
Combinatorial Search in CP-Based
Iterated Belief Propagation

Behrouz Babaki1, Bilel Omrani2, and Gilles Pesant2(B)

1 HEC Montréal, Montreal, Canada
behrouz.babaki@hec.ca

2 Polytechnique Montréal, Montreal, Canada
{bilel.omrani,gilles.pesant}@polymtl.ca

Abstract. Compared to most other computational approaches to solv-
ing combinatorial problems, Constraint Programming’s distinctive fea-
ture has been its very high-level modeling primitives which expose much
of the combinatorial substructures of a problem. Weighted counting on
these substructures (i.e. constraints) can be used to compute beliefs
about certain variable-value assignments occurring in a solution to the
given constraint. A recent proposal generalizes the propagation mech-
anism of constraint programming to one sharing such beliefs between
constraints. These beliefs, even if not computed exactly, can be very
revealing for search. In this paper we investigate how best to guide
combinatorial search in this cp-based belief propagation framework. We
empirically evaluate branching heuristics on a wide set of benchmark
constraint satisfaction problems.

1 Introduction

Compared to most other computational approaches to solving combinatorial
problems, Constraint Programming’s (cp) distinctive feature has been its very
high-level modeling primitives which bring out much of the combinatorial struc-
ture of a problem explicitly in the statement of the model. These primitives
take the form of so-called global constraints [3] which encapsulate powerful algo-
rithms for both inference and search. On the side of inference, filtering algorithms
remove a value from the domain of possible values for a variable if it does not
appear in any tuple satisfying a given constraint (i.e. is unsupported) and then
share that information between constraints by propagating it through common
variables. On the side of search, explaining and recording the sequence of deci-
sions that led to a failure avoids wasting search effort by repeatedly rediscovering
that same dead-end [4].1 As well, work on model counting at the level of individ-
ual constraints led to counting-based search [10], a family of effective branching
heuristics. Generalizing this to weighted counting allowed one to handle com-
binatorial optimization problems in which individual costs are associated with
each variable assignment [8]. The close relationship between weighted counting
1 One could argue that this is also a manifestation of inferring redundant constraints.
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 21–36, 2020.
https://doi.org/10.1007/978-3-030-58475-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-58475-7_2


22 B. Babaki et al.

and probabilistic inference had already been pointed out in Chavira and Dar-
wiche [2]. From a cp perspective it can be interpreted for a given constraint
as the belief in a certain variable-value assignment computed by summing, over
satisfying tuples of the constraint that feature that assignment, the likelihood
of each tuple expressed as the combined beliefs of its component assignments.
Pesant [9] investigates a richer propagation medium for cp which does not sim-
ply share unsupported variable-value assignments but shares instead for each
variable-value assignment the corresponding quantitative belief that it occurs in
some solution. The resulting process is akin to iterated belief propagation [7].

These computed beliefs can be viewed as approximate marginals onto individ-
ual variables of the joint probability distribution defined by the set of solutions.
Such information, even if not exact, can be very revealing for search. In this paper
we investigate how best to guide combinatorial search given the approximate
marginals computed by cp-based belief propagation. We empirically evaluate
generic branching heuristics on a wide set of benchmark constraint satisfaction
problems.

The rest of the paper is organized as follows. Section 2 recalls the recently
proposed cp-bp framework and presents the search heuristics we investigate.
Section 3 reports the results of our initial experiment and analyzes them for fur-
ther improvement. Section 4 investigates two benchmark problems on which we
did not perform well. Section 5 investigates an oscillation phenomenon observed
on the computed marginals. Section 6 concludes with final recommendations
about combinatorial search in the cp-bp framework and points to future direc-
tions for research.

2 The cp-bp Framework

In this section we briefly introduce the cp-bp framework and refer the reader to
Pesant [9] for details. A factor graph is a bipartite graph with variable nodes,
factor nodes, and edges between some variable-factor pairs. A message-passing
algorithm on a factor graph iteratively exchanges messages between variable
nodes and factor nodes. The message from a factor node is a real-valued function
of the variables it is connected to. The message from a variable node is a real-
valued function of that variable. The sum-product algorithm, also known as belief
propagation, is one instantiation of message passing where the message from a
variable to a factor is the product of the messages received from the other factors,
and the message from a factor to a variable is essentially a sum of products of
messages received from the other variables. It has been used to compute the
marginals of individual variables for the factored function. That computation is
exact for trees but not for general graphs with cycles.

A constraint graph can be viewed as a special case of a factor graph with fac-
tors (constraints) issuing 0/1 messages. In that sense standard constraint prop-
agation in cp is a form of message passing, exchanging information about which
variable-value assignments are supported by each constraint. The cp-bp frame-
work proposes to go back to real-valued messages providing information about



Combinatorial Search in CP-Based Iterated Belief Propagation 23

the likelihood of a given variable-value assignment in a solution to the problem.
It does so by performing weighted counting of solutions within each constraint.
The approximate marginals resulting from message passing can inform branching
heuristics.

To illustrate this cp-bp framework consider the following example taken from
[9]: constraints allDifferent(a, b, c), a + b + c + d = 7, and c ≤ d, with
variables a, b, c, d ∈ {1, 2, 3, 4}. This csp is domain consistent but only admits
two solutions: 〈2, 3, 1, 1〉 and 〈3, 2, 1, 1〉.

In cp-bp message passing is synchronized in two phases: in the first phase
constraints receive messages from the variables; in the second phase constraints
send messages to the variables, which are multiplied and then normalized. This
process is repeated for some number of iterations. Initially variables send iden-
tical (i.e. uniform) messages in the first phase. For the second phase, consider
variable a that appears in the allDifferent and the sum constraints: if we
count the proportion of solutions to the former constraint in which a takes value
1, it is 1

4 and the same is true for the other values in its domain; the proportion
from the latter constraint is 10

20 for value 1 and 6
20 , 3

20 , 1
20 respectively for the

other values 2, 3, 4. The combined information, obtained by multiplying these
“messages” from each of the two constraints to variable a, indicates a strong pos-
itive bias (or marginal) toward assigning value 1 to a. The situation is identical
for variable b. Variable c appears in the same two constraints and the messages
it receives from them are the same as those for a and b, but it also appears in the
binary inequality: from that one the proportions are 〈 4

10 , 3
10 , 2

10 , 1
10 〉. So there is

an even stronger bias toward assigning value 1 to c. Variable d gets conflicting
information: 〈1020 , 6

20 , 3
20 , 1

20 〉 from the sum constraint and 〈 1
10 , 2

10 , 3
10 , 4

10 〉 from
the binary inequality.

Table 1. Biases (marginals) after ten iterations of iterated belief propagation on our
running example (left) and true biases (right).

1 2 3 4

a .01 .52 .46 .01
b .01 .52 .46 .01
c .98 .02 .00 .00
d .90 .10 .00 .00

1 2 3 4

a 0 1/2 1/2 0
b 0 1/2 1/2 0
c 2/2 0 0 0
d 2/2 0 0 0

For the next iteration of message passing and all others that follow, the
messages sent by each variable (first phase) reflect its current biases. And from
now on, each solution to a constraint that we count (second phase) is weighted
by the product of the biases of the individual assignments that make up that
solution. Note that typically we do not explicitly enumerate the solutions to a
constraint and compute their weight: efficient algorithms specialized for each
type of constraint have been designed, much like what has been done for domain
filtering.



24 B. Babaki et al.

After ten iterations we have converged to the biases on the left in Table 1,
which are quite close to the true ones (Table 1, on the right) derived from the
two solutions we previously identified. Because from a factor graph perspective,
in a typical cp model each constraint represents a bigger chunk of the problem
involving more variables, there tends to be fewer cycles in the graph and it
was observed in [9] that iterated belief propagation converges better. Initial
experiments suggested that applying constraint propagation followed by a fixed
number (five) of bp iterations works well.

2.1 Candidate Search Heuristics

As is commonplace in cp, we consider two-way branching heuristics that build a
search tree. We can choose to use the computed marginals in two complementary
ways: either we first explore subtrees defined by making highly likely assign-
ments or subtrees defined by excluding highly unlikely assignments. Heuristic
max-marginal first tries (left branch) to assign the variable-value pair exhibiting
the largest marginal and disallows that assignment upon backtracking (right
branch). Heuristic max-strength first tries (left branch) to assign the variable-
value pair exhibiting the largest (positive) difference between its marginal and
the reciprocal of the domain size (i.e. its marginal strength) and disallows that
assignment upon backtracking (right branch). To illustrate how these two heuris-
tics may differ, consider variable x ∈ {a, b} with respective marginals 〈.8, .2〉
and variable y ∈ {a, b, c, d} with marginals 〈.7, .1, .1, .1〉. Heuristic max-marginal
will first branch on x = a whereas max-strength will branch on y = a since
.7−1/4 = .45 > .8−1/2 = .3. Heuristic min-marginal identifies the variable-value
pair exhibiting the smallest marginal, first removes that value from the domain
of that variable and then assigns it upon backtracking. Heuristic min-strength
identifies the variable-value pair exhibiting the smallest marginal strength, first
removes that value from the domain of that variable and then assigns it upon
backtracking.

3 Initial Experiments

The recommendations about search in [9], namely branching in a depth-first
search tree according to maximum marginal strength (max-strength), were based
on a small set of problems and instances. We first wish to revisit this on a larger
and more diverse set of benchmark problems. The current implementation of
MiniCPBP2 dictates that these should be constraint satisfaction problems3 on
integer variables and with constraints among allDifferent, sum, (positive)
table, regular, among, and cardinality. The xcsp.org website features
a selection engine that enables one to select instances from a large set accord-
ing to such requirements. We selected the following problems (excluding some
2 Available at https://github.com/PesantGilles/MiniCPBP.
3 The search guidance provided by its branching heuristics currently ignores solution

cost and so it is unlikely to perform well on constraint optimization problems.

https://github.com/PesantGilles/MiniCPBP


Combinatorial Search in CP-Based Iterated Belief Propagation 25

series of instances that were trivially solved by all heuristics or that caused
an out-of-memory error): CarSequencing, Dubois, Kakuro (sumdiff/medium),
LatinSquare (m1, xcsp2/bqwh�), MagicSquare (sum/s1), Partially-Filled Mag-
icSquare (m1/gp), MultiKnapsack, Nonogram (regular), Ortholatin, PigeonPlus,
Primes, and PseudoBoolean (dec). In all, 1336 instances. The experiments were
executed on Intel E5-2683 2.1Ghz machines running CentOS Linux 7. The mem-
ory budget was set to 10GB and the timeout to 10 h.

3.1 Comparison Between Our Candidate Branching Heuristics

Figure 1 compares the search guidance of the four heuristics presented in Sect. 2.1
using depth-first search (DFS) and limited-discrepancy search (LDS). Each plot
presents for a benchmark problem the percentage of instances solved within a
number of failed search tree nodes by each heuristic. One interesting observa-
tion is that max-marginal is performing better overall than what was previously
thought best, max-strength. That recommendation was based on three problems
(LatinSquare, Partially-Filled MagicSquare, Primes) for which we see that their
performance is comparable. This broader experiment points us in a slightly dif-
ferent direction. One possible advantage of max-marginal is that it may be biased
toward smaller domains, as illustrated in Sect. 2.1.

Generally LDS performs better than DFS, which is usually the case with a
good search heuristic since it prioritizes search tree nodes reached by branch-
ing against the heuristic as little as possible. Figure 2 shows the proportion of
instances solved using at most a given number of such discrepancies. Interest-
ingly for some problems a large proportion are solved in very few or even no
discrepancies, directly reaching a solution.

Based on these results we continue with combination max-marginal / LDS and
now turn to comparing with other heuristics and solvers.

3.2 Comparison with Default Search of State-of-the-Art Solvers

We compare to the best cp solvers in the latest XCSP competition,
Choco-4.10.24 and Abscon-19.06.5 We executed these solvers using the same
command line options as those used in the competition. As a result, solvers
use their default search strategies. The default heuristics for variable and value
selection are dom-wdeg and lexicographic for both solvers. Such a comparison will
not allow us to isolate perfectly the effects of search heuristics on guidance and
runtime because the solvers are different and the filtering algorithms imple-
mented for each constraint may be different as well. For example an inspec-
tion of Choco’s source code indicates that for the allDifferent constraint,
the domain consistency algorithm is called probabilistically according to how
much/often it performs more filtering than the bounds consistency algorithm on

4 Available at https://github.com/chocoteam/choco-solver/releases/tag/4.10.2.
5 Available at https://www.cril.univ-artois.fr/~lecoutre/#/softwares.

https://github.com/chocoteam/choco-solver/releases/tag/4.10.2
https://www.cril.univ-artois.fr/~lecoutre/#/softwares


26 B. Babaki et al.

Fig. 1. %instances solved vs #fails for cp-bp branching heuristics on 12 benchmark
problems

a given instance—in contrast MiniCPBP exclusively uses the domain consis-
tency algorithm, which may provide a bit more filtering but also may put us at
a disadvantage for computation time. Nevertheless it provides some indication
of where we stand compared to the implementation choices of state-of-the-art
solvers.



Combinatorial Search in CP-Based Iterated Belief Propagation 27

Fig. 2. %instances solved given #discrepancies allowed in the search tree

As a more easily comparable baseline we also use MiniCP6 with min-domain
variable ordering and random value ordering and report the median result over
ten runs. Here the underlying solver is essentially the same.
6 Available at http://www.minicp.org/.

http://www.minicp.org/


28 B. Babaki et al.

Fig. 3. %instances solved vs #fails for our best-performing search against Abscon and
Choco

Figure 3 compares search guidance: we observe that we perform better than
these state-of-the-art solvers on six problems (LatinSquare, MagicSquare, Mul-
tiKnapsack, Nonogram, Primes, Partially-Filled MagicSquare) and about as
well on three of them (CarSequencing, OrthoLatin, PseudoBoolean). But there
are three problems on which we do not perform as well: Dubois, Kakuro,
and PigeonPlus.



Combinatorial Search in CP-Based Iterated Belief Propagation 29

Fig. 4. %instances solved vs runtime for our best-performing search against Abscon
and Choco

Comparing runtimes is difficult here even when using the same computers
for the reasons cited above. In addition MiniCPBP is implemented on top of
MiniCP, an academic solver not as optimized as the ones we are comparing to.
Nevertheless Fig. 4 presents such a comparison. We find that our search heuristic
remains competitive for the problems on which guidance was superior. It is
difficult to give a general estimation of the additional computational effort of
belief propagation compared to standard support propagation since it depends



30 B. Babaki et al.

on the number, arity, and type of constraints in the model (the weighted counting
algorithms are different for each type). If we take a problem for which search
effort is similar for max-marginal and min-domain (both basically running MiniCP),
such as Kakuro (see Fig. 3), there is in this case approximately a one order of
magnitude difference (see Fig. 4).

In the following sections we look in detail at some of the problems on which
we do not perform well in an effort to improve our combinatorial search heuristics
further.

4 Dubois and PigeonPlus—Uniform Marginals

Dubois are crafted instances with binary variables and ternary constraints. They
have a special structure, essentially hiding in an increasingly long chain of ternary
constraints a tiny unsatisfiable instance: one constraint says (x, y, z) should
exhibit an even number of 1’s whereas another says the opposite. Even on such
a tiny instance, we essentially enumerate potential solutions. That behaviour is
confirmed by the straight lines we observe for all solvers/heuristics when we plot
the number of instances solved against the number of failed search tree nodes
in log scale (the number of variables in these instances increases smoothly). The
marginals are uniform (all at 0.5) and remain so even once we start branching.
Therefore there is no heuristic information to allow us to discriminate between
values. We likely perform worse than the rest because we are using LDS so some
search tree nodes are visited multiple times (see also Fig. 1).

The same is true for PigeonPlus: instances are unsatisfiable, so we need to
exhaust the search tree, and marginals are either uniform (x variables) or almost
uniform (y variables), remaining the same throughout bp iterations. The branch-
ing for max-marginal tends to alternate between x and y variables, which may not
be optimal for the size of the refutation tree because x variables have a slightly
smaller domain—hence min-domain would be expected to perform better here.
The staircase appearance of search effort is linked to the size of the instances
partly increasing in discrete steps.

The lesson here is that when marginals are (almost) uniform and remain so
even after we branch, there is no discriminative information to exploit in the
marginals so we should use some other branching heuristic and spare the effort
of computing marginals. Fortunately this is easy to check at the beginning of
search.

4.1 An Opportunity for Higher Forms of Consistency

Note that Dubois is a problem for which the generalization to belief propagation
of marginals on subsets of variables would be worthwhile. Consider marginals on
pairs of variables: as soon as we set one of the three variables, say x to 1, unsat-
isfiability is uncovered: the marginals on yz ∈ {00, 01, 10, 11} from the “even”
constraint are 〈0, .5, .5, 0〉 and from the “odd” one are 〈.5, 0, 0, .5〉, whose combi-
nation makes every pair of values vanish. The current cp-bp framework could



Combinatorial Search in CP-Based Iterated Belief Propagation 31

be extended to offer such a consistency level reminiscent of path consistency,
though at some computational expense.

5 CarSequencing—Handling Dramatic Marginal
Oscillation

We noticed that for CarSequencing we were initially branching on null marginals,
a disconcerting behaviour. We studied the progression of marginals dur-
ing bp iterations on a small instance (CarSequencing-m1-jcr/CarSequencing-
dingbas.xml) and observed that marginals of the variables start an extreme oscil-
lation between two values in their domain after a few iterations that eventually
drives all marginals to zero. Even if we stop after fewer iterations, that oscillation
makes the information we use for branching very unstable. Marginal oscillation
(and, more generally, failure to converge) is a documented phenomenon [6] that
is linked to the presence of cycles in the constraint graph but as we wrote in
Sect. 2 cp models with large-arity constraints tend to have marginals converge
more. Still, some oscillation was observed in [9] but attributed to an alternation
between values taken by a given variable in the multiple solutions to an instance.
This cannot be the case here: there are six solutions to that small instance but
some variables are backbone (i.e. are assigned the same value in all solutions)
and yet their marginals oscillate as well.

5.1 Studying a Tiny Instance with a cardinality Constraint

One reason for this oscillation seems to be the way MiniCPBP decomposes car-
dinality constraints into a set of among constraints, one per counted value,
and how the indicator variables are linked to the original variables. That decom-
position is used in MiniCPBP because of the availability of an efficient exact
weighted counting algorithm for sum constraints whereas (unweighted) counting
on cardinality as a whole is already quite challenging and time consuming [1].

Consider this tiny instance:

x1, x2, x3 ∈ {0, 1, 2}

cardinality({x1, x2, x3}, 〈0, 1, 2〉, 〈c0, c1, c2〉)
for some fixed integer parameters ci prescribing the number of occurrences of
value i in {x1, x2, x3}. This cardinality constraint is decomposed into

among({x1, x2, x3}, 〈i〉, ci) 0 ≤ i ≤ 2

each among itself decomposed into

yi
j = 1 ⇐⇒ xj = i 1 ≤ j ≤ 3

3∑

j=1

yi
j = ci



32 B. Babaki et al.

Fig. 5. Constraint graph for decomposed cardinality. White vertices represent vari-
ables and shaded ones, constraints.

introducing an indicator variable yi
j for each original variable xj . The decom-

position of a single among does not introduce cycles in the constraint graph
but the combination of all of them for cardinality does: Fig. 5 shows the cor-
responding constraint graph for the whole cardinality constraint using that
decomposition. It contains many long cycles (length 12). One drawback of the
decomposition is the many binary bijective constraints it contains. We can aggre-
gate them into a single table constraint per xj variable linking it to its indi-
cator variables as shown below and in Fig. 6: shorter cycles (length 8), fewer
constraints, larger-arity constraints. In general if there are d values in a domain,
we replace d binary constraints by a single arity-(d + 1) constraint.

table(〈xj , 〈yi
j〉0≤i≤2〉, T ) 1 ≤ j ≤ 3

3∑

j=1

yi
j = ci 0 ≤ i ≤ 2

At Fig. 7 the dotted curves in the top and middle plots show the behaviour
of the old and new decompositions, respectively, for 〈c0, c1, c2〉 = 〈1, 1, 1〉 and
〈1, 2, 0〉. For the former, the marginals computed by each decomposition for the
xj ’s are identical and immediately stabilize to 1/3, which is the true value. For
the latter there is oscillation with both decompositions and their amplitude is the
same but the new decomposition features a shorter period, which can translate
into faster convergence.

Observe that there are some redundant constraints in the cardinality
decomposition: the number of occurrences of a given value, say c0, is equal to
the number of xj variables minus the sum of the other ci’s. So we could leave out
one of the sum constraints from the decomposition, thereby introducing fewer
cycles. We see at Fig. 7 that doing this in the uniform case, 〈1, 1, x〉 meaning
that the sum for value 2 is left out, does not degrade much the accuracy of the
computed marginal which soon moves very close to the true value, while sig-
nificantly improving accuracy and showing convergence in the non-uniform case



Combinatorial Search in CP-Based Iterated Belief Propagation 33

Fig. 6. Constraint graph for improved decomposition of cardinality.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

m
ar
gi
na
l

1, 1, 1 (old) 1, 2, 0 (old) 1, 2, 0; 3 (old)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

m
ar
gi
na
l

1, 1, 1 1, 2, 0 1, 2, 0; 3

1 5 10 15 20
BP iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

m
ar
gi
na
l

1, 1, x

1 5 10 15 20
BP iteration

1, 2, x

1 5 10 15 20
BP iteration

1, 2, x; 3

λ=0.25 λ=0.5 λ=0.75 λ=1 (no damping) true marginal

Fig. 7. The effect of message damping with different values of parameter λ

(see 〈1, 2, x〉). Surprisingly, adding the redundant constraint that the sum over
all yi

j ’s is equal to 3 (thus introducing more cycles) makes things much worse,
as exemplified by plots 〈1, 2, 0; 3〉 and 〈1, 2, x; 3〉 that increasingly oscillate until
eventually stabilizing to 0 or 1. So it may be the case that adding redundant
constraints to a model hurts belief propagation and should be avoided. Note that
the CarSequencing instances include redundant constraints.



34 B. Babaki et al.

Fig. 8. Final comparison between Abscon, Choco, and max-marginal with LDS and
damping

The fact that redundant constraints, which typically improve inference, may
be deteriorating our search is unsettling. Fortunately there are known remedies
to oscillation.



Combinatorial Search in CP-Based Iterated Belief Propagation 35

5.2 Incorporating Message Damping

Convergence of belief propagation can only be theoretically guaranteed for simple
graphs. In practice, it is possible that the beliefs keep getting updated without
converging to a value. This results in oscillating messages and beliefs. Damping
is a common method for reducing the chance of such oscillations [5]. It involves
taking a weighted average of the new and old beliefs and using that to update
the belief. We apply damping to the messages sent from variables to constraints.
At iteration t, those messages are calculated as:

μ(t)
x→c(v) = λμx→c(v) + (1 − λ)μ(t−1)

x→c (v)

where the damping factor (0 ≤ λ ≤ 1) balances the old and new beliefs. The solid
curves at Fig. 7 show the effect of damping for three values of λ: all eventually
cancel oscillation. Note that another form of message damping was investigated
in [9] without any significant benefit being observed.

Figure 8 presents a final comparison of search guidance over the benchmark
problems7 in which message damping has been added to max-marginal / LDS. For
several problems, notably those on which we already performed better, damping
does not change the outcome of the comparison and even helps further in the case
of MultiKnapsack. For those where the comparison was close it shows a greater
impact, in particular for CarSequencing which provided the original motivation
to look into message damping and whose solving is improved.

6 Conclusion

In this paper we undertook an empirical investigation of combinatorial search
heuristics for the cp-bp framework using a wide set of benchmark problems and
deepened our understanding of their behaviour, which led to an improved search:
LDS with max-marginal as branching heuristic and message damping. It appears
to guide search better than state-of-the-art search heuristic dom-wdeg, enough
to remain often competitive in terms of computing time. In Sect. 4 we identified
a situation under which no benefit can come from computing marginals and a
simple way to identify it.

There are other opportunities for improved search that we would like to
pursue. There are sometimes a large number of (quasi-)ties for branching: should
we proceed differently in that case? Other times several domain values are tied
for maximum marginal but one stands out for minimum marginal: instead of
choosing a priori to branch according to max-marginal or min-marginal, should
we decide between them at each search tree node depending on the context?
The number of bp iterations to compute the marginals is currently fixed to
five: should that number be adapted according to how marginals progress while
iterating?

7 We no longer report on Dubois and PigeonPlus now that they have been settled.



36 B. Babaki et al.

Acknowledgements. The authors wish to thank the anonymous referees for their
constructive criticism that helped improve this work. Financial support for this research
was provided by IVADO through the Canada First Research Excellence Fund (CFREF)
grant, the Fonds de recherche du Québec–Nature et technologies (FRQNT), and NSERC
Discovery Grant 218028/2017. This research was enabled in part by support provided
by Calcul Québec and Compute Canada.

References

1. Bianco, G.L., Lorca, X., Truchet, C., Pesant, G.: Revisiting counting solutions for
the global cardinality constraint. J. Artif. Intell. Res. 66, 411–441 (2019). https://
doi.org/10.1613/jair.1.11325

2. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6–7), 772–799 (2008). https://doi.org/10.1016/j.artint.2007.11.
002

3. van Hoeve, W., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, Foundations of Artificial
Intelligence, vol. 2, pp. 169–208. Elsevier (2006). https://doi.org/10.1016/S1574-
6526(06)80010-6

4. Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: Veloso, M.M.,
Kambhampati, S. (eds.) Proceedings, The Twentieth National Conference on Arti-
ficial Intelligence and the Seventeenth Innovative Applications of Artificial Intel-
ligence Conference, 9–13 July 2005, Pittsburgh, Pennsylvania, USA, pp. 390–396.
AAAI Press/The MIT Press (2005). http://www.aaai.org/Library/AAAI/2005/
aaai05-062.php

5. Murphy, K.P.: Machine Learning - A Probabilistic Perspective. Adaptive Compu-
tation and Machine Learning Series. MIT Press, Cambridge (2012)

6. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate
inference: an empirical study. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI 1999, Stock-
holm, Sweden, July 30–August 1, pp. 467–475. Morgan Kaufmann (1999)

7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems - Networks of Plausible
Inference. Morgan Kaufmann Series in Representation and Reasoning. Morgan
Kaufmann (1989)

8. Pesant, G.: Counting-based search for constraint optimization problems. In: Schu-
urmans, D., Wellman, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, 12–17 February 2016, Phoenix, Arizona, USA, pp. 3441–
3448. AAAI Press (2016). http://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/12065

9. Pesant, G.: From support propagation to belief propagation in constraint pro-
gramming. J. Artif. Intell. Res. 66, 123–150 (2019). https://doi.org/10.1613/jair.
1.11487

10. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-based search: branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210 (2012).
https://doi.org/10.1613/jair.3463

https://doi.org/10.1613/jair.1.11325
https://doi.org/10.1613/jair.1.11325
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/S1574-6526(06)80010-6
https://doi.org/10.1016/S1574-6526(06)80010-6
http://www.aaai.org/Library/AAAI/2005/aaai05-062.php
http://www.aaai.org/Library/AAAI/2005/aaai05-062.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12065
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12065
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1613/jair.3463

	Combinatorial Search in CP-Based Iterated Belief Propagation
	1 Introduction
	2 The cp-bp Framework
	2.1 Candidate Search Heuristics

	3 Initial Experiments
	3.1 Comparison Between Our Candidate Branching Heuristics
	3.2 Comparison with Default Search of State-of-the-Art Solvers

	4 Dubois and PigeonPlus—Uniform Marginals
	4.1 An Opportunity for Higher Forms of Consistency

	5 CarSequencing—Handling Dramatic Marginal Oscillation
	5.1 Studying a Tiny Instance with a cardinality Constraint
	5.2 Incorporating Message Damping

	6 Conclusion
	References




