®

Check for
updates

Dashed Strings and the Replace(-all)
Constraint

Roberto Amadini'®@®, Graeme Gange?®, and Peter J. Stuckey?

! University of Bologna, Bologna, Ttaly
roberto.amadini@unibo.it
2 Monash University, Melbourne, VIC, Australia
{graeme.gange,peter.stuckey}@monash.edu

Abstract. Dashed strings are a formalism for modelling the domain of
string variables when solving combinatorial problems with string con-
straints. In this work we focus on (variants of) the REPLACE constraint,
which aims to find the first occurrence of a query string in a target string,
and (possibly) replaces it with a new string. We define a REPLACE propa-
gator which can also handle REPLACE-LAST (for replacing the last occur-
rence) and REPLACE-ALL (for replacing all the occurrences). Empirical
results clearly show that string constraint solving can draw great benefit
from this approach.

1 Introduction

In the past decade the interest in solving string constraints has considerably
grown in disparate application domains such as test-case generation, software
analysis and verification, model checking, web security, database query process-
ing, bionformatics (see, e.g., [3,8,9,11-15,18,24,29]).

Among the most effective paradigms for string constraint solving we men-
tion Satisfiability Modulo Theory (SMT), which relies on (extensions of) the
theory of word equations, and Constraint Programming (CP), which basically
uses an unfolding-based approach to eventually decompose a string variable into
sequences of integer variables representing the string characters.

A promising CP approach, on which this paper focuses, is based on dashed
strings. Given a fixed finite alphabet X' and a maximum string length X\, dashed
strings are a particular class of regular expressions denoting sets of concrete
strings W C {w € X* | |[w| < A} through the concatenation of distinct sets of
characters called blocks. Dashed strings are used to represent in a compact way
the domain of string variables without eagerly unfolding them into A integer
variables. This can make a huge difference, especially when A is big.

Several algorithms for dashed strings have been defined to propagate string
constraints like (in-)equality, concatenation, length, or regular expression mem-
bership. Most of them are based on the concept of dashed strings equation [7].

In this paper, we focus on a well-known constraint frequently occurring in
problems derived from software verification and testing: the REPLACE constraint.
© Springer Nature Switzerland AG 2020

H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 3-20, 2020.
https://doi.org/10.1007/978-3-030-58475-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_1&domain=pdf
http://orcid.org/0000-0003-1668-7305
http://orcid.org/0000-0002-1354-431X
http://orcid.org/0000-0003-2186-0459
https://doi.org/10.1007/978-3-030-58475-7_1

4 R. Amadini et al.

Despite being a construct heavily used in modern programming, very few solvers
have implemented REPLACE, and its variants, due its non trivial semantics. For
this reason, few benchmarks exist.

Given an input string z, a query string ¢ and a new string ¢’ we have that
REPLACE(z, ¢, ¢') is the string obtained by replacing the first occurrence of ¢ in
z with ¢’ (REPLACE(z,q,q') = x if ¢ does not occur in x). Common variants
are REPLACE-LAST (that replaces the last occurrence of the query string) and
REPLACE-ALL (that replaces all the occurrences of the query string).

At present, no dashed string propagator has been defined for REPLACE (in
[5] it is simply decomposed into other string constraints). This approach is sound
but certainly improvable. In this work we define a unified propagation algorithm
that (i) improves the precision and the efficiency of REPLACE propagation, and
(ii) is general enough to propagate REPLACE-LAST and REPLACE-ALL. The
latter in particular cannot be decomposed into basic constraints because we do
not know a priori how many times the query string occurs.

Empirical results show that the approach we propose significantly outper-
forms the performance of the decomposition approach and state-of-the-art SMT
solvers.

Paper structure. In Sect.2 we give preliminary notions. In Sect. 3 we explain
how we propagate REPLACE and related constraints. In Sect.4 we report the
empirical results, before discussing the related works in Sect.5 and concluding
in Sect. 6.

2 Dashed Strings

Let X be a finite alphabet and X* the set of all the strings over Y. We denote
with e the empty string and with |w| the length of w € X*. We use 1-based
notation for (dashed) strings: wli] is the i-th symbol of w for i = 1,..., |w|.

The concatenation of v, w € X* is denoted by v-w (or simply vw) while w™ =
ww™ ™1 is the concatenation of w for n > 0 times (w® = ¢€). The concatenation
of V,(IW C X* is denoted with V- W = {vw | v € V,w € W} (or simply VW)
while W™ = WIW"~! is the concatenation of W for n times (W° = {¢}). In this
work we focus on bounded-length strings, i.e., we fix an upper bound A € N and
only consider strings in S}, = {w € X* | |w| < A}.

A dashed string X = St ... §!" is a concatenation of k = | X| > 0 blocks
such that, for i =1,...,k: (1) S; € X (14) 0 < I; <wy <Ay (i) i+, < A
For each block X[i] = Sf“ we call S; the base and (I;,u;) the cardinality,
where I; = Ib(SY") is the lower bound while u; = ub(S'"") is the upper bound
of X[i]. We extend this notation to dashed strings: Ib(X) = 3" | Ib(X[i]) and
ub(X) = >, ub(X[i]). Intuitively, Ib(X) and ub(X) are respectively the lower
and the upper bound on the length of each concrete string denoted by X.

The primary goal of dashed strings is to compactly represent sets of strings,
so we define a function 7 such that v(S**) = {w € S* | | < |w| <
u} C Sy is the language denoted by block S“* (in particular v(0°°) = {e}
for the null block 0°°). We extend ~ to dashed strings: (S S,lc""’“) =

Dashed Strings and the Replace(-all) Constraint 5

(y(Shmy 'y(S,lf"”’“)) NS%. Blocks of the form S%* are called nullable because
e € y(S%%). A dashed string X is known if v(X) = {w}, i.e., it represents a
single, “concrete” string w € Sy

We call]D)Sg the set of all the dashed strings. Note that, while S}, is finite,
ID)S} is countable: A bounds the cardinalities of the blocks, but not the number
of blocks that may appear in a dashed string. For example, given distinct char-
acters a,b € X we can generate an infinite sequence of dashed strings in DS}:
{a}o,l{b}OJ) {a}o,l{b}o,l{a}()J’ {a}O,l{b}o,l{a}o,l{b}O,l7 .

A dashed string X = SiV"1§2"2 . S is normalised if: (i) S; # Sit1,
(i) S; =0 & l; =u =0, (i) X =0°°VvS; #0fori=1,...,k The
operator NORM normalises a dashed string (note v(X) = v(NorM(X))). We
denote the set of normalised dashed strings as DSy, = {NorM(X) | X € DS}:}.
Normalisation is fundamental to remove a large number of “spurious” dashed
strings from ID)S}, i.e., distinct dashed strings denoting the same language. If
not otherwise specified, we will always refer to normalised dashed strings.

We define the partial order C such that X CY < (X =Y Vy(X) C v(Y))
to model the relation “is more precise than or equal to” between dashed strings,
i.e., we consider X more precise than Y if v(X) C v(Y).! Note that the poset

(DS}, E) is well-founded but not a lattice: in general, we may not be able to
determine the dashed string which best represents two or more concrete strings.
For example, the set {ab, ba} has two minimal representations {a}%*{b}*1{a}"1
and {b}%{a}11{b}*! which are not comparable according to C.

From a graphical perspective, we can see a block S as a continuous segment
of length [followed by a dashed segment of length w — [. The continuous one
indicates that exactly [characters of S must occur in each concrete string of
~v(X); the dashed one indicates that k < w — [characters of S may occur.
Consider dashed string X = {B,b} ! {o}24{m}11{1}%3 of Fig. 1. Each string of
~v(X) must start with ‘B’ or ‘b’, followed by 2 to 4 ‘o’s, one ‘m’, and 0 to 3 ‘!’s.

2.1 Positions and Equation

A convenient way to refer a dashed string is through its positions. Given
X = gl ~S,l€’“’“’“, a positions is a pair (i,7) where indez i € {1,...,k} refers
to block X[i] and offset j indicates how many characters from the beginning of
X [i] we are considering. As shown in Fig. 1, indexes are 1-based while offsets are
0-based: position (4,0) refers to the beginning of X[i] and can be equivalently
identified with the end of X[i — 1], i.e., with position (i — 1,u;—1). For conve-
nience, we consider (k + 1,0) equivalent to (k,ux) and (0,0) to (1,0). Given
X = S ... S and positions (i,), (i, 5') we denote with X[(i,), (¢/, j)]

' C is not defined as X C Y <= ~(X) C ¥(Y) because otherwise C would be
a pre-order but not a partial order in general, e.g., if A = 2 then X = {a,b, 0}0’2
and Y = {a,b}*2{b, c}**{a, c}>? are such that v(X) C y(Y) and v(Y) C v(X) so
XCYandYC X but X £Y.

6 R. Amadini et al.

(0,0) (1,1) (2,4) (3,1) (5,0)
(L,o) (2,00 (2,1) (2,2) (2,3) (3,00 (4,00 (41) (42) (43)

85 0 e N Y

Fig. 1. Representation of {B,b}" {o}**{m}" 1 {1}°3.

the region of X between (i,) and (¢, j'), defined by:

po-0 if (z,5) = (i',)

0.li—4),3'—j e
S;nax(933 else if § = ¢

S;’nax (O,Zifj),uifjséf:ll,uprl L Sfftf’ui/il S;lin U735 otherwise
For brevity, we also define X|..., P] = X[(0,0), P] and X[P,...|] = X[P, (k, ug)].

For example, in Fig.1 we have that region X[(2,1),(2,4)] is {o}"? while
X[(2,3),(4,2)] = {o}0 {m}11{1}%2, Region X[(2,2),...] is {0}*?{m}T1{1}03
while X[..., (4,1)] is {B,b}?*{o}>*{m} 1 {1}0:1.

Positions are used to implement a fundamental operation between dashed
strings, on which the propagator REPLACE propagator relies: the dashed string
equation. Equating X and Y means looking for a refinement of X and Y includ-
ing all the strings of v(X)Nv(Y') and removing the most strings not belonging to
¥(X)N~(Y). In other words, we look for a minimal—or at least small enough—
dashed string denoting all the concrete strings of v(X) and v(Y) (the smallest

dashed string does not always exist because (DS3., C) is not a lattice).

In [7] the authors introduced a sweep-based algorithm, that here we will call
EQUATE?, such that: (i) if EQUATE(X,Y) = L, then v(X) N~(Y) = 0; (i)
if EQUATE(X,Y) = (X',Y") # L, then X' T X, Y’ C Y and 7(X) N~ (Y) =
Y(X")Ny(Y”). In a nutshell, EQUATE(X, Y) matches each block X [i] against each
block of Y to determine its earliest/latest start/end positions in Y, and uses this
information to possibly refine X[i] into more precise block(s) X'[i] C X[d].

For example, consider matching block B = {o,m, g}?% against dashed string
X of Fig. 1 starting from position (0, 0). The earliest start of B is (2,0) (it cannot
match X[1] = {B,b}!'! because its base does not contain any B or b) and the
earliest end is (2,2) (B contains at least 2 characters); the latest start is (2, 3)
because B cannot finish after latest end position (4,0) (it cannot match {!1}%3).
This means that if B is the i-th block of a dashed string Y that we are equating
with X, then the prefix Y[...,i—1] has to match {B,b}!! and the suffix Y[i+1, ...]
has to match {!}%3 (otherwise, EQUATE(X,Y) = L1).

The region between earliest start and latest end is called feasible region,
while the region between latest start and earliest end is the mandatory region.
In the above example, the feasible region is X[(2,0), (4,0)] = {o}?>*{m}>! while
mandatory region is null (latest start comes after earliest end). This information
enables the refinement of B into the more precise blocks {o}>*{m}%!.

2 In [7] it was called SWEEP to distinguish it the COVER equation algorithm.

Dashed Strings and the Replace(-all) Constraint 7

1: function Pusu™(S"“, Y, (i,5))
2: (iovjo) A (17.7)
3 k<« > k is the number of “consumed” characters for S%*
4: while £k > 0 do
5: if ¢ > |Y| then
6: return (4,7), (4, 7)
7: S Y]
8: if SNS" =0 then > Incompatible block, move to next one
9: (i,4) + (i +1,0)
10: if I’ > 0 then
11: (0, Jo) < (4,7) > Updating earliest start position
12: k<1
13: else if kK <u' — j then > We can consume all the characters of S"*
14: return (io, jo), (4,5 + k)
15: else
16: k+k—(u —j) > Consuming u' — j characters of SV*
17: (i,5) < (i+1,0)
18: return (io, jo), (¢,7)
Fig. 2. Pusu™ algorithm.
1: function STrETCH™ (S"*, Y, (4,7))
20 k+u
3: if j > b(Y[i]) then
4: Jj <« (Y > Skip the “optional part” of Yi]
5: while¢ >0 do
6: S Y]
7 if I’ =0 then > Skip block Y[i]
8: if ¢ > 1 then
9: (1,7) < (1 —1,(Y[i — 1))
10: else
11: return (0, 0)
12: else if SN S’ = () then > We cannot go further
13: return (z,7)
14: else if k <’ then
15: return (i,j — k)
16: else
17: k<« k-0 > Consuming the least characters of SV
18: if ¢ > 1 then
19: (4,7) < (1 — 1, b(Y[i — 1))
20: else
21: return (0,0)

22: return (4,)

Fig. 3. STRETCH™ algorithm

EQUATE(X,Y) uses auxiliary functions PUsa™ and PusH™ to detect the
“earliest” positions. Given block X[i], dashed string ¥ and initial position Py of
Y, Pusa™ (X[i],Y, Py) returns a pair (P, P.) where Py (resp., P,) is the earliest

8 R. Amadini et al.

start (resp. end) of X[i] in Y[Py,...] (see pseudo-code in Fig.2). If X[i] cannot
match any block of Y[P,,...], then P, = P, = (|]Y| +1,0). Dually, Pusu™ works
“backwards” to find (Ps, P.) in Y7..., Py] from right to left.

In Fig.1, if Py =< (3,0) then Pusu™({m}"? X,P,) = ((3,0),(4,0))
and Pusa™ ({m}»2, X, Py) = ((0,0),(0,0)); otherwise, if Py = (3,0), then
we have Pusu™ ({m}'2, X, Py) = ((5,0),(5,0)) and Pusu~ ({m}'2 X, Py) =
((4,0),(3,0)).

Analogously, a pair of STRETCH functions are used for “latest” positions:
STrETCHT (X[i],Y, Py) is the latest position (left-to-right) where X [i] can match
Y starting from Py (while STRETCH™ works right-to-left, see Fig. 3).?

In Fig. 1, for example, if Py = (2,1) then STRETCH ({0,m,g} 8, X, Py) =
(3,1) and STRETCH ({o,m,g}'® X, P) = (1,1). If instead Py = (0,0)
then both functions return Py because STRETCH cannot go further left and
STRETCHT cannot go further right since {o,m,g}"® does not match {B,b}".

3 Propagating REPLACE

If y = REPLACE(z,q,q'), then y is the string obtained by replacing the first
occurrence of ¢ in z with ¢’ (if ¢ does not occur in x, then = y). The only
implementation of REPLACE with dashed strings, defined in [5], simply rewrites
y = REPLACE(z, ¢, ¢') into:*

n = FIND(q, z) A FIND(q,p) = [|q| = 0]
Inp,s. [z=p >N sny=p g™ .5 A (1)
|p| = max(0,n — 1)

where FIND(q, «) returns the index of the first occurrence of ¢ in z (FIND(e, z) =
1 and FIND(g,x) = 0 if ¢ does not occur in x) and [b] € {0,1} is the integer
value of Boolean variable b, i.e., [b] =1 < b.

This rewriting is sound but, as we shall see, has three main disadvantages:
(i) for each REPLACE constraint, all the constraints of decomposition (1) are
added; (i) it may lose precision; (i) it cannot be generalised to REPLACE-ALL.

To overcome the above drawbacks we defined a unified REPLACE propagator
which can also handle REPLACE-LAST and REPLACE-ALL. The pseudo-code of
the propagator is shown in Fig. 4, where z, q, ¢, y are the variables involved in the
constraint and the Boolean flag LST (resp. ALL) is true if we are propagating
REPLACE-LAST (resp. REPLACE-ALL). REPLACE" denotes all three of REPLACE.
The PROP-REPLACE function returns: (i) UNS, if REPLACE” is infeasible; (ii)
OK, if REPLACE™ may be feasible (in this case the domains are possibly refined);
(i) REWRITE(C) if REPLACE™ is rewritten into constraint C.

3 PusH and STRETCH are not dual. For example, when incompatible blocks are found,
PusH moves on (Fig. 2, line 9) while STRETCH returns (Fig. 3, line 13).

4 In [5] the order of REPLACE arguments is different. In this paper we change the
notation to be consistent with SMT-LIB specifications.

1:
2
3
4
5
6:
7‘
8
9
0

15:
16:

17:
18:
19:
20:
21:

22:

23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:

10:
11:

12:
13:

14:

Dashed Strings and the Replace(-all) Constraint

function PrRoP-REPLACE(z, q, ¢, y, LST, ALL)
(X,Q,Q".Y) + dom(z,q,q',y), m+0
if v(Q) = {q} then

if g = € then
if ALL then
if v(X) = {x} then
return REWRITE(REPALLFIXED(x, €, ¢, y))
else
if LST then
return REWRITE(y =z - ¢)
return REWRITE(y =¢ -z
if 7(Q) ={d'} A a=q then
return REWRITE(y = x)
if v(X) = {x} then
if ALL then
return REWRITE(REPALLFIXED(X,q,q,y))
n < LST ? FINDLAST(q, x) : FIND(q, x)
if n =0 then
return REWRITE(y = x)
else

return REWRITE(y = x[...,n — 1] - ¢ - x[n +|q], ...

m < CouNTMIN(q, X, ALL)

if m =0 A ~CHECK-EQUATE(X,Y’) then

m <+ 1

if m>0 A —ALL then

> q is fixed

> x is fixed

> ¢ is fixed

> x is fixed

bxFY

C+x=p-q-s Ny=p-q-s N LST ? Finp(g,s) =0 : Finp(g,p) =0

return REWRITE(C')

(es,le) < CHECK-FIND(Q, X)
if es = L then

if m > 0 then
return UNS
return REWRITE(z =y)

else

B < (Uxuye)™
Y’ < NorRM(X[...,es] - (B- Q)™ - B - X[le, ...])
if EQUATE(Y,Y’) = L then

return UNS

(es,le) + CHECK-FIND(Q',Y)
if es = L then

if m > 0 then
return UNS
return REWRITE(FIND(¢,z) =0 A z=1y)

else

B (JQuyy)™
X'+ NorM(Y[...,es] - (B-Q)™ - B-Y]le,...])
if EQUATE(X, X') = L then

return UNS

dom(z) + X, dom(y)+ Y
return OK

> ¢ not occurs in x

> ¢ may occur in x

> ¢’ not occurs in y

> ¢’ may occur in y

Fig. 4. Generalised propagator for REPLACE™. Line 28 separates the particular cases
from the general case.

10 R. Amadini et al.

PROP-REPLACE first retrieves the dashed strings X, Q,Q’,Y corresponding
to the domains of variables x, q, ¢, y respectively (line 2). From now on we indi-
cate in bold font the fized variables, i.e., those representing a single, concrete
string. We can divide the pseudo-code of PROP-REPLACE in two main blocks.
The first one (until line 28) refers to the particular cases, where either q is fixed
or ¢ # y. Here we do not refine domains, but we possibly rewrite REPLACE".
The second one (after line 28) models instead the general case. Here we possibly
refine the variables’ domain with a sweep-based approach relying on the EQUATE
algorithm.

The “if” statement between lines 3 and 22 handles the cases where
q is fixed by rewriting REPLACE® into basic constraints without any
loss of precision. In particular, as shown in Fig.5, REPALLFIXED is
used to break down REPLACE-ALL(z,q,q’) into concatenations when both
xz and ¢ are fixed. Note that REPLACE-ALL assumes no overlaps, e.g.,
REPLACE-ALL(aaaaa, aa,b) = bba. We assume that e occurs in each position
of a string, e.g., REPLACE(ab, €, ¢) = cab, while REPLACE-LAST(ab, ¢, c) = abe,
and REPLACE-ALL(ab, €, ¢) = cacbe (see lines 4-11).

1: function REPALLFIXED(X, q, ¢, ¥)

2 if g = ¢ then

3 return y = ¢ - x[1]-¢' - x[2] - ¢"---¢" - x[|x[] - ¢
4: i+ FIND(q,x)

5. if i =0 then
6.
7
8

/

return y =x

j+1
Y]
9: whilei# 0 do
10: PUSH-BACK(Y, x[j..i — 1])
11: j+i+]|q]
12: i < FIND(q, x[j, ...])

13: returny=Y[1]-¢ - Y[2]-¢ ¢ -Y[|Y]] ¢ -x[j,...]

Fig. 5. REPALLFIXED algorithm.

If ¢ = ¢’ then x = y (line 13), and if x is fixed then we can safely rewrite
REPLACE" into simpler constraints (lines 14-21, note that FINDLAST(q,x)
returns the last occurrence of ¢ in x).

In line 22, COUNTMIN (see Fig. 6) is used to count the occurrences of ¢ in x.
Precisely, COUNTMIN(q, X, ALL) = m if g surely occurs in each string of ~(X)
at least m times. If ALL = true, we want to maximize the returned value m
(for REPLACE-ALL); otherwise, COUNTMIN returns 1 if ¢ must occur in v(X)
and 0 otherwise (for REPLACE and REPLACE-LAST). For example, with X as
in Fig. 1, we have that: COUNTMIN(b, X, true) = COUNTMIN(b, X, false) = 0,
CoOUNTMIN(o, X, true) = 2, and COUNTMIN(o, X, false) = 1.

Dashed Strings and the Replace(-all) Constraint 11

1: function CounTMIN(q, X, ALL)
2 curr <— €

3 k<« 0

4: fori<«1,...,|X| do

5: Sh X4

6 if S = {a} then

7 curr < curr - a!

8: j < FIND(q, curr)

9: while j # 0 do
10: k+—k+1
11: if —ALL then
12: return 1
13: curr < curr[j +|q| +1,...]
14: j < FIND(q, curr)
15: if [< u then
16: curr + a
17: else
18: curr <— €

19: return &

Fig. 6. CoUNTMIN algorithm.

In line 24, if m = 0, we call CHECK-EQUATE(X,Y’) to check if X and Y
are equatable. CHECK-EQUATE is a lightweight version of EQUATE that does
not refine X and Y’ it returns false if X and Y are surely not equatable (i.e.,
(X)) N(Y) = 0), otherwise true is returned. Hence, “CHECK-EQUATE(X,Y)
means that z # y and thus ¢ must occur at least once in = (otherwise we would
have = y) so m is set to 1.

If g surely occurs in z and we are not propagating REPLACE-ALL, then we
can safely rewrite as done in lines 25-27. This also implies a better precision.
Consider for example y = REPLACE(z, bb, €) where the domains of and y are
respectively X = {a}?>Mb}%* and Y = {a}V1{b}** with a,b € . We have that
—~CHECK-EQUATE(X,Y’) because X has at least two a’s and Y has at most one,
so REPLACE is rewritten in x = p-bb-s Ay =p-s A FIND(bb,p) = 0 with p, s
fresh string variables. From & = p-bb- s the concatenation propagator infers that
p must start with aa, and then y = p - s fails because y has at most one a.

Note that the decomposition approach of [5] cannot do this because from
n = FIND(bb, z) one can only infer that n ¢ {1,2} so [n > 0] stays unknown.
This dramatically affects the resolution which, in this case, has to prove unsatis-
fiability via systematic search. In general, the decomposition approach tends to
lose precision when we do not know if n = FIND(g, z) > 0: if the Boolean variable
[n > 0] is unknown, we can say little about z = p-qI">%. s and y = p-¢/[">1 . 5.

Lines 29-50 handle the general case. CHECK-FIND(X,Y") (see Fig. 7) returns,
if feasible, the earliest and the latest position where X can match Y (otherwise
(L, 1) is returned). To do so, it uses a pair of vectors ESP, LEP such that, for
each i = 1,...,|X|, ESPJ[i] and LEPJi| are respectively the earliest start and

12 R. Amadini et al.

1: function CHECK-FIND(X, Y)

2: n<+ |X|

3 LEPI0] + (0,0)

4: ESPn+1]<« ([Y|+1,0)

5 fori<+1,...,ndo > Initialising positions.
6: ESPIi] + (0,0)

7 LEP[i] + (Y] +1,0)

8: ESP + PusH-ESP(X,Y, ESP)
9: if ESP = 1 then

10: return (L, 1)

11: LEP <« PusH-LEP(X,Y,LEP)
12: if LEP = 1 then

13: return (L, 1)

14: fori<+1,...,ndo

15: if LEP[i — 1] < ESP[i]V ESP[i + 1] < LEP]i] then
16: return (L, 1)

return (ESP[1], LEP[n])

Fig. 7. CHECK-FIND algorithm.

1: function PusH-ESP(X, Y, ESP)

2 gap < false

3: end <+ (0,0)

4: repeat

5: fori«+1,...,]Y| do

6: if gap then

7 end + ESPi]

8: (ESP[i],end) + Pusn™(X[i],Y, end)
9: if end = (]Y| +1,0) then
10: return L
11: gap < false
12: fori<n,...,1do
13: end < STRETCH (X[i],Y, end)
14: if ESP[i] < end then
15: ESPIi] < end
16: gap < true

17: until gap

Fig. 8. PusH-ESP algorithm.

the latest end position for block X[i] in Y. After ESP and LEP are initialised
CHECK-FIND calls PUSH-ESP to possibly improve the ESP positions.

PusH-ESP (see Fig. 8) uses PUSHT to possibly push forward the earliest
start positions. Variable end keeps track of the earliest ends. If end for a block
X [i] cannot be stretched backward until its earliest start E.SP[i] then we have a
“gap” between ESPJi] and end; in this case we update ESP[i] with end and we
repeat the procedure until there are no more gaps. PUSH-LEP is symmetrical
to PUSH-ESP (it uses PusH™ for latest end positions).

Dashed Strings and the Replace(-all) Constraint 13

For example, if X = {o,p}'3{q}®!{m}!? and Y as in Fig. 4, we have CHECK-
FIND (X,Y) = ((2,0), (4,0)) because X cannot match {B,b}*! and {!}%:3.

Assuming that set operations are performed in constant time, the worst-case
complexity of PUsH-ESP is quadratic in the number of blocks because function
Pusu™, costing O(|X| + |Y|) in the worst case, may be called max(]X]|,|Y])
times. Note that, as done e.g. in [7], assuming that set operations cost O(1) is
reasonable for string solving because: (1) X' is constant, and (2) the base of each
block it is typically either a small set or a large range. So, with a proper interval
representation, the time complexity of set operations can be safely considered
O(1) in our context—we experimentally verified in all the empirical evaluations
conducted so far that it is highly unlikely to have blocks with a large number of
disjoint intervals. Furthermore, even if in principle the worst-case complexity of
PUsH-ESP is O(|X|max(]X|,|Y])), in practice we experimentally verified that
it is almost always O(max(|X|,|Y])). In other words, gaps are very rare.

If CHECK-FIND(Q, X) returns (L, L) then ¢ cannot be a substring of z, so
it must be that 2 = y (lines 30-33). Otherwise, in lines 34-38 we try to refine
the domain of y. Precisely, we replace the portion of X that can be matched
by @ with a sequence of blocks approximating the replacement of Q with Q’.
Note that at this stage we cannot know in general if and where) occurs in
X so we have to be conservative by adding a “buffer” block B containing all
the characters of X and @’. The resulting dashed string Y’ is the normalised
alternate repetition of m + 1 blocks B and m dashed strings @’. Once built Y”,
we call EQUATE(Y,Y”) to possibly refine Y (or we return UNS if Y and Y are
not equatable).’

The above reasoning is applied symmetrically to possibly refine X, then
OK is returned after refining the domain of x and y with the corresponding
dashed strings (lines 49). Unfortunately, there is little room for incremental
propagation because—unless fixed—dashed strings can both shrink and expand
due to normalization. Also, it is hard to define filtering properties or consistency
notions for the dashed string propagators because, as seen in Sect.2, dashed
strings do not form a lattice w.r.t. the C relation.

Example 1. Consider propagating REPLACE-ALL with X as in Fig.1, ¥ =
03 Q = {o,p}?{q}"H{m}12, and Q' = {r}*>°. Because X cannot match
Y, we have ~CHECK-EQUATE(X,Y’), so m = 1, and CHECK-FIND(Q,Y) =
((2,0), (4,0)). Once defined the “buffer” block B = {B,b,0,m, !, r}*3 we equate
Y and {B,b}!! B {r}?® B {!}%3. The EQUATE function will thus refine Y into
{B,b}11{r}?*? (because Y can have at most 3 characters). By reapplying the
same logic, X will be refined into {B,b}!'!{o}?*{m}!!.

Under the reasonable assumption that set operations cost O(1), the over-
all worst-case complexity of PROP-REPLACE is dominated by PUsH-ESP, i.e.,
O(|X||Y]). However, our experience is that that for almost all the problems we
encounter the cost of propagation is linear in the number of blocks.

5 For simplicity, in Fig. 4 we assume that, when EQUATE(X,Y) # 1, EQUATE(X,Y)
modifies its arguments instead of returning a pair of refined dashed strings (X', Y”).

14 R. Amadini et al.

Table 1. Results on STRANGER benchmarks.

MIN | MAX | AVG | PSI
G-STRINGS | 0.00 | 0.11 0.01 100
G-DEecowmp | 0.00 | 17.16 | 0.23 | 100
CcvC4 0.00 | 0.06 0.01 | 100
73 0.01 |T 66.74 | 78.48
7Z.3sTR3 0.00 | T 197.60 | 17.72

4 FEvaluation

We extended G-STRINGS [26], a state-of-the-art string solver extending CP
solver GECODE [17] with (dashed) strings solving capabilities, with the REPLACE
propagator defined earlier. We browsed the literature to look for known bench-
marks containing REPLACE, but unfortunately we found that only some of the
STRANGER benchmarks used in [6] contain it—precisely, only 79 problems (77
satisfiable, 2 unsatisfiable).

We compared G-STRINGS against state-of-the-art SMT solvers supporting
the theory of strings, i.e., CVC4 [23] and Z3 [25] (its default version using the
theory of sequences, and the one using the Z3sTR3 [10] string solver). Note
that SMT solvers do not support REPLACE-LAST while REPLACE-ALL is only
supported by CVC4. We are not aware of how REPLACE" is handled by these
SMT solvers.

We also include in the evaluation G-DEcCoOMP, the version of G-STRINGS
decomposing REPLACE into basic constraints as in Sect. 3. For both G-STRINGS
and G-DECOMP we used the default maximum string length A\ = 216 — 1,

Results are shown in Table 1, where we report the minimum (MIN), maxi-
mum (MAX) and average (AVG) runtime in seconds to solve an instance (time-
out T' = 300s is assigned for unsolved instances) and the percentage of solved
instances (PSI).% As can be seen, these problems are not challenging for CVC4
and the 2 versions of G-STRINGS: they solve almost all of them instantaneously.
G-STRINGS outperforms G-DECOMP on average and for one problem it does
considerably better (about 17s faster) thanks to its tighter propagation.

Conversely, Z3 and Z3STR3 are slower. However, the performance of solvers
almost certainly depends on the overall problem structure rather than on
REPLACE itself, that always come in the form REPLACE(z,q,q’,y) with q,q’
fixed.

We also evaluated 2x79 = 158 more instances by replacing all the occurrences
of REPLACE with REPLACE-ALL and REPLACE-LAST respectively, but we did
not notice any performance difference.

6 We used a Ubuntu 15.10 machine with 16 GB of RAM and 2.60 GHz Intel® i7 CPU.
The benchmarks and the source code of the experiments is available at https://
bitbucket.org/robama/exp cp 2020.

https://bitbucket.org/robama/exp_cp_2020
https://bitbucket.org/robama/exp_cp_2020

Dashed Strings and the Replace(-all) Constraint 15

Table 2. Results on encoding benchmarks.

SAT. UNS.

MIN | MAX | AVG | PST | MIN | MAX | AVG | PSI
G-STRINGS | 0.00 | 0.50 | 0.14 |100 |0.00 0.25 |0.09 |100
G-Decowmp | 0.00 0.87 |0.27 |100 |0.00 0.53 |0.20 |100
CvC4 024 |T 56.8584.00 | T’ T T 0.00

To have more insights on REPLACE we defined the following problem: given
a word w € X* and a sequence of bits § € {0,1}*, find if there exists a non-
ambiguous encoding f : X — {0,1}* such that f(w[l]---w[n]) = where n =
|w]. We first modelled this problem as:

X[0l=w A X[n]=0 A
Vi=1,...,n: X[i] = REPLACE(X[i — 1], w][i], F[i])
V1<i<j<n:wli|=wl]j] < F[i]=F[j]

where X is an array of string variables in (X'U{0,1})* and F' an array of string
variables in {0,1}* s.t. F[i] = f(w[i]) and X[i] = f(w[l]---w[i])w[i + 1] ---wn].
We then generated 50 problems (25 satisfiable and 25 unsatisfiable) with random
bits # and random words w having alphabet X' = {a,...,2,A,...,Z}.

For simplicity, we had to impose a fixed-length 8-bits encoding, i.e., |F[i]| = 8
and | X[i]| = |X[i —1]| + 7 for ¢ = 1,...,25 and a limited word length |w| = 5¢
to be able to include the SMT solvers in the comparison (otherwise the problem
would have been too difficult for them). Unsatisfiable instances were generated
with reverse engineering starting from satisfiable instances.

As Table 2 shows, G-STRINGS clearly achieves the best performance (we omit
the results of Z3, solving only 1 instance, and Z3STR3, which cannot solve
any instance). The performance of G-DECOMP is rather close. CVC4 can solve
almost half of the satisfiable instances, but it fails to detect unsatisfiability.

To have a more significant comparison between G-STRINGS and G-DECOMP,
we generated 150 more instances by varying |w| in {130,135, ...,500}. Figure 9
shows the cumulative runtime distributions of the two approaches for |w| =
5,10,...,500 (we use cumulative runtimes to better display the distributions).
As we can see, as |w| grows the performance gap between G-DEcoMP and G-
STRINGS increases accordingly.

To evaluate REPLACE-ALL, we modelled the “most frequent pattern” prob-
lem: given a string x € X* and an integer k£ > 0, find the substring ¢ of with
lg| > k occurring the most times in x. This generalises the problem of finding
the most frequent character (where k = 1). We modelled this problem by replac-
ing all the occurrences of ¢ in x with a string of length |g| + 1, and then by

16 R. Amadini et al.

e e A
—e— G-Strings (SAT)
1000 | | —&— G—Decomp (SAT)
—*— G-Strings (UNS)
800 —+— G—Decomp (UNS)

600

Cumulative runtime [sec.]

400

200

FPEESPL L LS P
String length

Fig. 9. Cumulative runtimes for G-STRINGS variants.

Table 3. Results on most frequent pattern benchmarks.

Solver OPT |SAT | TTF | TIME |SCORE
CvVC4 0 100 | 0.09 |300.00 |49.00
G-STRINGS |22 100 | 0.06 |248.44 |80.50
G-STRINGST | 72 100 | 0.02|141.31|93.00

maximising the number of occurrences |y| — |z| of ¢ in x.

max(|y| — |z|) s.t.
k<la A ld[=lal+1 A
y = REPLACE-ALL(x,q,q¢') A FIND(q,z) > 0.

We generated 100 problems by varying |z| € {50¢ | ¢ € [1,25]} and k € {1,2,4,8}
and we added to the evaluation G-STRINGST, a variant of G-STRINGS which
search strategy assigns the minimum value to FIND(g, z) integer variable, i.e.,
it looks for the first occurrence of ¢ in x. We recall that G-DECOMP cannot be
evaluated because REPLACE-ALL is not decomposable into basic constraints.

Table 3 shows for each solver the number of problems where an optimal solu-
tion is proven (OPT) or at least one is found (SAT), the average time to find the
first solution (TTF) and to prove optimality (TIME), where timeout 7' = 300s
is set if optimality is not proven.

The SCORE metric evaluates the solution quality. For each problem, a solver
scores 0 for finding no solution, 0.25 for the worst known solution, 0.75 for the
best known solution, a linear scale value in (0.25, 0.75) for other solutions, and 1
for proving the optimal solution (in Table 3 we report the sum of all the scores).

As we can see, the dashed string approach of G-STRINGS clearly outperforms
CV (4, especially when it comes to proving optimality or, in other words, in

Dashed Strings and the Replace(-all) Constraint 17

detecting unsatisfiability.” The performance of G-STRINGS™ confirms the impor-
tance of defining good search heuristics for CP solving. In this particular case,
we argue that G-STRINGST achieves a better performance w.r.t. G-STRINGS
because its search heuristics somehow mimics a left-to-right search of ¢ in z.

5 Related Work

Although string solvers are still in their infancy, a large number of string solving
approaches have been proposed. We can classify them into three rough families:
automata-based, word-based, and unfolding-based.

Automata-based approaches use automata to handle string variables and
related operations. Examples of automata-based solvers are STRANGER [32],
PASS [22], STRSOLVE [20]. The advantage of automata is that they can handle
unbounded-length strings and precisely represent infinite sets of strings. How-
ever, automata face performance issues due to state explosion and the integration
with other domains (e.g., integers).

Word-based solvers are basically SMT solvers treating strings without
abstractions or representation conversions. Among the most known word-based
solvers, mainly based on the DPLL(T) paradigm [16], we mention: CVC4 [23],
the family of solvers Z3sTR [34], Z3STR2 [33], and Z3STR3 [10] based on the
Z3 solver [25], S3 [30] and its evolutions S3P [30] and S3+# [31], NORN [2].
More recent proposals are SLOTH [19] and TRAU [1]. These solvers can reason
about unbounded strings and take advantage of already defined theories. How-
ever, most of them are incomplete and face scalability issues due to disjunctive
case-splitting.

Unfolding-based approaches basically select a length bound k, and consider
each string variable as a vector of k elements. String constraints can be com-
piled down to bit-vector constraints (e.g., [21,27] solvers) or integer constraints
(e.g., [4]). GECODE+S [28] instead defines dedicated propagators for string con-
straints. The unfolding approach adds flexibility but may sacrifice high-level
relationships between strings, cannot deal with unbounded-length strings and
may be very inefficient when the length bound is large—even if the generated
solutions have short length. The dashed string approach implemented in G-
STRINGS [7] can be seen as a lazy unfolding performing an higher level reasoning
over the blocks of the corresponding dashed string domain. The well-known reg-
ular global constraint [6] is impractical for string solving because it assumes
fized-length strings.

6 Conclusions

String solving is of growing interest, since its a basis of many important pro-
gram analyses. It has already been demonstrated that the G-STRINGS solver is

7 Since optimization is not a native feature for CVC4 we implemented it by iteratively
solving decision problems with refined objective bounds.

18 R. Amadini et al.

highly competitive in solving problems involving strings arising from program
analysis [3].

In this paper®, we devise and implement a unified propagator for handling
(variants of) the REPLACE constraint with dashed strings. Empirical results
confirm the effectiveness of such propagator when compared to the decomposi-
tion approach and state-of-the-art SMT approaches. While on simple examples
the propagator is often not that much better than the decomposition, it scales
much better, and allows us to handle REPLACE-ALL constraints which cannot
be defined by decomposition.

String solving is by no means a closed question, and their is much scope
for further work in this direction, in particular: handling more exotic string
constraints such as extended regular expression matching, or transducers. An
important direction for investigation is to extend a dashed string solver to use
nogood learning, which can exponentially reduce the amount of work required.
This raises significant questions for nogood learning both in practice and theory.

References

1. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of
string constraints. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18-23 June 2017, pp. 602-617 (2017)

2. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462-469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

3. Amadini, R., Andrlon, M., Gange, G., Schachte, P., Sgndergaard, H., Stuckey,
P.J.: Constraint programming for dynamic symbolic execution of JavaScript. In:
Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 1-19.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19212-9 1

4. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: MiniZ-
inc with strings. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016.
LNCS, vol. 10184, pp. 59-75. Springer, Cham (2017). https://doi.org/10.1007 /978~
3-319-63139-4 4

5. Amadini, R., Gange, G., Stuckey, P.J.: Propagating LEX, FIND and REPLACE with
dashed strings. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp.
18-34. Springer, Cham (2018). https://doi.org,/10.1007/978-3-319-93031-2 2

6. Amadini, R., Gange, G., Stuckey, P.J.: Propagating regular membership with
dashed strings. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 13—29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98334-9 2

7. Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string con-
straint solving. In: Proceedings 32nd AAAI Conference Artificial Intelligence, pp.
6557-6564. AAAT Press (2018)

8. Amadini, R., et al.: Combining string abstract domains for JavaScript analysis: an
evaluation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
41-57. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 3

8 This work is supported by Australian Research Council through Linkage Project
Grant LP140100437 and Discovery Early Career Researcher Award DE160100568.

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-19212-9_1
https://doi.org/10.1007/978-3-319-63139-4_4
https://doi.org/10.1007/978-3-319-63139-4_4
https://doi.org/10.1007/978-3-319-93031-2_2
https://doi.org/10.1007/978-3-319-98334-9_2
https://doi.org/10.1007/978-3-662-54577-5_3

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Dashed Strings and the Replace(-all) Constraint 19

Barahona, P.; Krippahl, L.: Constraint programming in structural bioinformatics.
Constraints 13(1-2), 3-20 (2008)

Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: Stewart, D., Weissenbacher, G. (eds.) Proceedings of 17th Confer-
ence Formal Methods in Computer-Aided Design, pp. 55-59. FMCAD Inc. (2017)
Bisht, P., Hinrichs, T.L., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: white-
box analysis of web applications for parameter tampering exploit construction. In:
Proceedings of ACM Conference on Computer and Communications Security, pp.
575-586. ACM (2011)

Bjgrner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307-321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

Costantini, G., Ferrara, P., Cortesi, A.: A suite of abstract domains for static
analysis of string values. Softw.: Pract. Exp. 45(2), 245-287 (2015)

Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pp. 151-162. ACM (2007)

Gange, G., Navas, J.A., Stuckey, P.J., Sgndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 277-291. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 20

Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175-188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9 14

Gecode Team: Gecode: generic constraint development environment (2016). http://
www.gecode.org

Hojjat, H., Riimmer, P., Shamakhi, A.: On strings in software model checking.
In: Lin, A'W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 19-30. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34175-6 2

Holik, L., Janku, P., Lin, A.W., Riimmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1-4:32
(2018)

Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531-559 (2012). https://doi.org/10.1007/s10515-012-0111-x
Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. 21(4), article 25 (2012)

Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15-31. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 2
Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646-662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: Proceedings of 24th ACM SIGSOFT International SPIN
Symposium Model Checking of Software (SPIN’17), pp. 196-199. ACM Press
(2017)

https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-36742-7_20
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14
http://www.gecode.org
http://www.gecode.org
https://doi.org/10.1007/978-3-030-34175-6_2
https://doi.org/10.1007/s10515-012-0111-x
https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43

20

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

R. Amadini et al.

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Amadini, R.: G-strings: gecode with string variables (2020). https://bitbucket.org/
robama/g-strings

Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: Proceedings of 2010 IEEE Symposium
Security and Privacy, pp. 513-528. IEEE Computer Society (2010)

Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51-67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 5

Thomé, J., Shar, L.K., Bianculli, D., Briand, L.C.: Search-driven string constraint
solving for vulnerability detection. In: ICSE 2017, Buenos Aires, Argentina, 20—28
May 2017, pp. 198-208 (2017)

Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection
in web applications. In: SIGSAC, pp. 1232-1243. ACM (2014)

Trinh, M.-T., Chu, D.-H., Jaffar, J.: Model counting for recursively-defined strings.
In: Majumdar, R., Kundak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 399-418.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 21

Yu, F., Alkhalaf, M., Bultan, T.: STRANGER: an automata-based string analy-
sis tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154-157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2_ 13

Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effec-
tive search-space pruning for solvers of string equations, regular expressions and
length constraints. In: Kroening, D., Pasdreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 235-254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4_ 14

Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web appli-
cation analysis. In: Proceedings of 9th Joint Meeting on Foundations of Software
Engineering, pp. 114-124. ACM (2013)

https://doi.org/10.1007/978-3-540-78800-3_24
https://bitbucket.org/robama/g-strings
https://bitbucket.org/robama/g-strings
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-63390-9_21
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1007/978-3-319-21690-4_14

	Dashed Strings and the Replace(-all) Constraint
	1 Introduction
	2 Dashed Strings
	2.1 Positions and Equation

	3 Propagating Replace
	4 Evaluation
	5 Related Work
	6 Conclusions
	References

