Hierarchical Clustering
	4.2 Encoding of Clusters
	4.3 Searching for a Maximal Radius

	5 Application: Neural Network Compression
	6 Evaluation
	6.1 Equivalent Neural Networks
	6.2 Remarks

	7 Conclusion
	References

