
Aggregation and Garbage Collection
for Online Optimization

Alexander Ek1,2(B) , Maria Garcia de la Banda1 , Andreas Schutt2 ,
Peter J. Stuckey1,2 , and Guido Tack1,2

1 Monash University, Melbourne, Australia
{Alexander.Ek,Maria.GarciadelaBanda,Peter.Stuckey,Guido.Tack}@monash.edu

2 Data61, CSIRO, Melbourne, Australia
Andreas.Schutt@data61.csiro.au

Abstract. Online optimization approaches are popular for solving opti-
mization problems where not all data is considered at once, because it
is computationally prohibitive, or because new data arrives in an ongo-
ing fashion. Online approaches solve the problem iteratively, with the
amount of data growing in each iteration. Over time, many problem
variables progressively become realized, i.e., their values were fixed in the
past iterations and they can no longer affect the solution. If the solving
approach does not remove these realized variables and associated data
and simplify the corresponding constraints, solving performance will slow
down significantly over time. Unfortunately, simply removing realized
variables can be incorrect, as they might affect unrealized decisions. This
is why this complex task is currently performed manually in a problem-
specific and time-consuming way. We propose a problem-independent
framework to identify realized data and decisions, and remove them by
summarizing their effect on future iterations in a compact way. The result
is a substantially improved model performance.

1 Introduction

Online optimization tackles the solving of problems that evolve over time. In
online optimization problems, in some areas also called dynamic or reactive, the
set of input data is only partially known a priori and new data, such as new
customers and/or updated travel times in a dynamic vehicle routing problem,
continuously or periodically arrive while the current solution is executed. This
new data and the current execution state must be incorporated into the problem
in an ongoing fashion to revise previous decisions and to take new decisions.

Online optimization problems are solved iteratively as a sequence of offline
optimization problems, where each problem represents the available information
state of the online problem at a particular point in time. In each iteration or
session, the online optimization approach must create an update instance to
update the current solution. An update model is a model that can be repeatedly

Partly funded by Australian Research Council grant DP180100151.

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 231–247, 2020.
https://doi.org/10.1007/978-3-030-58475-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_14&domain=pdf
http://orcid.org/0000-0002-8744-4805
http://orcid.org/0000-0002-6666-514X
http://orcid.org/0000-0001-5452-4086
http://orcid.org/0000-0003-2186-0459
http://orcid.org/0000-0003-3357-6498
https://doi.org/10.1007/978-3-030-58475-7_14

232 A. Ek et al.

instantiated to create new update instances in the sequence; it incorporates the
new data, the old data (possibly modified by external sources), and the results
from solving the previous update instance (also possibly modified).

One inherent challenge of online problems is their continuous growth in size
as time passes, which can yield an unnecessary and prohibitive performance
decay. As a result, online optimization approaches often try to remove, or garbage
collect, data that is irrelevant for current and future decisions to be made, such
as completed delivery trips in dynamic vehicle routing problems. Unfortunately,
garbage collection is a complex task, as it requires understanding the interaction
between time, data and the variables and constraints used to model the problem.
For this reason, existing removal methods (see related work in Sect. 6) are highly
problem-specific and, thus, not easily transferable to other problems, or näıve,
thus still causing significant performance issues as shown in Sect. 5.

We propose a problem-independent framework, in which the modeler pro-
vides minimal information about the relation between time, data, and variables.
The framework performs three main steps. First, the modeler’s information is
used to analyze each constraint that would be part of the update instance, with
the aim to automatically identify the data and variables that are now realized,
i.e., can no longer affect future decisions, either because they can no longer
change, or because any change is now irrelevant. Second, once the realized infor-
mation for a constraint is inferred, the constraint is modified to aggregate as
much of the realized information as it can. And third, once all constraints have
been analyzed and aggregated, the garbage from all constraints is collected and
removed to ensure it does not form part of the update instance. We note that this
paper significantly extends our previous problem-independent online modeling
approach [7], with a much more sophisticated and effective method for garbage
collection. We also note that our online approach can also be used for solv-
ing large-scale offline optimization problem, when applying an iterative solving
approach over a rolling horizon [19].

To sum up, our main contributions are as follows: (1) A systematic way of
modeling and inferring when each part of a model is realized (Sect. 4.1), and how
to utilize this. (2) For several kinds of constraints, methods of summarizing the
effect that realized parts will have on the future without keeping them (Sect. 4.2).
This is done via incrementally aggregating the realized values and slightly refor-
mulating the constraints to use these aggregated values. (3) A garbage collection
mechanism that analyzes a high-level constraint model, identifies which parts are
never used again, and safely removes them from future sessions (Sect. 4.3). (4)
An empirical evaluation of the proposed approach (Sect. 5).

2 Preliminaries

A constraint satisfaction problem (CSP) P = (X,D,C) consists of a set of
variables X, a function D mapping each variable x ∈ X to its domain (usually
a finite set of values) Dx, and a set of constraints C over X. For optimization
problems, we add a special variable o to X, called the objective, to be w.l.o.g.

Aggregation and Garbage Collection for Online Optimization 233

minimized. A dynamic constraint satisfaction problem (DCSP) [6] is a (possibly
infinite) list of CSPs DP = (P1, P2, . . .), where each Pi represents the state after
the ith problem change is considered, where a change can remove and/or add
constraints. It allows us to consider each session si as solving the stand-alone
CSP Pi. A solving method is offline if it is designed to solve one CSP, and online
if it is designed to iteratively solve and generate the CSPs in a DCSP.

We distinguish between a problem model, where the input data is described
in terms of parameters (i.e., data that will be known before the search starts),
and a model instance, where the values of the parameters are added to the
model. While an instance can be directly represented as a CSP, a model can
be represented as a parameterized CSP [13] P [Data], that is, a family of CSPs
P [δ] for every δ ∈ Data. The parameterization also applies to its components
(X[Data],D[Data],C[Data]). This allows us to extend the online approach of [7]
by representing a DCSP as the list DP = (P [δ1], P [δ2], · · ·), where data can
change over time, while the underlying model remains unchanged.

We assume DCSPs have complete recourse [5], that is, all their CSPs are fea-
sible. We also assume DCSPs have uncertainty in execution, that is, the values of
the parameters between consecutive CSPs, P [δi] and P [δi+1], can be modified by
external sources. As an example for external modifications, consider a dynamic
vehicle routing problem. The distance between two locations may change (e.g.,
due to road works or traffic congestion), or a vehicle may spend more time at
a customer due to unforeseen delays. External modifications are, however, no
longer possible once the parameters in question become realized, that is, once
their actual values are either observed (indicating they refer to the past) or guar-
anteed never to be observed (indicating they will never be used and thus can be
safely ignored). For example, once a vehicle has actually left a customer site, the
time it left is now realized and can be assumed as fixed forever.

Note that, for simplicity, we do not use stochastic information during online
optimization [2,20,21], nor predict future changes based on historical data [3].
We simply react to any changes that occur in what [4] calls pure reaction, and
resolve each CSP in its entirety for each session. Thus, no information about
P [δi+1] is used by P [δi]. Also, we assume non-preemption for our online solving
methods, that is, once a P [δi] starts to be solved, the execution cannot abort
(either to later resume it or to restart it). However, we believe that the con-
cepts presented in this paper can be generalized in a straightforward way to the
stochastic, preemptive, incomplete recourse case.

We denote by aggregation the process of simplifying a constraint by replac-
ing any fixed decision variables by their value. Faster solving can be achieved
if we precompute the aggregated value of the fixed variables in each constraint
and remove these variables from it. Consider for example a constraint contain-
ing the sum

∑
i ci × xi. We can easily partition the coefficients ci and vari-

ables xi into two sets: those containing fixed decision variables F and the rest
V . Then, we can substitute the sum

∑
i ci × xi by fixcost +

∑
i∈V ci × xi, where

the value fixcost =
∑

i∈F ci × xi is precomputed. This technique is common in
many solvers, particularly copying solvers (e.g., Gecode [9]), which aggressively

234 A. Ek et al.

simplify all constraints before copying them. In our online setting, we aim to
remember (and not redo) the simplifications done in past sessions, and thus
incrementally aggregate the results over time (see Sect. 4.2).

3 Basics of Our Framework and Running Example

Given a DCSP DP = (P [δ1], P [δ2], . . .), our framework consists of a series of
(solving) sessions, where each session si starts to execute instance P [δi] after
session si−1 finishes. The result of session si contains the best solution to P [δi]
that could be found within a given time limit. As we will see later, the result
also contains information about which parts of δi have become garbage, and this
information will be used to generate P [δi+1].

Time, quite obviously, plays an important role in online optimization. We
denote by τi the deadline for session si, i.e., the latest time by which the result
of si must have been produced (which can be calculated as the start time of si

plus the time limit). Importantly, τi is available as a parameter in δi, essentially
representing the value “now”, as seen from the outside world. For example, if
the current session si makes a decision to start a task on a particular machine,
the earliest possible time for that job to start is τi, since any earlier time will
be in the past by the time the solution can be implemented. Similarly, if an
earlier session made the decision to start a task on a particular machine, then
the current session may be able to revise that decision if the start time is still in
the future, i.e., greater than τi. The parameter τi thus synchronizes the session
with the outside world.

Each δ ∈ Data is a tuple (OS δ,DV δ), where OS δ is the set of object set
parameters and DV δ is the set of data value parameters. The former contains a
set per type of dynamic object in the problem, i.e., per type of object that can
arrive as time progresses, such as the set of jobs for a job scheduling problem,
the set of product orders for a product manufacturing problem, and the set of
customer requests for a vehicle routing problem. Typically, these sets are the
backbone of the DCSP models, as they index most loops and parameter arrays.
For example, the set of jobs will index the array of precedences among jobs, and
the set of customer requests will index the array containing the amount of time
required by each customer request. This is why object sets are the key to our
garbage collection method. It is also why the objects in each object set of OS δ

must be uniquely named, with their number determining the size of the instance.
The set of data value parameters denotes the particular givens in the current

state of the instance. For example, the current location of all vehicles to route,
the current expected travel times between points in a traffic network, or the
durations of the jobs that must be run. Each element of the set can be defined
as a singleton or as a multi-dimensional array possibly indexed by object sets.

Many of the data value parameters, decision variables and constraints in
instance P [δi+i] will need to refer to the values obtained by session si when
solving P [δi]. Thus, every δi+1 ∈ Data contains new data, i.e., objects and
parameter values for session si+1, and old data, i.e., the decisions, objects and

Aggregation and Garbage Collection for Online Optimization 235

parameter values either produced by session si when solving P [δi] or modified
by an external source after si (e.g., if a task previously scheduled required more
time to be performed than expected). We will distinguish between old and new
data sets by prefixing them with the ω and ν symbols, respectively.

3.1 Running Example: Dynamic Vehicle Routing

The following problem is used throughout the rest of the paper as an illustrative
example. Consider a dynamic vehicle routing problem (DVRP), where a fleet of
vehicles has to be routed to attend to upcoming customer requests as soon as
possible, while minimizing the total travel time. The problem model is as follows.

Object Sets: The arrival of a new customer request c at time τc, is modeled by
adding object c to the object set of customer requests C at time τc. We model
vehicle availability by means of the availability of a new tour. This allows us
to ignore whether the vehicle is new, or just finished its previous tour. Thus, a
new tour t becoming available at time τt, is modeled by adding tour object t to
the object set of tours T at time τt. Each tour t ∈ T starts at its start depot
S(t), services some customer requests and ends at its end depot E(t). The set
of customer requests C, start depots S(T) and end depots E(T), yield a set of
locations modeled as nodes N . As a result, C and T are input object sets, while
N is an object set constructed from them as N = S(T) ∪ E(T) ∪ NC (C), where
NC (C) maps the customer requests to their associated nodes.

Data Value Parameters: They are provided by two tables. The first,
wait : N → Z

≥, provides the amount of time waitn a vehicle has to wait
after reaching node n ∈ N before it can go on to the next node (this mod-
els, e.g., the time required to provide some service at node n). The second,
dist : N × N → Z

≥, provides the traveling time distnm from every node n to
any node m in N . We assume waitn = 0 if n corresponds to a depot. In addition,
the special parameter τ gives the end of solving time for the current session, and
hence the earliest time after which decisions can be modified.

Variables: While the set of customer requests serviced by a tour must be decided
before the tour begins (i.e., leaves its starting depot), the time of service (and
thus the order in which customer requests are serviced) can change. Therefore,
the exact routes are modeled using three arrays of decision variables indexed by
the set of nodes N : servn determines the tour that serves node n, succn the node
that is served after node n, and arrin the time at which the tour arrives at node
n.

Problem Constraints: The problem is modeled by the following six con-
straints. PC1 ensures each tour visits its start and end depot. PC2 records the
time at which each tour that is new for the current session becomes available,
by setting its arrival time at its start depot to τ . This ensures it is ready to start
by the end of the current solving session. PC3 connects the nodes serviced by
each tour. PC4 ensures the successor of a node n is not reached until n has been

236 A. Ek et al.

serviced for the required amount of time, and the time taken to travel to the suc-
cessor is considered. The last two constraints ensure the whole successor array
forms a single circuit. PC5 establishes a circuit for each tour using the global
constraint on the successor array, thus ensuring every node belongs to one tour.
SBC1 is a symmetry breaking constraint that closes the circuit by ensuring the
successor of the end depot of tour t is the start depot of tour t + 1 (in a fixed
order), and the successor of the last tour is the start depot of the first one.

forallt in T servS(t) = servE(t) = t (PC1)

forallt in νT arriS(t) = τ (PC2)

forall
n in S(T)∪NC(C)

servn = servsuccn
(PC3)

forall
n in S(T)∪NC(C)

arrin + waitn + distn,succn
≤ arrisuccn

(PC4)

Circuit(succ) (PC5)

succE(max(T)) = S(min(T)) ∧ forall
t in T\max(T)

succE(t) = S(t + 1) (SBC1)

Overlap Constraints: Online solving methods need to build an update model
that solves the problem while taking into account earlier decisions. The overlap
constraints add information about how earlier information affects the current
session. In the approach of [7], which we extend, these are constructed automat-
ically from annotations of the original model. The overlap constraints focus on
old decisions that must be committed, that is, decisions taken by the previous
session (or modified by external sources) that cannot change in the current one.
OC1 commits the customer requests serviced by a tour if the tour has left the
start depot by the time the current solving session ends. OC2 commits the suc-
cessor of a node as soon as the tour starts heading towards it. Successors of end
depots are not included in this constraint, as that would interfere with SBC1.
Finally, OC3 commits the arrival time if the node has started to be serviced by
the time the session ends.

forallt in ωT if τ ≥ ωarriωsuccS(t) − distS(t),ωsuccS(t)

then foralln in ωN servn = t ↔ ωservn = t (OC1)

forall
n in ωN\E(ωT)

if τ ≥ ωarrin + waitn then succn = ωsuccn (OC2)

forall
n in ωN

if τ ≥ ωarrin then arrin = ωarrin else arrin ≥ τ (OC3)

Objective: We minimize the total travel cost, computed as the sum of arrival
times at the end depot minus departure times from the start depot:

cost = sumt in T arriE(t) − departS(t),

where departS(t) = arrisuccS(t) − distS(t),succS(t)
.

(OBJ)

Aggregation and Garbage Collection for Online Optimization 237

4 Automated Garbage Collection

Our garbage collection method aims to remove as many garbage objects as pos-
sible from our object sets, together with their associated data value parameters,
decision variables and constraints. An object is considered garbage if it can be
removed without affecting the solutions, that is, if all decisions associated with
the object are realized, and their values can be safely aggregated by all con-
straints in the instance. Recall that a data value parameter or decision is real-
ized if it has already been observed (and can therefore no longer change) or will
never be observed (and can thus be safely ignored). As we will see, our garbage
collection method cannot simply consider the instance being compiled by the
current session. Instead, it must become an incremental and cumulative process
that operates across multiple sessions, aggregating realized data and decisions.

The method consists of the following three main steps: (1) Identify realized
data value parameters and decision variables, in order to determine the fully real-
ized objects (Sect. 4.1); (2) Aggregate the constraints together with the realized
data value parameters and decision variables used in these constraints (Sect. 4.2);
(3) Collect the garbage resulting from the aggregation and remove it from future
instances (Sect. 4.3).

Note that the above automated garbage collection method is performed at
the beginning of each session, when constructing the constraint problem instance
P [δ] that will be sent to the solver. This is achieved by reformulating the update
model to reason about garbage, as we describe below. While it may be more
efficient to deal with aggregation and garbage collection outside of the model,
this has the downside of making the method problem-specific. In contrast, our
proposed automated method deduces what is garbage from the realization infor-
mation in the model alone and can be used for any problem, since both the
aggregation of each constraint and the garbage collection method are indepen-
dent of the model in which they occur.

4.1 Phase One: Identifying Realizations

As time moves forward, objects, data value parameters, and decision variables
become realized. We define a realization function R for a session solving instance
P [δ] = (X[δ],D[δ],C[δ]) as R :

⋃
OS δ ∪ DV δ ∪ X[δ] → {true, false} to indicate

whether a given object, data value parameter, or decision variable is realized.
For ease of notation we define the complement to indicate whether an object,
data parameter, or decision variable is not realized NR(z) = ¬R(z), and extend
both functions in the obvious way to operate on sets of elements.

If online optimization is used to solve a static problem, then any data value
parameter that becomes known and any decision variable that is committed is
automatically realized. For dynamic problems, however, the modeler’s expert
knowledge is needed to annotate the data value parameters and decision vari-
ables in the model to indicate when they are realized. Object realization can be
automatically inferred from this. Let us illustrate this inference by means of our

238 A. Ek et al.

DVRP model. We will assume that newly added data and variables are never
realized, and focus on the old data and variables (identified by ω).

Variable and Data Realizations: As shown in Sect. 3.1, our DVRP model
has three arrays of decision variables and two arrays of data value parameters.
Their realization is provided by the modeler as the functions (for all n,m ∈ N):

R(ωservn) = ωarriωsuccS(ωservn) − distS(ωservn),ωsuccS(ωservn)
≤ τ ; (RV1)

R(ωsuccn) = ωarriωsuccn
≤ τ ; (RV2)

R(ωarrin) = ωarrin ≤ τ ; (RV3)

R(ωwaitn) = ωarrin + ωwaitn ≤ τ ; and (RD1)

R(ωdistnm) = ωarriωsuccn
≤ τ ∨ ωarrim ≤ τ. (RD2)

RV1 marks the tour that serves node n as realized if the vehicle of that tour has
left the depot before the end of the current session (i.e., by τ). RV2 marks the
successor of node n as realized, if the tour arrives at n’s successor by τ . RV3
marks the arrival time at node n as realized, if it is less or equal than τ . RD1
marks the waiting time at node n as realized, if the tour has already arrived at
n and finished waiting by τ . RD2 marks the distance from node n to node m as
realized, if the tour has already arrived either at the successor of n or at m by
τ . Note that if m is not n’s successor, distance ωdistnm will never be used.

This example illustrates why realization needs to be defined by the modeler:
The current model assumes that we cannot change the allocation of customers
to vehicles after a vehicle has left the depot. This may be suitable for vehicles
that need to pick up goods from the depot and deliver to the customers. But
it may be unnecessarily restrictive for vehicles that provide a service, in which
case we could change rule RV1 to R(ωservn) = ωarrin ≤ τ .

Object Realizations and Correspondence: An object is realized when all
the data value parameters and decisions about that object are realized. Since
all five arrays of data value parameters and variables are indexed by object sets,
we can automatically infer which objects are realized. Note that, since N is
constructed from C and T , the realization relationships between them must be
examined. We will come back to this later. We introduce the local realization
function RL : δ ∪ X[δ] → {true, false}, to reason about direct usage. The (for
now manual) analysis determines that C and T are not used to index any of
the five arrays. Therefore, all their objects are locally realized, i.e., RL(c) =
RL(t) = true, for all c ∈ ωC and t ∈ ωT . N is however used as index set in
all arrays of decision variables and data value parameters. Its local realization is
defined for all n ∈ N as:

RL(n) = R(ωservn) ∧ R(ωsuccn) ∧ R(ωarrin) ∧ R(ωwaitn)
∧ (∀m ∈ ωN : R(ωdistnm) ∧ R(ωdistmn)) ,

Aggregation and Garbage Collection for Online Optimization 239

which marks object n ∈ N as locally realized if all variables and data parameter
arrays indexed by n (in one or more dimensions) are also realized.

Direct usage is extended to indirect usage ∀c ∈ ωC, t ∈ ωT , and n ∈ ωN as:

R(c) = RL(c) ∧ RL(NC (c));

R(t) = RL(t) ∧ RL(S(t)) ∧ RL(E(t)); and

R(n) = RL(n) ∧ ((n = S(t) ∨ n = E(t)) → RL(t)) ∧ (n = NC (c) → RL(c));

indicating a customer request c is realized if both c and its associated node
NC (c) are locally realized; a tour t is realized if t, its start node, and its end
node are locally realized; and a node n is realized if n is locally realized and
its associated tour or customer are locally realized (which in this case is always
true). For brevity, R(S) denotes the set of all realized objects in object set S.

4.2 Phase Two: Aggregation

Realized data, variables and objects can never change in future uses, or are never
used in the future. Thus, a constraint can be removed if all its elements are real-
ized. Consider, e.g., Eq. PC3: when succn is realized the constraint must already
hold and can thus be ignored. If a constraint cannot be removed, any subex-
pression containing only realized elements can be replaced with an aggregated
value. In general, the aggregation consists of three steps: (1) identifying the set
of realized objects that can be aggregated, (2) redefining the constraint to use
the aggregations, and (3) introducing and defining the aggregated value(s).

In most constraints, the realized elements are not used to access any other
values (e.g., as array index). For them aggregation is straightforward. Consider,
for example, the objective OBJ of the DVRP model, which loops over object set
T . Partitioning T into realized and non-realized objects gives:

cost = sumt in R(T)(arriE(t) − departS(t)) + sumt in NR(T)(arriE(t) − departS(t)).

To aggregate the realized part, we simply compute and keep its value by intro-
ducing a new data parameter, aggobj : Z≥ to represent this value, and then
transform the objective constraint OBJ into:

cost = aggobj + sumt in NR(T)(arriE(t) − departS(t)), (AC-OBJ)

where aggobj sums up everything aggregated so far, ωagg (corresponding to
objects no longer in T), plus everything aggregated in the current session:

aggobj = ωaggobj + sumt in R(ωT)(arriE(t) − departS(t)). (AV-OBJ)

For constraints where the realized values are indeed used to access other
values, aggregation can be quite complex. Consider, for example, the circuit
constraint for a graph with six nodes a, . . . , f . Suppose the previous session
obtained the solution illustrated in Fig. 1(a). Suppose that nodes c, d and e are

240 A. Ek et al.

a b c

f e d

a b c

f e d

(a) (b)

Fig. 1. Visualization of circuit aggregation via short-circuiting. The current solution
(a) has realized nodes shown in double circles. Nodes d and e can be removed as garbage
and node c is short-circuited to point at f , but must remain since (b) some non-garbage
node will point at it, in the next session.

completely realized. Aggregation for this circuit can then be achieved by short-
circuiting it as visualized in Fig. 1(b). Note we cannot remove c because some
variable must point to c in future sessions. We can however remove d and e from
the model, and they become garbage.

In general aggregation is constraint specific. Thankfully it is well understood,
if not well publicized, and modern solvers, in particular Gecode [9], aggressively
aggregate constraints. The extra challenge that arises in automatic garbage col-
lection is that the result of the aggregation (e.g., aggobj) needs to be commu-
nicated across sessions. Our automated garbage collection modifies the update
model to both make use of the modified form of constraints with aggregation
(e.g., AC-OBJ) values (e.g., AV-OBJ) as well as output this new aggregate value,
so that it is available to the next session.

We can create a library of aggregating versions for common global constraints,
which may require adding new arguments to transmit the aggregate values. We
can also create a library of functions to compute the aggregate values required.

Finally, some constraints can be ignored throughout the aggregation pro-
cess. In particular, redundant (or implied) constraints aim to speed up solv-
ing, but are not necessary for defining the problem, and are only relevant to
the current instance. Hence, redundant constraints can be safely ignored dur-
ing aggregation, and kept as-is for solving. Similarly, the overlap constraints
are only required to communicate the effects from the previous session on the
next session. Hence, they do not need to be considered for aggregation either.
In contrast, while symmetry-breaking constraints can be safely ignored during
aggregation (as they are only relevant in the current instance), they might need
to be reformulated. This is because they eliminate solutions and, thus, can only
be kept as-is if the remaining solutions are compatible with those left by symme-
try breaking constraints of previous instances and all aggregations. In general,
symmetry-breaking constraints need to be carefully designed on a model-by-
model basis. This is outside the scope of this paper and remains future work.
The symmetry-breaking constraints for our DVRP model are compatible with
the aggregations since the end nodes point at the next start nodes, except for

Aggregation and Garbage Collection for Online Optimization 241

the last end node, which points to the first start node. This is the exact pattern
our circuit aggregation will enforce as well.

4.3 Phase Three: Garbage Collection

Our method aims to determine objects that are garbage for removal of any data
or variables associated to these objects. Without this, instances would constantly
grow with time. As shown for the circuit constraint above, some realized (and
aggregated) objects cannot be removed. Therefore, we need to determine what
can be safely removed and what cannot. We will say that realized objects, data
value parameters, and variables are garbage if they can be removed without
creating an inconsistency, and are non-garbage otherwise. Note that only realized
objects, data value parameters, and variables can be garbage since, otherwise,
their new values might change the solutions found by subsequent sessions.

The garbage collection phase for P [δ] is itself divided into three steps.
The first step identifies the set of realized objects that are non-garbage for
each constraint in P [δ] when considered in isolation, that is, the non-garbage
objects local to each constraint. Note that these objects, together with the
data value parameters and variables associated to them, are the only realized
elements that have not been already aggregated during the previous phase
(i.e., phase two). Formally, the identification of the non-garbage local to a
given constraint in P [δ] = (X[δ],D[δ],C[δ]) is defined in terms of the func-
tion NGL : C[δ] → {G | G ⊆ ⋃

OS δ} , which returns the set of realized objects
in every object set that the given constraint c considers to be non-garbage and
has, therefore, not been aggregated by c. For example, in our DVRP model, if c
is the objective constraint OBJ, then NGL(c) will return the empty set, since all
realized objects are garbage for OBJ. However, if c is the circuit constraint PC5,
then NGL(c) will return any realized node n whose predecessor node is not real-
ized (e.g., an end node is the predecessor of the start node of another tour), that
is, it returns {n ∈ R(N) | succm = n and m ∈ NR(N)}. In the example for the
circuit constraint provided in the previous section, this set would contain the
realized node named c, but not the nodes named d and e.

The second step in this phase collates the local non-garbage information to
determine the realized objects that are non-garbage for the entire instance P [δ].
To do this we define a global non-garbage function:

NG : OSδ → {NG | NG ⊆ S, S ∈ OS δ} , s.t. NG(S) ⊆ S, ∀S ∈ OS δ,

which maps each objects set S ∈ OS δ to the objects in S that are non-garbage:

NG(S) = R(S) ∩
⋃

c∈C[δ]
NGL(c), ∀S ∈ OS δ,

that is, the subset of all objects identified by any constraint c in the instance
as non-garbage, that are also realized objects of S. For ease of notation we
use the complement to indicate the set of realized objects that are garbage
G(S) = R(S) \ NG(S) and can therefore be removed.

242 A. Ek et al.

The third and last step in this phase removes any garbage identified at the
beginning of session si to create instance P [δi], thus eliminating the garbage
from all future instances as well. This is already partially achieved in phase two,
by modifying the constraints to aggregate all realized data value parameters
and variables. To complete the task, we must remove any objects identified as
garbage from the input object sets. We do this by redefining each input object
set S as NG(S)+NR(S), thus ensuring S retains every realized object that has
been identified as non-garbage (NG(S)), plus every object that is not realized
(NR(S)). Note that NR(S) contains all new objects of S and all old, non-
realized ones. Note also that constructed object sets do not need to be redefined,
as they are built from the input sets. For example, for our DVRP this step would
require redefining the object set of tours T = NG(T) + NR(T) and the object
set of customer requests C = NG(C)+NR(C). Once this is done, the definition
of the constructed set of nodes N = S(T) ∪ E(T) ∪ NC(C) automatically takes
advantage of the (possibly smaller) T and C sets. We also extend the model to
output the data for the new collections of objects, to use in the next session. This
implicitly removes any data associated with a garbage object. Garbage variables
are implicitly removed since the object set used to construct them no longer
contains garbage objects. Therefore, once phase three finishes, P [δi] does not
refer to objects, data value parameters, or variables identified as garbage.

5 Experimental Results

We present experimental results that demonstrate the effectiveness of our
garbage collection approach. For this purpose, we took the standard Mini-
Zinc [15] models of two optimization problems and transformed them (by hand),
adding auxiliary functions, predicates and parameter definitions that implement
the three phases of the approach. We use the MiniZinc 2.4.3 toolchain and the
Gecode 6.1.1 solver. The iterative online optimization algorithm is implemented
as a Python script that, for each session si, prepares the session data δi based
on the previous session’s result, and then calls MiniZinc to compile and solve
the P [δi] instance.

5.1 Dynamic Vehicle Routing

Our first experiment is based on the DVRP model used as the running example,
and the class 1 input data file 100-0-rc101-1,1 which provides coordinates
for each node, service times for each customer request, the number of vehicles
available (16), the start and end depots (always the same), and the start time of
each time-window. We use this to compute the distance between any two nodes
as their Euclidean distance, and to set the time at which a customer request
arrives within a given time-window, as the start time of that time-window. No

1 http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-
vehicle-routing-problem-time-windows.

http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-vehicle-routing-problem-time-windows
http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-vehicle-routing-problem-time-windows

Aggregation and Garbage Collection for Online Optimization 243

Table 1. Shows the session number, total number of customer requests so far, total
number of tours added so far, (using garbage collection (GC) and aggregation:) best
objective value found, compilation time, and runtime, number of garbage collected
tours, and number of alive customers, (without GC and aggregation:) best objective
value found, compilation time, and runtime.

custs. tours with GC without GC

obj. comp. (s) run (s) G(T) alive C obj. comp. (s) run (s)

1 2 16 64 0.18 >45.00 0 2 64 0.21 >45.00

2 3 31 128 0.46 >45.00 14 3 128 3.49 >45.00

3 10 47 572 0.55 >45.00 29 8 572 38.01 >45.00

4 18 63 861 0.76 >45.00 45 15 — >45.00 >45.00

5 24 79 1346 0.99 >45.00 60 21 — >45.00 >45.00

6 36 95 2010 1.61 >45.00 76 32 — >45.00 >45.00

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

14 91 223 5003 10.57 >45.00 204 82 — >45.00 >45.00

15 95 239 5352 13.34 >45.00 220 86 — >45.00 >45.00

16 96 255 5370 13.46 >45.00 236 87 — >45.00 >45.00

17 99 271 5432 13.52 >45.00 252 90 — >45.00 >45.00

18 99 287 5458 15.38 >45.00 268 90 — >45.00 >45.00

19 100 303 5483 15.61 >45.00 284 91 — >45.00 >45.00

other information in the data file was used. Note that whenever a tour ends, a
new tour is added in that same session. We increased the current time τ by 50
time units each session, which is equivalent to 1 minute wall-clock time. Thus,
the fleet gets updated instructions each minute. We also set the optimization
runtime timeout to 45 s, to allow for potential overheads. We keep running until
all 100 customers have been added.

The results in Table 1 show that our method significantly improves the com-
pilation time; and without it, MiniZinc quickly gets overwhelmed with irrelevant
tours and customers, slowing down the compilation. Further, using our method
makes the problem suitable to run within a 45-s time-out. Note that empty tours
in a session will be garbage collected in the next one.

5.2 Job-Shop Scheduling with Long Running Jobs

Our second experiment uses Job Shop Scheduling [10], a well studied, hard
scheduling problem. We consider a rolling horizon version where jobs are spaced
out by earliest start time. To highlight the advantages of automated garbage
collection over the simple approach of [7], some of the jobs are given very long
running times compared to other jobs. In the simple approach a job is garbage
only if all tasks that arrived earlier are also garbage. These long running jobs
prevent effective garbage collection under this policy, representing its worst case.

244 A. Ek et al.

Table 2. Shows the session number, total number of jobs added so far, best objective
value (makespan) found (all methods reported the same makespan), compilation time,
and runtime without garbage collection, plus the same information and the garbage
collected jobs for the simple garbage collection method of [7], and our proposed method.

jobs obj. no GC simple GC our GC

comp. (s) run (s) comp. (s) run (s) G(J) comp. (s) run (s) G(J)

1 4 4278 0.09 0.11 0.09 0.11 0 0.08 0.10 0

2 8 4308 0.09 0.11 0.08 0.11 0 0.08 0.10 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

8 32 5428 0.46 0.50 0.47 0.51 0 0.27 0.30 7

9 36 5633 0.65 >1.00 0.68 >1.00 0 0.34 >1.00 9

10 40 5874 0.88 >1.00 0.90 >1.00 0 0.23 >1.00 18

11 44 8358 >1.00 >1.00 >1.00 >1.00 0 0.23 0.26 22

12 48 8388 — — — — — 0.17 0.20 30

13 52 8508 — — — — — 0.11 0.14 39

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

92 368 41028 — — — — — 0.19 0.22 350

93 372 41148 — — — — — 0.13 0.17 359

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

We run a similar experiment to that of [7], with the same model and data
file ft20 from the MiniZinc benchmarks,2 and the same method to obtain an
endless queue of jobs by repeatedly adding copies of the jobs in sequence. In
each session we increase the current time τ by 408 scheduling time units, add
the next 4 jobs in the queue, and set a time limit of 1 second. The first job (and
every 40th subsequent job) is what we call a long-running job. We multiply the
processing time, over all machines, of this job by 20.

Table 2 shows the benefit of using our method compared to no garbage
collection and to the simple method proposed in [7]. By reasoning on objects
individually (instead of finding the first non-realized job) we can remove any
object that becomes realized. The simple method is prevented from garbage
collecting them by the first job and, hence, becomes too slow.

As our experiments show, the overhead of the garbage collection steps is
negligible compared to the overall compilation time, and compared to the per-
formance gains in later sessions. The time complexity of the garbage collection
steps depends on the complexity of the model, and is at most O(n log n) if the
time complexity of the compilation without it is O(n). Since garbage collec-
tion aims to minimize compilation time in future sessions, it will be quick and
worthwhile in practice.

2 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop.

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop

Aggregation and Garbage Collection for Online Optimization 245

6 Related Work

Garbage collection is a well studied topic for programming languages and run-
time environments [12], where it refers to the elimination of data that has no live
references. In the online optimization context the data and past decisions always
have references, but may still not be required for the current and future sessions,
depending on which decisions are realized. Hence, determining what is garbage
is more complex. As we have seen above, the model may require transformations
such as aggregation in order to remove references to past decisions and data.

While online problems have been studied in great detail, almost all of this
work concentrates on particular application problems (e.g., [11,16]). Any online
problem has to tackle the difficulty that, without deletion, the problem continues
to grow. While for particular application problems there may be simple rules that
allow the modeler to define garbage, for a general definition, the interaction of
realized decisions and earlier data with future decisions is complex.

Modeling support for online problem solving is still in its infancy. AIMMS
has a notion of aggregation when using rolling horizon [17], which allows the
effect of previous realized decisions to be accounted for in some parts of the
model, such as the objective. The notion of realization used is much simpler,
and automated aggregation of complex constraints like circuit is not considered.

Online MiniZinc [7] provides a framework that supports the automatic con-
struction of the update model from an annotated offline version of the problem.
It considers a simple form of garbage collection which only removes consecutive
garbage objects until a non-garbage object is reached. The modeler is responsible
for determining this directly, and aggregation is ignored. As a result, it is only
usable when all aggregates are true. In contrast, the approach presented in this
paper requires a complex model analysis, since we automate the understanding
of how realized data and decisions can affect future decisions. In turn, our anal-
ysis requires a new view of modelling, where object sets are carefully used to
represent dynamic data, and dependent object set creation is introduced.

Open global constraints [1,8] are a form of extensible constraint useful for
online optimization problems whose size grows. The focus is on correct propaga-
tion of open constraints when not all information about them is available. They
do not examine garbage collection since there is no notion of realization in the
general open-world setting. The constraints simply grow as time progresses.

There is surprisingly little published work on aggregation of constraints.
While the simplification of constraints when their variables become fixed is well
understood, it is rarely documented. There are preprocessing methods that con-
sider this, such as Boolean equi-propagation [14]. There has been work on elimi-
nating variables during propagation [18], although we are not aware of a system
that currently implements this. Aggregation, where information resulting from
the simplification must be stored, does not seem to have been considered before.

246 A. Ek et al.

7 Conclusion

Building online optimization systems has in the past been a rather complex pro-
cess. Essentially, the modeler does not build a model of the problem, but an
update model, which reasons about how to take information from the previous
session and the new data to solve a new problem. We have previously [7] showed
how to construct the update model automatically from the original model using
annotations, but only introduced a very simple form of garbage collection: the
modeler determines the latest object such that all previous objects are real-
ized. In this paper, we now provide a comprehensive and automatic approach
to garbage collection. The modeler specifies the rules for realization, and the
garbage is automatically determined. We rely on uniquely named objects to
ensure consistency of information across sessions. We tackle the key problem of
aggregation, ignored in [7], where some constraints may need to be modified to
record the effect of previously realized decisions.

References

1. Barták, R.: Dynamic global constraints in backtracking based environments. Ann.
Oper. Res. 118, 101–119 (2003). https://doi.org/10.1023/A:1021805623454

2. Bent, R., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehi-
cle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004)

3. Bent, R., Van Hentenryck, P.: Online stochastic optimization without distributions.
In: ICAPS 2005, pp. 171–180 (2005)

4. Brown, K.N., Miguel, I.: Uncertainty and change. In: Handbook of Constraint
Programming, pp. 731–760. Elsevier (2006). (Chap. 21)

5. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1(3/4), 197–
206 (1955)

6. Dechter, R., Dechter, A.: Belief maintenance in dynamic constraint networks. In:
AAAI 1988, pp. 37–42. AAAI Press, June 1988

7. Ek, A., Garcia de la Banda, M., Schutt, A., Stuckey, P.J., Tack, G.: Modelling and
solving online optimisation problems. In: AAAI 2020, pp. 1477–1485. AAAI Press
(2020)

8. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. Artif. Intell.
161(1–2), 181–208 (2005)

9. Gecode Team. Gecode: A generic constraint development environment (2020).
http://www.gecode.org

10. Graham, R.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

11. Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. In: Golden,
B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances
and New Challenges. Operations Research/Computer Science Interfaces, vol. 43,
pp. 221–237. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-77778-
8 10

12. Jones, R.E., Hosking, A.L., Moss, J.E.B.: The Garbage Collection Handbook: The
Art of Automatic Memory Management. Chapman and Hall/CRC Applied Algo-
rithms and Data Structures Series. CRC Press, Boca Raton (2011)

https://doi.org/10.1023/A:1021805623454
http://www.gecode.org
https://doi.org/10.1007/978-0-387-77778-8_10
https://doi.org/10.1007/978-0-387-77778-8_10

Aggregation and Garbage Collection for Online Optimization 247

13. Mears, C., Garcia de la Banda, M., Wallace, M., Demoen, B.: A method for detect-
ing symmetries in constraint models and its generalisation. Constraints 20(2), 235–
273 (2014). https://doi.org/10.1007/s10601-014-9175-5

14. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. 46, 303–341
(2013)

15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

16. Pruhs, K., Sgall, J., Torng, E.: Online scheduling. In: Handbook of Scheduling -
Algorithms, Models, and Performance Analysis. Chapman and Hall/CRC (2004)

17. Roelofs, M., Bisschop, J.: Time-based modelling. In: AIMMS: The Language Ref-
erence, May 2, 2019 edn. (2019). www.aimms.com. (Chap. 33)

18. Schulte, C., Stuckey, P.J.: Dynamic variable elimination during propagation solv-
ing. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming,
Valencia, Spain, 15–17 July 2008, pp. 247–257. ACM (2008)

19. Sethi, S., Soerger, G.: A theory of rolling horizon decision making. Ann. Oper. Res.
29, 387–415 (1991). https://doi.org/10.1007/BF02283607

20. Van Hentenryck, P., Bent, R.: Online Stochastic Combinatorial Optimization. MIT
Press, Cambridge (2009)

21. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic envi-
ronments: a survey. Constraints 10(3), 253–281 (2005). https://doi.org/10.1007/
s10601-005-2239-9

https://doi.org/10.1007/s10601-014-9175-5
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
www.aimms.com
https://doi.org/10.1007/BF02283607
https://doi.org/10.1007/s10601-005-2239-9
https://doi.org/10.1007/s10601-005-2239-9

	Aggregation and Garbage Collection for Online Optimization
	1 Introduction
	2 Preliminaries
	3 Basics of Our Framework and Running Example
	3.1 Running Example: Dynamic Vehicle Routing

	4 Automated Garbage Collection
	4.1 Phase One: Identifying Realizations
	4.2 Phase Two: Aggregation
	4.3 Phase Three: Garbage Collection

	5 Experimental Results
	5.1 Dynamic Vehicle Routing
	5.2 Job-Shop Scheduling with Long Running Jobs

	6 Related Work
	7 Conclusion
	References

