
Exact Approaches to the Multi-agent
Collective Construction Problem

Edward Lam1,2(B) , Peter J. Stuckey1 , Sven Koenig3 ,
and T. K. Satish Kumar3

1 Monash University, Melbourne, VIC, Australia
{edward.lam,peter.stuckey}@monash.edu

2 CSIRO Data61, Melbourne, VIC, Australia
3 University of Southern California, Los Angeles, CA, USA

skoenig@usc.edu, tkskwork@gmail.com

Abstract. The multi-agent collective construction problem tasks agents
to construct any given three-dimensional structure on a grid by reposi-
tioning blocks. Agents are required to also use the blocks to build ramps
in order to access the higher levels necessary to construct the building,
and then remove the ramps upon completion of the building. This paper
presents a mixed integer linear programming model and a constraint pro-
gramming model of the problem, either of which can exactly optimize the
problem, as previous efforts have only considered heuristic approaches.
The two models are evaluated on several small instances with a large
number of agents. The plans clearly show the swarm behavior of the
agents. The mixed integer linear programming model is able to find opti-
mal solutions faster than the constraint programming model and even
some existing incomplete methods due to its highly-exploitable network
flow substructures.

Keywords: Classical planning · Multi-agent planning · Multi-agent
path finding · Blocksworld · Swarm robotics

1 Introduction

The multi-agent collective construction (MACC) problem tasks a set of co-
operative robots in a blocksworld with the construction of a given three-
dimensional structure. The structure is built from blocks, which must be carried
and rearranged by the robots. The problem aims to determine minimum-cost
paths for the robots to perform this task while avoiding collisions.

The problem is best explained by example. Figure 1 illustrates a solution to
a toy instance. Blocks are shown in gray. Two robots are shown in black and
yellow. In timesteps 1 to 9, the black robot brings three blocks into the world
and then exits. Outside the grid, robots are assumed to operate infinitely fast;
i.e., an infinite number of actions can be performed in one timestep outside the
grid. (Alternatively, the black robot can be assumed to be different robots in

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 743–758, 2020.
https://doi.org/10.1007/978-3-030-58475-7_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_43&domain=pdf
http://orcid.org/0000-0002-4485-5014
http://orcid.org/0000-0003-2186-0459
http://orcid.org/0000-0002-5458-094X
https://doi.org/10.1007/978-3-030-58475-7_43

744 E. Lam et al.

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 1

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 2

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 3

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 4

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z
Timestep 5

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 6

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 7

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 8

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 9

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 10

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 11

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 12

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 13

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 14

0 1 2 3 4 5 6 0
1
2
3
4
5
60

1
2

x
y

z

Timestep 15

Robot 1 Robot 2 Block Newly Delivered Block Block Being Picked Up

Fig. 1. A solution to a toy MACC instance.

Exact Approaches to the Multi-agent Collective Construction Problem 745

practice.) In timesteps 1 to 4, the yellow robot enters the world with a block and
delivers it at coordinate (3, 3). In timesteps 5 to 10, the yellow robot rearranges
the blocks previously brought into the world by the black robot. It then proceeds
to exit the world in timesteps 11 to 13. In timesteps 10 to 12, the black robot
brings in another block for delivery. In timestep 14, the black robot removes the
ramp that it previously delivered in timestep 8 and used in timestep 11 to access
the top level of the structure. The black robot then exits in timestep 15, leaving
the structure fully assembled.

MACC is relevant to many applications, such as robotics [8] and open pit
mining [6]. The problem is relatively simple to understand, yet poses many inter-
esting questions for combinatorial optimization. In particular, questions about
symmetries and dominance rules are highly non-trivial. The main contributions
of this paper are a mixed integer linear programming (MILP) model and a
constraint programming (CP) model of the problem. Using either of these two
models, this paper is the first one to exactly optimize the problem, as all previ-
ous approaches are heuristics, which find high-quality solutions without proof of
optimality. Experimental results show that the MILP model substantially out-
performs the CP model because of its network flow substructures, which are
easily exploited by MILP solvers. The remainder of the paper discusses these
results in detail.

2 Problem Definition

Consider a planning horizon of T ∈ Z+ timesteps, and let T = {0, . . . , T − 1}
be the set of timesteps. The problem is stated on a three-dimensional grid that
is divided into cells. Let the grid be X ∈ Z+ cells wide, Y ∈ Z+ cells deep
and Z ∈ Z+ cells high. Let X = {0, . . . , X − 1}, Y = {0, . . . , Y − 1} and
Z = {0, . . . , Z − 1} be the sets of coordinates in the three dimensions. Define
C = X × Y × Z as the set of all cells. Then, every cell (x, y, z) ∈ C is a triple
of coordinates in the grid. Define the border cells B = {(x, 0, 0) : x ∈ X} ∪
{(x, Y − 1, 0) : x ∈ X} ∪ {(0, y, 0) : y ∈ Y} ∪ {(X − 1, y, 0) : y ∈ Y} as the
perimeter cells on the ground level. Define the positions P = X × Y as the
projection of the cells onto the first two dimensions. That is, the positions lie
on the two-dimensional grid corresponding to the top-down view of the three-
dimensional grid. Define the neighbors of a position (x, y) ∈ P as the set of
positions N(x,y) = {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} ∩ P.

Consider a problem with A ∈ Z+ identical robots. A robot is of the size of a
cell. Each robot can carry up to one block at any given time. Similar to robots,
a block is the size of a cell. Robots start and finish outside the grid. A robot can
enter and exit the world at any border cell, with or without carrying a block.
(An infinite reservoir of blocks lies beyond the grid.) During every timestep that
a robot is on the grid, it must take one of the following four actions:

– If the robot is carrying a block, it can deliver the block to a neighboring
position of the same height as its current cell, raising the height at the delivery
position by one. (See timesteps 1 and 2 in Fig. 1.)

746 E. Lam et al.

– If the robot is not carrying a block, it can pick up a block in a neighboring
position at the same height as the robot, decreasing the height at the removal
position by one. (See timesteps 13 and 14 in Fig. 1.)

– The robot can move from its current cell to a cell in a neighboring position
provided that the difference in height of both cells is within one level; i.e.,
robots can climb up or down at most one block.

– The robot can wait at its current cell.

Blocks are stationary unless moved by a robot. Blocks can be stacked on any
position except the border positions, which are reserved for entry and exit. Up
to Z − 1 blocks can be stacked in any one position. In any position, a block can
only be placed on the ground level or on top of the top-most block. Only the
top-most block can be removed.

Borrowing terminology from multi-agent path finding [10], robots must avoid
vertex collisions and edge collisions. A vertex collision occurs when two or more
robots attempt to occupy, pick up from or deliver to a position. An edge collision
occurs when two or more robots attempt to cross through each other to swap
positions. Robots can enter and exit the grid as many or as few times as necessary.
If a robot exits the grid, it must spend at least one timestep outside the grid
(e.g., to pick up another block) before returning.

The aim of the problem is to find paths for the robots to construct a given
three-dimensional structure by collectively rearranging blocks. By the end of the
planning horizon, all robots must have exited the world, leaving the completed
structure behind. The input structure is given as a desired height z̄(x,y) ∈ Z for
every position (x, y) ∈ P. That is, every block must be supported from below.
Structures cannot be hollow like a cave.

In many related problems, such as multi-agent path finding and vehicle rout-
ing, two common cost/objective functions are makespan and sum-of-costs. Min-
imizing makespan is equivalent to compressing the time horizon so that the
structure is completed as soon as possible at the expense of more actions. Mini-
mizing sum-of-costs minimizes the total number of actions taken by the robots
regardless of the time taken.

Since all robots are identical, the sum-of-costs is minimized by deploying
one robot to build the structure. Since there is at most one robot in the world
at any time, collisions never occur. At the cost of a higher makespan, using
fewer robots always dominates using more robots for the sum-of-costs objective.
On the contrary, solely using the makespan objective is problematic because
unnecessary robots can aimlessly wander the world, incurring penalties in the
sum-of-costs objective but having no impact on the makespan objective (besides
possibly colliding with other robots and extending the makespan). Therefore,
this paper argues for a two-tier lexicographic objective that first minimizes the
makespan and then minimizes the sum-of-costs. This objective finds solutions
that can construct a structure in the least amount of time and, with second
priority, the fewest number of actions.

Exact Approaches to the Multi-agent Collective Construction Problem 747

3 Background and Related Work

Teams of smaller robots are often more effective than a few larger robots. Smaller
robots are usually cheaper, easier to program and easier to deploy. Despite their
possibly limited sensing and computational capabilities, teams of smaller shape-
shifting/self-reconfiguring robots are more fault tolerant and provide more par-
allelism than a few larger robots. A good example of the effectiveness of teams
of smaller robots is in the domain of collective construction [2,3,7,8].

Inspired by termites building mounds, the Harvard TERMES project inves-
tigated how teams of robots can cooperate to build user-specified three-
dimensional structures much larger than themselves [8]. The TERMES hard-
ware consists of small autonomous robots and a reservoir of passive “building
blocks”, simply referred to as “blocks”. The robots are of roughly the same size
as the blocks. Yet, they can manipulate these blocks to build tall structures by
stacking the blocks on top of each other and building ramps to scale greater
heights. The three basic operations of a TERMES robot are: (1) climbing up or
down blocks one block-height at a time; (2) navigating with proper localization
on a partially-built structure without falling down; and (3) lifting, carrying and
putting down a block to attach it to or detach it from a partially-built structure.
MACC approximately models the TERMES robots.

A collective construction problem in the TERMES domain is to build a user-
specified three-dimensional structure, assuming that the reservoir is unlimited
and that the initial world is empty of blocks, i.e., all blocks are initially in the
reservoir. A decentralized reactive algorithm for constructing any given structure
is presented in [8]. While this algorithm succeeds in building the structure, it
does not treat MACC as a rigorous combinatorial optimization problem.

A rigorous formulation of the TERMES collective construction problem as a
combinatorial optimization problem is provided in [5]. The formulation exploits
the fact that the three basic operations of the TERMES robots are almost always
successful. The high reliability of these operations provides a nice abstraction
for centralized planning algorithms, allowing for the assumption that the robots
are ideal. Under these idealistic assumptions, the paper presents an algorithm
that achieves a small number of pickup and drop-off operations. The algorithm
solves the single-robot construction problem using dynamic programming carried
out on a tree spanning the cells of a workspace matrix that represent physical
locations on a grid frame of reference. The use of dynamic programming exploits
common substructures and significantly reduces the number of operations on
blocks. Their algorithm is polynomial-time and performs well in practice but does
not guarantee optimality. In fact, the paper does not characterize the complexity
of the problem.

This algorithm has been extended to the case of multiple robots in [1]. Here,
the idea is to use different robots for different branches of the tree with the intu-
ition that they can largely operate in independent regions. However, a drawback
of this approach is that the regions of the tree close to its root quickly become a
bottleneck and not much parallelism is achieved. Higher parallelism is achieved
in [9]. Inspired by recent advances in single-agent reinforcement learning, this

748 E. Lam et al.

approach extends the single-agent asynchronous advantage actor-critic (A3C)
algorithm to enable multiple agents to learn a homogeneous, distributed policy,
where agents work together toward a common goal without explicitly interacting.
It relies on centralized policy and critic learning, but decentralized policy execu-
tion, in a fully-observable system. Neither of the two algorithms is guaranteed
to generate optimal solutions.

Finally, since blocksworld domains are well studied in the area of automated
planning and scheduling, the International Planning Competition (IPC)1 now
includes the collective construction problem in the TERMES domain as a bench-
mark problem because of its interesting properties [4].

4 The Mixed Integer Linear Programming Model

The MILP model is based on network flow. Network flow problems generalize
shortest path problems. Using network flow, the MILP model treats all robots
as one flow through a time-expanded graph that is further complicated by the
states necessary to track whether a robot is carrying a block from one timestep
to the next.

Let K = {M,P,D} be the types of actions, where M indicates that a robot
is moving from one cell to another or waiting at the same cell, P indicates that
a robot is picking up a block, and D indicates that a robot is delivering a block.

Define an action as a nine-tuple i = (t, x, y, z, c, a, x′, y′, z′), whose elements
are given as follows:

– t ∈ T is the timestep of the action.
– x ∈ X ∪ {S}, y ∈ Y ∪ {S} and z ∈ Z ∪ {S} are the coordinates of the robot

taking the action, where S is a special symbol indicating that the robot is at
a start location off the grid and will move into a border cell.

– c ∈ {0, 1} indicates whether the robot is currently carrying a block.
– a ∈ K denotes the action type.
– x′ ∈ X ∪ {E}, y′ ∈ Y ∪ {E} and z′ ∈ Z ∪ {E} are the coordinates of the cell

where the action occurred, where E is a special symbol indicating that the
robot is moving from a border cell to an end location off the grid.

For instance, the action (5, 1, 2, 3, 0,M, 1, 3, 3) represents a robot standing in
cell (1, 2, 3) at timestep 5 moving to (1, 3, 3) while not carrying a block, and
the action (5, 1, 2, 3, 1,D, 1, 3, 3) represents a robot in cell (1, 2, 3) at timestep 5
delivering a block it is carrying to cell (1, 3, 3).

Not every possible (t, x, y, z, c, a, x′, y′, z′) in the Cartesian product is a valid
action. For example, (3, 0, 0, 0, 0,M, 5, 5, 5) indicates a robot teleporting from
cell (0, 0, 0) at timestep 3 to cell (5, 5, 5). Define the set of valid actions R =
R1 ∪ . . . ∪ R6 made up of six subsets of different actions:

• Robots can enter the world at a border cell: R1 = {(t,S,S,S, c,M, x′, y′, z′) :
t ∈ {0, . . . , T − 4} ∧ c ∈ {0, 1} ∧ (x′, y′, z′) ∈ B}.

1 https://ipc2018.bitbucket.io.

https://ipc2018.bitbucket.io

Exact Approaches to the Multi-agent Collective Construction Problem 749

• Robots can move to a neighboring cell at the same level, one level above or one
level below: R2 = {(t, x, y, z, c,M, x′, y′, z′) : t ∈ {1, . . . , T − 3} ∧ (x, y, z) ∈
C ∧ c ∈ {0, 1} ∧ (x′, y′) ∈ N(x,y) ∧ z′ ∈ Z ∧ |z′ − z| ≤ 1}.

• Robots can wait at the same cell: R3 = {(t, x, y, z, c,M, x, y, z) : t ∈ {1, . . . ,
T − 3} ∧ (x, y, z) ∈ C ∧ c ∈ {0, 1}}.

• Robots can exit the world at a border cell: R4 = {(t, x, y, z, c,M,E,E,E) :
t ∈ {2, . . . , T − 2} ∧ (x, y, z) ∈ B ∧ c ∈ {0, 1}}.

• While not carrying a block, robots can pick up a block from a neighboring cell
at the same level: R5 = {(t, x, y, z, 0,P, x′, y′, z) : t ∈ {1, . . . , T − 3} ∧ (x, y) ∈
P ∧ z ∈ {0, . . . , Z − 2} ∧ (x′, y′) ∈ N(x,y)}.

• While carrying a block, robots can deliver the block to a neighboring cell at
the same level: R6 = {(t, x, y, z, 1,D, x′, y′, z) : t ∈ {1, . . . , T − 3} ∧ (x, y) ∈
P ∧ z ∈ {0, . . . , Z − 2} ∧ (x′, y′) ∈ N(x,y)}.

The timesteps in R1, . . . ,R6 are chosen carefully since, e.g., all robots must be
off the world by timestep T − 1, they must be moving from a border cell off the
world by timestep T − 2, hence T − 3 is the latest that a block can be delivered.

Every position (x, y) ∈ P is modeled as a shortest path from height 0 to
the desired height z̄(x,y) ∈ Z at the final timestep T − 1. Similar to R, define
H = {(t, x, y, z, z′) : t ∈ {0, . . . , T − 2} ∧ (x, y, z) ∈ C ∧ z′ ∈ Z ∧ |z′ − z| ≤ 1} to
represent the actions of growing or shrinking the height of a position. An action
(t, x, y, z, z′) ∈ H indicates that position (x, y) currently has height z at timestep
t and height z′ at timestep t + 1.

In this model, the problem can be thought of in terms of two groups of
interacting agents: (1) pillars that need to grow or shrink to their target heights
in the least amount of time (pillars might need to grow higher than their target
height), and (2) robots that assist the pillars by picking up and delivering blocks
around the world. For pillars to grow upward, they need robots to stack blocks
at their positions. For robots to place blocks on a pillar, a neighboring pillar
needs to be of a similar height. Hence, in some sense, the problem involves a
complicated interaction between two sets of agents, both of which co-operate to
achieve their goals.

The model captures the actions of all robots in one network flow and the
actions of each pillar in a shortest path (a special case of network flow). These two
substructures are coupled by interdependency constraints. In the absence of the
interdependencies, the model separates into a number of independent network
flows. Hence, the idea behind the MILP model is for the solver to first resolve
the interdependencies to simplify the problem, and then the problem becomes
much easier since pure network flow problems can be solved in polynomial time
by linear programming [11]. Of course, resolving the interdependencies remains
a major challenge.

The MILP model is written using non-standard wildcard notation. Let U
be a set containing tuples (u1, u2, . . . , un). For constants u1, u2, . . . , un, we use
the notation Uu1,u2,...,un

as a shorthand for the set {(u′
1, u

′
2, . . . , u

′
n) ∈ U : u′

1 =
u1 ∧u′

2 = u2 ∧ . . .∧u′
n = un)}, which is equal to the singleton {(u1, u2, . . . , un)}

if the element exists and equal to the empty set ∅ otherwise. Let ∗ denote a

750 E. Lam et al.

wildcard symbol for matching any value in a dimension of the tuples. For example,
U∗,u2,...,un

is shorthand for the set {(u′
1, u

′
2, . . . , u

′
n) ∈ U : u′

2 = u2 ∧ . . . ∧ u′
n =

un}, and Uu1,u2,∗,...,∗ represents the set {(u′
1, u

′
2, u

′
3, . . . , u

′
n) ∈ U : u′

1 = u1∧u′
2 =

u2}. This wildcard notation is used to pick subsets of R and H.
Figure 2 shows the model. For every robot action i ∈ R, define a binary

decision variable ri ∈ {0, 1} to indicate whether the action occurred. Similarly,
define a binary decision variable hi ∈ {0, 1} for every height action i ∈ H.

Objective Function (1) minimizes the sum-of-costs objective, i.e., the total
number of cells occupied by robots throughout the planning horizon. The
makespan is minimized external to the model by sequentially increasing T , as
described later.

Constraints (2) to (6) define a path for each position. Constraint (2) prevents
blocks from being placed at the border positions because robots must enter
and exit the world on the ground level. Constraint (3) starts the world devoid
of blocks. This constraint states that all cells have height 0 in the first two
timesteps because the earliest a robot can appear in the world is in timestep
1; hence blocks cannot be placed in the world until timestep 2. Constraint (4)
enforces the completion of the structure. Robots must have exited the world by
timestep T − 1. So they must be at a border cell exiting before timestep T − 2.
Therefore, the structure must be built before the last two timesteps. Constraint
(5) flows the height of each position from one timestep to the next. Constraint
(6) enforces one value of height for every position in each timestep.

Constraints (7) to (11) govern the actions of the robots. Constraint (7) flows
a robot not carrying a block in and out of a cell. The first summation accounts
for a robot moving without a block from any cell at timestep t into cell (x, y, z)
at timestep t + 1. The second summation counts whether a robot standing at
(x, y, z) has just deposited a block nearby. After taking any of these actions,
the robot will be at cell (x, y, z) at timestep t + 1 without a block. It then
has to either move to another cell (the third summation) or pick up a nearby
block (the fourth summation). Constraint (8) is a similar constraint for robots
carrying a block. This constraint states that, if a robot carrying a block is in
cell (x, y, z) at timestep t + 1 (either by moving into the cell with a block or
by picking up a block nearby), then it must afterward move while continuing to
carry the block or deliver the block. Constraints (7) and (8) implicitly require
robots to start and end outside the grid. Constraint (9) prevents vertex collisions.
It permits at most one robot to be at position (x, y) or to pick up from or deliver
a block to position (x, y) at any timestep. Constraint (10) is the edge collision
constraint, which prevents robots from exchanging positions. Constraint (11)
limits the number of robots. By also including robots at the dummy start cell
(S,S,S), this constraint also requires robots that have left the world to spend
at least one timestep outside the world (e.g., to pick up another block) before
returning.

Constraints (12) to (14) couple the robots and the pillars. Without these
three constraints, the problem separates into two independent parts. Constraint
(12) states that, if a robot is at cell (x, y, z), then the height of the pillar at

Exact Approaches to the Multi-agent Collective Construction Problem 751

min
i=(t,x,y,z,c,a,x′,y′,z′)∈R:

(x,y,z) �=(S,S,S)

ri (1)

subject to

ht,x,y,z,z = 1 ∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ B, (2)

h0,x,y,0,0 = 1 ∀(x, y) ∈ P, (3)

hT−2,x,y,z̄(x,y),z̄(x,y) = 1 ∀(x, y) ∈ P, (4)
∑

i∈ t,x,y,∗,z

hi =
∑

i∈ t+1,x,y,z,∗

hi ∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ C, (5)

∑

i∈ t,x,y,∗,∗

hi = 1 ∀t ∈ {0, . . . , T − 2}, (x, y) ∈ P, (6)

∑

i∈Rt,∗,∗,∗,0,M,x,y,z

ri +
∑

i∈Rt,x,y,z,1,D,∗,∗,∗

ri =
∑

i∈Rt+1,x,y,z,0,M,∗,∗,∗

ri +
∑

i∈Rt+1,x,y,z,0,P,∗,∗,∗

ri

∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ C, (7)
∑

i∈Rt,∗,∗,∗,1,M,x,y,z

ri +
∑

i∈Rt,x,y,z,0,P,∗,∗,∗

ri =
∑

i∈Rt+1,x,y,z,1,M,∗,∗,∗

ri +
∑

i∈Rt+1,x,y,z,1,D,∗,∗,∗

ri

∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ C, (8)
∑

i∈Rt,x,y,∗,∗,∗,∗,∗,∗

ri +
∑

i∈Rt,∗,∗,∗,∗,P,x,y,∗

ri +
∑

i∈Rt,∗,∗,∗,∗,D,x,y,∗

ri ≤ 1

∀t ∈ {1, . . . , T − 2}, (x, y) ∈ P, (9)
∑

i∈Rt,x,y,∗,∗,M,x′,y′,∗

ri +
∑

i∈Rt,x′,y′,∗,∗,M,x,y,∗

ri ≤ 1

∀t ∈ {1, . . . , T − 2}, (x, y) ∈ P, (x′, y′) ∈ N(x,y), (10)
∑

i∈Rt,∗,∗,∗,∗,∗,∗,∗,∗

ri ≤ A ∀t ∈ , (11)

∑

i∈ t,x,y,z,∗

hi ≥
∑

i∈Rt,x,y,z,∗,∗,∗,∗,∗

ri ∀t ∈ {0, . . . , T − 2}, (x, y, z) ∈ C, (12)

ht,x,y,z+1,z =
∑

i∈Rt,∗,∗,∗,0,P,x,y,z

ri

∀t ∈ {0, . . . , T − 2}, (x, y) ∈ P, z ∈ {0, . . . , Z − 2}, (13)

ht,x,y,z,z+1 =
∑

i∈Rt,∗,∗,∗,1,D,x,y,z

ri

∀t ∈ {0, . . . , T − 2}, (x, y) ∈ P, z ∈ {0, . . . , Z − 2}, (14)

hi ∈ {0, 1} ∀i ∈ , (15)

ri 0, 1 i . (16)

Fig. 2. The MILP model.

752 E. Lam et al.

position (x, y) must be z. Constraints (13) and (14) respectively equate pickup
and delivery actions to a decrease and increase in the height of a pillar.

Constraints (15) and (16) specify the domains of the variables.

5 The Constraint Programming Model

Standard CP models of routing problems are based on a sequence of actions
performed by each robot. This modeling indexes every robot individually and,
hence, introduces robot symmetry. This section presents a CP model that forgoes
the sequence-based modeling and, instead, adopts a network flow structure to
eliminate robot symmetry. Compared to the MILP model, the CP model uses
a simpler network that omits the vertical dimension, actions and block-carrying
state. It models these aspects using logical and Element constraints, which
better exploit the strengths of CP.

Assign every position p = (x, y) ∈ P an identifier ip = Y ·x+y that maps the
two-dimensional positions to a one-dimensional index. Let I = {0, . . . , X ·Y −1}
denote the set of position identifiers. Let z̄i ∈ Z be the height of the desired
structure at position i ∈ I.

Define the border positions as B = {i(x,0) : x ∈ X} ∪ {i(x,Y −1) : x ∈ X} ∪
{i(0,y) : y ∈ Y} ∪ {i(X−1,y) : y ∈ Y}, and the interior positions as B = {i ∈ I :
i 	∈ B}. Define two dummy positions −1 and −2 off the grid and group them in
O = {−1,−2}. Let E = I ∪ O denote every position (on and off the grid).

For any position i = i(x,y), let Ni = {i(x−1,y), i(x+1,y), i(x,y−1), i(x,y+1)} ∩ I
be its neighbors. Define a set of neighbors that includes the off-grid positions as

N E
i =

{
Ni i ∈ B,
Ni ∪ O i ∈ B.

Using N E
i , robots are able to move off the grid from a border position.

Let K = {M,B,U} be the types of actions, where M indicates that a robot is
moving from one position to another or waiting at the same position, B indicates
that a robot is picking up or delivering a block, and U indicates that a position
is unoccupied by a robot.

Let rt,i ∈ K be a decision variable representing the action taken by the robot
in position i ∈ E at timestep t ∈ T . Define nt,i ∈ E as a variable denoting the
next position of the robot in position i ∈ E at timestep t ∈ T . Define bt,i ∈ I as
the position of the pick-up or delivery by the robot in position i ∈ I at timestep
t ∈ T . Define ct,i ∈ {0, 1} as a variable that indicates whether the robot in
position i ∈ E at timestep t ∈ T is carrying a block. Let pt,i, dt,i ∈ {0, 1}
be variables that, respectively, indicate whether the robot in position i ∈ I at
timestep t ∈ {0, . . . , T − 2} is picking up or delivering a block. Let ht,i ∈ Z
be a variable that stores the height at position i ∈ E in timestep t ∈ T . The
meaning of the variables for any position i ∈ I is clear. The variables are also
defined for i ∈ O to ensure that the problem is satisfiable by giving the Element
constraints an end-point; these variables do not carry much meaning.

Exact Approaches to the Multi-agent Collective Construction Problem 753

The CP model is shown in Figs. 3 and 4. Objective Function (17) minimizes
the number of occupied positions at all timesteps. The Element global con-
straint is used in Constraints (30), (32), (35), (39) and (41) to (44).

Constraint (18) fixes the height of all off-grid positions. Constraint (19) dis-
allows blocks to be delivered to the border positions. Constraint (20) states that
the world is devoid of blocks in the first two timesteps. Constraint (21) requires
the building to be completed before the last two timesteps. Constraint (22) allows
the height at any position to change by at most one level.

Constraints (23) to (26) fix the robot variables at the off-grid positions. Con-
straints (27) and (28) disallow robots on the grid in the first and last timesteps.
Constraint (29) requires robots to stay at the same position when picking up or
delivering a block. Constraint (30) maintains the block-carrying states of robots
when moving. Constraint (31) changes the block-carrying states of robots after
picking up or delivering blocks.

Constraints (32) and (33) are the flow constraints. Constraint (32) states
that every position is either unoccupied or the robot in the position must take
an action in the next timestep. Constraint (33) states that an interior position is
unoccupied or a robot reached it from a nearby position in the previous timestep.
Constraint (34) prevents vertex collisions by disallowing more than one robot
from being in a position, picking up a block from the position or delivering a
block to the position at timestep t + 1. Constraint (35) prevents edge collisions.
Constraint (36) limits the number of robots on the grid during each timestep.
This constraint also requires robots to spend at least one timestep outside the
grid, as discussed in Sect. 2.

Constraints (37) and (38) compute whether a robot is picking up or delivering
a block. If a robot moves, Constraint (39) requires the height of its next position
to be within one level of the height of its current position. If a robot waits
at the same position, Constraint (40) states that the height must remain the
same. Constraint (41) states that the height of the block being picked up must
be one level higher than the pillar at the position of the robot (i.e., the block
is at the same level as the robot). Constraint (42) decreases the height at the
position of a block after a pick up. Constraints (43) and (44) are the equivalent
constraints for deliveries. Constraint (45) counts the changes to the height at
a position. Constraints (46) and (47) are redundant constraints, which improve
the filtering.

Constraints (48) to (54) specify the domains of the variables. Constraint (50)
requires robots to move to a neighboring position, the same position or off the
grid. Constraint (51) states that blocks must be picked-up from or delivered to
a neighboring position.

6 Experimental Results

The experiments compare the run-time of the two models. The MILP model is
solved using Gurobi 9.0.2, a state-of-the-art mathematical programming solver
that regularly outperforms its competitors in standard benchmarks. The CP

754 E. Lam et al.

min
t∈ i∈I

(rt,i �)71()U=

subject to

ht,i = 0 ∀t ∈ , i ∈ O, (18)

ht,i = 0 ∀t ∈ , i ∈ B, (19)

ht,i = 0 ∀t ∈ {0, 1}, i ∈ I, (20)

ht,i = z̄i ∀t ∈ {T − 2, T − 1}, i ∈ I, (21)

ht,i − 1 ≤ ht+1,i ≤ ht,i + 1 ∀t ∈ {0, . . . , T − 2}, i ∈ I, (22)

rt,i = M ∀t ∈ , i ∈ O, (23)

nt,i = i ∀t ∈ , i ∈ O, (24)

ct,−1 = 1 ∀t ∈ , (25)

ct,−2 = 0 ∀t ∈ , (26)

r0,i = U ∀i ∈ I, (27)

rT−1,i = U ∀i ∈ I, (28)

(rt,i = B) (nt,i = i) ∀t ∈ , i ∈ I, (29)

(rt,i = M) (ct+1,nt,i = ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (30)

(rt,i = B) (ct+1,i = ¬ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (31)

(rt,i = U) ∨ (rt+1,nt,i �= U) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (32)

(rt+1,i = U) ∨
∨

j∈Ni∪{i}
(rt,j �= U ∧ nt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ B, (33)

∑

j∈Ni∪{i}
(rt,j = M ∧ nt,j = i) + (rt,i = B) +

∑

j∈Ni

(rt+1,j = B ∧ bt+1,j = i) ≤ 1

∀t ∈ {1, . . . , T − 2}, i ∈ I, (34)

(rt,i = M ∧ nt,i �= i ∧ rt,nt,i = M) (nt,nt,i �= i) ∀t ∈ {1, . . . , T − 2}, i ∈ I, (35)
∑

i∈I
(rt,i �= U) +

∑

i∈B
(rt−1,i = M ∧ nt−1,i < 0) ≤ A ∀t ∈ {1, . . . , T − 1}, (36)

pt,i (rt,i = B ∧ ct+1,i ∧ ¬ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (37)

dt,i (rt,i = B ∧ ¬ct+1,i ∧ ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (38)

(rt,i = M) (ht,i − 1 ≤ ht+1,nt,i ≤ ht,i + 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (39)

(rt,i = M ∧ nt,i = i) (ht+1,i = ht,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (40)

pt,i (ht,bt,i = ht,i + 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (41)

pt,i (ht+1,bt,i = ht,bt,i − 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (42)

dt,i (ht,bt,i = ht,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (43)

dt,i (ht+1,bt,i = ht,bt,i + 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (44)

ht+1,i = ht,i −
j i

(pt,j ∧ bt,j = i) +
j i

(dt,j ∧ bt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (45)

Fig. 3. The CP model. Continued in Fig. 4.

Exact Approaches to the Multi-agent Collective Construction Problem 755

ht+1,i = ht,i − 1
j∈Ni

(pt,j ∧ bt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (46)

ht+1,i = ht,i + 1
∨

j∈Ni

(dt,j ∧ bt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (47)

ht,i ∈ Z ∀t ∈ , i ∈ E , (48)

rt,i ∈ K ∀t ∈ , i ∈ E , (49)

nt,i ∈ N E
i ∪ {i} ∀t ∈ , i ∈ E , (50)

bt,i ∈ Ni ∀t ∈ , i ∈ I, (51)

ct,i ∈ {0, 1} ∀t ∈ , i ∈ E , (52)

pt,i ∈ {0, 1} ∀t ∈ , i ∈ I, (53)

dt,i 0, 1 t , i . (54)

Fig. 4. The CP model. Continued from Fig. 3.

model is solved using OR-Tools 7.6, an open-source CP solver that has won
many of the MiniZinc Challenges in recent times. The two solvers are run for
up to seven days in parallel mode with 20 threads on an Intel Xeon E5-2660 v3
CPU 2.60 GHz with 64 GB of memory.

Even though traditional finite-domain CP solvers are most effective with
a hand-tailored variable and value selection heuristic (i.e., a branching rule),
nogood learning solvers like OR-Tools perform best when using their preferred
search strategies, as evidenced in the MiniZinc Challenge, where OR-Tools per-
forms better in the free search category. Therefore, we do not specify a variable
and value selection heuristic.

The two models minimize the number actions, i.e., the sum-of-costs. To lexico-
graphically minimize makespan as well, the two models are run with sequentially
increasing T . That is, the experiments begin with T = 4, which is the smallest
possible value, and progressively increase T until the problem becomes satisfi-
able (i.e., the solver finds a feasible solution). Then, the solver proceeds to find
an optimal solution. Upon completion, the solution is guaranteed to have the
lowest possible makespan and the lowest number of actions for that makespan.

The six structures from [9] are used for evaluation. They are shown in Fig. 5.
Up to 50 robots are permitted Table 1 shows the results for the six instances. For
both models, the table gives the time to prove optimality, the optimal makespan,
the best available sum-of-costs and its lower bound, and the number of robots
required to execute the plan. (Unused robots never enter the world.)

The MILP model solves all six instances exactly within six days. Instances 1,
2 and 6 are trivial for the MILP model to solve, while the run-times of the other
three instances span a large range. The CP model solves Instance 2 exactly but
is substantially slower than the MILP model. For the remaining five instances,
it finds feasible solutions with the optimal makespan.

Figure 6 plots the twelve timesteps for executing the optimal plan to the first
instance. The large number of robots swarming into the world makes it difficult to

756 E. Lam et al.

Instance 1 Instance 2 Instance 3

Instance 4 Instance 5 Instance 6

Fig. 5. The structures to construct in the six instances.

Table 1. Best available solution to the six instances.

Model Instance Run-time Makespan Sum-of-costs Sum-of-costs LB Robots

MILP 1 29 s 11 176 176 34

2 3 s 11 128 128 28

3 1.2 h 13 344 344 44

4 5.5 h 17 429 429 42

5 5.7 d 17 368 368 37

6 183 s 15 234 234 27

CP 1 >7 d 11 178 107 30

2 1.2 h 11 128 128 28

3 >7 d 13 354 164 44

4 >7 d 17 452 189 50

5 >7 d 17 395 39 41

6 >7 d 15 245 154 28

analyze any emergent macro-level behavior. Nonetheless, minor bucket-brigade
behavior is already demonstrated in the toy example from Fig. 1.

The state-of-the-art reinforcement learning method [9] produced solutions
taking up to 2,000 timesteps (for many fewer robots). The two optimization
models found feasible solutions to all instances with a makespan of less than
twenty timesteps, indicating that these small structures are simple to construct
as they do not rely on long chains of interdependent blocks.

Exact Approaches to the Multi-agent Collective Construction Problem 757

Fig. 6. The twelve timesteps in the optimal plan to Instance 1.

7 Conclusions and Future Work

The MACC problem is a relatively new problem that is starting to gain atten-
tion in the multi-agent planning community. The problem tasks a group of
co-operating robots to construct a three-dimensional structure by rearranging
blocks in a blocksworld. Robots are required to build ramps to access the upper
levels of the structure, and then remove the ramps after assembling the structure.

This paper models the problem using MILP and unexpectedly reveals the
two interacting network-flow substructures hidden in the problem. A CP model
of the problem is also developed but is slower than the MILP model because
it lacks easily exploitable structure. This preliminary study shows that small
instances of complex path-finding problems with an extremely large state space
can be solved exactly today, as previous solution methods were all heuristics,
which aim to find high-quality but not provably optimal solutions.

Scaling the MILP model to long time horizons remains a major challenge.
Early experiments show that using more robots shortens the makespan, and
hence, makes the model smaller and easier. Surprisingly, it is the number of
timesteps that makes the problem difficult, rather than the number of robots.
Buildings taller than five blocks require long ramps for accessing the higher levels.
These ramps take many timesteps to build, resulting in a makespan much longer
and a model much larger than what is possible for exact optimization. For these
instances, the only viable methods are the existing heuristics.

Early experiments show that the CP model presented in Sect. 5 and solved
using OR-Tools is fastest among eleven models solved using both OR-Tools
and Chuffed. One interesting finding is that sequence-based models (often
using the Regular global constraint) are faster in Chuffed but slower in OR-
Tools. Whereas, network flow models (e.g., the model in Sect. 5) are faster in

758 E. Lam et al.

OR-Tools, which has a linear relaxation propagator. Future studies should inves-
tigate whether CP-like sequencing models can obtain competitive performance.

As suggested by a reviewer, MaxSAT models can also be considered since the
problem mainly contains Boolean variables and clauses. The difficulty would be
encoding the cardinality constraints, but how to do this is well-known.

Acknowledgments. The research at the University of Southern California was sup-
ported by the National Science Foundation (NSF) under grant numbers 1724392,
1409987, 1817189, 1837779, and 1935712.

References

1. Cai, T., Zhang, D., Kumar, T.K.S., Koenig, S., Ayanian, N.: Local search on trees
and a framework for automated construction using multiple identical robots. In:
Proceedings of the International Conference on Autonomous Agents and Multi-
Agent Systems (2016)

2. Grushin, A., Reggia, J.: Automated design of distributed control rules for the self-
assembly of prespecified artificial structures. Robot. Auton. Syst. 56(4), 334–359
(2008)

3. Jones, C., Mataric, M.: Automatic synthesis of communication-based coordinated
multi-robot systems. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (2004)

4. Koenig, S., Kumar, T.K.S.: A case for collaborative construction as testbed for
cooperative multi-agent planning. In: Proceedings of the ICAPS-2017 Scheduling
and Planning Applications Workshop (2017)

5. Kumar, T.K.S., Jung, S., Koenig, S.: A tree-based algorithm for construction
robots. In: Proceedings of the International Conference on Automated Planning
and Scheduling (2014)

6. Lambert, W., Brickey, A., Newman, A., Eurek, K.: Open-pit block-sequencing
formulations: a tutorial. Interfaces 44, 127–142 (2014)

7. Napp, N., Klavins, E.: Robust by composition: programs for multi-robot systems.
In: Proceedings of the IEEE International Conference on Robotics and Automation
(2010)

8. Petersen, K., Nagpal, R., Werfel, J.: TERMES: an autonomous robotic system for
three-dimensional collective construction. In: Proceedings of Robotics: Science and
Systems (2011)

9. Sartoretti, G., Wu, Y., Paivine, W., Kumar, T.K.S., Koenig, S., Choset, H.: Dis-
tributed reinforcement learning for multi-robot decentralized collective construc-
tion. In: Correll, N., Schwager, M., Otte, M. (eds.) Distributed Autonomous
Robotic Systems. SPAR, vol. 9, pp. 35–49. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-05816-6 3

10. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: Proceedings of the Symposium on Combinatorial Search (2019)

11. Vaidyanathan, B., Ahuja, R.K.: Minimum cost flows. In: Wiley Encyclopedia of
Operations Research and Management Science. Wiley (2011)

https://doi.org/10.1007/978-3-030-05816-6_3
https://doi.org/10.1007/978-3-030-05816-6_3

	Exact Approaches to the Multi-agent Collective Construction Problem
	1 Introduction
	2 Problem Definition
	3 Background and Related Work
	4 The Mixed Integer Linear Programming Model
	5 The Constraint Programming Model
	6 Experimental Results
	7 Conclusions and Future Work
	References

