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Preface

This volume contains the papers presented at the 26th International Conference on
Principles and Practice of Constraint Programming (CP 2020), held during
September 7–11, 2020. The conference was originally planned to be held at UC
Louvain, Belgium. Due to the COVID-19 pandemic, we were forced to run the con-
ference as a virtual event instead.

There were 122 submissions for the conference. The Program Committee decided to
accept 55 papers. As is customary for the CP conference series, we offered multiple
tracks for submitted papers to widen the scope of the conference and attract papers at
the interface of Constraint Programming and other disciplines. This year there were
tracks for:

– Technical Track
– Application Track
– Constraint Programming, Data Science and Machine Learning
– Testing and Verification
– Constraint Programming and Operations Research
– Computational Sustainability

I want to thank the application track chair, Andreas Schutt (Data61, Australia), the
CP/ML track chair, Michele Lombardi (DISI, University of Bologna, Italy), and the
chair for the Testing and Verification track, Nadjib Lazaar (LIRMM, France), for their
dedicated work. They selected and invited track specific Program Committees, helped
with the paper assignment across the different tracks, and managed the discussion and
final paper selection after the review phase.

The paper selection in the other tracks was supported by a Senior Program
Committee, who not only encouraged and guided the discussion of papers during
reviewing, but also provided meta-reviews as summaries and basis for the paper
selection.

The Program Committee for this year’s conference faced a special challenge as the
time given for reviewing was very compressed. The original submission deadline was
shifted by more than five weeks to counteract the impact of the COVID-19 lock-down
in many countries around the world. I was very impressed by, and thankful for, the
quality and detail of the reviews provided.

The reviewer assignment was decided for all tracks at the same time, to balance the
workload of all reviewers. For this, we used an extended version of a Constraint
Programming model developed and used last year by the CP 2019 program chairs,
Thomas Schiex and Simon de Givry.

Besides the paper tracks, the conference also had many other elements, handled by
special chairs. Maria-Andreina Francisco Rodriguez (Uppsalla University, Sweden)
organized the workshops on the first day of the conference, Lars Kotthoff (University
of Wyoming, USA) selected three tutorials for the main conference, and Edward Lam



(Monash University, Australia) and Kuldeep Meel (National University of Singapore,
Singapore) organized the Doctoral Program. All of these events were heavily affected
by the virtualization of the conference, requiring new ideas and methods.

The biggest change, caused by the virtual conference, was for the conference chairs,
Tias Guns (VUB, Belgium), Siegfried Nijssen, and Pierre Schaus (both UC Louvain).
Having planned a beautiful conference on the campus of UC Louvain, they had to
completely rethink the organization, planning, and finances for a very different type of
conference.

Special thanks go to the publicity chair, Hélène Verhaeghe (UC Louvain), and local
publicity chair, Bernard Fortz (ULB, Belgium), for dealing with information updates
and handling communications with the overall community. The help of the president
of the Association for Constraint Programming, Maria Garcia de la Banda (Monash
University), and the conference coordinator of the ACP Executive Committee,
Claude-Guy Quimper (Laval University, Canada), especially during the initial lock-
down phase due to the COVID-19 pandemic, is gratefully acknowledged.

My final thanks go to the authors of paper submissions for CP 2020, writing their
papers in a very challenging situation: without your work, for both successful and
unsuccessful papers, we would not had this interesting conference program.

July 2020 Helmut Simonis
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Dashed Strings and the Replace(-all)
Constraint

Roberto Amadini1(B) , Graeme Gange2 , and Peter J. Stuckey2

1 University of Bologna, Bologna, Italy
roberto.amadini@unibo.it

2 Monash University, Melbourne, VIC, Australia
{graeme.gange,peter.stuckey}@monash.edu

Abstract. Dashed strings are a formalism for modelling the domain of
string variables when solving combinatorial problems with string con-
straints. In this work we focus on (variants of) the Replace constraint,
which aims to find the first occurrence of a query string in a target string,
and (possibly) replaces it with a new string. We define a Replace propa-
gator which can also handle Replace-Last (for replacing the last occur-
rence) and Replace-All (for replacing all the occurrences). Empirical
results clearly show that string constraint solving can draw great benefit
from this approach.

1 Introduction

In the past decade the interest in solving string constraints has considerably
grown in disparate application domains such as test-case generation, software
analysis and verification, model checking, web security, database query process-
ing, bionformatics (see, e.g., [3,8,9,11–15,18,24,29]).

Among the most effective paradigms for string constraint solving we men-
tion Satisfiability Modulo Theory (SMT), which relies on (extensions of) the
theory of word equations, and Constraint Programming (CP), which basically
uses an unfolding-based approach to eventually decompose a string variable into
sequences of integer variables representing the string characters.

A promising CP approach, on which this paper focuses, is based on dashed
strings. Given a fixed finite alphabet Σ and a maximum string length λ, dashed
strings are a particular class of regular expressions denoting sets of concrete
strings W ⊆ {w ∈ Σ∗ | |w| ≤ λ} through the concatenation of distinct sets of
characters called blocks. Dashed strings are used to represent in a compact way
the domain of string variables without eagerly unfolding them into λ integer
variables. This can make a huge difference, especially when λ is big.

Several algorithms for dashed strings have been defined to propagate string
constraints like (in-)equality, concatenation, length, or regular expression mem-
bership. Most of them are based on the concept of dashed strings equation [7].

In this paper, we focus on a well-known constraint frequently occurring in
problems derived from software verification and testing: the Replace constraint.
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-58475-7_1
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Despite being a construct heavily used in modern programming, very few solvers
have implemented Replace, and its variants, due its non trivial semantics. For
this reason, few benchmarks exist.

Given an input string x, a query string q and a new string q′ we have that
Replace(x, q, q′) is the string obtained by replacing the first occurrence of q in
x with q′ (Replace(x, q, q′) = x if q does not occur in x). Common variants
are Replace-Last (that replaces the last occurrence of the query string) and
Replace-All (that replaces all the occurrences of the query string).

At present, no dashed string propagator has been defined for Replace (in
[5] it is simply decomposed into other string constraints). This approach is sound
but certainly improvable. In this work we define a unified propagation algorithm
that (i) improves the precision and the efficiency of Replace propagation, and
(ii) is general enough to propagate Replace-Last and Replace-All. The
latter in particular cannot be decomposed into basic constraints because we do
not know a priori how many times the query string occurs.

Empirical results show that the approach we propose significantly outper-
forms the performance of the decomposition approach and state-of-the-art SMT
solvers.

Paper structure. In Sect. 2 we give preliminary notions. In Sect. 3 we explain
how we propagate Replace and related constraints. In Sect. 4 we report the
empirical results, before discussing the related works in Sect. 5 and concluding
in Sect. 6.

2 Dashed Strings

Let Σ be a finite alphabet and Σ∗ the set of all the strings over Σ. We denote
with ε the empty string and with |w| the length of w ∈ Σ∗. We use 1-based
notation for (dashed) strings: w[i] is the i-th symbol of w for i = 1, . . . , |w|.

The concatenation of v, w ∈ Σ∗ is denoted by v ·w (or simply vw) while wn =
wwn−1 is the concatenation of w for n > 0 times (w0 = ε). The concatenation
of V,W ⊆ Σ∗ is denoted with V · W = {vw | v ∈ V,w ∈ W} (or simply V W )
while Wn = WWn−1 is the concatenation of W for n times (W 0 = {ε}). In this
work we focus on bounded-length strings, i.e., we fix an upper bound λ ∈ N and
only consider strings in S

λ
Σ = {w ∈ Σ∗ | |w| ≤ λ}.

A dashed string X = Sl1,u1
1 · · · Slk,uk

k is a concatenation of k = |X| > 0 blocks
such that, for i = 1, . . . , k: (i) Si ⊆ Σ; (ii) 0 ≤ li ≤ ui ≤ λ; (iii) ui+

∑
j �=i lj ≤ λ.

For each block X[i] = Sli,ui

i we call Si the base and (li, ui) the cardinality,
where li = lb(Sli,ui

i ) is the lower bound while ui = ub(Sli,ui

i ) is the upper bound
of X[i]. We extend this notation to dashed strings: lb(X) =

∑n
i=1 lb(X[i]) and

ub(X) =
∑n

i=1 ub(X[i]). Intuitively, lb(X) and ub(X) are respectively the lower
and the upper bound on the length of each concrete string denoted by X.

The primary goal of dashed strings is to compactly represent sets of strings,
so we define a function γ such that γ(Sl,u) = {w ∈ S∗ | l ≤ |w| ≤
u} ⊆ S

λ
Σ is the language denoted by block Sl,u (in particular γ(∅0,0) = {ε}

for the null block ∅0,0). We extend γ to dashed strings: γ(Sl1,u1
1 · · · Slk,uk

k ) =
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(γ(Sl1,u1
1 ) . . . γ(Slk,uk

k ))∩S
λ
Σ . Blocks of the form S0,u are called nullable because

ε ∈ γ(S0,u). A dashed string X is known if γ(X) = {w}, i.e., it represents a
single, “concrete” string w ∈ S

λ
Σ .

We call DSλ
Σ the set of all the dashed strings. Note that, while S

λ
Σ is finite,

DS
λ
Σ is countable: λ bounds the cardinalities of the blocks, but not the number

of blocks that may appear in a dashed string. For example, given distinct char-
acters a, b ∈ Σ we can generate an infinite sequence of dashed strings in DS

λ
Σ :

{a}0,1{b}0,1, {a}0,1{b}0,1{a}0,1, {a}0,1{b}0,1{a}0,1{b}0,1, . . . .
A dashed string X = Sl1,u1

1 Sl2,u2
2 · · · Slk,uk

k is normalised if: (i) Si �= Si+1,
(ii) Si = ∅ ⇔ li = ui = 0, (iii) X = ∅0,0 ∨ Si �= ∅ for i = 1, . . . , k. The
operator Norm normalises a dashed string (note γ(X) = γ(Norm(X))). We
denote the set of normalised dashed strings as DS

λ
Σ = {Norm(X) | X ∈ DS

λ
Σ}.

Normalisation is fundamental to remove a large number of “spurious” dashed
strings from DS

λ
Σ , i.e., distinct dashed strings denoting the same language. If

not otherwise specified, we will always refer to normalised dashed strings.
We define the partial order 
 such that X 
 Y ⇔ (X = Y ∨ γ(X) ⊂ γ(Y ))

to model the relation “is more precise than or equal to” between dashed strings,
i.e., we consider X more precise than Y if γ(X) ⊂ γ(Y ).1 Note that the poset
(DSλ

Σ ,
) is well-founded but not a lattice: in general, we may not be able to
determine the dashed string which best represents two or more concrete strings.
For example, the set {ab, ba} has two minimal representations {a}0,1{b}1,1{a}0,1

and {b}0,1{a}1,1{b}0,1 which are not comparable according to 
.
From a graphical perspective, we can see a block Sl,u as a continuous segment

of length l followed by a dashed segment of length u − l. The continuous one
indicates that exactly l characters of S must occur in each concrete string of
γ(X); the dashed one indicates that k ≤ u − l characters of S may occur.
Consider dashed string X = {B,b}1,1{o}2,4{m}1,1{!}0,3 of Fig. 1. Each string of
γ(X) must start with ‘B’ or ‘b’, followed by 2 to 4 ‘o’s, one ‘m’, and 0 to 3 ‘!’s.

2.1 Positions and Equation

A convenient way to refer a dashed string is through its positions. Given
X = Sl1,u1

1 · · · Slk,uk

k , a positions is a pair (i, j) where index i ∈ {1, . . . , k} refers
to block X[i] and offset j indicates how many characters from the beginning of
X[i] we are considering. As shown in Fig. 1, indexes are 1-based while offsets are
0-based: position (i, 0) refers to the beginning of X[i] and can be equivalently
identified with the end of X[i − 1], i.e., with position (i − 1, ui−1). For conve-
nience, we consider (k + 1, 0) equivalent to (k, uk) and (0, 0) to (1, 0). Given
X = Sl1,u1

1 · · · Slk,uk

k and positions (i, j), (i′, j′) we denote with X[(i, j), (i′, j′)]

1 � is not defined as X � Y ⇐⇒ γ(X) ⊆ γ(Y ) because otherwise � would be
a pre-order but not a partial order in general, e.g., if λ = 2 then X = {a, b, c}0,2

and Y = {a, b}0,2{b, c}0,2{a, c}0,2 are such that γ(X) ⊆ γ(Y ) and γ(Y ) ⊆ γ(X) so
X � Y and Y � X but X �= Y .
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Fig. 1. Representation of {B,b}1,1{o}2,4{m}1,1{!}0,3.

the region of X between (i, j) and (i′, j′), defined by:
⎧
⎪⎨

⎪⎩

∅0,0 if (i, j) � (i′, j′)

S
max (0,li−j),j′−j
i else if i = i′

S
max (0,li−j),ui−j
i S

li+1,ui+1
i+1 · · · Sli′−1,ui′−1

i′−1 S
min (li′ ,j

′),j′

i′ otherwise

For brevity, we also define X[..., P ] = X[(0, 0), P ] and X[P, ...] = X[P, (k, uk)].
For example, in Fig. 1 we have that region X[(2, 1), (2, 4)] is {o}1,3 while

X[(2, 3), (4, 2)] = {o}0,1{m}1,1{!}0,2. Region X[(2, 2), ...] is {o}0,2{m}1,1{!}0,3

while X[..., (4, 1)] is {B,b}2,4{o}2,4{m}1,1{!}0,1.
Positions are used to implement a fundamental operation between dashed

strings, on which the propagator Replace propagator relies: the dashed string
equation. Equating X and Y means looking for a refinement of X and Y includ-
ing all the strings of γ(X)∩γ(Y ) and removing the most strings not belonging to
γ(X)∩ γ(Y ). In other words, we look for a minimal—or at least small enough—
dashed string denoting all the concrete strings of γ(X) and γ(Y ) (the smallest
dashed string does not always exist because (DSλ

Σ ,
) is not a lattice).
In [7] the authors introduced a sweep-based algorithm, that here we will call

Equate
2, such that: (i) if Equate(X,Y ) = ⊥, then γ(X) ∩ γ(Y ) = ∅; (ii)

if Equate(X,Y ) = (X ′, Y ′) �= ⊥, then X ′ 
 X, Y ′ 
 Y and γ(X) ∩ γ(Y ) =
γ(X ′)∩γ(Y ′). In a nutshell, Equate(X,Y ) matches each block X[i] against each
block of Y to determine its earliest/latest start/end positions in Y , and uses this
information to possibly refine X[i] into more precise block(s) X ′[i] 
 X[i].

For example, consider matching block B = {o, m, g}2,6 against dashed string
X of Fig. 1 starting from position (0, 0). The earliest start of B is (2, 0) (it cannot
match X[1] = {B, b}1,1 because its base does not contain any B or b) and the
earliest end is (2, 2) (B contains at least 2 characters); the latest start is (2, 3)
because B cannot finish after latest end position (4, 0) (it cannot match {!}0,3).
This means that if B is the i-th block of a dashed string Y that we are equating
with X, then the prefix Y [..., i−1] has to match {B, b}1,1 and the suffix Y [i+1, ...]
has to match {!}0,3 (otherwise, Equate(X,Y ) = ⊥).

The region between earliest start and latest end is called feasible region,
while the region between latest start and earliest end is the mandatory region.
In the above example, the feasible region is X[(2, 0), (4, 0)] = {o}2,4{m}1,1 while
mandatory region is null (latest start comes after earliest end). This information
enables the refinement of B into the more precise blocks {o}2,4{m}1,1.
2 In [7] it was called Sweep to distinguish it the Cover equation algorithm.
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Fig. 2. Push+ algorithm.

Fig. 3. Stretch− algorithm

Equate(X,Y ) uses auxiliary functions Push
− and Push

+ to detect the
“earliest” positions. Given block X[i], dashed string Y and initial position P0 of
Y , Push+(X[i], Y, P0) returns a pair (Ps, Pe) where Ps (resp., Pe) is the earliest
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start (resp. end) of X[i] in Y [P0, ...] (see pseudo-code in Fig. 2). If X[i] cannot
match any block of Y [P0, ...], then Ps = Pe = (|Y |+ 1, 0). Dually, Push− works
“backwards” to find (Ps, Pe) in Y [..., P0] from right to left.

In Fig. 1, if P0 � (3, 0) then Push
+({m}1,2,X, P0) = ((3, 0), (4, 0))

and Push
−({m}1,2,X, P0) = ((0, 0), (0, 0)); otherwise, if P0 � (3, 0), then

we have Push
+({m}1,2,X, P0) = ((5, 0), (5, 0)) and Push

−({m}1,2,X, P0) =
((4, 0), (3, 0)).

Analogously, a pair of Stretch functions are used for “latest” positions:
Stretch

+(X[i], Y, P0) is the latest position (left-to-right) where X[i] can match
Y starting from P0 (while Stretch

− works right-to-left, see Fig. 3).3
In Fig. 1, for example, if P0 = (2, 1) then Stretch

+({o,m,g}1,8,X, P0) =
(3, 1) and Stretch

−({o,m,g}1,8,X, P0) = (1, 1). If instead P0 = (0, 0)
then both functions return P0 because Stretch

− cannot go further left and
Stretch

+ cannot go further right since {o,m,g}1,8 does not match {B,b}1,1.

3 Propagating Replace

If y = Replace(x, q, q′), then y is the string obtained by replacing the first
occurrence of q in x with q′ (if q does not occur in x, then x = y). The only
implementation of Replace with dashed strings, defined in [5], simply rewrites
y = Replace(x, q, q′) into:4

∃n, p, s.

⎛

⎝
n = Find(q, x) ∧ Find(q, p) = �|q| = 0�
x = p · q�n>0� · s ∧ y = p · q′�n>0� · s ∧
|p| = max(0, n − 1)

⎞

⎠ (1)

where Find(q, x) returns the index of the first occurrence of q in x (Find(ε, x) =
1 and Find(q, x) = 0 if q does not occur in x) and �b� ∈ {0, 1} is the integer
value of Boolean variable b, i.e., �b� = 1 ⇐⇒ b.

This rewriting is sound but, as we shall see, has three main disadvantages:
(i) for each Replace constraint, all the constraints of decomposition (1) are
added; (ii) it may lose precision; (iii) it cannot be generalised to Replace-All.

To overcome the above drawbacks we defined a unified Replace propagator
which can also handle Replace-Last and Replace-All. The pseudo-code of
the propagator is shown in Fig. 4, where x, q, q′, y are the variables involved in the
constraint and the Boolean flag LST (resp. ALL) is true if we are propagating
Replace-Last (resp. Replace-All). Replace

∗ denotes all three of Replace.
The Prop-Replace function returns: (i) UNS, if Replace

∗ is infeasible; (ii)
OK, if Replace

∗ may be feasible (in this case the domains are possibly refined);
(iii) Rewrite(C) if Replace

∗ is rewritten into constraint C.

3 Push and Stretch are not dual. For example, when incompatible blocks are found,
Push moves on (Fig. 2, line 9) while Stretch returns (Fig. 3, line 13).

4 In [5] the order of Replace arguments is different. In this paper we change the
notation to be consistent with SMT-LIB specifications.
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Fig. 4. Generalised propagator for Replace∗. Line 28 separates the particular cases
from the general case.
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Prop-Replace first retrieves the dashed strings X,Q,Q′, Y corresponding
to the domains of variables x, q, q′, y respectively (line 2). From now on we indi-
cate in bold font the fixed variables, i.e., those representing a single, concrete
string. We can divide the pseudo-code of Prop-Replace in two main blocks.
The first one (until line 28) refers to the particular cases, where either q is fixed
or x �= y. Here we do not refine domains, but we possibly rewrite Replace

∗.
The second one (after line 28) models instead the general case. Here we possibly
refine the variables’ domain with a sweep-based approach relying on the Equate
algorithm.

The “if” statement between lines 3 and 22 handles the cases where
q is fixed by rewriting Replace

∗ into basic constraints without any
loss of precision. In particular, as shown in Fig. 5, RepAllFixed is
used to break down Replace-All(x, q, q′) into concatenations when both
x and q are fixed. Note that Replace-All assumes no overlaps, e.g.,
Replace-All(aaaaa, aa, b) = bba. We assume that ε occurs in each position
of a string, e.g., Replace(ab, ε, c) = cab, while Replace-Last(ab, ε, c) = abc,
and Replace-All(ab, ε, c) = cacbc (see lines 4–11).

Fig. 5. RepAllFixed algorithm.

If q = q′ then x = y (line 13), and if x is fixed then we can safely rewrite
Replace

∗ into simpler constraints (lines 14–21, note that FindLast(q, x)
returns the last occurrence of q in x).

In line 22, CountMin (see Fig. 6) is used to count the occurrences of q in x.
Precisely, CountMin(q,X,ALL) = m if q surely occurs in each string of γ(X)
at least m times. If ALL = true, we want to maximize the returned value m
(for Replace-All); otherwise, CountMin returns 1 if q must occur in γ(X)
and 0 otherwise (for Replace and Replace-Last). For example, with X as
in Fig. 1, we have that: CountMin(b,X, true) = CountMin(b,X, false) = 0,
CountMin(o,X, true) = 2, and CountMin(o,X, false) = 1.
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Fig. 6. CountMin algorithm.

In line 24, if m = 0, we call Check-Equate(X,Y ) to check if X and Y
are equatable. Check-Equate is a lightweight version of Equate that does
not refine X and Y ; it returns false if X and Y are surely not equatable (i.e.,
γ(X) ∩ γ(Y ) = ∅), otherwise true is returned. Hence, ¬Check-Equate(X,Y )
means that x �= y and thus q must occur at least once in x (otherwise we would
have x = y) so m is set to 1.

If q surely occurs in x and we are not propagating Replace-All, then we
can safely rewrite as done in lines 25–27. This also implies a better precision.
Consider for example y = Replace(x, bb, ε) where the domains of x and y are
respectively X = {a}2,λ{b}0,λ and Y = {a}1,1{b}0,λ with a, b ∈ Σ. We have that
¬Check-Equate(X,Y ) because X has at least two a’s and Y has at most one,
so Replace is rewritten in x = p · bb · s ∧ y = p · s ∧ Find(bb, p) = 0 with p, s
fresh string variables. From x = p ·bb ·s the concatenation propagator infers that
p must start with aa, and then y = p · s fails because y has at most one a.

Note that the decomposition approach of [5] cannot do this because from
n = Find(bb, x) one can only infer that n �∈ {1, 2} so �n > 0� stays unknown.
This dramatically affects the resolution which, in this case, has to prove unsatis-
fiability via systematic search. In general, the decomposition approach tends to
lose precision when we do not know if n = Find(q, x) > 0: if the Boolean variable
�n > 0� is unknown, we can say little about x = p ·q�n>0� ·s and y = p ·q′�n>0� ·s.

Lines 29–50 handle the general case. Check-Find(X,Y ) (see Fig. 7) returns,
if feasible, the earliest and the latest position where X can match Y (otherwise
(⊥,⊥) is returned). To do so, it uses a pair of vectors ESP,LEP such that, for
each i = 1, . . . , |X|, ESP [i] and LEP [i] are respectively the earliest start and
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Fig. 7. Check-Find algorithm.

Fig. 8. Push-ESP algorithm.

the latest end position for block X[i] in Y . After ESP and LEP are initialised
Check-Find calls Push-ESP to possibly improve the ESP positions.

Push-ESP (see Fig. 8) uses Push
+ to possibly push forward the earliest

start positions. Variable end keeps track of the earliest ends. If end for a block
X[i] cannot be stretched backward until its earliest start ESP [i] then we have a
“gap” between ESP [i] and end; in this case we update ESP [i] with end and we
repeat the procedure until there are no more gaps. Push-LEP is symmetrical
to Push-ESP (it uses Push

− for latest end positions).
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For example, if X = {o, p}1,3{q}0,1{m}1,2 and Y as in Fig. 4, we have Check-

Find (X,Y ) = ((2, 0), (4, 0)) because X cannot match {B, b}1,1 and {!}0,3.
Assuming that set operations are performed in constant time, the worst-case

complexity of Push-ESP is quadratic in the number of blocks because function
Push

+, costing O(|X| + |Y |) in the worst case, may be called max(|X|, |Y |)
times. Note that, as done e.g. in [7], assuming that set operations cost O(1) is
reasonable for string solving because: (1) Σ is constant, and (2) the base of each
block it is typically either a small set or a large range. So, with a proper interval
representation, the time complexity of set operations can be safely considered
O(1) in our context—we experimentally verified in all the empirical evaluations
conducted so far that it is highly unlikely to have blocks with a large number of
disjoint intervals. Furthermore, even if in principle the worst-case complexity of
Push-ESP is O(|X|max(|X|, |Y |)), in practice we experimentally verified that
it is almost always O(max(|X|, |Y |)). In other words, gaps are very rare.

If Check-Find(Q,X) returns (⊥,⊥) then q cannot be a substring of x, so
it must be that x = y (lines 30–33). Otherwise, in lines 34–38 we try to refine
the domain of y. Precisely, we replace the portion of X that can be matched
by Q with a sequence of blocks approximating the replacement of Q with Q′.
Note that at this stage we cannot know in general if and where Q occurs in
X so we have to be conservative by adding a “buffer” block B containing all
the characters of X and Q′. The resulting dashed string Y ′ is the normalised
alternate repetition of m + 1 blocks B and m dashed strings Q′. Once built Y ′,
we call Equate(Y, Y ′) to possibly refine Y (or we return UNS if Y and Y ′ are
not equatable).5

The above reasoning is applied symmetrically to possibly refine X, then
OK is returned after refining the domain of x and y with the corresponding
dashed strings (lines 49). Unfortunately, there is little room for incremental
propagation because—unless fixed—dashed strings can both shrink and expand
due to normalization. Also, it is hard to define filtering properties or consistency
notions for the dashed string propagators because, as seen in Sect. 2, dashed
strings do not form a lattice w.r.t. the 
 relation.

Example 1. Consider propagating Replace-All with X as in Fig. 1, Y =
Σ0,3, Q = {o, p}1,3{q}0,1{m}1,2, and Q′ = {r}2,5. Because X cannot match
Y , we have ¬Check-Equate(X,Y ), so m = 1, and Check-Find(Q,Y ) =
((2, 0), (4, 0)). Once defined the “buffer” block B = {B, b, o, m, !, r}0,3 we equate
Y and {B, b}1,1 B {r}2,5 B {!}0,3. The Equate function will thus refine Y into
{B, b}1,1{r}2,2 (because Y can have at most 3 characters). By reapplying the
same logic, X will be refined into {B, b}1,1{o}2,4{m}1,1.

Under the reasonable assumption that set operations cost O(1), the over-
all worst-case complexity of Prop-Replace is dominated by Push-ESP, i.e.,
O(|X||Y |). However, our experience is that that for almost all the problems we
encounter the cost of propagation is linear in the number of blocks.
5 For simplicity, in Fig. 4 we assume that, when Equate(X, Y ) �= ⊥, Equate(X, Y )

modifies its arguments instead of returning a pair of refined dashed strings (X ′, Y ′).
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Table 1. Results on Stranger benchmarks.

MIN MAX AVG PSI

G-Strings 0.00 0.11 0.01 100
G-Decomp 0.00 17.16 0.23 100
CVC4 0.00 0.06 0.01 100
Z3 0.01 T 66.74 78.48
Z3str3 0.00 T 197.60 17.72

4 Evaluation

We extended G-Strings [26], a state-of-the-art string solver extending CP
solver Gecode [17] with (dashed) strings solving capabilities, with the Replace

propagator defined earlier. We browsed the literature to look for known bench-
marks containing Replace, but unfortunately we found that only some of the
Stranger benchmarks used in [6] contain it—precisely, only 79 problems (77
satisfiable, 2 unsatisfiable).

We compared G-Strings against state-of-the-art SMT solvers supporting
the theory of strings, i.e., CVC4 [23] and Z3 [25] (its default version using the
theory of sequences, and the one using the Z3str3 [10] string solver). Note
that SMT solvers do not support Replace-Last while Replace-All is only
supported by CVC4. We are not aware of how Replace

∗ is handled by these
SMT solvers.

We also include in the evaluation G-Decomp, the version of G-Strings

decomposing Replace into basic constraints as in Sect. 3. For both G-Strings

and G-Decomp we used the default maximum string length λ = 216 − 1.
Results are shown in Table 1, where we report the minimum (MIN), maxi-

mum (MAX) and average (AVG) runtime in seconds to solve an instance (time-
out T = 300 s is assigned for unsolved instances) and the percentage of solved
instances (PSI).6 As can be seen, these problems are not challenging for CVC4

and the 2 versions of G-Strings: they solve almost all of them instantaneously.
G-Strings outperforms G-Decomp on average and for one problem it does
considerably better (about 17 s faster) thanks to its tighter propagation.

Conversely, Z3 and Z3str3 are slower. However, the performance of solvers
almost certainly depends on the overall problem structure rather than on
Replace itself, that always come in the form Replace(x,q,q′, y) with q,q′

fixed.
We also evaluated 2×79 = 158 more instances by replacing all the occurrences

of Replace with Replace-All and Replace-Last respectively, but we did
not notice any performance difference.

6 We used a Ubuntu 15.10 machine with 16 GB of RAM and 2.60 GHz IntelR© i7 CPU.
The benchmarks and the source code of the experiments is available at https://
bitbucket.org/robama/exp_cp_2020.

https://bitbucket.org/robama/exp_cp_2020
https://bitbucket.org/robama/exp_cp_2020
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Table 2. Results on encoding benchmarks.

SAT. UNS.
MIN MAX AVG PSI MIN MAX AVG PSI

G-Strings 0.00 0.50 0.14 100 0.00 0.25 0.09 100
G-Decomp 0.00 0.87 0.27 100 0.00 0.53 0.20 100
CVC4 0.24 T 56.85 84.00 T T T 0.00

To have more insights on Replace we defined the following problem: given
a word ω ∈ Σ∗ and a sequence of bits β ∈ {0, 1}∗, find if there exists a non-
ambiguous encoding f : Σ → {0, 1}∗ such that f(ω[1] · · · ω[n]) = β where n =
|ω|. We first modelled this problem as:

X[0] = ω ∧ X[n] = β ∧
∀ i = 1, . . . , n : X[i] = Replace(X[i − 1], ω[i], F [i])
∀ 1 ≤ i < j ≤ n : ω[i] = ω[j] ⇐⇒ F [i] = F [j]

where X is an array of string variables in (Σ ∪ {0, 1})∗ and F an array of string
variables in {0, 1}∗ s.t. F [i] = f(ω[i]) and X[i] = f(ω[1] · · · ω[i])ω[i + 1] · · · ω[n].
We then generated 50 problems (25 satisfiable and 25 unsatisfiable) with random
bits β and random words ω having alphabet Σ = {a, . . . , z, A, . . . , Z}.

For simplicity, we had to impose a fixed-length 8-bits encoding, i.e., |F [i]| = 8
and |X[i]| = |X[i − 1]| + 7 for i = 1, . . . , 25 and a limited word length |ω| = 5i
to be able to include the SMT solvers in the comparison (otherwise the problem
would have been too difficult for them). Unsatisfiable instances were generated
with reverse engineering starting from satisfiable instances.

As Table 2 shows, G-Strings clearly achieves the best performance (we omit
the results of Z3, solving only 1 instance, and Z3str3, which cannot solve
any instance). The performance of G-Decomp is rather close. CVC4 can solve
almost half of the satisfiable instances, but it fails to detect unsatisfiability.

To have a more significant comparison between G-Strings and G-Decomp,
we generated 150 more instances by varying |ω| in {130, 135, . . . , 500}. Figure 9
shows the cumulative runtime distributions of the two approaches for |ω| =
5, 10, . . . , 500 (we use cumulative runtimes to better display the distributions).
As we can see, as |ω| grows the performance gap between G-Decomp and G-

Strings increases accordingly.
To evaluate Replace-All, we modelled the “most frequent pattern” prob-

lem: given a string x ∈ Σ∗ and an integer k > 0, find the substring q of x with
|q| ≥ k occurring the most times in x. This generalises the problem of finding
the most frequent character (where k = 1). We modelled this problem by replac-
ing all the occurrences of q in x with a string of length |q| + 1, and then by
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Fig. 9. Cumulative runtimes for G-Strings variants.

Table 3. Results on most frequent pattern benchmarks.

Solver OPT SAT TTF TIME SCORE

CVC4 0 100 0.09 300.00 49.00
G-Strings 22 100 0.06 248.44 80.50
G-Strings+ 72 100 0.02 141.31 93.00

maximising the number of occurrences |y| − |x| of q in x.

max(|y| − |x|) s.t.

k ≤ |q| ∧ |q′| = |q| + 1 ∧
y = Replace-All(x, q, q′) ∧ Find(q, x) > 0.

We generated 100 problems by varying |x| ∈ {50i | i ∈ [1, 25]} and k ∈ {1, 2, 4, 8}
and we added to the evaluation G-Strings+, a variant of G-Strings which
search strategy assigns the minimum value to Find(q, x) integer variable, i.e.,
it looks for the first occurrence of q in x. We recall that G-Decomp cannot be
evaluated because Replace-All is not decomposable into basic constraints.

Table 3 shows for each solver the number of problems where an optimal solu-
tion is proven (OPT) or at least one is found (SAT), the average time to find the
first solution (TTF) and to prove optimality (TIME), where timeout T = 300 s
is set if optimality is not proven.

The SCORE metric evaluates the solution quality. For each problem, a solver
scores 0 for finding no solution, 0.25 for the worst known solution, 0.75 for the
best known solution, a linear scale value in (0.25, 0.75) for other solutions, and 1
for proving the optimal solution (in Table 3 we report the sum of all the scores).

As we can see, the dashed string approach of G-Strings clearly outperforms
CVC4, especially when it comes to proving optimality or, in other words, in
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detecting unsatisfiability.7 The performance of G-Strings+ confirms the impor-
tance of defining good search heuristics for CP solving. In this particular case,
we argue that G-Strings+ achieves a better performance w.r.t. G-Strings

because its search heuristics somehow mimics a left-to-right search of q in x.

5 Related Work

Although string solvers are still in their infancy, a large number of string solving
approaches have been proposed. We can classify them into three rough families:
automata-based, word-based, and unfolding-based.

Automata-based approaches use automata to handle string variables and
related operations. Examples of automata-based solvers are Stranger [32],
PASS [22], StrSolve [20]. The advantage of automata is that they can handle
unbounded-length strings and precisely represent infinite sets of strings. How-
ever, automata face performance issues due to state explosion and the integration
with other domains (e.g., integers).

Word-based solvers are basically SMT solvers treating strings without
abstractions or representation conversions. Among the most known word-based
solvers, mainly based on the DPLL(T) paradigm [16], we mention: CVC4 [23],
the family of solvers Z3str [34], Z3str2 [33], and Z3str3 [10] based on the
Z3 solver [25], S3 [30] and its evolutions S3P [30] and S3# [31], Norn [2].
More recent proposals are Sloth [19] and Trau [1]. These solvers can reason
about unbounded strings and take advantage of already defined theories. How-
ever, most of them are incomplete and face scalability issues due to disjunctive
case-splitting.

Unfolding-based approaches basically select a length bound k, and consider
each string variable as a vector of k elements. String constraints can be com-
piled down to bit-vector constraints (e.g., [21,27] solvers) or integer constraints
(e.g., [4]). Gecode+S [28] instead defines dedicated propagators for string con-
straints. The unfolding approach adds flexibility but may sacrifice high-level
relationships between strings, cannot deal with unbounded-length strings and
may be very inefficient when the length bound is large—even if the generated
solutions have short length. The dashed string approach implemented in G-

Strings [7] can be seen as a lazy unfolding performing an higher level reasoning
over the blocks of the corresponding dashed string domain. The well-known reg-
ular global constraint [6] is impractical for string solving because it assumes
fixed-length strings.

6 Conclusions

String solving is of growing interest, since its a basis of many important pro-
gram analyses. It has already been demonstrated that the G-strings solver is

7 Since optimization is not a native feature for CVC4 we implemented it by iteratively
solving decision problems with refined objective bounds.
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highly competitive in solving problems involving strings arising from program
analysis [3].

In this paper8, we devise and implement a unified propagator for handling
(variants of) the Replace constraint with dashed strings. Empirical results
confirm the effectiveness of such propagator when compared to the decomposi-
tion approach and state-of-the-art SMT approaches. While on simple examples
the propagator is often not that much better than the decomposition, it scales
much better, and allows us to handle Replace-All constraints which cannot
be defined by decomposition.

String solving is by no means a closed question, and their is much scope
for further work in this direction, in particular: handling more exotic string
constraints such as extended regular expression matching, or transducers. An
important direction for investigation is to extend a dashed string solver to use
nogood learning, which can exponentially reduce the amount of work required.
This raises significant questions for nogood learning both in practice and theory.
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Abstract. Compared to most other computational approaches to solv-
ing combinatorial problems, Constraint Programming’s distinctive fea-
ture has been its very high-level modeling primitives which expose much
of the combinatorial substructures of a problem. Weighted counting on
these substructures (i.e. constraints) can be used to compute beliefs
about certain variable-value assignments occurring in a solution to the
given constraint. A recent proposal generalizes the propagation mech-
anism of constraint programming to one sharing such beliefs between
constraints. These beliefs, even if not computed exactly, can be very
revealing for search. In this paper we investigate how best to guide
combinatorial search in this cp-based belief propagation framework. We
empirically evaluate branching heuristics on a wide set of benchmark
constraint satisfaction problems.

1 Introduction

Compared to most other computational approaches to solving combinatorial
problems, Constraint Programming’s (cp) distinctive feature has been its very
high-level modeling primitives which bring out much of the combinatorial struc-
ture of a problem explicitly in the statement of the model. These primitives
take the form of so-called global constraints [3] which encapsulate powerful algo-
rithms for both inference and search. On the side of inference, filtering algorithms
remove a value from the domain of possible values for a variable if it does not
appear in any tuple satisfying a given constraint (i.e. is unsupported) and then
share that information between constraints by propagating it through common
variables. On the side of search, explaining and recording the sequence of deci-
sions that led to a failure avoids wasting search effort by repeatedly rediscovering
that same dead-end [4].1 As well, work on model counting at the level of individ-
ual constraints led to counting-based search [10], a family of effective branching
heuristics. Generalizing this to weighted counting allowed one to handle com-
binatorial optimization problems in which individual costs are associated with
each variable assignment [8]. The close relationship between weighted counting
1 One could argue that this is also a manifestation of inferring redundant constraints.
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and probabilistic inference had already been pointed out in Chavira and Dar-
wiche [2]. From a cp perspective it can be interpreted for a given constraint
as the belief in a certain variable-value assignment computed by summing, over
satisfying tuples of the constraint that feature that assignment, the likelihood
of each tuple expressed as the combined beliefs of its component assignments.
Pesant [9] investigates a richer propagation medium for cp which does not sim-
ply share unsupported variable-value assignments but shares instead for each
variable-value assignment the corresponding quantitative belief that it occurs in
some solution. The resulting process is akin to iterated belief propagation [7].

These computed beliefs can be viewed as approximate marginals onto individ-
ual variables of the joint probability distribution defined by the set of solutions.
Such information, even if not exact, can be very revealing for search. In this paper
we investigate how best to guide combinatorial search given the approximate
marginals computed by cp-based belief propagation. We empirically evaluate
generic branching heuristics on a wide set of benchmark constraint satisfaction
problems.

The rest of the paper is organized as follows. Section 2 recalls the recently
proposed cp-bp framework and presents the search heuristics we investigate.
Section 3 reports the results of our initial experiment and analyzes them for fur-
ther improvement. Section 4 investigates two benchmark problems on which we
did not perform well. Section 5 investigates an oscillation phenomenon observed
on the computed marginals. Section 6 concludes with final recommendations
about combinatorial search in the cp-bp framework and points to future direc-
tions for research.

2 The cp-bp Framework

In this section we briefly introduce the cp-bp framework and refer the reader to
Pesant [9] for details. A factor graph is a bipartite graph with variable nodes,
factor nodes, and edges between some variable-factor pairs. A message-passing
algorithm on a factor graph iteratively exchanges messages between variable
nodes and factor nodes. The message from a factor node is a real-valued function
of the variables it is connected to. The message from a variable node is a real-
valued function of that variable. The sum-product algorithm, also known as belief
propagation, is one instantiation of message passing where the message from a
variable to a factor is the product of the messages received from the other factors,
and the message from a factor to a variable is essentially a sum of products of
messages received from the other variables. It has been used to compute the
marginals of individual variables for the factored function. That computation is
exact for trees but not for general graphs with cycles.

A constraint graph can be viewed as a special case of a factor graph with fac-
tors (constraints) issuing 0/1 messages. In that sense standard constraint prop-
agation in cp is a form of message passing, exchanging information about which
variable-value assignments are supported by each constraint. The cp-bp frame-
work proposes to go back to real-valued messages providing information about
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the likelihood of a given variable-value assignment in a solution to the problem.
It does so by performing weighted counting of solutions within each constraint.
The approximate marginals resulting from message passing can inform branching
heuristics.

To illustrate this cp-bp framework consider the following example taken from
[9]: constraints allDifferent(a, b, c), a + b + c + d = 7, and c ≤ d, with
variables a, b, c, d ∈ {1, 2, 3, 4}. This csp is domain consistent but only admits
two solutions: 〈2, 3, 1, 1〉 and 〈3, 2, 1, 1〉.

In cp-bp message passing is synchronized in two phases: in the first phase
constraints receive messages from the variables; in the second phase constraints
send messages to the variables, which are multiplied and then normalized. This
process is repeated for some number of iterations. Initially variables send iden-
tical (i.e. uniform) messages in the first phase. For the second phase, consider
variable a that appears in the allDifferent and the sum constraints: if we
count the proportion of solutions to the former constraint in which a takes value
1, it is 1

4 and the same is true for the other values in its domain; the proportion
from the latter constraint is 10

20 for value 1 and 6
20 , 3

20 , 1
20 respectively for the

other values 2, 3, 4. The combined information, obtained by multiplying these
“messages” from each of the two constraints to variable a, indicates a strong pos-
itive bias (or marginal) toward assigning value 1 to a. The situation is identical
for variable b. Variable c appears in the same two constraints and the messages
it receives from them are the same as those for a and b, but it also appears in the
binary inequality: from that one the proportions are 〈 4

10 , 3
10 , 2

10 , 1
10 〉. So there is

an even stronger bias toward assigning value 1 to c. Variable d gets conflicting
information: 〈1020 , 6

20 , 3
20 , 1

20 〉 from the sum constraint and 〈 1
10 , 2

10 , 3
10 , 4

10 〉 from
the binary inequality.

Table 1. Biases (marginals) after ten iterations of iterated belief propagation on our
running example (left) and true biases (right).

1 2 3 4

a .01 .52 .46 .01
b .01 .52 .46 .01
c .98 .02 .00 .00
d .90 .10 .00 .00

1 2 3 4

a 0 1/2 1/2 0
b 0 1/2 1/2 0
c 2/2 0 0 0
d 2/2 0 0 0

For the next iteration of message passing and all others that follow, the
messages sent by each variable (first phase) reflect its current biases. And from
now on, each solution to a constraint that we count (second phase) is weighted
by the product of the biases of the individual assignments that make up that
solution. Note that typically we do not explicitly enumerate the solutions to a
constraint and compute their weight: efficient algorithms specialized for each
type of constraint have been designed, much like what has been done for domain
filtering.
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After ten iterations we have converged to the biases on the left in Table 1,
which are quite close to the true ones (Table 1, on the right) derived from the
two solutions we previously identified. Because from a factor graph perspective,
in a typical cp model each constraint represents a bigger chunk of the problem
involving more variables, there tends to be fewer cycles in the graph and it
was observed in [9] that iterated belief propagation converges better. Initial
experiments suggested that applying constraint propagation followed by a fixed
number (five) of bp iterations works well.

2.1 Candidate Search Heuristics

As is commonplace in cp, we consider two-way branching heuristics that build a
search tree. We can choose to use the computed marginals in two complementary
ways: either we first explore subtrees defined by making highly likely assign-
ments or subtrees defined by excluding highly unlikely assignments. Heuristic
max-marginal first tries (left branch) to assign the variable-value pair exhibiting
the largest marginal and disallows that assignment upon backtracking (right
branch). Heuristic max-strength first tries (left branch) to assign the variable-
value pair exhibiting the largest (positive) difference between its marginal and
the reciprocal of the domain size (i.e. its marginal strength) and disallows that
assignment upon backtracking (right branch). To illustrate how these two heuris-
tics may differ, consider variable x ∈ {a, b} with respective marginals 〈.8, .2〉
and variable y ∈ {a, b, c, d} with marginals 〈.7, .1, .1, .1〉. Heuristic max-marginal
will first branch on x = a whereas max-strength will branch on y = a since
.7−1/4 = .45 > .8−1/2 = .3. Heuristic min-marginal identifies the variable-value
pair exhibiting the smallest marginal, first removes that value from the domain
of that variable and then assigns it upon backtracking. Heuristic min-strength
identifies the variable-value pair exhibiting the smallest marginal strength, first
removes that value from the domain of that variable and then assigns it upon
backtracking.

3 Initial Experiments

The recommendations about search in [9], namely branching in a depth-first
search tree according to maximum marginal strength (max-strength), were based
on a small set of problems and instances. We first wish to revisit this on a larger
and more diverse set of benchmark problems. The current implementation of
MiniCPBP

2 dictates that these should be constraint satisfaction problems3 on
integer variables and with constraints among allDifferent, sum, (positive)
table, regular, among, and cardinality. The xcsp.org website features
a selection engine that enables one to select instances from a large set accord-
ing to such requirements. We selected the following problems (excluding some
2 Available at https://github.com/PesantGilles/MiniCPBP.
3 The search guidance provided by its branching heuristics currently ignores solution

cost and so it is unlikely to perform well on constraint optimization problems.

https://github.com/PesantGilles/MiniCPBP
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series of instances that were trivially solved by all heuristics or that caused
an out-of-memory error): CarSequencing, Dubois, Kakuro (sumdiff/medium),
LatinSquare (m1, xcsp2/bqwh�), MagicSquare (sum/s1), Partially-Filled Mag-
icSquare (m1/gp), MultiKnapsack, Nonogram (regular), Ortholatin, PigeonPlus,
Primes, and PseudoBoolean (dec). In all, 1336 instances. The experiments were
executed on Intel E5-2683 2.1Ghz machines running CentOS Linux 7. The mem-
ory budget was set to 10GB and the timeout to 10 h.

3.1 Comparison Between Our Candidate Branching Heuristics

Figure 1 compares the search guidance of the four heuristics presented in Sect. 2.1
using depth-first search (DFS) and limited-discrepancy search (LDS). Each plot
presents for a benchmark problem the percentage of instances solved within a
number of failed search tree nodes by each heuristic. One interesting observa-
tion is that max-marginal is performing better overall than what was previously
thought best, max-strength. That recommendation was based on three problems
(LatinSquare, Partially-Filled MagicSquare, Primes) for which we see that their
performance is comparable. This broader experiment points us in a slightly dif-
ferent direction. One possible advantage of max-marginal is that it may be biased
toward smaller domains, as illustrated in Sect. 2.1.

Generally LDS performs better than DFS, which is usually the case with a
good search heuristic since it prioritizes search tree nodes reached by branch-
ing against the heuristic as little as possible. Figure 2 shows the proportion of
instances solved using at most a given number of such discrepancies. Interest-
ingly for some problems a large proportion are solved in very few or even no
discrepancies, directly reaching a solution.

Based on these results we continue with combination max-marginal / LDS and
now turn to comparing with other heuristics and solvers.

3.2 Comparison with Default Search of State-of-the-Art Solvers

We compare to the best cp solvers in the latest XCSP competition,
Choco-4.10.24 and Abscon-19.06.5 We executed these solvers using the same
command line options as those used in the competition. As a result, solvers
use their default search strategies. The default heuristics for variable and value
selection are dom-wdeg and lexicographic for both solvers. Such a comparison will
not allow us to isolate perfectly the effects of search heuristics on guidance and
runtime because the solvers are different and the filtering algorithms imple-
mented for each constraint may be different as well. For example an inspec-
tion of Choco’s source code indicates that for the allDifferent constraint,
the domain consistency algorithm is called probabilistically according to how
much/often it performs more filtering than the bounds consistency algorithm on

4 Available at https://github.com/chocoteam/choco-solver/releases/tag/4.10.2.
5 Available at https://www.cril.univ-artois.fr/~lecoutre/#/softwares.

https://github.com/chocoteam/choco-solver/releases/tag/4.10.2
https://www.cril.univ-artois.fr/~lecoutre/#/softwares
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Fig. 1. %instances solved vs #fails for cp-bp branching heuristics on 12 benchmark
problems

a given instance—in contrast MiniCPBP exclusively uses the domain consis-
tency algorithm, which may provide a bit more filtering but also may put us at
a disadvantage for computation time. Nevertheless it provides some indication
of where we stand compared to the implementation choices of state-of-the-art
solvers.
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Fig. 2. %instances solved given #discrepancies allowed in the search tree

As a more easily comparable baseline we also use MiniCP
6 with min-domain

variable ordering and random value ordering and report the median result over
ten runs. Here the underlying solver is essentially the same.
6 Available at http://www.minicp.org/.

http://www.minicp.org/
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Fig. 3. %instances solved vs #fails for our best-performing search against Abscon and
Choco

Figure 3 compares search guidance: we observe that we perform better than
these state-of-the-art solvers on six problems (LatinSquare, MagicSquare, Mul-
tiKnapsack, Nonogram, Primes, Partially-Filled MagicSquare) and about as
well on three of them (CarSequencing, OrthoLatin, PseudoBoolean). But there
are three problems on which we do not perform as well: Dubois, Kakuro,
and PigeonPlus.
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Fig. 4. %instances solved vs runtime for our best-performing search against Abscon
and Choco

Comparing runtimes is difficult here even when using the same computers
for the reasons cited above. In addition MiniCPBP is implemented on top of
MiniCP, an academic solver not as optimized as the ones we are comparing to.
Nevertheless Fig. 4 presents such a comparison. We find that our search heuristic
remains competitive for the problems on which guidance was superior. It is
difficult to give a general estimation of the additional computational effort of
belief propagation compared to standard support propagation since it depends
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on the number, arity, and type of constraints in the model (the weighted counting
algorithms are different for each type). If we take a problem for which search
effort is similar for max-marginal and min-domain (both basically running MiniCP),
such as Kakuro (see Fig. 3), there is in this case approximately a one order of
magnitude difference (see Fig. 4).

In the following sections we look in detail at some of the problems on which
we do not perform well in an effort to improve our combinatorial search heuristics
further.

4 Dubois and PigeonPlus—Uniform Marginals

Dubois are crafted instances with binary variables and ternary constraints. They
have a special structure, essentially hiding in an increasingly long chain of ternary
constraints a tiny unsatisfiable instance: one constraint says (x, y, z) should
exhibit an even number of 1’s whereas another says the opposite. Even on such
a tiny instance, we essentially enumerate potential solutions. That behaviour is
confirmed by the straight lines we observe for all solvers/heuristics when we plot
the number of instances solved against the number of failed search tree nodes
in log scale (the number of variables in these instances increases smoothly). The
marginals are uniform (all at 0.5) and remain so even once we start branching.
Therefore there is no heuristic information to allow us to discriminate between
values. We likely perform worse than the rest because we are using LDS so some
search tree nodes are visited multiple times (see also Fig. 1).

The same is true for PigeonPlus: instances are unsatisfiable, so we need to
exhaust the search tree, and marginals are either uniform (x variables) or almost
uniform (y variables), remaining the same throughout bp iterations. The branch-
ing for max-marginal tends to alternate between x and y variables, which may not
be optimal for the size of the refutation tree because x variables have a slightly
smaller domain—hence min-domain would be expected to perform better here.
The staircase appearance of search effort is linked to the size of the instances
partly increasing in discrete steps.

The lesson here is that when marginals are (almost) uniform and remain so
even after we branch, there is no discriminative information to exploit in the
marginals so we should use some other branching heuristic and spare the effort
of computing marginals. Fortunately this is easy to check at the beginning of
search.

4.1 An Opportunity for Higher Forms of Consistency

Note that Dubois is a problem for which the generalization to belief propagation
of marginals on subsets of variables would be worthwhile. Consider marginals on
pairs of variables: as soon as we set one of the three variables, say x to 1, unsat-
isfiability is uncovered: the marginals on yz ∈ {00, 01, 10, 11} from the “even”
constraint are 〈0, .5, .5, 0〉 and from the “odd” one are 〈.5, 0, 0, .5〉, whose combi-
nation makes every pair of values vanish. The current cp-bp framework could
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be extended to offer such a consistency level reminiscent of path consistency,
though at some computational expense.

5 CarSequencing—Handling Dramatic Marginal
Oscillation

We noticed that for CarSequencing we were initially branching on null marginals,
a disconcerting behaviour. We studied the progression of marginals dur-
ing bp iterations on a small instance (CarSequencing-m1-jcr/CarSequencing-
dingbas.xml) and observed that marginals of the variables start an extreme oscil-
lation between two values in their domain after a few iterations that eventually
drives all marginals to zero. Even if we stop after fewer iterations, that oscillation
makes the information we use for branching very unstable. Marginal oscillation
(and, more generally, failure to converge) is a documented phenomenon [6] that
is linked to the presence of cycles in the constraint graph but as we wrote in
Sect. 2 cp models with large-arity constraints tend to have marginals converge
more. Still, some oscillation was observed in [9] but attributed to an alternation
between values taken by a given variable in the multiple solutions to an instance.
This cannot be the case here: there are six solutions to that small instance but
some variables are backbone (i.e. are assigned the same value in all solutions)
and yet their marginals oscillate as well.

5.1 Studying a Tiny Instance with a cardinality Constraint

One reason for this oscillation seems to be the way MiniCPBP decomposes car-
dinality constraints into a set of among constraints, one per counted value,
and how the indicator variables are linked to the original variables. That decom-
position is used in MiniCPBP because of the availability of an efficient exact
weighted counting algorithm for sum constraints whereas (unweighted) counting
on cardinality as a whole is already quite challenging and time consuming [1].

Consider this tiny instance:

x1, x2, x3 ∈ {0, 1, 2}

cardinality({x1, x2, x3}, 〈0, 1, 2〉, 〈c0, c1, c2〉)
for some fixed integer parameters ci prescribing the number of occurrences of
value i in {x1, x2, x3}. This cardinality constraint is decomposed into

among({x1, x2, x3}, 〈i〉, ci) 0 ≤ i ≤ 2

each among itself decomposed into

yi
j = 1 ⇐⇒ xj = i 1 ≤ j ≤ 3

3∑

j=1

yi
j = ci
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Fig. 5. Constraint graph for decomposed cardinality. White vertices represent vari-
ables and shaded ones, constraints.

introducing an indicator variable yi
j for each original variable xj . The decom-

position of a single among does not introduce cycles in the constraint graph
but the combination of all of them for cardinality does: Fig. 5 shows the cor-
responding constraint graph for the whole cardinality constraint using that
decomposition. It contains many long cycles (length 12). One drawback of the
decomposition is the many binary bijective constraints it contains. We can aggre-
gate them into a single table constraint per xj variable linking it to its indi-
cator variables as shown below and in Fig. 6: shorter cycles (length 8), fewer
constraints, larger-arity constraints. In general if there are d values in a domain,
we replace d binary constraints by a single arity-(d + 1) constraint.

table(〈xj , 〈yi
j〉0≤i≤2〉, T ) 1 ≤ j ≤ 3

3∑

j=1

yi
j = ci 0 ≤ i ≤ 2

At Fig. 7 the dotted curves in the top and middle plots show the behaviour
of the old and new decompositions, respectively, for 〈c0, c1, c2〉 = 〈1, 1, 1〉 and
〈1, 2, 0〉. For the former, the marginals computed by each decomposition for the
xj ’s are identical and immediately stabilize to 1/3, which is the true value. For
the latter there is oscillation with both decompositions and their amplitude is the
same but the new decomposition features a shorter period, which can translate
into faster convergence.

Observe that there are some redundant constraints in the cardinality

decomposition: the number of occurrences of a given value, say c0, is equal to
the number of xj variables minus the sum of the other ci’s. So we could leave out
one of the sum constraints from the decomposition, thereby introducing fewer
cycles. We see at Fig. 7 that doing this in the uniform case, 〈1, 1, x〉 meaning
that the sum for value 2 is left out, does not degrade much the accuracy of the
computed marginal which soon moves very close to the true value, while sig-
nificantly improving accuracy and showing convergence in the non-uniform case
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Fig. 6. Constraint graph for improved decomposition of cardinality.
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Fig. 7. The effect of message damping with different values of parameter λ

(see 〈1, 2, x〉). Surprisingly, adding the redundant constraint that the sum over
all yi

j ’s is equal to 3 (thus introducing more cycles) makes things much worse,
as exemplified by plots 〈1, 2, 0; 3〉 and 〈1, 2, x; 3〉 that increasingly oscillate until
eventually stabilizing to 0 or 1. So it may be the case that adding redundant
constraints to a model hurts belief propagation and should be avoided. Note that
the CarSequencing instances include redundant constraints.
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Fig. 8. Final comparison between Abscon, Choco, and max-marginal with LDS and
damping

The fact that redundant constraints, which typically improve inference, may
be deteriorating our search is unsettling. Fortunately there are known remedies
to oscillation.
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5.2 Incorporating Message Damping

Convergence of belief propagation can only be theoretically guaranteed for simple
graphs. In practice, it is possible that the beliefs keep getting updated without
converging to a value. This results in oscillating messages and beliefs. Damping
is a common method for reducing the chance of such oscillations [5]. It involves
taking a weighted average of the new and old beliefs and using that to update
the belief. We apply damping to the messages sent from variables to constraints.
At iteration t, those messages are calculated as:

μ(t)
x→c(v) = λμx→c(v) + (1 − λ)μ(t−1)

x→c (v)

where the damping factor (0 ≤ λ ≤ 1) balances the old and new beliefs. The solid
curves at Fig. 7 show the effect of damping for three values of λ: all eventually
cancel oscillation. Note that another form of message damping was investigated
in [9] without any significant benefit being observed.

Figure 8 presents a final comparison of search guidance over the benchmark
problems7 in which message damping has been added to max-marginal / LDS. For
several problems, notably those on which we already performed better, damping
does not change the outcome of the comparison and even helps further in the case
of MultiKnapsack. For those where the comparison was close it shows a greater
impact, in particular for CarSequencing which provided the original motivation
to look into message damping and whose solving is improved.

6 Conclusion

In this paper we undertook an empirical investigation of combinatorial search
heuristics for the cp-bp framework using a wide set of benchmark problems and
deepened our understanding of their behaviour, which led to an improved search:
LDS with max-marginal as branching heuristic and message damping. It appears
to guide search better than state-of-the-art search heuristic dom-wdeg, enough
to remain often competitive in terms of computing time. In Sect. 4 we identified
a situation under which no benefit can come from computing marginals and a
simple way to identify it.

There are other opportunities for improved search that we would like to
pursue. There are sometimes a large number of (quasi-)ties for branching: should
we proceed differently in that case? Other times several domain values are tied
for maximum marginal but one stands out for minimum marginal: instead of
choosing a priori to branch according to max-marginal or min-marginal, should
we decide between them at each search tree node depending on the context?
The number of bp iterations to compute the marginals is currently fixed to
five: should that number be adapted according to how marginals progress while
iterating?

7 We no longer report on Dubois and PigeonPlus now that they have been settled.
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Abstract. In many areas of computer science, we are given an unsatis-
fiable Boolean formula F in CNF, i.e. a set of clauses, with the goal to
identify minimal unsatisfiable subsets (MUSes) of F . The more MUSes
are identified, the better insight into F ’s unsatisfiability is obtained.
Unfortunately, finding even a single MUS can be very time consuming
since it naturally subsumes repeatedly solving the satisfiability problem,
and thus a complete MUS enumeration is often practically intractable.
Therefore, contemporary MUS enumeration algorithms tend to identify
as many MUSes as possible within a given time limit. In this work, we
present a novel MUS enumeration algorithm. Compared to existing algo-
rithms, our algorithm is much more frugal in the number of performed
satisfiability checks. Consequently, our algorithm is often able to find
substantially more MUSes than contemporary algorithms.

1 Introduction

Given an unsatisfiable set F = {c1, . . . , cn} of Boolean clauses, a minimal unsat-
isfiable subset (MUS) of F is a set M ⊆ F such that M is unsatisfiable and for
all c ∈ M the set M \ {c} is satisfiable. MUSes represent the minimal reasons
for F ’s unsatisfiability, and as such, they find applications in a wide variety of
domains including, e.g., formal equivalence checking [18], Boolean function bi-
decomposition [17], counter-example guided abstraction refinement [1], circuit
error diagnosis [21], type debugging in Haskell [37], and many others [2,23–
25,32].

The more MUSes are identified, the better insight into the unsatisfiability
of F is obtained. However, there can be, in general, up to exponentially many
MUSes w.r.t. |F |, and thus, the complete MUS enumeration is often practically
intractable. Consequently, there have been proposed several algorithms, e.g., [4,
5,9,12,27,30,33,36], that enumerate MUSes online, i.e., one by one, and attempt
to identify as many MUSes as possibly within a given time limit.

Many of the algorithms can be classified as seed-shrink algorithms [11]. A
seed-shrink algorithm gradually explores subsets of F ; explored subsets are those,

This research was supported by ERDF “CyberSecurity, CyberCrime and Critical
Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16 019/
0000822).
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whose satisfiability is already known by the algorithm, and unexplored are the
others. To find each single MUS, a seed-shrink algorithm first identifies an unsat-
isfiable unexplored subset, called a u-seed, and then shrinks the u-seed into a
MUS via a single MUS extraction subroutine. The exact way of finding and
shrinking u-seeds differ for individual algorithms. In general, the algorithms find
a u-seed by repeatedly checking unexplored subsets for satisfiability, via a SAT
solver, until they find an unsatisfiable one. Naturally, the performance of the
algorithms highly depends on the number these satisfiability checks.

In this paper, we propose a novel seed-shrink algorithm called UNIMUS.
The algorithm employs two novel techniques for finding u-seeds. One of the
techniques works on the same principle as the existing seed-shrinks algorithms
do: it checks unexplored subsets for satisfiability until it finds a u-seed. The
novelty is in the selection of subsets to be checked; we use the union of already
explored MUSes to identify a search-space where we can quickly find new u-
seeds. The other technique for finding u-seeds works on a fundamentally different
principle; we cheaply (in polynomial time) deduce that some unexplored subsets
are unsatisfiable. We experimentally compare UNIMUS with 4 contemporary
MUS enumeration algorithms on a standard collection of benchmarks. UNIMUS
outperforms all of its competitors on majority of the benchmarks. Remarkably,
UNIMUS often finds 10–100 times more MUSes than its competitors.

2 Preliminaries

A Boolean formula F = {c1, . . . , cn} in a conjunctive normal form is a set of
clauses over a set of variables Vars(F ). A clause c = {l1, . . . , lk} is a set of
literals. A literal is either a variable x ∈ Vars(F ) or its negation ¬x. A truth
assignment I is a mapping Vars(F ) → {�,⊥}. A clause c ∈ F is satisfied by
an assignment I iff I(x) = � for some x ∈ c or I(y) = ⊥ for some ¬y ∈ c. The
formula F is satisfied by I iff I satisfies every clause c ∈ F ; in such a case I is a
model of F . Finally, F is satisfiable if it has a model; otherwise F is unsatisfiable.
Hereafter, we use F to denote the input formula of interest, capital letters, e.g.
N,T,K to denote subsets of F , small letters, e.g., c, d, ci to denote clauses of F ,
and small letters, e.g., x, y, xi to denote variables of F . Given a set X, we use
|X| to denote the cardinality of X, and P(X) to denote the power-set of X.

2.1 Minimum Unsatisfiability

Definition 1 (MUS). A set N , N ⊆ F , is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for all c ∈ N the set N \ {c} is satisfiable.

Note that the minimality refers to a set minimality, not to minimum cardi-
nality. Therefore, there can be MUSes with different cardinalities and in general,
there can be up to exponentially many MUSes of F w.r.t. |F | (see [35]). We write
UMUSF to denote the union of all MUSes of F .
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Example 1. Assume that we are given a formula F = {c1 = {x1}, c2 =
{¬x1}, c3 = {x2}, c4 = {¬x1,¬x2}}. There are two MUSes: {c1, c2} and
{c1, c3, c4}, and UMUSF = F . The power-set of F is illustrated in Fig. 1a.

Definition 2 (critical clause). Let U be an unsatisfiable subset of F . A clause
c ∈ U is critical for U iff U \ {c} is satisfiable.

Note that if c is critical for U then c has to be contained in every unsatisfiable
subset of U , and especially in every MUS of U . Furthermore, note that U is a
MUS if and only if every clause c ∈ U is critical for U .

0000
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1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(a)
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Fig. 1. a) illustrates the power-set of the set F of clauses from Example 1. We encode
individual subsets of F as bit-vectors; for example, the subset {c1, c3, c4} is written as
1011. The subsets with a dashed border are the unsatisfiable subsets, and the others
are satisfiable subsets. The MUSes are filled with a background color. b) illustrates the
explored and unexplored subsets from Example 2. (Color figure online)

Finally, we exploit capabilities of contemporary SAT solvers. Given a set
N ⊆ F , many of SAT solvers are able to provide an unsat core of N when N is
unsatisfiable, and a model I of N when N is satisfiable. The unsat core is often
small, yet not necessarily minimal, unsatisfiable subset of N . The model I, on
the other hand, induces the model extension E of N defined as E = {c ∈ F | I
satisfies c}. Note that N ⊆ E and E is satisfiable (I is its model).

2.2 Unexplored Subsets

Every online MUS enumeration algorithm during its computation gradually
explores satisfiability of individual subsets of F . Explored subsets are those whose
satisfiability is already known by the algorithm and unexplored are the other
ones. We write Unexplored to denote the set of all unexplored subsets. Further-
more, we classify the unexplored subsets either as s-seeds or u-seeds; s-seeds are
satisfiable unexplored subsets and u-seeds are unsatisfiable unexplored subsets.

Note that if a subset U of F is unsatisfiable, then also every superset of U is
unsatisfiable. Therefore, when U becomes explored, then also all supersets of U
become explored. Dually, when a satisfiable S, S ⊆ F , becomes explored, then
also all subsets of S become explored since they are necessarily also satisfiable.
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Algorithm 1: Seed-Shrink Scheme
1 Unexplored ← P(F )
2 while there is a u-seed do
3 S ← find a u-seed
4 Smus ← shrink(S)
5 output Smus

6 Unexplored ← Unexplored \ {X |X ⊆ Smus ∨ X ⊇ Smus}

Observation 1. If N is a u-seed, then every unsatisfiable subset of N is also a
u-seed. Dually, if N is an s-seed then every satisfiable superset of N is an s-seed.

Example 2 Figure 1b shows a possible state of exploration of the power-set of F
from Example 1. There are seven explored satisfiable subsets (green with solid
border), two explored unsatisfiable subsets (red with dashed border), four s-seeds
(black with solid border), and three u-seeds (black with dashed border).

Note that based on Unexplored, we can mine some critical clauses for some
u-seeds. For instance, in Example 2, we can see that c2 is critical for the u-seed
U = {c1, c2, c3} since U \ {c2} is explored and thus satisfiable (Observation 1).

Definition 3 (minable critical). Let U be a u-seed and c a critical clause for
U . The clause c is a minable critical clause for U if U \ {c} �∈ Unexplored.

Details on how exactly we represent and perform operations over Unexplored
are postponed to Sect. 3.5.

2.3 Seed-Shrink Scheme

Many of existing MUS enumeration algorithms, e.g., [6,9,12,28,36], and includ-
ing the algorithm we present in this paper, can be classified as seed-shrink algo-
rithms [11]. The base scheme (Algorithm 1) works iteratively. Each iteration
starts by identifying a u-seed S. Then, the u-seed S is shrunk into a MUS Smus

via a single MUS extraction subroutine. The iteration is concluded by removing
all subsets and all supersets of the MUS from Unexplored since none of them
can be another MUS. The computation terminates once there is no more u-seed.

The exact way S is found differs for individual seed-shrink algorithms. In
general, existing algorithms identify S by repeatedly picking and checking an
unexplored subset for satisfiability until they find a u-seed. The algorithms vary
in which and how many unexplored subsets they check. In general, it is worth to
minimize the number of these checks as they are very expensive. Also, it generally
holds that the closer (w.r.t. set containment) the u-seed is to a MUS, the easier
it is to shrink the u-seed into a MUS. As for the shrinking, all the algorithms can
collect and exploit all the minable critical clauses for S; these clauses have to be
contained in every MUS of S and thus their prior knowledge can significantly
speed up the MUS extraction. However, the exact way the algorithms find the
MUS differ for individual algorithms. See Sects. 3.4 and 4 for more details.
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Algorithm 2: UNIMUS
1 Unexplored ← P(F ); B ← ∅
2 while Unexplored �= ∅ do
3 B ← refine(B)
4 UNIMUSCore(B)

3 Algorithm

Our MUS enumeration algorithm, called UNIMUS, is based on the seed-shrink
scheme. It employs a novel shrinking procedure. Moreover, it employs two novel
approaches for finding u-seeds. One of the approaches is based on the same idea
as the contemporary seed-shrink algorithms: to find a u-seed, we are repeatedly
picking and checking for satisfiability (via a SAT solver) an unexplored subset
until we identify a u-seed. The novelty is in the choice of unexplored subsets to
be checked. Briefly, we maintain a base B and a search-space UnexB = {X |X ∈
Unexplored ∧ X ⊆ B} that is induced by the base. UNIMUS searches for u-
seeds only within UnexB . The base B (and thus UnexB) is maintained in a way
that allows identifying u-seeds with performing only few satisfiability checks.
Moreover, the u-seeds are very close to MUSes and thus relatively easy to shrink.

Our other approach for finding u-seeds is based on a fundamentally differ-
ent principle. Instead of checking unexplored subsets for satisfiablity via a SAT
solver, we deduce that some unexplored subsets are unsatisfiable. The deduction
is based on already identified MUSes and it is very cheap (polynomial).

3.1 Main Procedure

UNIMUS (Algorithm 2) first initializes Unexplored to P(F ) and the base B to ∅.
Then, it in a while-loop repeats two procedures: refine that updates the base B,
and UNIMUSCore that identifies MUSes in the search-space UnexB = {X |X ∈
Unexplored ∧ X ⊆ B}. The algorithm terminates once Unexplored = ∅.

UNIMUSCore (Algorithm 3) works iteratively. Each iteration starts by pick-
ing a maximal element N of UnexB , i.e., N ∈ UnexB such that N ∪{c} �∈ UnexB
for every c ∈ B \N . Subsequently, a procedure isSAT is used to determine, via a
SAT solver, the satisfiability of N . Moreover, in dependence of N ’s satisfiability,
isSAT returns either an unsat core K or a model extension E of N . If N is unsat-
isfiable, the algorithm shrinks the core K into a MUS Kmus and removes from
Unexplored all subsets and all supersets of Kmus. Subsequently, a procedure
replicate is invoked which attempts to identify additional MUSes in UnexB .

In the other case, when N is satisfiable, we remove all subsets of E from
Unexplored. Then, N is used to guide the algorithm into a search-space with
more minable critical clauses. In particular, we know that for every c ∈ B \ N
the set N ∪{c} is explored and thus unsatisfiable (Observation 1). Consequently,
every clause c ∈ B \ N is critical for N ∪ {c} and especially for every u-seed
contained in N ∪ {c}. Moreover, all these critical clauses are minable critical as
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Algorithm 3: UNIMUSCore(B)
1 while {N ∈ Unexplored |N ⊆ B} �= ∅ do
2 N ← a maximal element of {X |X ∈ Unexplored ∧ X ⊆ B} // UnexB
3 (sat?, E,K) ← isSAT(N)
4 if not sat? then
5 Kmus ← shrink(K)
6 output Kmus

7 Unexplored ← Unexplored \ {X |X ⊆ Kmus ∨ X ⊇ Kmus}
8 replicate(Kmus, N)

9 else
10 Unexplored ← Unexplored \ {X |X ⊆ E}
11 if |B \ N | > 1 then
12 for c ∈ B \ N do UNIMUSCore(N ∪ {c})

all subsets of N were removed from Unexplored. If N∪{c} = B then c is minable
critical for every u-seed in the current search-space. Otherwise, if |B \ N | > 1,
we recursively call UNIMUSCore with a base B′ = N ∪ {c} for every c ∈ B \ N .

The procedures refine, shrink, and replicate are described in Sects. 3.2, 3.4, and
3.3, respectively. All procedures of UNIMUS follow two rules about Unexplored.
First, Unexplored is global, i.e., shared by the procedures. Second, we remove
an unsatisfiable set from Unexplored only if the set is a superset of an explic-
itly identified MUS. Consequently, no MUS can be removed from Unexplored
without being explicitly identified. Thus, when Algorithm2 terminates (i.e.,
Unexplored = ∅), it is guaranteed that all MUSes were identified.

Heuristics. According to the above description, UNIMUSCore terminates once
all subsets, and especially all MUSes, of B become explored. However, based on
our empirical experience, UNIMUSCore can get into a situation such that there
is a lot of s-seeds in UnexB but only few or even no u-seed. Consequently, the
MUS enumeration can get stuck for a while. To prevent such a situation, we
track the number of subsequent iterations of UNIMUSCore in which the set N
was satisfiable. If there are 5 such subsequent iterations, we backtrack from the
current recursive call of UNIMUSCore.

3.2 The Base and the Search-Space

The base B is modified in two situations. The first situation is the case of recur-
sive calls of UNIMUSCore which was described in the previous section. Here, we
describe the second situation which is an execution of the procedure refine before
each top-level call of UNIMUSCore. The goal is to identify a base B such that
u-seeds in UnexB can be easily found and are relatively easy to shrink.

We exploit the union UMUSF of all MUSes of F . Assume that we set B to
UMUSF . Since every MUS of F is contained in UMUSF , the induced search-space
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Algorithm 4: refine(B)
1 while Unexplored �= ∅ do
2 T ← a maximal element of Unexplored
3 (sat?, E,K) ← isSAT(T )
4 if not sat? then
5 Kmus ← shrink(K)
6 output Kmus

7 Unexplored ← Unexplored \ {X |X ⊆ Kmus ∨ X ⊇ Kmus}
8 return B ∪ Kmus

9 else Unexplored ← Unexplored \ {X |X ⊆ T}
10 return B

UnexB would contain all MUSes. Moreover, compared to the whole F , the cardi-
nality of UMUSF can be relatively small and thus the u-seeds in UnexB would be
easy to shrink. Unfortunately, based on recent studies [14,31], computing UMUSF
is often practically intractable even for small input formulas. Thus, instead of
initially computing UMUSF , we use as the base B just an under-approximation
of UMUSF . Initially, we set B to ∅ (Algorithm 2, line 1) and in each call of refine
we attempt to refine (enlarge) the under-approximation. Eventually, B becomes
UMUSF and, thus, eventually the search-space will contain all MUSes of F .

The procedure refine (Algorithm 4) attempts to enlarge B with an unexplored
MUS. In each iteration, it picks a maximal element T of Unexplored, i.e., T ∈
Unexplored such that T ∪ {c} �∈ Unexplored for every c ∈ F \ T . Then, T is
checked for satisfiability via the procedure isSAT. If T is unsatisfiable, then isSAT
also returns an unsat core K of T , refine shrinks the core K into a MUS Kmus and
based on Kmus updates the set Unexplored. Subsequently, refine terminates and
returns an updated base B′ = B ∪ {Kmus}. Otherwise, if T is satisfiable, refine
removes all subsets of T from Unexplored and continues with a next iteration.

There is no guarantee that each call of refine indeed enlarges B. One pos-
sibility is the corner case when all MUSes are already explored, but there are
some s-seeds left. Another possibility is that the search-space UnexB was not
completely explored in the last call of UNIMUSCore due to the preemptive ter-
mination heuristic. Thus, refine might identify a MUS that is a subset of B. Also,
note that the procedure refine is very similar to a MUS enumeration algorithm
MARCO [28]. The difference is that refine finds only a single unexplored MUS
whereas MARCO finds them all (see Sect. 4 for details).

3.3 MUS Replication

We now describe the procedure replicate(Kmus, N) that based on an identified
MUS Kmus of N attempts to identify additional unexplored MUSes. The proce-
dure follows the seed-shrink scheme, i.e., it searches for u-seeds and shrinks them
to MUSes. However, contrary to existing seed-shrink algorithms which identify
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Algorithm 5: replicate(Kmus, N)
1 M ← {Kmus}; rStack ← 〈Kmus〉
2 while rStack is not empty do
3 M ← rStack .pop()
4 for c ∈ M do
5 if c is minable critical for N then continue
6 S ← propagate(M, c,N,M)
7 if S is null then continue
8 Smus ← shrink(S)
9 output Smus

10 Unexplored ← Unexplored \ {X |X ⊆ Smus ∨ X ⊇ Smus}
11 M ← M ∪ {Smus}
12 rStack .push(Smus)

u-seeds via a SAT solver, replicate identifies u-seeds with a cheap (polynomial)
deduction technique; we call the technique MUS replication.

Each call of replicate possibly identifies several unexplored MUSes and all
these MUSes are subsets of N . Note that since N is a subset of the base B in
Algorithm 3, all MUSes identified by replicate are contained in the search-space
UnexB. Also, note that when replicate is called, Kmus is the only explored MUS
of N (since N was a u-seed that we shrunk to Kmus). In the following, we will
use M to denote the set of all explored MUSes of N , i.e., initially, M = {Kmus}.

Main Procedure. The main procedure of replicate (Algorithm 5) maintains
two data-structures: the set M and a stack rStack . The computation starts by
initializing both M and rStack to contain the MUS Kmus. The rest of replicate
is formed by two nested loops. In each iteration of the outer loop, replicate pops
a MUS M from the stack. In the nested loop, M is used to identify possibly
several unexplored MUSes. In particular, for each clause c ∈ M the algorithm
attempts to identify a u-seed S such that M \ {c} ⊂ S ⊆ N \ {c}. Observe that
if c is minable critical for N then such a u-seed cannot exist; thus, we skip such
clauses. The attempt to find such S is carried out by a procedure propagate. If
propagate fails to find the u-seed, the inner loop proceeds with a next iteration.
Otherwise, the u-seed S is shrunk into a MUS Smus and the set Unexplored
is appropriately updated. The iteration is concluded by adding Smus to M and
also pushing Smus to rStack , i.e., each identified MUS is used to possibly identify
additional MUSes. The computation terminates once rStack becomes empty.

Propagate. The procedure propagate is based on the well-known concepts of
backbone literals and unit propagation [16,26]. Given a formula P , a literal l is
a backbone literal of P iff every model of P satisfies {l}. A backbone of P is a
set of backbone literals of P . If A is a backbone of P then A is also a backbone
of every superset of P . A clause d is a unit clause iff |d| = 1. Note that if d is a
unit clause of P then the literal l ∈ d is a backbone literal of P .
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Given a backbone A of P , the backbone propagation can simplify P and pos-
sibly show that P is unsatisfiable. In particular, for every l ∈ A and every clause
d ∈ P such that ¬l ∈ d, we remove the literal ¬l from d (since no model of P can
satisfy ¬l). If a new unit clause emerges during the propagation, the backbone
literal that forms the unit clause will be also propagated. If the propagation
reduces a clause to an empty clause, then the original P is unsatisfiable.

The procedure propagate employs backbone propagation to identify a u-seed
S such that M \ {c} ⊂ S ⊆ N \ {c}. Observe that since M is unsatisfiable and
M \ {c} is satisfiable, then the set A = {¬l | l ∈ c} is a backbone of every such
S. Thus, one can pick such S and attempt to show, via propagating A, that S
is unsatisfiable. However, there are too many such S to choose from. Moreover,
we need to guarantee that we find S that is both unsatisfiable and unexplored.
Thus, instead of fixing a particular S and then trying to show its unsatisfiability,
we attempt to gradually build such S. Initially, we set S to M \{c} and we step-
by-step add clauses from N \ {c} to S. The addition of the clauses is driven by
a currently known backbone A of S and also by the set M of explored MUSes
to ensure that the resulting S is a u-seed.

Observation 2. For every unsatisfiable S, S ⊆ N \ {c}, it holds that S ∈
Unexplored (i.e., S is a u-seed) if and only if ∀X∈MS �⊇ X.

Proof. In UNIMUS, we remove from Unexplored only unsatisfiable sets that are
supersets of explored MUSes and all explored MUSes of N are stored in M.

Observation 2 shows which clauses can be added to the initial S while ensuring
that if we finally obtain an unsatisfiable S, then the final S will be unexplored.
Note that the initial S = M \ {c} trivially satisfies ∀X∈MM \ {c} �⊇ X since it
is satisfiable (M is a MUS). In the following, we show which clauses should be
added to S to eventually make it unsatisfiable.

Definition 4 (operation \\). Let d be a clause and A be a set of literals. The
the binary operation d \\ A creates the clause d \\ A = {l | l ∈ d and ¬l �∈ A}.
Definition 5 (units, violated). Let S be a set such that M\{c} ⊂ S ⊆ N\{c},
and let A be a backbone of S. We define the following sets:

units(S,A) = {d ∈ N \ {c} | ∀X∈MS ∪ {d} �⊇ X ∧ |d \\ A| = 1}
violated(S,A) = {d ∈ N \ {c} | ∀X∈MS ∪ {d} �⊇ X ∧ |d \\ A| = 0}

Informally, a clause d ∈ N \ {c} belongs to units(S,A) (violated(S,A)) if
the propagation of A would simplify d to a unit clause (empty clause) and,
simultaneously, d ∈ S or d can be added to S in a harmony with Observation 2.

Observation 3. For every S such that M \{c} ⊂ S ⊆ N \{c}, a backbone A of
S, and a clause d ∈ units(S,A), it holds that A∪d\\A is a backbone of S ∪{d}.
Proof. Assume that d = {l, l0, . . . , lk} where l = d \\ A and {¬l0, . . . ,¬lk} ⊆ A.
Since A is a backbone of S then every model of S satisfies {{¬l0}, . . . , {¬lk}}.
Consequently, every model of S ∪ {d} satisfies {l}.
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Algorithm 6: propagate(M ,c,N ,M)
1 S ← M \ {c}; A ← {¬l | l ∈ c}; H ← {c}
2 while units(S ,A) \ H �= ∅ ∧ violated(S ,A) = ∅ do
3 d ← choose d ∈ units(S ,A) \ H
4 S ← S ∪ {d}; H ← H ∪ {d}; A ← A ∪ d \\ A

5 if violated(S ,A) = ∅ then return null
6 else
7 d ← choose d ∈ violated(S ,A)
8 return S ∪ {d}

Observation 4. For every S such that M \ {c} ⊂ S ⊆ N \ {c}, a backbone A
of S, and a clause d ∈ violated(S,A), it holds that S ∪ {d} is unsatisfiable.

Proof. Assume that d = {l0, . . . , lq}. As d ∈ violated(S,A) then {¬l0, . . . ,¬lq} ⊆
A. Since A is a backbone of S then every model of S satisfies {{¬l0}, . . . , {¬lq}},
i.e., no model of S satisfies d.

The procedure propagate (Algorithm 6) maintains three data structures: the
sets S and A, and an auxiliary set H for storing clauses that were used to enlarge
A. Initially, S = M \ {c}, A = {¬l | l ∈ c} and H = {c}. In each iteration,
propagate picks a clause d ∈ units(S ,A) \ H and, based on Observation 3, adds
d to S and to H, and the literal of d \\ A to A. The loop terminates once
there is no more backbone literal to propagate (units(S ,A) \ H = ∅), or once
violated(S ,A) �= ∅. If violated(S ,A) = ∅, propagate failed to find a u-seed. Other-
wise, propagate picks a clause d ∈ violated(S ,A) and returns the u-seed S ∪ {d}.

Finally, note that backbone propagation is cheap (polynomial) but it is not a
complete technique for deciding satisfiability. Consequently, it can happen that
there is a u-seed S, M \ {c} ⊂ S ⊆ N \ {c}, but MUS replication fails to find it.

3.4 Shrink

Existing seed-shrink algorithms can be divided into two groups. Algorithms from
one group, e.g. [4,5,13], implement the shrinking via a custom single MUS extrac-
tor that fully shares information with the overall MUS enumeration process.
Consequently, all information obtained during shrinking can be exploited by the
overall MUS enumeration algorithm and vice versa. Algorithms from the other
group, e.g. [9,12,28], implement the shrinking via an external, black-box, single
MUS extraction tool. The advantage is that one can always use the currently
best available single MUS extractor to implement the shrinking. On the other
hand, the black-box extractor cannot fully share information with the overall
MUS enumeration algorithm. The only output of the extractor is a MUS of a
given u-seed N . As for the input, besides the u-seed N , contemporary single
MUS extractors, e.g., [4,8], allow the user to provide also a set C of clauses that
are critical for N since a prior knowledge of C can significantly speed up the
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Algorithm 7: criticalExtension(N)
1 C ← collect all minable critical clauses for N
2 Q ← C
3 while Q �= ∅ do
4 c ← pick c ∈ Q
5 Q ← Q \ {c}
6 for l ∈ c do
7 M ← {d ∈ N | ¬l ∈ d}
8 if |M | = 1 and M ∩ C = ∅ then
9 C ← C ∪ M ; Q ← Q ∪ M

10 return C

extraction. Thus, contemporary algorithms [9,12,28] collect all minable critical
clauses for N and pass them to the single MUS extractor together with N .

In our work, we follow the black-box approach, i.e., to find a MUS of a u-seed
N , we first identify a set C of clauses that are critical for N and then pass N
and C to an external single MUS extractor (e.g., [4,8]). However, contrary to
existing algorithms, we identify more than just minable critical clauses for N .
We introduce a technique that, based on the minable critical clauses for N , can
cheaply deduce that some other clauses are critical for N . We call the deduction
technique critical extension and it is based on the following observation.

Observation 5. Let N be a u-seed, c ∈ N a critical clause for N , and l ∈ c.
Moreover, let M ⊆ N be the set of all clauses of N that contain the literal ¬l.
If |M | = 1 then the clause d ∈ M is critical for N , i.e. N \ {d} is satisfiable.

Proof. Assume that N \ {d} is unsatisfiable. Since c is critical for N , then c is
critical also for N \{d}. Thus, N \{c, d} has a model and every its model satisfies
{¬l} (as l ∈ c) which contradicts that ¬l is contained only in d.

The critical extension technique (Algorithm 7) takes as an input a u-seed N
and outputs a set C of clauses that are critical for N . The algorithm starts by
collecting (see Sect. 3.5) all minable critical clauses for N and stores them to C
and also to an auxiliary set Q. The rest of the computation works iteratively. In
each iteration, the algorithm picks and removes a clause c from Q and employs
Observation 5 on c. In particular, for each literal l ∈ c, the algorithm builds the
set M = {d ∈ N | ¬l ∈ d}. If M contains only a single clause, say d, and d �∈ C,
then d is a new critical clause for N and thus it is added to C and to Q. The
computation terminates once Q becomes empty.

Our technique is similar to model rotation [4,7] which identifies additional
critical clauses based on a critical clause c of N and a model of N \ {c}. The
difference is that we do not need the model. Another approach [38] that also
does not need the model is based on rotation edges in a flip graph of F .
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3.5 Representation of Unexplored Subsets

To maintain the set Unexplored, we adopt a representation that was originally
proposed by Liffiton et al. [28] and nowadays is used by many MUS enumeration
algorithms (e.g., [5,9,12,33]). Given a formula F = {c1, . . . , cn}, we introduce a
set X = {x1, . . . , xn} of Boolean variables. Note that every valuation of X cor-
responds to a subset of F and vice versa. To represent Unexplored, we maintain
two formulas, map+ and map−, over X such that every model of map+ ∧ map−

corresponds to an element of Unexplored and vice versa. In particular:

– Initially, Unexplored = P(F ), thus we set map+ = map− = �.
– To remove a set U , U ⊆ F , and all supersets of U from Unexplored, we add

to map− the clause
∨

ci∈U ¬xi.
– Dually, to remove a set S, S ⊆ F , and all subsets of S from Unexplored, we

add to map+ the clause
∨

ci �∈S xi.

To get an arbitrary element of Unexplored, one can ask a SAT solver for a
model of map+ ∧ map−. However, in UNIMUS, we need to obtain more specific
unexplored subsets. Given a set B, we require a maximal element N of UnexB =
{X |X ∈ Unexplored ∧ X ⊆ B}. One of SAT solvers that allows us to obtain
such N is miniSAT [20]. To obtain N , we instruct miniSAT to fix the values of
the variables {xi | ci �∈ B} to ⊥ and ask it for a maximal model of map+∧map−.

Finally, given a u-seed U , to collect all minable critical clauses of U we check
for each c ∈ U whether U \ {c} corresponds to a model of map+ ∧ map−. To
do it efficiently, observe that the information represented by map− is irrelevant.
Intuitively, map− requires an absence of clauses, and since U satisfies map− (it
is a u-seed), the set U \ {c} also satisfies map−. Thus, c is minable critical for
U iff U \ {c} does not correspond to a model of map+.

4 Related Work

MUS enumeration was extensively studied in the past decades and many various
algorithms were proposed (see e.g., [4–6,9,10,12,19,21,22,27,29,33,34,36]). In
the following, we briefly describe contemporary online MUS enumeration algo-
rithms.

FLINT [33] computes MUSes in rounds and each round consists of two phases:
relaxing and strengthening. In the relaxing phase, the algorithm starts with an
unsatisfiable formula U and weakens it by iteratively relaxing its unsat core until
it gets a satisfiable formula S. The intermediate unsat cores are used to extract
MUSes. The resulting satisfiable formula S is passed to the second phase, where
the formula is again strengthened to an unsatisfiable formula that is used in the
next round as an input for the relaxing phase.

MARCO [28] and ReMUS [12] are algorithms based on the seed-shrink scheme.
That is, similarly as UNIMUS, to find each single MUS, the algorithms first
identify a u-seed and then shrink the u-seed into a MUS. Before the shrinking,
the algorithms first reduce the u-seed to its unsat core (provided by a SAT solver)
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and they also collect the minable critical clauses for the u-seed. The shrinking is
performed via an external, black-box subroutine. The main difference between
the two algorithms is how they find the u-seed. MARCO is iteratively picking
and checking for satisfiability a maximal unexplored subset of F , until it finds
a u-seed S. Since unsatisfiable subsets of F are naturally more concentrated
among the larger subsets, MARCO usually performs only few checks to find the
u-seed. However, large u-seeds are generally hard to shrink. Thus, the efficiency
of MARCO crucially depends on the capability of the SAT solver to provide
a reasonably small unsat core of S. ReMUS, in contrast to MARCO, tends to
identify u-seeds that are relatively small and thus easy to shrink. In particular,
the initial u-seed S is found among the maximal unexplored subsets of F and
then shrunk into a MUS Smus. To find another MUS, ReMUS picks some R such
that Smus ⊂ R ⊂ S, and recursively searches for u-seeds among the maximal
unexplored subsets of R. The (expected) size of the u-seeds thus decreases with
each recursive call. The disadvantage of ReMUS is that it was designed as a
domain-agnostic MUS enumeration algorithm, i.e., F can be a set of constraints
in an arbitrary logic (e.g., SMT or LTL). Consequently, ReMUS does not directly
employ any techniques that are specific for the SAT (Boolean) domain (such as
the MUS replication and the critical extension that we use in UNIMUS).

MCSMUS [5] can be seen as another instantiation of the seed-shrink scheme.
Contrary to MARCO, ReMUS, and UNIMUS, MCSMUS implements the shrinking
via a custom single MUS extraction procedure that fully shares information and
works in a synergy with the overall MUS enumeration algorithm. For example,
satisfiable subsets of F that are identified during shrinking are remembered by
MCSMUS and exploited in the further computation.

5 Experimental Evaluation

We have experimentally compared UNIMUS with four contemporary MUS enu-
meration algorithms: MARCO [28], MCSMUS [5], FLINT [33], and ReMUS [12]. A
precompiled binary of FLINT was kindly provided to us by its author, Nina Nar-
odytska. The other three tools are available at https://sun.iwu.edu/∼mliffito/
marco/, https://bitbucket.org/gkatsi/mcsmus/src, and https://github.com/jar-
ben/mustool. The implementation of UNIMUS is available at: https://github.
com/jar-ben/unimus.

We used the best (default) settings for all evaluated tools. Note that individ-
ual tools use different SAT solvers and different shrinking subroutines. ReMUS,
MARCO and FLINT use the tool muser2 [8] for shrinking, MCSMUS uses its
custom shrinking subroutine, and in UNIMUS we employ the shrinking proce-
dure from the MCSMUS tool. As for SAT solvers, MARCO and ReMUS use
miniSAT [20], MCSMUS uses glucose [3] and UNIMUS uses CaDiCaL [15].

As benchmarks, we used a collection of 291 CNF formulas from the MUS
track of the SAT 2011 Competition.1 This collection is standardly used in MUS
related papers, including the papers that presented our four competitors. All
1 http://www.cril.univ-artois.fr/SAT11/.

https://sun.iwu.edu/~mliffito/marco/
https://sun.iwu.edu/~mliffito/marco/
https://bitbucket.org/gkatsi/mcsmus/src
https://github.com/jar-ben/mustool
https://github.com/jar-ben/mustool
https://github.com/jar-ben/unimus
https://github.com/jar-ben/unimus
http://www.cril.univ-artois.fr/SAT11/
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experiments were run using a time limit of 3600 s and computed on an AMD
16-Core Processor and 1 TB memory machine running Debian Linux. Complete
results are available in an online appendix: https://www.fi.muni.cz/∼xbendik/
research/unimus.

Fig. 2. Percentage of MUSes found by
MUS replication.

Fig. 3. 5% truncated mean of rankings
after each 60 s.

Manifestation of MUS Replication. MUS replication is a crucial part of
UNIMUS as, to the best of our knowledge, it is the first existing technique that
identifies u-seeds in polynomial time. Therefore, we are interested in what is
the percentage of u-seeds, and thus MUSes, that UNIMUS identifies via MUS
replication. Figure 2 shows this percentage (y-axis) for individual benchmarks
(x-axis); the benchmarks are sorted by the percentage. We computed the per-
centage only for the 248 benchmarks where UNIMUS found at least 5 MUSes.
Remarkably, in case of 161 benchmarks, the percentage is higher than 90%, and
in case of 130 benchmarks, it is higher than 99%.2 Unfortunately, there are 49
benchmarks where MUS replication found no u-seed at all. Let us note that 40
of the 49 benchmarks are from the same family of benchmarks, called “fdmus”.
The MUS benchmarks from the SAT competition consist of several families and
benchmarks in a family often have very similar structure. Most of the families
contain only few benchmarks, however, there are several larger families and the
“fdmus” family is by far the largest one.

Number of Indentified MUSes. We now examine the number of identified
MUSes by the evaluated algorithms on individual benchmarks within the time
limit of 3600 s. In case of 28 benchmarks, all the algorithms completed the enu-
meration, and thus found the same number of MUSes. Therefore, we focus here
only on the remaining 263 benchmarks.

Scatter plots in Fig. 4 pair-wise compare UNIMUS with its competitors. Each
point in the plot shows a result from a single benchmark. The x-coordinate of
a point is given be the algorithm that labels the x-axis and the y-coordinate
by the algorithm that labels the y-axis. The plots are in a log-scale and hence
cannot show points with a zero coordinate, i.e., benchmarks where at least one

2 Thus, in those benchmarks, SAT solver calls are performed almost only by the shrink-
ing procedure (which uses glucose in our implementation).

https://www.fi.muni.cz/~xbendik/research/unimus
https://www.fi.muni.cz/~xbendik/research/unimus
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Fig. 4. Scatter plots comparing the number of produced MUSes.

algorithm found no MUS. Therefore, we lifted the points with a zero coordinate
to the first coordinate. Moreover, we provide three numbers right/above/in the
right corner of the plot, that show the number of points below/above/on the
diagonal. For example, UNIMUS found more/less/equal number of MUSes than
MARCO in case of 242/9/12 benchmarks. We also use green and red colors to
highlight individual orders of magnitude (of 10).

In Fig. 3, we examine the overall ranking of the algorithms. In particular,
assume that for a benchmark B both UNIMUS and ReMUS found 100 MUSes,
MCSMUS found 80 MUSes, and MARCO and FLINT found 50 MUSes. In such a
case, UNIMUS and ReMUS share the 1st (best) rank for B, MCSMUS is 3rd, and
MARCO and FLINT share the 4th position. For each algorithm, we computed
an arithmetic mean of the ranking on all benchmarks. To eliminate the effect of
outliers (benchmarks with an extreme ranking), we computed the 5% truncated
arithmetic mean, i.e., for each algorithm we discarded the 5% of benchmarks
where the algorithm achieved the best and the worst ranking. Moreover, to
capture the performance stability of the algorithms in time, we computed the
mean for each subsequent 60 s of the computation.

UNIMUS conclusively dominates all its competitors. It maintained the best
ranking during the whole time period and gradually improved the ranking
towards the final value 1.3. The closest, yet still very distant, competitors are
ReMUS and MCSMUS who maintained ranking around 2.75. FLINT and MARCO
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achieved the final raking around 3.7. UNIMUS also dominated in the pair-wise
comparison. It found more MUSes than all its competitors on an overwhelming
majority of benchmarks and, remarkably, the difference was often several orders
of magnitude.
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12. Bend́ık, J., Černá, I., Beneš, N.: Recursive online enumeration of all minimal unsat-
isfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138,
pp. 143–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 9

13. Bend́ık, J., Ghassabani, E., Whalen, M., Černá, I.: Online enumeration of all min-
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Abstract. Large-neighbourhood search (LNS) improves an initial solu-
tion, hence it is not directly applicable to satisfaction problems. In order
to use LNS in a constraint programming (CP) framework to solve satis-
faction problems, we usually soften some hard-to-satisfy constraints by
replacing them with penalty-function constraints. LNS is then used to
reduce their penalty to zero, thus satisfying the original problem. How-
ever, this can give poor performance as the penalties rarely cause prop-
agation and therefore do not drive each CP search, and by extension
the LNS search, towards satisfying the replaced constraints until very
late. Our key observation is that entirely replacing a constraint is often
overkill, as the propagator for the replaced constraint could have per-
formed some propagation without causing backtracking. We propose the
notion of a non-failing propagator, which is subsumed just before causing
a backtrack. We show that, by only making a few changes to an existing
CP solver, any propagator can be made non-failing without modifying
its code. Experimental evaluation shows that non-failing propagators,
when used in conjunction with penalties, can greatly improve LNS per-
formance compared to just having penalties. This allows us to leverage
the power of the many sophisticated propagators that already exist in
CP solvers, in order to use LNS for solving hard satisfaction problems
and for finding initial solutions to hard-to-satisfy optimisation problems.

1 Introduction

Large-neighbourhood search (LNS) [19] is a popular method for local search.
It often uses constraint programming (CP) for neighbourhood exploration and
has been successfully applied to a vast variety of optimisation problems. LNS
starts from a feasible assignment and explores a large neighbourhood of similar
assignments by forcing most of the variables to take their current values while
performing CP search in order to find better values for the other variables. This
process is repeated in the hope of finding a good enough feasible assignment.
However, as LNS requires a feasible assignment to start from, LNS cannot be
directly applied to satisfaction problems, because the initial feasible assignment
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 55–71, 2020.
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would be an acceptable solution. Furthermore, an optimisation problem that is
hard to satisfy, that is where finding a feasible assignment is difficult, cannot be
solved by LNS until an initial feasible assignment is obtained. We emphasise that
finding an initial feasible assignment is in fact a satisfaction problem. Therefore,
if we can efficiently solve satisfaction problems using LNS, then we can also solve
hard-to-satisfy optimisation problems using (two rounds of) LNS.

One approach to using LNS for satisfaction problems is to (manually) identify
and soften the constraints that make the problem hard to satisfy. Traditionally,
soft constraints for CP have been investigated mostly for over-constrained prob-
lems [10], that is for problems where not all the constraints can be satisfied.
There is little previous work on softening constraints in order to enable LNS
(see Sect. 6). Still, there are generic methods for softening a constraint, such
as replacing it by using a penalty function and minimising the penalty via the
objective function (see Sect. 2.1 for examples). However, these methods tend to
give poor performance in practice, as they significantly increase the size of the
CP search space and provide little propagation to drive the CP search towards
a zero-penalty solution (as we show in Sect. 3).

In this paper, we argue that entirely replacing constraints by using penalty
functions in order to enable LNS is overkill, because it means that we lose all
their propagation, including the propagation that would not have caused failure
but would have avoided unnecessarily high penalties.

Based on this observation, we propose the notion of a non-failing propaga-
tor : the inconsistent domain values of a variable are only pruned as long as
doing so does not cause a failure. As soon as propagation would cause failure,
the propagator is disabled. This prevents the propagator from directly causing
backtracking and, when used in conjunction with a penalty function, helps the
CP search to quickly reach low-penalty solutions.

After giving some definitions on soft constraints and LNS (Sect. 2) and a
motivating example (Sect. 3), our contributions and impact are as follows:

– the concept and theory of non-failing propagators (Sects. 4.1 and 4.3);
– a recipe for modifying a CP solver so that any propagator can automatically

become non-failing, without modifying its code (Sect. 4.2);
– an empirical evaluation of the often drastic effect of non-failing propagators

on solving satisfaction problems by LNS, as well as of their use when solving
hard-to-satisfy optimisation problems by LNS (Sect. 5).

We discuss related work (Sect. 6) and future work and conclude (Sect. 7).

2 Definitions

A constraint satisfaction problem is a triple 〈X ,D, C〉 where X is a set of vari-
ables, the function D maps each variable x of X to a finite set D(x), called
the current domain of x, and C is a set of constraints. An assignment is a
mapping σ where σ(x) ∈ D(x) for each x of X . A feasible assignment is an
assignment that satisfies all the constraints in C. A constrained optimisation
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problem 〈X ,D, C, o〉 has a designated variable o of X constrained in C to take
the value of an objective function that is to be minimised (without loss of gen-
erality). An optimal assignment is a feasible assignment where o is minimal.

2.1 Soft Constraints

Given a satisfaction problem 〈X ,D, C〉 and an assignment σ, the penalty under σ
of a constraint C(V) in C, where V is an ordered (multi)subset of X , is given by
a function π, called the penalty function, such that π(σ) is 0 if C(V) is satisfied
under σ, and otherwise a positive number proportional to the degree that C(V)
is violated. For example, for the constraint x + y = z, the penalty could be
|σ(x) + σ(y) − σ(z)|, which is the distance between x+y and z under σ. See [20]
for a variety of penalty functions in the context of constraint-based local search.

For a constraint C(V) and a penalty function π, the soft constraint Cπ(V, p)
constrains a new variable p, called the penalty variable, to take the value π takes.

Example 1. In our experiments of Sect. 5, the soft constraint for a linear equality
constraint

∑
i AiVi = c is p = |∑i AiVi − c|, that is p = |x + y − z| for the

unweighted equality constraint x + y = z we considered above. For a linear
inequality constraint

∑
i AiVi ≤ c, we use p = max(0,

∑
i AiVi − c). For a

global cardinality constraint GCC(V,A,L,U), constraining every value Ai to
be taken between Li and Ui times by the variables Vj , which cannot take any
other values, we use p =

∑
i max(0, Li − ∑

j [Vj = Ai],
∑

j [Vj = Ai] − Ui) +∑
d�∈A

∑
j [Vj = d], where [α] denotes value 1 if constraint α holds and value 0

otherwise. ��
We say that we soften a constraint C(V) when we replace it in C by Cπ(V, p)

for some π, with variable p added to X and used in an objective function. We
call C(V) the replaced constraint, not to be mixed up with Cπ(V, p).

We define Soft(〈X ,D, C〉 ,S, π, λ) as the softening of a subset S ⊆ C of n con-
straints in the satisfaction problem 〈X ,D, C〉 into the optimisation problem
〈X ∪{pi | i ∈ 1..n}∪{o},D′, C\S∪{Ci

πi
(V, pi) | Ci(V) ∈ S}∪{o =

∑n
i=1 λipi}, o〉

by using the penalty functions πi and weights λi ≥ 0, where D′ is D extended
to give the initial domain 0 . . ∞ to the introduced objective variable o and each
introduced penalty variable pi.

Definition 1. For any Soft(P,S, π, λ) of a satisfaction problem P, we define:

– a pseudo-solution is a feasible assignment where at least one introduced
penalty variable takes a positive value, and therefore the non-penalty vari-
ables do not form a feasible assignment for P; and

– a solution is a feasible assignment where all penalty variables take the value 0,
and therefore the non-penalty variables do form a feasible assignment for P.

Note that a solution to Soft(P,S, π, λ) is in fact an optimal solution to it,
as the introduced objective variable takes its lower bound 0, no matter what the
weights λi are, and thereby that solution establishes the satisfiability of P.

Consider a soft constraint Cπ(V, p) and a variable v in V: we say that a value d
in D(v) imposes a penalty when min(D(p)) would increase if D(v) became {d}.
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2.2 Large-Neighbourhood Search

Large-neighbourhood search (LNS) [19] is a local-search method for solving an
optimisation problem 〈X ,D, C, o〉. It starts from a feasible assignment σ, which
evolves as what we call the current assignment. At each iteration, an LNS heuris-
tic selects a non-empty strict subset M of the variables X , called the fragment,
where o ∈ M. The optimisation problem 〈X ,D, C ∪ {x = σ(x) | x ∈ X \ M}, o〉,
where all but the variables of the fragment take their current values, is solved,
not necessarily to optimality. If an improving feasible assignment is found, then it
replaces the current assignment, otherwise the current assignment is unchanged.
The search continues from the current assignment by selecting a new fragment.

LNS can in principle be used to solve a satisfaction problem P that has been
softened by some Soft(P,S, π, λ) into an optimisation problem, but we show
in Sects. 3 and 5 that the performance can be poor in practice.

The optimisation problem at each LNS iteration, as well as the satisfaction
problem of finding an initial feasible assignment, can in principle be solved by
using any technology, but we here only consider CP.

There exists extensive literature on the challenge of heuristically selecting a
fragment at each LNS iteration: either by exploiting the structure of the under-
lying problem [19] or by using more generic methods [9,13,14]. Both approaches
can have a significant impact on the performance of LNS.

In this paper, we focus on an orthogonal challenge of LNS, namely efficiently
solving (hard) satisfaction problems (and even optimisation problems that are
hard to satisfy, that is where finding a feasible assignment is difficult), so that
there is a need to improve the propagation in each LNS iteration in a new way.

3 Motivation

To make some motivating observations, we consider as a running example the
satisfaction problem of subset sum, as solved by CP. We then soften the problem
in order to show how it can in principle be solved by LNS.

Example 2. Given an integer set S and an integer t, the subset-sum problem
is to find a subset S ′ ⊆ S such that

∑
s∈S′ s = t. We can express this as a

satisfaction problem using a 0/1 variable xi for each element of S, and a single
constraint, say for S = {11,−3, 2, 5, 9,−6} and t = 1:

11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 = 1 (1)

Using the classical idempotent bounds-consistency propagator in Algorithm1 for
the linear equality (1)—because achieving domain consistency is NP-hard [2]—
and the CP search strategy that branches on the variables in order from x1 to x6,
always with xi = 1 as the left-branch decision, we obtain the following CP search
tree. At the root node, the value 1 is pruned from D(x1). Upon the decision x2 =
1, no value is pruned. Upon the decision x3 = 1, propagation first prunes the
value 1 from both D(x5) and D(x6), but then fails as all values of D(x4) must
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Algorithm 1. Bounds-consistency propagator for
∑

i AiVi = c, where A is an
array of integers, V an equally long array of integer variables, and c an integer;
it updates the domain function D. (Idempotent due to lines 1–3 and 12–13.)
1: done ← false
2: while not done do
3: done ← true // this might be the last iteration

4: � ← ∑|V|
i=1 Ai · min(D(Vi)); u ← ∑|V|

i=1 Ai · max(D(Vi))
5: if � = c = u then
6: return Subsumed
7: else if c < � or u < c then
8: return Failed
9: for i = 1 to |V| do

10: D(Vi) ← D(Vi) ∩
⌈

c−u+max(D(Vi))
Ai

⌉
. . max(D(Vi)) // tighten lower bound

11: D(Vi) ← D(Vi) ∩ min(D(Vi)) . .
⌊

c−�+min(D(Vi))
Ai

⌋
// tighten upper bound

12: if some D(Vi) has changed then
13: done ← false // continue iterating
14: return AtFixpoint

be pruned. The search backtracks, failing at two more nodes, until it finds the
only feasible assignment (namely x1 = x2 = x5 = 0 and x3 = x4 = x6 = 1,
corresponding to S ′ = {2, 5,−6}) upon the decisions x2 �= 1 and x3 = 1. ��

To solve a satisfaction problem with LNS, one must soften some constraints
in order to turn it into an optimisation problem where a zero-penalty solution
corresponds to a feasible assignment to the satisfaction problem. If no such soft-
ening is performed, then the initial feasible assignment will be an acceptable
solution, which means that LNS adds no benefit.

Although constraints can be softened in a generic way by using penalty func-
tions (as explained in Sect. 2.1), softening will in practice significantly increase
the size of the CP search space for each LNS iteration, as soft constraints usu-
ally only cause propagation towards the bottom of the search tree, where most
variables are fixed, and provide little to no propagation that drives the CP search
towards an (optimal) solution, as shown in the following example.

Example 3. In order to solve the subset-sum satisfaction problem of Example 2
by LNS, its constraint (1) must be softened, say as:

p = |11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 − 1| (2)

where p ∈ 0 . . 26, and the objective is to minimise p. By Definition 1, if p = 0 then
the solution corresponds to a feasible assignment to the satisfaction problem.
Consider the CP search tree while finding an initial feasible assignment for LNS,
using the search strategy of Example 2. Since p is essentially unconstrained, there
is no propagation (no matter what consistency is targeted) and search descends
the left branch, arriving at a pseudo-solution where all xi = 1 and p = 17.
Improving it into a solution requires x1 = 0: this was achieved by root-node
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propagation in Example 2, but is here only achievable by x1 being in a fragment.
However, even that may not be enough: if the first fragment is {x1, x3}, then
the next pseudo-solution will have x3 = 0 and p = 15. Clearly, even in a small
instance, early bad decisions severely degrade performance. ��

4 Avoiding Bad CP Search Decisions

We are here concerned with constraints that must be softened to enable the
use of LNS for satisfaction problems. We want to improve the CP search for an
initial (pseudo-) solutions for the first LNS iteration, as well as the CP search
within each LNS iteration for better pseudo-solutions and eventually a solution.

We saw in Example 3 that bad CP search decisions can be made early if the
propagation from the soft constraints does not prune values that impose high
penalties. It could therefore be beneficial to prune some of those values, using
some propagation from the replaced constraints, so that the CP search avoids
those bad decisions. However, it would be counterproductive to prune all values
that impose a penalty, as that would again make the constraints (and by exten-
sion the problem) hard to satisfy, namely by causing significant backtracking.

Still, given the crucial role that propagation plays in the effectiveness of CP
search, we argue that only replacing some constraints by using penalty functions
(and thereby effectively removing all the propagation for those constraints) does
not fully utilise the decades of research on efficient and powerful propagators.

Based on this observation, we propose non-failing propagators (Sect. 4.1),
show how to modify a CP solver such that any propagator can be made non-
failing without modifying its code (Sect. 4.2), and discuss how the scheduling of
non-failing propagators can impact backtracking (Sect. 4.3).

4.1 Non-failing Propagators

We want to extend an optimisation problem Soft(〈X ,D, C〉 ,S, π, λ) by prescrib-
ing additional propagators for S to prune values that would impose a penalty,
but without causing backtracking. For this, we propose non-failing propagators:

Definition 2. For a constraint C(V), a non-failing propagator prunes domain
values that are inconsistent with C(V), but only until the pruning would empty
the domain of some variable v in V; at that point, the propagator is subsumed
instead of pruning the last domain value (or values) of v and being failed, which
would cause backtracking.

For example, the propagator of Algorithm1 can be turned into a non-failing
propagator by rewriting line 8 to return the status Subsumed instead of Failed.
In Sect. 4.2, we achieve this at the solver level instead of the propagator level.

We use the notation C(V) ::NonFailing to indicate that the propagator
used for C(V) should be non-failing.
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A non-failing propagator never causes backtracking itself, but it can do so
indirectly by pruning values that make the normal propagators for the con-
straints C\S be failed. Just like any propagator that is disabled during CP search,
a non-failing propagator is restored upon backtracking and restarts. Non-failing
propagators are safe to use on problems that are satisfiable:

Theorem 1. If a problem is satisfiable, then non-failing propagators for any of
its constraints will never remove any feasible assignments from the search space.

Proof. Consider a feasible assignment σ for a problem. A non-failing propagator
prunes no more than a normal propagator, by Definition 2. Therefore, no prop-
agator for any constraint of the problem can prune a value occurring in σ if all
values in σ are in the domains of the corresponding variables. ��

We define Softnonfail(P,S, π, λ) as the softening of the constraints S in the
satisfaction problem P via Soft(P,S, π, λ) but with the addition of the con-
straints {C(V)::NonFailing | C(V) ∈ S}: that is, the constraints S are imple-
mented both by non-failing propagators for themselves and by normal propaga-
tors (or decompositions) for their soft versions.

Example 4. The application of Softnonfail to the subset-sum problem of Exam-
ple 2 uses both a non-failing propagator for its constraint (1) and normal prop-
agation for its soft constraint from Example 3:

minimise p

such that (11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 = 1)::NonFailing

p = |11x1 − 3x2 + 2x3 + 5x4 + 9x5 − 6x6 − 1|
xi ∈ {0, 1}, ∀i ∈ 1 . . 6

Root-node propagation of the non-failing propagator prunes value 1 from D(x1),
as in Example 2 and unlike in Example 3. Given the same CP search strategy as
in Example 2, the first decision, x2 = 1, does not trigger any propagation. The
second decision, x3 = 1, causes the non-failing propagator to first prune value 1
from D(x5), then prune value 1 from D(x6), and then infer failure. However,
rather than failing, the propagator is subsumed. The next decision is then x4 = 1,
at which point the CP search is at a pseudo-solution (namely x1 = x5 = x6 = 0
and x2 = x3 = x4 = 1). The propagator of the soft constraint from Example 3 so
far had no impact on the decisions, but gives p = 3 at this pseudo-solution. Given
this initial LNS assignment, if a fragment consisting of x2 and x6 is selected in the
first LNS iteration, then root-node propagation of the non-failing propagator will
immediate solve the problem by inferring x2 = 0 and x6 = 1, giving p = 0. Unlike
in Example 3, where only the soft constraint is used, we here see how a non-failing
propagator can help the CP searches avoid bad decisions and also allow the LNS
search to quickly arrive at a zero-penalty assignment. While this example was
specifically constructed to showcase this behaviour, our experimental evaluation
in Sect. 5 shows that this seems also to be beneficial in practice, across a variety
of benchmarks. ��
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Algorithm 2. FixPoint(P,Q,D), where P is the set of all non-disabled prop-
agators (initially those for the constraints C of the problem), Q is the priority
queue of propagators not known to be at fixpoint (initially those for C, later those
of a CP search decision), and D is the function giving the current domains.
1: while Q is not empty do
2: p ← Q.dequeue()
3: status ← p.propagate(D) // note that this can enqueue propagators of P
4: if status = Subsumed then
5: p.disable() // this achieves P ← P \ {p}
6: else if status = Failed then
7: return Failure // fail and cause backtracking
8: else
9: . . . // other status messages are not relevant here

10: return AtCommonFixpoint

4.2 Implementation

In principle, any propagator can be made non-failing by modifying its code
(such as in the example after Definition 2). However, this can be both tedious
and error-prone. Fortunately, we can instead modify the propagation engine of
a CP solver to treat as non-failing any propagator tagged as ::NonFailing.

Algorithm 2 shows a typical fixpoint algorithm, based on a queue of propaga-
tors that need to be executed. The only change required to support non-failing
propagators is to replace line 4 by

if status = Subsumed or (non-failing( p) and status = Failed) then

so that when a propagator tagged as non-failing returns the status Failed,
then the status is instead treated as Subsumed. However, in order for this
modification to Algorithm 2 to be correct, the CP solver and its propagators
must guarantee that the domains of the variables are always in a consistent
state: when a propagator returns Failed, the domain of each variable must be
a non-empty subset of the domain before running the propagator.

For our experiments in Sect. 5, we modified Gecode [6] in this way. Domain
updates in Gecode are not guaranteed to leave the domains in a consistent state
after failure: we therefore modified the domain update functions to check whether
an update would result in a domain wipe-out before they modify that domain.

4.3 Scheduling of Non-failing Propagators

Non-failing propagators are non-monotonic: the amount of propagation they
achieve (and whether they propagate or are subsumed) depends on the order
in which all propagators are executed [18]. Many CP solvers order propagators
using a priority queue, for example based on their algorithmic complexity [17].

The priority assigned to non-failing propagators can therefore determine if a
node fails or succeeds. However:
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Theorem 2. There is no static priority order (independent of the internal state
of the fixpoint algorithm) of propagators that guarantees that non-failing propa-
gators only cause failure when failure occurs for all possible priority orders.

Proof. Consider the following problem:

D(x) = D(y) = D(z) = 0 . . 5, D(b0) = D(b1) = D(b2) = 0 . . 1
x + y + z = 5, b1 → x ≥ 2, b1 → y ≥ 2, b2 → x ≤ 1, b2 → y ≤ 1
b0 → b1 ::Nonfailing, b0 → b2 ::Nonfailing

where the non-failing propagators are p1 for b0 → b1 :: Nonfailing and p2
for b0 → b2 ::NonFailing. We assume that both non-failing propagators are
always propagated last, as that decreases the probability of failure.

Upon the initial CP search decision z ≥ 2, we reach the node where D(z) =
2 . . 5 and D(x) = D(y) = 0 . . 3. If we make the decision b0 = 1, then both p1
and p2 are enqueued. If p1 is dequeued first, then we propagate b1 = 1, x ≥ 2,
y ≥ 2, b2 = 0, and then the propagator for x + y + z = 5 is dequeued and fails.
If p2 is dequeued first, then we propagate b2 = 1, x ≤ 1, y ≤ 1, b1 = 0, z ≥ 1,
and then p1 is dequeued and subsumed (because it fails). That is, the node only
succeeds when p2 runs before p1.

Upon the opposite CP search decision z < 2, we reach the node where D(z) =
0 . . 1. If we make the decision b0 = 1, then both p1 and p2 are enqueued. If p1
is dequeued first, then we propagate b1 = 1, x ≥ 2, y ≥ 2, b2 = 0, and then p2
is dequeued and subsumed (because it fails). If p2 is dequeued first, then we
propagate b2 = 1, x ≤ 1, y ≤ 1, b1 = 0, and then the propagator for x+y+z = 5
is dequeued and fails. That is, the node only succeeds when p1 runs before p2.

So, no static priority order can always avoid indirect failures caused by non-
failing propagators, even when the indirect failure could have been avoided. ��

Empirically, we found it beneficial to always run non-failing propagators at
the lowest priority. Intuitively, this makes sense: consider two propagators p1
and p2, where running p1 causes p2 to fail, and vice versa: if only p1 is non-
failing, then backtracking is only avoided when running p1 after p2. We therefore
modified Gecode to schedule all non-failing propagators to run as late as possible,
with a first-in-first-out tie-breaking between non-failing propagators.

5 Experimental Evaluation

This section presents an empirical evaluation of the benefit of non-failing prop-
agators for both satisfaction and optimisation problems.

5.1 Setup

We compare three approaches to finding a solution to a satisfaction problem P:

hard treat all constraints as hard, that is: solve P by CP;
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soft soften some constraints S of P, that is: solve Soft(P,S, π, λ) by LNS;
non-failing soften the same constraints S of P, but also use non-failing propa-

gators for those constraints, that is: solve Softnonfail(P,S, π, λ) by LNS.

For all problems, we used published MiniZinc (version 2.4.3) [12] models.1

We modified Gecode (version 6.2.0) [6] as described in Sects. 4.2 and 4.3.
We modified its MiniZinc interface so that some constraints, when tagged with
a new soften annotation for MiniZinc, are automatically softened under the
soft and non-failing approaches with λ = 1̄ and using the penalty functions π
in Example 1. For the non-failing approach, the soften annotation also tags
the constraint with the ::NonFailing annotation, that is, we have both a soft
version and a non-failing version of the tagged constraint when using the non-
failing approach. To propagate a soft constraint, we use a decomposition of its
penalty function rather than a specialised propagator. We used Gecode’s built-in
LNS via its MiniZinc interface2: it selects a variable not to be in the fragment
under a given probability; we prescribed a probability of 70% or 80%, depending
on the size of the problem instances, (See footnote 1) and used the constant
restart strategy.

For each problem instance, we report the average time for finding a first
solution by LNS, over 10 independent runs, each allocated 10 minutes. The
average was only computed over the runs where a solution was actually found.

We used Linux Ubuntu 18.04 (64 bit) on an Intel Xeon E5520 of 2.27 GHz,
with 4 processors of 4 cores each, with 24 GB RAM and an 8 MB L2 cache. Note
that we only run Gecode on a single core for our experiments.

5.2 Satisfaction Problems

We want to see whether our new generic non-failing approach allows LNS to
outperform the classical generic soft approach to LNS for satisfaction problems,
and whether both beat the hard approach via only CP. We look at instances of
three satisfaction problems that are difficult to solve with Gecode via MiniZinc.

Nurse Rostering. We use the model for a simple nurse rostering problem from
the MiniZinc Handbook3 but modify it by using global-cardinality constraints
on the daily numbers of nurses on each shift. We handcrafted 10 + 10 = 20 sat-
isfiable instances to be either easy (by having many nurses available) or dif-
ficult (by being at the border of unsatisfiability in terms of available nurses),
both for Gecode under the hard approach. We prescribe softening for all the
global-cardinality constraints. In Fig. 1a, we see that soft solves fewer instances
than hard and often needs over an order of magnitude more time (both only solve
the easy instances), while non-failing solves all but one (difficult) instance and
does so with seemingly no overhead compared to hard (on the easy instances).
1 We modified the models in order to deploy more global constraints and better CP

search strategies. Our versions of the MiniZinc models, the instances, and the Gecode
library are available at https://github.com/astra-uu-se/CP2020.

2 See https://www.minizinc.org/doc-latest/en/lib-gecode.html.
3 Section 2.3.1.4 of https://www.minizinc.org/doc-latest/en/predicates.html.

https://github.com/astra-uu-se/CP2020
https://www.minizinc.org/doc-latest/en/lib-gecode.html
https://www.minizinc.org/doc-latest/en/predicates.html
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Fig. 1. Number of instances that are each solved within a given time.

Rotating Workforce. In the rotating workforce problem [11], a roster is to be
built for employees, satisfying complex rules on sequences of shifts. We use the
model and 50 instances in [11]: these are difficult for Gecode under the hard
approach, although not too difficult for mixed-integer-programming and lazy-
clause-generation solvers [11]. We prescribe softening for the global-cardinality
constraints on the daily numbers of assigned shifts. In Fig. 1b, we see that each
approach only solves at most 14 of the 50 instances: soft is slowest but solves as
many instances (though not the same) as non-failing, while hard is arguably
fastest but solves fewer instances than non-failing.

Car Sequencing. In this problem [4], a sequence of cars of various classes, each
class having a set of options, is to be produced, satisfying capacity constraints on
the options over a sliding window on the sequence and occurrence constraints on
the classes. We use the MiniZinc Benchmark model4 and the classic 78 instances
for sequences of 100 to 200 cars.5 We prescribe softening for the capacity con-
straints, which are expressed by linear inequalities. A problem-specific softening,
which does not rely on penalties in the spirit of those in Example 1, was success-
fully used with LNS in [13]: we model it in MiniZinc and solve it by LNS with
Gecode calling this the reformulation approach. In Fig. 2, we see that hard
only solves 4 instances, while soft solves 65 instances but takes an order of mag-
nitude more time than non-failing, which solves 69 of the 78 instances; refor-
mulation solves 67 instances and takes time between soft and non-failing.

5.3 Hard-to-Satisfy Optimisation Problems

For a hard-to-satisfy optimisation problem, we solve the satisfaction problem of
finding a first solution, which enables another round of LNS to find better ones.

4 Available at https://github.com/MiniZinc/minizinc-benchmarks.
5 Available also at http://www.csplib.org/Problems/prob001/data/data.txt.html.

https://github.com/MiniZinc/minizinc-benchmarks
http://www.csplib.org/Problems/prob001/data/data.txt.html
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Fig. 2. Number of car-sequencing instances that are each solved within a given time.

Fig. 3. (a) Number of TSPTW instances that are each satisfied within a given time.
(b) Numbers of TSPTW instances where our best-found minimum is better, the same,
or worse than the best-known one; ‘none’ means we found no feasible assignment.

TSPTW. In the travelling salesperson problem (TSP) with time windows, a
shortest tour visiting all nodes in a graph during their time windows is to be
found. We use the 80 satisfiable n40, n60, and n80 instances of the Gendreau-
DumasExtended benchmark,6 as they are very difficult to satisfy under the hard
approach. We prescribe softening for the linear inequalities that require the
arrival time at a node to be at least the arrival time at its predecessor plus
the travel time in-between. In Fig. 3a, we see that hard only satisfies 1 instance
and soft only 8 instances, while non-failing satisfies 69 of the 80 instances.
When non-failing finds a solution within the allocated 10 minutes, we switch
to hard, but with LNS, in order to try and improve it for the remaining time.
We call this the non-failing+hard approach. In Fig. 3b, we compare the best
solutions found by non-failing+hard to the best known solutions from the lit-
erature. (See footnote 6) Our new approach can improve these bounds for three
instances.

6 Available at http://lopez-ibanez.eu/tsptw-instances.

http://lopez-ibanez.eu/tsptw-instances
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Fig. 4. (a) Number of TDTSP instances that are each satisfied within a given time.
(b) Numbers of satisfied TDTSP instances for the three batches of instances.

TDTSP. In the time-dependent TSP [1], a shortest tour visiting all nodes in a
graph during their time windows is to be found, similarly to TSPTW, but the
travel time between two nodes depends on the arrival time at the first node. We
use the model of the MiniZinc Challenge 2017,7 but modify it to constrain the
tour using successor variables and a circuit global constraint [8]. We prescribe
softening as for TSPTW. By private communication with the author of the
original MiniZinc model, we received 540 generated instances of 10, 20, and 30
nodes, with 180 instances for each batch; some of the size-10 and size-20 instances
were used in the Challenge, but none of the size-30 ones as, for most of them,
no MiniZinc backend ever found a feasible solution so that they were deemed
too hard. In Fig. 4a, we see that soft only satisfies 177 instances and is over
two orders of magnitude slower than the other approaches. Note that hard
satisfies 359 instances about as fast as non-failing, but as the instances become
more difficult to satisfy its runtime quickly increases. In Fig. 4b, we see that soft
only satisfies instances of size 10, whereas hard only satisfies instances of size
at most 20, and non-failing satisfies all the instances.

HRC. For the hospitals/residents matching problem with couples (HRC), we
use the model and 5 instances of the MiniZinc Challenge 2019. (See footnote 7)
We prescribe softening for the linear inequalities on the hospital capacities. In
Table 1, we see that soft satisfies all the instances, whereas non-failing com-
pletely backfires and satisfies no instance (and actually does not even find a
pseudo-solution for any instance). The non-failing propagators prevent the CP
search from reaching a pseudo-solution due to too many indirect failures. Fur-
thermore, since hard can solve 3 instances, it seems that the CP search space
for non-failing is larger than for hard. We describe how to address indirect
failures in Sect. 7.

7 Available at https://www.minizinc.org/challenge.html.

https://www.minizinc.org/challenge.html
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Table 1. Runtimes (in seconds, or ‘–’ if more than 600) to satisfy each HRC instance:
the non-failing approach backfires.

Instance non-failing soft hard

exp1-1-5110 – 83.47 26.96

exp1-1-5425 – 21.98 240.74

exp1-1-5460 – 341.01 40.89

exp2-1-5145 – 65.10 –

exp2-1-5600 – 208.22 –

6 Related Work

We now discuss three areas of related work: soft constraints, variable-objective
LNS, and streamliners.

Traditionally, soft constraints for CP have almost exclusively been researched
in the context of over-constrained problems: see [10] and [16, Chapter 3]
for extensive overviews. In this paper, we assume the problem is not over-
constrained but hard to satisfy and therefore requires softening to enable the
use of LNS. To the best of our knowledge, there exists very little research on
softening problems that are not over-constrained, and replacing constraints by
using penalties seems to originate from the over-constrained setting. The only
other work we found is [5], which generalises Lagrangian relaxations to CP
models.

Variable-objective LNS (VO-LNS) [15] is based on the observation that the
penalty variables introduced by softening are usually connected to the objec-
tive variable by a linear equality and any new bounds on the objective variable
result in little to no propagation on the penalty variables. Therefore, VO-LNS
eagerly bounds penalty variables during branch-and-bound. This achieves more
propagation from the soft constraints. This is conceptually related to our app-
roach: we improve the poor propagation from the soft constraints and reduce
their negative impact on LNS, by pruning more. VO-LNS satisfies Theorem1:
it never removes a solution from the CP search space if the problem is satisfi-
able. But, like our approach, VO-LNS can remove pseudo-solutions from the CP
search space, and might therefore remove all pseudo-solutions with the lowest
positive penalty. VO-LNS and non-failing propagators can be complementary:
first experiments, where both approaches are used together, indicate that there
can be a synergy.

Streamliners [7] are constraints added in order to remove a large portion
of the CP search space while ideally not removing all solutions. Streamliners
are identified by empirically observing structures in solutions to easy instances
and hoping that those structures, and thereby constraints, extend to difficult
instances. However, while streamliners are ideally safe, by not removing non-
dominated solutions, they are not always guaranteed to be safe; their addition
can even make a satisfiable instance unsatisfiable. Non-failing propagators, when
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added to a problem Soft(P,S, π, λ), can be thought of as streamliners since
they remove a large portion of the CP search space. But, unlike streamliners,
non-failing propagators are always safe to use as they never make a satisfiable
instance unsatisfiable, due to Theorem 1, and they are not based on empirical
observation, but rather on the actual constraints of the problem.

7 Conclusion and Future Work

LNS is a powerful approach to solving difficult problems, but is typically only
applied to (easy-to-satisfy) optimisation problems. We show that by using our
non-failing propagators we can apply LNS to effectively tackle hard satisfaction
problems (including those arising from hard-to-satisfy optimisation problems).
Implementing non-failing propagators is not difficult in a CP solver, and can
be done at the engine level with some care. Experimental results show that
non-failing propagators can drastically improve the solving of hard-to-satisfy
problems, although they are not universally beneficial.

Future work includes the design of constraint-specific non-failing propaga-
tors. For example, consider AllDifferent([x1, x2, x3, . . . , xn]): rather than dis-
abling its propagator upon detecting x1 = x2, one can replace it by a propagator
for AllDifferent([x3, . . . , xn]), thereby still avoiding the failure but now with-
out losing the propagation on the remaining variables.

A weakness of non-failing propagators is that they can cause too many indi-
rect failures, via normal propagators, as seen in Table 1. Indirect failures can
sometimes be avoided by giving non-failing propagators the right priority (see
Sect. 4.3). As future work, we can address this weakness with the following two
orthogonal ideas. First, when using a learning CP solver such as Chuffed [3],
which explains failures, we can detect that a failure is indirect and we can iden-
tify a node where a responsible non-failing propagator ran: the CP search can
then backtrack and disable that propagator at that node, thus avoiding the
failure. Second, non-failing propagators can be made more cautious about the
values they prune: for example, rather than eagerly pruning values that impose
a penalty, a non-failing propagator can prune only the values that impose a
penalty above some threshold, which can be adjusted during CP search. Initial
experiments show that these ideas work in principle, but do not yet outper-
form our generic implementation (of Sect. 4.2), as they bring their own sets of
challenges, which require further investigation.
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Abstract. Motivated by recent advances in quantum algorithms and
gate-model quantum computation, we introduce quantum-accelerated
filtering algorithms for global constraints in constraint programming.
We adapt recent work in quantum algorithms for graph problems and
identify quantum subroutines that accelerate the main domain consis-
tency algorithms for the alldifferent constraint and the global car-
dinality constraint (gcc). The subroutines are based on quantum algo-
rithms for finding maximum matchings and strongly connected com-
ponents in graphs, and provide speedups over the best classical algo-
rithms. We detail both complete and bounded-probability frameworks for
quantum-accelerated global constraint filtering algorithms within back-
tracking search.

Keywords: Quantum computing · Constraint programming ·
Backtracking search · Logical inference · Global constraints

1 Introduction

Quantum computers are designed to leverage quantum-mechanical phenom-
ena to outperform classical computers for certain tasks. While early quantum
devices, such as quantum annealers, were limited to the implementation of spe-
cialized algorithms, the past decade has seen the advent of general-purpose gate-
model quantum computers, capable of implementing any algorithm that can be
expressed as a series of quantum logic gates. In this model, quantum gates are
applied to qubits, the basic memory unit of quantum processors, reminiscent
of classical computation where logic gates are applied to bits. While the cur-
rent gate-model processors remain small, in the noisy intermediate-scale quan-
tum (NISQ) regime, they have already enabled exciting developments, such as
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the availability of quantum computers accessible in the cloud [10,13], and the
achievement of quantum supremacy in the context of sampling random quantum
circuits [3]. Additionally, a well-developed theory of quantum error correction
and quantum fault tolerance provides the underpinnings of extensive engineer-
ing efforts to realize fault-tolerant, scalable quantum computers [33].

Concurrent work in advancing quantum algorithms is critical to extend the
known applications of quantum computing independent of processor design.
Recent efforts indicate speedups for a number of problems in graph theory [14],
mathematical programming [35], constraint satisfaction [9], and search [25,26].

Building on these results, we investigate quantum subroutines to accelerate
filtering algorithms for global constraints. We argue that the search paradigm in
constraint programming (CP) represents an attractive framework for deployment
of quantum subroutines that accelerate inference algorithms at each node of a
search tree. Encapsulation of combinatorial substructure in global constraints
provides an elegant mechanism for carving off portions of complex problems
into subproblems that can be solved by a quantum co-processor. These smaller
subproblems require fewer qubits, making them promising candidates for early
fault-tolerant quantum chips. While CP has been used recently to efficiently
compile quantum circuits [6], the use of quantum algorithms to accelerate global
constraint filtering in CP, has, to the authors’ knowledge, not been investigated.

The primary contributions of this paper are as follows:

i. A quantum-accelerated O(|X|√(|X| + |V |)|V | log2 |V |)-time bounded-error
algorithm for domain consistency of the alldifferent constraint, where
|X| is the number of variables and |V | is the number of unique domain
values. Our approach follows the main classical algorithm, accelerating
the basic subroutines performed at each iteration with quantum analogs.
The complexity is dominated by that for finding maximum matchings in
bipartite graphs. The best deterministic and randomized classical algo-
rithms known take O(|X|√|X||V |) and O(|X|ω−1|V |) time, respectively,
where ω corresponds to the asymptotic cost of classical matrix multi-
plication; the best upper bound known on ω is 2.373.1 Our approach
improves over these time-complexity upper bounds by factors on the order of√|X||V |/(|X| + |V |) and

√|X|2ω−4|V |/(|X| + |V |), respectively, and up to
polylogarithmic terms.

ii. A quantum-accelerated O(|X|√(|X| + |V |)|V | log2 |V |)-time bounded-error
algorithm for domain consistency of the global cardinality constraint (gcc),
providing speedups over the best classical approach known.

iii. We discuss complete and bounded-probability frameworks for using
quantum-accelerated global constraint filtering in backtracking tree search.

2 Background

Quantum computers work in a fundamentally different way than classical com-
puters: they process quantum information, a generalization of classical informa-
1 We note that the instance size at which the asymptotic scaling becomes relevant is

so large that, in practice, matrix multiplication takes cubic time.
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tion, and can use uniquely quantum operations to carry out computations. At an
abstract level there are similarities between the two paradigms: quantum com-
puters have quantum registers that hold quantum states, and a quantum com-
putation acts on these states by quantum gates. Some of these gates are directly
analogous to classical gates such as not and cnot, but others are uniquely quan-
tum. The fundamental unit of information on which quantum computers act is
a qubit, a generalization of the classical bit. At the end of a quantum computa-
tion, during which quantum gates are applied to qubits in the quantum registers,
quantum measurements are made to the qubits to extract classical information,
such that a string of bits is returned. The interested reader is referred to a
number of sources for a more thorough review of the subject [33,38].

We adopt Dirac’s “ket” notation [11], universally used in quantum mechanics
and quantum computing, in which a column vector is represented by a “ket” such
as |x〉, where x is a label, equivalent to −→x . Generally, there will be some preferred
basis of the vector space referred to as the “computational basis”. For example,
a 3-dimensional vector space can be spanned by |0〉, |1〉, and |2〉, corresponding
to the unit vectors (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T , respectively. Finally, the
notation |x〉 |y〉 is shorthand for the tensor product |x〉 ⊗ |y〉.
Definition 1 (Qubit). A qubit is a quantum system whose state is represented
by a two-dimensional complex vector. The computational basis consists of two
orthonormal vectors denoted |0〉 and |1〉. Unlike a classical bit, which must
be either 0 or 1, a qubit can in general be in a superposition of these states
a |0〉 + b |1〉, subject to the normalization condition |a|2 + |b|2 = 1, where a and
b are complex numbers referred to as “amplitudes”.

Definition 2 (Quantum register). An n-qubit quantum register holds the
state of n qubits, represented as a vector in a 2n-dimensional complex vector
space. The computational basis {|x〉 : x ∈ {0, 1}n} consists of 2n orthonormal
vectors, labeled by the 2n classical n-bit strings {0, 1}n or the corresponding inte-
gers {0, 1, . . . , 2n−1}. Any n-qubit state can be written as a superposition (linear
combination) of the form |φ〉 = ∑

x∈{0,1}n ax |x〉, subject to
∑

x |ax|2 = 1.

Definition 3 (Quantum measurement). A measurement of a quantum reg-
ister in the computational basis returns classical information. Specifically, it will
return each bit string with probability proportional to the amplitude squared. For
example, measuring a qubit in state a|0〉 + b|1〉 returns state |0〉 with probability
|a|2 and state |1〉 with probability |b|2. The qubits of a multi-qubit register may
be measured independently, and in general the outcomes will be correlated.

Quantum information processing is an interesting mix of quantum states,
which can take on a continuum of values, and quantum measurement, which
enforces discrete outcomes. The design of quantum algorithms, the topic of this
paper, involves transforming quantum systems. These transformations can be
represented as unitary matrices, and each of these can be decomposed into a
sequence of one- and two-qubit transformations called quantum gates.
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Definition 4 (Quantum gate and quantum circuit). A quantum state
transformation (i.e., a unitary operator) acting on a quantum register is called
a quantum gate. A quantum circuit is a sequence of quantum gates.

In gate-model quantum computation, the resources by which algorithms are
compared include the number of qubits used (the space complexity) and the
number of primitive gates used (the gate complexity or time complexity).

2.1 Grover’s Algorithm and Quantum Search

In this section, we introduce Grover’s algorithm for unstructured search [18], a
well-known quantum algorithm, and essential for the speedups in this work.

Definition 5 (Unstructured search problem). Given an N element
unstructured list and blackbox access to predicate P : {0, . . . , N−1} → {0, 1},
find a solution, x ∈ {0, 1, . . . , N−1}, such that P (x) = 1, with the fewest queries
to P .

For a predicate P with m solutions, Grover’s algorithm finds a solution to the
unstructured search problem with constant success probability using O(

√
N/m)

queries to P , even when m is unknown. Classical (including randomized) algo-
rithms require Ω(N/m) queries, and so Grover’s algorithm provides a quadratic
speedup in the oracle model. In the quantum case, the predicate is instantiated
as an operator UP : |x〉 |0〉 �→ |x〉 |P (x)〉 that computes P (x) in the |0〉 register.
This speedup is due to quantum computing’s ability to evaluate P on a super-
position of states according to UP

∑
x ax |x〉 |0〉 = ∑

x ax |x〉 |P (x)〉. By linearity,
the operator UP computes P (x) over all x in superposition. Grover’s algorithm
is optimal in the sense that any quantum algorithm for the unstructured search
problem must have query complexity Ω(

√
N/m). With a modification, all m

solutions can be retrieved using O(
√

mN) queries.
For the unstructured search problem, it is evident that Grover’s algorithm

quadratically improves over the best possible classical algorithm. For more com-
plicated problems, however, this is not always the case, as unconditional com-
plexity lower bounds are difficult to obtain. As such, throughout the paper, we
claim a speedup for a quantum algorithm when an improvement in time com-
plexity, for a given problem, is shown over the best classical algorithm known.

A Sketch of Grover’s Algorithm. Leveraging the ability of quantum com-
puting to compute on quantum superposition states, Grover’s algorithm exploits
quantum interference to concentrate amplitude on the target states. We use Fig. 1
to provide a pictorial representation of the algorithm [33]. In this example it suf-
fices to consider real-valued amplitudes only.

Initialization. The algorithm starts with a uniform superposition state, |ψ〉 =
1√
N

∑
x |x〉, of all N values of the search space. In Fig. 1a, this uniform super-

position corresponds to a uniform amplitude histogram (top), where each bar in
the histogram represents the amplitude associated with an element in the search,
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Fig. 1. Grover’s algorithm for unstructured search [18], illustrating initialization and
two rotations. Top: concentration of amplitude on search states (vertical lines) with
each iteration, where the dotted horizontal line represents the average amplitude.
Bottom: the changing superposition state (red vector) as reflection operations are
applied, moving towards the target y-axis [33]. (Color figure online)

and is represented by a red vector (bottom) at some angle away from the target
state (y-axis). In these diagrams, the red vector represents some superposition
state of the N values.

Amplitude Amplification. This process seeks to amplify the amplitude associ-
ated with the target state, while diminishing the amplitudes associated with all
the other states. It is accomplished with O(

√
N/m) applications of two opera-

tions which, using a geometrical interpretation, can be seen as reflections of the
superposition state vector about axes. The first operation reflects the superposi-
tion state about the x-axis, representing a state orthogonal to the target states,
through the application of the oracle UP . As in Fig. 1b, this reflection yields a
new superposition state (red vector), a negative amplitude for the target states,
and a lowering of the average amplitude. The second operation reflects the super-
position state about the uniform superposition state, |ψ〉. As shown in Fig. 1c,
this results in a positive, more concentrated amplitude associated with the target
states and a superposition state (red vector) closer to the y-axis.

Each iteration of Grover’s algorithm rotates the initial state, |ψ〉, towards
the target states (y-axis). A straightforward calculation shows that quantum
interference effects facilitate transfer of probability amplitude from non-target
states to targets states (Fig. 1d and 1e provide one more iteration.). At the end
of the algorithm, a measurement yields one of the solutions with probability
proportional to the amplitude squared. We note that Grover’s algorithm can be
expressed as a quantum circuit consisting of logical gates and queries to UP .

A few comments are in order. The rotation perspective correctly suggests that
choosing the number of iterations is critical; otherwise over-rotation may occur,
resulting in less amplitude in the target states. The number of iterations depends
only on m, the number of target states, not on which states these are. Specifically,
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the optimal number of rotations is π
4

√
N
m [7]. If m is not known, it can be

estimated using a quantum counting algorithm, or by running the algorithms
a number of times, with an increasing number of iterations until discovery of a
marked state. Both preserve the overall query complexity of O(

√
N/m) [7]. The

algorithm is a bounded-probability algorithm, meaning that it can fail to find a
solution element even if one exists, an important aspect discussed in Sect. 5. To
ensure the failure probability of each Grover search is polynomially small in N ,
we repeat the algorithm O(logN) times, contributing only to the logarithmic
terms noted in many of the complexity results.

2.2 Related Work

The use of quantum search to realize speedups for various problems has seen a
surge of activity in recent years. Previous work provides lower and upper bounds
for the bounded-error query complexity of various graph problems, including
connectivity, minimum spanning tree, and single-source shortest path [5,14].
Related work, leveraged heavily in these papers, investigated the query com-
plexity for various matching problems [2,12]. More recently, quantum search has
been applied to problems within mathematical programming, such as semidefi-
nite programming [8,35] and the acceleration of the simplex method [28]. The
latter, in a similar fashion to this work, uses quantum search to accelerate the
subroutines of the simplex method, such as variable pricing. There also exist
recent efforts to use algorithms based on quantum search to speed up tree search
methods, including backtracking search [25], and branch-and-bound [26].

3 Quantum Subroutines for alldifferent

A constraint satisfaction problem (CSP) consists of a set of decision vari-
ables X = {x1, . . . , xn}, with domains D = {D1, . . . , Dn}, and constraints
C = {C1, . . . , C�}. The domain of a variable is the set of values the variable
can be assigned. Each constraint C ∈ C acts on a subset of X. A solution is an
assignment to the variables of values that satisfies the constraints.

Definition 6 (alldifferent constraint). alldifferent(x1, . . . , xk) is a
constraint that requires that all of the variables in its scope take on different
values (i.e., in a solution to the constraint, xi �= xj ,∀i �= j ∈ {1, . . . , k}).

The alldifferent global constraint is widely used in CP, and arises nat-
urally in many problems. The main domain consistency filtering algorithm for
alldifferent was proposed by Régin (see Algorithm 1) and consists of two pri-
mary subroutines, FindMaximumMatching and RemoveEdges, leveraging
existing graph algorithms [32]. Our approach uses a classical processor that fol-
lows Régin’s high-level algorithm, accelerating each subroutine using quantum
graph algorithms. While recent work has investigated practical optimizations for
Régin’s algorithm, these do not improve upon its worst-case complexity [16,39].
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Algorithm 1. The alldifferent filtering algorithm of Régin [32]
Result: False if no solution, otherwise filtered domains D∗

1 Build G = (X,V,D);
2 M ← FindMaximumMatching(G);
3 if |M | < |X| then
4 return False;
5 end
6 D∗ ← D \ RemoveEdges(G,M);
7 return D∗;

The algorithm, as in Algorithm1, begins by constructing a bipartite vari-
able/value graph G = (X,V,D), with vertices X ∪ V and edges D. Such a
graph has n = |X| + |V | vertices and m = |D| =

∑|X|
i=1 |Di| edges, where

m ≤ |X||V |. FindMaximumMatching finds a matching of maximum size in G
and RemoveEdges finds edges in G that can never participate in a maximum
matching. If FindMaximumMatching returns a matching M whose number
of edges |M | < |X|, then the constraint cannot be satisfied and the algorithm
terminates. If a matching exists with |M | = |X|, the algorithm prunes domains
based on the output of RemoveEdges.

The FindMaximumMatching subroutine bears the brunt of the compu-
tational complexity [36]. The best deterministic classical algorithms known for
finding maximum matchings run in O(m

√
n) time; the algorithm of Hopcroft and

Karp (HK) is for bipartite graphs [19], while the algorithm of Micali and Vazirani
(MV) applies to general graphs [24,37]. Alt et al. proposed an O(n3/2

√
m/log n)

algorithm [1], however, it only improves upon the aforementioned algorithms for
dense graphs. There is also a randomized O(nω)-time algorithm [20,27], where
ω corresponds to the classical asymptotic cost of matrix multiplication; the best
upper bound known on ω is approximately 2.373 [22].

In order to remove edges which participate in no maximum matching, and
thus cannot satisfy the constraint, RemoveEdges finds strongly connected com-
ponents (SCCs) in a directed transformation of G using Tarjan’s O(n + m)
algorithm [34]. While this subroutine evidently does not bear the computational
brunt of alldifferent filtering, its acceleration can still be valuable in practice.

In this section, we introduce the quantum query model and definitions needed
to describe our approaches. We then detail quantum algorithms for the Find-

MaximumMatching and RemoveEdges subroutines to accelerate the filtering
of the alldifferent constraint. For the former, we detail a quantum algorithm
proposed by Dörn for finding maximum matchings in general graphs [12]. For
the latter, we combine a number of quantum graph algorithms, including an
extension of work that identified strong connectivity in graphs [14].
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3.1 Input Models, Accounting, and Definitions

Many quantum algorithms are posed in the “oracle model”, in which black box
access is given to the quantum operation Uf : |w〉 |0〉 �→ |w〉 |f(w)〉 in unit time,
where f : W → Y is a classical function encoding the input. (Uf generalizes the
operator UP from Sect. 2.1 for a non-Boolean function f .) The query complexity
of such algorithms is the number of calls to the oracle Uf . The time complexity
is always at least the query complexity. Because the calls to the oracle are often
the most significant part of the computation, the two are often the same (up to
polylogarithmic factors), but this isn’t always the case.

In this work, we aim to provide a practical speedup, and so must account
for the cost of implementing any quantum queries used by our algorithms. We
address this by using quantum random access memory (QRAM) [17], a data
structure with which oracle queries and updates (including initialization of the
QRAM) to the quantum data structure can be made in time polylogarithmic
in the size of the database. There are proposals for special-purpose hardware
QRAM, with small-scale experiments demonstrating a proof of principle [21],
as well as several ways of implementing QRAM directly in the standard circuit
model [23]. These circuit implementations assume the same availability of fault-
tolerant, gate-model quantum computers as the algorithms that call the QRAM.

The main template employed here takes an algorithm posed in the oracle
model, and uses QRAM to implement the queries with logarithmic overhead,
taking care to account for the cost of QRAM initialization. Henceforth, by “time
complexity”, we mean number of logical gates and queries or updates to QRAM.
With a circuit implementation of QRAM, this time complexity upper bounds
the overall circuit depth, assuming that the QRAM circuits are parallelized.
Parallelization of the logical (non-QRAM) parts of the circuit, which we do not
attempt here, can only improve this overall depth.

For our quantum algorithms, we store and access the graph in the “list” (or
“array”) model. For each vertex v ∈ {X ∪ V }, we query the oracle:

UNv
: |i〉 |j〉 �→ |i〉 |j + Nv(i) mod dv〉 (1)

where dv is the degree of v, i ∈ {1, . . . , dv}, j ∈ {1, . . . , n}, and Nv(i) is the ith
neighbor of vertex v. Using QRAM, the quantum data structure in Eq. 1 can
be initialized in time O(dv log dv) and quantum queries made in time O(log dv).
When the graph is directed, UNv

queries only the outgoing neighbors. There are
other ways of formulating quantum access to a graph, but in this paper we use
only the list model.

Definitions. Given a graph G and a matching M , a vertex is exposed if no
edge in the matching M is incident to it. A path (resp., cycle), consisting of a
sequence of vertices, is alternating if its edges are alternately in the matching
M and not in M . The length of the path (resp., cycle) is the number of edges
in the path (resp., cycle). A path is augmenting if it is alternating and the first
and last vertices in the path are exposed.
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3.2 Subroutine: FindMaximumMatching

The essence for a quantum filtering algorithm is simple: use a quantum algo-
rithm to solve the maximum matching problem. Recent work proposed a series
of algorithms for finding maximum matchings in terms of calls to a quantum ora-
cle [2,12]; however, to the authors’ knowledge, this work has never been linked to
accelerating global constraint filtering in CP. In the list model, an initially pro-
posed algorithm is capable of finding maximum matchings in O(n

√
m + n log2 n)

time [2], while the second, improved algorithm runs in O(n
√

m log2 n) time [12].
The latter improves over both existing deterministic and randomized algorithms
for the majority of parameter values, and follows the classical MV algorithm for
finding maximum matchings in general graphs [24], but accelerates its primary
subroutines with quantum search. We give an overview of this algorithm by trac-
ing the classical algorithm in the context of a simple example, and comment on
the processes that are speed-up with quantum algorithms.

Example 1. Consider a CSP with variables X = {x1, x2}; domains D1 =
{v1, v2},D2 = {v1}; and the constraint alldifferent(x1, x2). A trace of the
classical MV algorithm for finding a maximum matching is shown in Fig. 2.

We follow the exposition of the MV algorithm of Peterson and Loui [29]. The
input to the algorithm is a graph, such as the bipartite variable/value graph
G shown in Fig. 2a. Initialization starts with an empty matching, M = ∅. In
phases, the algorithm looks for a set of minimum-length, vertex-disjoint aug-
menting paths to iteratively extend the current matching until a maximum
matching is found. Each phase is performed in O(m) time, and the number
of phases is bounded by O(

√
n) [19], resulting in an O(m

√
n)-time classical

algorithm [24,37]. Each phase of the classical algorithm begins with a matching
and conducts three subroutines: Search, BlossAug, and FindPath [24]. As a
property of their structure, bipartite graphs do not contain blossoms, preclud-
ing the need to cover the algorithmic details associated with dealing with them
and, as a consequence, the need for the FindPath subroutine [24]. As such, our
FindMaximumMatching subroutine needs only the Search and BlossAug

lower-level subroutines and their quantum implementations.

Search. This subroutine performs a simultaneous breadth-first search (BFS)
from each exposed vertex (E.g., in Fig. 2b all vertices are exposed since M =
∅.). The subroutine labels each vertex with a value pair, (EvenLevel, OddLevel),
where EvenLevel (resp., OddLevel) is the length of the minimum even- (resp.,
odd-) length alternating path from an exposed vertex to the current vertex,
if any, and ∞ otherwise. Exposed vertices have EvenLevel = 0 (and infinite
OddLevel), resulting in the labeling at the top of Fig. 2b. The subroutine then
searches for bridges, edges whose vertices both have finite EvenLevel or both
have finite OddLevel values. In Phase 1 of the example (Fig. 2b), all edges are
bridges. In Phase 2 of the example (Fig. 2c), only edge (x1, v1) is a bridge. The
Search subroutine passes each discovered bridge to the BlossAug subroutine.

Quantum Algorithm. The quantum acceleration of the Search subroutine,
instead of a classical BFS, uses a quantum BFS search [12] from each exposed
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Fig. 2. Finding maximum matchings in bipartite graphs [24]. Bold, black arcs: edges
in matching. Shaded, gray arcs: minimum-length augmenting paths.

vertex, using query access to a list-model representation of the graph, and a
stack bookkeeping the discovered vertices, both implemented with QRAM. From
a given vertex v, one needs to obtain all nv neighbors not yet discovered. If
the degree of v is dv, the quantum time complexity to find all neighbors is
O(

√
nvdv log dv), as discussed in Sect. 2.1. Because O(n) searches are run, each is

repeated O(log n) times to get the aggregate error down to constant. Noting that
each vertex is discovered once only (i.e.,

∑
v nv = O(n)) and that

∑
v dv = O(m),

the full quantum time complexity is O(
∑

v

√
dvnv log dv log n) = O(

√
nm log2 n),

by the Cauchy-Schwarz inequality.

BlossAug. This subroutine takes a bridge and performs a simultaneous dou-
ble depth-first search (DDFS) from each vertex in the bridge until it finds two
different exposed vertices. The subroutine ensures that a given vertex can only
take part in at most one of the two DFSs. In Phase 1 of the example (Fig. 2b),
BlossAug(x1, v1) would find exposed vertices x1 and v1. In Phase 2 of the
example (Fig. 2c), BlossAug(x1, v1) would find vertex v2 in the DFS from x1,
and x2 in the DFS from v1. Since we are concerned only with bipartite graphs,
which do not contain blossoms [24], the results of the DFSs are then concate-
nated to generate an augmenting path (e.g., augmenting path (x1, v1) for Phase
1 of the example, and augmenting path (v2, x1, v1, x2) for Phase 2).

Quantum Algorithm. To accelerate BlossAug, Dörn use quantum search to
speedup the DDFS [12]. Each DFS has a time complexity of O(

√
nm log2 n).

The derivation is similar to that for the BFS complexity of Search above.
For each augmenting path found by BlossAug, the algorithm extends the

matching along the augmenting path (i.e., an edge in M is removed from M
and an edge not in M is added to it) and marks the vertices in the path as
‘visited’ in the current phase. The marking of vertices ensures the augmenting
paths found during a phase are disjoint (i.e., do not share a vertex). Once the
set of bridges is empty, the phase is over and the next phase begins. Figure 2
provides a trace of the algorithm, starting with matching M = ∅, extending this



82 K. E. C. Booth et al.

Algorithm 2. RemoveEdges(G, M)
Data: Bipartite graph G = (X,V,D) and matching M
Result: Set of edges to prune

1 GM ← DirectGraph(G,M);
2 Dused ← FindSimplePaths(GM ) ; /* Set of ‘used’ edges */
3 S ← FindSCC(GM ); /* SCC for each vertex */
4 return IdentifyEdges(G,M,Dused,S);

to M = {(x1, v1)} in the first phase via bridge (x1, v1), and then to the maximum
matching M = {(x1, v2), (v1, x2)} in the second phase via bridge (x1, v1).

In the interest of space, the details pertaining to the vertex deletion sub-
routine in the algorithm of Dörn are not included here; however, the time com-
plexity of the subroutine is the same as for Search and BlossAug. The time
complexity of each phase is O(

√
nm log2 n), because that is the aggregate time

complexity of each subroutine (e.g., Search and BlossAug). Since the num-
ber of phases required is at most O(

√|X|) = O(
√

n) [19], the complexity of
the overall algorithm is O(n

√
m log2 n) or, in terms of our graph properties,

O(|X|√(|X| + |V |)|V | log2 |V |), for a constant Ω(1) success probability [12]. The
classical O(m

√
n)-time algorithm of MV, in terms of our graph properties, has

time complexity of O(|X|√|X||V |), indicating an improvement by a factor of√|X||V |/(|X| + |V |), up to polylogarithmic terms.

3.3 Subroutine: RemoveEdges

If a maximum matching is found such that |M | = |X|, Algorithm1 proceeds to
initiate the RemoveEdges subroutine with graph G and matching M as input
(Fig. 3a). The steps of the subroutine are detailed in Algorithm 2.

From Berge [4], an edge belongs to some maximum matching if and only if,
for an arbitrary given maximum matching, it belongs to either an even-length
alternating path which begins at an exposed vertex, or to an even-length alter-
nating cycle. If an edge does not satisfy Berge’s property, it should be pruned.
Instead of applying Berge’s conditions directly, the problem has been previously
translated into a search for edges in directed simple paths and strongly connected
components (SCC) in a directed transformation of the graph [32,36].

The input to the RemoveEdges subroutine is the variable/value graph G
and a matching M (found with FindMaximumMatching). In DirectGraph

the edges in G are directed depending upon whether or not they are in matching
M , producing directed graph GM . Edges in the matching are directed from vari-
ables to values (‘right-facing’) and the remaining edges from values to variables
(‘left-facing’). For the running example, this is illustrated in Fig. 3b. The output
of the subroutine is the set of edges to prune. The RemoveEdges subroutine
has classical time complexity O(m) stemming from three lower-level subroutines:
FindSimplePaths, FindSCC, and IdentifyEdges. We provide an overview
of these subroutines and comment on their quantum analogs.
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Fig. 3. Removing edges. Bold, black arcs: edges in matching. Shaded, red arcs: edges
removed. (Color figure online)

FindSimplePaths. To satisfy the first condition of Berge’s property, it suf-
fices to find all edges present in at least one directed simple path starting at an
exposed vertex. This is achieved by a BFS starting collectively at the exposed
vertices, marking each edge considered as ‘used’. This will output a set of edges
Dused with the label ‘used’. The number of edges processed during this subrou-
tine is O(|Dused|), therefore giving overall complexity O(|Dused|), which is on the
order of m in the worst case. When there are only a few edges to mark as used,
the run time of this step can of course be significantly less than O(m). In Fig. 3b,
there are in fact no exposed vertices in GM , and no BFS is even initiated.

Quantum Algorithm. Since the classical algorithm strictly takes time linear in
the output size, O(|Dused|), there is no possible asymptotic speedup (quantum
or otherwise). This step is therefore implemented with a classical BFS.

FindSCC. To satisfy the second condition of Berge’s property, we compute the
SCC in GM . A directed graph is strongly connected if there is a path between
all pairs of vertices in the graph. A strongly connected component (SCC) of a
directed graph is a maximal strongly connected subgraph. Classically, the SCCs
can be computed in time O(n + m) with Tarjan’s algorithm [34].

Tarjan’s algorithm is a modified DFS. When a node is discovered in the DFS,
it is put on a stack, and obtains index and low-link values, which are initially
equal to infinity and updated during the search. On the backtrack, low-link
values can be updated: of all forward neighbors on the stack, update the current
low-link value to the minimum index value. After this completes, the low-link
value of a vertex is the SCC to which it belongs.

This can be achieved by looping over all neighbors at a vertex v where there
are two possible outcomes: i) if the neighbor w has not been discovered, advance
the DFS to w, ii) if w is on the stack (i.e., already discovered), update the current
low-link value of v to the minimum of v’s low-link value, and w’s index value.
Upon looping over all neighbors, if v’s low-link is equal to its index value, then
this value is the SCC to which it belongs. Moreover, all nodes with this low-link
value make up the SCC, and these can be removed from the stack.

FindSCC labels the SCC to which each vertex belongs. The directed graph
GM illustrated in Fig. 3b contains four trivial SCCs.

Quantum Algorithm. Existing work has produced quantum algorithms for deter-
mining if a graph is strongly connected [14], noting that an adaptation of the
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approach can yield the identification of SCCs. Here, we describe such an adapta-
tion based directly on Tarjan’s algorithm, observing that it conducts essentially
two searches at each step. In particular, from a vertex one needs to: i) find an
undiscovered neighbor, and ii) find the minimum index value over the neigh-
bors. While backtracking through the DFS, one can perform a search over the
index values of all forward neighbours. The complexity of implementing quan-
tum searches is the same as quantum DFS, plus the cost to perform a quantum
minimum finding at each node which is O(

√
dv log dv) [15]. Overall the quantum

time complexity is therefore O(
√

nm log2 n), with each search repeated O(log n)
times. In addition to the graph and stack QRAM data structures to perform the
DFS, one also needs to maintain a QRAM data structure for the index values of
each vertex, which is used in the quantum minimum finding.

IdentifyEdges. The output of FindSimplePaths and FindSCC is, respec-
tively, a set of edges Dused ⊆ D marked as ‘used’, and the SCC to which each
vertex belongs. IdentifyEdges identifies the set of edges to be removed, sat-
isfying three conditions: i) the edge is not in Dused, ii) the edge is not between
vertices in the same SCC, and iii) the edge is not in the current matching M .
The set R of edges to remove is easy to construct by iterating over all edges
and checking condition i-iii), giving a complexity of O(m). In the context of our
example, since Dused = ∅, and all SCCs are trivial, the subroutine returns G\M ,
namely the edge (x1, v1) as illustrated in Fig. 3c.

Quantum Algorithm. A quantum search can be used to find the edges R that
need to be removed. From each variable vertex x ∈ X, a quantum search over
the dx incident edges (of the original, undirected graph) can determine which
need to be removed, subject to the three criteria as in the classical version
of IdentifyEdges. If there are rx edges to be removed, where

∑
x rx = |R|,

the quantum time complexity is O(
√

rxdx log dx) for each x, resulting in a
total of O(log n

∑
x

√
rxdx log dx) = O(

√
m|R| log2 n), with each search repeated

O(log n) times. To perform such a quantum search, QRAM access to the graph
is required, as is QRAM access to the classical data: M,Dused, and the SCCs.
Each of these can be set up prior to and maintained during the execution of the
above subroutines without changing the overall complexity of RemoveEdges.

Up to logarithmic factors and for constant error probability, the time com-
plexity of quantum RemoveEdges is O(|Dused| +

√
mn +

√
m|R|), reflecting

the three lower-level subroutines. In the worst case this is O(m), occurring when
|Dused| = O(m) and/or |R| = O(m), and equivalent to the classical runtime. In
cases where |R| = O(n) (or lower), and |Dused| = O(

√
mn) (or lower), the full

complexity is O(
√

mn). This upper bound on the quantum runtime improves over
the O(m) classical runtime by a factor of up to

√
m/n, or

√|X||V |/(|X| + |V |).

4 Extensions to the Global Cardinality Constraint

The global cardinality constraint (gcc) is an extension of the alldifferent con-
straint, commonly used in scheduling, rostering, and timetabling problems [31].
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Definition 7 (gcc constraint). Given a set of variables X = {x1, . . . , xn}, a
set of values V = {v1, . . . , vm}, and a set of cardinality bounds Δ = {δ1, . . . , δm},
where each δi ∈ Δ is defined by [�i, ui], the constraint gcc(X,V,Δ) requires that
value vi take place in the solution between �i and ui times, inclusively.

State-of-the-art classical gcc filtering employs a O(|X|√|X||V |)-time algo-
rithm for achieving domain consistency [31], leveraging previous work for
alldifferent [32]. The first stage of the algorithm enforces the domain con-
sistency of gcc when all cardinality intervals are fixed to ui, while the second
stage enforces domain consistency when the cardinality is fixed to �i, following
a previous result that this is sufficient for the domain consistency of gcc [30].

For each stage, the classical filtering algorithm constructs a bipartite vari-
able/value graph, G = (X,V,D). Then, a capacity, cap(xi) = 1, is associated
with each variable node, and cap(vi) ≥ 0, with each value node. A matching in
this graph is a subset of edges such that no more than the capacity of a given
node is adjacent to that node. The algorithm then finds matchings of maximum
cardinality for cap(vi) = ui (first stage) and for cap(vi) = �i (second stage). To
do this, the algorithm of HK [19] can be used on an augmented graph, G′, where
value nodes are duplicated cap(vi) times, and the capacity of each node in G′ is
set to one; however, the complexity with this naive implementation will scale with
the number of edges in the augmented graph. Instead, Quimper et al. describe an
alteration of HK that runs on G by ensuring that in the DFS each free vertex v
is visited at most c(v)− dM (v) times, where in each phase, dM (v) is the number
of edges in the current matching M adjacent to node v [31]. This ensures the
complexity is bounded by the number of edges in G, yielding an O(|X|√|X||V |)
algorithm. Pruning the domains using Tarjan’s algorithm [34], with the match-
ings at each stage, is sufficient to prune the domains for the domain consistency
of gcc [30]. Given that Tarjan’s algorithm is less computationally expensive than
the maximum matching algorithm, the best-known overall classical complexity
for achieving domain consistency for gcc is O(|X|√|X||V |).
Quantum Algorithm. The filtering algorithm for gcc utilizes the same subrou-
tines used in alldifferent, indicating that the detailed quantum subroutines
can also be used to accelerate gcc filtering. For each of the two stages in the
filtering algorithm, we can use the quantum-accelerated version of FindMaxi-

mumMatching. For this, the algorithm of Dörn [12] is modified, following the
modification Quimper et al. made to HK, to ensure that, in each stage, free
vertices can be visited c(v)−dM (v) times. This is done by associating an integer
counter with each vertex, in QRAM. The quantum-accelerated RemoveEdges

subroutine can then be applied to the maximum matchings found at both stages.
The time complexity of the overall gcc filtering algorithm follows that of finding
maximum matchings, which is O(|X|√(|X| + |V |)|V | log2 |V |).

5 Integration in Backtracking Search

As noted, the quantum search algorithms we employ have some probability of
failure. For the purposes of the discussion here, the quantum FindMaximum-
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Matching subroutine is extended such that the output is a valid matching with
|M | = |X| (as verified with a classical check) or False; the quantum subroutine
is said to fail if such a matching exists but is not found. If we let ε be the failure
probability of a given quantum subroutine, the acceptable value of ε depends on
how the quantum subroutine is used in the search.

Exact Method. When the quantum subroutine has perfect soundness (e.g., quan-
tum FindMaximumMatching), then one approach is to require perfect com-
pleteness.2 This can be achieved by running the classical subroutine whenever the
quantum one does not return a satisfying item (e.g., a valid matching of sufficient
size). Let t(n) = poly(n) be the runtime of the classical subroutine. By repeating
the quantum subroutine O(log(n)) times, ε can be brought to o(1/t(n)), so that
when a satisfying item exists, the expected cost of running the classical subrou-
tine because the quantum one fails to find it is o(1); therefore, at all nodes with
a satisfying item, we get a quantum speedup on average. If no such item exists,
the quantum subroutine will not return one. At nodes without a satisfying item,
we run the classical algorithm, yielding no speedup for those nodes.

Bounded-Error and Heuristic Methods. Alternatively, suppose we want the over-
all tree search to fail (i.e., not find a solution if one exists) with at most a
constant probability O(1) (which can be made arbitrarily small without chang-
ing the asymptotic runtimes). Let TQ be the number of tree search nodes at
which the quantum subroutine is run. It suffices then to repeat the quantum
subroutine O(log TQ) times to get ε = O(1/TQ). However, if TQ is exponential in
n, this can overwhelm the quantum speedup. To preserve the speedup, we could
restrict the tree search to calling the quantum subroutine only TQ = poly(n)
times. In practice, tree search algorithms often only explore a polynomial num-
ber of nodes, either due to limited resources, or because that is sufficient for the
problem instance at hand. In cases that the tree search explores more than a
polynomial number of nodes, the quantum filtering can be disabled; in this case,
quantum search benefits a large number of nodes early in the tree. The search
algorithm can also be run in “heuristic mode”, using the quantum subroutine
at every node. In this case, the effect of subroutine failures on the overall tree
search is strongly dependent on the tree search algorithm used and in general
cannot be bounded.

6 Conclusions

We introduce quantum-accelerated filtering algorithms for global constraints,
with subroutines for the alldifferent constraint and the global cardinality
constraint (gcc). This work is intended to be a first step towards a larger effort

2 For an algorithm intended to find an item with a certain property, we say that the
algorithm has perfect completeness if it always finds such an item, if one exists, and
the algorithm has perfect soundness if it never returns an item without the property.
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of using quantum algorithms to accelerate constraint programming. In the long-
term, quantum computing is a promising technology for approaching hard com-
putational problems, and we demonstrate here that the constraint programming
community is well-positioned to benefit from this progress.
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Abstract. Maximum Satisfiability (MaxSAT) is a general model for
formulating combinatorial optimization problems. MaxSAT formulas
encoded from different domains have different features, yet most
MaxSAT solvers are designed for general formulas. This work consid-
ers an important subclass of MaxSAT, named as Pure MaxSAT, which
characterizes a wide range of combinatorial optimization problems par-
ticularly subset problems. We design a novel local search method for Pure
MaxSAT, which combines the idea of linear search and local search and is
dubbed as linear local search. Our algorithm LinearLS significantly out-
performs state of the art MaxSAT solvers on Pure MaxSAT instances,
including instances from MaxSAT Evaluations and those encoded from
three famous NP hard combinatorial optimization problems. Moreover,
LinearLS outperforms state of the art algorithms for each tested combi-
natorial optimization problem on the popular benchmarks.

Keywords: Pure MaxSAT · Combinatorial optimization · Linear local
search

1 Introduction

Maximum Satisfiability (MaxSAT) is an optimisation version of Boolean Satisfi-
ability (SAT), and its general form contains both hard clauses and soft clauses,
where the soft clauses can be unweighted or weighted. Solving such a MaxSAT
instance involves finding a truth assignment that satisfies the hard clauses along
with a maximum number (resp. weight) of soft clauses. MaxSAT is a natural
model for formulating combinatorial optimization problems, and has been used
to efficiently solve many combinatorial optimization problems that appear in
industrial domains.

Most MaxSAT algorithms are developed for general purpose and focus on
achieving better performance on a wide range of benchmarks which come from
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diverse domains, and they are usually tested on benchmarks from MaxSAT Eval-
uations (MSEs). The most popular and effective approach for MaxSAT is the
SAT-based approach [1,17,35], which reformulates the MaxSAT optimization
problem into a sequence of SAT decision problems and solves them by iteratively
calling a SAT solver. SAT-based MaxSAT algorithms can be divided into two
types: linear [6,7,26,32] and core-guided [2,21,36,39]. SAT-based algorithms
are essentially complete: they can prove the optimality of the solutions they find
when they terminate. Some SAT-based solver such as the linear search ones and
the hybrid ones [3,4], refine the upper bound during the search, and can be used
for incomplete solving. SAT-based solvers have shown strong performance in the
MSEs.

There has been growing interest in incomplete MaxSAT algorithms in recent
years, with a surge of new methods at the two recent MSEs. A main incomplete
approach for MaxSAT is local search, which aims to find high quality solutions
quickly. Local search algorithms typically maintain a complete assignment and
modify it iteratively by flipping the value of variables to quickly visit the search
space and look for solutions of increasing quality. Local search for MaxSAT has
witnessed significant progress during recent years [10,20,27,30]. Particularly, a
dynamic local search algorithm named SATLike [27] is competitive with SAT-
based solvers on solving unweighted industrial instances.

When solving combinatorial optimization problems by MaxSAT, most works
utilize the general solvers off the shelf [5,13,14,22]. However, MaxSAT instances
from different domains have their own characteristics, which we believe should be
taken into account. Very limited works have been done on developing MaxSAT
solvers for specific problems such as Maximum Weight Clique [16,23]. But such
algorithms are limited to just one specific problem. An important fact is that
many combinatorial optimization problems share the same feature when they are
formulated in MaxSAT. Therefore, a significant direction is to develop effective
algorithms for important subclasses of MaxSAT, which can have better perfor-
mance than general MaxSAT algorithms while at the same time can be applied
to a wide range of problems.

In this work, we introduce an important subclass of MaxSAT called Pure
MaxSAT (PureMS for short), which characterizes a wide range of combinatorial
optimization problems, particularly including subset problems. In fact, a consid-
erable portion of the benchmarks in recent MSEs belong to this subclass. For
solving PureMS, we propose a new search paradigm named linear local search,
which is inspired by the great success of the linear SAT-based solvers. The core
idea is that, whenever finding a better solution, the algorithm only visits assign-
ments with strictly lower soft cost (i.e., with smaller weight of falsified soft
clauses). Thus, every feasible solution visited during the search has a lower cost
than previously found solutions. This is the first time that the idea of linear
search is integrated to local search for MaxSAT, and our experiments show that
the linear local search is powerful for solving PureMS formulas.

Our linear local search is a two-phase local search algorithm, which consists of
two phases in each iteration. The first one is dedicated to decrease the soft cost,
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while the second focuses on satisfying hard clauses, subject to keeping the soft
cost lower than the cost of the previously found best solution. To improve the
local search, we propose a variant of the Variable Neighbourhood Descent (VND)
method [34]. VND is a variant of Variable Neighbourhood Search (VNS), which
benefits from the advantages of large neighbourhoods without incurring a high
time complexity of the search steps. VND employs small neighbourhoods until
a local optimum is encountered, at which point the search process switches to a
larger neighbourhood (corresponding to flipping more variables in one iteration
in the context of MaxSAT), which might allow further improvement. Different
from previous VND or VNS methods which only consider the number of elements
to change values, we also take into account a structure parameter, i.e., the total
degree of the chosen variables.

We carry out experiments to evaluate our algorithm dubbed LinearLS on a
wide range of benchmarks, including all PureMS instances in recent MSEs, as
well as the benchmarks from three famous combinatorial optimization problems,
namely maximum clique (MaxClq), minimum vertex cover (MinVC) and set
cover problem (SCP). Our results show that LinearLS is significantly better
than state of the art MaxSAT solvers, including SAT-based and local search
ones on all the benchmarks. Moreover, LinearLS outperforms state of the art
algorithms for MaxClq, MinVC and SCP. Note that, our algorithm is general for
combinatorial optimization problems that can be formulated as PureMS, while
the competitors are tailored for each specific problem respectively.

The remainder of this paper is structured as follows. The next section intro-
duces background knowledge. Section 3 introduces the Pure MaxSAT problem,
and Sect. 4 presents the linear local search method. Experiment results are pre-
sented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Preliminary

Given a set of n Boolean variables X = {x1, x2, ..., xn}, a literal is either a
variable xi (positive literal) or its negation ¬xi (negative literal). The polarity
of a positive literal is 1, while the polarity of a negative literal is 0. A clause is
a disjunction of literals (i.e. Ci = li1 ∨ li2 ∨ ... ∨ lij), and can be viewed as a set
of literals. A unit clause is a clause with only one literal. A Conjunctive Normal
Form (CNF) formula F = C1 ∧ C2 ∧ ... ∧ Cm is a conjunction of clauses.

A mapping α : X → {0, 1} is called an assignment, and a complete
assignment is a mapping that assigns to each variable either 0 or 1. Given
an assignment α, a clause is satisfied if it has at least one true literal, and is
falsified if all its literals are false under α.

Given a CNF formula, the Maximum Satisfiability (MaxSAT) problem con-
cerns about finding an assignment to satisfy the most clauses. In its general
form, the clauses are divided into hard clauses and soft clauses, where the soft
clauses can be unweighted or weighted, and the goal is to find an assignment
that satisfies all hard clauses and maximizes the number (resp. weight) of satis-
fied soft clauses. Such formulas are referred to as (Weighted) Partial MaxSAT.
Hereafter, when we say MaxSAT, we refer to this kind of formulas.
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Given a MaxSAT formula F and an assignment α to its variables, two impor-
tant sets are defined here.

– Hf (α) = {c|c is a hard clause falsified under α}.
– Sf (α) = {c|c is a soft clause falsified under α}.

The cost functions are defined below.

– the hard cost of α, denoted as costh(α), is the number of falsified hard clauses
under α.

– the soft cost of α, denoted as costs(α), is the number (or total weight) of
falsified soft clauses under α.

– the cost of α is cost(α) = +∞ · costh(α) + costs(α).

An assignment α is feasible iff it satisfies all hard clauses in F . It is easy to see
cost(α) = costs(α) for feasible assignments, while cost(α) = +∞ for infeasible
assignments.

Two variables are neighbors if they occur in at least one clause, and N(x)
denotes all the neighboring variables of x. The degree of x is denoted as
degree(x) = |N(x)|. We use Δ(F ) to denote the averaged degree of formula
F .

Below we give the definitions of the three combinatorial optimization prob-
lems studied in our experiments.

MaxClq and MinVC: Given an undirected graph G = (V,E), a clique is a
subset K ⊆ V whose elements are pairwise adjacent, while a vertex cover is a
subset C ⊆ V such that every edge has at least one endpoint in C. Given a graph,
the Maximum Clique (MaxClq) problem is to find a maximum sized clique, while
the Minimum Vertex Cover (MinVC) problem is to find the minimum sized
vertex cover.

SCP: Given an ground set U and a set S of subsets of U with ∪∀s∈S = U ,
where each element in S is associated with a weight w(s), the goal of Set Cover
Problem (SCP) is to find a set F ⊆ S of the smallest total weight but still
contains all elements in U , that is, ∪∀s∈F = U . In the unweighted version of
SCP, also known as uniform cost SCP, each element in S has the same weight 1,
and thus the goal is to find F ⊆ S such that the cardinality of F is the smallest.

3 The Pure MaxSAT Problem

We propose a new variant of MaxSAT named Pure MaxSAT, which is an impor-
tant subclass of the MaxSAT problem.

Definition 1 (pure clause). A clause is a pure clause if all its literals are of
the same polarity (either positive or negative). The polarity of a pure clause is
defined as the polarity of its literals.
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Definition 2 (Pure MaxSAT). The Pure MaxSAT problem is a special type of
Partial MaxSAT where all hard clauses are pure clauses with the same polarity,
and all soft clauses are pure clauses with the opposite polarity. In the weighted
Pure MaxSAT, each soft clause has a positive number as its weight.

When formulated as the language of MaxSAT, many combinatorial opti-
mization problems naturally fall into the class of Pure MaxSAT. We give three
examples, which are famous NP hard problems with wide applications of their
own.

– MaxClq: For each vertex i ∈ V , the PureMS instance has a boolean variable
xi that indicates whether vertex i is chosen in the clique. For each vertex
pair (i, j) /∈ E (E is the edge set), generate a hard clause ¬xi ∨ ¬xj ; for each
vertex i ∈ V , generate a unit soft clause {xi}.

– MinVC: For each vertex i ∈ V , the PureMS instance has a boolean variable
xi that indicates whether vertex i is chosen in the vertex cover. For each edge
(i, j) ∈ E, generate a hard clause xi ∨ xj ; for each vertex i ∈ V , generate a
unit soft clause {¬xi}.

– SCP: For each element (a subset) s ∈ S, the PureMS instance has a boolean
variable xs that indicates whether s is chosen in the solution. For each element
e ∈ U , generate a hard clause {xs|s ∈ S, e ∈ s}, to ensure that each element
in U is covered by at least one subset in S. For each element s ∈ S, generate
a soft clause {¬xs} and its weight is equal to w(s).

Observing the feature of PureMS, we can gain some insights on local search
algorithms for this problem. Since the polarity of hard clauses is opposite to
that of the soft clauses, the goal of satisfying more hard clauses and the goal
of satisfying more soft clauses are obviously conflicting. Whenever we flip a
variable to reduce costs, it causes an increase on costh, although sometimes the
increment can be 0 (rarely happens). Similarly, a flip of a variable which reduces
costh potentially goes along with an increase on costs. This observation leads us
to design linear local search for PureMS.

4 Linear Local Search for Pure MaxSAT

In this section, we propose a linear local search algorithm for PureMS. We firstly
introduce the linear local search framework and the scoring function, and then
present the algorithm.

4.1 Linear Local Search and Its Scoring Function

We propose a two-phase local search framework (Algorithm 1), which allows
to implement a linear search that visits solutions with monotonically decreasing
cost. First, we note that, for PureMS, since the polarity of literals in hard clauses
are the same, we can produce a feasible initial assignment with guarantee. At
the trivial case, we can simply assign 0 to all variables if hard clauses consist
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of negative literals, and 1 on the contrary. Nevertheless, there are better initial-
ization algorithms. After the initialization, the algorithm executes a loop until
reaching a time limit. Each iteration of the loop consists of two phases.

Algorithm 1: A Linear Local Search Framework for PureMS
1 Input: MaxSAT instance F , the cutoff time
2 Output: A feasible assignment α∗

3 begin
4 α ← InitAssignment();
5 while elapsed time < cutoff do
6 if Hf (α) = ∅ then
7 α∗ ← α, cost∗ ← cost(α);

8 flip some variables to decrease costs(α);
9 while Hf (α) �= ∅ do

10 choose a variable y from falsified hard clauses;
11 if flipping y would cause costs(α) ≥ cost∗ then break;
12 flip(α, y);

13 return (α∗, cost∗)

– In the first phase, the algorithm chooses some variables to flip, with the
purpose of decreasing the soft cost. This phase produces some newly falsified
hard clauses.

– In the second phase, the algorithm tries to satisfy as many hard clauses as
possible, with a constraint that keeps the soft cost strictly lower than cost∗

(the cost of the best found solution). Thus, if all hard clauses are satisfied
(i.e., Hf (α) = ∅), that means a better solution is found.

Local search algorithms are typically guided by scoring functions, which are
used to evaluate variables and critical in selecting the variable to flip. We design
a scoring function which cooperates well with the linear local search framework.

Our scoring function is related to a clause weighting scheme. Most local search
algorithms for MaxSAT employ constraint weighting techniques, which serve as
a form of diversification. Our algorithm utilizes a clause weighting scheme that
works on hard clauses (the details will be described in the LinearLS algorithm in
Sect. 4.2). We associate each hard clause c with a positive integer weight hw(c)1,
which are initialized to 1 and updated during the search. Note that the weights
of soft clauses are not changed in our algorithm. Our scoring function relies on
two basic functions which are defined below.

1 To distinguish with the weight of soft clauses w(c) in the original formula, we use
hw(c) to denote the hard clause weight introduced by our method.
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Definition 3 (hard score, soft score). Given a MaxSAT formula and let α
be a complete assignment, the hard score of a variable x w.r.t. α is defined as

hscore(α, x) =
∑

c∈Hf (α)

hw(c) −
∑

c∈Hf (α′)

hw(c),

and the soft score of x w.r.t. α is defined as

sscore(α, x) = costs(α) − costs(α′),

where α′ differs from α only in the value of x.

In this work, the α in scoring functions always refers to the current assign-
ment and can be omitted. Hence, hscore(α, x) and sscore(α, x) can be written
as hscore(x) and sscore(x). Intuitively, hscore(x) and sscore(x) are the incre-
mental changes in the objective for flipping x w.r.t. the current assignment.

Lemma 1. Given any PureMS formula F , and α is a complete assignment to
F , for any variable x, we have

hscore(α, x) · sscore(α, x) ≤ 0.

Proof: According to the definition of PureMS, all clauses in F are pure clauses
and the literals in hard clauses have the opposite polarity to those in soft clauses.
Without loss of generality, let us assume the hard clauses contain only positive
literals, and the soft clauses contain only negative literals. If hscore(α, x) > 0,
which indicates that the flip of x make at least one falsified hard clause become
satisfied, then it must flip the value of x from 0 to 1. Such a 0→ 1 flip never
makes any falsified soft clause become satisfied, as all soft clauses have negative
literals. Therefore, hscore(α, x) and sscore(α, x) cannot be positive at the same
time. ��

Based on these two basic functions and Lemma 1, we derive a novel scoring
function as follows.

Definition 4 (ratio score). The ratio score of a variable x is defined as

rscore(x) =
hscore(x)

|sscore(x)| + 1
.

This rscore measures the ratio of hscore and sscore. We add one to the
denominator to avoid the “divide by 0” error. Also, we adopt the absolute value
of sscore for convenient usage—by doing this, we can prefer larger rscore no
matter in the first or second phase. In the first phase, we focus on satisfying
soft clauses, and the chosen variables have sscore(x) > 0 and hscore(x) ≤ 0,
and thus rscore(x) ≤ 0. For equal hscore, a larger rscore means a larger sscore,
which means satisfying more soft clauses; for equal sscore, a larger rscore means
breaking fewer hard clauses. In the second phase, we focus on satisfying hard
clauses, and the chosen variables have hscore(x) > 0 and sscore(x) ≤ 0, and thus
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rscore(x) ≥ 0. For equal sscore, a larger rscore means a larger hscore, which
leads to more satisfied hard clauses; for equal hscore, a larger rscore means a
smaller |sscore|, which means breaking fewer soft clauses. Our algorithm employs
rscore in both phases of local search, and prefers to pick the variables with larger
rscore.

4.2 The LinearLS Algorithm

Based on the linear local search framework and the rscore function, we develop
an algorithm named LinearLS (Algorithm2). The algorithm is described in
details below.

Initialization: Unlike previous local search algorithms for SAT/MaxSAT which
generate the initial solution randomly, our algorithm employs a greedy strategy.
Firstly, all variables are assigned with the value equal to the polarity of the soft
clauses. This makes all hard clauses falsified and all soft clauses satisfied. Then,
the algorithm iteratively picks a random falsified hard clause and flips a variable
with highest hscore in the clause, until there is no falsified hard clause. Thus the
initial assignment is feasible. At the worst case, all variables are flipped in order
to make all hard clauses satisfied, then the cost would be the largest among
feasible solutions as all soft clauses are falsified in this situation. In practice,
however, this initialization procedure usually finds a much better solution than
the worst case.

After initialization, the local search loop (lines 5–20) is executed until a given
cutoff time is reached. During the search, the best found solution α∗ and its cost
are updated. An important feature of our linear local search algorithm is that,
whenever we find a feasible solution, we are sure that it is better than α∗, as
the algorithm always keeps costs(α) strictly lower than cost∗. Thus, whenever α
becomes feasible, α∗ is updated to α and cost∗ is updated accordingly (lines 6–
7). When the algorithm reaches the time limit, it returns the best found solution
α∗ and its cost.

The local search is based on the two-phase framework, and we propose a
variant of Variable Neighbourhood Descent (VND) method for striking a good
balance between exploitation and exploration.

In the first phase (lines 8–13), we flip K variables, where K is adjusted
according to the algorithm’s behavior. If the algorithm has not found a better
solution for a long period (which is set to 2·104 steps for SCP benchmarks and 104

for the others in LinearLS), then K increases by 1 for improving exploration,
while once the algorithm finds a solution, K is reset to 1 for fast converge.
This is implemented in the Adjust flip num phase1(K) function. Each flipping
variable in the first phase is chosen from all falsified soft clauses by picking the
variable with the highest rscore (line 10), breaking ties by preferring the one
that is least recently flipped. Additionally, we set a dynamic maximum limit
to K by considering the total degree of the flipping variables in the first phase
(line 12). Once this value achieves a threshold (t × Δ(F ), where t is set to 1 for
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Algorithm 2: LinearLS
1 Input: Pure MaxSAT instance F , the cutoff time
2 Output: A feasible assignment α∗ and its cost
3 begin
4 α ← InitSolution();
5 while elapsed time < cutoff do
6 if Hf (α) = ∅ then
7 α∗ ← α, cost∗ ← cost(α);

8 SumDegree ← 0;
9 for i ← 1 to K do

10 x ← a variable in Sf (α) with highest rscore;
11 flip(α, x);
12 SumDegree+ = degree(x);

13 if SumDegree ≥ t × Δ(F ) then break ;

14 while Hf (α) �= ∅ do
15 c ← a random falsified hard clause;
16 y ← a variable in c with highest rscore;
17 if costs(α) − sscore(α, y) ≥ cost∗ then break ;
18 flip(α, y);

19 Adjust flip num phase1(K);
20 Update hard clause weights();

21 return (α∗, cost∗)

MaxClq and SCP benchmarks, 2 for the rest), the first phase is stopped and the
algorithm goes to the second phase (line 13).

Here we provide the intuition of limiting VND with a degree based upper
bound. Generally, the more variables flipped in the first phase, the more candi-
date variables are generated for the second phase. However, the other factor to
the number of candidate flipping variables (thus the size of search area) in the
second phase is the degree of the variables flipped in the first phase. We take
into account both factors in our VND method.

The second phase (lines 14–18) is dedicated to satisfy hard clauses, and thus
each flipping variable is chosen from a random falsified hard clause. The variable
with highest rscore is picked, breaking ties by preferring the one that is least
recently flipped. For each selected variable, LinearLS checks whether its flip
would cause costs(α) greater than or equal to cost∗, and if this is the case, it
leaves the second phase immediately without flipping the variable. By doing this,
we guarantee that costs(α) < cost∗ always holds during the search.

In the end of each iteration, the K value is updated when necessary according
to our VND method. Also, the hard clause weights are updated (line 20): the
weight of each falsified hard clause is increased by 1, and when the average weight
achieves a threshold (which is set to n

2 ), early weighting decisions are forgotten
as hw(c) ← ρ · hw(c), where ρ ∈ (0, 1) is a constant factor and set to 0.3.
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4.3 More Optimizations

An effective strategy to avoid the cycle phenomenon (i.e., revisiting some search
areas) in local search is the Configuration Checking (CC) strategy [12], which
forbids flipping a variable x, if after the last time x was flipped, none of its
neighboring variables has changed its value. The CC strategy has proved effective
in local search for SAT [11] and MaxSAT [30,31]. LinearLS also employs CC.
Variables flipped in last iteration are also forbidden to be flipped again. These
are common techniques in local search to reduce the cycle phenomenon.

5 Experiments

We carry out experiments to compare LinearLS with state of the art algorithms
on a wide range of benchmarks. LinearLS is implemented in C++ and com-
piled by g++ with -O3 option. Our all experiments were conducted on a server
using Intel Xeon Platinum 8153 @2.00 GHz, 512G RAM, running Centos 7.7.1908
Linux operation system. The time limit for all algorithms is 300 s, except that
we additionally test an exact MaxSAT solver for one hour.

5.1 Results on PureMS Benchmarks from MSEs

We collect all PureMS instances from both unweighted and weighted benchmarks
in MaxSAT Evaluations (MSEs) 2017, 2018 and 2019. There are several dupli-
cate instances in the unweighted benchmarks of the three MSEs. We compare
LinearLS with 4 state of the art MaxSAT solvers, from which are 1 local search
solver and 3 SAT-based solvers.

Table 1. Results on Pure MaxSAT benchmarks from MaxSAT Evaluations 2017–2019,
including unweighted benchmarks and weighted benchmarks.

Benchmark#inst.LinearLS SATLike( w)Loandra TT-OpenWBORC2 RC2(1h)

#winTime#winTime #winTime#winTime #winTime#winTime

Unweighted

MSE17 113 111 6.1 48 31.6 57 27.5 57 40.9 57 15.1 64 153.9

MSE18 110 100 16.2 46 29.5 46 23.7 36 44.1 61 56.0 70 235.2

MSE19 101 88 22.8 28 17.0 33 51.6 25 59.4 42 84.2 49 264.4

MSEall 284 261 14.2 112 29.6 121 28.0 105 41.9 148 50.4 168 206.7

Weighted

MSE17 40 40 <0.1 31 0.1 33 16.7 20 0.1 25 25.5 37 372.8

MSE18 15 15 <0.1 15 0.1 14 29.5 0 N/A 4 151.7 14 859.2

MSE19 51 51 30.7 30 6.1 21 10.7 8 27.4 19 45.7 25 238.7

MSEall 106 106 14.8 76 2.5 68 17.5 28 7.9 48 44.0 76 418.3
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– SATLike [27] is the best local search MaxSAT solver, which won the two
unweighted categories of incomplete track in MSE 2018 and placed 2nd in
the 300 s unweighted category of incomplete track in MSE 2019. SATLike
has another version optimized for weighted categories, which is denoted as
SATLike w.

– Loandra [6] won the two unweighted categories, and was ranked 2nd in two
weighted categories of incomplete track in MSE 2019.

– TT-Open-WBO-inc [38] won the two weighted categories of incomplete track
in MSE 2019.

– RC2 (implementing the relaxable cardinality constraints method) [37] won
both weighted and unweighted categories of complete track in MSE 2019.
Since RC2 is an exact solver, in our experiments, we test RC2 with 2 time
limits, 300 s (as with other solvers) and one hour. We note that local search
and exact solvers have different advantages and it is better to see them as
complementary alternatives. The comparisons with exact solvers are just for
reference, which may give us some insights.

Table 2. Averaged SCORE results of MaxSAT solvers on each family of MSE bench-
marks. We also report the results of the complete solver RC2 with 1 h time limit for
reference.

Domain(#inst.) LinearLS Linear init SATLike( w) Loandra TTOpenWBO RC2 RC2(1h)

Unweighted

maxclique(68) 1.0 0.978 0.995 0.995 0.997 0.441 0.485

aes(14) 1.0 0.882 0.895 0.769 0.303 0.143 0.143

frb(40) 1.0 0.978 0.994 0.999 1.0 0.975 1.0

bcp-syn(53) 1.0 0.469 0.996 0.955 0.92 0.396 0.509

optic(69) 1.0 0.904 0.989 0.961 0.835 0.333 0.377

drmx-cryptogen(40) 0.991 0.827 0.984 0.955 0.881 0.825 1.0

Weighted

auc-paths(35) 1.0 0.98 1.0 1.0 0.993 0.257 0.886

auc-scheduling(20) 1.0 0.996 0.996 0.999 1.0 1.0 1.0

MinimumWeight

DominatingSetProblem(7)

1.0 0.966 0.402 0.708 0.705 0.0 0.0

auctions(16) 1.0 0.985 0.996 0.996 0.995 0.312 0.625

set-covering(28) 1.0 0.888 0.996 0.981 0.949 0.5 0.536

For each algorithm on each instance family, we report the number of instances
where the solver finds the best solution among all solvers (“#win”) and the mean
time of doing so over such winning instances. These results (Table 1) clearly show
the superiority of LinearLS over other MaxSAT solvers. Particularly, the “#win”
number of LinearLS is always significantly larger than other solvers.

To show how far the solution provided by a solver are from the best solution
found by all the solvers, for each algorithm A on each fomula F , we calculate a
metric measured as SCORE(F,A) = BEST COST (F )+1

COST (F,αA)+1
, where αA is the solution

found by algorithm A while BEST COST (F ) denotes the lowest cost found in
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the time limit by any of the solvers. These benchmarks consists formulas encoded
from different domains, and we report the averaged SCORE for each algorithm
on each domain in Table 2. The SCORE of LinearLS is 1.0 (full score) for all
domains except 0.991 for the cryptogen domain. Nevertheless, the best SCORE
is obtained by RC2 for one hour time limit. If we compare all the solvers with the
time limit of 300 s, then LinearLS is still the best, achieving a full score, which
indicates its strong performance on a wide range of benchmarks from diverse
domains.

We also calculate the SCORE of the initial solutions of LinearLS. As can be
seen from the table, the initial solutions of LinearLS are better than the solutions
returned by TTOpenWBO and RC2 on most of the Pure MaxSAT instances.
Besides, although the initial solutions are not as good as those returned by the
incomplete solvers SATLike and Loandra, the gaps are not large. This indicates
that the design of the problem is an important factor to the good performance
on Pure MaxSAT. By executing the local search procedure of LinearLS, the
solutions are further improved.

Table 3. Results on MaxClq benchmarks. This table reports results for three Max-
Clq benchmarks, including Kidney Exchange (Kidney), Research Excellence Network
(REN) and DIMACS. The error-correcting codes (ECC) benchmark instances are too
easy that all algorithms find the optimal solution quickly and not reported.

Solvers Kidney(120) REN(129) DIMACS(37) MaxClq all(286)

Win Time Win Time Win Time Win Time

LinearLS 120 0.1 129 0.1 33 11.1 282 1.4

LSCC 118 0.8 127 <0.1 33 <0.1 278 0.3

BBMS 98 27.4 129 4.8 26 9.3 253 14.0

IncMaxCLQ 106 36.9 110 5.2 26 32.1 242 22.0

IncMC2 110 3.4 107 <0.1 26 10.9 243 2.7

MaxClqDyn 74 3.7 114 0.6 21 15.6 209 3.2

MCS 108 2.8 115 0.6 20 13.6 243 2.7

SATLike 84 13.3 115 10.6 8 19.0 207 12.0

Loandra 88 5.3 101 2.4 16 19.7 205 5.0

TT-OpenWBO 86 16.5 102 8.3 17 56.6 205 15.8

5.2 Results on Maximum Clique Benchmarks

We evaluate LinearLS on 4 popular MaxClq benchmarks which are mostly from
applications [33]:

– Kidney Exchange, where the clique stands for a maximally desirable set of
donor/patient exchanges. The instances were generated using data from [15].
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– Error-correcting Codes (ECC), where the clique stands for a set of words
maximally pair-wise distant [40].

– Research Excellence Network (REN) [33], where the clique stands for the
optimal set of publications that a university department can provide to the
authority assessing it.

– DIMACS, the MaxClq benchmark from Second DIMACS Implementation
Challenge (1992–1993)2. Thirty seven graphs were selected by the organizers
to be the Second DIMACS Challenge Test Problems.

Besides the MaxSAT algorithms, we compare with the following MaxClq
algorithms. According to [28], state of the art MaxClq algorithms include
IncMC2 [28], BBMC [42,43], IncMaxCLQ [29], MCS[44], MaxCliqueDyn [25].
We also compare with LSCC [46], which is a recent local search algorithm that
performs well on both unweighted and weighted MaxClq benchmarks.

The ECC instances are so easy that all algorithms find the optimal solu-
tion quickly, and the local search algorithms do so within one second, and thus
are not reported. The results (Table 3) show that Our LinearLS gives the best
performance in terms of the solution quality, and is the best algorithm for the
two application benchmarks namely Kidney and REN. Although the other local
search LSCC is fast, it fails to find the best solution for some instances in these
two benchmarks. The MaxSAT solvers, including SATLike, Loandra and TT-
OpenWBO, perform much worse than LinearLS.

5.3 Results on Minimum Vertex Cover Benchmark

Recently, MinVC algorithms focus on solving massive graphs. Particularly, the
Network Repository [41], which collects massive graphs from various areas, has
become the most popular benchmark for testing MinVC algorithms in recent
years [8,9,24,45]. FastVC [8] is an efficient local search for massive graphs, and
afterwards it is improved by a preprocessor, resulting in the FastVC2+p algo-
rithm [9]. Seen from the literature, FastVC2+p is currently the best algorithm
for solving MinVC on the Network Repository instances.

On these massive MinVC instances, all the MaxSAT solvers perform signifi-
cantly worse than LinearLS on almost all instances, and thus we do not report
their results here. We focus on the comparison with MinVC algorithms FastVC
and FastVC2+p. For fair comparison, when compared with FastVC2+p, Lin-
earLS also utilizes the preprocessor in FastVC2+p to preprocess the graphs.
We choose the graphs with at least 105 vertices, resulting in 65 graphs. Each
algorithm is performed 10 runs on each graph with random seed from 1 to 10.
We report the number of instances where the algorithm gives better results in
terms of the minimum cost (‘min’) and the averaged cost (‘avg’) among the 10
runs. Seen from Table 4, the performance of LinearLS is surprisingly good on
these massive MinVC instances, pushing the state of the art in MinVC solving
on massive graphs.

2 ftp://dimacs.rutgers.edu/pub/challenges.

ftp://dimacs.rutgers.edu/pub/challenges
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Table 4. Results on large MinVC instances in Network Repository

LinearLS FastVC

Min Avg Min Avg

#better-solution 42 42 12 13

#equal-solution 11 10 11 10

LinearLS+p FastVC2+p

Min Avg Min Avg

#better-solution 22 27 17 14

#equal-solution 26 24 26 24

5.4 Results on Set Cover Benchmarks

We evaluate LinearLS on 2 important SCP benchmarks, including (1) the STS
benchmark [18], which contains unweighted SCP instances from Steiner triple
systems; (2) the Rail benchmark3, which contains weighted SCP instances that
arise from an application in Italian railways and have been contributed by Paolo
Nobili.

LinearLS is compared with SATLike( w) and the best SAT-based solver for
each SCP benchmark. Also, it is compared with the SCP algorithm from [19],
which is the best SCP algorithm on both unweighted and weighted SCP (the
algorithm was not given a name, and is denoted by the paper [19]). Since the
number of instances is limited, each algorithm is performed 10 runs on each
instance, and we report the minimum cost and averaged cost, and the aver-

Table 5. Results on unweighted and weighted SCP instances

Instance LinearLS [19] SATLike Loandra

Min(avg) Time Min(avg) Time Min(avg) Time Min(avg) Time

STS135 103(103.0) 3.3 103(103.0) 3.7 104(104.0) 292.6 104(104.0) 62.3

STS243 198(198.0) <0.1 198(198.0) 0.1 198(201.8) 285.4 202(202.0) 258

STS405 335(335.0) 3.8 335(335.8) 31.0 342(344.0) 288.4 347(347.0) 4.9

STS729 617(617.0) 7.0 617(619.0) 26.5 646(647.4) 270.3 643(643.0) 5.7

LinearLS [19] SATLike w TT-OpenWBO

rail507 176(176.0) 3.6 176(176.3) 101.5 194(196.0) 114.4 248(248.0) 64.8

rail516 182(182.0) 33.8 182(182.1) 128.8 188(189.4) 170.4 226(226.0) 21.1

rail582 213(213.0) 1.9 213(213.9) 136.4 223(225.2) 176.5 286(286.0) 25.4

rail2536 716(716.0) 93.3 764(772.1) 288.1 N/A(N/A) N/A 1125(1125.0) 3.9

rail2586 990(990.0) 30.2 1036(1055.0) 292.8 N/A(N/A) N/A 1463(1463.0) 3.2

rail4284 1117(1117.0) 173.8 1203(1221.8) 287.5 N/A(N/A) N/A 1734(1734.0) 4.1

rail4872 1589(1589.0) 55.8 1688(1733.2) 295.0 N/A(N/A) N/A 2355(2355.0) 3.5

3 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/files/.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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aged run time to find the final solution in each run. The results (Table 5) show
that LinearLS outperforms the MaxSAT competitors significantly. Moreover,
LinearLS finds better solutions than the SCP algorithm [19] and is much faster.

6 Conclusions

We introduced the Pure MaxSAT problem, which is an important subclass of
MaxSAT and characterizes many combinatorial optimization problems particu-
larly subset problems. We proposed the linear local search method for PureMS,
which is the first work exploiting linear search in local search for MaxSAT prob-
lems. Experiments on benchmarks from MaxSAT Evaluations and benchmarks
of three famous NP hard problems showed that our algorithm significantly out-
performs previous MaxSAT algorithms, and achieves better results than state of
the art specific algorithms for the three problems.

It is interesting to develop exact algorithms for Pure MaxSAT that can
achieve better results than general MaxSAT solvers. Also, we would like to study
the inference rules and reduction rules for Pure MaxSAT, which can be used to
further improve the performance of Pure MaxSAT solvers.

Acknowledgments. This work is partially supported by Youth Innovation Promotion
Association of Chinese Academy of Sciences [No. 2017150] and Beijing Academy of
Artificial Intelligence (BAAI).
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Abstract. In this paper, we focus on qualitative temporal sequences of
topological information. We firstly consider the context of topological
temporal sequences of length greater than 3 describing the evolution of
regions at consecutive time points. We show that there is no Cartesian
subclass containing all the basic relations and the universal relation for
which the algebraic closure decides satisfiability. However, we identify
some tractable subclasses, by giving up the relations containing the non-
tangential proper part relation and not containing the tangential proper
part relation.

We then formalize an alternative semantics for temporal sequences.
We place ourselves in the context of the topological temporal sequences
describing the evolution of regions on a partition of time (i.e. an alterna-
tion of instants and intervals). In this context, we identify large tractable
fragments.

Keywords: Qualitative spatio-temporal reasoning · Satisfiability
decision

1 Introduction

The reasoning on temporal and spatial qualitative information is necessary to
solve many problems that are found in the context of planning, simulation,
robotics, intelligent environments and human-computer interaction [8,12,27,31,
41,47]. For this reason, many spatio-temporal formalisms have been proposed [5,
7,11,22,30,33,42–44,48]. Spatio-temporal formalisms generally decompose into
a spatial formalism and a temporal formalism. The point algebra is a formalism
describing the relative positions of points on a line (the timeline or a line of
space). RCC8 is another formalism, more expressive than the point algebra,
expressing the topological relations between regions. It expresses the notions of
contact and inclusion.

The qualitative temporal sequences [7,48] are the simplest spatio-temporal
descriptions, in the sense that there is no uncertainty about temporal informa-
tion. However, strong negative results have been identified for one of the sim-
plest spatial formalisms: deciding the satisfiability of a temporal sequence over
the point algebra is NP-complete (even while restricting the language to basic
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 107–125, 2020.
https://doi.org/10.1007/978-3-030-58475-7_7
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relations and the universal relation) [48]. One can then wonder whether decid-
ing satisfiability is necessarily NP-hard within the framework of spatio-temporal
formalisms. However, the complexity of fragments of RCC8 has not been stud-
ied within the context of temporal sequences. There could be fragments, not
expressing the point algebra, which are tractable.

We therefore study in this paper the complexity of deciding the satisfiability
of the topological temporal sequences. We identify in particular a negative result:
the classical procedure to decide the satisfiability of polynomial fragments, the
algebraic closure, does not decide the satisfiability in this context (even while
being limited to the basic relations and to the universal relation, if the length of
the sequence is greater than 3). We also identify a positive result, by considering
semantics different from the classical semantics of temporal sequences. More
precisely, we no longer consider that temporal sequences describe the evolutions
of entities at neighboring instants. We consider instead that they describe the
evolutions of entities on a partition of time (i.e. on an alternation of instants and
intervals). In the context of this semantics, we identify large tractable fragments.

In the next section, we present related work, the RCC8 formalism and tem-
poral sequences over RCC8. In Sect. 3, we introduce our negative result and we
identify tractable fragments that do not contain all the basic relations. Finally,
in Sect. 4, we formalize the alternative semantics of temporal sequences, present
the new reasoning operators, and then identify the large tractable fragments.

2 Background

2.1 Related Work

Many works deal with spatio-temporal reasoning and its complexity. Tractable
fragments have been identified in the context of topological temporal sequences
describing the evolution of constant-size regions at non-neighboring instants
(regions can satisfy any relations between the instants) [7]. The temporal
sequences that we consider, like those of the NP-completeness result of the point
algebra, describe regions at neighboring instants. Temporal sequence ordering
(at neighboring instants) is an NP-complete problem for several fundamental
formalisms, such as RCC8 [44]. Formalisms with a higher temporal expressivity
have also been proposed. For example, RCC8 has been combined with Allen’s
interval algebra [22]. The cardinal direction calculus has also been combined
with the Allen’s interval algebra [33].

In general, a qualitative spatio-temporal formalism is based on a transition
graph, i.e. a graph representing the possible evolutions of basic relations. It can
be a neighbourhood graph [16] or a dominance graph [20,21]. In a neighbourhood
graph, two relations b, b′ are neighbour (i.e. adjacent in the graph), if there exists
a pair of evolving entities (e, e′) satisfying b at an instant t and b′ at an instant
t′, and satisfying b or b′ between t and t′. In a dominance graph, a relation b
dominates another relation b′ (i.e. there is an arc from b′ to b in the graph),
denoted by b � b′, if there exists t, t′ ∈ R and a pair of evolving entities (e, e′)



mTractable Fragments of Temporal Sequences of Topological Information 109

satisfying b at t and satisfying b′ at each instant of ]t, t′]. Many transition graphs
have been determined [9,13–17,26,29,33,34,36,36,40,46,52,53].

Spatio-temporal qualitative reasoning is also studied in the context of log-
ics [1–4,18,19,23,24,32,43,50,51]. Deciding the satisfiability of these logics is
generally PSPACE-hard. Ontologies of time based on points or/and intervals
have been studied [45]. There is, in particular, the Event Calculus, a logic of
action and change, which can express properties at instant and interval [25].

2.2 Region Connection Calculus RCC8

RCC8 [28,30,35] is a classical qualitative formalism [5,11,30]. Thus, it is a triplet
(A,U , ϕ) where A is a set of relations forming a finite non-associative binary
relation algebra, U is the universe, i.e. the set of considered entities, and ϕ is a
particular interpretation function associating with each relation of A a relation
over U . We denote by RCA8 the algebra of RCC8. The universe U of RCC8 is
the set of regions of a certain topological space T (i.e. the non-empty, closed and
regular subsets of T). T is generally R

n. Any algebra A has special relations,
called basic relations. Every relation of A is a union of basic relations. The 8 basic
relations of RCC8: DC (disconnected), EC (externally connected), PO (partially
overlapping), EQ (equal), TPP (tangential proper part), NTPP (non-tangential
proper part), and the converse of the two previous relations are described in
Fig. 1 and defined in Table 1. We denote by BRCC8 the set of the basic relations of
RCC8. We denote by BRCC8 the universal relation (i.e. the union of all relations)
and by ∅ the empty relation. Any algebra A has several operators: the union
∪, the intersection ∩, the converse ·, and the (abstract) composition ◦. These
operators are used to infer new relations: x r y =⇒ y r x, x r y ∧ x r′

y =⇒ x (r ∩ r′) y, and x r y ∧ y r′ z =⇒ x (r ◦ r′) z (with r, r′ ∈ A and
x, y, z being entity variables). The abstract composition ◦ of RCC8 is the weak
composition: r ◦ r′ =

⋃ {b ∈ BRCC8 |ϕ (b) ∩ (ϕ (r) ◦ ϕ (r′)) 	= ∅} with r, r′ ∈ A.
For example, the composition of relations TPP ∪ EQ and TPP is the relation
TPP. The composition of basic relations is described in a so-called composition
table [28].

Generally, a description based on RCC8 is a qualitative constraint net-
work, i.e. a conjunction of relations between different entities. For instance,
x DC ∪ EC y ∧ z TPP ∪ NTPP ∪ EQ y is such a description, which means that
the interiors of regions x and y are disjoint and that the region z is included in
y. Deciding the satisfiability of qualitative constraint networks whose relations
belong to RCA8 is an NP-complete problem [37]. Tractable fragments have been
identified. They consist in restricting the relations of constraint networks to a
particular subset of RCA8. Three large tractable subsets containing all the basic
relations and the universal relation have been identified: H8, Q8, and C8 [37].
They are moreover maximal for tractability. They are defined in Table 2. On
these subclasses, applying the algebraic closure, which is a reasoning operator
on networks using the algebra operators, decides satisfiability.



110 Q. Cohen-Solal

Table 1. Definitions of RCC relations (C(x, y) is the contact relation, it means that the
closedregions x and y intersect; P is the part relation; O the overlap relation; variables
x, y, z are closed regions).

Relation Definition

x DC y ¬ (x C y)

x P y ∀z z C x =⇒ z C y

x PP y x P y ∧ ¬ (y P x)

x EQ y x P y ∧ y P x

x O y ∃z z P x ∧ z P y

x PO y x O y ∧ ¬ (x P y) ∧ ¬ (y P x)

x EC y x C y ∧ ¬ (x O y)

x TPP y x PP y ∧ (∃z z EC x ∧ z EC y)

x NTPP y x PP y ∧ ¬ (∃z z EC x ∧ z EC y)

x TPP y y TPP x

x NTPP y y NTPP x

Table 2. Definitions of the relations sets H8, Q8, and C8.

Definition

N
{

r ∈ RCA8 |PO � r ∧ r ∩ (TPP ∪ NTPP) �= ∅ ∧ r ∩
(
TPP ∪ NTPP

)
�= ∅

}

NP8N ∪
{

r1 ∪ EC ∪ r2 ∪ EQ | r1 ∈ {∅,DC} ∧ r2 ∈
{
NTPP,NTPP

}}

P8 RCA8\NP8

H8 P8 ∩
{

r ∈ RCA8 |
(
NTPP ∪ EQ ⊆ r =⇒ TPP ⊆ r ∧ NTPP ∪ EQ ⊆ r

)
=⇒ TPP ⊆ r

}

Q8 P8 ∩
{

r ∈ RCA8 |
(
EQ ⊆ r ∧ r ∩

(
TPP ∪ NTPP ∪ TPP ∪ NTPP

)
�= ∅

)
=⇒ PO ⊆ r

}

C8 P8 ∩
{

r ∈ RCA8 |
(
EC ⊆ r ∧ r ∩

(
TPP ∪ NTPP ∪ TPP ∪ NTPP ∪ EQ

)
�= ∅

)
=⇒ PO ⊆ r

}

Fig. 1. The 8 basic relations of RCC8 in the plane.

2.3 Link with Finite CSP

We briefly discuss the links between qualitative formalisms and finite CSP. On
the one hand, for some qualitative formalisms, the algebraic closure enforces
path-consistency [38]. On the other hand, a qualitative constraints network can
be translated into a network of finite quantitative constraints [49]. The CSP
variables are the relations between the qualitative variables. More precisely, there
is a CSP variable vxy for each pair of qualitative variables (x, y). The set of
possible values for the CSP variable vxy is the set of basic relations contained in
the relation between x and y. The CSP constraints between the CSP variables
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encode the composition operator. These constraints are ternary and of the form{
(b′′, b, b′) ∈ B3 | b′′ ⊆ b ◦ b′}.

2.4 Semantics of Continuously Evolving Regions

Before presenting temporal sequences over RCC8, we must formally define what
we call a region evolving continuously over time. A region evolving continuously
during a time interval I (i.e. a real closed interval) is naturally defined as a
continuous function f from I to the set of considered regions R of a topological
space (for instance, R can be the regions of R

n with n ≥ 1 and can possibly be
restricted to convex or connected regions). However, this standard mathematical
definition requires that R be associated with a topology. Thus, we require the
following concept:

Definition 1. A topological region space (R, T ) is a set of regions R of a topo-
logical space associated with a topology T (i.e. (R, T ) is also a topological space).

There are several possible topologies for the regions of R
n [10,20]. In particu-

lar, choosing a metric between regions amounts to choosing a topology. Depend-
ing on the choice of the topological region space, the evolution of regions satisfies
or violates certain properties, such as continuity of particular functions (area,
distance, union, projection, convex hull, ...) [10]. In fact, solids, gases, shadows, ...
do not evolve continuously in the same way [20]. The usual metric of the regions
of R

n is the Hausdorff distance. Unfortunately, the corresponding evolution of
the relations of regions is not compatible with the classical neighbourhood graph
of RCC8 (Fig. 2a) [10]. The dual-Hausdorff distance [10] corrects this problem:
the evolution of regions according to this metric is compatible with the classical
neighbourhood graph of RCC8. Note that other metrics also correct it.

Fig. 2. Neighbourhood graph of RCC8 (a) and dominance graph of RCC8 (b).

2.5 Topological Sequences at Neighboring Instants

We present in this section the topological temporal sequences describing the con-
tinuous evolution of regions at neighboring instants [7], that we denote TRCCn

8 .
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For this, we recall the basics of the framework of multi-algebras [6,7] from which
it is defined. It is an abstract framework that includes several extensions of
classical qualitative formalisms, such as temporal sequences.

Projections and Relations. Multi-algebras generalize non-associative binary
relation algebras. A multi-algebra is a Cartesian product A = A1 × · · · × Am of
relation algebras satisfying certain properties. We denote by I the index set of the
multi-algebra, i.e. {1, . . . , m}. In the context of temporal sequences, each algebra
Ai corresponds to the same relation algebra but to a different time period. The
set of basic relations of A, denoted B, is B1×· · ·×Bm where Bi is the set of basic
relations of Ai. Multi-algebras are equipped with a set of additional operators
�j

i from Ai to Aj for all distinct i, j ∈ I, called projections. Any projection �
satisfies by definition � (r ∪ r′) = (� r)∪ (� r′) and � (r) = � (r). In the context of
temporal sequences, projections describe the possible evolution of relations over
time.

Table 3. Neighboring relations of the basic relations of RCC8.

b � b
DC DC ∪ EC

EC DC ∪ EC ∪ PO

PO EC ∪ PO ∪ TPP ∪ TPP ∪ EQ

TPP PO ∪ TPP ∪ NTPP ∪ EQ

NTPP TPP ∪ NTPP ∪ EQ

EQ PO ∪ TPP ∪ NTPP ∪ TPP ∪ NTPP ∪ EQ

Definition 2. The operator � from RCA8 to RCA8 is the projection satisfying
the Table 3.

The projection � encodes the neighbourhood graph of RCC8 described in
Fig. 2a (i.e. b ⊆ � b′ if and only if b and b′ are neighbours). For instance, PO �

� DC because it is not possible to have a continuous transition from DC to PO.
A relation of a multi-algebra is an m-tuplet of classical relations. By adding
semantics, that is to say a universe U and a specific interpretation function
ϕ, we get a qualitative formalism said loosely combined, also called sequential
formalism.

Example 1. To illustrate the preceding concepts and to give intuition con-
cerning TRCCn

8 , we give some examples (TRCCn
8 will be formalized in the

next subsection). The Cartesian product of the multi-algebra A of TRCCn
8

is RCAm
8 where m is the length of considered temporal sequences (the

sequences describe regions at instants t1, . . . , tm). The component i ∈ I of
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a relation R of TRCCn
8 , Ri, is the relation of RCC8 which must be sat-

isfied at the instant ti. An example of relations of TRCCn
8 , with m = 3,

is
(
TPP ∪ NTPP ∪ TPP ∪ NTPP,PO ∪ EQ,EC ∪ DC

)
. This relation means on

the one hand that one of the two regions is first included in the other (R1 is
satisfied at t1), then they overlap or are equal (R2 is satisfied at t2) and finally
they are disjoint (R3 is satisfied at t3). Since the instants of the sequence are
neighbors, this relation means, on the other hand, that between t1 and t2 the
regions satisfy either the basic relation being satisfied at t1 (which is TPP or
NTPP or TPP or NTPP) or the one being satisfied at t2 (which is PO or EQ)
and between t2 and t3 they satisfy either the basic relation being satisfied at t2
(which is PO or EQ) or the one being satisfied at t3 (which is EC or DC). This
additional constraint is called continuity without intermediary relation and also
continuous qualitative change [7,48]. This constraint enforces that each sequence
of relations R describes all changes of relations between regions. In other words,
between two instants ti and ti+1, there must be no change of relation, other than
the transition from the basic relation satisfied at ti towards the basic relation
satisfied at ti+1.

Multi-algebra and Relation Operators. We recall the definition of TRCCn
8

(originally denoted TTwir [7]).

Definition 3. Let t1, . . . , tm ∈ R be consecutive instants and (R, T ) be a topo-
logical region space. TRCCn

8 is the triplet (A,U , ϕ) where:

– A is RCAm
8 equipped with the projections �j

i fully defined by �j
i b = � b if

|j − i| = 1 and �j
i b = BRCC8 otherwise, for all b ∈ BRCC8 and i, j ∈ I,

– U is the set of continuous functions from [t1, tm] to R, and
– ϕ is the function from A to 2U×U such that for all R ∈ A, ϕ (R) is the set

of pairs of functions (f, f ′) ∈ U × U satisfying at each instant ti the relation
Ri (i.e. ∀i ∈ I (f (ti) , f ′ (ti)) ∈ ϕRCC8 (Ri)) and satisfying no intermediary
relations between each instants ti and ti+1 (i.e. during each [ti, ti+1] a basic
relation is satisfied, then another, formally: for all i ∈ I\ {m} there exist τ ∈
[ti, ti+1] and b, b′ ∈ BRCC8 such that at each instant t ∈ [ti, τ [, (f (t) , f ′ (t)) ∈
ϕRCC8 (b), at each instant t ∈]τ, ti+1], (f (t) , f ′ (t)) ∈ ϕRCC8 (b′), and that
(f (τ) , f ′ (τ)) ∈ ϕRCC8 (b ∪ b′)), with ϕRCC8 the interpretation function of
RCC8.

Remark 1. TRCCn
8 depends on a set of regions but also on a topology for the

regions (i.e. a notion of continuity). Note that TRCCn
8 is not necessarily a sequen-

tial formalism (i.e. its reasoning operators are not necessarily correct: reasoning
operators could remove some solutions). To be a sequential formalism, the evo-
lution of regions corresponding to the chosen topological region space must be
compatible with the classical neighbourhood graph of RCC8 (see Sect. 2.4). Thus,
if R is R

n equipped with the dual-Hausdorff distance, TRCCn
8 is a sequential

formalism.



114 Q. Cohen-Solal

Every multi-algebra has operators on its relations, namely composition,
union, intersection, and converse. They are defined componentwise. For exam-
ple, the composition of R and R′, R ◦ R′, is defined by (R ◦ R′)i = Ri ◦ R′

i for
all i ∈ I.

There is another operator on relations: the projection closure of a relation
R, denoted � (R). It consists in sequentially applying the following operation
until reaching a fixed point: for all j ∈ I, Rj ← Rj ∩ ⋂

i�=j �j
i Ri. Projection

closure refines relations by removing classical basic relations that are impossi-
ble to satisfy. In the context of TRCCn

8 , projection closure enforces continuity
without intermediary relation. For example, the projection closure of the follow-
ing relation, with m = 3,

(
TPP ∪ NTPP ∪ TPP ∪ NTPP,PO ∪ EQ,EC ∪ DC

)

is
(
TPP ∪ TPP,PO,EC

)
. Indeed, in particular, there is no transition from the

relation PO or from the relation EQ to the relation DC without intermediary
relation. In addition, there is no transition from NTPP to DC or EC in just two
qualitative changes. Projection closure removes such impossibilities. Relations
closed under projection, i.e. satisfying � (R) = R, are said �-closed. Note that
projection closure can be seen as a kind of arc-consistency.

Constraint Networks and Algebraic Closure. A description in the context
of multi-algebras is a (qualitative constraint) network. A network over a multi-
algebra A is a set of variables E and a function N associating with each pair of
variables (x, y) ∈ E2 such that x 	= y a relation of A and satisfying N(x, y) =
N(y, x) for all distinct x, y ∈ E. A sequence of classical constraint networks is
thus represented by a single constraint network whose relations are sequences
of relations, i.e. relations of a multi-algebra. We denote N(x, y) more succinctly
by Nxy. It is sometimes useful to refer to the “subnetwork” corresponding to
the index i ∈ I of a network N , denoted Ni, called slice. Ni is defined by
(Ni)

xy = (Nxy)i for all distinct x, y ∈ E. In the context of temporal sequences,
the slice i of a network N , Ni, describes the relations of the sequence at the
instant ti. Similarly, the slice i ∈ I of a subset S ⊆ A, denoted Si, is {Ri |R ∈ S}.
A network is said to be satisfiable (or consistent) if there is a solution to this
network, that is, an assignment for the variables {ux}x∈E ⊆ U satisfying the
relations of the constraint network, i.e. (ux, uy) ∈ ϕ (Nxy). A network N is said
over a subset of relations S ⊆ A if for all distinct x, y ∈ E, Nxy ∈ S. A scenario
is a network over B.

The reasoning operator on networks is the algebraic closure, which applies
the operators of the multi-algebra. It propagates information within the network,
makes inferences, by refining relations. In the context of topological temporal
sequences, the algebraic closure propagates information over regions at each
instant and between the different instants. A relation R refines a relation R′

if Ri ⊆ R′
i for all i ∈ I. More generally, N refines N ′, denoted N ⊆ N ′,

if for all distinct x, y ∈ E, Nxy ⊆ (N ′)xy. Algebraic closure closes networks
under composition and under projection. Algebraic closure thus applies the two
following operations until reaching a fixed point: Nxz ← Nxz ∩ (Nxy ◦ Nyz) and
Nxz ← � (Nxz) for all distinct x, y, z ∈ E. We denotes by C (N) the algebraic
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closure of N . In the context of topological temporal sequences, the composition
operator makes inferences at every instant and the projection operator makes
inferences between the instants. A network N is called algebraically closed if it is
closed under composition, i.e. for all distinct x, y, z ∈ E, Nxz ⊆ Nxy ◦ Nyz, and
if each of its relations Nxy is closed under projection, i.e. for all distinct i, j ∈ I,
Nxy

j ⊆ �j
i Nxy

i .

Consistency and Satisfiability. A sequential formalism is said complete if all
its algebraically closed scenarios are satisfiable. It is a fondamental property for
deciding satisfiability in an algebraic way.

Remark 2. To know if TRCCn
8 is complete for the regions of R

n equipped with
the dual-Hausdorff distance or for another topological region space is a complex
problem. In fact, perhaps there is no topological region space such that TRCCn

8 is
a complete sequential formalism. For this reason, several studies have dealt with
a “weak satisfiability”, i.e. satisfiability with a weaker notion of continuity [2,22,
44,48]. Formally, a network N over TRCCn

8 is weakly satisfiable if it contains an
algebraically closed scenario (i.e. if there exists a sequence of satisfiable classical
scenarios satisfying the constraints of the networks Ni and the neighbourhood
graph). The tractable subclasses that we identify in this article are tractable
for TRCCn

8 associated with a topological region space such that TRCCn
8 is a

complete sequential formalism. They are also tractable for this notion of weak
satisfiability.

A relation R is said trivially unsatisfiable if there exists i ∈ I such that
Ri = ∅. Note that a relation which is not trivially unsatisfiable can be unsat-
isfiable, i.e. ϕ (R) = ∅. This is the case of (PO,PO,DC). A relation is said
�-consistent if it is �-closed and it is not trivially unsatisfiable. A network is said
trivially unsatisfiable if there exists distinct x, y ∈ E such that Nxy is a triv-
ially unsatisfiable relation. An algebraically closed network that is not trivially
unsatisfiable is said to be algebraically consistent.

Tractable Subclasses. By restricting networks to certain subsets of relations
S, we get the following property: if the algebraic closure of a network over S is
algebraically consistent, then this network is satisfiable. Such subsets are said
to be algebraically tractable. In other words, with an algebraically tractable sub-
set S, to decide the satisfiability of a network over S, it suffices to verify that
its algebraic closure is not trivially inconsistent. The search for algebraically
tractable subsets has focused on particular subsets [30]. A subset S ⊆ A is said
a subclass if it is closed under intersection, composition, and converse (i.e. for all
R,R′ ∈ S, we have R ∩ R′ ∈ S, R ◦ R′ ∈ S, and R ∈ S). Subclasses containing
all basic relations (i.e. B ⊆ S) are called subalgebras. A subset S ⊆ A is said
�-closed if for all R ∈ S, �(R) ∈ S. Finally, we say that a subset S is Cartesian
if S = S1 × · · · × Sm.

Note that a list of conditions guaranteeing algebraic tractability has
been identified [6] (see the slicing and refinement theorems). One of these
conditions is algebraic stability by a refinement H. A refinement H is a
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function from A to A satisfying H (R) ⊆ R. A subset S ⊆ A is algebraically
stable by H if for any algebraically consistent network N over S, the net-
work H (N) is algebraically consistent, where H (N) is the network obtained
from N by substituting each relation Nxy by H (Nxy). RCC8 has two funda-
mental refinements: hH8 (r) = aTPP (aTPP (aPO (aEC (aDC (r))))) and hC8 (r) =
aTPP (aTPP (aNTPP (aNTPP (aPO (aDC (r)))))) with ab, b ∈ B, the function from
RCA8 to RCA8 defined by ab (r) = b if b ⊆ r and ab (r) = r otherwise. H8 and
Q8 are algebraically stable by hH8 and C8 is algebraically stable by hC8 [37].
Moreover, for every r ∈ H8 ∪ Q8 such that r 	= ∅, hH8 (r) ∈ BRCC8 and for
every r ∈ C8\ {∅}, hC8 (r) ∈ BRCC8 [37]. In the following, we are interested in
the refinement HS defined by HS (R)i = hH8 (Ri) if Si ⊆ H8 or Si ⊆ Q8 and
HS (R)i = hC8 (Ri) otherwise, for all i ∈ I and R ∈ RCAm

8 , with S ⊆ RCAm
8 .

3 Study of TRCCn
8 Subclasses

In this section, we are interested in temporalized RCC8 at neighboring instants,
i.e. TRCCn

8 (see Sect. 2.5). More precisely, we search for subclasses that are
algebraically tractable. Unfortunately, as the following proposition shows, there
are no algebraically tractable Cartesian subalgebras (at least for m ≥ 4).

Proposition 1. Let R be a topological region space such that TRCCn
8 is a

sequential formalism.

No Cartesian subalgebra of TRCCn
8 is algebraically tractable (when m ≥ 4).

No �-closed Cartesian subalgebra of TRCCn
8 is algebraically tractable (if m ≥

2).

Proof. We show the case m = 4. The idea is that the algebraic closure can
produce relations R verifying TPP ∪ EQ ⊆ Ri ⊆ TPP ∪ NTPP ∪ EQ and
TPP ∪ EQ ⊆ Rj ⊆ TPP ∪ NTPP ∪ EQ with |i − j| = 1 which causes that
some unsatisfiable networks are algebraically consistent. Let S be any Cartesian
subalgebra (thus S contains the closure of the basic relations and the univer-
sal relation of RCC8 under intersection, composition, and converse). We show
that there exists an unsatisfiable network over S whose algebraic closure is alge-
braically consistent. Consider the network N satisfying: E = {u, v, w, x, y, z},
Nxy

1 = NTPP, Nxy
4 = NTPP, Nxz

1 = NTPP, Nwz
3 = NTPP, Nyz

1 = TPP,
Nyz

2 = PO ∪ TPP ∪ TPP ∪ EQ, Nwx
1 = TPP, Nwx

2 = PO ∪ TPP ∪ TPP ∪ EQ,
Nwy

2 = PO ∪ TPP, Nxu
4 = NTPP, Nvu

2 = NTPP, Nyu
4 = TPP, Nyu

3 =
PO ∪ TPP ∪ TPP ∪ EQ, Nvx

4 = TPP, Nvx
3 = PO ∪ TPP ∪ TPP ∪ EQ,

Nvy
3 = PO ∪ TPP, and Nab

i = BRCC8 in the other cases. The network is over
S (indeed, we have DC ◦ DC = BRCC8 , TPP ◦ TPP = PO ∪ TPP ∪ TPP ∪ EQ,
and (EC ◦ EC) ∩ (EC ◦ NTPP) = PO ∪ TPP). Its algebraic closure C (N) is the
algebraically consistent network satisfying:

– C (N)xy = (NTPP,TPP ∪ NTPP ∪ EQ,TPP ∪ NTPP ∪ EQ,NTPP),
– C (N)yz = (TPP,PO ∪ TPP ∪ EQ,B\ (DC ∪ EC) ,B\DC),
– C (N)xz = (NTPP,TPP ∪ NTPP ∪ EQ,B\ (DC ∪ EC) ,B\ (DC ∪ EC)),
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– C (N)wx = (TPP,PO ∪ TPP ∪ EQ,B\ (
DC ∪ NTPP

)
,B),

– C (N)wy = (PO ∪ TPP ∪ NTPP,PO ∪ TPP,B\ (
DC ∪ NTPP

)
,B),

– C (N)wz = (PO∪TPP∪NTPP,TPP∪NTPP∪EQ,NTPP,TPP∪NTPP∪EQ),
– C (N)ux = (B\DC,B\ (DC ∪ EC) ,TPP ∪ NTPP ∪ EQ,NTPP),
– C (N)uy = (B\ (DC ∪ EC) ,B\ (DC ∪ EC) ,PO ∪ TPP ∪ EQ,TPP),
– C (N)uz = (B\ (DC ∪ EC) ,B\ (DC ∪ EC) ,B\DC,B\DC),
– C (N)uw = (B\DC,B,B,B), C (N)vx = (B\DC,B\ (DC ∪ EC ∪ NTPP) ,PO∪

TPP ∪ EQ,TPP),
– C (N)vy = (B\ (DC ∪ EC) ,B\ (DC ∪ EC ∪ NTPP) ,PO ∪ TPP,EC ∪ PO ∪

TPP ∪ NTPP),
– C (N)vz = (B\ (DC ∪ EC) ,B\ (DC ∪ EC) ,B\DC,B),
– C (N)vw = (B\DC,B,B,B),
– C (N)vu = (TPP∪NTPP∪EQ,NTPP,TPP∪NTPP∪EQ,PO∪TPP∪NTPP).

However, N is not satisfiable since C (N) is not satisfiable. Indeed, to refine
C (N)xy

2 by EQ, TPP, or NTPP and then to apply the algebraic closure gives
a trivially unsatisfiable network. This can be seen by the fact that the only
satisfiable basic relations B of C (N)xy satisfy B2 = EQ or B3 = EQ and that
there exists neither algebraically closed scenario S ⊆ C (N)2 satisfying Sxy = EQ
nor algebraically closed scenario S ⊆ C (N)3 satisfying Sxy = EQ. For example,
by setting C (N)xy

2 = EQ, we get C (N)xy
2 = C (N)yz

2 = C (N)xz
2 = EQ and

therefore C (N)wx
2 = C (N)wy

2 = C (N)wz
2 = C (N)wx

2 ∩ C (N)wy
2 ∩ C (N)wz

2 i.e.(
PO ∪ TPP ∪ EQ

) ∩ (PO ∪ TPP) ∩ (TPP ∪ NTPP ∪ EQ) = ∅.
Let S be a �-closed Cartesian subalgebra of TRCCn

8 with m = 2. The net-
work N ′ satisfying E = {u, v, w, x, y, z}, N ′

1 = C (N)2, and N ′
2 = C (N)3 is

algebraically consistent, unsatisfiable, and over S.

For this reason, we are looking for Cartesian subclasses that do not contain
all basic relations. In particular, we are interested in the following subset of
RCA8: HNTPP⇒TPP

8 defined by
{
r ∈ H8|NTPP ⊆ r =⇒ TPP ⊆ r ∧ NTPP ⊆

r =⇒ TPP ⊆ r
}
. It is easy to prove that this subset is a subclass.

Lemma 1. The subset HNTPP⇒TPP
8 is a subclass.

We show that we can obtain algebraically tractable Cartesian subclasses of
TRCCn

8 satisfying Si ∈ {Q8,HNTPP⇒TPP
8 }. For this, we apply the refinement

theorem (by using the refinement HS ; see Sect. 2.5). We begin by showing the
conditions of the theorem.

Lemma 2. We have the following properties:

– ∀r ∈ Q8, � r ∈ HNTPP⇒TPP
8 and

– ∀r ∈ HNTPP⇒TPP
8 , � r ∈ Q8.

Proof. See the extended version of this paper at https://arxiv.org/abs/2007.
07711.

https://arxiv.org/abs/2007.07711
https://arxiv.org/abs/2007.07711
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Lemma 3. Let S ∈ {Q8 × Q8,Q8 × H8,H8 × Q8} be a subclass of TRCCn
8

(m = 2) and let R ∈ S.
If R is �-consistent then HS (R) is �-consistent.

Proof. See the extended version of this paper at https://arxiv.org/abs/2007.
07711.

Note the following proposition, before identifying the tractable subclasses. It
shows that although the tractable subalgebras of RCC8 cannot be combined to
obtain algebraically tractable Cartesian subalgebras, the algebraically consistent
networks over the majority of these combinations are satisfiable.

Proposition 2. Let R be a topological region space such that TRCCn
8 is a com-

plete sequential formalism. Let S be a subset of TRCCn
8 satisfying Si ∈ {H8,Q8}

and Si = H8 =⇒ (i = m ∨ Si+1 = Q8) ∧ (i = 1 ∨ Si−1 = Q8) for all i ∈ I.
Algebraically consistent networks over S are satisfiable.

Proof. We apply the refinement theorem [6]. HS is a refinement from S to the set
B∪{(∅, . . . , ∅)} (since hH8 is a refinement from H8 ∪Q8 to BRCC8 ∪{∅} [37]).
S is algebraically stable by HS . Indeed, since on the one hand, H8 and Q8 are
algebraically stable by hH8 [37]. Since, on the other hand, for any �-consistent
relation R ∈ S, HS (R) is �-consistent (by Lemma 3). Algebraically consistent
networks over B ∪ {(∅, . . . , ∅)} are satisfiable (TRCCn

8 is complete). By the
refinement theorem, algebraically consistent networks over S are satisfiable.

Satisfiability of algebraically consistent networks is, in general, a weaker prop-
erty than algebraic tractability. It is not equivalent for subclasses that are not
�-closed. Indeed, applying the algebraic closure on a network over a subclass
which is not �-closed can move the network out of the subclass. In that case,
we cannot therefore conclude that the network is satisfiable (if it is not trivially
inconsistent). The previous subclasses are not �-closed: the projection of NTPP,
� NTPP = TPP ∪ NTPP ∪ EQ does not belong to Q8.

We end this section by showing that the subclasses of the follow-
ing particular forms (Q8 × HNTPP⇒TPP

8 )�, (HNTPP⇒TPP
8 × Q8)

�, HNTPP⇒TPP
8 ×

(Q8 × HNTPP⇒TPP
8 )�, and Q8 × (HNTPP⇒TPP

8 × Q8)
� are algebraically tractable.

Proposition 3. Let R be a topological region space such that TRCCn
8 is a com-

plete sequential formalism. Let S be a subset of TRCCn
8 satisfying one of the two

following properties:

– Si = HNTPP⇒TPP
8 if i is even and Si = Q8 otherwise, for all i ∈ I,

– Si = HNTPP⇒TPP
8 if i is odd and Si = Q8 otherwise, for all i ∈ I.

The subclass S is algebraically tractable.

Proof. Let S be a subset of TRCCn
8 as described in the statement. S satisfies the

conditions of the first part of the refinement theorem (see the proof of Proposi-
tion 2). S also satisfies the conditions of the second part. Indeed, on the one hand,

https://arxiv.org/abs/2007.07711
https://arxiv.org/abs/2007.07711
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S is a subclass (since S is Cartesian and each Si is a subclass [37]; Lemma 1). On
the other hand, S is �-closed (by Lemma 2 and since S is a Cartesian subclass).
S is thus algebraically tractable (refinement theorem [6]).

Note that the tractable subclasses identified by Proposition 3 do not contain
all the basic relations (thus, they are not subalgebras).

4 Topological Sequences on a Partition of Time

We have shown that there is no algebraically tractable Cartesian subalgebra in
the context of TRCCn

8 , the context of regions described at different time points
between which there are no intermediary relations (i.e. at time points which
characterize all the qualitative changes). Does this mean that there are no large
tractable subclasses in the context of (topological) temporal sequences? We show
that this is not the case, by considering topological temporal sequences describing
the evolution of regions on a time partition (i.e. on a contiguous alternation of
instants and open intervals).

4.1 Formalization

We begin by defining the formalism of topological temporal sequences on a par-
tition of time, which we denote TRCCd

8 . Without loss of generality, we consider
only the partitions of the interval [t0, tl[ of the form (t0, ]t0, t1[, . . . , tl−1, ]tl−1, tl[)
with m = 2l, ti−1 < ti for all i ∈ {1, . . . , l}, ti ∈ R for all i ∈ {0, . . . , l}, and
l ∈ N

∗. Thus, the sequences of TRCCd
8 describe the topological relations at each

time periods ti and during each interval ]ti, ti+1[.

Definition 4. Let (R, T ) be a topological region space. Let t0, . . . , tl ∈ R be
consecutive instants.

The formalism TRCCd
8 (associated with (R, T )) is the triplet (A,U , ϕ) where:

– U is the set of continuous functions from [t1, tm[ to the set of regions R,
– A is the multi-algebra whose Cartesian product is RCAm

8 and whose projec-
tions satisfy �j

i b = ↑ b if |j − i| = 1 and i is even, �j
i b = ↓ b if |j − i| = 1 and

i is odd, and �j
i b = BRCC8 otherwise, for all b ∈ BRCC8 and i, j ∈ I with ↑

and ↓ defined by Table 4, and
– ϕ is the function from A to 2U×U such that for all R ∈ A, ϕ (R) is the

set of pairs of functions (f, f ′) ∈ U × U satisfying at each instant ti the
relation R2i+1 (i.e. ∀i ∈ {0, . . . , l − 1} (f (ti) , f ′ (ti)) ∈ ϕRCC8 (R2i+1)) and
satisfying, for each i ∈ {0, . . . , l − 1}, one (and only one) basic relation b ⊆
R2i+2 at each instant between ti and ti+1 (i.e. ∃b ∈ BRCC8 b ⊆ R2i+2 ∀t ∈
]ti, ti+1[ (f (t) , f ′ (t)) ∈ ϕRCC8 (b)), with ϕRCC8 the interpretation function of
RCC8.

Remark 3. The operator ↑ encodes the dominance graph of RCC8 described in
Fig. 2b, i.e. the possible evolutions of relations being satisfied during an open
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interval (↑ returns the corresponding relations possibly satisfied at the limits
of the interval). The operators ↑ and ↓ enforces continuity (when TRCCd

8 is a
complete sequential formalism). Remark 1 on TRCCn

8 also applies to TRCCd
8 .

Example 2. An example of relations of TRCCd
8 , with m = 4, is the relation

R = (TPP ∪ NTPP,PO ∪ EQ,EC ∪ DC,DC). This relation means that the first
region is included in the second at the instant t0 (R1 is satisfied), then they
overlap during the interval ]t0, t1[ or are equal during the interval ]t0, t1[ (R2 is
satisfied), they are disjoined at the instant t1 (R3 is satisfied), and finally they
are disconnected at every instant of ]t1, t2[ (R4 is satisfied). The only satisfiable
basic relation included in R is (TPP,PO,EC,DC) = � (R).

Table 4. Dominant and dominated relations of the basic relations of RCC8.

b ↑ b ↓ b
DC DC ∪ EC DC

EC EC DC ∪ EC ∪ PO

PO EC ∪ PO ∪ TPP ∪ TPP ∪ EQ PO

TPP TPP ∪ EQ PO ∪ TPP ∪ NTPP

NTPP NTPP ∪ TPP ∪ EQ NTPP

EQ EQ BRCC8\ (DC ∪ EC)

4.2 Tractability Results

We now identify large algebraically tractable Cartesian subalgebras, by applying
again the refinement theorem. We begin by showing its conditions.

Lemma 4. Let S ∈ {H8 × H8,H8 × Q8,Q8 × H8,Q8 × Q8,H8 × C8,Q8 × C8}
be a subclass of TRCCd

8 (m = 2) and R ∈ S.
If R is �-consistent then HS (R) is �-consistent.

Proof. See the extended version of this paper at https://arxiv.org/abs/2007.
07711.

Note that, as in the context of TRCCn
8 , algebraically consistent networks over

most combinations of the subalgebras Q8 and H8, but also of C8, are satisfiable.

Proposition 4. Let R be a topological region space such that TRCCd
8 is a com-

plete sequential formalism. Let S be a subset of TRCCd
8 satisfying S2i−1 ∈

{H8,Q8} and S2i ∈ {H8,Q8, C8} for all i ∈ {1, . . . , l}.
Algebraically consistent networks over S are satisfiable.

https://arxiv.org/abs/2007.07711
https://arxiv.org/abs/2007.07711
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Proof. We apply the refinement theorem [6]. HS is a refinement from S to the
set B ∪ {(∅, . . . , ∅)} (since hH8 (resp. hC8) is a refinement from H8 ∪ Q8 (resp.
hC8) to BRCC8 ∪ {∅} [37]). S is algebraically stable by HS . Indeed, since on
the one hand, H8 (resp. Q8 ; resp. C8) is algebraically stable by hH8 (resp.
hH8 ; resp. hC8) [37]. Since, on the other hand, for any �-consistent relation
R ∈ S, HS (R) is �-consistent (by Lemma 4). Algebraically consistent networks
over B ∪ {(∅, . . . , ∅)} are satisfiable (TRCCd

8 is complete). By the refinement
theorem, algebraically consistent networks over S are satisfiable.

Lemma 5. Let r ∈ RCA8\N . We have:

– ↑ r ∈ H8,
– ↓ r ∈ H8 ∩ Q8 ∩ C8.

Proof. From the definitions of H8, Q8, C8 and the projections of TRCCd
8 , we

derive the lemma. Let r ∈ RCA8\N (see Table 2). On the one hand, we show
↑ r ∈ H8. For this, we show the three following properties: ↑ r ∈ RCA8\N ,
NTPP ⊆ ↑ r =⇒ TPP ⊆ ↑ r, and ↑ r /∈ V = {EC ∪ NTPP ∪ EQ,DC ∪
EC ∪ NTPP ∪ EQ,EC ∪ NTPP ∪ EQ,DC ∪ EC ∪ NTPP ∪ EQ}. We show ↑ r ∈
RCA8\N . If ↑ r ∩ (TPP ∪ NTPP) = ∅ or ↑ r ∩ (

TPP ∪ NTPP
)

= ∅ then ↑ r ∈
RCA8\N . Suppose ↑ r ∩ (TPP ∪ NTPP) 	= ∅ and ↑ r ∩ (

TPP ∪ NTPP
) 	= ∅.

Therefore, r ∩ (PO ∪ TPP ∪ NTPP) 	= ∅ and r ∩ (
PO ∪ TPP ∪ NTPP

) 	= ∅.
If r ∩ (TPP ∪ NTPP) 	= ∅ and r ∩ (

TPP ∪ NTPP
) 	= ∅ then PO ⊆ r (since

r ∈ RCA8\N ). Thus, PO ⊆ r and therefore PO ⊆ ↑ r. We have ↑ r ∈ RCA8\N .
We show NTPP ⊆ ↑ r =⇒ TPP ⊆ ↑ r. If NTPP ⊆ ↑ r, then NTPP ⊆ r
and therefore ↑ NTPP ⊆ ↑ r. Thus, TPP ⊆ ↑ r. We show ↑ r /∈ V . If ↑ r ∩(
NTPP ∪ NTPP

)
= ∅ then ↑ r /∈ V . If NTPP ⊆ ↑ r, then TPP ⊆ ↑ r. If NTPP ⊆

↑ r then TPP ⊆ ↑ r. Thus, in all cases, ↑ r /∈ V .
On the other hand, we show ↓ r ∈ H8∩Q8∩C8. If ↓ r∩(TPP ∪ NTPP) = ∅ or

↓ r ∩ (
TPP ∪ NTPP

)
= ∅ then ↓ r ∈ RCA8\N . Suppose ↓ r ∩ (TPP ∪ NTPP) 	=

∅ and ↓ r ∩ (
TPP ∪ NTPP

) 	= ∅. We have r ∩ (TPP ∪ NTPP ∪ EQ) 	= ∅ and
r ∩ (

TPP ∪ NTPP ∪ EQ
) 	= ∅. If EQ ⊆ r, then PO ⊆ ↓ r and therefore ↓ r ∈

RCA8\N . If EQ � r, then r∩(TPP ∪ NTPP) 	= ∅ and r∩(
TPP ∪ NTPP

) 	= ∅.
Since r ∈ RCA8\N , PO ⊆ r. Thus, PO ⊆ ↓ r and therefore ↓ r ∈ RCA8\N .
Thus, in all cases, ↓ r ∈ RCA8\N . Moreover, we have ↓ r ∈ P8 since ↓ r /∈ V .
Indeed, if EC ⊆ ↓ r, then EC ⊆ r and therefore PO ⊆ ↓ r. By the same argument,
we have ↓ r ∈ C8. In addition, we have ↓ r ∈ H8 ∩ Q8 and therefore ↓ r ∈
H8∩Q8∩C8, since if EQ ⊆ ↓ r then EQ ⊆ r and therefore PO∪TPP∪TPP ⊆ ↓ r.

We end by showing that the subalgebras of the form (H8 × {H8,Q8, C8})�

are algebraically tractable.

Theorem 1. Let R be a topological region space such that TRCCd
8 is a complete

sequential formalism.
Subalgebras S of TRCCd

8 satisfying S2i−1 = H8 and S2i ∈ {H8,Q8, C8} for
all i ∈ {1, . . . , l} are algebraically tractable.
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Proof. Let S be a subset of TRCCd
8 satisfying S2i−1 = H8 and S2i ∈ {H8,Q8, C8}

for all i ∈ {1, . . . , l}. S satisfies the conditions of the first part of the refinement
theorem (i.e. S satisfies the conditions of the first implication ; see the proof
of Proposition 4). S also satisfies the conditions of the second part (i.e. the
conditions of the second implication). Indeed, on the one hand, S is a subclass
(since S is Cartesian and each Si is a subclass [37]). On the other hand, S is �-
closed (by Lemma 5 and since S is a Cartesian subclass). S is thus algebraically
tractable (refinement theorem [6]).

5 Conclusion

First, we have focused on TRCCn
8 , the qualitative formalism of topological tem-

poral sequences describing the evolution of regions at instants between which
there are no intermediary relations (i.e. at time points which characterize all
the qualitative changes). We have shown that there is no algebraically tractable
Cartesian subalgebra (subclass containing all basic relations) for TRCCn

8 when
the length of sequences is longer than 3. However, we have identified some
tractable subclasses. The price of tractability has been to give up the relations
containing NTPP not containing TPP and thus to give up the basic relation
NTPP.

Then, we have formalized TRCCd
8 , the qualitative formalism of topological

temporal sequences describing the evolution of regions on a partition of time
(i.e. on a contiguous alternation of instants and open intervals). In this context,
we have identified large algebraically tractable Cartesian subalgebras.

It is possible to identify other algebraically tractable subclasses for TRCCn
8

and TRCCd
8 . The tractability limit of the subclasses of these two formalisms

should be precisely determined. In particular, a definitive answer to the question
of the existence of polynomial Cartesian subalgebra for TRCCn

8 should be given.
Note that the identification of universes ensuring the completeness of TRCCn

8

and of TRCCd
8 remains an open problem, on which we are working.

Concerning the applications, TRCCn
8 and TRCCd

8 can be used to decide if
it is possible to go from a topological scenario S to another S′, with at most m
qualitative changes, while satisfying at each instant the constraints of a network
N and to determine one of the corresponding intermediate temporal sequences.
This problem should be useful for spatial planning. When S, S′, and N corre-
spond to one of the previous algebraically tractable subclasses (for instance when
S, S′, and N are over H8), the problem is polynomial. Otherwise, it is possible
that using tractable subclasses still speeds up the resolution of the problem, as in
the classic case [39]. Note that TRCCd

8 is more interesting than TRCCn
8 for this

problem since it allows to find a more expressive intermediate sequence while
having larger tractable subclasses.

References

1. Bennett, B., Cohn, A.G., Torrini, P., Hazarika, S.M.: Describing rigid body motions
in a qualitative theory of spatial regions (2000)



mTractable Fragments of Temporal Sequences of Topological Information 123

2. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal
logic as a framework for spatio-temporal reasoning. Appl. Intell. 17(3), 239–251
(2002). https://doi.org/10.1023/A:1020083231504
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Abstract. Domain reduction is an essential tool for solving the con-
straint satisfaction problem (CSP). In the binary CSP, neighbourhood
substitution consists in eliminating a value if there exists another value
which can be substituted for it in each constraint. We show that the
notion of neighbourhood substitution can be strengthened in two dis-
tinct ways without increasing time complexity. We also show the theo-
retical result that, unlike neighbourhood substitution, finding an optimal
sequence of these new operations is NP-hard.

1 Introduction

Domain reduction is classical in constraint satisfaction. Indeed, eliminating
inconsistent values by what is now known as arc consistency [27] predates the
first formulation of the constraint satisfaction problem [23]. Maintaining arc con-
sistency, which consists in eliminating values that can be proved inconsistent by
examining a single constraint together with the current domains of the other
variables, is ubiquitous in constraint solvers [1]. In binary CSPs, various algo-
rithms have been proposed for enforcing arc consistency in O(ed2) time, where
d denotes maximum domain size and e the number of constraints [3,24]. Generic
constraints on a number of variables which is unbounded are known as global
constraints. Arc consistency can be efficiently enforced for many types of global
constraints [18]. This has led to the development of efficient solvers providing a
rich modelling language. Stronger notions of consistency have been proposed for
domain reduction which lead to more eliminations but at greater computational
cost [1,2,28].

In parallel, other research has explored methods that preserve satisfiability
of the CSP instance but do not preserve the set of solutions. When searching
for a single solution, all but one branch of the explored search tree leads to a
dead-end, and so any method for faster detection of unsatisfiability is clearly
useful. An important example of such methods is the addition of symmetry-
breaking constraints [4,17]. In this paper we concentrate on domain-reduction
methods. One family of satisfiability-preserving domain-reduction operations is
value merging. For example, two values can be merged if the so-called broken
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triangle (BT) pattern does not occur on these two values [11]. Other value-
merging rules have been proposed which allow less merging than BT-merging
but at a lower cost [22] or more merging at a greater cost [12,25]. Another
family of satisfiability-preserving domain-reduction operations are based on the
elimination of values that are not essential to obtain a solution [15]. The basic
operation in this family which corresponds most closely to arc consistency is
neighbourhood substitution: a value b can be eliminated from a domain if there
is another value a in the same domain such that b can be replaced by a in each
tuple in each constraint relation (reduced to the current domains of the other
variables) [14]. In binary CSPs, neighbourhood substitution can be applied until
convergence in O(ed3) time [7]. In this paper, we study notions of substitutability
which are strictly stronger than neighbourhood substitutability but which can
be applied in the same O(ed3) time complexity. We say that one elimination
rule R1 is stronger than (subsumes) another rule R2 if any value in a non-trivial
instance (an instance with more than one variable) that can be eliminated by R2

can also be eliminated by R1, and is strictly stronger (strictly subsumes) if there
is also at least one non-trivial instance in which R1 can eliminate a value that
R2 cannot. Two rules are incomparable if neither is stronger than the other.

To illustrate the strength of the new notions of substitutability that we intro-
duce in this paper, consider the instances shown in Fig. 1. These instances are
all globally consistent (each variable-value assignment occurs in a solution) and
neighbourhood substitution is not powerful enough to eliminate any values. In
this paper, we introduce three novel value-elimination rules, defined in Sect. 2:
SS, CNS and SCSS. We will show that snake substitution (SS) allows us to
reduce all domains to singletons in the instance in Fig. 1(a). Using the notation
D(xi) for the domain of the variable xi, conditioned neighbourhood-substitution
(CNS), allows us to eliminate value 0 from D(x2) and value 2 from D(x3) in
the instance shown in Fig. 1(b), reducing the constraint between x2 and x3 to a
null constraint (the complete relation D(x2)×D(x3)). Snake-conditioned snake-
substitution (SCSS) subsumes both SS and CNS and allows us to reduce all
domains to singletons in the instance in Fig. 1(c) (as well as in the instances in
Fig. 1(a), (b)).

Fig. 1. (a) A 4-variable CSP instance over boolean domains; (b) a 3-variable CSP
instance over domains {0, 1, 2} with constraints x1 �= x2, x1 �= x3 and x2 ≥ x3; (c)
A 4-variable CSP instance over domain {0, 1, 2, 3} with constraints x1 �= x2, x1 �= x3,
x1 �= x4, x2 ≤ x3, x2 ≥ x4 and x4 ≤ x3.
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In Sect. 2 we define the substitution operations SS, CNS and SCSS. In Sect. 3
we prove the validity of these three substitution operations, in the sense that
they define satisfiability-preserving value-elimination rules. In Sect. 4 we explain
in detail the examples in Fig. 1 and we give other examples from the semantic
labelling of line drawings. Section 5 discusses the complexity of applying these
value-elimination rules until convergence: the time complexity of SS and CNS
is no greater than neighbourhood substitution (NS) even though these rules
are strictly stronger. However, unlike NS, finding an optimal sequence of value
eliminations by SS or CNS is NP-hard: this is shown in Sect. 6.

2 Definitions

We study binary constraint satisfaction problems.
A binary CSP instance I = (X,D, R) comprises

• a set X of n variables x1, . . . , xn,
• a domain D(xi) for each variable xi (i = 1, . . . , n), and
• a binary constraint relation Rij for each pair of distinct variables xi, xj (i, j ∈

{1, . . . , n})

For notational convenience, we assume that there is exactly one binary relation
Rij for each pair of variables. Thus, if xi and xj do not constrain each other, then
we consider that there is a trivial constraint between them with Rij = D(xi) ×
D(xj). Furthermore, Rji (viewed as a boolean matrix) is always the transpose
of Rij . A solution to I is an n-tuple s = 〈s1, . . . , sn〉 such that ∀i ∈ {1, . . . , n},
si ∈ D(xi) and for each distinct i, j ∈ {1, . . . , n}, (si, sj) ∈ Rij .

We say that vi ∈ D(xi) has a support at variable xj if ∃vj ∈ D(xj) such that
(vi, vj) ∈ Rij . A binary CSP instance I is arc consistent (AC) if for all pairs of
distinct variables xi, xj , each vi ∈ D(xi) has a support at xj [21].

In the following we assume that we have a binary CSP instance I = (X,D, R)
over n variables and, for clarity of presentation, we write j �= i as a shorthand
for j ∈ {1, . . . , n}\{i}. We use the notation b

ij−→ a for

∀c ∈ D(xj), (b, c) ∈ Rij ⇒ (a, c) ∈ Rij

(i.e. a can be substituted for b in any tuple (b, c) ∈ Rij).

Definition 1 [14]. Given two values a, b ∈ D(xi), b is neighbourhood substi-

tutable (NS) by a if ∀j �= i, b
ij−→ a.

It is well known and indeed fairly obvious that eliminating a neighbourhood
substitutable value does not change the satisfiability of a binary CSP instance.
We will now define stronger notions of substitutability. The proofs that these
are indeed valid value-elimination rules are not directly obvious and hence are
delayed until Sect. 3. We use the notation b

ik� a for

∀d ∈ D(xk), (b, d) ∈ Rik ⇒ ∃e ∈ D(xk)((a, e) ∈ Rik ∧ ∀� /∈ {i, k}, d
k�−→ e).
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xi xk
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b

Fig. 2. An illustration of the definition of b
ik� a.

This is illustrated in Fig. 2, in which ovals represent domains, bullets represent
values, a line joining two values means that these two values are compatible
(so, for example, (a, e) ∈ Rik), and the ⇓ means that (d, f) ∈ Rk� ⇒ (e, f) ∈
Rk�. Since e in this definition is a function of i, k, a and d, if necessary, we will
write e(i, k, a, d) instead of e. In other words, the notation b

ik� a means that
a can be substituted for b in any tuple (b, d) ∈ Rik provided we also replace
d by e(i, k, a, d). It is clear that b

ik−→ a implies b
ik� a since it suffices to set

e(i, k, a, d) = d since, trivially, d
k�−→ d for all � /∈ {i, k}. In Fig. 1(a), the value

0 ∈ D(x1) is snake substitutable by 1: we have 0 12� 1 by taking e(1, 2, 1, 0) = 1
(where the arguments of e(i, k, a, d) are as shown in Fig. 2), since (1, 1) ∈ R12

and 0 23−→ 1; and 0 14� 1 since 0 14−→ 1. Indeed, by a similar argument, the value
0 is snake substitutable by 1 in each domain.

Definition 2. Given two values a, b ∈ D(xi), b is snake substitutable (SS) by
a if ∀k �= i, b

ik� a.

xj
xi

xk

c

b

a
d

Fig. 3. An illustration of the definition of conditioned neighbourhood-substitutability
of b by a (conditioned by xj).

In the following two definitions, b can be eliminated from D(xi) because it
can be substituted by some other value in D(xi), but this value is a function of
the value assigned to another variable xj . Definition 3 is illustrated in Fig. 3.

Definition 3. Given b ∈ D(xi), b is conditioned neighbourhood-substitutable
(CNS) if for some j �= i, ∀c ∈ D(xj) with (b, c) ∈ Rij, ∃a ∈ D(xi)\{b} such that

((a, c) ∈ Rij ∧ ∀k /∈ {i, j}, b
ik−→ a).
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A CNS value b ∈ D(xi) is substitutable by a value a ∈ D(xi) where a is
a function of the value c assigned to some other variable xj . In Fig. 1(b), the
value 0 ∈ D(x2) is conditioned neighbourhood-substitutable (CNS) with x1 as
the conditioning variable (i.e. j = 1 in Definition 3): for the assignments of 0 or
1 to x1, we can take a = 2 since 0 23−→ 2, and for the assignment 2 to x1, we
can take a = 1 since 0 23−→ 1. By a symmetrical argument, the value 2 ∈ D(x3)
is CNS, again with x1 as the conditioning variable. We can note that in the
resulting CSP instance, after eliminating 0 from D(x2) and 2 from D(x3), all
domains can be reduced to singletons by applying snake substitutability.

Observe that CNS subsumes arc consistency; if a value b ∈ D(xi) has no
support c in D(xj), then b is trivially CNS (conditioned by the variable xj).
It is easy to see from their definitions that SS and CNS both subsume NS (in
instances with more than one variable), but that neither NS nor SS subsume arc
consistency.

We now integrate the notion of snake substitutability in two ways in the
definition of CNS: the value d (see Fig. 3) assigned to a variable k /∈ {i, j} may
be replaced by a value e (as in the definition of b

ik� a, above), but the value c
(see Fig. 3) assigned to the conditioning variable xj may also be replaced by a
value g. This is illustrated in Fig. 4.

Fig. 4. An illustration of snake-conditioned snake-substitutability of b by a.

Definition 4. A value b ∈ D(xi) is snake-conditioned snake-substitutable
(SCSS) if for some j �= i, ∀c ∈ D(xj) with (b, c) ∈ Rij, ∃a ∈ D(xi)\{b} such

that (∀k /∈ {i, j}, b
ik� a ∧ (∃g ∈ D(xj)((a, g) ∈ Rij ∧ ∀m /∈ {i, j}, c

jm−−→ g))).

In Fig. 1(c), the value 3 ∈ D(x1) is snake-conditioned snake-substitutable
(SCSS) with x2 as the conditioning variable: for the assignment of 0 or 2 to x2,
we can take a = 1 since 3 13� 1 (taking e(1, 3, 1, d) = 3 for d = 0, 1, 2) and 3 14� 1
(taking e(1, 4, 1, d) = 0 for d = 0, 1, 2), and for the assignment of 1 to x2, we
can take a = 2 since 3 13� 2 (again taking e(1, 3, 2, d) = 3 for d = 0, 1, 2) and
3 14� 2 (again taking e(1, 4, 2, d) = 0 for d = 0, 1, 2). By similar arguments, all
domains can be reduced to singletons following the SCSS elimination of values
in the following order: 0 from D(x1), 0, 1 and 2 from D(x3), 0, 1 and 2 from
D(x2), 1, 2 and 3 from D(x4) and 2 from D(x1).
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We can see that SCSS subsumes CNS by setting g = c in Definition 4 and by
recalling that b

ik−→ a implies that b
ik� a. It is a bit more subtle to see that SCSS

subsumes SS: if b is snake substitutable by some value a, it suffices to choose a
in Definition 4 to be this value (which is thus constant, i.e. not dependent on the
value of c), then the snake substitutability of b by a implies that b

ik� a for all

k �= i, j and b
ij� a, which in turn implies that (a, g) ∈ Rij ∧ ∀m /∈ {i, j}, c

jm−−→ g
for g = e(i, j, a, c); thus b is snake-conditioned snake-substitutable.

3 Value Elimination

It is well-known that NS is a valid value-elimination property, in the sense that
if b ∈ D(xi) is neighbourhood substitutable by a then b can be eliminated from
D(xi) without changing the satisfiability of the CSP instance [14]. In this section
we show that SCSS is a valid value-elimination property. Since SS and CNS are
subsumed by SCSS, it follows immediately that SS and CNS are also valid value-
elimination properties.

Theorem 1. In a binary CSP instance I, if b ∈ D(xi) is snake-conditioned
snake-substitutable then b can be eliminated from D(xi) without changing the
satisfiability of the instance.

Proof. By Definition 4, for some j �= i, ∀c ∈ D(xj) with (b, c) ∈ Rij , ∃a ∈
D(xi)\{b} such that

∀k /∈ {i, j}, b
ik� a (1)

∧ ∃g ∈ D(xj)((a, g) ∈ Rij ∧ ∀m /∈ {i, j}, c
jm−−→ g). (2)

We will only apply this definition for fixed i, j, and for fixed values a and c, so we
can consider g as a constant (even though it is actually a function of i, j, a, c).
Let s = 〈s1, . . . , sn〉 be a solution to I with si = b. It suffices to show that
there is another solution t = 〈t1, . . . , tn〉 with ti �= b. Consider c = sj . Since s
is a solution, we know that (b, c) = (si, sj) ∈ Rij . Thus, according to the above
definition of SCSS, there is a value a ∈ D(xi) that can replace b (conditioned by
the assignment xj = c = sj) in the sense that (1) and (2) are satisfied. Now, for

each k /∈ {i, j}, b
ik� a, i.e.

∀d ∈ D(xk), (b, d) ∈ Rik ⇒ ∃e ∈ D(xk)((a, e) ∈ Rik ∧ ∀� /∈ {i, k}, d
k�−→ e).

Recall that e is a function of i, k, a and d. But we will only consider fixed i, a
and a unique value of d dependant on k, so we will write e(k) for brevity. Indeed,
setting d = sk we can deduce from (b, d) = (si, sk) ∈ Rik (since s is a solution)
that

∀k �= i, j, ∃e(k) ∈ D(xk)((a, e(k)) ∈ Rik ∧ ∀� /∈ {i, k}, sk
k�−→ e(k)). (3)
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Define the n-tuple t as follows:

tr =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a if r = i

sr if r �= i ∧ (a, sr) ∈ Rir

g if r = j ∧ (a, sr) /∈ Rir

e(r) if r �= i, j ∧ (a, sr) /∈ Rir

Clearly ti �= b and tr ∈ D(xr) for all r ∈ {1, . . . , n}. To prove that t is a solution,
it remains to show that all binary constraints are satisfied, i.e. that (tk, tr) ∈ Rkr

for all distinct k, r ∈ {1, . . . , n}. There are three cases: (1) k = i, r �= i, (2) k = j,
r �= i, j, (3) k, r �= i, j.

(1) There are three subcases: (a) r = j and (a, sj) /∈ Rij , (b) r �= i and (a, sr) ∈
Rir, (c) r �= i, j and (a, sr) /∈ Rir. In case (a), ti = a and tj = g, so from
Eq. 2, we have (ti, tr) = (a, g) ∈ Rij . In case (b), ti = a and tr = sr and so,
trivially, (ti, tr) = (a, sr) ∈ Rir. In case (c), ti = a and tr = e(r), so from
Eq. 3, we have (ti, tr) = (a, e(r)) ∈ Rir.

(2) There are four subcases: (a) (a, sr) ∈ Rir and (a, sj) ∈ Rij , (b) (a, sr) /∈ Rir

and (a, sj) ∈ Rij , (c) (a, sr) ∈ Rir and (a, sj) /∈ Rij , (d) (a, sr) /∈ Rir and
(a, sj) /∈ Rij . In case (a), tj = sj and tr = sr, so (tj , tr) ∈ Rjr since s
is a solution. In case (b), tj = sj and tr = e(r); setting k = r, � = j in
Eq. 3, we have (tj , tr) = (sj , e(r)) ∈ Rjr since (sj , sr) ∈ Rjr. In case (c),
tj = g and tr = sr; setting c = sj and m = r in Eq. 2 we can deduce that
(tj , tr) = (g, sr) ∈ Rjr since (sj , sr) ∈ Rjr. In case (d), tj = g and tr = e(r).
By the same argument as in case 2(b), we know that (sj , e(r)) ∈ Rjr, and
then setting c = sj and m = r in Eq. 2, we can deduce that (tj , tr) =
(g, e(r)) ∈ Rjr.

(3) There are three essentially distinct subcases: (a) (a, sr) ∈ Rir and (a, sk) ∈
Rik, (b) (a, sr) /∈ Rir and (a, sk) ∈ Rik, (c) (a, sr) /∈ Rir and (a, sk) /∈ Rik. In
cases (a) and (b) we can deduce (tk, tr) ∈ Rkr by the same arguments as in
cases 2(a) and 2(b), above. In case (c), tk = e(k) and tr = e(k). Setting � = r

in Eq. 3, we have sk
kr−→ e(k) from which we can deduce that (e(k), sr) ∈ Rkr

since (sk, sr) ∈ Rkr. Reversing the roles of k and r in Eq. 3 (which is possible
since they are distinct and both different to i and j), we also have that
sr

rk−→ e(r). We can then deduce that (tk, tr) = (e(k), e(r)) ∈ Rkr since we
have just shown that (e(k), sr) ∈ Rkr.

We have thus shown that any solution s with si = b can be transformed into
another solution t that does not assign the value b to xi and hence that the
elimination of b from D(xi) preserves satisfiability.

Corollary 1. In a binary CSP instance I, if b ∈ D(xi) is snake-substitutable
or conditioned neighbourhood substitutable, then b can be eliminated from D(xi)
without changing the satisfiability of the instance.
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4 Examples

We have already illustrated the power of SS, CNS and SCSS using the examples
given in Fig. 1.

Fig. 5. The six different types of trihedral vertices: A, B, C, D, E, F .

To give a non-numerical example, we considered the impact of SS and CNS in
the classic problem of labelling line-drawings of polyhedral scenes composed of
objects with trihedral vertices [5,19,27]. There are six types of trihedral vertices:
A, B, C, D, E and F , shown in Fig. 5. The aim is to assign each line in the
drawing a semantic label among four possibilities: convex (+), concave (−) or
occluding (← or → depending whether the occluding surface is above or below
the line). Some lines in the top middle drawing in Fig. 5 have been labelled
to illustrate the meaning of these labels. This problem can be expressed as a
binary CSP by treating the junctions as variables. The domains of variables are
given by the catalogue of physically realisable labellings of the corresponding
junction according to its type. This catalogue of junction labellings is obtained
by considering the six vertex types viewed from all possible viewpoints [5,19].
For example, there are 6 possible labellings of an L-junction, 8 for a T-junction,
5 for a Y-junction and 3 for a W-junction [9]. There is a constraint between
any two junctions joined by a line: this line must have the same semantic label
at both ends. We can also apply binary constraints between distant junctions:
the 2Reg constraint limits the possible labellings of junctions such as A and D
in Fig. 6, since two non-colinear lines, such as AB and CD, which separate the
same two regions cannot both be concave [8,9].

The drawing shown in Fig. 6 is ambiguous. Any of lines AB, BC or CD could
be projections of concave edges (meaning that the two blocks on the left side
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Fig. 6. An example from a family of line drawings whose exponential number of
labellings is reduced to one by snake substitution.

of the figure are part of the same object) or all three could be projections of
occluding edges (meaning that these two blocks are, in fact, separate objects).
The drawing shown in Fig. 6 is an example of a family of line drawings. In this
figure there are four copies of the basic structure, but there is a clear generalisa-
tion to drawings containing n copies of the basic structure. The ambiguity that
we have pointed out above gives rise to an exponential number of valid labellings
for this family of drawings. However, after applying arc consistency and snake
substitution until convergence, each domain is a singleton in this family of line
drawings. We illustrate this by giving one example of a snake substitution. After
arc consistency has been established, the labelling (−,+,−) for junction E in
Fig. 6 is snake substitutable by (←,+,←): snake substitutability follows from
the fact that the labelling (−,+,−) for E can be replaced by (←,+,←) in any
global labelling, provided the labelling (↑,−) for F is also replaced by (↑,←)
and the labelling (←,−,←) for D is also replaced by (←,←,←).

Of course, there are line drawings where snake substitution is much less
effective than in Fig. 6. Nevertheless, in the six drawings in Fig. 5, which are a
representative sample of simple line drawings, 22 of the 73 junctions have their
domains reduced to singletons by arc consistency alone and a further 20 junc-
tions have their domains reduced to singletons when both arc consistency and
snake substitution are applied. This can be compared with neighbourhood sub-
stitution which eliminates no domain values in this sample of six drawings. It
should be mentioned that we found no examples where conditioned neighbour-
hood substitution could lead to the elimination of labellings in the line-drawing
labelling problem.

5 Complexity

In a binary CSP instance (X,D, R), we say that two variables xi, xj ∈ X
constrain each other if there is a non-trivial constraint between them (i.e.
Rij �= D(xi) × D(xj)). Let E ⊆ {1, . . . , n} × {1, . . . , n} denote the set of pairs
{i, j} such that xi, xj constrain each other. We use d to denote the maximum
size of the domains D(xi) and e = |E| to denote the number of non-trivial
binary constraints. We have designed algorithms for applying CNS, SS and SCSS
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until convergence using classical propagation techniques and data structures. The
proofs of the following results can be found in the long version of this paper [10].

Theorem 2. Value eliminations by snake substitution or conditioned neighbour-
hood substitution can be applied until convergence in O(ed3) time and O(ed2)
space.

Theorem 3. It is possible to verify in O(ed3) time and O(ed2) space whether or
not any value eliminations by SCSS can be performed on a binary CSP instance.
Value eliminations by SCSS can then be applied until convergence in O(end5)
time and O(ed2) space.

We now investigate the interaction between arc consistency and the substi-
tution operations we have introduced in this paper. It is well known that arc
consistency eliminations can provoke new eliminations by neighbourhood sub-
stitution (NS) but that NS eliminations cannot destroy arc consistency [7]. It
follows that arc consistency eliminations can provoke new eliminations by SS,
CNS and SCSS (since these notions subsume NS). It is easily seen from Defini-
tion 3 that eliminations by CNS cannot destroy arc consistency, since each value
c for xj which had b as a support at xi has another support a at xi and this
value a is also a support for all values d for other variable xk which had b as
a support at xi. We therefore establish arc consistency before looking for elim-
inations by any form of substitution. Nonetheless, unlike CNS, eliminations by
SS (or SCSS) can provoke new eliminations by arc consistency; however, these
eliminations cannot themselves propagate. To see this, suppose that b ∈ D(xi)
is eliminated since it is snake-substitutable by a. If b is the only support of
d ∈ D(xk) at xi, then d can then be eliminated by arc consistency. However,
the elimination of d cannot provoke any new eliminations by arc consistency. To
see this, recall that, by Definition 2 of SS, there is a value e ∈ D(xk) such that
for all � �= i, k, for all f ∈ D(x�), if d was a support for f at xk then so was e
(as illustrated in Fig. 2). Furthermore, since b was the only support for d at xi,
no other value in D(xi) can lose its support when d is eliminated from D(xk).
In conclusion, the algorithm for applying SS has to apply this limited form of
arc-consistency (without propagation) whereas the algorithm to apply CNS does
not need to test for arc consistency since we assume that it has already been
established. Furthermore, since AC is, in fact, subsumed by SCSS we do not
explicitly need to test for it in the algorithm to apply SCSS.

We now consider the interaction between neighbourhood substitution and
CNS. Recall that CNS subsumes neighbourhood substitution. It is also clear
from Definition 3 of CNS that eliminating values by neighbourhood substitution
cannot prevent elimination of other values by CNS. However, the converse is not
true: eliminations by CNS can prevent eliminations of other values by NS. To
see this, consider a 2-variable instance with constraint (x1 = x2) ∨ (x2 = 0) and
domains D(x1) = {1, . . . , d−1}, D(x2) = {0, . . . , d−1}. The value 0 ∈ D(x2) can
be eliminated by CNS (conditioned by the variable x1) since ∀c ∈ D(x1), ∃a =
c ∈ D(x2)\{0} such that (a, c) ∈ R12. After eliminating 0 from D(x2), no further
eliminations are possible by CNS or neighbourhood substitution. However, in
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the original instance we could have eliminated all elements of D(x2) except 0
by neighbourhood substitution. Thus, in our algorithm to apply CNS, we give
priority to eliminations by NS.

In this section we have seen that it is possible to apply CNS and SS until
convergence in O(ed3) time and that it is possible to check SCSS in O(ed3)
time. Thus, the complexity of applying the value-elimination rules CNS, SS and
SCSS is comparable to the O(ed3) time complexity of applying neighbourhood
substitution (NS) [7]. This is interesting because (in instances with more than
one variable) CNS, SS and SCSS all strictly subsume NS.

6 Optimal Sequences of Eliminations

It is known that applying different sequences of neighbourhood operations until
convergence produces isomorphic instances [7]. This is not the case for CNS,
SS or SCSS. Indeed, as we show in this section, the problems of maximising
the number of value-eliminations by CNS, SS or SCSS are all NP-hard. These
intractability results do not detract from the utility of these operations, since
any number of value eliminations reduces search-space size regardless of whether
or not this number is optimal.

Theorem 4. Finding the longest sequence of CNS value-eliminations or SCSS
value-eliminations is NP-hard.

Proof. We prove this by giving a polynomial reduction from the set cover prob-
lem [20], the well-known NP-complete problem which, given sets S1, . . . , Sm ⊆ U
and an integer k, consists in determining whether there are k sets Si1 , . . . , Sik

which cover U (i.e. such that Si1 ∪ . . . ∪ Sik = U). We can assume that
S1 ∪ . . . ∪ Sm = U and k < m, otherwise the problem is trivially solv-
able. Given sets S1, . . . , Sm ⊆ U , we create a 2-variable CSP instance with
D(x1) = {1, . . . , m}, D(x2) = U and R12 = {(i, u) | u ∈ Si}. We can eliminate
value i from D(x1) by CNS (with, of course, x2 as the conditioning variable) if
and only if S1, . . . , Si−1, Si+1, . . . , Sm cover U . Indeed, we can continue eliminat-
ing elements from D(x1) by CNS provided the sets Sj (j ∈ D(x1)) still cover U .
Clearly, maximising the number of eliminations from D(x1) by CNS is equivalent
to minimising the size of the cover. To prevent any eliminations from the domain
of x2 by CNS, we add variables x3 and x4 with domains {1, . . . , m}, together
with the three equality constraints x2 = x3, x3 = x4 and x4 = x2. To complete
the proof for CNS, it is sufficient to observe that this reduction is polynomial.

It is easily verified that in this instance, CNS and SCSS are equivalent. Hence,
this proof also shows that finding the longest sequence of SCSS value-eliminations
is NP-hard.

In the proof of the following theorem, we need the following notion: we say
that a sequence of value-eliminations by snake-substitution (SS) is convergent if
no more SS value-eliminations are possible after this sequence of eliminations is
applied.
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Theorem 5. Finding a longest sequence of snake-substitution value-
eliminations is NP-hard.

Proof. It suffices to demonstrate a polynomial reduction from the problem Max
2-Sat which is known to be NP-hard [16]. Consider an instance I2SAT of Max
2-Sat with variables X1, . . . , XN and M binary clauses: the goal is to find a
truth assignment to these variables which maximises the number of satisfied
clauses. We will construct a binary CSP instance ICSP on O(N + M) variables,
each with domain of size at most four, such that the convergent sequences S of
SS value-eliminations in ICSP correspond to truth assignments to X1, . . . , XN

and the length of S is αN + βm where α, β are constants and m is the number
of clauses of I2SAT satisfied by the corresponding truth assignment.

We require four constructions (which we explain in detail below):

1. the construction in Fig. 7 simulates a Max 2-Sat literal X by a path of CSP
variables joined by greater-than-or-equal-to constraints.

2. the construction in Fig. 8 simulates the relationship between a Max 2-Sat
variable X and its negation X.

3. the construction in Fig. 9 allows us to create multiple copies of a Max 2-Sat
literal X.

4. the construction in Fig. 10 simulates a binary clause X ∨ Y where X,Y are
Max 2-Sat literals.

In each of these figures, each oval represents a CSP variable with the bullets
inside the oval representing the possible values for this variable. If there is a non-
trivial constraint between two variables xi, xj this is represented by joining up
with a line those pairs of values a, b such that (a, b) ∈ Rij . Where the constraint
has a compact form, such as x1 ≥ x2 this is written next to the constraint. In
the following, we write b

xi� a if b ∈ D(xi) is snake substitutable by a ∈ D(xi).
Our constructions are such that the only value that can be eliminated from any
domain by SS is the value 2.

Fig. 7. A construction to simulate a Max 2-Sat variable X: (a) X = 0, (b) X = 1.
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Figure 7(a) shows a path of CSP variables constrained by greater-than-or-
equal-to constraints. The end variables x1 and x5 are constrained by other vari-
ables that, for clarity of presentation, are not shown in this figure. If value 2 is
eliminated from D(x1), then we have 2 x2� 3. In fact, 2 is neighbourhood substi-
tutable by 3. Once the value 2 is eliminated from D(x2), we have 2 x3� 3. Indeed,
eliminations of the value 2 propagate so that in the end we have the situation
shown in Fig. 7(b). By a symmetrical argument, the elimination of the value 2
from D(x5) propagates from right to left (this time by neighbourhood substitu-
tion by 1) to again produce the situation shown in Fig. 7(b). It is easily verified
that, without any eliminations from the domains D(x1) or D(x5), no values for
the variables x2, x3, x4 are snake-substitutable. Furthermore, the values 1 and 3
for the variables x2, x3, x4 are not snake-substitutable even after the elimination
of the value 2 from all domains. So we either have no eliminations, which we
associate with the truth assignment X = 0 (where X is the Max 2-Sat literal
corresponding to this path of variables in ICSP ) or the value 2 is eliminated from
all domains, which we associate with the truth assignment X = 1.

Fig. 8. A construction to simulate a Max 2-Sat variable X and its negation X.

The construction in Fig. 8 joins the two path-of-CSP-variables constructions
corresponding to the literals X and X. This construction ensures that exactly
one of X and X are assigned the value 1. It is easy (if tedious) to verify that
the only snake substitutions that are possible in this construction are 2 x0� 3
and 2 x̃0� 3, but that after elimination of the value 2 from either of D(x0) or
D(x̃0), the other snake substitution is no longer valid. Once, for example, 2 has
been eliminated from D(x0), then this elimination propagates along the path
of CSP variables (x1, x2, x3, . . .) corresponding to X, as shown in Fig. 7(b). By
a symmetrical argument, if 2 is eliminated from D(x̃0), then this elimination
propagates along the path of CSP variables (x̃1, x̃2, x̃3, . . .) corresponding to X.
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Thus, this construction simulates the assignment of a truth value to X and its
complement to X.

Fig. 9. A construction to create two copies X ′ and X ′′ of the Max 2-Sat variable X.

Since any literal of I2SAT may occur in several clauses, we need to be able
to make copies of any literal. Figure 9 shows a construction that creates two
copies X ′,X ′′ of a literal X. This construction can easily be generalised to make
k copies of a literal, if required, by having k identical paths of greater-than-
equal-to constraints on the right of the figure all starting at the pivot variable
x3. Before any eliminations are performed, no snake substitutions are possible
in this construction. However, once the value 2 has been eliminated from D(x1),
eliminations propagate, as in Fig. 7: the value 2 can successively be eliminated
from the domains of variables x2, x3, x′

4, x′
5, and x′′

4 , x′′
5 . Each elimination is in

fact by neighbourhood substitution, as in Fig. 7. These eliminations mean that
we effectively have two copies X ′, X ′′ of the literal X. The triangle of equality
constraints at the top left of this construction is is there simply to prevent
propagation in the reverse direction: even if the value 2 is eliminated from the
domains of x′

5, x
′
4 and x′′

5 , x′′
4 by the propagation of eliminations from the right,

this cannot provoke the elimination of the value 2 from the domain of the pivot
variable x3.

Finally, the construction of Fig. 10 simulates the clause X ∨ Y . In fact, this
construction simply joins together the paths of CSP-variables corresponding to
the two literals X,Y , via a variable z. It is easily verified that the elimination
of the value 2 from the domain of x1 allows the propagation of eliminations of
the value 2 from the domains of x2, z, y2, y1 in exactly the same way as the
propagation of eliminations in Fig. 7. Similarly, the elimination of the value 2
from the domain of y1 propagates to all other variables in the opposite order y2,
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z, x2, x1. Thus, if one or other of the literals X or Y in the clause is assigned 1,
then the value 2 is eliminated from all domains of this construction. Eliminations
can propagate back up to the pivot variable (x3 in Fig. 9) but no further, as
explained in the previous paragraph.

Fig. 10. A construction to simulate a
Max 2-Sat clause X ∨ Y .

Putting all this together, we can see
that there is a one-to-one correspondence
between convergent sequences of SS value-
eliminations and truth assignments to the
variables of the Max 2-Sat instance.
Furthermore, the number of SS value-
eliminations is maximised when this truth
assignment maximises the number of sat-
isfied clauses, since it is αN + βm where
α is the number of CSP-variables in
each path of greater-than-or-equal-to con-
straints corresponding to a literal, β is the
number of CSP-variables in each clause
construction and m is the number of satis-
fied clauses. This reduction is clearly poly-
nomial.

7 Discussion and Conclusion

Both snake substitutability (SS) and conditioned neighbourhood substitutabil-
ity (CNS) strictly subsume neighbourhood substitution but nevertheless can be
applied in the same O(ed3) time complexity. We have also given a more general
notion of substitution (SCSS) subsuming both these rules that can be detected
in O(ed3) time. The examples in Fig. 1 show that these three rules are strictly
stronger than neighborhood substitution and that SS and CNS are incomparable.

An avenue of future research is the generalisation to valued CSPs. The notion
of snake substitutability has already been generalised to binary valued CSPs and
it has been shown that it is possible to test this notion in O(ed4) time if the
aggregation operator is addition over the non-negative rationals [13]. However,
further research is required to determine the complexity of applying this opera-
tion until convergence.

It is possible to efficiently find all (or a given number of) solutions to a CSP
after applying NS: given the set of all solutions to the reduced instance, it is
possible to find K ≥ 1 solutions to the original instance I (or to determine that
I does not have K solutions) in O(K(de + n2)) time [7]. This also holds for
CNS, since, as for NS, for each solution s found and for each value b eliminated
from some domain D(xi), it suffices to test each putative solution obtained by
replacing si by b. Unfortunately, the extra strength of snake substitution (SS)
is here a drawback, since, by exactly the same argument as for the ∃2snake
value-elimination rule (which is a weaker version of SS) [6], we can deduce that
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determining whether a binary CSP instance has two or more solutions is NP-
hard, even given the set of solutions to the reduced instance after applying SS.

References

1. Bessiere, C.: Constraint propagation. In: Rossi et al. [26], pp. 29–83. https://doi.
org/10.1016/S1574-6526(06)80007-6

2. Bessière, C., Debruyne, R.: Optimal and suboptimal singleton arc consistency algo-
rithms. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-2005, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence, pp. 54–59. Profes-
sional Book Center (2005). http://ijcai.org/Proceedings/05/Papers/0495.pdf
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Abstract. Satisfiability Modulo Theories (SMT) is a well-established
methodology that generalises propositional satisfiability (SAT) by adding
support for a variety of theories such as integer arithmetic and bit-vector
operations. SMT solvers have made rapid progress in recent years. In
part, the efficiency of modern SMT solvers derives from the use of spe-
cialised decision procedures for each theory. In this paper we explore
how the Essence Prime constraint modelling language can be translated
to the standard SMT-LIB language. We target four theories: bit-vectors
(QF BV), linear integer arithmetic (QF LIA), non-linear integer arith-
metic (QF NIA), and integer difference logic (QF IDL). The encodings
are implemented in the constraint modelling tool Savile Row. In an exten-
sive set of experiments, we compare our encodings for the four theories,
showing some notable differences and complementary strengths. We also
compare our new encodings to the existing work targeting SMT and SAT,
and to a well-established learning CP solver. Our two proposed encodings
targeting the theory of bit-vectors (QF BV) both substantially outper-
form earlier work on encoding to QF BV on a large and diverse set of
problem classes.

Keywords: Constraint modelling · SMT · Automated reformulation

1 Introduction

Constraint programming (CP) is a powerful paradigm for solving constraint sat-
isfaction and optimisation problems, with many diverse applications. Essence
Prime [22] is a solver-independent CP modelling language that offers decision
variables of Boolean and integer domains as well as arrays of these decision vari-
ables, arithmetic and logical operators for expressing constraints, and global con-
straints. Essence Prime is comparable in its modelling capabilities to MiniZ-
inc [17], OPL [25], Simply [6] and other similar languages. To solve a problem
instance described in Essence Prime, a problem class model and a parame-
ter file are translated by Savile Row [21] into input suitable for a backend
solver. Savile Row applies automated reformulation steps such as common
sub-expression elimination to improve the model [21].
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Satisfiability Modulo Theories (SMT) is a problem solving methodology that
decides the satisfiability of a propositional formula with respect to a selection of
theories in first order logic with equality [20]. SMT has its roots in the field of
hardware and software verification, but lately it is being used to solve a wider
range of problems. The Satisfiability Modulo Theories Library (SMT-LIB) [4]
provides a standard for the specification of benchmarks and theories for SMT.
Most SMT solvers are restricted to decidable quantifier free fragments of their
logics, which is sufficient for many applications. SMT solvers have made rapid
progress in recent years. In part, the efficiency of modern SMT solvers derives
from the use of specialised decision procedures for each theory. In this work we
will focus on four theories: QF LIA, QF NIA, QF IDL, and QF BV.

QF LIA and QF NIA are the theories of quantifier free linear and non-linear
integer arithmetic respectively. The formulas are Boolean combinations of con-
straints comparing expressions to a constant with respect to ≤ and ≥. Linear
expressions are typically enough to naturally express common problems in for-
mal verification and scheduling problems. SMT solvers typically use variants of
the Simplex algorithm to implement integer arithmetic theories [12].

QF IDL is the theory of quantifier free integer difference logic. It supports
Boolean combinations of inequalities of the form x − y < b where x and y
are integer variables and b is an integer constant. The renewed interest in this
fragment came from timed automata, where the verification conditions arising
take the form of difference logic formulas [18].

QF BV is the theory of quantifier-free formulas over fixed-size bit-vectors.
Bit-vector arithmetic is very commonly used for verification and equivalence
checking in the hardware industry. Current solvers [13] typically apply heavy
preprocessing techniques that ultimately flatten the formula to SAT, also known
as bit-blasting.

The main contribution of this paper is a new SMT backend for Savile Row
that is able to produce any one of the four theories listed above and at two differ-
ent levels of flattening, thus providing eight distinct SMT encodings. We exhaus-
tively evaluate the performance of these encodings, showing that our encodings
perform significantly better than existing SMT approaches [9] and that they are
complementary to the existing SAT and CP backends of Savile Row.

2 Related Work

There has been a great deal of work on translating declarative constraint mod-
elling languages to lower-level languages such as SAT, SMT, and MIP. We cannot
cover it all here so we cover all the most relevant work (on translation to SMT)
and give examples for the rest. One example of SAT encoding is FznTini [14],
which translates FlatZinc into SAT. The MiniZinc compiler is able to translate
the MiniZinc language into MIP [5]. There are several encodings of a constraint
language to SMT: Simply [6,8], fzn2smt [7], and FZN2OMT [9].

Simply [6] is a compiler from a custom constraint modelling language (com-
parable to Essence Prime) to SMT. It supports translations to QF LIA and
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QF IDL logics and was later extended to support meta-constraints and weighted
CSPs [8]. The same authors presented fzn2smt [7], an approach that translates
FlatZinc models to SMT, supporting the standard data types and constraints
of FlatZinc. The logic used for solving each instance is determined automati-
cally during the translation, and it handles optimisation problems by means of
a dichotomic (binary) search on the domain of the optimisation variable. As in
our approach, search annotations are ignored, as they do not make sense in the
context of SMT. Only the allDifferent and Cumulative global constraints are
supported by decomposing them into SMT.

FZN2OMT [9] can translate standard FlatZinc into suitable input for SMT
solvers, and back to FlatZinc. It supports the Z3 [16] and OptiMathSAT [24]
solvers, using either the QF BV or QF LIRA logics. When using OptiMathSAT,
it takes advantage of the fact that OptiMathSAT natively supports a subset of
the FlatZinc 1.6 language. Unlike fzn2smt, FZN2OMT is compatible with the
current MiniZinc toolchain. We compare our proposed SMT encodings to all four
configurations of FZN2OMT in Sect. 4 below.

3 Translating Essence Prime to SMT

The modelling tool Savile Row works by reading a problem class model written
in Essence Prime and optionally a parameter file that contains values defining
a problem instance. It instantiates the problem class model, unrolls comprehen-
sions and quantified expressions, and performs expression flattening where the
target solver language does not support nested expressions. Flattening is the task
of introducing auxiliary variables to represent nested subexpressions. Section 3.3
explains flattening in the SMT backend.

The input to Savile Row is a solver-independent model with nested expres-
sions. Savile Row already has existing backends to several CP/SAT/MIP
solvers, some of these via FlatZinc. Some of these backends require a lower
level output than others. For example, Minion’s input language allows a limited
form of nesting (for example, constraints may be contained in conjunctions and
disjunctions) but still requires a mostly flat structure, whereas FlatZinc-based
solvers do not allow this kind of nesting at all. SMT-LIB allows more kinds of
nested expressions than any other Savile Row backend. We implement a fully-
flat variant as well as a nested variant that only flattens when strictly necessary.
It is difficult to know which variant will perform better for a given theory, SMT
solver and problem class. Flattening introduces potentially useful new variables,
and preserving nesting gives solvers access to the high-level structure.

A model in Essence Prime consists of three main components: decision
variable declarations, constraint expressions, and an optional objective function.
The following sections explain how these components are translated to SMT.

3.1 Decision Variables and Their Domains

Essence Prime is a finite-domain language, where every decision variable is
associated with a finite domain of discrete values. It supports Booleans and
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integers as atomic types, and matrices of arbitrary dimensions of these atomic
types. Savile Row expands matrices to lists of atomic types so its output
languages do not need to support matrices or arrays. For example, given a matrix
M with three rows and columns, it will create 9 declarations M1,1, M1,2, . . .M3,3

of its declared type.
When targeting SMT, decision variable declarations are translated to their

equivalent variable declarations in SMT-LIB together with unary constraints to
define the bounds of the domain. For example, when using the LIA encoding,
a find x : int(1..10) declaration would be translated as the SMT integer
variable x and the constraint 1 ≤ x ≤ 10. When using the QF BV theory,
numerical variables are represented using fixed-size signed bit-vectors (i.e. binary
numbers in two’s-complement). We use as few bits as we can, governed by the
largest domain value in the union of all decision variables. Savile Row performs
domain shaving by enforcing a strong level of consistency (Singleton Arc Consis-
tency on the bounds of the variables) via Minion. This step helps in removing any
unnecessarily large values in the domains and reducing the number of variables
required after bit-blasting [15].

3.2 Constraints and the Objective

Constraint expressions are at the heart of a constraint model. We translate them
to SMT-LIB using specialised implementations per expression type and by falling
back to the standard SAT encodings available in Savile Row where necessary.
Boolean expressions (∧, ∨, →, . . . ) and relational operators over integers (<, ≤,
=, . . . ) are translated to use the corresponding operators in SMT-LIB. Arith-
metic operators (+, −, /, mod, abs, . . . ) are similarly translated depending on
the theory we use. Quantified expressions, such as the universally and existen-
tially quantified expression or quantified sums are unrolled and turned into ∧,
∨, and weighted sums. AllDifferent and Global Cardinality (GCC) are decom-
posed: for each value (or each constrained value in GCC) a linear constraint is
used to restrict the number of occurrences of the value. Table constraints use
the Bacchus encoding [3] and short tables are encoded similarly [1].

SMT solvers are typically implemented by augmenting an existing SAT solver
with implementations of theories. Hence, they allow SAT clauses in the input.
We implement our SMT encodings when they are specifically supported by a
backend theory and fall back to the existing SAT encodings in Savile Row for
the rest of the cases.

When targeting the QF BV logic, we use bvadd, bvor and bvneg as appropri-
ate for arithmetic and logical expressions. These operators are not restricted to
linear expressions, they support nested expressions with sums, multiplications,
divisions, and modulo operations. Modern QF BV solvers typically use a tech-
nique called bit-blasting (amongst others). Bit-blasting converts the problem to
SAT by introducing a SAT variable for each bit in a bit vector. This approach
can generate a smaller encoding when compared to the direct or order encod-
ings used by the SAT backend of Savile Row [23], since the direct and order
encodings scale linearly in domain size and bit-blasting scales sub-linearly.
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The objective function (if present) is represented by a single decision variable
and dichotomic search is applied to find the optimal solution. However, when Z3
is the target solver we use its built-in optimisation (regardless of the theory).
In our experiments we use Z3 for QF NIA and other solvers for the other three
theories, so solver built-in optimisation is only used with QF NIA.

3.3 Flat vs Nested Encodings

Essence Prime (like MiniZinc, OPL and other comparable constraint modelling
languages) allows stating nested constraints such as allDiff([x + 1, y + 2, z + 3])
directly. This constraint is considered nested because each element of the list
inside the allDiff constraint is an expression and not a decision variable.

Some of the backend solvers for Savile Row do not support nested con-
straints, and therefore constraints like these have to be flattened. In this case,
the flattening process would create auxiliary variables for each sub-expression
(aux1, aux2, aux3), post additional constraints aux1 = x + 1, aux2 = y + 2,
aux3 = z + 3, and replace the constraint with allDiff([aux1, aux2, aux3]). This
transformation will introduce additional variables and constraints.

Since SMT-LIB allows nested expressions we have an opportunity to evaluate
the effect of using Savile Row’s standard flattening process vs maintaining the
nested expressions and letting the SMT solver flatten them if needed. A nested
encoding is likely to be smaller in size and may allow the SMT solver to do a
better job if and when it chooses to flatten. We evaluate flat and nested encodings
for each of the four theories in Sect. 4.

4 Empirical Evaluation

In this section we compare our set of encodings (Savile Row-SMT, or SR-SMT )
with the state of the art on a wide range of problems, showing the advantages of
our approach. We compare SR-SMT to the SAT encoding implemented in Savile
Row [21] using the SAT solver CaDiCaL 1.3.0, and also to the well-established
learning constraint solver Chuffed 0.10.3. In each experiment we use the same
large set of problem instances and the same basic settings of Savile Row. We
have not been able to compare our approach to fzn2smt [7] or FznTini [14], as
they have become obsolete due to changes in the FlatZinc language. We compare
our approach to FZN2OMT [9], described in Sect. 2.

SR-SMT has eight configurations and FZN2OMT has four, which presents a
challenge when attempting to compare the two systems. We resolve this by using
the virtual best solver (VBS) approach for each system; i.e. for each problem
instance the best configuration is selected. We also look into which configurations
are contributing most to the VBS for each system.

4.1 Experimental Setup

As SR-SMT outputs standard SMT-LIB2 files, we are able to target many solvers
easily. For the QF LIA and QF IDL encodings we use Yices 2.6.2 [11], for the
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QF BV encoding we target Boolector 3.2.1 [19] and finally for QF NIA we use Z3
4.8.8 [16]. Experience of using SMT solvers for planning and scheduling problems
(expressed in QF LIA or QF IDL) led us to use Yices for those theories; Boolec-
tor is known to perform well on QF BV; and Z3 was chosen for QF NIA because
of its advanced preprocessing and heuristics (for example, as noted below, Z3
converts the QF NIA Discrete Tomography problem into QF BV). Regarding
optimisation, we handle it by means of a binary search on the domain of the
variable to optimise. The only exception is when the Z3 solver is used, as it has
native support for optimisation.

The set of problem classes used is an expanded version of the one used
in [21], with 63 problem classes and 757 instances in total1. Both satisfaction and
optimization problems are included, and optimization problems are reported as
solved when optimality of the last solution has been proven.

We used a time limit of 1 h total time (i.e. Savile Row time plus solver
time). We use PAR2 to summarise the performance of each configuration. PAR2
is the mean of total time, where the instances that timed out are assumed to
have taken two times the time limit (i.e. 2 h). Configurations with a lower PAR2
score are considered to be better.

The default set of optimisations in Savile Row are used for all solvers and
encodings: domain filtering, variable unification, aggregation and active CSE
[21]. A standard FlatZinc backend was added to Savile Row to be used for
experiments with FZN2OMT. Decompositions of global constraints closely follow
those in the MiniZinc std library. For example, allDifferent is decomposed into a
clique of pairwise not-equal constraints, and global cardinality into one sum for
each constrained value. The existing Chuffed FlatZinc backend is very similar
but does not decompose allDifferent or lexicographic ordering constraints.

4.2 Comparison to FZN2OMT

Figure 1 gives an overview of the results comparing the SR-SMT virtual best
solver (SR-SMT-VBS) to the FZN2OMT virtual best solver (FZN2OMT-VBS).
For SR-SMT-VBS, 685 instances were solved and for FZN2OMT-VBS 643 were
solved. In Table 1 we report the number of instances solved by the two virtual
best solvers as well as each configuration of both systems. The results show a clear
advantage for SR-SMT-VBS on the bulk of the instances. However, there are
confounding factors. First, SR-SMT-VBS is constructed from 8 configurations
rather than 4, potentially giving it an advantage. Second, different SMT solvers
are used. For example, Boolector was used to solve QF BV encodings in SR-
SMT-VBS, whereas Z3 and OptiMathSAT were used in FZN2OMT.

Many problem classes contain the allDifferent constraint. For these, SR-SMT
uses a decomposition where each value is constrained to have at most one occur-
rence using a linear constraint (in common with Savile Row’s SAT backend),

1 Experiment scripts, model and parameter files and raw results can be found at:
https://github.com/stacs-cp/CP2020-SRSMT [10].

https://github.com/stacs-cp/CP2020-SRSMT
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Fig. 1. SR-SMT-VBS vs FZN2OMT-VBS, solver time (left) and total time (right).

Table 1. Number of instances solved and PAR2 for each configuration. Bold indicates
the overall best configuration (by instances solved), red indicates the best configuration
of one system (SR-SMT or FZN2OMT).

Encoding Instances solved Mean PAR2

SR-SMT-VBS 685 803

SR-SMT-Nested-VBS 682 840

SR-SMT-Flat-VBS 682 839

FZN2OMT-VBS 643 1283

SR-SMT-BV-Nested 663 1092

SR-SMT-BV-Flat 661 1106

SR-SMT-NIA-Nested 499 2620

SR-SMT-NIA-Flat 511 2522

SR-SMT-LIA-Nested 590 1695

SR-SMT-LIA-Flat 586 1729

SR-SMT-IDL-Nested 592 1714

SR-SMT-IDL-Flat 591 1716

SR-SMT-BV-Nested-Z3 657 1138

SR-SMT-BV-Nested-Z3-PA 643 1228

FZN2OMT-LIA-Z3 508 2638

FZN2OMT-LIA-OptiMathSAT 517 2609

FZN2OMT-BV-Z3 587 1921

FZN2OMT-BV-OptiMathSAT 533 2454

SAT 671 931

Chuffed 637 1248
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whereas the standard FlatZinc backend used with FZN2OMT decomposes to
pairwise not-equal constraints. We compare the two decompositions below.
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Fig. 2. SR-SMT-Flat-VBS (i.e. virtual best solver of the 4 Flat configurations) vs
FZN2OMT-VBS, solver time (left) and total time (right).

To provide a fairer comparison between two portfolios of the same size, we
constructed two further virtual best solvers for SR-SMT, one using the four Flat
configurations (SR-SMT-Flat-VBS) and the other using the four Nested config-
urations (SR-SMT-Nested-VBS). As Table 1 shows, the Flat configuration solves
more instances for one theory (QF NIA) and is quite close to Nested in perfor-
mance for the other theories. On the other hand, Nested solves more instances
with the most promising theory (QF BV) and also QF LIA and QF IDL. It turns
out that SR-SMT-Flat-VBS is very slightly stronger (Table 1). Figure 2 com-
pares SR-SMT-Flat-VBS to FZN2OMT-VBS, and Table 1 contains the number
of instances solved and PAR2 score for both. Even with a smaller portfolio it is
clear that SR-SMT is performing better than FZN2OMT on these benchmarks.

Also, there is the issue that the solvers do not match for any theory. SR-SMT
uses Yices with QF LIA and Boolector with QF BV, whereas FZN2OMT uses Z3
and OptiMathSAT. To be able to compare just the encodings, we ran SR-SMT-
BV-Nested (the strongest configuration of SR-SMT measured by instances solved
and PAR2) with Z3 instead of Boolector, creating a configuration called SR-
SMT-BV-Nested-Z3. Table 1 shows that SR-SMT-BV-Nested-Z3 is somewhat
weaker than SR-SMT-BV-Nested on these benchmarks, solving 6 fewer instances
within 1 h and having a higher PAR2 score. Figure 3 compares SR-SMT-BV-
Nested-Z3 to FZN2OMT-BV-Z3. The results are mixed, with some instances
solving much faster with FZN2OMT-BV-Z3, and 15 solved only by FZN2OMT-
BV-Z3. However, the overall trend is that SR-SMT-BV-Nested-Z3 is stronger, it
solves 70 more instances and has a lower PAR2 score.
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Fig. 3. SR-SMT-BV-Nested-Z3 (i.e. SR-SMT-BV-Nested with Z3 instead of Boolector)
vs FZN2OMT-BV-Z3, solver time (upper left) and total time (upper right). The lower
plots are the same but with the pairwise AllDifferent decomposition (PA).

Finally, there is the issue that the decompositions of AllDifferent do not
match. We created another configuration SR-SMT-BV-Nested-Z3-PA, which is
SR-SMT-BV-Nested-Z3 with the pairwise decomposition of AllDifferent (match-
ing FZN2OMT). As Table 1 shows, the new configuration is weaker than SR-
SMT-BV-Nested-Z3, solving 14 fewer instances in total. Figure 3 compares SR-
SMT-BV-Nested-Z3-PA to FZN2OMT-BV-Z3. The two are quite strongly cor-
related but SR-SMT is stronger, solving 56 more instances in total.

4.3 Analysis of SR-SMT

In this section we look at which configurations of SR-SMT are most effective, and
how each configuration contributes to the virtual best solver. First we compare
Nested to Flat configurations, then we compare the four theories. Also, Table 2
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shows how each configuration contributed to the virtual best solver SR-SMT-
VBS, and how many additional instances were solved within multiples of 2 and
5 of the VBS time. This gives an overview of how strong the configurations are
relative to the VBS.

Table 2. Number of instances solved by each configuration within multiples of SR-
SMT-VBS or FZN2OMT-VBS total time. An instance is counted for configuration X
and multiple f if total time for X is within f× total time for the VBS. The highest
value in each column is highlighted in bold.

Configuration Multiple of SR-SMT-VBS Total Time

1 2 5 Any

SR-SMT-BV-Nested 76 350 465 663

SR-SMT-BV-Flat 62 319 473 661

SR-SMT-NIA-Nested 25 244 351 499

SR-SMT-NIA-Flat 60 294 365 511

SR-SMT-LIA-Nested 146 434 530 590

SR-SMT-LIA-Flat 86 433 534 586

SR-SMT-IDL-Nested 120 401 488 592

SR-SMT-IDL-Flat 149 403 486 591

Configuration Multiple of FZN2OMT-VBS Total Time

1 2 5 Any

FZN2OMT-LIA-Z3 148 318 362 508

FZN2OMT-LIA-OptiMathSAT 114 222 308 517

FZN2OMT-BV-Z3 239 439 498 587

FZN2OMT-BV-OptiMathSAT 150 282 378 533

Comparing Nested to Flat Translation. Figure 4 compares Nested to Flat
configurations for each theory. With the theory of bit-vectors the two configura-
tions are remarkably similar. Total number of instances solved and PAR2 score
from Table 1 suggest that Nested is slightly better, and Nested is also selected
more often in SR-SMT-VBS (Table 2).

With the QF NIA theory, Flat translation performs better overall, solving
12 more instances and with a lower PAR2 score. Some problem classes were
solved much better with Flat, such as BIBD (in green). For some instances
of EFPA (highlighted in blue), the two encodings are similar, and for others
Flat is significantly more efficient. BIBD exhibits increasing gains for Flat as the
instances become more difficult. However, Nested is more efficient for Langford’s
Problem, solving several instances that Flat cannot.
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For the QF LIA theory, we found that almost all problem classes were very
similar. There were three exceptions: Killer Sudoku (where the Flat encoding is
somewhat better), Car Sequencing, and Peg Solitaire (where the instances are
scattered and neither Nested nor Flat seem to have an advantage).
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Fig. 4. Nested vs Flat translation for each theory, total time.

Finally, with QF IDL for almost all problem classes the Nested and Flat
encodings were very similar in performance. There are no problem classes where
one encoding consistently outperforms the other by a substantial margin.

Comparing Theories. The four theories have quite different characteristics
and the ideal choice of theory might vary by problem class. To compare the
four theories, for each one we take the better configuration (of Nested or Flat),
so we compare SR-SMT-BV-Nested, SR-SMT-NIA-Flat, SR-SMT-LIA-Nested,
and SR-SMT-IDL-Nested. BV is the strongest theory in terms of instances solved
within 1 h and PAR2 score, therefore we use BV as the gold standard and com-
pare the other theories to it.
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Figure 5 (top left) plots NIA-Flat against BV-Nested. Many instances time
out with NIA-Flat, for example the majority of Aces-Up (in red), and all
instances of the block party metacube problem (BPMP, in blue). Langford’s
Problem is an example where the two theories are correlated, but BV is more
efficient on the bulk of the instances. In contrast, Discrete Tomography is solved
more efficiently by NIA-Flat. In this case, Z3 internal heuristics decide to con-
vert the QF NIA formula into a QF BV formula before solving, and this is more
efficient than Boolector directly applied to the BV-Nested formula. Also, both
NIA encodings contribute a relatively small number of instances to the VBS
(Table 2).

LIA-Nested is plotted against BV-Nested in Fig. 5 (top right). Langford’s
Problem and Discrete Tomography are examples where LIA-Nested performs
substantially better than BV-Nested. The constraints in these problems are well
suited to the QF LIA theory (in particular Discrete Tomography, where all con-
straints are linear). Car Sequencing is split, some instances are solved more
quickly by LIA-Nested while others time out. All instances of JPEncoding are
solved more efficiently by LIA-Nested. Overall BV-Nested has a substantial edge:
it is able to solve 73 more instances and its PAR2 score is much lower.

Finally, we compare IDL-Nested to BV-Nested in Fig. 5 (lower). MRCPSP
(the multi-mode resource-constrained project scheduling problem) has prece-
dence constraints that are naturally expressed in IDL. The most difficult
instances of MRCPSP are solved more efficiently by IDL-Nested. Langford’s
Problem is also solved more efficiently by IDL-Nested. OPD is mixed but shows
large speed-ups for BV for some of the most difficult instances. Many instances
time out for IDL-Nested and are solved with BV-Nested, e.g. all instances of the
JPEncoding problem. In total, 71 more instances are solved by BV-Nested.

In summary, we have seen several cases where NIA, LIA, or IDL performs
well on a problem class and in these cases the problem class has constraints that
are naturally expressed in the theory. For example, Discrete Tomography (with
linear constraints) is solved very well by LIA-Nested (and also by NIA-Flat,
where the solver converts it into a QF BV formula). In contrast, BV seems the
most robust. It performs well on a wide range of problem classes and in each
comparison solves many instances that the other configuration did not.

4.4 Analysis of FZN2OMT

Table 2 gives an overview of how each configuration of FZN2OMT contributes
to the virtual best solver, FZN2OMT-VBS. The BV encoding with Z3 is clearly
the strongest combination on these benchmarks, contributing the most instances
to the VBS and also solving the most within 1 h. Z3 was more effective than
OptiMathSAT on the BV formulas, however the picture is not so simple with
LIA. OptiMathSAT seems to be stronger overall on LIA formulas, solving more
instances within 1 h, however Z3 contributes more instances to the VBS.
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Fig. 5. Comparison of the four theories using the better configuration for each one (of
Nested or Flat). (Color figure online)

4.5 Comparison to SAT

As described in Sect. 3, all SR-SMT encodings are built on the default SAT
encoding of Savile Row, so comparison between SR-SMT and SAT is partic-
ularly relevant. We use CaDiCaL as the SAT solver and use the default options
for the SAT backend. Figure 6 (top left) plots SAT against the strongest SMT
configuration, SR-SMT-BV-Nested. The two are quite similar in overall perfor-
mance, with similar PAR2 scores. SAT solves 8 more of the benchmark instances
than SR-SMT-BV-Nested (Table 1). Some problem classes are solved more effi-
ciently by SAT, such as Discrete Tomography, Langford, and MRCPSP. In con-
trast, SR-SMT-BV-Nested is able to solve 6 out of 10 instances of JPEncoding
whereas SAT solves none. Car Sequencing is mixed but the majority of instances
are solved more efficiently by SAT. 644 instances are solved by both SAT and
BV-Nested, and of those the majority (510) are solved faster by SAT.

Figure 6 (top right) plots SAT against SR-SMT-VBS. The VBS solves a fur-
ther 22 instances compared to BV-Nested (14 more than SAT), and improves
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Fig. 6. Comparison of SAT to SR-SMT-BV-Nested (top left) and SR-SMT-VBS (top
right). Comparison of Chuffed to SR-SMT-BV-Nested (lower left) and SR-SMT-VBS
(lower right).

on various problem classes including Langford, Discrete Tomography, MRCPSP,
and Car Sequencing. For the 657 instances that are solved by both the VBS
and SAT, the majority (337) are solved more efficiently by SAT, however the
VBS has a better PAR2 score (by over 100 s). The VBS is of course a theoretical
solver, but these results show the value of selecting an appropriate theory for
a given instance. As part of our future work we intend to investigate algorithm
selection methods to construct a portfolio of the 8 SR-SMT configurations.

We found that the QF IDL encodings were the largest, with a median clause
ratio of 104.5% for both IDL-Nested and IDL-Flat compared to SAT. The
QF LIA encodings were more compact, with median clause ratios of 15.7% for
LIA-Flat and 5.2% for LIA-Nested. The more expressive theories of QF BV and
QF NIA allowed for the smallest encodings, with median clause ratios of 7.5%
for BV-Flat, 2.8% for BV-Nested, 7.3% for NIA-Flat, and 2.8% for NIA-Nested.
It is notable that one of the two smallest encodings (BV-Nested) has the highest
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performance. Also, Nested encodings are smaller than Flat with the exception
of IDL where they are very similar in size.

4.6 Comparison to Chuffed

Chuffed is a well-established learning CP solver that uses a similar learning
scheme as CDCL SAT and SMT solvers. The Chuffed backend of Savile Row
produces FlatZinc that is specific to Chuffed, i.e. it uses the global constraints
implemented in Chuffed. We use Chuffed’s free search option and also provide a
search annotation given in the model or a default search annotation (variable dec-
laration order). Figure 6 (lower left) plots Chuffed against SR-SMT-BV-Nested.

Results are mixed, with several problem classes solved much more efficiently
by Chuffed (such as OPD and Langford for a large majority of their instances).
Others are split, several Car Sequencing instances are solved substantially faster
by Chuffed but others time out for Chuffed and are only solved by BV-Nested.
The BV-Nested encoding performs well on Discrete Tomography (with linear
constraints) and some instances of Peg Solitaire. In terms of instances solved,
SR-SMT-BV-Nested performs better than Chuffed, solving 26 more instances
within 1 h. However Chuffed is more efficient for 510 of the 615 instances that
they both solve. The timeouts cause Chuffed to have a relatively high PAR2
score of 1248, compared to 1092 for BV-Nested.

Figure 6 (lower right) plots Chuffed against SR-SMT-VBS. The VBS solves 48
more instances than Chuffed, but Chuffed remains more efficient for the majority
of instances (380 out of 627) that they both solve. Comparing the two plots,
the VBS is more efficient than BV-Nested on many instances (including large
numbers of OPD, Langford and Car Sequencing instances) and has narrowed
the gap between SMT and Chuffed on instances where Chuffed is faster.

5 Conclusions and Future Work

We have presented SR-SMT, an SMT backend for Savile Row that is able
to target four SMT theories, each with two levels of flattening. We have per-
formed an extensive set of experiments comparing our encodings to each other
and also to FZN2OMT, SAT, and Chuffed. We found that SR-SMT with the
QF BV theory is a very robust approach: it solves more instances than other
theories, Chuffed, and FZN2OMT within the time limit. However, SR-SMT with
QF BV is not always the fastest approach, suggesting that it would be a useful
component of a portfolio of solvers.

While we found QF BV to be particularly robust, other theories (QF NIA,
QF LIA, and QF IDL) performed strongly when problem constraints are natu-
rally expressed in the theory, for example the LIA theory applied to the Discrete
Tomography problem (which is linear). Consequently, the virtual best solver
composed of all 8 SR-SMT configurations is significantly stronger than any one
configuration. As part of future work, we will look at algorithm selection methods
(such as the SUNNY algorithm used in the SUNNY-CP portfolio solver [2]) to
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construct a portfolio of SMT encodings, and investigate whether such a portfolio
has similar performance to the VBS.

In summary, encoding constraint problems to SMT via SR-SMT is a suc-
cessful approach, solving more instances of our benchmark set than the mature
learning CP solver Chuffed and the existing FZN2OMT system.

Acknowledgements. We thank Marc Roig Vilamala who worked on an early ver-
sion of the SMT backend of Savile Row. This work is supported by EPSRC grant
EP/P015638/1.
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Abstract. Efficient unit propagation for clausal constraints is a core
building block of conflict-driven clause learning (CDCL) Boolean satisfi-
ability (SAT) and lazy clause generation constraint programming (CP)
solvers. Conflict-driven pseudo-Boolean (PB) solvers extend the CDCL
paradigm from clausal constraints to 0-1 integer linear constraints, also
known as (linear) PB constraints. For PB solvers, many different prop-
agation techniques have been proposed, including a counter technique
which watches all literals of a PB constraint. While CDCL solvers have
moved away from counter propagation and have converged on a two
watched literals scheme, PB solvers often simultaneously implement dif-
ferent propagation algorithms, including the counter one.

The question whether watched propagation for PB constraints is more
efficient than counter propagation, is still open. Watched propagation is
inherently more complex for PB constraints than for clauses, and sev-
eral sensible variations on the idea exist. We propose a new variant of
watched propagation for PB constraints and provide extensive experi-
mental results to verify its effectiveness. These results indicate that our
watched propagation algorithm is superior to counter propagation, but
when paired with specialized propagation algorithms for clauses and car-
dinality constraints, the difference is fairly small.

1 Introduction

Although the Boolean satisfiability (SAT) problem is NP-complete [7,19] these
days so-called conflict-driven clause learning (CDCL) solvers [20,23] routinely
solve problems with up to millions of variables. Independently, a similar tech-
nique was developed for constraint programming (CP) solvers [2]. These solvers
learn a propositional disjunction (a clause) from each failing search branch, over
time accumulating huge databases of clauses that further constrain the search.
For example, if, during search, all but one literals of a clause are set to false, the
last remaining literal should be propagated to true.

To efficiently detect which clauses in the database propagate a literal, modern
SAT solvers settled on the watched literal propagation technique [23]. Its core
idea is to only watch two literals of a clause at a time, replacing these watches
when one or both are set to false. If no two non-falsified watches can be found,
the clause either propagates a literal, or it is falsified, indicating a search conflict.
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 160–176, 2020.
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The conflict-driven paradigm has been transferred to linear pseudo-Boolean
(PB) solving , where solvers deal with linear inequalities over 0-1 integer vari-
ables, or PB constraints for short.1 Formulas of PB constraints are a straightfor-
ward generalization of the conjunctive normal form (CNF) used for SAT solvers.
Crucially, such conflict-driven PB solvers learn PB constraints instead of clauses
[6,14,18,28], which allows them to construct cutting planes proofs [8] instead of
the exponentialy weaker resolution proofs [4,9,10,25] underlying CDCL.

As the database of learned PB constraints grows during search, and as
conflict-driven PB search endeavors to make the learned constraints as strong
as possible, the propagation routine forms the main computational bottleneck
of PB solvers. Similar to CDCL SAT solvers, a hypothetical doubling the effi-
ciency of PB propagation could translate to almost halving the total run time
for conflict-driven PB solvers. Unlike CDCL SAT solvers however, conflict-driven
PB solvers have not settled on a dominant propagation scheme.

The Galena solver investigated a highly involved watched literal scheme for
PB constraints, but finally settled on a three-tiered approach where clauses and
cardinality constraints were handled with specialized watched propagation tech-
niques, but propagation of general PB constraints was done by counter prop-
agation, watching all literals at once [6]. The Pueblo solver initially employed
the same three-tiered approach [27], but later opted for a custom watched literal
scheme [28]. The Sat4J system also uses the three-tiered approach by default,
but has the option to use watched propagation for general PB constraints sim-
ilar to the Galena watched literal scheme [18]. Finally, the RoundingSat solver
employs watched propagation, sharing similarities with both the Pueblo and
original Galena approach, but adding its own twists [14].

Unsurprisingly, efficient watched PB propagation is still an open question:

PB solvers get slower when dealing with pseudo-Boolean constraints
because we have not yet found an efficient lazy data structure similar
to [. . . ] watched literals for those constraints. This is especially the case
for the cutting-planes-based solver because the number of pseudo-Boolean
constraints grows during the search [18].

In this paper, we propose a novel efficient watched PB propagation algorithm,
and contribute extensive experimental data to shed light on key issues. The
general conclusion is that watched PB propagation is more efficient than counter
propagation on its own, but that the difference between a counter-based and a
watched-based three-tiered approach is fairly small.

This paper continues with preliminaries in Sect. 2 followed by a description
of our proposed watched PB propagation algorithm in Sect. 3. Section 4 high-
lights differences and similarities with the approaches used by the above PB
solvers. Experimental results are presented in Sect. 5 and the paper concludes
with Sect. 6.

1 In general, PB constraints can be non-linear, but we restrict our attention to linear
PB constraints.
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2 Preliminaries

Throughout this paper, we use the term pseudo-Boolean (PB) constraint to refer
to a 0–1 linear inequality. We identify 1 with true and 0 with false. A literal �
denotes either a variable x or its negation x, where x = 1−x. We assume without
loss of generality that all constraints

∑
i ci�i ≥ w are written in normalized

form, where literals �i are over pairwise distinct variables, coefficients ci are non-
negative integers, and w is a positive integer called the degree (of falsity). For
a constraint C, lits(C) denotes its set of literals, size(C) its number of literals,
and maxcf (C) its largest coefficient. A PB constraint C where maxcf (C) = 1 is
a cardinality constraint and a constraint with degree 1 is a clause.

A (partial) assignment ρ is a set of literals over pairwise distinct variables. A
literal � is assigned to true by an assignment ρ if � ∈ ρ, assigned to false or falsified
if � ∈ ρ, and is unassigned otherwise. The slack of a constraint C

.=
∑

i ci�i ≥ w
under a partial assignment ρ is

slack(C, ρ) = −w +
∑

�i �∈ρ

ci , (1)

i.e., the maximal value the left-hand side can attain under any partial assignment
ρ′ ⊇ ρ minus the degree. We say that ρ falsifies C if slack(C, ρ) < 0 and satisfies
C if for any ρ′ ⊇ ρ it holds that slack(C, ρ′) ≥ 0. A pseudo-Boolean formula ϕ
is a set of PB constraints. An assignment ρ is a solution to ϕ if ρ satisfies all
constraints in ϕ. A formula is satisfiable if it has a solution.

A sequence (e1, . . . , en) is a finite ordered collection of elements allowing
repetitions.2 In programming fashion, seq [i] denotes the ith element of seq . The
size of a sequence is denoted as size(seq). A tuple is a fixed size sequence with
named elements and tup.e refers to the element with name e of tuple tup.3

2.1 Conflict-Driven Pseudo-Boolean Solving

We present the bare essentials of conflict-driven PB solving necessary for the
discussions in this paper (referring the reader to, e.g., [5] for more details).
Conflict-driven PB solving is very similar to the CDCL algorithm for Boolean
satisfiability, but uses PB constraints instead of clauses.

The state of a PB solver can be abstractly represented by a tuple (ψ, ρ),
where ψ is a set of constraints called the constraint database and ρ is a sequence
of pairwise distinct literals representing the current assignment .4 Initially, ψ is
the input formula ϕ and ρ is the empty sequence ().

2 Common data structures for sequences are arrays, lists, and vectors.
3 Tuples abstract the record data type.
4 Slightly abusing notation, we defined an assignment as a set, but we often operate

on the current assignment ρ as a sequence, pushing and popping literals from the
back.
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Given a solver state, the search loop starts with a propagation phase, which
checks for any constraint C ∈ ψ whether it is falsified:

slack(C, ρ) < 0, (2)

or whether a literal �i, not yet assigned by ρ, in C with coefficient ci, is implied
by C under ρ:

slack(C, ρ) < ci with �i �∈ ρ, �i �∈ ρ. (3)

If condition (3) holds, C is falsified by ρ ∪ �i, so �i is implied by C under ρ.
Hence, ρ can be safely extended with the implied �i, which is called a propaga-
tion, while also saying that C propagates �i. Each propagation can enable new
propagations, continuing the propagation phase until condition (3) does not hold
for any constraint in the database ψ, or until condition (2) holds for at least one.

If condition (2) holds for some constraint, it is considered a conflict , and the
solver enters a conflict analysis phase. During this phase, the solver derives a
learned constraint that is a logical consequence of the input formula and would
have propagated a literal at some earlier state, preventing the same conflict from
happening. This new constraint is added to ψ, after which the solver backjumps
to the earlier state. Alternatively, if no conflict is detected, the solver extends ρ
by making a heuristic decision to assign some currently unassigned variable. In
either case, the solver continues with a new iteration of the search loop.

The PB solver reports unsatisfiability whenever it learns a constraint equiva-
lent to the trivial inconsistency 0 ≥ 1. If propagation does not lead to a conflict
and all variables have been assigned, the solver reports that the input formula is
satisfiable. Conflict-driven PB solvers, like their CDCL counterparts, frequently
backjump to the root search node, clearing the current assignment from any
decision literals and consequent propagations, which is called a restart.

In this paper, we focus on the propagation phase, ensuring that after each
decision and each backjump, the current assignment is extended with implied
literals until fixpoint, or until a conflict arises.

2.2 Counter Pseudo-Boolean Propagation

A straightforward propagation algorithm is the counter approach. It takes its
inspiration from early SAT propagation algorithms and eagerly computes the
slack of each constraint under changes to the current assignment ρ. I.e., each
time a literal � is pushed to resp. popped from ρ, due to decisions or propagations
resp. backjumps or restarts, each constraint C containing � has its slack decreased
resp. increased with the coefficient of � in C. When the slack of C is decreased,
condition (2) and (3) are checked as well to detect propagations and conflicts.

Example 1. Consider a freshly initialized solver where the input formula consists
only of the constraint C

.= 3x+2y+z+w ≥ 3. Initially, ρ = (), so slack(C, ρ) = 4
and neither condition (2) or (3) hold.
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If the solver decides x = 0, then ρ = (x), and counter propagation decreases
the slack with 3: slack(C, ρ) = 1. Now, condition (3) holds: slack(C, ρ) < 2 and
y �∈ ρ, y �∈ ρ. Hence, y is propagated and ρ = (x, y). No further slack decreases
are triggered, so counter propagation does not need to check whether condition
(2) or (3) hold.

The solver can now decide a new variable, say z = 0, so ρ = (x, y, z), at which
point counter propagation again decreases the slack of C with 1 to slack(C, ρ) =
0, and propagates w, leaving C satisfied by ρ. If the solver instead executes
a restart, the current assignment is reset to ρ = (), and counter propagation
increases the slack of C with 1 + 3 to its original value slack(C, ρ) = 4.

Unfortunately, counter propagation has the potential for a lot of overhead:

Example 2. Consider a freshly initialized solver where the input formula consists
only of the constraint C

.= 3x + 2y + z +
∑1000

i=1 wi ≥ 3. Let the literals wi be
prioritized by the solver’s decision heuristic. Initially, slack(C, ρ) = 1003, which
decreases by 1 after each decision of some wi. For each of these thousand slack
decrements, condition (2) and (3) are never met, since as long as none of x, y
and z are falsified by the current assignment, slack(C, ρ) ≥ 3.

This phenomenon of large amounts of slack decrements (and increments dur-
ing backjumps) can occur in thousands of constraints simultaneously, consider-
ably slowing down the solver. The watched literal technique attempts to signifi-
cantly reduce the number of times the slack of a constraint is calculated.

3 Watched Pseudo-Boolean Propagation

Similar observations to those in Example 2 led to the development of watched
(literal) propagation in SAT solvers [23,30]. This watched approach has been
generalized to pseudo-Boolean solving [6,14,18,28]. The central idea of watched
PB propagation is to track (watch) for each constraint only a subset of its literals
– the watched literals. The subset is chosen sufficiently large to ensure that as
long as none of the watched literals are assigned to false, the constraint is not
propagating or conflicting. If one of the watches is assigned false, a search for
new non-falsified watches is triggered. If insufficient new watches are found, the
constraint may be propagating or conflicting, which is calculated only then.

More formally, we associate each constraint C with a set of watched literals
watches(C). For a constraint with watched literals, the watch slack of a con-
straint C

.=
∑

i ci�i ≥ w under a partial assignment ρ is

watchslack(C, ρ) = −w +
∑

�i �∈ρ,�i∈watches(C)

ci. (4)

Clearly, for any C, ρ and watches for C, watchslack(C, ρ) ≤ slack(C, ρ), and
watchslack(C, ρ) = slack(C, ρ) if all non-watched literals are falsified by ρ. Hence,
condition (2) and (3) will never hold (so C will not propagate or be conflicting)
if for some set of watches
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watchslack(C, ρ) ≥ maxcf (C). (5)

As a result, no exact slack needs to be calculated for constraints for which
condition (5) holds, and only by falsifying a watched literal can condition (5)
become violated. However, efficiently maintaining appropriate watched literal
sets during backjumps, decisions and propagations is a highly non-trivial matter.

To describe our proposed watched PB propagation algorithm in detail, we
abstract the state of a constraint C to a tuple (terms, w,wslk), where terms is
a sequence of terms, w a positive integer representing the degree, and wslk an
integer storing the watch slack of the constraint. The state of a term in terms is
abstractly represented by a tuple (coef , lit ,wflag) where coef is the coefficient of
the term, lit the literal, and wflag a flag denoting whether the literal is watched
for the constraint, i.e., whether lit ∈ watches(C). We fix terms to be sorted in
decreasing coefficient order, so maxcf (C) = C.terms[1] – the first term of C
contains its largest coefficient.

We also extend the abstraction of the solver state to a tuple (ψ, ρ, q,wlist),
where the propagation index q is an integer s.t. 0 ≤ q ≤ size(ρ)5, and the watch
list wlist is a function mapping literals to the set of constraints that currently
watch the literal combined with the index of the literal in the constraint’s term
list: (C, i) ∈ wlist(�) iff � ∈ watches(C) with � = C.terms[i].lit . We define
ρi .= (ρ[1], . . . , ρ[i]) as the subassignment up to index i, with 0 ≤ i ≤ size(ρ). The
propagation index indicates which part of the current assignment has already
been processed for propagation: constraints watching literals in ρ \ ρq will need
to be checked for propagation. Initially, q = 0.

3.1 Detailed Algorithm

We now have the necessary abstractions in place to describe our proposed
watched PB propagation algorithm in detail. For simplicity, we assume that
initially, none of the constraints C are propagating or conflicting, and that their
initial watched literals can be chosen to satisfy watchslack(C, ()) = C.wslk ≥
maxcf (C).

Procedures processWatches, propagate and backjump present the proposed
watched PB propagation algorithm.

Procedure processWatches iterates over all literals � in the current assign-
ment, adjusting the watch slack for each constraint C watching �, maintaining
the invariant that watchslack(C, ρq) = C.wslk . It subsequently checks whether
C can propagate (or is conflicting) by calling propagate for C. If C is conflict-
ing, it is returned. However, breaking out of the loop at line 5 leaves behind
a semi-processed set of constraints watching �. To repair this, processWatches
decreases the propagation index by one, and increases the watch slack for those
constraints still watching � that had their watch slack decreased.

To check whether a constraint is conflicting or propagating, propagate first
attempts to find non-falsified non-watched literals to use as watches, in the

5 In MiniSAT [13] parliance, q is the qhead .
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Procedure. propagate(constraint C, integer idx )
External data: watch list wlist , current assignment ρ
Result: OK if C is not falsified, otherwise CONFLICT

1 i ← 1
2 while i ≤ size(C) and C.wslk < maxcf (C) do
3 � ← C[i ].lit

4 if � �∈ ρ and C[i ].wflag = 0 then
5 C[i ].wflag = 1
6 wlist(�) ← wlist(�) ∪ {(C, i)}
7 C.wslk ← C.wslk + C[i ].coef

8 i ← i + 1

9 if C.wslk ≥ maxcf (C) then
10 C[idx ].wflag = 0
11 wlist(C[idx ].lit) ← wlist(C[idx ].lit) \ {(C, idx)}
12 return OK

13 if C.wslk < 0 then return CONFLICT
14 j ← 1
15 while j ≤ size(C) and C.wslk < C[j ].coef do
16 � ← C[j ].lit

17 if � �∈ ρ and � �∈ ρ then ρ.push(�)
18 j ← j + 1

19 return OK

loop at line 2. If a sufficient amount of watches is found such that C.wslk ≥
maxcf (C), no propagation or conflict occurs, the old watch can be discarded at
lines 10 and 11, and the routine returns. If all non-falsified literals are employed
as watches, yet the watch is still less than zero, the constraint is conflicting, which
is returned at line 13. Finally, if the watch slack is non-negative but less than
the largest coefficient, the constraint may propagate unassigned literals, which
is checked in the loop at line 14. Recall that the terms of a constraint are sorted
in decreasing coefficient order, allowing the loop at line 14 to conclude when
C.wslk < C[j ].coef , avoiding a full linear scan. In case C.wslk < maxcf (C), the
constraint keeps watching the falsified literal. This allows procedure backjump
to increase the watch slack of a constraint during backjumps, to a point where
C.wslk ≥ maxcf (C) without searching for new watches.

3.2 An Extensive Example

Example 3. As in Example 2, consider a freshly initialized solver where the input
formula consists only of the constraint C

.= 3x + 2y + z +
∑1000

i=1 wi ≥ 3. Let the
initial watches for C be {x, y, z}, and hence, watchslack(C, ρq) = C.wslk = 3.
Let the literals w1 to w997 be prioritized by the solver’s decision heuristic, so
the current assignment ρ is incrementally extended by deciding the literals w1 to
w997, and after each decision, procedure processWatches is called, incrementing
q to 997. As no constraint watches any wi, propagate is never called.
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Procedure. processWatches
External data: database ψ, current assignment ρ, propagation index q, watch

list wlist
Result: OK if no constraint is falsified, otherwise a falsified constraint

1 while q < size(ρ) do
2 q ← q + 1
3 � ← ρ[q]
4 visited ← ∅
5 foreach (C, idx) ∈ wlist(�) do
6 visited ← visited ∪ {(C, idx)}
7 C.wslk ← C.wslk − C[idx ].coef
8 if propagate(C, idx)= CONFL then
9 q ← q − 1

10 foreach (C′, idx ′) ∈ visited ∩ wlist(�) do
11 C′.wslk ← C′.wslk + C′[idx ′].coef
12 return C

13 return OK

Procedure. backjump(integer s)
External data: database ψ, assignment ρ, propagation index q

1 while size(ρ) > s do
2 � ← ρ[size(ρ)]
3 if q = size(ρ) then
4 q ← q − 1

5 foreach (C, idx) ∈ wlist(�) do
6 C.wslk ← C.wslk + C[idx ].coef

7 ρ.pop()

Let x be the 998st decision, leading to ρ = (w1, . . . , w997, x). processWatches
increases q to 998, and as x is watched by C, decreases C.wslk to 0 and calls
propagate(C, 1). propagate iterates over C, picking w998, w999 and w1000 as new
watches in the loop at line 2. After exiting the loop, the watch slack has increased
to C.wslk = 3, so C.wslk ≥ maxcf (C) and x is dropped as watch at lines 10 and
11. The watched literals for C now are watches(C) = {y, z, w998, w999, w1000}.

Let z be the 999th literal decision, leading to ρ = (w1, . . . , w997, x, z). Run-
ning processWatches increases q to 999, and as z is watched by C, decreases
C.wslk to 2 and calls propagate(C, 3). propagate cannot find further watches,
so 0 ≤ C.wslk < maxcf (C) and the while loop at line 14 looks for literals to
propagate. The only literal for which C.wslk < C[j ].coef , x, is already assigned
to false, so no literals can be propagated, and both ρ and watches(C) remain
unchanged.

Let w998 be the next literal decision, leading to ρ = (w1, . . . , w997, x, z, w998).
processWatches increases q to 1000, and as w998 is watched, decreases C.wslk
to 1 and calls propagate(C, 1001). propagate cannot find further watches, so
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0 ≤ C.wslk < maxcf (C) and the while loop at line 14 checks which literals
can be propagated. The only literals for which C.wslk < C[j ].coef are x and
y. The latter is still unassigned, so it is propagated at line 17. Returning to
processWatches, ρ = (w1, . . . , w997, x, z, w998, y), so q = 1000 < size(ρ) = 1001
– the loop at line 5 continues. q is incremented to 1001, but as y is not watched
by C, propagate is not called again.

Finally, let the solver backjump to the root by calling backjump(0). First,
literal y is unassigned, which is not watched by C (even though its negation y
is) so its watch slack is not updated. Then, w998 is unassigned, which is watched
by C, so C.wslk is incremented to 2. Next, z is unassigned, which is watched by
C, so C.wslk is incremented to 3. At this point, q decreased from 1001 to 998.
For the remaining 998 iterations, no further adjustments to C.wslk are needed,
as none of its watches {y, z, w998, w999, w1000} are falsified.

3.3 Algorithm Analysis

The following two invariants underpin the soundness and completeness of our
approach. Short proof sketches are available online [12].

Lemma 4 (Watch slack invariant). The procedures processWatches (calling
propagate) and backjump preserve the property

C.wslk = watchslack(C, ρq) (6)

Lemma 5 (Watch set invariant). The procedures processWatches (calling
propagate) and backjump preserve the property

C.wslk < maxcf (C) ⇒ ∀� ∈ lits(C) \ watches(C) : � ∈ ρ (7)

for a constraint C if the argument of backjump is chosen in such a way that for
all constraints C where C.wslk < maxcf (C), either all of its falsified watches
become unassigned, or none of its non-watched literals become unassigned.

To maintain the watch set invariant, the solver has to take care where to back-
jump. Withholding detail, the well-known technique of partitioning the current
assignment in contiguous decision levels and backjumping over each level as a
whole maintains the watch set invariant.

Lemma 6. If the watch set and watch slack invariants hold, calling the proce-
dure processWatches (calling propagate) propagates literal �i with coefficient
ci in constraint C only if it is unassigned and slack(C, ρ) < ci, and reports that
C is conflicting only if slack(C, ρ) < 0. I.e., processWatches is sound.

Lemma 7. Assuming the watch set and watch slack invariant hold, if the pro-
cedure processWatches (calling propagate) returns OK, no conflicting con-
straint under ρ exists, and no further propagations under ρ are possible. I.e.,
processWatches is complete.
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3.4 Two Optimizations

The datastructures needed for our proposed algorithm are fairly simple and
should have a linear memory footprint and take (amortized) constant time for
each operation. However, a performance bottleneck resides in the loops at lines
2 and 15 in propagate. E.g., Example 3 frequently iterates over the full size of
the constraint to find new watches, even though it was clear no new watches
were available. By reducing the time spent in those loops or even avoiding to
enter them at all, we can improve efficiency.

First observe that when calling propagate because ρ[q] is watched by C, if
C.wslk < maxcf (C) holds at the end of the loop at line 2, all potential watches
have been exhausted per the watch set invariant. Hence, when calling propagate
for ρ[q′] with q′ > q without backjumping over q, the loop at line 2 can be
skipped. To detect this situation, we check whether C.wslk + C[idx ].coef <
maxcf (C). If it holds, there was an earlier call to propagate that exited the
loop at line 2 with C.wslk < maxcf (C), so the loop can now be safely skipped.6

Next observe that, for a given constraint, any literal that is checked to become
a watch by the loop at line 2, but that was not available as watch because it
was falsified or already a watch (line 4 fails), can only become available as watch
after a backjump occurs, since without a backjump the current assignment is
only extended. Similarly, literals checked to be propagated by the loop at line
15 cannot be propagated later without a backjump occurring. To exploit this,
we permanently store the indices i and j of the loops at lines 2 and 15 for each
constraint (e.g., C.i and C.j ) and only reset them to 0 if a backjump happened.
The latter condition is simple to check: keep a global variable (e.g., bkjmps) that
increments by 1 at each backjump. For each constraint, check whether the global
bkjmps matches a local copy C.lastbkjmp that is set at each propagate call.

Procedure propagateOpt extends propagate with these two optimizations.
Remark that as a result of these optimizations, in between backjumps, all calls
to propagateOpt with a given constraint C, perform only O(size(C)) operations
in aggregate.

4 Related Work

A PB propagation algorithm closely related to our work is that of the Pueblo
solver [28]. It also sorts the terms of a constraint in decreasing coefficient order
and checks for propagation if the slack over the watched literals of the constraint
is less than the maximum coefficient of the constraint. However, except in the
case of a conflicting constraint, it does not keep falsified literals as watch, as
per propagate. It also does not update the watch slack during backjumps, as
per backjump. Hence, it is not clear how Pueblo would restore the watches in
the restart scenario described at the end of Example 3.7 Also, Pueblo does not

6 Note that this first optimization depends on the watch set invariant, and thus on an
appropriate backjump scheme.

7 After inquiring with the authors, the source code of Pueblo no longer seems available.
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Procedure. propagateOpt(constraint C, integer idx )
External data: watch list wlist , current assignment ρ, backjump count bkjmps
Result: OK if C is not falsified, otherwise CONFLICT

1 if C.lastbkjmp < bkjmps then
2 C.i ← 1
3 C.j ← 1
4 C.lastbkjmp ← bkjmps

5 if C.wslk + C[idx ].coef ≥ maxcf (C) then
6 while C.i ≤ size(C) and C.wslk < maxcf (C) do
7 � ← C[C.i ].lit

8 if � �∈ ρ and C[C.i ].wflag = 0 then
9 C[C.i ].wflag = 1

10 wlist(�) ← wlist(�) ∪ {(C, C.i)}
11 C.wslk ← C.wslk + C[C.i ].coef

12 C.i ← C.i + 1

13 if C.wslk ≥ maxcf (C) then
14 C[idx ].wflag = 0
15 wlist(C[idx ].lit) ← wlist(C[idx ].lit) \ {(C, idx)}
16 return OK

17 if C.wslk < 0 then return CONFLICT
18 while C.j ≤ size(C) and C.wslk < C[C.j ].coef do
19 � ← C[C.j ].lit

20 if � �∈ ρ and � �∈ ρ then ρ.push(�)
21 C.j ← C.j + 1

22 return OK

implement the optimizations described in Sect. 3.4, and does not store the index
of a watched literal of a constraint in the watch lists, which might lead to a
linear lookup overhead or require a cache-inefficient associative array.

Before Pueblo, work on the Galena solver [6] also prompted PB propagation
investigation. It uses a watched propagation scheme where the number of watches
of a constraint depends on a dynamic maximum coefficient amax of the literals
currently not assigned to true. This minimizes the number of watched literals, but
according to [27], two thirds of the run time of the Galena propagation procedure
is spent updating amax for each constraint. Because of this, it was proposed to
keep amax fixed to the highest coefficient (i.e., maxcf (C)), but Galena eventually
settled on a three-tiered approach with watched propagation only for clauses and
cardinality constraints, and counter propagation for general PB constraints [6].

The more recent Sat4J uses this three-tiered approach by default, but pro-
vides the option to enable a less efficient watched propagation [18].

Finally, the RoundingSat solver [14] implements a watched propagation algo-
rithm which, as in our approach, uses a static maximum coefficient to calculate
the number of needed watches and keeps watching falsified literals, but swaps
watched literals to the front of the constraint [26]. This makes calculating the
watch slack after every call relatively efficient, as only the watched literals in
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the front of the constraint need to be iterated over, rendering the update of the
watch slack during backjumps obsolete. As the watch swaps alter the order of
the literals of the constraint, the index of a watched literal cannot be stored in
the watchlist, as in our approach, and is recalculated during watch slack calcu-
lation. To check for propagating literals, RoundingSat again always iterates over
all watched literals. However, the number of watches of a PB constraint can grow
linearly in the size of the constraint, which leads to a potentially large overhead
for constraints that require lots of watches.

On the CP side, to the best of our knowledge, the constraint in the global
constraint catalog most closely related to PB constraints is sum set [29], which
constrains an integer variable V to take the sum of a variable subset of a set
of values. In the special case where V is constrained only by one fixed bound,
sum set is equivalent to a PB constraint. The propagator for sum set in the CP
solver Gecode [15] relies on counter propagation, though the comparison is not
fully fair as not only literals have to be propagated, but bounds on V as well.

5 Experimental Evaluation

To experimentally evaluate our proposed propagation algorithm, we imple-
mented it in the RoundingSat PB solver [26]. Source code, a binary, and raw
experimental data are available online [12]. As hardware we used AMD Opteron
6238 nodes having 6 cores and 16 GiB of memory each. Each run was executed
as a single thread on a node with a 5000 s timeout limit.

To make a sufficiently broad comparison, we present experiments on instances
from the linear small coefficient decision and optimization tracks from the most
recent PB competition [24], referred to as PB16dec and PB16opt. Addition-
ally, we investigate 0-1 integer linear programming instances from the MIPLIB
libraries [1,3,16,17,21,22]. Since these sets contain few decision instances, we
also created decision versions of the optimization problems. For this, we con-
structed a first instance by replacing the objective function f with a constraint
stating that f should be at least the best known value, and a second where
f should be strictly better. As RoundingSat can currently only deal with inte-
ger coefficients of magnitude at most 109, some of the instances were rescaled
and rounded. We refer to the corresponding MIPLIB decision and optimization
problems as MIPLIBdec and MIPLIBopt. These instances are available online [11].

5.1 Two Optimizations to Watched PB Propagation

Let’s start with a simple question: how effective are the two optimizations
described in Sect. 3.4? For this, we implemented in RoundingSat watched prop-
agation per Procedure propagate (watch) and per Procedure propagateOpt
(watch-opt), and compare the propagation speed defined as the total propa-
gations performed divided by the solve time. As watch and watch-opt do not
differ in the order in which propagations happen, the runs for both watch and
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watch-opt have the same conflict and decision counts and any difference in prop-
agation speed is solely due to algorithmic efficiency. Figure 1 plots the result
for the instances that were solved by both watch and watch-opt within resource
limits and took at least 1 s to solve. The result is clear: the optimizations can
increase the propagation speed by an order of magnitude and never incur signif-
icant overhead.

5.2 Expensive Backjumps?

One advantage of watched propagation in SAT solvers is that no work needs
to be done during backjumps, a feature preserved by the original propagation
implementation of RoundingSat . Our approach updates the watch slack dur-
ing backjumps, though only for those constraints C that have falsified watches,
which only happens if C.wslk < maxcf (C). Figure 2 plots the number of times
watch-opt looked up a constraint when backjumping over a falsified watched
literal (line 6 in backjump and 11 in processWatches) versus the number of
times it looked up a constraint during propagation of a watch (lines 7 and 8 in
processWatches), for instances solved within resource limits.

Backjump lookups happen frequently, but never more than propagation
lookups. Often, backjump lookups happen significantly less than propagation
lookups, up to two orders of magnitude. The median number of backjump watch
lookups is also less than half the median of propagation watch lookups. As back-
jump lookups perform few operations compared to propagation lookups, the
resulting overhead does not seem to induce a performance bottleneck.

Fig. 1. Propagations per second for
watch and watch-opt .

Fig. 2. Watch lookups for watch-opt .



Watched Propagation for PB 173

Fig. 3. Propagations per second for old
and watch-opt .

Fig. 4. Propagations per second for
counter and watch-opt .

5.3 Performance Evaluation

To evaluate the performance of our approach, we compare watch-opt to:

– counter : an implementation of PB counter propagation (see Sect. 2.2)
– old : the original propagation algorithm of RoundingSat (see Sect. 4)
– counter-cc: counter , but clauses and cardinality constraints are handled with

specialized watched propagation routines – the three-tiered approach default
in Sat4J (see Sect. 4)

– old-cc: three-tiered old with the same specialized routines
– watch-opt-cc: three-tiered watch-opt with the same specialized routines

Figures 3, 4, 5 and 6, compare the propagation speed of watch-opt to the
above alternatives, based on the instances succesfully solved by the compared
approaches within resource limits and taking at least 1 s to solve. Table 1 presents
the total number of succesfully solved instances by each approach.

Often, the propagation speed of watch-opt is orders of magnitude faster than
of old and counter , with the reverse being true only infrequently. This translates
to significantly more solved instances compared to old and counter . The special-
ized propagation for clauses and cardinality constraints improves performance
in general, with most -cc configurations solving more instances than their coun-
terparts. watch-opt-cc solves the most instances overall, while counter-cc seems
to profit most from the specialized routines, almost fully closing the gap with
watch-opt-cc. The propagation speed plots in Figs. 5 and 6 tell a similar tale:
old-cc propagates significantly slower than watch-opt-cc, but it becomes harder
to judge that watch-opt-cc propagates faster. The geometric means of their prop-
agation speed in Fig. 6 still give the edge to watch-opt-cc.
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Fig. 5. Propagations per second for
old-cc and watch-opt-cc.

Fig. 6. Propagations per second for
counter-cc and watch-opt-cc.

Table 1. Solved instance counts for different propagation implementations

old counter watch-opt old-cc counter-cc watch-opt-cc

PB16dec (1783) 1429 1385 1451 1444 1456 1472

MIPLIBdec (556) 182 196 203 187 204 205

PB16opt (1600) 820 846 854 825 862 854

MIPLIBopt (291) 69 76 77 71 75 79

To explain the relative difference between old/old-cc and counter/counter-
cc, it is useful to characterize when counter and old accrue the most overhead. A
counter algorithm induces most overhead for constraints with low watch count
as continually updating the high slacks for these constraints is often unnec-
essary. Inversely, old incurs more overhead for constraints that have a rela-
tively high number of watches, as its eager recalculation of watch indices, watch
slacks, and propagating watches, are linear operations in the number of watches.
Since clauses and low-degree cardinality constraints are frequently generated
constraints with low watch counts, this can explain why counter profits a lot
more from the specialized propagation routines than old .

We conclude that watch-opt is indeed more efficient than its counter counter-
part. However, adding specialized clause and cardinality constraint propagation
into the mix strongly diminishes its advantage – counter-cc, the Sat4J default
approach, is definitely a close second.

6 Conclusion

We present an optimized watched propagation algorithm for PB or 0-1 integer
linear constraints. Our experiments indicate it is more efficient than counter
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propagation used by Sat4J and the watched propagation used by RoundingSat .
Hence, our approach seems a good candidate to replace PB counter propagation
with PB watched propagation, though the performance gains are moderate in
the three-tiered setting. Nonetheless, the results are sufficiently convincing to
consider watch-opt-cc as a new default propagation algorithm for RoundingSat .

An interesting avenue to speed up PB propagation would be to pinpoint
which PB constraints propagate more efficiently with a counter approach and
which favor the watched approach. Maybe those constraints which most of the
time have a relatively large number of watched literals are better off with the
counting approach? Other future work may reconsider the idea of Galena: track
the largest coefficient of non-true literals to reduce the number of watches for
a constraint. Our work can also prove useful to improve CP propagators for
constraints closely related to PB constraints, such as the sum set constraint.
Finally, the order in which constraints propagate strongly influences what a
conflict-driven solver will learn. Prioritizing certain types of constraints during
propagation may yield better learned constraints.
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Abstract. The Virtual Arc Consistency (VAC) algorithm by Cooper et
al. is a soft local consistency technique that computes, in linear space,
a bound on the basic LP relaxation of the Weighted CSP (WCSP). We
generalize this technique by replacing arc consistency with a (problem-
dependent) constraint propagation in a system of linear inequalities over
the reals. When propagation detects infeasibility, the infeasibility certifi-
cate (a solution to the alternative system in Farkas’ lemma) provides a
dual improving direction. We illustrate this approach on the LP relax-
ation of Weighted Max-SAT. We show in experiments that the obtained
bounds are often not far from global LP optima and we prove that they
are exact for known tractable subclasses of Weighted Max-SAT.

Keywords: Linear programming relaxation · Constraint propagation ·
Weighted CSP · Virtual Arc Consistency · Weighted Max-SAT

1 Introduction

Although the linear programming (LP) problem is solvable in polynomial time,
solving very large sparse linear programs can be challenging in practice. Such
linear programs occur in many areas, a prominent example being the computa-
tion of bounds in branch-and-bound search by LP relaxation. To solve such LPs,
the classical simplex and interior point methods may not always be suitable, if
only for their worst-case space complexity which is super-linear in the number
of non-zeros of the problem matrix (to the best of our knowledge, not much
is known about worst-case complexity of solving sparse linear programs [18]).
First-order methods such as subgradient, smoothing or augmented Lagrangian
methods have linear space complexity but tend to be slow (see experimental com-
parison [8] of methods for large-scale WCSP) and need a long time to re-converge
when warm-started after a small change of the problem. This is a motivation to
search for problem-specific (possibly approximate) solvers that would be more
efficient than classical methods.

This work has been supported by the Czech Science Foundation (grant 19-09967S),
the OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765, and the Grant Agency of
the Czech Technical University in Prague (grant SGS19/170/OHK3/3T/13).

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 177–193, 2020.
https://doi.org/10.1007/978-3-030-58475-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_11&domain=pdf
http://orcid.org/0000-0002-1944-6569
http://orcid.org/0000-0002-6161-7157
https://doi.org/10.1007/978-3-030-58475-7_11


178 T. Dlask and T. Werner

One such approach is known as the primal-dual method1 [17], which is effi-
cient for LP formulations of some tractable combinatorial optimization problems.
Given a feasible dual solution, we consider the restricted problem, which mini-
mizes infeasibility of the complementary slackness conditions. Optimal solutions
of the dual restricted problem turn out to be dual-improving directions. The
restricted problem is a linear program simpler than the original one, thus often
amenable to combinatorial algorithms. Many classical algorithms for, e.g., flow
and assignment problems can be seen as examples of the primal-dual method.

A similar idea has been employed in the VAC algorithm [3] (and the closely
related Augmenting DAG algorithm [12,25]), which computes an upper-bound
on the basic LP relaxation of the WCSP [19,20,23,25]. Strictly speaking, this is
not a primal-dual method since the restricted problem is the LP relaxation of a
CSP, which is a feasibility rather than optimization problem. Another difference
is that the restricted problem is solved only approximately by arc consistency
(AC), which not always detects infeasibility. Consequently, the method only
obtains an upper bound on the LP relaxation of WCSP.

We propose a generalization of this technique. To detect infeasibility of the
restricted problem, we propose to use a suitable (problem dependent) form
of constraint propagation in a system of linear inequalities. If infeasibility is
detected, a certificate of infeasibility (a solution to the alternative system in
Farkas’ lemma) is constructed, which provides a dual-improving direction. Since
propagation may not always detect infeasibility, the approach yields only an
upper bound on the global optimum of the LP. Note, while constraint propaga-
tion in CSP with infinite domains is well-known [2], the novelty of our approach
is in using infeasibility certificates to iteratively improve the dual solution.

To illustrate the approach on a problem different than WCSP, we chose the
LP relaxation of the Weighted Max-SAT problem [22]. We experimentally show
that the obtained bounds are often not far from global LP optima and we prove
that they are exact for known tractable subclasses of the Weighted Max-SAT.

2 Linear Optimization by Constraint Propagation

2.1 Constraint Propagation for Linear Inequalities

In the CSP, we are given a set of relations (constraints) φ1, . . . , φm ⊆ Dn and seek
to find x = (x1, . . . , xn) ∈ φ1 ∩ · · · ∩ φm or prove that no such solution exists. A
heuristic that can help achieve this is constraint propagation, where we iteratively
generate new constraints that are implied by (i.e., inferred from) the constraint
set and add them to the constraint set. By this, we make explicit some knowledge
about the solution set, which before was only implicit in the constraints. As
exhaustive enumeration of all implied constraints is usually impossible, only a
small predefined set of simple inference (or propagation) rules is used. Since we
are not doing complete inference, the procedure is refutation-incomplete: it need
not infer a contradiction even if the CSP is infeasible.

1 As remarked in [17], this name is a misnomer as it is in fact a purely dual method.
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Deciding feasibility, finding a solution and, more generally, deciding if the
constraints imply a given relation, is usually intractable. The situation is much
simpler if D = R (the reals) and φi’s are linear inequalities. We write a linear
inequality φi as aT

i x ≤ bi and the system φ1, . . . , φm as Ax ≤ b where x ∈ R
n,

A =
[
a1 · · · am

]T ∈ R
m×n and b = (b1, . . . , bm) ∈ R

m. In this case, the above
tasks can be solved by linear programming. In particular, the logic of linear
inequalities over R is described by the affine form of Farkas’ lemma [7,21]:

Theorem 1. A system Ax ≤ b implies an inequality cT x ≤ d iff some non-
negative combination of the inequalities Ax ≤ b implies cT x ≤ d, i.e., there is
y ≥ 0 such that AT y = c and bT y ≤ d.

In particular (Farkas’ lemma), the system Ax ≤ b is infeasible iff some non-
negative combination of the inequalities equals 0T x ≤ d where d < 0, i.e., there
is a vector y ≥ 0 such that AT y = 0 and bT y < 0. The vector y can be seen as a
proof (certificate, cause) for the inequality cT x ≤ d resp. infeasibility.

Thus, constraint propagation for linear inequalities works as follows. Using a
fixed set of inference rules (which depends on the problem solved), we generate
new linear inequalities until either no new inequality can be generated or a
contradiction is found. Each time a new inequality is generated, its ‘cause’ vector
is stored, encoding how the inequality was created from the existing inequalities.
When a contradiction is found, a certificate of infeasibility can be computed
by tracking the newly generated inequalities back to the original system and
composing the cause vectors.

2.2 Computing Certificate of Infeasibility

Let us focus on obtaining the certificate of infeasibility. As an example, consider
the system of m = 5 initial inequalities on the left in Fig. 1. From inequalities φ2

and φ3, we infer inequality φ6 = 2φ2 + φ3. Next, we gradually infer inequalities
φ7 = φ1 +3φ6, φ8 = φ4 +φ6, φ9 = φ6 +φ7, and finally φ10 = φ5 +φ7 +φ8. Since
φ10 reads 0 ≤ −2, the initial system φ1, . . . , φ5 is infeasible.

The history of propagation is represented by a directed acyclic graph (DAG)
E ⊆ V × V with edge weights α: E → R+, where V is the set of all (initial and
inferred) inequalities and each inferred inequality is given by φi =

∑
j∈Ni

αijφj

where Ni = { j ∈ V | (i, j) ∈ E }. By composing the inferences, each inequality
φi can be expressed in terms of the initial inequalities as φi =

∑m
j=1 yi

jφj , where
we call yi = (yi

1, . . . , y
i
m) ∈ R

m the cause vector of φi. For i ≤ m, we have yi = ei

where ei is the ith standard-basis vector of Rm. For i > m, we have

yi =
∑

j∈Ni:Nj=∅
αije

j +
∑

j∈Ni:Nj �=∅
αijy

j . (1)

In the example, V = {1, . . . , 10}, y6 = 2e2 + e3 = (0, 2, 1, 0, 0), y7 = e1 + 3y6,
y8 = e4+y6, y9 = y6+y7, and y10 = e5+y7+y8 = (1, 8, 4, 1, 1). Since bT y10 = −2
and AT y10 = 0, vector y10 is a certificate of infeasibility by Theorem1.
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Fig. 1. Propagation in a simple system of linear inequalities. The inequalities are
indexed by 1–10. Inequalities 1–5 are initial, inequalities 6–10 are inferred. Edge weights
indicate the coefficients of non-negative combinations.

As we need the cause vector only for the final (contradictory) inequality (φ10

in the example), storing all cause vectors explicitly in the memory is wasteful. In
addition, some inferred inequalities may not be needed for the proof of infeasibil-
ity (φ9 in the example). We show that any single cause vector can be computed
more efficiently by dynamic programming.

For any initial inequality φi and any derived inequality φk, yk
i is the sum of

weight-products2 of all directed paths from node k to node i in the DAG. Suppose
we want to compute yk for some single k. We can consider only the subgraph
of the DAG reachable from node k along directed paths. We introduce auxiliary
variables zj , which are to equal the sum of weight-products of all directed paths
from node k to node j. Initially, we set yk = 0, zk = 1, and zj = 0 for all j �= k.
Then we process the nodes i of the subgraph in a topological order as follows:
if Ni = ∅ then set yk

i := zi, otherwise update zj := zj + αijzi for all j ∈ Ni.
Eventually, we have yk

i = zi for all i = 1, . . . , m. The time and space complexity
of this algorithm is linear in the size of the graph.

2.3 Application to Linear Programming

Now we show how constraint propagation can be used to possibly improve a
feasible dual solution of a linear program. Consider a pair of mutually dual
linear programs (the primal on the left, the dual on the right)

cT x → max bT y → min (2a)
Ax ≤ b y ≥ 0 (2b)

x ≶ 0 AT y = c (2c)

where3 x ≶ 0 denotes that the components of x can have arbitrary signs (as in [17]).
By the complementary slackness theorem, a primal feasible solution x and a dual
2 The weight-product of a path is the product of all edge weights along the path.
3 A, b in (2) denote different matrices than A, b in the previous sections.
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feasible solution y are simultaneously optimal iff for every i we have aT
i x = bi or

yi = 0 (or both). Denoting by I = { i | yi = 0 } the set of dual constraints (2b)
active at y, this condition can be written as the left-hand system of the pair

bT ȳ < 0 (3a)

aT
i x ≤ bi ȳi ≥ 0 ∀i ∈ I (3b)

aT
i x = bi ȳi ≶ 0 ∀i /∈ I (3c)

x ≶ 0 AT ȳ = 0. (3d)

On the right of (3), we wrote the Farkas alternative system to these condi-
tions4. Thus, a point y feasible for the dual in (2) is optimal iff the left-hand
system in (3) is feasible, which holds iff the right-hand system in (3) is infeasible.
Moreover, any solution ȳ to the right-hand system is an improving direction for
the dual in (2), i.e., there is ε > 0 such that bT (y + εȳ) < bT y, y + εȳ ≥ 0 and
AT (y + εȳ) = c.

The method thus proceeds as follows. Having a feasible solution y for the
dual in (2), try to prove infeasibility of the left-hand system in (3) by constraint
propagation and find a certificate of infeasibility ȳ, i.e., a solution to the right-
hand system in (3). Then choose (by exact or approximate line search) a step
size ε and update y := y + εȳ. By repeating this iteration, a better and better
upper bound on linear program (2) is obtained. Terminate when the propagation
fails to detect infeasibility of the left-hand system in (3).

In the rest of the paper, we apply this approach to LP relaxations of WCSP
and Max-SAT. These LPs will involve equality constraints and non-negative vari-
ables. Though they could be transformed to the general form (2) by well-known
tricks (such as replacing an equality with two inequalities or adding slack vari-
ables), it will be more convenient to adapt the basic approach described in Sect. 2
to these cases, resulting in somewhat different and more complex algorithms.

3 LP Relaxation of Weighted CSP

In the (binary)WCSP,wearegivenagraphE ⊆ (
V
2

)
, afinitedomainD, andweights

c∅ ∈ R, cuk ≤ 0 (u ∈ V , k ∈ D) and cuk,vl ≤ 0 (uv ∈ E, k, l ∈ D). We maximize

fc(λ) = c∅ +
∑

u∈V

cuλ(u) +
∑

uv∈E

cuλ(u),vλ(v) (4)

over all assignments λ: V → D. We abbreviated {u, v} by uv and adopted that
cuk,vl = cvl,uk. The basic LP relaxation of WCSP can be written as5

4 The two systems (3) correspond to a more general form of Farkas’ lemma than
Theorem 1, allowing for equality constraints and non-negative variables [14, §6.4].

5 The basic LP relaxation of WCSP can be written in several different ways, see e.g.
[19,23,25]. We chose the one that is closest to the VAC paper [3].
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cT x → max h → min (5a)
Ax = 0 y ≶ 0 (5b)
x∅ = 1 h ≶ 0 (5c)

x ≥ 0 AT y + e∅h ≥ c (5d)

where the system Ax = 0 reads
∑

l∈D xuk,vl − xuk = 0 ∀u ∈ V, v ∈ Nu, k ∈ D (6a)
∑

k∈D xuk − x∅ = 0 ∀u ∈ V. (6b)

The system AT y + e∅h ≥ c reads

yu − ∑
v∈Nu

yuk,v ≥ cuk ∀u ∈ V, k ∈ D (7a)

yuk,v + yvj,u ≥ cuk,vl ∀uv ∈ E, k, l ∈ D (7b)
∑

u∈V yu + h ≥ c∅ (7c)

where e∅ is the standard-basis vector such that xT e∅ = x∅.
For any y, replacing the weight vector c with the vector c′ = c − AT y is an

equivalent transformation [3] (a.k.a. a reparameterization [19,24]) of the WCSP
objective6. Indeed, c′T x = (cT − yT A)x = cT x for all feasible x, hence also
fc′(λ) = fc(λ) for all assignments λ. A reparameterization is feasible (satisfy-
ing (7a) and (7b) if c′

uk ≤ 0 and c′
uk,vl ≤ 0. After eliminating variable h, the

dual thus minimizes c′
∅ over feasible reparameterizations. Note that for feasible

reparameterizations, c′
∅ is an upper bound on the WCSP optimal value.

Given a feasible dual solution (y, h), let J denote the set of indices of dual
inequalities (5d) that are active at (y, h). Then, the complementary slackness
conditions read as the left-hand system of

h̄ < 0 (8a)
Ax = 0 ȳ ≶ 0 (8b)
x∅ = 1 h̄ ≶ 0 (8c)

xj ≥ 0 AT
j ȳ + h̄e∅

j ≥ 0 ∀j ∈ J (8d)

xj = 0 ∀j /∈ J (8e)

where Aj denotes the jth column of A and e∅
j = �j = ∅� is the jth component

of e∅ (where �·� denotes the Iverson bracket). On the right, we wrote the Farkas
alternative system.

The left-hand system in (8) is the LP relaxation of the CSP instance formed
by the active tuples of the reparameterized WCSP instance. The WCSP is vir-
tually arc-consistent (VAC) if this CSP has a non-empty AC closure [3]. Indeed,
propagating zero values of the primal variables xj in (8) using the marginaliza-
tion constraint (6a) is equivalent to the AC algorithm in this CSP.

6 Note, c′ is ‘almost’ (up to variable h) the reduced cost vector of the primal of (5).
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When propagation detects a contradiction, we construct a certificate (ȳ, h̄)
satisfying the right-hand system of (8). If a variable xj is inferred to be zero, we
store a cause vector yj of the coefficients of linear combination xj + tj = 0 of
the primal constraints (6), where tj is a non-negative combination of xi, i ∈ J ,
and may contain xi, i /∈ J , with arbitrary sign. Under constraints (8e)+(8d),
tj is non-negative, therefore xj + tj = 0 implies xj = 0. For j /∈ J , we initialize
yj = 0. All vectors yj have the same dimension, equal to the number of primal
constraints (6). We denote the standard-basis vector of this space corresponding
to (6a) (resp. (6b)) by euk,v (resp. eu).

We now describe the propagation rules in detail, including the cause vec-
tors yj . If j ∈ J , each yj will represent an equality xj + tj = 0. If j /∈ J , yj

is initialized to zero and thus represent equality 0 = 0; in this case the excess
variable −xj on the left-hand side will be included into ti on the right-hand side,
which is allowed by the definition of ti. The propagation rules are as follows:

– If xuk = 0 for some u ∈ V and k ∈ D, constraints (6a) imply xuk,vl = 0 for
all v ∈ Nu and l ∈ D. Inference in terms of equalities:

(
xuk + tuk = 0

)
+

( ∑

l∈D

xuk,vl − xuk = 0
)

=
( ∑

l∈D

xuk,vl + tuk = 0
)

The cause vectors are given by yuk,vl = yuk + euk,v, for v ∈ Nu and l ∈ D.
– If for some uv ∈ E and k ∈ D we have xuk,vl = 0 for all l ∈ D, constraint (6a)

implies xuk = 0. Inference in terms of equalities:
∑

l∈D

(
xuk,vl + tuk,vl = 0

)−( ∑

l∈D

xuk,vl − xuk = 0
)

=
(
xuk +

∑

l∈D

tuk,vl = 0
)

The cause vector is given by yuk =
∑

l∈D yuk,vl − euk,v.
– If for some u ∈ V we have xuk = 0 for all k ∈ D, constraint (6b) implies a

contradiction (domain wipe-out). Inference in terms of equalities:
∑

k∈D

(
xuk + tuk = 0

) − ( ∑

l∈D

xul − x∅ = 0) − (
x∅ = 1

)
=

( ∑

k∈D

tuk = −1
)

The certificate of infeasibility is given by ȳ =
∑

k∈D yuk − eu, h̄ = −1.

By properties of tj and the fact that coefficients (ȳ, h̄) encode an equality
in the form

∑
j tj = −1, it is not hard to show that (ȳ, h̄) are feasible for the

right-hand side (8) and therefore constitute an improving direction for the dual
in (5) from the current point (y, h).

The described algorithm is ‘almost’ equivalent to the VAC / Augmenting
DAG algorithm [3,12,25]. The fixed points of both algorithms are characterized
by the same property, namely VAC. However, our improving directions ȳ are in
general different from the ones in [3,12,25], sometimes having larger absolute
values of their components (and thus allowing smaller step size ε). It is subject
to further research to clarify the relation between them.
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4 LP Relaxation of Weighted Max-SAT

In the Weighted Max-SAT problem, we are given a set V of variables and a
set C of clauses with positive weights w: C → R++ and we seek to max-
imize the weighted sum of satisfied clauses. Let V +

c (resp. V −
c ) denote the

set of variables that occur in clause c ∈ C non-negated (resp. negated). Let
C±

i = { c ∈ C | i ∈ V ±
i } denote the set of clauses where variable i ∈ V occurs

non-negated/negated. We denote nc = |V −
c |. For any S ⊆ V , we will use the

shortcut x(S) =
∑

i∈S xi, similarly for y. The classical LP relaxation of Weighted
Max-SAT [22] reads

wT z → max nT y + q(C) + p(V ) → min (9a)

zc ≤ x(V +
c ) + nc − x(V −

c ) yc ≥ 0 ∀c ∈ C (9b)

xi ≥ 0 pi − y(C+
i ) + y(C−

i ) ≥ 0 ∀i ∈ V (9c)
xi ≤ 1 pi ≥ 0 ∀i ∈ V (9d)
zc ≥ 0 qc + yc ≥ wc ∀c ∈ C (9e)
zc ≤ 1 qc ≥ 0 ∀c ∈ C (9f)

where we wrote also the dual LP on the right. The primal variables xi represent
the (relaxed) original Boolean variables. Clearly, at dual optimum we have

pi = max{y(C+
i ) − y(C−

i ), 0} ∀i ∈ V (10a)
qc = max{wc − yc, 0} ∀c ∈ C. (10b)

Substituting (10) into the dual objective together with nT y =
∑

i∈V y(C−
i )

results in a simpler form of the dual,

min
y≥0

∑

c∈C

max{wc − yc, 0} +
∑

i∈V

max{y(C+
i ), y(C−

i )} (11)

which minimizes a convex piecewise-affine function of non-negative variables.

Theorem 2. Point y ∈ R
C
+ is optimal for (11) iff there exists x ∈ R

V satisfying
the left-hand system of

x(V +
c ) + nc − x(V −

c ) ≥ 1 ȳc ≥ 0 ∀c ∈ C≥1 (12a)

x(V +
c ) + nc − x(V −

c ) = 1 ȳc ≶ 0 ∀c ∈ C=1 (12b)

x(V +
c ) + nc − x(V −

c ) ≤ 1 ȳc ≤ 0 ∀c ∈ C≤1 (12c)

x(V +
c ) + nc − x(V −

c ) = 0 ȳc ≶ 0 ∀c ∈ C=0 (12d)

xi = 1 p̄i ≶ 0 ∀i ∈ X1 (12e)

xi = 0 p̄i ≶ 0 ∀i ∈ X0 (12f)

xi ≶ 0 p̄i + ȳ(C+
i ) − ȳ(C−

i ) = 0 ∀i ∈ X0 ∪ X1 (12g)

xi ≥ 0 p̄i + ȳ(C+
i ) − ȳ(C−

i ) ≤ 0 ∀i ∈ XU (12h)

xi ≤ 1 p̄i ≤ 0 ∀i ∈ XU (12i)
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where

X0 = { i ∈ V | y(C+
i ) < y(C−

i ) } C≥1 = { c ∈ C | yc = 0 } (13a)

X1 = { i ∈ V | y(C+
i ) > y(C−

i ) } C=1 = { c ∈ C | 0 < yc < wc } (13b)

XU = { i ∈ V | y(C+
i ) = y(C−

i ) } C≤1 = { c ∈ C | yc = wc } (13c)

C=0 = { c ∈ C | yc > wc } (13d)

are partitions of V and C. If the left-hand system is infeasible, then there exist
values (p̄, ȳ) for the right-hand system7 (12) such that

∑

c∈C

(�c /∈ C=0� − nc)ȳc + p̄(X1 ∪ XU ) > 0, (14)

where ȳ is an improving direction for (11) from y.

Proof. The left-hand system in (12) is the complementary slackness condition
for the primal-dual pair (9), where we used (10) and eliminated variables zc.

The right-hand system of (12) and (14) form the alternative system to the
left-hand system of (12) in Farkas’ lemma. To show that ȳ is improving for (11),
realize that p̄ can w.l.o.g. satisfy p̄i = ȳ(C−

i ) − ȳ(C+
i ) for all i ∈ X0 ∪ X1 and

p̄i = min{ȳ(C−
i ) − ȳ(C+

i ), 0} for all i ∈ XU . Then, (14) can be reformulated
(after multiplying by −1 and substituting −p̄i terms) as

−ȳ(C − C=0) +
∑

i∈XU

max{ȳ(C+
i ), ȳ(C−

i )} +
∑

i∈X1
ȳ(C+

i ) +
∑

i∈X0
ȳ(C−

i ) < 0,

which states that (11) decreases in terms of the affine functions that are active8

in the current point y, as defined by the sets (13). �
We now define propagation rules for the left-hand system (12). These rules

set the values of some of the undecided variables xi, i ∈ XU , to 0 or 1. Pre-
cisely, we iteratively visit each constraint (12a)–(12d) and look whether with
the already decided variables it permits only a single value of some so-far unde-
cided variable. If so, we fix the value of this variable (i.e., make it decided). If
some constraint (12a)–(12d) cannot be satisfied by any assignment subject to
the already decided variables, the left-hand system in (12) is infeasible. Dur-
ing propagation, we update the dual variables of (12), so that if infeasibility is
detected, we are able to construct an improving direction ȳ for (11).

We now need a technical definition. For j ∈ V , we call a cause vector (pj , yj)

– 1-j-defining if it satisfies the right-hand system in (12), except for i = j when
it satisfies pj

j + yj(C+
j ) − yj(C−

j ) = 1 and left-hand side of (14) equals 1.
This cause vector defines an inequality xj + tj ≥ 1 derived from the left-hand
system in (12), where tj is a non-positive weighted sum of xi, i ∈ XU . Clearly,
this inequality implies xj = 1.

7 Note, the right-hand system (12) has opposite direction of inequalities. This is due
to writing left-hand inequalities (12a)–(12d) with opposite directions than in (9b).

8 For f(x) = max{aTx, bTx} and a fixed x, we say that the function aTx is active and
bTx is inactive at x if aTx > bTx. If aTx = bTx, both functions are active at x.
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Table 1. Propagation rules for system (12). The first column determines the type of
constraints to which the rule applies.

Constraint Rule

C≥1 ∪ C=1 A1 If there is only one undecided variable xk,
k ∈ Vc, and xc

i = 0 for all other
i ∈ Vc − {k}, we set xk = �k ∈ V +

c � and
yk = ec +

∑
i∈Vc−{k} yi

A2 If all the variables xi for i ∈ Vc are decided
and satisfy xc

i = 0, then we obtain a
contradiction and set ȳ = ec +

∑
i∈Vc

yi

C=1 ∪ C≤1 B1 If there is exactly one decided variable
xi, i ∈ Vc, with xc

i = 1, then we set
xk = �k ∈ V −

c � and yk = −ec + yi for each
undecided xk, k ∈ Vc

B2 If there are two (or more) decided variables
xi, xj for i, j ∈ Vc with xc

i = xc
j = 1, then

we obtain a contradiction and set
ȳ = −ec + yi + yj

C=0 C1 If there is no decided variable xi, i ∈ Vc,
with xc

i = 1, then set all undecided
variables xk, k ∈ Vc, as xk = �k ∈ V −

c � and
yk = −ec

C2 If there is a decided variable xi, i ∈ Vc,
with xc

i = 1, then we obtain a
contradiction and set ȳ = −ec + yi

– 0-j-defining if it satisfies the right-hand system in (12) and pj
j + yj(C+

j ) −
yj(C−

j ) = −1, and the left-hand side of (14) equals 0. This cause vector
defines an inequality −xj + tj ≥ 0, which implies xj = 0.

Note that the sign constraints on the right-hand side (12) ensure that the inequal-
ities on left-hand side (12) are combined in correct directions.

As mentioned in Theorem 2, it is sufficient to store vectors yj ∈ R
C because

these will be used to construct the improving direction ȳ if a contradiction is
detected. Thus, for each decided variable xj that is set to a value v ∈ {0, 1}, we
can store only the yj component of a v-j-defining vector (pj , yj).

The propagation rules are listed in Table 1, divided into groups according to
which set (13) clause c belongs. For each rule, we also specify how to construct
the cause vector yi for each inferred variable xi. For i ∈ X1 ∪ X0, we define
yi = 0 so that it can be referred to in the equations for creation of other yj or ȳ.
To simplify the explanation of the rules, for any i ∈ V and c ∈ C we denote

xc
i =

{
xi, if i ∈ V +

c ,

1 − xi, if i ∈ V −
c .

(15)
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We denote ec ∈ R
C to be the standard-basis vector with 1 in the place corre-

sponding to clause c. We also define Vc = V +
c ∪ V −

c .
The derivation of the updates for cause vectors yi is technical and must be

done for each rule separately. The proof relies on the fact that for each initially
decided variable xj , j ∈ X1, (resp. j ∈ X0), we can initialize a 1-j-defining
(resp. 0-j-defining) cause vector (pj , yj) as (ej , 0) (resp. (−ej , 0)) where ej ∈ R

V

is a standard-basis vector. This corresponds to setting yj = 0 for the initially
decided variables. Then it is possible to show how to derive a v-k-defining vector
for a newly decided variable xk from the previous ones. We are going to show
this in detail for rule B1, which we believe is most complicated.

Theorem 3. Let c ∈ C=1 ∪ C≤1 such that there is exactly one decided variable
xi, i ∈ Vc, with xc

i = 1 and xk, k ∈ Vc, is an undecided variable. Let xi be decided
to a value v ∈ {0, 1}, and let (pi, yi) be v-i-defining. Then there exists a vector pk

such that (pk,−ec + yi) is �k ∈ V −
c �-k-defining.

Proof. First of all, see that x(V +
c ) + nc − x(V −

c ) =
∑

j∈Vc
xc

j by definition (15).
The inequality encoded by the v-i-defining cause vector (pi, yi) can be compactly
rewritten as xc

j +tj ≥ 1 and analogously, each defining equality for j ∈ Vc∩(X0∪
X1) with xc

j = 0 can be expressed as −xc
j = 0, hence xc

j ≥ 0. Then, the derivation
of the defining inequality for undecided variable xk is given as follows:

− ∑

j∈Vc

xc
j ≥ −1 (0,−ec) (16a)

xc
i + ti ≥ 1 (pi, yi) (16b)

xc
j ≥ 0 ∀j ∈ (Vc ∩ X0) − {i} (ej , 0) (16c)

xc
j ≥ 0 ∀j ∈ (Vc ∩ X1) − {i} (−ej , 0) (16d)

xc
j ≥ 0 ∀j ∈ (V −

c ∩ XU ) − {i, k} (−ej , 0) (16e)

−xc
k + tk ≥ 0 (pk, yk) (16f)

where
tk = − ∑

j∈(XU∩V +
c )−{i,k}

xj + ti. (17)

Inequality (16a) is (12b) or (12c) multiplied by −1, (16b), (16c), and (16d) are
inequalities determining the values of already decided variables, and (16e) is
(12i). Inequality (16f) is given as the sum of the inequalities above it. Each row
in (16) is marked on the right by the coefficients (p, y) with which it was derived
from the original system (12). It is easy to check that the sign constraints in the
right-hand system (12) are satisfied for each pair (p, y) in (16).

The coefficients for the last row are determined by summing the above coef-
ficients, i.e., yk = −ec + yi (which is the same equation as in Table 1) and
pk = pi +

∑
j∈J ′ ej −∑

j∈J ′′ ej where J ′ (resp. J ′′) is set used on line (16c) (resp.
union of the sets on lines (16d) and (16e). To show that the vector (pk, yk) is
�k ∈ V −

c �-k-defining, substitute the definition (15) into (16f) and see that tk is
again a non-positive combination of other variables from XU as this held for ti
by the assumption of the theorem. �
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Each propagation rule can be formulated in a general form similar to (16)
that defines vectors (yk, pk) as described in Table 1. Using these vectors, a con-
tradiction defined by (p̄, ȳ) encodes an inequality t̄ ≥ 1 where t̄ is a non-positive
sum of xi, i ∈ XU , and it is possible to show that the pair (p̄, ȳ) satisfies condi-
tions of Theorem 2.

Remark 1. One can ask whether it is possible to infer other values of undecided
variables than 0 or 1 (such as 1

2 ). Assuming that inference is done only from
a single constraint from (12a)–(12d), this is impossible because the polyhedron
defined by a single (in)equality from (12a)–(12d) subject to 0 ≤ xi ≤ 1, where
some of the variables may be already set to 0 or 1, has integral vertices.

Remark 2. For general Max-SAT, the propagation rules in Table 1 do not always
prove infeasibility of the left-hand system in (12). However, for Weighted Max-
2SAT they do: if no more propagation is possible and no contradiction is
detected, setting all undecided variables xi to 1

2 satisfies all constraints of (12).

Remark 3. The restricted system (12) is the LP relaxation of a CSP with
Boolean variables. The propagation corresponds to enforcing arc consistency
of this CSP. The whole algorithm seeks to find a feasible dual solution of the LP
relaxation of Max-SAT that enforces this CSP to have a non-empty AC closure.
Compare this with the WCSP case, where the restricted system (8) is the LP
relaxation of the CSP formed by the active tuples and the VAC algorithm seeks
to find an equivalent transformation (a linear transformation of the weight vec-
tor that preserves the objective function) that makes this CSP arc-consistent.
Note that, in contrast to WCSP, there is no obvious analogy of equivalent trans-
formations for Weighted Max-SAT.

4.1 Finding Step Size by Approximate Line Search

If a contradiction is detected in (12) and improving direction ȳ at the point y is
constructed, we need to find a feasible step size ε > 0, as mentioned in Sect. 2.3.
The optimal way (exact line search) would be to minimize f(y + εȳ) over ε > 0
subject to y+ εȳ ≥ 0, where f is the objective of (11). Since this is too costly for
large instances, we do only approximate line search: we find the first breakpoint of
the univariate convex piece-wise affine function ε �→ f(y+εȳ) , i.e., the smallest ε
at which at least one previously inactive affine function becomes active. This
ensures a non-zero improvement of f . Such ε is the maximum number satisfying
the following constraints:

– To stay within the feasible set, we need yc + εȳ ≥ 0, therefore ε ≤ −yc/ȳc for
all c ∈ C − C≥1 with ȳc < 0.

– For terms max{wc −yc, 0}, if wc −yc > 0 (resp. wc −yc < 0) and wc −yc −εȳc

decreases (resp. increases), then we need ε ≤ (wc − yc)/ȳc where the bound is
the point where the terms equalize. This is for all c ∈ C such that (wc − yc)
ȳc > 0.
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– For terms max{y(C+
i ), y(C−

i )}, if y(C+
i ) > y(C−

i ) and ȳ(C+
i ) < ȳ(C−

i ) (resp.
with inverted inequalities), we need ε ≤ (y(C+

i ) − y(C−
i ))/(ȳ(C−

i ) − ȳ(C+
i ))

where the bound is the point where the terms equal. This is for all i ∈ V with
(y(C+

i ) − y(C−
i ))(ȳ(C−

i ) − ȳ(C+
i )) > 0.

Using the conditions on ȳ determined by Theorem 2, it can be shown that there
always exists ε > 0 satisfying these bounds.

4.2 Algorithm Overview

Let us summarize the algorithm. We start with y = 0 (which is dual-feasible) and
repeat the following iteration: From the current y, construct system (12). Apply
rules in Table 1 to fix values of undecided variables. During that, construct the
DAG defining each yi until no rule is applicable or contradiction is detected. If
no contradiction is detected, stop. If contradiction is detected, compute ȳ from
the DAG, similarly as in Sect. 2.2. Calculate step size ε as in Sect. 4.1 and update
y := y + εȳ.

To speed up the algorithm and facilitate convergence9, we redefine sets (13)
up to a tolerance δ > 0, by replacing yc > 0 with yc > δ, y(C+

i ) < y(C−
i )

with y(C+
i ) + δ < y(C−

i ), etc. We start with some large value of δ. When the
algorithm achieves a fixed point, we keep the current y and set δ := δ/10. We
continue until δ is not very small (10−6).

All data structures used by the algorithm need space that is linear in the
input size, i.e., in the number

∑
c∈C |Vc| of non-zeros in linear program (9). In

particular, it can be shown that the DAG (used to calculate ȳ) can be conve-
niently stored as a subgraph of the bipartite clause-variable incidence graph.

4.3 Results

We compared the upper bound on the optimal value of (9) obtained by our
algorithm with the exact optimal value of (9) obtained by an off-the-shelf LP
solver (we used Gurobi with default parameters) on the Max-SAT Evaluations
2018 benchmark [1]. This benchmark contains 2591 instances of Weighted Max-
SAT. Gurobi was able to optimize (without memory overflow) the smallest
2100 instances, the largest of which had up to 600 thousand clauses, 300 thou-
sand variables and 1.6 million non-zeros. The largest instances in the benchmark
have up to 27 million clauses, 19 million variables and 77 million non-zeros and
was still manageable by our algorithm.

From the smallest 2100 instances, 154 instances were Max-2SAT and 91
instances did not contain any unit clause. As discussed in Remark 2, the algo-
rithm attained the exact optimum of the LP on instances of Max-2SAT. Simi-
larly, if an instance does not contain any unit clause, then setting xi = 1

2 for all

9 Though we do not present any convergence analysis of our method, it is known that
the VAC / Augmenting DAG algorithm with δ = 0 can converge to a point that
does not satisfy virtual arc consistency [3,12,26].
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Fig. 2. Sorted values of R with linear (left) and logarithmic (right) scale.

i ∈ V yields an optimal solution of (9) with objective value w(C). The algorithm
also attains optimality on these instances because y = 0 is already optimal for
the dual. These instances are excluded from the evaluation.

Each of the remaining 1855 instances contains a clause of length at least 3
and also contain a unit clause, thus the bound is not guaranteed to be optimal.
We measure the quality of the bound by the criterion R = (U −U∗)/(w(C)−U∗)
where U∗ is the globally optimal value of (9) and U is the upper bound computed
by our algorithm. This criterion is invariant to scaling the weights and shows
how tight the bound is relative to the trivial bound w(C).

The sorted numbers R for the selected 1855 instances are plotted in Fig. 2.
For 802 instances the bound was tight (U = U∗). Due to this, the vertical
(logarithmic) axis in the right-hand plot is trimmed, starting from 10−20. The
left-hand plot shows that the obtained upper bound is informative in at least
1000–1100 cases. In fact, R was higher than 0.6 only in 35 instances.

We computed also another criterion Q = (U −U∗)/U∗, which was lower than
10−6 (resp. 10−8) on 1644 (resp. 1308) from the 1855 instances. Overall, Q was
always lower than 0.029.

For 152 out of the 2100 considered instances, the integrality gap of the LP
relaxation is known to be tight. In 133 of them, our algorithm attained this
optimum. Only 2 of these were Max-2SAT and each contained a unit clause, so
optimality was not guaranteed trivially.

An unoptimized implementation of our algorithm was on average 3.3 times
faster than Gurobi. We believe a significant speed-up could be achieved by
warm-starting. The part of the DAG needed to explain the found contradic-
tion (see Sect. 2.2) is usually very small. If the DAG is built in every iteration
from scratch, most of it is therefore thrown away. Since the system (12) changes
only slightly between consecutive updates, it makes sense to re-use a part of
the DAG in the next iteration. Such warm-starting was presented for the VAC
algorithm in [16] and for the Augmenting DAG algorithm in [26] with significant
speed-ups.
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4.4 Tightness of the Bound on Tractable Classes

We show that the constraint propagation in system (12) is refutation-complete
for tractable subclasses of Weighted Max-SAT that either use tractable clause
types (language) or have acyclic structure (clause-variable incidence graph). For
these instances, integrality gap of the LP relaxation (9) is zero and all fixed
points of our algorithm are the optima of the unrelaxed problem.

It was shown in [9, Theorem 1] that a subclass of generalized Max-SAT
(i.e., Max-CSP with Boolean variables) defined by restricting constraint types
(language) is tractable if and only if one of the following holds:

– All constraints are 0-valid (resp. all are 1-valid). In this case, if the constraints
are given as clauses (i.e., we restrict ourselves to the ordinary Weighted Max-
SAT), the optimal value is w(C), which coincides with the optimum of the
LP and our algorithm attains this optimum already at y = 0.

– All constraints are 2-monotone. Again, restricting these constraints to clauses
results in clauses with at most two literals where at most one of them is
positive (resp. negative). In this case, Max-SAT can be reduced to minimum
st-cut problem [9, Lemma 3] and the optimum of its LP formulation equals
(up to a trivial recalculation) the optimum of the LP relaxation of Max-
SAT which is thus tight. Since this is an instance of Weighted Max-2SAT, by
Remark 2 all fixed points of our algorithm are the optima of the LP.

If we view (12) as the LP relaxation of a CSP with Boolean variables, then
the propagation rules in Table 1 enforce arc consistency of this CSP. If the factor
graph of this CSP is acyclic, arc consistency solves this CSP exactly [5, The-
orem 1]. Hence, if the clause-variable incidence graph is acyclic, our constraint
propagation rules are refutation-complete and the fixed points of our algorithm
are optimal. Additionally, if no contradiction is detected, an integral solution to
the left-hand system (12) can be constructed, so the integrality gap is zero.

5 Conclusion

We have proposed a technique to compute, with small space complexity, bounds
on certain large sparse linear programs with suitable structure. Having a feasible
dual solution, infeasibility of the complementary slackness conditions (a system
of linear inequalities) is detected by constraint propagation and the infeasibility
certificate is recovered, providing a dual improving direction. This technique can
be seen as a generalization of the VAC algorithm [3] for WCSP. We have newly
applied it to the LP relaxation of the Weighted Max-SAT.

The main purpose of soft local consistencies in WCSP, such as FDAC, EDAC,
VAC and OSAC [3], is to bound the optimal value of WCSP during search. Each
local consistency has a different trade-off point between bound tightness and
computational complexity. In this view, our approach can be seen as a soft local
consistency technique for other problems than WCSP. It is open whether the
trade-off point of our method for Max-SAT will allow designing better algorithms
to compute exact or approximate solutions of the unrelaxed Max-SAT problem.
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Though in principle our approach can also be applied to other LPs (if an
initial dual-feasible solution is available), the existence of good propagation rules
and the quality of obtained bounds critically depends on the problem structure
in a so-far unknown way. It is yet to be seen if there are other such ‘propagation
friendly’ classes of LPs beyond the LP relaxation of WCSP and Max-SAT.

In comparison with the first-order optimization methods (such as subgradient
methods or ADMM, see [8]), our approach may have the advantage that it
reconverges faster after a small change of the problem instance. Though this
claim would need more experimental support, evidence can be found in [15] for
the VAC algorithm and in [11] for the Augmenting DAG algorithm.

VAC in WCSP is closely related to convergent message-passing methods
developed within computer vision, such as [6,10,13,25]. Their fixed points are
also characterized by a local consistency (usually AC in disguise) and they can
be seen as versions of block-coordinate descent applied to the dual LP relax-
ation. This suggests there is a close connection between our approach and block-
coordinate descent methods. We clarify this connection in [4].

References

1. Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2018: new develop-
ments and detailed results. J. Satisfiability Boolean Model. Comput. 11(1), 99–131
(2019). Instances https://maxsat-evaluations.github.io/

2. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Handbook
of Constraint Programming, chap. 16. Elsevier (2006)

3. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174(7–8), 449–478 (2010)

4. Dlask, T., Werner, T.: On relation between constraint propagation and block-
coordinate descent in linear programs. In: Simonis, H. (ed.) International Confer-
ence on Principles and Practice of Constraint Programming. LNCS, vol. 12333, pp.
194–210. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-58475-
7 12

5. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM (JACM)
29(1), 24–32 (1982)

6. Globerson, A., Jaakkola, T.S.: Fixing max-product: convergent message passing
algorithms for MAP LP-relaxations. In: Advances in Neural Information Processing
Systems, pp. 553–560 (2008)

7. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley Series in Discrete Mathematics and Optimization,
Wiley (2000)

8. Kappes, J.H., et al.: A comparative study of modern inference techniques for struc-
tured discrete energy minimization problems. Intl. J. Comput. Vis. 115(2), 155–184
(2015)

9. Khanna, S., Sudan, M.: The optimization complexity of constraint satisfac-
tion problems. In: Electronic Colloquium on Computational Complexity. Citeseer
(1996)

10. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1568–1583 (2006)

https://maxsat-evaluations.github.io/
https://doi.org/10.1007/978-3-030-58475-7_12
https://doi.org/10.1007/978-3-030-58475-7_12


Bounding Linear Programs by Constraint Propagation 193

11. Komodakis, N., Paragios, N.: Beyond loose LP-relaxations: optimizing MRFs by
repairing cycles. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS,
vol. 5304, pp. 806–820. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88690-7 60

12. Koval, V.K., Schlesinger, M.I.: Dvumernoe programmirovanie v zadachakh analiza
izobrazheniy (Two-dimensional programming in image analysis problems). Autom.
Telemech. 8, 149–168 (1976). in Russian

13. Kovalevsky, V., Koval, V.: A diffusion algorithm for decreasing energy of max-sum
labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR (1975, unpub-
lished)
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Abstract. Block-coordinate descent (BCD) is a popular method in
large-scale optimization. Unfortunately, its fixed points are not global
optima even for convex problems. A succinct characterization of convex
problems optimally solvable by BCD is unknown. Focusing on linear pro-
grams, we show that BCD fixed points are identical to fixed points of
another method, which uses constraint propagation to detect infeasibil-
ity of a system of linear inequalities in a primal-dual loop (a special case
of this method is the Virtual Arc Consistency algorithm by Cooper et
al.). This implies that BCD fixed points are global optima iff a certain
propagation rule decides feasibility of a certain class of systems of linear
inequalities.
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1 Introduction

Block-coordinate descent (BCD) is a popular method in large-scale optimization
which in every iteration optimizes the problem over a subset (block) of variables,
keeping the remaining variables constant. Unfortunately, BCD fixed points can
be arbitrarily far from global optima even for convex problems. The class of con-
vex optimization problems for which BCD provably converges to global optima is
currently quite narrow, revolving around unconstrained minimization of convex
function whose non-differentiable part is separable [16].

For general (non-differentiable and/or constrained) convex problems, the set
of block-optimizers in a BCD iteration can contain more than one element. It has
been recently argued [21,22] that in that case, one should choose an optimizer
from the relative interior of this set. BCD updates satisfying this relative interior
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rule are not worse than any other rule to choose block-wise minimizers. Of course,
this rule does not guarantee convergence to global optima.

BCD methods known as convex message passing are state-of-the art for
approximately solving the dual linear programming (LP) relaxation of the MAP
inference problem in graphical models [8,15,18] in computer vision and machine
learning, which is equivalent to the Weighted (or Valued) CSP [17]. Examples
are max-sum diffusion [11,19], TRW-S [9] or MPLP [7]. These methods comply
to the relative interior rule [21] (except for MPLP) and their fixed points are
characterized by local consistencies (equivalent to arc consistency) of the active
tuples.

Another approach to tackle the dual LP relaxation of Weighted CSP is the
Virtual Arc Consistency (VAC) algorithm [2] and the similar Augmenting DAG
algorithm [10,19]. Though these are not BCD, their fixed points are also charac-
terized by arc consistency of the active tuples. In [5] we show that this approach
is related to the primal-dual method [14, §5] in linear programming and pro-
pose its generalization to any1 linear program by replacing the arc-consistency
algorithm with general constraint propagation in a system of linear inequalities.

It has been observed [4] that when BCD with the relative interior rule is
applied to the dual LP relaxation of SAT, it corresponds to unit propagation.
Moreover, there also exists a connection between a form of the dominating unit-
clause rule and BCD with the relative interior rule applied to the dual LP relax-
ation of Weighted Max-SAT [4].

The above results suggest there is a close relation between BCD applied to a
linear program and constraint propagation in a system of linear inequalities (and
possibly equalities). In this paper we describe this relation precisely. While con-
straint propagation in a linear inequality system can be done in many ways, we
consider the particular propagation rule that infers from a subset of inequalities
that some of them are active (i.e., hold with equalities). For this rule, we show
that the primal-dual approach [5] and BCD with the relative interior rule have
the same fixed points. Thus, the question if a given linear program is exactly
solvable by BCD can be translated to the question if feasibility of a certain
system of linear inequalities is decidable by this propagation rule.

To fix notation, we consider the primal-dual pair of linear programs (LPs)

max cTx min bT y (1a)
Ax = b y ∈ R

m (1b)

x ≥ 0 AT y ≥ c (1c)

where A ∈ R
m×n, b ∈ R

m, c ∈ R
n are constants and x ∈ R

n, y ∈ R
m are vari-

ables. We denote by xi the i-th component of vector x (similarly for y, b, c), by
Aj (resp. Ai) the j-th row (resp. i-th column) of A, where i ∈ [n] = {1, . . . , n}
and j ∈ [m] = {1, . . . , m}. We assume both linear programs are feasible and
bounded. We assume a feasible dual solution y is given, so that bT y is an upper

1 Under the assumption that an initial dual feasible solution is provided.
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bound on the joint optimal value of the pair. The goal is to improve this fea-
sible dual solution, ideally to make it dual-optimal. We further assume a finite
collection B ⊆ 2[m] of subsets (blocks) of dual variables is given.

2 Block-Coordinate Descent with Relative Interior Rule

We start by describing BCD applied to the dual LP (1), taking into account the
result [21,22]. For convenience, we include the dual constraints into the function
f : Rm → R ∪ {∞} by defining

f(y) =

{
bT y if AT y ≥ c,

∞ otherwise.
(2)

One BCD iteration improves a feasible dual solution y by choosing a block B ∈ B
and optimizing over variables yB = (yi)i∈B , keeping the remaining variables
y−B = (yi)i∈[m]−B constant. That is, it changes yB to satisfy

yB ∈ argmin
y′
B∈RB

f(y′
B , y−B). (3)

The set argminy′
B∈RB f(y′

B , y−B) ⊆ R
B of block-wise minimizers is a non-empty

convex polyhedron. If this polyhedron contains more than one point, we need
to choose a single element from this polyhedron. To satisfy the relative interior
rule, the update must be modified to

yB ∈ ri argmin
y′
B∈RB

f(y′
B , y−B) (4)

where ri X denotes the relative interior of a convex set X [12, §2.1]. The following
are the main results of [21,22]:

Definition 1. A point y feasible to the dual in (1) is

– a local minimum (LM) of f w.r.t. B if (3) holds for all B ∈ B,
– an interior local minimum (ILM) of f w.r.t. B if (4) holds for all B ∈ B,
– a pre-interior local minimum (pre-ILM) of f w.r.t. B if there is an ILM y′

such that y is in a face of the polyhedron { y | AT y ≥ c } containing y′ in its
relative interior.

Theorem 1. Let (Bi)∞
i=1 be a sequence of blocks Bi ∈ B that contains each

element of B an infinite number of times. Let (yi)∞
i=1 be a sequence produced by

the BCD method, where the blocks are visited in the order given by (Bi)∞
i=1.

A. If (yi)∞
i=1 satisfies (4) and y1 is an ILM, then yi is an ILM for all i.

B. If (yi)∞
i=1 satisfies (4) and y1 is a pre-ILM, then yi is an ILM for some i.

C. If (yi)∞
i=1 satisfies (3) and y1 is a pre-ILM, then bT yi = bT y1 for all i.

D. If (yi)∞
i=1 satisfies (4) and y1 is not a pre-ILM, then bT yi < bT y1 for some i.

Thus, when we are at a pre-ILM, the objective cannot be improved by any
further BCD iterations. When we are not at a pre-ILM, BCD with the relative
interior rule inevitably improves the objective in a finite number of iterations.



Constraint Propagation and Block-Coordinate Descent 197

3 Primal-Dual Approach

Let us now focus on the second of the two approaches we consider in this paper.
By the complementary slackness theorem [13,14], a primal feasible solution x

and a dual feasible solution y to (1) are optimal if and only if xi(AT
i y−c) = 0 for

all i ∈ [n]. In addition, x∗ is in the relative interior of the primal optimizers and
y∗ is in the relative interior of the dual optimizers if and only if they satisfy strict
complementary slackness condition [23] (x∗

i = 0) ⊕ (AT
i y∗ = c) for all i ∈ [n]

where ⊕ denotes exclusive disjunction. If both primal and dual are feasible and
bounded, there always exist such x∗, y∗ [12, Theorem 2.1.3].

The iteration of the primal-dual approach proceeds as follows. Denoting

K(y) = {i ∈ [n] | AT
i y = ci}, (5)

the index set of dual constraints active at y, the complementary slackness con-
dition reads

Ax = b (6a)
xi ≥ 0 ∀i ∈ K(y) (6b)
xi = 0 ∀i ∈ [n] − K(y) (6c)

Thus, y is dual-optimal for (1) if and only if system (6) is feasible. By Farkas’
lemma [13, §6] (or by LP duality), (6) is infeasible if and only if the system

bT ȳ < 0 (7a)

AT
i ȳ ≥ 0 ∀i ∈ K(y) (7b)

is feasible. In that case, any solution ȳ to (7) is an improving direction for the
dual (1) from point y, i.e., there is ε > 0 such that bT (y + εȳ) < bT y and
AT (y + εȳ) ≥ c. Updating y ← y + εȳ yields a better dual feasible solution.

The described approach is similar to the well-known primal-dual method
[14, §5], where complementary slackness (6) is not required strictly but only its
violation is minimized. The motivation for the method is that problem (6) may
be easier to solve than (1), possibly by combinatorial algorithms [14, §6].

3.1 Constraint Propagation

Deciding feasibility of a system of linear inequalities (such as (6)) can be too
costly for large instances. Therefore, we proposed in [5, §2] to do it by constraint
propagation: using a small fixed set of inference (or propagation) rules, we itera-
tively infer new linear inequalities from the system and add them to the system.
If a contradictory inequality is inferred, the initial system was infeasible; then an
infeasibility certificate (such as ȳ in (7)) is constructed from the propagation his-
tory. The drawback of this method is that it is in general refutation-incomplete:
it may not infer a contradiction even if the system is infeasible.

While in [5, §2] we did not restrict the form of the used inference rules, here
we consider one particular form: choose a subset of the inequalities and infer
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which of them are active (i.e., hold with equality). For the particular case of
system (6), this means we choose a subset B ∈ B of equalities (6a) and decide
if they, together with (6b) and (6c), imply that some of the inequalities (6b) is
active, i.e., xi = 0. Indeed, this can be seen as inferring the inequality xi ≤ 0 from
the system. It is our key observation in this paper that with this propagation
rule the primal-dual approach has the same fixed points as BCD (see Sect. 4).

Precisely, the algorithm first initializes K = K(y) and then repeats the fol-
lowing iteration: choose B ∈ B, find all indices i ∈ K for which the system

Ajx = bj ∀j ∈ B (8a)
xi ≥ 0 ∀i ∈ K (8b)
xi = 0 ∀i ∈ [n] − K (8c)

implies2 xi = 0, and remove these indices from K. If the set K shrinks so
much that system (8) becomes infeasible for some B ∈ B, then clearly the
original system (6) is infeasible. Next, we analyze this algorithm, showing that
its properties are analogous to the well-known arc-consistency algorithm.

Definition 2. For B ⊆ [m], a set K ⊆ [n] is B-consistent if for every i ∈ K
system (8) does not imply xi = 0, i.e., if the system

Ajx = bj ∀j ∈ B (9a)
xi > 0 ∀i ∈ K (9b)
xi = 0 ∀i ∈ [n] − K (9c)

is feasible. For B ⊆ 2[m], K is B-consistent if it is B-consistent for all B ∈ B.
Proposition 1. If K and K ′ are B-consistent, then K ∪ K ′ is B-consistent.
Proof. If (9) for some B ∈ B is satisfied by x (resp. x′) for K (resp. K ′), then it
is satisfied by (x + x′)/2 for K ∪ K ′. �

By Proposition 1, the B-consistent sets form a join-semilattice w.r.t. the
inclusion. Therefore, for any K ⊆ [n], either there is no B-consistent subset of K
or there exists the unique maximal B-consistent subset of K.

Definition 3. The propagator over block B ⊆ [m] is the map PB : 2[n] ∪{⊥} →
2[n] ∪ {⊥} defined by3:

2 By saying that (8) implies xi = 0 we mean that xi = 0 holds for all x satisfying (8).
This can be decided by, e.g., projecting polyhedron (8) onto the i-th coordinate. The
projection is a singleton set {0} if and only if (8) implies xi = 0. The projection can
be computed by the Fourier-Motzkin elimination or by maximizing xi subject to (8)
(which equals 0 if and only if (8) implies xi = 0).

3 Note that PB(K) = ⊥ is different from PB(K) = ∅, since system (8) can be feasible
even for K = ∅ (if b = 0).
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– If K = ⊥, then PB(K) = ⊥.
– If K ⊆ [n] and (8) is infeasible, then PB(K) = ⊥.
– If K ⊆ [n] and (8) is feasible, then PB(K) ⊆ [n] and i ∈ PB(K) if and only

if (8) does not imply xi = 0.

Clearly, a set K ⊆ [n] is B-consistent if and only if PB(K) = K, and K is
B-consistent if and only if PB(K) = K for all B ∈ B.

Proposition 2. Map PB(·) satisfies the axioms of a closure operator unless4

PB(·) = ⊥, i.e., for all K,K ′ ⊆ [n] such that PB(K), PB(K ′) �= ⊥ we have

– PB(PB(K)) = PB(K) (idempotence)
– PB(K) ⊆ K (intensivity)
– K ′ ⊆ K =⇒ PB(K ′) ⊆ PB(K) (monotonicity).

Proof. Idempotence and intensivity are straightforward. To prove monotonicity,
let K ′ ⊆ K and let H ′ (resp. H) be the polyhedron defined by (8) for K ′ (resp.
K). Clearly, ∅ �= H ′ ⊆ H. If i ∈ [n] − PB(K), the projection of H onto xi

contains only 0. Therefore, the projection of H ′ onto xi also contains only 0, i.e.,
(8) for K ′ implies xi = 0, hence i ∈ [n] − PB(K ′). Thus PB(K ′) ⊆ PB(K). �
Definition 4. Given K ∈ 2[n] ∪ {⊥}, the propagation algorithm repeats the
following iteration: find B ∈ B such that PB(K) �= K and set K ← PB(K). If
no such B ∈ B exists, return the final K.

The propagation algorithm terminates in a finite number of steps. If at any
iteration we get K = ⊥, the algorithm terminates due to PB(⊥) = ⊥ for all
B ∈ B. Otherwise, by intensivity of PB(·), K can decrease only a finite number
of times.

Proposition 3. If K ∈ [n] has a B-consistent subset, the propagation algorithm
returns the maximal B-consistent subset of K.

Proof. The propagation algorithm creates a finite decreasing chain K1 ⊃ K2 ⊃
K3 ⊃ · · · where K1 = K and Kl+1 = PBl

(Kl) where Bl ∈ B is the block chosen
in the l-th step. Let L be arbitrary B-consistent subset of K. We will prove by
induction that L ⊆ Kl for all l. Clearly, L ⊆ K = K1. If L ⊆ Kl, then

L = PBl
(L) ⊆ PBl

(Kl) = Kl+1 (10)

where the first equality follows from B-consistency of L and the inclusion follows
from monotonicity of PBl

(·) by Proposition 2. See that it cannot happen that
PBl

(Kl) = ⊥ for any l because (8) is feasible for all B ∈ B for L and L ⊆ Kl. �
By Proposition 3, the result of the propagation algorithm does not depend

on the order in which the elements of B are visited. Thus, we can introduce the
operator PB: 2[n] ∪ {⊥} → 2[n] ∪ {⊥} where PB(K) is the unique result of the
algorithm with input K.
4 The exception of ⊥ could be removed by augmenting the set 2[n], partially ordered

by set inclusion, with ⊥ as its least element.
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Proposition 4. The operator PB(·) satisfies the axioms of a closure operator
unless PB(·) = ⊥.

Proof. Idempotence and intensivity follow directly from the proof of Proposi-
tion 3. We will prove monotonicity by contradiction: let K ′ ⊆ K and PB(K) ⊂
PB(K ′). By intensivity, we obtain PB(K ′) ⊆ K ′ ⊆ K. However, PB(K) is B-
consistent and PB(K ′) ⊆ K. Since PB(K) ⊂ PB(K ′), PB(K) is not the maximal
B-consistent subset of K, which is contradictory with Proposition 3. �

Due to Proposition 4, PB(K) can be called the B-consistency closure of K.
Observe that the properties of PB(·) and PB(·) are analogous to the properties of
the arc-consistency propagator and arc-consistency closure, respectively. In more
general view, the propagator resembles domain-based constraint propagation [1],
where stability under union corresponds to the property given by Proposition 1
and Φ-closure corresponds to B-consistent closure.

If PB(K(y)) = ⊥, then system (6) is infeasible. Then there exists an improv-
ing direction ȳ satisfying (7). Such an improving direction can be constructed
from the history of the propagation, as we describe in AppendixB. But note
that improving directions are not necessary for our analysis in this paper as we
only consider the fixed points of the primal-dual approach.

As propagation is not refutation-complete, PB(K(y)) �= ⊥ does not in general
imply that (6) is feasible. Consequently, bT y is not the optimal value of the
pair (1) but only its upper bound.

The primal-dual approach with the described propagation is used, under
various names, in several existing methods. One example is the VAC algorithm [2]
and the Augmenting DAG algorithm [10,19], where the primal problem (1) is the
basic LP relaxation of the Weighted CSP and our propagation is equivalent to
the arc-consistency algorithm [5]. An approach proposed in [5] to upper-bound
the LP relaxation of Weighted Max-SAT is (up to technical details) another
example. If the minimization of a convex piecewise-affine function is expressed
as an LP, then our method subsumes the sign relaxation technique introduced
in [20] and further developed in [3].

4 Relation Between the Approaches

We now state the relation between BCD with the relative interior rule (Sect. 2)
and the primal-dual approach in which system (6) is solved by constraint prop-
agation as described in Sect. 3.1. The proof of the theorem is in AppendixA.

Theorem 2. Let y be a feasible point for dual (1). Then:

– y is an LM of dual (1) w.r.t. B if and only if PB(K(y)) �= ⊥ for all B ∈ B,
– y is an ILM of dual (1) w.r.t. B if and only if PB(K(y)) = K(y),
– y is a pre-ILM of dual (1) w.r.t. B if and only if PB(K(y)) �= ⊥.



Constraint Propagation and Block-Coordinate Descent 201

Theorem 2 characterizes the previously introduced types of local minima in
BCD by local consistency conditions. It also shows that BCD with relative inte-
rior rule cannot improve the fixed points of the primal-dual approach based on
propagation and vice versa. This yields the following corollary.

Corollary 1. The following statements are equivalent:

– For all feasible y for the dual (1), if (6) is infeasible then PB(K(y)) = ⊥ (i.e.,
propagation is refutation-complete).

– Any ILM y of the dual (1) w.r.t. B is a global optimum.

This result shows that the question whether BCD fixed points are global
minima for a given class of LPs can be reformulated as the question whether
constraint propagation decides feasibility of a certain class of linear inequalities.

5 Other Forms of Linear Programs

It is well-known that linear programs come in different forms [14, §2.1] which
can be easily transformed to each other, preserving global optima. One can
ask if the propagation algorithm can be formulated and the equivalence with
BCD holds also for different forms than (1). This question is non-trivial because
transformations that preserve global optima do not necessarily preserve (pre-
)interior local optima [6]. We show that independently of the formulation, if
we use the propagation rule that infers activity of inequality constraints (as we
mentioned in the beginning of Sect. 3.1), the two approaches remain equivalent.

5.1 Primal LP with Inequalities and Non-negative Variables

Consider for example the primal-dual pair

max cTx min bT y (11a)
Ax ≤ b y ≥ 0 (11b)

x ≥ 0 AT y ≥ c (11c)

that can be equivalently reformulated [13] by introducing slack variables sj ≥ 0,
j ∈ [m] as

max cTx min bT y (12a)
Ax + s = b y ∈ R

m (12b)

x ≥ 0 AT y ≥ c (12c)
s ≥ 0 y ≥ 0 (12d)

which is in the form (1). See that BCD in the duals (11) and (12) is identical.
The propagation rules presented previously in Sect. 3.1 for the LP (12) cor-

respond to deciding which sj and xi are forced to be zero. Clearly, setting sj = 0
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corresponds to setting Ajx = bj and enforcing sj > 0 implies Ajx < bj . Thus,
instead of rewriting (11) into (12), we can apply propagation directly on the
primal (11) except that when considering the system (9) for some B ∈ B, we
will instead of a single set K use two sets KX ⊆ [n] and KS ⊆ [m] that indicate
which inequalities need to be satisfied strictly and which with equality, i.e., we
will use

Ajx < bj ∀j ∈ KS ∩ B xi > 0 ∀i ∈ KX (13a)

Ajx = bj ∀j ∈ ([m] − KS) ∩ B xi = 0 ∀i ∈ [n] − KX (13b)

instead of (9). Clearly, deciding which inequalities among Ax ≤ b in primal (11)
need to be satisfied with strict inequality (resp. with equality) by considering a
set KS ⊆ [m] is in one-to-one correspondence with deciding which slack variables
sj in (12) can be non-zero (resp. are forced to be zero).

5.2 Primal LP with Inequalities and Unconstrained Variables

Another general primal-dual pair that we are going to consider is

max cTx min bT y (14a)
Ax ≤ b y ≥ 0 (14b)

x ∈ R
n AT y = c (14c)

where y is optimal for the dual if and only if there exists x ∈ R
n such that

Ajx ≤ bj ∀j ∈ K ′(y) (15a)

Ajx = bj ∀j ∈ [m] − K ′(y) (15b)

where K ′(y) = {j ∈ [m] | yj = 0} and (15) again follows from complementary
slackness. From this point, we could completely repeat the reasoning in Sect. 3.1
and prove the same theorem as in Sect. 4 except that we would replace K(y)
by K ′(y), replace condition AT

i y > c (resp. AT
i y = c) by yj > 0 (resp. yj = 0)

and infer whether the inequality Ajx ≤ bj should hold strictly or with equality
instead of inferring it for xi ≥ 0. This is based on similarity between (15) and (6).

5.3 Redundant Constraints

It was observed in [6] that adding redundant constraints into an LP has signifi-
cant influence on its solvability by (block-)coordinate descent. Using our results
from this paper, we are able to explain this quite naturally.

As an example, consider the following LP relaxation of weighted vertex cover
on a graph (V,E) with vertex weights w : V → R

+ together with its dual

min wTx max
∑

{i,j}∈Eyij (16a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (16b)
xi ≥ 0

∑
j∈Ni

yij ≤ wi ∀i ∈ V (16c)
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where Ni is the set of neighbors of vertex i in the graph. If we optimized the
primal or the dual (16) by coordinate descent along individual variables (i.e.,
blocks of size 1), there are interior local optima5 that are not global optima [6].
However, if we add redundant constraints x ≤ 1 to the primal, we obtain

min wTx max
∑

{i,j}∈Eyij +
∑

i∈V zi (17a)

xi + xj ≥ 1 yij ≥ 0 ∀{i, j} ∈ E (17b)
xi ≥ 0 zi +

∑
j∈Ni

yij ≤ wi ∀i ∈ V (17c)

xi ≤ 1 zi ≤ 0 ∀i ∈ V. (17d)

By the result in [6], any interior local optimum of dual (17) w.r.t. blocks6 con-
sisting of variables yij , zi, and zj for each {i, j} ∈ E is a global optimum.

The explanation for the difference between (non-)optimality for the different
formulations lies in the fact that in case of (16), we can only propagate equality
in constraints (16b) and xi = 0. However, in (17), we are also able to propagate
xi = 1 due to the added constraint xi ≤ 1. This results in a stronger propagation
algorithm which is even refutation-complete for this case.

This also holds for the LP formulation of min-st-cut and its dual, maximum
flow, which was also considered in [6, §4.3]. Adding redundant bounds 0 ≤ xi ≤ 1
for variables in min-st-cut results in optimality of BCD on its dual. However, the
dual of the usual formulation of min-st-cut (i.e., without these bounds) is not
amenable to BCD [6, §4.3]. This difference is now explained by the possibility
of the underlying propagation algorithm to set these variables to their bounds,
i.e., set xi = 0 or xi = 1 which is not possible if variables x are unbounded.

The result in this paper therefore also sheds light on which constraints are
useful in terms of propagation or BCD even though they are redundant from the
point of global optimality of the original linear program.

6 Conclusion

Even though propagation in a system of linear inequalities can be performed
in many ways, we have defined a propagation algorithm which not only has
natural and useful properties, but it also allows full characterization of types
of local minima in BCD. Additionally, there is a tight connection between the
fixed points of BCD with relative interior rule and the fixed points of primal-
dual approach based on this propagation algorithm. Despite the fact that both

5 In case of the dual, we maximize, so we should talk about interior local maxima, but
this relation is straightforward by inverting the sign in the criterion and changing
maximization to minimization.

6 In analogy with [6, §3 equation (7)], zi = min{wi − ∑
j∈Ni

yij , 0} ∀i ∈ V holds in
any optimal solution of dual (17) and so the dual can be equivalently reformulated
as maximization of a concave piecewise-affine function with non-negative variables,
which makes optimization along these blocks simpler. In detail, variables z were
eliminated and thus we update only each yij separately.
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algorithms may not reach a global optimum, none of the algorithms can improve
the fixed points of the other.

We argued that the propagation algorithm can be generalized to linear pro-
grams in any form. In detail, BCD in the dual for a given set of blocks B corre-
sponds to propagating which primal constraints given by complementary slack-
ness should be active and which inactive while inferring only from subsets of the
constraints given by sets in B.

We believe that our findings are interesting for the theory of BCD as they
explain what kind of local consistency is reached by any BCD algorithm (both
with or without relative interior rule) on any LP. E.g., As shown in [21], since
both TRW-S [9] and max-sum diffusion [11,19] satisfy the relative interior rule,
their fixed point conditions are equivalent to the proposed local consistency con-
dition if applied to the specific LP formulations which these algorithms optimize.

This tight connection between the decidability of feasibility of a system of
linear inequalities by refutation-incomplete propagation and BCD may provide
theoretical ground for analysis of BCD in terms of constraint propagation. More-
over, it may result in newly discovered classes of problems optimally solvable by
BCD or better design for choices of blocks of variables so that the propagation is
more effective and BCD may reach better local optima. This connection also pre-
cisely explains the differences in applicability of BCD caused by minor changes
in the formulation of the optimized LP, as discussed in Sect. 5.3.

The practical impact of these results is mainly focused on approximately
optimizing challenging large-scale LPs which are not solvable by off-the-shelf
LP solvers due to their super-linear space complexity. Propagation algorithms
subsumed (up to technical details) by the proposed one were previously derived
ad-hoc for specific LPs [2,3,5,10,20] where they provided useful solutions which
were often close to global optima. Presenting all of these algorithms in a single
framework may simplify design of similar algorithms in the future.

A Proofs

Proposition 5. Let y be feasible for the dual (1) and let B ⊆ [m]. Block of
variables yB satisfies (4) if and only if PB(K(y)) = K(y).

Proof. For the ‘only-if’ direction, construct the dual (1) restricted only to the
variables yB as follows:

max kTx min
∑

j∈Bbjyj (18a)

Ajx = bj yj ∈ R ∀j ∈ B (18b)
xi ≥ 0

∑
j∈BAjiyj ≥ ki ∀i ∈ [n] (18c)

where ki = ci − ∑
j∈[m]−B Ajiyj are viewed as constants determined by the

remaining variables that are not in the block and Aji is the entry of matrix A
on j-th row and i-th column. The problem on left is the corresponding primal.
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Since yB is in the relative interior of optimizers of the dual (18) by our
assumption, there must exist a solution x ∈ R

n
+ for the primal (18) such that

strict complementary slackness holds. The condition for this case reads∑
j∈BAjiyj = ki ⇐⇒ xi > 0 ∀i ∈ [n], (19)

therefore x satisfies xi = 0 ∀i ∈ [n] − K(y) and xi > 0 ∀i ∈ K(y) by definition
of K(y) and ki. By feasibility of x for primal (18), we have that i ∈ PB(K(y))
for all i ∈ K(y). By intensivity of PB(·), we obtain PB(K(y)) = K(y).

For the ‘if’ direction, assume PB(K(y)) = K(y), then there must exist a
solution x ∈ R

n for (9) where K = K(y). This vector x is a feasible solution for
the primal (18). By definition of K(y) in (5) and definition of ki, it follows that
strict complementary slackness (19) is satisfied in (18), therefore both x and yB
lie in the relative interior of optimizers of the primal-dual pair (18). �
Corollary 2. Let y be feasible for dual (1). Then y is an ILM of dual (1) w.r.t. B
if and only if PB(K(y)) = K(y).

Proof. By definition, y is an ILM of dual (1) w.r.t. B if (4) holds ∀B ∈ B.
Applying Proposition 5, this is equivalent to PB(K(y)) = K(y) ∀B ∈ B, i.e.,
PB(K(y)) = K(y). �
Proposition 6. Let y be feasible for the dual (1) and let B ⊆ [m]. Block of
variables yB satisfies (3) if and only if PB(K(y)) �= ⊥.

Proof. Block yB satisfies (3) if and only if it is optimal for the dual (18), which
happens if and only if there exists x ∈ R

n
+ satisfying complementary slackness.

By definition of K(y), complementary slackness conditions are equivalent to (8)
for K = K(y) which is feasible if and only if PB(K(y)) �= ⊥. �
Proposition 7. If point x is in the relative interior of optimizers of the pri-
mal (1), then the set {i ∈ [n] | xi = 0} is minimal w.r.t. inclusion among all
optimal solutions and is unique.

Proof. By contradiction: let x (resp. y) be from the relative interior of optimizers
of primal (resp. dual) (1). Let x′ be also optimal for the primal and let {i ∈ [n] |
x′
i = 0} be smaller and/or different. Then, there is k ∈ [n] such that x′

k > 0 and
xk = 0. Since x and y are in the relative interior of optimizers, they satisfy strict
complementary slackness, thus AT

k y > ck. Complementary slackness is satisfied
by all pairs of primal and dual optimal solutions, but x′ and y do not satisfy it
because x′

k > 0 and AT
k y > ck, hence x′ is not optimal. �

Proposition 8. Let y be a feasible point for dual (1) and let B ⊆ [m] so that
PB(K(y)) = K �= ⊥. Then, there exists a feasible point y′ such that bT y = bT y′

and PB(K(y′)) = K(y′) = K.
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Proof. Consider the primal-dual pair

max 0 min bT ȳ (20a)

Ajx = bj ȳj ∈ R ∀j ∈ B (20b)
xi = 0 − ∀i ∈ [n] − K(y) (20c)

xi ≥ 0 AT
i ȳ ≥ 0 ∀i ∈ K(y) (20d)

− ȳj = 0 ∀j ∈ [m] − B. (20e)

which was simplified in the sense that if some primal (resp. dual) variable equals
zero, then we can omit the corresponding dual (resp. primal) constraint without
changing the problem since the whole column (resp. row) of A can be set to zero.

Let x (resp. ȳ) be in the relative interior of optimizers for the primal (resp.
dual) (20). By Proposition 7 applied on matrix A with only rows in B and only
columns in K(y), if some xi = 0, then this is the only value xi can take, therefore
i /∈ K because primal (20) is (8) for K(y). If some variable xi can take a non-zero
value in (20), then it is non-zero again by Proposition 7 and i ∈ K.

Since the pair of optimal solutions x, ȳ lies in the relative interior of optimiz-
ers, they satisfy strict complementary slackness in this form:

xi = 0 ∧ AT
i ȳ > 0 ∀i ∈ K(y) − K (21a)

xi > 0 ∧ AT
i ȳ = 0 ∀i ∈ K. (21b)

We will now choose any ε such that

0 < ε <
ci − AT

i y

AT
i ȳ

∀i ∈ [n] − K(y) such that AT
i ȳ < 0 (22)

where the upper bound is positive because AT
i ȳ < 0 by the condition in the

upper bound and for all i ∈ [n] − K(y), ci − AT
i y < 0 by feasibility of y and

definition of K(y). Therefore, (ci − AT
i y)/(AT

i ȳ) is positive for all i considered
in (22) and there exists some ε satisfying (22). We choose any ε satisfying (22)
and claim that y′ = y + εȳ satisfies the required conditions.

– If i ∈ K(y) − K, then AT
i ȳ > 0 by (21) and AT

i y = ci by definition of K(y).
Therefore, AT

i y′ = ci + εAT
i ȳ > ci, so i /∈ K(y′), i.e., i ∈ [n] − K(y′).

– If i ∈ K, then AT
i y = ci because i ∈ K = PB(K(y)) ⊆ K(y) and AT

i ȳ = 0 by
(21). Therefore, AT

i y′ = ci + ε · 0 = ci and i ∈ K(y′).
– If i ∈ [n] − K(y), then AT

i y > ci by definition of K(y) and AT
i ȳ can have any

sign. We distinguish the following cases:

• If AT
i ȳ ≥ 0, then AT

i y′ > ci + εAT
i ȳ ≥ ci, so i /∈ K(y′), i.e., i ∈ [n] − K(y′).

• If AT
i ȳ < 0, then by definition of ε, ε < (ci − AT

i y)/(AT
i ȳ) which implies

AT
i y′ = AT

i y + εAT
i ȳ > ci, hence i /∈ K(y′), i.e., i ∈ [n] − K(y′).

Therefore, [n] − K(y) ⊆ [n] − K(y′) and K(y) − K ⊆ [n] − K(y′), which results
in [n] − K ⊆ [n] − K(y′). This together with K ⊆ K(y′) yields K(y′) = K.
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Point y′ is feasible since AT
i y′ ≥ ci for all i ∈ [n] as just shown above. Because

the optimal value of the primal (20) is 0 and ȳ is an optimal dual solution, it
follows from strong duality that bT ȳ = 0, therefore bT y′ = bT y + εbT ȳ = bT y. By
idempotency of PB(·), it follows that PB(K) = K, i.e., PB(K(y′)) = K(y′). �
Remark 1. The point y′ constructed in Proposition 8 can in fact be obtained
by updating block yB to satisfy (4). By construction of y′ from y derived in
Proposition 8, yj = y′

j ∀j ∈ [m] − B, therefore only the variables in block B
change. Combining Proposition 5 with PB(K(y′)) = K(y′) implies that block
y′
B is in the relative interior of optimizers of the dual (1) restricted to this block.

Proposition 9. Let y be a feasible point for dual (1) such that PB(K(y)) �= ⊥,
then y is a pre-ILM of dual (1) w.r.t. B.
Proof. By the definition of PB(·), there must exist a finite sequence (Bl)Ll=1 for
Bl ∈ B, l ∈ [L] such that

PBL
(PBL−1(PBL−2(· · · PB2(PB1(K(y))) · · · ))) = K (23)

and PB(K) = K. In other words, the sequence corresponds to the order of the
blocks B applied in the propagation algorithm until a fixed point is reached.

We construct a sequence (yl)L+1
l=1 , yl ∈ R

m where y1 = y and yl+1 is con-
structed from yl as in the proof of Proposition 8 for B = Bl. By induction and
properties of the construction, since y1 is feasible, the other points y2, y3, ..., yL+1

are also feasible. Also, bT y1 = bT y2 = ... = bT yL+1 because the construction
preserves objective. Finally, PBl

(K(yl)) = K(yl+1) for all l ∈ [L], therefore
PBL

(K(yL)) = K(yL+1) = K and PB(K) = K, so PB(K(yL+1) = K(yL+1). By
Corollary 2, yL+1 is an ILM w.r.t. B.

By Remark 1, the sequence y1, ..., yL+1 can be obtained by updating the
corresponding blocks into the relative interior of optimizers. Because the objec-
tive did not improve during these updates and yL+1 is ILM, it follows from
Theorem 1 (statements A,C,D) that y is a pre-ILM. �
Proposition 10. If y is a pre-ILM of dual (1) w.r.t. B, then PB(K(y)) �= ⊥.

Proof. Proof by contradiction. Suppose y is pre-ILM and PB(K(y)) = ⊥, then
there must exist a finite sequence (Bl)Ll=1 for Bl ∈ B, l ∈ [L] such that

PBL
(PBL−1(PBL−2(· · · PB2(PB1(K(y))) · · · ))) = ⊥ (24)

which consists of the used blocks B in the propagation algorithm.
As discussed in Remark 1, we can imitate this propagation by creating a

sequence of dual feasible points y1, y2, · · · , yL where y1 = y and yl+1 is created
from yl by changing block of variables Bl to be in the relative interior of opti-
mizers. This is given by construction in the proof of Proposition 8 and it holds
that PBl

(K(yl)) = K(yl+1) for all l ∈ [L − 1]. Since PBL
(K(yL)) = ⊥, yL is not

a local minimum by Proposition 6. Therefore, updating the block of variables
BL in yL by (4) (or even (3)) to obtain a point yL+1 improves objective.
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Thus, we applied BCD with relative interior rule to obtain the sequence
(yl)L+1

l=1 and the objective improved. This is contradictory with Theorem 1 (state-
ment C) which states that block updates that choose any optimizer (even without
relative interior rule) cannot improve the objective from a pre-ILM. �
Proof (Theorem 2). For the first part, point y is an LM of dual (1) w.r.t. B by
its definition if yB satisfies (3) for all B ∈ B. By Proposition 6, this is equivalent
to PB(K(y)) �= ⊥ ∀B ∈ B. The second part is given in Corollary 2 and the third
part follows from Proposition 9 and Proposition 10. �

B Constructing an Improving Feasible Direction

As discussed in Sect. 3, if (6) is infeasible, there exists an improving feasible
direction (7), we are going to describe how to obtain it based on the propagation
algorithm defined in Sect. 3.1. We remark that conditions (7) define a whole
convex cone of improving directions and our algorithm finds one of them based
on the specific implementation of the construction.

Let us have a set of blocks B ⊆ 2[m] and a dual feasible point y such that
PB(K(y)) = ⊥, which implies infeasibility of (6). Consider sequences (Bl)Ll=1

and (Kl)Ll=1 where K1 ⊃ K2 ⊃ · · · ⊃ KL, K1 = K(y), Kl+1 = PBl
(Kl) for every

l ∈ [L − 1], and PBL
(KL) = ⊥. To construct ȳ, we use the primal-dual pair

max 0 min bT ȳl (25a)

Ajx = bj ȳl
j ∈ R ∀j ∈ Bl (25b)

xi = 0 – ∀i ∈ [n] − Kl (25c)

xi ≥ 0 AT
i ȳl ≥ 0 ∀i ∈ Kl (25d)

– ȳl
j = 0 ∀j ∈ [m] − Bl. (25e)

and proceed as follows:

1. Initialize ȳ ← ȳL where ȳL is any feasible dual solution of (25) for l = L
with7 bT ȳL < 0.

2. For all l ∈ {L − 1, L − 2, ..., 2, 1} in descending order:
(a) If AT

i ȳ ≥ 0 for all i ∈ Kl − Kl+1, continue with l ← l − 1.
(c) Else, find ȳl from the relative interior of optimizers of dual (25) for current

l, update ȳ ← ȳ + δlȳ
l where δl = max

i∈Kl−Kl+1

AT
i ȳ<0

− AT
i ȳ

AT
i ȳl , and set l ← l − 1.

3. Return ȳ as improving feasible direction satisfying (7).

Due to lack of space, we omit the proof of this procedure. We will only state
that it is based on induction, i.e., after some index l ∈ [L] is processed, it holds

7 Such ȳL exists because primal (25) is infeasible for l = L due to PBL(KL) = ⊥ and
the dual (25) is therefore unbounded since the dual always has a feasible solution.
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that AT
i ȳ ≥ 0 for all i ∈ Kl and bT ȳ = bT ȳL < 0 is maintained during the whole

algorithm. Thus, eventually AT
i ȳ ≥ 0 holds for all i ∈ K1 = K(y).

After ȳ is calculated, we can find a step size ε > 0 and perform update of y
as discussed in Sect. 3. Even though this approach may seem complicated, it is
easy to see that in cases when the blocks B are small, the problem (25) is also
small and could even be solvable in closed-form for some special cases.
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Abstract. We propose a unifying dynamic-programming framework to
compute exact literal-weighted model counts of formulas in conjunctive
normal form. At the center of our framework are project-join trees, which
specify efficient project-join orders to apply additive projections (variable
eliminations) and joins (clause multiplications). In this framework, model
counting is performed in two phases. First, the planning phase constructs
a project-join tree from a formula. Second, the execution phase com-
putes the model count of the formula, employing dynamic programming
as guided by the project-join tree. We empirically evaluate various meth-
ods for the planning phase and compare constraint-satisfaction heuristics
with tree-decomposition tools. We also investigate the performance of
different data structures for the execution phase and compare algebraic
decision diagrams with tensors. We show that our dynamic-programming
model-counting framework DPMC is competitive with the state-of-the-art
exact weighted model counters Cachet, c2d, d4, and miniC2D.

Keywords: Treewidth · Factored representation · Early projection

1 Introduction

Model counting is a fundamental problem in artificial intelligence, with appli-
cations in machine learning, probabilistic reasoning, and verification [24,34,50].
Given an input set of constraints, with the focus in this paper on Boolean con-
straints, the model-counting problem is to count the number of satisfying assign-
ments. Although this problem is #P-Complete [69], a variety of tools exist that
can handle industrial sets of constraints, e.g., [19,46,52,58].

Dynamic programming is a powerful technique that has been applied across
computer science [7], including to model counting [4,36,56]. The key idea is to
solve a large problem by solving a sequence of smaller subproblems and then
incrementally combining these solutions into the final result. Dynamic program-
ming provides a natural framework to solve a variety of problems defined on sets
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of constraints: subproblems can be formed by partitioning the constraints. This
framework has been instantiated into algorithms for database-query optimiza-
tion [48], satisfiability solving [2,54,68], and QBF evaluation [11].

Dynamic programming has also been the basis of several tools for model
counting [25–27,31]. Although each tool uses a different data structure–algebraic
decision diagrams (ADDs) [26], tensors [25,27], or database tables [31]–the over-
all algorithms have similar structure. The goal of this work is to unify these
approaches into a single conceptual framework: project-join trees. Project-join
trees are not an entirely new idea. Similar concepts have been used in constraint
programming (as join trees [22]), probabilistic inference (as cluster trees [60]),
and database-query optimization (as join-expression trees [48]). Our original con-
tributions include the unification of these concepts into project-join trees and
the application of this unifying framework to model counting.

We argue that project-join trees provide the natural formalism to describe
execution plans for dynamic-programming algorithms for model counting. In par-
ticular, considering project-join trees as execution plans enables us to decompose
dynamic-programming algorithms such as the one in [26] into two phases, fol-
lowing the breakdown in [27]: a planning phase and an execution phase. This
enables us to study and compare different planning algorithms, different execu-
tion environments, and the interplay between planning and execution. Such a
study is the main focus of this work. While the focus here is on model count-
ing, our framework is of broader interest. For example, in [65], Tabajara and
Vardi described a dynamic-programming, binary-decision-diagram-based frame-
work for functional Boolean synthesis. Refactoring the algorithm into a planning
phase followed by an execution phase is also of interest in that context.

The primary contribution of the work here is a dynamic-programming frame-
work for weighted model counting based on project-join trees. In particular:

1. We show that several recent algorithms for weighted model counting [25,26,
31] can be unified into a single framework using project-join trees.

2. We compare the one-shot1 constraint-satisfaction heuristics used in [26] with
the anytime2 tree-decomposition tools used in [25] and observe that tree-
decomposition tools outperform constraint-satisfaction heuristics.

3. We compare (sparse) ADDs [5] with (dense) tensors [38] and find that ADDs
outperform tensors on single CPU cores.

4. We find that project-join-tree-based algorithms contribute to a portfolio of
model counters containing Cachet [58], c2d [19], d4 [46], and miniC2D [52].

These conclusions have significance beyond model counting. The superiority of
anytime tree-decomposition tools over classical one-shot constraint-satisfaction
heuristics can have broad applicability. Similarly, the advantage of compact data
structures for dynamic programming may apply to other optimization problems.

1 A one-shot algorithm outputs exactly one solution and then terminates immediately.
2 An anytime algorithm outputs better and better solutions the longer it runs.
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2 Preliminaries

Pseudo-Boolean Functions and Early Projection. A pseudo-Boolean func-
tion over a set X of variables is a function f : 2X → R. Operations on pseudo-
Boolean functions include product and projection. First, we define product:

Definition 1. Let X and Y be sets of Boolean variables. The product of func-
tions f : 2X → R and g : 2Y → R is the function f · g : 2X∪Y → R defined for
all τ ∈ 2X∪Y by (f · g)(τ) ≡ f(τ ∩ X) · g(τ ∩ Y ).

Next, we define (additive) projection, which marginalizes a single variable:

Definition 2. Let X be a set of Boolean variables and x ∈ X. The projection
of a function f : 2X → R w.r.t. x is the function

∑
x f : 2X\{x} → R defined for

all τ ∈ 2X\{x} by (
∑

x f) (τ) ≡ f(τ) + f(τ ∪ {x}).

Note that projection is commutative, i.e., that
∑

x

∑
y f =

∑
y

∑
x f for all

variables x, y ∈ X and functions f : 2X → R. Given a set X = {x1, x2, . . . , xn},
define

∑
X f ≡ ∑

x1

∑
x2

. . .
∑

xn
f . Our convention is that

∑
∅

f ≡ f .
When performing a product followed by a projection, it is sometimes possible

to perform the projection first. This is known as early projection [48].

Theorem 1 (Early Projection). Let X and Y be sets of variables. For all
functions f : 2X → R and g : 2Y → R, if x ∈ X \Y , then

∑
x(f ·g) = (

∑
x f) ·g.

Early projection is a key technique in symbolic computation in a variety of
settings, including database-query optimization [40], symbolic model checking
[9], satisfiability solving [54], and model counting [26].

Weighted Model Counting. We compute the total weight, subject to a given
weight function, of all models of an input propositional formula. Formally:

Definition 3. Let X be a set of Boolean variables, ϕ : 2X → {0, 1} be a Boolean
function, and W : 2X → R be a pseudo-Boolean function. The weighted model
count of ϕ w.r.t. W is W (ϕ) ≡ ∑

τ∈2X ϕ(τ) · W (τ).

The weighted model count of ϕ w.r.t. W can be naturally expressed in terms
of pseudo-Boolean functions: W (ϕ) = (

∑
X(ϕ · W )) (∅). The function W : 2X →

R is called a weight function. In this work, we focus on literal-weight functions,
which can be expressed as products of weights associated with each variable.
Formally, a literal-weight function W can be factored as W =

∏
x∈X Wx for

pseudo-Boolean functions Wx : 2{x} → R.

Graphs. A graph G has a set V(G) of vertices, a set E(G) of (undirected) edges,
a function δG : V(G) → 2E(G) that gives the set of edges incident to each vertex,
and a function εG : E(G) → 2V(G) that gives the set of vertices incident to each
edge. Each edge must be incident to exactly two vertices, but multiple edges can
exist between two vertices. A tree is a simple, connected, and acyclic graph. A
leaf of a tree T is a vertex of degree one, and we use L(T ) to denote the set of
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leaves of T . We often refer to a vertex of a tree as a node and an edge as an
arc to avoid confusion. A rooted tree is a tree T together with a distinguished
node r ∈ V(T ) called the root. In a rooted tree (T, r), each node n ∈ V(T ) has
a (possibly empty) set of children, denoted C(n), which contains all nodes n′

adjacent to n s.t. all paths from n′ to r contain n.

3 Using Project-Join Trees for Weighted Model Counting

In model counting, a Boolean formula is often given in conjunctive normal form
(CNF), i.e., as a set ϕ of clauses. For each clause c ∈ ϕ, define Vars(c) to be the
set of variables appearing in c. Then c represents a Boolean function over Vars(c).
Similarly, ϕ represents a Boolean function over Vars(ϕ) ≡ ⋃

c∈ϕ Vars(c).
It is well-known that weighted model counting can be performed through a

sequence of projections and joins on pseudo-Boolean functions [25,26]. Given a
CNF formula ϕ and a literal-weight function W over a set X of variables, the
corresponding weighted model count can be computed as follows:

W (ϕ) =

(
∑

X

(
∏

c∈ϕ

c ·
∏

x∈X

Wx

))

(∅) (1)

By taking advantage of the associative and commutative properties of mul-
tiplication as well as the commutative property of projection, we can rearrange
Eq. (1) to apply early projection. It was shown in [26] that early projection
can significantly reduce computational cost. There are a variety of possible rear-
rangements of Eq. (1) of varying costs. Although [26] considered several heuristics
for performing this rearrangement (using bucket elimination [20] and Bouquet’s
Method [8]), they did not attempt to analyze rearrangements.

In this work, we aim to analyze the quality of the rearrangement, in isolation
from the underlying implementation and data structure used for Eq. (1). This
approach has been highly successful for database-query optimization [48], where
the central object of theoretical reasoning is the query plan. The approach has
also seen similar success in Bayesian network inference [18].

We model a rearrangement of Eq. (1) as a project-join tree:

Definition 4. Let X be a set of Boolean variables and ϕ be a CNF formula over
X. A project-join tree of ϕ is a tuple (T, r, γ, π) where:

– T is a tree with root r ∈ V(T ),
– γ : L(T ) → ϕ is a bijection between the leaves of T and the clauses of ϕ, and
– π : V(T ) \ L(T ) → 2X is a labeling function on internal nodes.

Moreover, (T, r, γ, π) must satisfy the following two properties:

1. {π(n) : n ∈ V(T ) \ L(T )} is a partition of X, and
2. for each internal node n ∈ V(T ) \ L(T ), variable x ∈ π(n), and clause c ∈ ϕ

s.t. x appears in c, the leaf node γ−1(c) must be a descendant of n in T .
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n8
π�→∅

n5
π {→� x2} n1

γ ¬→� x2

n7
π�→ {x3, x4}

n2
γ�→x3 ∨ x4

n6
π�→ {x1} n3

γ ¬→� x1 ∨ ¬x3

n4
γ�→x1 ∨ x3 ∨ ¬x4

Fig. 1. A project-join tree (T, n8, γ, π) of a CNF formula ϕ. Each leaf node is labeled
by γ with a clause of ϕ. Each internal node is labeled by π with a set of variables of
ϕ.

If n is a leaf node, then n corresponds to a clause c = γ(n) in Eq. (1). If n is an
internal node, then n’s children C(n) are to be multiplied before the projections
of variables in π(n) are performed. The two properties ensure that the resulting
expression is equivalent to Eq. (1) using early projection. See Fig. 1 for a graphical
example of a project-join tree.

Project-join trees have previously been studied in the context of database-
query optimization [48]. Project-join trees are closely related to contraction trees
in the context of tensor networks [25,28]. Once a rearrangement of Eq. (1) has
been represented by a project-join tree, we can model the computation process
according to the rearrangement. In particular, given a literal-weight function
W =

∏
x∈X Wx, we define the W -valuation of each node n ∈ V(T ) as a pseudo-

Boolean function associated with n. The W -valuation of a node n ∈ V(T ) is
denoted fW

n and defined as follows:

fW
n ≡

{
γ(n) if n ∈ L(T )
∑

π(n)

(∏
o∈C(n) fW

o · ∏
x∈π(n) Wx

)
if n /∈ L(T )

(2)

Note that the W -valuation of a leaf node n ∈ L(T ) is a clause c = γ(n) ∈ ϕ,
interpreted in this context as an associated function λc : 2Vars(c) → {0, 1} where
λc(τ) = 1 if and only if the truth assignment τ satisfies c. The main idea is that
the W -valuation at each node of T is a pseudo-Boolean function computed as
a subexpression of Eq. (1). The W -valuation of the root is exactly the result of
Eq. (1), i.e., the weighted model count of ϕ w.r.t. W :

Theorem 2. Let ϕ be a CNF formula over a set X of variables, (T, r, γ, π)
be a project-join tree of ϕ, and W be a literal-weight function over X. Then
fW

r (∅) = W (ϕ).

This gives us a two-phase algorithm for computing the weighted model count
of a formula ϕ. First, in the planning phase, we construct a project-join tree
(T, r, γ, π) of ϕ. We discuss algorithms for constructing project-join trees in
Sect. 4. Second, in the execution phase, we compute fW

r by following Eq. (2).
We discuss data structures for computing Eq. (2) in Sect. 5.

When computing a W -valuation, the number of variables that appear in each
intermediate pseudo-Boolean function has a significant impact on the runtime.
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The set of variables that appear in the W -valuation of a node is actually inde-
pendent of W . In particular, for each node n ∈ V(T ), define Vars(n) as follows:

Vars(n) ≡
{
Vars(γ(n)) if n ∈ L(T )(⋃

o∈C(n) Vars(o)
)

\ π(n) if n /∈ L(T )
(3)

For every literal-weight function W , the domain of the function fW
n is 2Vars(n).

To characterize the difficulty of W -valuation, we define the size of a node n,
size(n), to be |Vars(n)| for leaf nodes and |Vars(n) ∪ π(n)| for internal nodes.
The width of a project-join tree (T, r, γ, π) is width(T ) ≡ maxn∈V(T ) size(n).
We see in Sect. 6 how the width impacts the computation of W -valuations.

4 Planning Phase: Building a Project-Join Tree

In the planning phase, we are given a CNF formula ϕ over Boolean variables X.
The goal is to construct a project-join tree of ϕ. In this section, we present two
classes of techniques that have been applied to model counting: using constraint-
satisfaction heuristics (in [26]) and using tree decompositions (in [25,31]).

4.1 Planning with One-Shot Constraint-Satisfaction Heuristics

A variety of constraint-satisfaction heuristics for model counting were presented
in a single algorithmic framework by [26]. These heuristics have a long history
in constraint programming [21], database-query optimization [48], and proposi-
tional reasoning [54]. In this section, we adapt the framework of [26] to produce
project-join trees. This algorithm is presented as Algorithm 1, which constructs
a project-join tree of a CNF formula using constraint-satisfaction heuristics. The
functions ClusterVarOrder, ClauseRank, and ChosenCluster represent heuris-
tics for fine-tuning the specifics of the algorithm. Before discussing the various
heuristics, we assert the correctness of Algorithm 1 in the following theorem.

Theorem 3. Let X be a set of variables and ϕ be a CNF formula over X.
Assume that ClusterVarOrder returns an injection X → N. Furthermore,
assume that all ClauseRank and ChosenCluster calls satisfy the following con-
ditions:

1. 1 ≤ ClauseRank(c, ρ) ≤ m,
2. i < ChosenCluster(ni) ≤ m, and
3. Xs ∩ Vars(ni) = ∅ for all integers s where i < s < ChosenCluster(ni).

Then Algorithm 1 returns a project-join tree of ϕ.

By Condition 1, we know that {Γi}m
i=1 is a partition of the clauses of ϕ.

Condition 2 ensures that lines 11–12 place a new internal node ni in a cluster
that has not yet been processed. Also on lines 11–12, Condition 3 prevents the
node ni from skipping a cluster κs if there exists some x ∈ Xs ∩Vars(ni), since x
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Algorithm 1. Using combined constraint-satisfaction heuristics to build a
project-join tree
Input: X: set of m ≥ 1 Boolean variables
Input: ϕ: CNF formula over X
Output: (T, r, γ, π): project-join tree of ϕ

1 (T, null, γ, π) ← empty project-join tree
2 ρ ← ClusterVarOrder(ϕ) /* injection ρ : X → N */
3 for i = m, m − 1, . . . , 1
4 Γi ← {c ∈ ϕ : ClauseRank(c, ρ) = i} /* 1 ≤ ClauseRank(c, ρ) ≤ m */
5 κi ← {LeafNode(T, c) : c ∈ Γi}

/* for each c, a leaf l with γ(l) = c is constructed and put in cluster κi */
6 Xi ← Vars(Γi) \ ⋃m

j=i+1 Vars(Γj) /* {Xi}m
i=1 is a partition of X */

7 for i = 1, 2, . . . , m
8 if κi �= ∅

9 ni ← InternalNode(T, κi, Xi) /* C(ni) = κi and π(ni) = Xi */
10 if i < m
11 j ← ChosenCluster(ni) /* i < j ≤ m */
12 κj ← κj ∪ {ni}
13 return (T, nm, γ, π)

is projected in iteration s, i.e., x is added to π(ns). These invariants are sufficient
to prove that Algorithm 1 indeed returns a project-join tree of ϕ. All heuristics
we use in this work satisfy the conditions of Theorem 3.

There are a variety of heuristics to fine-tune Algorithm 1. For the func-
tion ClusterVarOrder, we consider the heuristics Random, MCS (maximum-
cardinality search [67]), LexP/LexM (lexicographic search for perfect/minimal
orders [42]), and MinFill (minimal fill-in [21]) as well as their inverses
(InvMCS, InvLexP, InvLexM, and InvMinFill). Heuristics for ClauseRank
include BE (bucket elimination [20]) and BM (Bouquet’s Method [8]). For
ChosenCluster, the heuristics we use are List and Tree [26]. We combine
ClauseRank and ChosenCluster as clustering heuristics: BE−List, BE−Tree,
BM − List, and BM − Tree. These heuristics are described in [26].

4.2 Planning with Anytime Tree-Decomposition Tools

A central technique in join-query optimization uses tree decompositions to com-
pute join trees [17,48]. Tree decompositions [55] offer a way to decompose a
graph into a tree structure. Formally:

Definition 5. A tree decomposition (T, χ) of a graph G is an unrooted binary
tree T together with a labeling function χ : V(T ) → 2V(G) where:

1. for all v ∈ V(G), there exists n ∈ V(T ) s.t. v ∈ χ(n),
2. for all e ∈ E(G), there exists n ∈ V(T ) s.t. εG(e) ⊆ χ(n), and
3. for all n, o, p ∈ V(T ), if o is on the path from n to p, then χ(n)∩χ(p) ⊆ χ(o).

The treewidth, or simply width, of (T, χ) is tw(T, χ) ≡ maxn∈V(T ) |χ(n)| − 1.
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Algorithm 2. Using a tree decomposition to build a project-join tree
Input: X: set of Boolean variables
Input: ϕ: CNF formula over X
Input: (S, χ): tree decomposition of the Gaifman graph of ϕ
Output: (T, r, γ, π): project-join tree of ϕ

1 (T, null, γ, π) ← empty project-join tree
2 found ← ∅ /* clauses of ϕ that have been added to T */
3 function Process(n, 	):

Input: n ∈ V(S): node of S to process
Input: 	 ⊆ X: variables that must not be projected out here
Output: N ⊆ V(T )

4 clauses ← {c ∈ ϕ : c /∈ found and Vars(c) ⊆ χ(n)}
5 found ← found ∪ clauses
6 children ← {LeafNode(T, c) : c ∈ clauses} ∪ ⋃

o∈C(n) Process(o, χ(n))

/* constructing new leaf nodes p in the tree T with γ(p) = c */
7 if children = ∅ or χ(n) ⊆ 	
8 return children
9 else

10 return {InternalNode(T, children, χ(n) \ 	)}
/* new internal node o with label π(o) = χ(n) \ 	 */

11 s ← arbitrary node of S /* fixing s as root of tree S */
12 r ← only element of Process(s, ∅)
13 return (T, r, γ, π)

In particular, join-query optimization uses tree decompositions of the join
graph to find optimal join trees [17,48]. The join graph of a project-join query
consists of all attributes of a database as vertices and all tables as cliques. In
this approach, tree decompositions of the join graph of a query are used to find
optimal project-join trees; see Algorithm 3 of [48]. Similarly, tree decompositions
of the primal graph of a factor graph, which consists of all variables as vertices
and all factors as cliques, can be used to find variable elimination orders [37].
This technique has also been applied in the context of tensor networks [25,49].

Translated to model counting, this technique allows us to use tree decompo-
sitions of the Gaifman graph of a CNF formula to compute project-join trees.
The Gaifman graph of a CNF formula ϕ, denoted Gaifman(ϕ), has a vertex for
each variable of ϕ, and two vertices are adjacent if the corresponding variables
appear together in some clause of ϕ. We present this tree-decomposition-based
technique as Algorithm 2. The key idea is that each clause c of ϕ forms a clique
in Gaifman(ϕ) between the variables of c. Thus all variables of c must appear
together in some label of the tree decomposition. We identify that node with c.

The width of the resulting project-join tree is closely connected to the width
of the original tree decomposition. We formalize this in the following theorem:

Theorem 4. Let ϕ be a CNF formula over a set X of variables and (S, χ) be
a tree decomposition of Gaifman(ϕ) of width w. Then Algorithm 2 returns a
project-join tree of ϕ of width at most w + 1.
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The key idea is that, for each node n ∈ V(S), the label χ(n) is a bound on the
variables that appear in all nodes returned by Process(n, ·). Theorem 4 allows
us to leverage state-of-the-art anytime tools for finding tree decompositions [1,
64,66] to construct project-join trees, which we do in Sect. 6.1.

On the theoretical front, it is well-known that tree decompositions of the
Gaifman graph are actually equivalent to project-join trees [48]. That is, one
can go in the other direction as well: given a project-join tree of ϕ, one can
construct a tree decomposition of Gaifman(ϕ) of equivalent width. Formally:

Theorem 5. Let ϕ be a CNF formula and (T, r, γ, π) be a project-join tree of ϕ
of width w. Then there is a tree decomposition of Gaifman(ϕ) of width w − 1.

Theorem 5 is Lemma 1 of [48] and can be seen as the inverse of Theorem 4.

5 Execution Phase: Performing the Valuation

The execution phase involves a CNF formula ϕ over variables X, a project-join
tree (T, r, γ, π) of ϕ, and a literal-weight function W over X. The goal is to
compute the valuation fW

r using Eq. (2). Several data structures can be used for
the pseudo-Boolean functions that occur while using Eq. (2). In this work, we
consider two data structures that have been applied to weighted model counting:
ADDs (as in [26]) and tensors (as in [25]).

5.1 Algebraic Decision Diagrams

An algebraic decision diagram (ADD) is a compact representation of a pseudo-
Boolean function as a directed acyclic graph [5]. For functions with logical struc-
ture, an ADD representation can be exponentially smaller than the explicit
representation. Originally designed for matrix multiplication and shortest path
algorithms, ADDs have also been used for Bayesian inference [12,33], stochastic
planning [35], model checking [44], and model counting [26,29].

Formally, an ADD is a tuple (X,S, σ,G), where X is a set of Boolean vari-
ables, S is an arbitrary set (called the carrier set), σ : X → N is an injection
(called the diagram variable order), and G is a rooted directed acyclic graph
satisfying the following three properties. First, every leaf node of G is labeled
with an element of S. Second, every internal node of G is labeled with an element
of X and has two outgoing edges, labelled 0 and 1. Finally, for every path in
G, the labels of internal nodes must occur in increasing order under σ. In this
work, we only need to consider ADDs with the carrier set S = R.

An ADD (X,S, σ,G) is a compact representation of a function f : 2X → S.
Although there are many ADDs representing f , for each injection σ : X → N,
there is a unique minimal ADD that represents f with σ as the diagram variable
order, called the canonical ADD. ADDs can be minimized in polynomial time,
so it is typical to only work with canonical ADDs.

Several packages exist for efficiently manipulating ADDs. For example, CUDD
[63] implements both product and projection on ADDs in polynomial time (in
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the size of the ADD representation). CUDD was used as the primary data structure
for weighted model counting in [26]. In this work, we also use ADDs with CUDD
to compute W -valuations.

MCS was the best diagram variable order on a set of standard weighted
model counting benchmarks in [26]. So we use MCS as the diagram variable
order in this work. Note that all other heuristics discussed in Sect. 4.1 for cluster
variable order could also be used as heuristics for diagram variable order.

5.2 Tensors

A tensor is a multi-dimensional generalization of a matrix. Tensor are widely
used in data analysis [13], signal and image processing [14], quantum physics
[3], quantum chemistry [62], and many other areas of science. Given the diverse
applications of tensors and tensor networks, a variety of tools [6,38] exist to
manipulate them efficiently on a variety of hardware architectures, including
multi-core and GPU-enhanced architectures.

Tensors can be used to represent pseudo-Boolean functions in a dense way.
Tensors are particularly efficient at computing the contraction of two pseudo-
Boolean functions: given two functions f : 2X → R and g : 2Y → R, their
contraction f ⊗ g is the pseudo-Boolean function

∑
X∩Y f · g. The contraction

of two tensors can be implemented as matrix multiplication and so leverage
significant work in high-performance computing on matrix multiplication on
CPUs [47] and GPUs [30]. To efficiently use tensors to compute W -valuations,
we follow [25] in implementing projection and product using tensor contraction.

First, we must compute the weighted projection of a function f : 2X → R,
i.e., we must compute

∑
x f · Wx for some x ∈ X. This is exactly equivalent to

f ⊗Wx. Second, we must compute the product of two functions f : 2X → R and
g : 2Y → R. The central challenge is that tensor contraction implicitly projects
all variables in X ∩ Y , but we often need to maintain some shared variables in
the result of f · g. In [25], this problem was solved using a reduction to tensor
networks. After the reduction, all variables appear exactly twice, so one never
needs to perform a product without also projecting all shared variables.

In order to incorporate tensors in our project-join-tree-based framework, we
take a different strategy that uses copy tensors. The copy tensor for a set X
represents the pseudo-Boolean function �X : 2X → R s.t. �X(τ) is 1 if τ ∈
{∅,X} and 0 otherwise. We can simulate product using contraction by including
additional copy tensors. In detail, for each z ∈ X ∩ Y make two fresh variables
z′ and z′′. Replace each z in f with z′ to produce f ′ and replace each z in g with
z′′ to produce g′. Then one can check that f · g = f ′ ⊗ g′ ⊗ ⊗

z∈X∩Y �{z,z′,z′′}.
When a product is immediately followed by the projection of shared variables

(i.e., we are computing
∑

Z f · g for some Z ⊆ X ∩ Y ), we can optimize this
procedure. In particular, we skip creating copy tensors for the variables in Z
and instead eliminate them directly as we perform f ′ ⊗ g′. In this case, we do
not ever fully compute f · g, so the maximum number of variables needed in
each intermediate tensor may be lower than the width of the project-join tree.
In the context of tensor networks and contraction trees, the maximum number
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of variables needed after accounting for this optimization is the max-rank of
the contraction tree [25,43]. The max-rank is often lower than the width of the
corresponding project-joint tree. On the other hand, the intermediate terms in
the computation of f · g with contractions may have more variables than either
f , g, or f · g. Thus the number of variables in each intermediate tensor may be
higher than the width of the project-join tree (by at most a factor of 1.5).

6 Empirical Evaluation

We are interested in the following experimental research questions, where we
aim to answer each research question with an experiment.

(RQ1) In the planning phase, how do constraint-satisfaction heuristics compare
to tree-decomposition solvers?
(RQ2) In the execution phase, how do ADDs compare to tensors as the under-
lying data structure?
(RQ3) Are project-join-tree-based weighted model counters competitive with
state-of-the-art tools?

To answer RQ1, we build two implementations of the planning phase: HTB
(for Heuristic Tree Builder, based on [26]) and LG (for Line Graph, based on
[25]). HTB implements Algorithm 1 and so is representative of the constraint-
satisfaction approach. HTB contains implementations of four clustering heuristics
(BE-List, BE-Tree, BM-List, and BM-Tree) and nine cluster-variable-order
heuristics (Random, MCS, InvMCS, LexP, InvLexP, LexM, InvLexM,
MinFill, and InvMinFill). LG implements Algorithm 2 and so is representative
of the tree-decomposition approach. In order to find tree decompositions, LG
leverages three state-of-the-art heuristic tree-decomposition solvers: FlowCutter
[64], htd [1], and Tamaki [66]. These solvers are all anytime, meaning that LG
never halts but continues to produce better and better project-join trees when
given additional time. On the other hand, HTB produces a single project-join
tree. We compare these implementations on the planning phase in Sect. 6.1.

To answer RQ2, we build two implementations of the execution phase: DMC
(for Diagram Model Counter, based on [26]) and tensor (based on [25]). DMC uses
ADDs as the underlying data structure with CUDD [63]. tensor uses tensors as the
underlying data structure with NumPy [51]. We compare these implementations on
the execution phase in Sect. 6.2. Since LG is an anytime tool, each execution tool
must additionally determine the best time to terminate LG and begin performing
the valuation. We explore options for this in Sect. 6.2.

To answer RQ3, we combine each implementation of the planning phase and
each implementation of the execution phase to produce model counters that use
project-join trees. We then compare these model counters with the state-of-the-
art tools Cachet [58], c2d [19], d4 [46], and miniC2D [52] in Sect. 6.3.

We use a set of 1976 literal-weighted model counting benchmarks from [26].
These benchmarks were gathered from two sources. First, the Bayes class3 con-
3 https://www.cs.rochester.edu/u/kautz/Cachet/Model Counting Benchmarks.

https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks
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Fig. 2. A cactus plot of the performance of various planners. A planner “solves” a
benchmark when it finds a project-join tree of width 30 or lower.

sists of 1080 CNF benchmarks4 that encode Bayesian inference problems [59].
All literal weights in this class are between 0 and 1. Second, the Non-Bayes
class5 consists of 896 CNF benchmarks6 that are divided into eight families:
Bounded Model Checking (BMC), Circuit, Configuration, Handmade, Planning,
Quantitative Information Flow (QIF), Random, and Scheduling [15,39,53,61].
All Non-Bayes benchmarks are originally unweighted. As we focus in this
work on weighted model counting, we generate weights for these benchmarks.
Each variable x is randomly assigned literal weights: either Wx({x}) = 0.5 and
Wx(∅) = 1.5, or Wx({x}) = 1.5 and Wx(∅) = 0.5. Generating weights in this
particular fashion results in a reasonably low amount of floating-point underflow
and overflow for all model counters.

We ran all experiments on single CPU cores of a Linux cluster with Xeon
E5-2650v2 processors (2.60-GHz) and 30 GB of memory. All code, benchmarks,
and experimental data are available in a public repository (https://github.com/
vardigroup/DPMC).

6.1 Experiment 1: Comparing Project-Join Planners

We first compare constraint-satisfaction heuristics (HTB) and tree-decomposition
tools (LG) at building project-join trees of CNF formulas. To do this, we ran all
36 configurations of HTB (combining four clustering heuristics with nine cluster-
variable-order heuristics) and all three configurations of LG (choosing a tree-
decomposition solver) once on each benchmark with a 100-second timeout. In
Fig. 2, we compare how long it takes various methods to find a high-quality
(meaning width at most 30) project-join tree of each benchmark. We chose
30 for Fig. 2 since [25] observed that tensor-based approaches were unable to
handle trees whose widths are above 30, but Fig. 2 is qualitatively similar for
4 Excluding 11 benchmarks double-counted by [26].
5 http://www.cril.univ-artois.fr/KC/benchmarks.html.
6 Including 73 benchmarks missed by [26].

https://github.com/vardigroup/DPMC
https://github.com/vardigroup/DPMC
http://www.cril.univ-artois.fr/KC/benchmarks.html
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Fig. 3. A cactus plot of the performance of various planners and executors for weighted
model counting. Different strategies for stopping LG are considered. “(first)” indicates
that LG was stopped after it produced the first project-join tree. “(cost)” indicates
that the executor attempted to predict the cost of computing each project-join tree.
“(best)” indicates a simulated case where the executor has perfect information on all
project-join trees generated by LG and valuates the tree with the shortest total time.
VBS* is the virtual best solver of DMC+HTB and DMC+LG (cost). VBS is the virtual best
solver of DMC+HTB, DMC+LG (cost), tensor+HTB, and tensor+LG (cost).

other choices of widths. We observe that LG is generally able to find project-join
trees of lower widths than those HTB is able to find. We therefore conclude that
tree-decomposition solvers outperform constraint-satisfaction heuristics in this
case. We observe that BE-Tree as the clustering heuristic and InvLexP as the
cluster-variable-order heuristic make up the best-performing heuristic configu-
ration from HTB. This was previously observed to be the second-best heuristic
configuration for weighted model counting in [26]. We therefore choose BE-
Tree with InvLexP as the representative heuristic configuration for HTB in
the remaining experiments. For LG, we choose FlowCutter as the representative
tree-decomposition tool in the remaining experiments.

6.2 Experiment 2: Comparing Execution Environments

Next, we compare ADDs (DMC) and tensors (tensor) as a data structure for
valuating project-join trees. To do this, we ran both DMC and tensor on all
project-join trees generated by HTB and LG (with their representative configura-
tions) in Experiment 1, each with a 100-second timeout. The total times recorded
include both the planning stage and the execution stage.

Since LG is an anytime tool, it may have produced more than one project-join
tree of each benchmark in Experiment 1. We follow [25] by allowing tensor and
DMC to stop LG at a time proportional to the estimated cost to valuate the best-
seen project-join tree. The constant of proportionality is chosen to minimize the
PAR-2 score (i.e., the sum of the running times of all completed benchmarks plus
twice the timeout for every uncompleted benchmark) of each executor. tensor
and DMC use different methods for estimating cost. Tensors are a dense data
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Fig. 4. A cactus plot of the performance of four project-join-tree-based model counters,
two state-of-the-art model counters, and two virtual best solvers: VBS* (without project-
join-tree-based counters) and VBS (with project-join-tree-based counters).

structure, so the number of floating-point operations to valuate a project-join
tree can be computed exactly as in [25]. We use this as the cost estimator for
tensor. ADDs are a sparse data structure, and estimating the amount of sparsity
is difficult. It is thus hard to find a good cost estimator for DMC. As a first step,
we use 2w as an estimate of the cost for DMC to valuate a project-join tree of
width w.

We present results from this experiment in Fig. 3. We observe that the ben-
efit of LG over HTB seen in Experiment 1 is maintained once the full weighted
model count is computed. We also observe that DMC is able to solve significantly
more benchmarks than tensor, even when using identical project-join trees. We
attribute this difference to the sparsity of ADDs over tensors. Nevertheless, we
observe that tensor still outperforms DMC on some benchmarks; compare VBS*
(which excludes tensor) with VBS (which includes tensor).

Moreover, we observe significant differences based on the strategy used to
stop LG. The executor tensor performs significantly better when cost estimation
is used than when only the first project-join tree of LG is used. In fact, the
performance of tensor is almost as good as the hypothetical performance if
tensor is able to predict the planning and valuation times of all trees produced
by LG. On the other hand, DMC is not significantly improved by cost estimation.
It would be interesting in the future to find better cost estimators for DMC.

6.3 Experiment 3: Comparing Exact Weighted Model Counters

Finally, we compare project-join-tree-based model counters with state-of-the-
art tools for weighted model counting. We construct four project-join-tree-based
model counters by combining HTB and LG (using the representative configurations
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from Experiment 1) with DMC and tensor (using the cost estimators for LG from
Experiment 2). Note that HTB+DMC is equivalent to ADDMC [26] and LG+tensor is
equivalent to TensorOrder [25]. We compare against the state-of-the-art model
counters Cachet [58], c2d [19], d4 [46], and miniC2D [52]. We ran each benchmark
once with each model counter with a 1000-second timeout and recorded the total
time taken. For the project-join-tree-based model counters, time taken includes
both the planning stage and the execution stage.

We present results from this experiment in Fig. 4. For each benchmark, the
solving time of VBS* is the shortest solving time among all pre-existing model
counters (Cachet, c2d, d4, and miniC2D). Similarly, the time of VBS is the short-
est time among all model counters, including those based on project-join trees.
We observe that VBS performs significantly better than VBS*. In fact, DMC+LG
is the fastest model counter on 471 of 1976 benchmarks. Thus project-join-tree-
based tools are valuable for portfolios of weighted model counters.

7 Discussion

In this work, we introduced the concept of project-join trees for weighted model
counting. These trees are at the center of a dynamic-programming framework
that unifies and generalizes several model counting algorithms, including those
based on ADDs [26], tensors [25], and database management systems [31]. This
framework performs model counting in two phases. First, the planning phase
produces a project-join tree from a CNF formula. Second, the execution phase
uses the project-join tree to guide the dynamic-programming computation of
the model count of the formula w.r.t. a literal-weight function. The current
implementation of our dynamic-programming model-counting framework DPMC
includes two planners (HTB and LG) and two executors (DMC and tensor).

For the planning phase, we implemented HTB based on constraint-satisfaction
heuristics [8,20,21,42,67] and LG based on tree-decomposition tools [1,64,66].
Our empirical work indicates that tree-decomposition tools tend to produce
project-join trees of lower widths in shorter times. This is a significant finding
with applications beyond model counting, e.g., in Boolean functional synthesis
[65].

For the execution phase, we implemented DMC based on ADDs [26,63] and
tensor based on tensors [25,51]. Empirically, we observed that (sparse) ADDs
outperform (dense) tensors on single CPU cores. Whether this holds for richer
architectures as well is a subject for future work. We will also consider adding
to our framework an executor based on databases (e.g., [31]).

We showed that our dynamic-programming model-counting framework DPMC
is competitive with state-of-the-art tools (Cachet [58], c2d [19], d4 [46], and
miniC2D [52]). Although no single model counter dominates, DPMC considerably
improves the virtual best solver and thus is valuable as part of the portfolio.

In this work, we did not consider preprocessing of benchmarks. For example,
[25] found that preprocessing (called FT, based on a technique to reduce variable
occurrences using tree decompositions of the incidence graph [57]) significantly
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improved tensor-network-based approaches for weighted model counting. More-
over, [32] and [27] observed that the pmc preprocessor [45] notably improved the
running time of some dynamic-programming-based model counters. We expect
these techniques to also improve DPMC.

A promising future research direction is multicore programming. Our plan-
ning tool LG can be improved to run back-end tree-decomposition solvers in
parallel, as in [27]. We can also make the execution tool DMC support multicore
ADD packages (e.g., Sylvan [23]). Our other executor, tensor, is built on top
of NumPy [51] and should be readily parallelizable (e.g., using techniques from
[27]). We can then compare DPMC to parallel solvers (e.g., [10,16]).

Finally, decision diagrams have been widely used in artificial intelligence
in the context of knowledge compilation, where formulas are compiled into
a tractable form in an early phase to support efficient query processing
[19,41,46,52]. Our work opens up an investigation into the combination of knowl-
edge compilation and dynamic programming. The focus here is on processing a
single model-counting query. Exploring how dynamic programming can also be
leveraged to handle several queries is another promising research direction.
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Abstract. Online optimization approaches are popular for solving opti-
mization problems where not all data is considered at once, because it
is computationally prohibitive, or because new data arrives in an ongo-
ing fashion. Online approaches solve the problem iteratively, with the
amount of data growing in each iteration. Over time, many problem
variables progressively become realized, i.e., their values were fixed in the
past iterations and they can no longer affect the solution. If the solving
approach does not remove these realized variables and associated data
and simplify the corresponding constraints, solving performance will slow
down significantly over time. Unfortunately, simply removing realized
variables can be incorrect, as they might affect unrealized decisions. This
is why this complex task is currently performed manually in a problem-
specific and time-consuming way. We propose a problem-independent
framework to identify realized data and decisions, and remove them by
summarizing their effect on future iterations in a compact way. The result
is a substantially improved model performance.

1 Introduction

Online optimization tackles the solving of problems that evolve over time. In
online optimization problems, in some areas also called dynamic or reactive, the
set of input data is only partially known a priori and new data, such as new
customers and/or updated travel times in a dynamic vehicle routing problem,
continuously or periodically arrive while the current solution is executed. This
new data and the current execution state must be incorporated into the problem
in an ongoing fashion to revise previous decisions and to take new decisions.

Online optimization problems are solved iteratively as a sequence of offline
optimization problems, where each problem represents the available information
state of the online problem at a particular point in time. In each iteration or
session, the online optimization approach must create an update instance to
update the current solution. An update model is a model that can be repeatedly
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instantiated to create new update instances in the sequence; it incorporates the
new data, the old data (possibly modified by external sources), and the results
from solving the previous update instance (also possibly modified).

One inherent challenge of online problems is their continuous growth in size
as time passes, which can yield an unnecessary and prohibitive performance
decay. As a result, online optimization approaches often try to remove, or garbage
collect, data that is irrelevant for current and future decisions to be made, such
as completed delivery trips in dynamic vehicle routing problems. Unfortunately,
garbage collection is a complex task, as it requires understanding the interaction
between time, data and the variables and constraints used to model the problem.
For this reason, existing removal methods (see related work in Sect. 6) are highly
problem-specific and, thus, not easily transferable to other problems, or näıve,
thus still causing significant performance issues as shown in Sect. 5.

We propose a problem-independent framework, in which the modeler pro-
vides minimal information about the relation between time, data, and variables.
The framework performs three main steps. First, the modeler’s information is
used to analyze each constraint that would be part of the update instance, with
the aim to automatically identify the data and variables that are now realized,
i.e., can no longer affect future decisions, either because they can no longer
change, or because any change is now irrelevant. Second, once the realized infor-
mation for a constraint is inferred, the constraint is modified to aggregate as
much of the realized information as it can. And third, once all constraints have
been analyzed and aggregated, the garbage from all constraints is collected and
removed to ensure it does not form part of the update instance. We note that this
paper significantly extends our previous problem-independent online modeling
approach [7], with a much more sophisticated and effective method for garbage
collection. We also note that our online approach can also be used for solv-
ing large-scale offline optimization problem, when applying an iterative solving
approach over a rolling horizon [19].

To sum up, our main contributions are as follows: (1) A systematic way of
modeling and inferring when each part of a model is realized (Sect. 4.1), and how
to utilize this. (2) For several kinds of constraints, methods of summarizing the
effect that realized parts will have on the future without keeping them (Sect. 4.2).
This is done via incrementally aggregating the realized values and slightly refor-
mulating the constraints to use these aggregated values. (3) A garbage collection
mechanism that analyzes a high-level constraint model, identifies which parts are
never used again, and safely removes them from future sessions (Sect. 4.3). (4)
An empirical evaluation of the proposed approach (Sect. 5).

2 Preliminaries

A constraint satisfaction problem (CSP) P = (X,D,C) consists of a set of
variables X, a function D mapping each variable x ∈ X to its domain (usually
a finite set of values) Dx, and a set of constraints C over X. For optimization
problems, we add a special variable o to X, called the objective, to be w.l.o.g.
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minimized. A dynamic constraint satisfaction problem (DCSP) [6] is a (possibly
infinite) list of CSPs DP = (P1, P2, . . . ), where each Pi represents the state after
the ith problem change is considered, where a change can remove and/or add
constraints. It allows us to consider each session si as solving the stand-alone
CSP Pi. A solving method is offline if it is designed to solve one CSP, and online
if it is designed to iteratively solve and generate the CSPs in a DCSP.

We distinguish between a problem model, where the input data is described
in terms of parameters (i.e., data that will be known before the search starts),
and a model instance, where the values of the parameters are added to the
model. While an instance can be directly represented as a CSP, a model can
be represented as a parameterized CSP [13] P [Data], that is, a family of CSPs
P [δ] for every δ ∈ Data. The parameterization also applies to its components
(X[Data],D[Data],C[Data]). This allows us to extend the online approach of [7]
by representing a DCSP as the list DP = (P [δ1], P [δ2], · · · ), where data can
change over time, while the underlying model remains unchanged.

We assume DCSPs have complete recourse [5], that is, all their CSPs are fea-
sible. We also assume DCSPs have uncertainty in execution, that is, the values of
the parameters between consecutive CSPs, P [δi] and P [δi+1], can be modified by
external sources. As an example for external modifications, consider a dynamic
vehicle routing problem. The distance between two locations may change (e.g.,
due to road works or traffic congestion), or a vehicle may spend more time at
a customer due to unforeseen delays. External modifications are, however, no
longer possible once the parameters in question become realized, that is, once
their actual values are either observed (indicating they refer to the past) or guar-
anteed never to be observed (indicating they will never be used and thus can be
safely ignored). For example, once a vehicle has actually left a customer site, the
time it left is now realized and can be assumed as fixed forever.

Note that, for simplicity, we do not use stochastic information during online
optimization [2,20,21], nor predict future changes based on historical data [3].
We simply react to any changes that occur in what [4] calls pure reaction, and
resolve each CSP in its entirety for each session. Thus, no information about
P [δi+1] is used by P [δi]. Also, we assume non-preemption for our online solving
methods, that is, once a P [δi] starts to be solved, the execution cannot abort
(either to later resume it or to restart it). However, we believe that the con-
cepts presented in this paper can be generalized in a straightforward way to the
stochastic, preemptive, incomplete recourse case.

We denote by aggregation the process of simplifying a constraint by replac-
ing any fixed decision variables by their value. Faster solving can be achieved
if we precompute the aggregated value of the fixed variables in each constraint
and remove these variables from it. Consider for example a constraint contain-
ing the sum

∑
i ci × xi. We can easily partition the coefficients ci and vari-

ables xi into two sets: those containing fixed decision variables F and the rest
V . Then, we can substitute the sum

∑
i ci × xi by fixcost +

∑
i∈V ci × xi, where

the value fixcost =
∑

i∈F ci × xi is precomputed. This technique is common in
many solvers, particularly copying solvers (e.g., Gecode [9]), which aggressively
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simplify all constraints before copying them. In our online setting, we aim to
remember (and not redo) the simplifications done in past sessions, and thus
incrementally aggregate the results over time (see Sect. 4.2).

3 Basics of Our Framework and Running Example

Given a DCSP DP = (P [δ1], P [δ2], . . . ), our framework consists of a series of
(solving) sessions, where each session si starts to execute instance P [δi] after
session si−1 finishes. The result of session si contains the best solution to P [δi]
that could be found within a given time limit. As we will see later, the result
also contains information about which parts of δi have become garbage, and this
information will be used to generate P [δi+1].

Time, quite obviously, plays an important role in online optimization. We
denote by τi the deadline for session si, i.e., the latest time by which the result
of si must have been produced (which can be calculated as the start time of si

plus the time limit). Importantly, τi is available as a parameter in δi, essentially
representing the value “now”, as seen from the outside world. For example, if
the current session si makes a decision to start a task on a particular machine,
the earliest possible time for that job to start is τi, since any earlier time will
be in the past by the time the solution can be implemented. Similarly, if an
earlier session made the decision to start a task on a particular machine, then
the current session may be able to revise that decision if the start time is still in
the future, i.e., greater than τi. The parameter τi thus synchronizes the session
with the outside world.

Each δ ∈ Data is a tuple (OS δ,DV δ), where OS δ is the set of object set
parameters and DV δ is the set of data value parameters. The former contains a
set per type of dynamic object in the problem, i.e., per type of object that can
arrive as time progresses, such as the set of jobs for a job scheduling problem,
the set of product orders for a product manufacturing problem, and the set of
customer requests for a vehicle routing problem. Typically, these sets are the
backbone of the DCSP models, as they index most loops and parameter arrays.
For example, the set of jobs will index the array of precedences among jobs, and
the set of customer requests will index the array containing the amount of time
required by each customer request. This is why object sets are the key to our
garbage collection method. It is also why the objects in each object set of OS δ

must be uniquely named, with their number determining the size of the instance.
The set of data value parameters denotes the particular givens in the current

state of the instance. For example, the current location of all vehicles to route,
the current expected travel times between points in a traffic network, or the
durations of the jobs that must be run. Each element of the set can be defined
as a singleton or as a multi-dimensional array possibly indexed by object sets.

Many of the data value parameters, decision variables and constraints in
instance P [δi+i] will need to refer to the values obtained by session si when
solving P [δi]. Thus, every δi+1 ∈ Data contains new data, i.e., objects and
parameter values for session si+1, and old data, i.e., the decisions, objects and
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parameter values either produced by session si when solving P [δi] or modified
by an external source after si (e.g., if a task previously scheduled required more
time to be performed than expected). We will distinguish between old and new
data sets by prefixing them with the ω and ν symbols, respectively.

3.1 Running Example: Dynamic Vehicle Routing

The following problem is used throughout the rest of the paper as an illustrative
example. Consider a dynamic vehicle routing problem (DVRP), where a fleet of
vehicles has to be routed to attend to upcoming customer requests as soon as
possible, while minimizing the total travel time. The problem model is as follows.

Object Sets: The arrival of a new customer request c at time τc, is modeled by
adding object c to the object set of customer requests C at time τc. We model
vehicle availability by means of the availability of a new tour. This allows us
to ignore whether the vehicle is new, or just finished its previous tour. Thus, a
new tour t becoming available at time τt, is modeled by adding tour object t to
the object set of tours T at time τt. Each tour t ∈ T starts at its start depot
S(t), services some customer requests and ends at its end depot E(t). The set
of customer requests C, start depots S(T ) and end depots E(T ), yield a set of
locations modeled as nodes N . As a result, C and T are input object sets, while
N is an object set constructed from them as N = S(T ) ∪ E(T ) ∪ NC (C), where
NC (C) maps the customer requests to their associated nodes.

Data Value Parameters: They are provided by two tables. The first,
wait : N → Z

≥, provides the amount of time waitn a vehicle has to wait
after reaching node n ∈ N before it can go on to the next node (this mod-
els, e.g., the time required to provide some service at node n). The second,
dist : N × N → Z

≥, provides the traveling time distnm from every node n to
any node m in N . We assume waitn = 0 if n corresponds to a depot. In addition,
the special parameter τ gives the end of solving time for the current session, and
hence the earliest time after which decisions can be modified.

Variables: While the set of customer requests serviced by a tour must be decided
before the tour begins (i.e., leaves its starting depot), the time of service (and
thus the order in which customer requests are serviced) can change. Therefore,
the exact routes are modeled using three arrays of decision variables indexed by
the set of nodes N : servn determines the tour that serves node n, succn the node
that is served after node n, and arrin the time at which the tour arrives at node
n.

Problem Constraints: The problem is modeled by the following six con-
straints. PC1 ensures each tour visits its start and end depot. PC2 records the
time at which each tour that is new for the current session becomes available,
by setting its arrival time at its start depot to τ . This ensures it is ready to start
by the end of the current solving session. PC3 connects the nodes serviced by
each tour. PC4 ensures the successor of a node n is not reached until n has been
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serviced for the required amount of time, and the time taken to travel to the suc-
cessor is considered. The last two constraints ensure the whole successor array
forms a single circuit. PC5 establishes a circuit for each tour using the global
constraint on the successor array, thus ensuring every node belongs to one tour.
SBC1 is a symmetry breaking constraint that closes the circuit by ensuring the
successor of the end depot of tour t is the start depot of tour t + 1 (in a fixed
order), and the successor of the last tour is the start depot of the first one.

forallt in T servS(t) = servE(t) = t (PC1)

forallt in νT arriS(t) = τ (PC2)

forall
n in S(T )∪NC(C)

servn = servsuccn
(PC3)

forall
n in S(T )∪NC(C)

arrin + waitn + distn,succn
≤ arrisuccn

(PC4)

Circuit(succ) (PC5)

succE(max(T )) = S(min(T )) ∧ forall
t in T\max(T )

succE(t) = S(t + 1) (SBC1)

Overlap Constraints: Online solving methods need to build an update model
that solves the problem while taking into account earlier decisions. The overlap
constraints add information about how earlier information affects the current
session. In the approach of [7], which we extend, these are constructed automat-
ically from annotations of the original model. The overlap constraints focus on
old decisions that must be committed, that is, decisions taken by the previous
session (or modified by external sources) that cannot change in the current one.
OC1 commits the customer requests serviced by a tour if the tour has left the
start depot by the time the current solving session ends. OC2 commits the suc-
cessor of a node as soon as the tour starts heading towards it. Successors of end
depots are not included in this constraint, as that would interfere with SBC1.
Finally, OC3 commits the arrival time if the node has started to be serviced by
the time the session ends.

forallt in ωT if τ ≥ ωarriωsuccS(t) − distS(t),ωsuccS(t)

then foralln in ωN servn = t ↔ ωservn = t (OC1)

forall
n in ωN\E(ωT )

if τ ≥ ωarrin + waitn then succn = ωsuccn (OC2)

forall
n in ωN

if τ ≥ ωarrin then arrin = ωarrin else arrin ≥ τ (OC3)

Objective: We minimize the total travel cost, computed as the sum of arrival
times at the end depot minus departure times from the start depot:

cost = sumt in T arriE(t) − departS(t),

where departS(t) = arrisuccS(t) − distS(t),succS(t)
.

(OBJ)
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4 Automated Garbage Collection

Our garbage collection method aims to remove as many garbage objects as pos-
sible from our object sets, together with their associated data value parameters,
decision variables and constraints. An object is considered garbage if it can be
removed without affecting the solutions, that is, if all decisions associated with
the object are realized, and their values can be safely aggregated by all con-
straints in the instance. Recall that a data value parameter or decision is real-
ized if it has already been observed (and can therefore no longer change) or will
never be observed (and can thus be safely ignored). As we will see, our garbage
collection method cannot simply consider the instance being compiled by the
current session. Instead, it must become an incremental and cumulative process
that operates across multiple sessions, aggregating realized data and decisions.

The method consists of the following three main steps: (1) Identify realized
data value parameters and decision variables, in order to determine the fully real-
ized objects (Sect. 4.1); (2) Aggregate the constraints together with the realized
data value parameters and decision variables used in these constraints (Sect. 4.2);
(3) Collect the garbage resulting from the aggregation and remove it from future
instances (Sect. 4.3).

Note that the above automated garbage collection method is performed at
the beginning of each session, when constructing the constraint problem instance
P [δ] that will be sent to the solver. This is achieved by reformulating the update
model to reason about garbage, as we describe below. While it may be more
efficient to deal with aggregation and garbage collection outside of the model,
this has the downside of making the method problem-specific. In contrast, our
proposed automated method deduces what is garbage from the realization infor-
mation in the model alone and can be used for any problem, since both the
aggregation of each constraint and the garbage collection method are indepen-
dent of the model in which they occur.

4.1 Phase One: Identifying Realizations

As time moves forward, objects, data value parameters, and decision variables
become realized. We define a realization function R for a session solving instance
P [δ] = (X[δ],D[δ],C[δ]) as R :

⋃
OS δ ∪ DV δ ∪ X[δ] → {true, false} to indicate

whether a given object, data value parameter, or decision variable is realized.
For ease of notation we define the complement to indicate whether an object,
data parameter, or decision variable is not realized NR(z) = ¬R(z), and extend
both functions in the obvious way to operate on sets of elements.

If online optimization is used to solve a static problem, then any data value
parameter that becomes known and any decision variable that is committed is
automatically realized. For dynamic problems, however, the modeler’s expert
knowledge is needed to annotate the data value parameters and decision vari-
ables in the model to indicate when they are realized. Object realization can be
automatically inferred from this. Let us illustrate this inference by means of our
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DVRP model. We will assume that newly added data and variables are never
realized, and focus on the old data and variables (identified by ω).

Variable and Data Realizations: As shown in Sect. 3.1, our DVRP model
has three arrays of decision variables and two arrays of data value parameters.
Their realization is provided by the modeler as the functions (for all n,m ∈ N):

R(ωservn) = ωarriωsuccS(ωservn) − distS(ωservn),ωsuccS(ωservn)
≤ τ ; (RV1)

R(ωsuccn) = ωarriωsuccn
≤ τ ; (RV2)

R(ωarrin) = ωarrin ≤ τ ; (RV3)

R(ωwaitn) = ωarrin + ωwaitn ≤ τ ; and (RD1)

R(ωdistnm) = ωarriωsuccn
≤ τ ∨ ωarrim ≤ τ. (RD2)

RV1 marks the tour that serves node n as realized if the vehicle of that tour has
left the depot before the end of the current session (i.e., by τ). RV2 marks the
successor of node n as realized, if the tour arrives at n’s successor by τ . RV3
marks the arrival time at node n as realized, if it is less or equal than τ . RD1
marks the waiting time at node n as realized, if the tour has already arrived at
n and finished waiting by τ . RD2 marks the distance from node n to node m as
realized, if the tour has already arrived either at the successor of n or at m by
τ . Note that if m is not n’s successor, distance ωdistnm will never be used.

This example illustrates why realization needs to be defined by the modeler:
The current model assumes that we cannot change the allocation of customers
to vehicles after a vehicle has left the depot. This may be suitable for vehicles
that need to pick up goods from the depot and deliver to the customers. But
it may be unnecessarily restrictive for vehicles that provide a service, in which
case we could change rule RV1 to R(ωservn) = ωarrin ≤ τ .

Object Realizations and Correspondence: An object is realized when all
the data value parameters and decisions about that object are realized. Since
all five arrays of data value parameters and variables are indexed by object sets,
we can automatically infer which objects are realized. Note that, since N is
constructed from C and T , the realization relationships between them must be
examined. We will come back to this later. We introduce the local realization
function RL : δ ∪ X[δ] → {true, false}, to reason about direct usage. The (for
now manual) analysis determines that C and T are not used to index any of
the five arrays. Therefore, all their objects are locally realized, i.e., RL(c) =
RL(t) = true, for all c ∈ ωC and t ∈ ωT . N is however used as index set in
all arrays of decision variables and data value parameters. Its local realization is
defined for all n ∈ N as:

RL(n) = R(ωservn) ∧ R(ωsuccn) ∧ R(ωarrin) ∧ R(ωwaitn)
∧ (∀m ∈ ωN : R(ωdistnm) ∧ R(ωdistmn)) ,
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which marks object n ∈ N as locally realized if all variables and data parameter
arrays indexed by n (in one or more dimensions) are also realized.

Direct usage is extended to indirect usage ∀c ∈ ωC, t ∈ ωT , and n ∈ ωN as:

R(c) = RL(c) ∧ RL(NC (c));

R(t) = RL(t) ∧ RL(S(t)) ∧ RL(E(t)); and

R(n) = RL(n) ∧ ((n = S(t) ∨ n = E(t)) → RL(t)) ∧ (n = NC (c) → RL(c));

indicating a customer request c is realized if both c and its associated node
NC (c) are locally realized; a tour t is realized if t, its start node, and its end
node are locally realized; and a node n is realized if n is locally realized and
its associated tour or customer are locally realized (which in this case is always
true). For brevity, R(S) denotes the set of all realized objects in object set S.

4.2 Phase Two: Aggregation

Realized data, variables and objects can never change in future uses, or are never
used in the future. Thus, a constraint can be removed if all its elements are real-
ized. Consider, e.g., Eq. PC3: when succn is realized the constraint must already
hold and can thus be ignored. If a constraint cannot be removed, any subex-
pression containing only realized elements can be replaced with an aggregated
value. In general, the aggregation consists of three steps: (1) identifying the set
of realized objects that can be aggregated, (2) redefining the constraint to use
the aggregations, and (3) introducing and defining the aggregated value(s).

In most constraints, the realized elements are not used to access any other
values (e.g., as array index). For them aggregation is straightforward. Consider,
for example, the objective OBJ of the DVRP model, which loops over object set
T . Partitioning T into realized and non-realized objects gives:

cost = sumt in R(T )(arriE(t) − departS(t)) + sumt in NR(T )(arriE(t) − departS(t)).

To aggregate the realized part, we simply compute and keep its value by intro-
ducing a new data parameter, aggobj : Z≥ to represent this value, and then
transform the objective constraint OBJ into:

cost = aggobj + sumt in NR(T )(arriE(t) − departS(t)), (AC-OBJ)

where aggobj sums up everything aggregated so far, ωagg (corresponding to
objects no longer in T ), plus everything aggregated in the current session:

aggobj = ωaggobj + sumt in R(ωT )(arriE(t) − departS(t)). (AV-OBJ)

For constraints where the realized values are indeed used to access other
values, aggregation can be quite complex. Consider, for example, the circuit
constraint for a graph with six nodes a, . . . , f . Suppose the previous session
obtained the solution illustrated in Fig. 1(a). Suppose that nodes c, d and e are
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a b c

f e d

a b c

f e d

(a) (b)

Fig. 1. Visualization of circuit aggregation via short-circuiting. The current solution
(a) has realized nodes shown in double circles. Nodes d and e can be removed as garbage
and node c is short-circuited to point at f , but must remain since (b) some non-garbage
node will point at it, in the next session.

completely realized. Aggregation for this circuit can then be achieved by short-
circuiting it as visualized in Fig. 1(b). Note we cannot remove c because some
variable must point to c in future sessions. We can however remove d and e from
the model, and they become garbage.

In general aggregation is constraint specific. Thankfully it is well understood,
if not well publicized, and modern solvers, in particular Gecode [9], aggressively
aggregate constraints. The extra challenge that arises in automatic garbage col-
lection is that the result of the aggregation (e.g., aggobj) needs to be commu-
nicated across sessions. Our automated garbage collection modifies the update
model to both make use of the modified form of constraints with aggregation
(e.g., AC-OBJ) values (e.g., AV-OBJ) as well as output this new aggregate value,
so that it is available to the next session.

We can create a library of aggregating versions for common global constraints,
which may require adding new arguments to transmit the aggregate values. We
can also create a library of functions to compute the aggregate values required.

Finally, some constraints can be ignored throughout the aggregation pro-
cess. In particular, redundant (or implied) constraints aim to speed up solv-
ing, but are not necessary for defining the problem, and are only relevant to
the current instance. Hence, redundant constraints can be safely ignored dur-
ing aggregation, and kept as-is for solving. Similarly, the overlap constraints
are only required to communicate the effects from the previous session on the
next session. Hence, they do not need to be considered for aggregation either.
In contrast, while symmetry-breaking constraints can be safely ignored during
aggregation (as they are only relevant in the current instance), they might need
to be reformulated. This is because they eliminate solutions and, thus, can only
be kept as-is if the remaining solutions are compatible with those left by symme-
try breaking constraints of previous instances and all aggregations. In general,
symmetry-breaking constraints need to be carefully designed on a model-by-
model basis. This is outside the scope of this paper and remains future work.
The symmetry-breaking constraints for our DVRP model are compatible with
the aggregations since the end nodes point at the next start nodes, except for
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the last end node, which points to the first start node. This is the exact pattern
our circuit aggregation will enforce as well.

4.3 Phase Three: Garbage Collection

Our method aims to determine objects that are garbage for removal of any data
or variables associated to these objects. Without this, instances would constantly
grow with time. As shown for the circuit constraint above, some realized (and
aggregated) objects cannot be removed. Therefore, we need to determine what
can be safely removed and what cannot. We will say that realized objects, data
value parameters, and variables are garbage if they can be removed without
creating an inconsistency, and are non-garbage otherwise. Note that only realized
objects, data value parameters, and variables can be garbage since, otherwise,
their new values might change the solutions found by subsequent sessions.

The garbage collection phase for P [δ] is itself divided into three steps.
The first step identifies the set of realized objects that are non-garbage for
each constraint in P [δ] when considered in isolation, that is, the non-garbage
objects local to each constraint. Note that these objects, together with the
data value parameters and variables associated to them, are the only realized
elements that have not been already aggregated during the previous phase
(i.e., phase two). Formally, the identification of the non-garbage local to a
given constraint in P [δ] = (X[δ],D[δ],C[δ]) is defined in terms of the func-
tion NGL : C[δ] → {G | G ⊆ ⋃

OS δ} , which returns the set of realized objects
in every object set that the given constraint c considers to be non-garbage and
has, therefore, not been aggregated by c. For example, in our DVRP model, if c
is the objective constraint OBJ, then NGL(c) will return the empty set, since all
realized objects are garbage for OBJ. However, if c is the circuit constraint PC5,
then NGL(c) will return any realized node n whose predecessor node is not real-
ized (e.g., an end node is the predecessor of the start node of another tour), that
is, it returns {n ∈ R(N) | succm = n and m ∈ NR(N)}. In the example for the
circuit constraint provided in the previous section, this set would contain the
realized node named c, but not the nodes named d and e.

The second step in this phase collates the local non-garbage information to
determine the realized objects that are non-garbage for the entire instance P [δ].
To do this we define a global non-garbage function:

NG : OSδ → {NG | NG ⊆ S, S ∈ OS δ} , s.t. NG(S) ⊆ S, ∀S ∈ OS δ,

which maps each objects set S ∈ OS δ to the objects in S that are non-garbage:

NG(S) = R(S) ∩
⋃

c∈C[δ]
NGL(c), ∀S ∈ OS δ,

that is, the subset of all objects identified by any constraint c in the instance
as non-garbage, that are also realized objects of S. For ease of notation we
use the complement to indicate the set of realized objects that are garbage
G(S) = R(S) \ NG(S) and can therefore be removed.
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The third and last step in this phase removes any garbage identified at the
beginning of session si to create instance P [δi], thus eliminating the garbage
from all future instances as well. This is already partially achieved in phase two,
by modifying the constraints to aggregate all realized data value parameters
and variables. To complete the task, we must remove any objects identified as
garbage from the input object sets. We do this by redefining each input object
set S as NG(S)+NR(S), thus ensuring S retains every realized object that has
been identified as non-garbage (NG(S)), plus every object that is not realized
(NR(S)). Note that NR(S) contains all new objects of S and all old, non-
realized ones. Note also that constructed object sets do not need to be redefined,
as they are built from the input sets. For example, for our DVRP this step would
require redefining the object set of tours T = NG(T ) + NR(T ) and the object
set of customer requests C = NG(C)+NR(C). Once this is done, the definition
of the constructed set of nodes N = S(T ) ∪ E(T ) ∪ NC(C) automatically takes
advantage of the (possibly smaller) T and C sets. We also extend the model to
output the data for the new collections of objects, to use in the next session. This
implicitly removes any data associated with a garbage object. Garbage variables
are implicitly removed since the object set used to construct them no longer
contains garbage objects. Therefore, once phase three finishes, P [δi] does not
refer to objects, data value parameters, or variables identified as garbage.

5 Experimental Results

We present experimental results that demonstrate the effectiveness of our
garbage collection approach. For this purpose, we took the standard Mini-
Zinc [15] models of two optimization problems and transformed them (by hand),
adding auxiliary functions, predicates and parameter definitions that implement
the three phases of the approach. We use the MiniZinc 2.4.3 toolchain and the
Gecode 6.1.1 solver. The iterative online optimization algorithm is implemented
as a Python script that, for each session si, prepares the session data δi based
on the previous session’s result, and then calls MiniZinc to compile and solve
the P [δi] instance.

5.1 Dynamic Vehicle Routing

Our first experiment is based on the DVRP model used as the running example,
and the class 1 input data file 100-0-rc101-1,1 which provides coordinates
for each node, service times for each customer request, the number of vehicles
available (16), the start and end depots (always the same), and the start time of
each time-window. We use this to compute the distance between any two nodes
as their Euclidean distance, and to set the time at which a customer request
arrives within a given time-window, as the start time of that time-window. No

1 http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-
vehicle-routing-problem-time-windows.

http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-vehicle-routing-problem-time-windows
http://becool.info.ucl.ac.be/resources/benchmarks-dynamic-and-stochastic-vehicle-routing-problem-time-windows
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Table 1. Shows the session number, total number of customer requests so far, total
number of tours added so far, (using garbage collection (GC) and aggregation:) best
objective value found, compilation time, and runtime, number of garbage collected
tours, and number of alive customers, (without GC and aggregation:) best objective
value found, compilation time, and runtime.

# custs. tours with GC without GC

obj. comp. (s) run (s) G(T ) alive C obj. comp. (s) run (s)

1 2 16 64 0.18 >45.00 0 2 64 0.21 >45.00

2 3 31 128 0.46 >45.00 14 3 128 3.49 >45.00

3 10 47 572 0.55 >45.00 29 8 572 38.01 >45.00

4 18 63 861 0.76 >45.00 45 15 — >45.00 >45.00

5 24 79 1346 0.99 >45.00 60 21 — >45.00 >45.00

6 36 95 2010 1.61 >45.00 76 32 — >45.00 >45.00

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

14 91 223 5003 10.57 >45.00 204 82 — >45.00 >45.00

15 95 239 5352 13.34 >45.00 220 86 — >45.00 >45.00

16 96 255 5370 13.46 >45.00 236 87 — >45.00 >45.00

17 99 271 5432 13.52 >45.00 252 90 — >45.00 >45.00

18 99 287 5458 15.38 >45.00 268 90 — >45.00 >45.00

19 100 303 5483 15.61 >45.00 284 91 — >45.00 >45.00

other information in the data file was used. Note that whenever a tour ends, a
new tour is added in that same session. We increased the current time τ by 50
time units each session, which is equivalent to 1 minute wall-clock time. Thus,
the fleet gets updated instructions each minute. We also set the optimization
runtime timeout to 45 s, to allow for potential overheads. We keep running until
all 100 customers have been added.

The results in Table 1 show that our method significantly improves the com-
pilation time; and without it, MiniZinc quickly gets overwhelmed with irrelevant
tours and customers, slowing down the compilation. Further, using our method
makes the problem suitable to run within a 45-s time-out. Note that empty tours
in a session will be garbage collected in the next one.

5.2 Job-Shop Scheduling with Long Running Jobs

Our second experiment uses Job Shop Scheduling [10], a well studied, hard
scheduling problem. We consider a rolling horizon version where jobs are spaced
out by earliest start time. To highlight the advantages of automated garbage
collection over the simple approach of [7], some of the jobs are given very long
running times compared to other jobs. In the simple approach a job is garbage
only if all tasks that arrived earlier are also garbage. These long running jobs
prevent effective garbage collection under this policy, representing its worst case.
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Table 2. Shows the session number, total number of jobs added so far, best objective
value (makespan) found (all methods reported the same makespan), compilation time,
and runtime without garbage collection, plus the same information and the garbage
collected jobs for the simple garbage collection method of [7], and our proposed method.

# jobs obj. no GC simple GC our GC

comp. (s) run (s) comp. (s) run (s) G(J) comp. (s) run (s) G(J)

1 4 4278 0.09 0.11 0.09 0.11 0 0.08 0.10 0

2 8 4308 0.09 0.11 0.08 0.11 0 0.08 0.10 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

8 32 5428 0.46 0.50 0.47 0.51 0 0.27 0.30 7

9 36 5633 0.65 >1.00 0.68 >1.00 0 0.34 >1.00 9

10 40 5874 0.88 >1.00 0.90 >1.00 0 0.23 >1.00 18

11 44 8358 >1.00 >1.00 >1.00 >1.00 0 0.23 0.26 22

12 48 8388 — — — — — 0.17 0.20 30

13 52 8508 — — — — — 0.11 0.14 39

.

.
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.
.

.

.

.
.
.
.

.

.
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.

.

.

.
.
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.

.
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.
.
.
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.

92 368 41028 — — — — — 0.19 0.22 350

93 372 41148 — — — — — 0.13 0.17 359

.
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.
.

.

.

.
.
.
.

.
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.
.
.

.

.
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.
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.

We run a similar experiment to that of [7], with the same model and data
file ft20 from the MiniZinc benchmarks,2 and the same method to obtain an
endless queue of jobs by repeatedly adding copies of the jobs in sequence. In
each session we increase the current time τ by 408 scheduling time units, add
the next 4 jobs in the queue, and set a time limit of 1 second. The first job (and
every 40th subsequent job) is what we call a long-running job. We multiply the
processing time, over all machines, of this job by 20.

Table 2 shows the benefit of using our method compared to no garbage
collection and to the simple method proposed in [7]. By reasoning on objects
individually (instead of finding the first non-realized job) we can remove any
object that becomes realized. The simple method is prevented from garbage
collecting them by the first job and, hence, becomes too slow.

As our experiments show, the overhead of the garbage collection steps is
negligible compared to the overall compilation time, and compared to the per-
formance gains in later sessions. The time complexity of the garbage collection
steps depends on the complexity of the model, and is at most O(n log n) if the
time complexity of the compilation without it is O(n). Since garbage collec-
tion aims to minimize compilation time in future sessions, it will be quick and
worthwhile in practice.

2 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop.

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop
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6 Related Work

Garbage collection is a well studied topic for programming languages and run-
time environments [12], where it refers to the elimination of data that has no live
references. In the online optimization context the data and past decisions always
have references, but may still not be required for the current and future sessions,
depending on which decisions are realized. Hence, determining what is garbage
is more complex. As we have seen above, the model may require transformations
such as aggregation in order to remove references to past decisions and data.

While online problems have been studied in great detail, almost all of this
work concentrates on particular application problems (e.g., [11,16]). Any online
problem has to tackle the difficulty that, without deletion, the problem continues
to grow. While for particular application problems there may be simple rules that
allow the modeler to define garbage, for a general definition, the interaction of
realized decisions and earlier data with future decisions is complex.

Modeling support for online problem solving is still in its infancy. AIMMS
has a notion of aggregation when using rolling horizon [17], which allows the
effect of previous realized decisions to be accounted for in some parts of the
model, such as the objective. The notion of realization used is much simpler,
and automated aggregation of complex constraints like circuit is not considered.

Online MiniZinc [7] provides a framework that supports the automatic con-
struction of the update model from an annotated offline version of the problem.
It considers a simple form of garbage collection which only removes consecutive
garbage objects until a non-garbage object is reached. The modeler is responsible
for determining this directly, and aggregation is ignored. As a result, it is only
usable when all aggregates are true. In contrast, the approach presented in this
paper requires a complex model analysis, since we automate the understanding
of how realized data and decisions can affect future decisions. In turn, our anal-
ysis requires a new view of modelling, where object sets are carefully used to
represent dynamic data, and dependent object set creation is introduced.

Open global constraints [1,8] are a form of extensible constraint useful for
online optimization problems whose size grows. The focus is on correct propaga-
tion of open constraints when not all information about them is available. They
do not examine garbage collection since there is no notion of realization in the
general open-world setting. The constraints simply grow as time progresses.

There is surprisingly little published work on aggregation of constraints.
While the simplification of constraints when their variables become fixed is well
understood, it is rarely documented. There are preprocessing methods that con-
sider this, such as Boolean equi-propagation [14]. There has been work on elimi-
nating variables during propagation [18], although we are not aware of a system
that currently implements this. Aggregation, where information resulting from
the simplification must be stored, does not seem to have been considered before.
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7 Conclusion

Building online optimization systems has in the past been a rather complex pro-
cess. Essentially, the modeler does not build a model of the problem, but an
update model, which reasons about how to take information from the previous
session and the new data to solve a new problem. We have previously [7] showed
how to construct the update model automatically from the original model using
annotations, but only introduced a very simple form of garbage collection: the
modeler determines the latest object such that all previous objects are real-
ized. In this paper, we now provide a comprehensive and automatic approach
to garbage collection. The modeler specifies the rules for realization, and the
garbage is automatically determined. We rely on uniquely named objects to
ensure consistency of information across sessions. We tackle the key problem of
aggregation, ignored in [7], where some constraints may need to be modified to
record the effect of previously realized decisions.
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Abstract. Research on the constraint satisfaction problem (CSP) is an
active field both in theory and practice. An extension of CSP even consid-
ers universal and existential quantification of domain variables, known as
QCSP, for which also solvers exist. The number of alternations between
existential and universal quantifications is usually called quantifier rank.
While QCSP is PSPACE-complete for bounded domain size, one can con-
sider additional structural restrictions that make the problem tractable,
for example, bounded treewidth. Chen [14] showed that one can solve
QCSP instances of size n, quantifier rank �, bounded treewidth k, and
bounded domain size d in poly(n)·tower(�−1, dk), where tower are expo-
nentials of height �−1 with dk on top. We follow up on Chen’s result and
develop a treewidth-aware quantifier elimination technique that reduces
the rank without an exponential blow-up in the instance size at the
cost of exponentially increasing the treewidth. With this reduction at
hand we show that one cannot significantly improve the blow-up of the
treewidth assuming the exponential time hypothesis (ETH). Further, we
lift a recently introduced technique for treewidth-decreasing quantifier
expansion from the Boolean domain to QCSP.

1 Introduction

Constraint programming (CP) is a very popular solving paradigm for solving
combinatorial problems that has applications in a variety of fields in computer
science and human society [30,36,41]. CP allows for encoding a question by
means of a set of objects (variables over given domains) and a collection of finite
constraints, where a constraint is a relation between several variables limiting the
values that these variables can take. Then, a solution to the considered question
is an assignment to the variables (set of states) that satisfy the constraints. The

The work has been supported by the Austrian Science Fund (FWF), Grants Y698
and P32830, and the Vienna Science and Technology Fund, Grant WWTF ICT19-065.
We would like to thank the anonymous reviewers for very detailed feedback and their
suggestions. Special appreciation goes to Andreas Pfandler for early discussions.

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 248–266, 2020.
https://doi.org/10.1007/978-3-030-58475-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-58475-7_15


Treewidth-Aware Quantifier Elimination and Expansion for QCSP 249

resulting instance is called the constraint satisfaction problem (CSP) and CSat
asks for deciding whether a solution to such a problem exists.

CP usually asks whether there is an assignment and whether there is value to
the variables that satisfy the constraints (existential quantification). An exten-
sion of CSPs considers existentially and universally quantified variables. A uni-
versally quantified variable ensures that a constraint is satisfied for that vari-
able on all values of its domain. Since this allows for interleaving existentially
and universally quantified variables, one often considers the number of alter-
nations between the existential and universal quantifications, called quantifier
rank. The resulting decision problem is referred to as QCSat. While there are
solvers [4,6,29], QCSat is of very high complexity, i.e., PSPACE-complete if
the quantifier rank is unbounded [14]. If one bounds the quantifier rank and
the treewidth of the input instances the QCSat problem is solvable in polyno-
mial time. More precisely, Chen [14] has shown that one can solve QCSat in
time1 poly(n) · tower(�−1, dk) for instances of size n, quantifier rank �, bounded
treewidth k, and bounded domain size d. There are also results involving exten-
sions of treewidth [31].

Treewidth itself is a combinatorial invariant, which was originally introduced
for graphs [7,9,11,48]. But treewidth also renders a large variety of NP-complete
or #P-complete problems tractable when defining graph representations on the
input instances and bounding the treewidth of these graph representations. For
example, take the primal graph of an input instance, where we have as vertices
the variables of the instance and an edge between two variables if these variables
occur together in a clause or constraint, respectively. Then, the Boolean satis-
fiability problem (SAT) [49] and CSP [17,28] are polynomial-time tractable for
instances of bounded treewidth on the primal graph. The technique also applies
to other reasoning problems [43] and formalisms [20,32,47].

Practical research interests in treewidth waned with the success of CDCL-
based solvers [1,38,44]. Reasons might be that those solvers implicitly take
advantage of bounded treewidth [2]. However, recently, new practical applica-
tions for treewidth and problems that are higher in the polynomial hierarchy
emerged. Particular examples include model counting of CNF formulas [24] and
alternative computation models [25].

Research Questions. In this paper, we study treewidth and the QCSat prob-
lem. Atserias and Oliva [3] showed that QCSat for the Boolean domain remains
intractable when parameterized by treewidth alone, which is established using
a particular fragment of path decompositions. However, we want to go beyond
this statement. We aim to extend insights into two directions. First, we study
treewidth-aware reductions that eliminate or expand quantifiers and exponen-
tially increase or decrease the treewidth, respectively. Second, we consider the
effect of applying the reductions when assuming ETH. This allows for obtaining
complexity lower bounds and show that results by Chen [14] cannot significantly
be improved unless ETH fails. The exponential time hypothesis (ETH) [37] is
a widely accepted standard hypothesis in the fields of exact and parameterized
1 tower(�, x) is a tower of iterated exponentials of 2 of height � with x on top.
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algorithms. ETH states that there is some real s > 0 such that we cannot decide
satisfiability of a given 3-CNF formula φ in time 2s·|φ| · ‖φ‖O(1) [16, Ch.14]. The
question to significantly improve the algorithm by Chen [14] has been answered
negative when assuming ETH for a restricted version of QCSat, considering
only QCSPs over the Boolean domain and constraints in form of formulas in
conjunctive normal form [23,45]. But the results do not allow for tight bounds
for QCSat.

Our Contributions are as follows:

1. We develop a treewidth-aware quantifier elimination reduction that reduces
the rank without an exponential blow-up in the instance size at the cost
of increasing the treewidth. Further, we lift a recently introduced reduction
for treewidth-decreasing quantifier expansion from the Boolean domain to
QCSat. While this reduction costs an increase in the quantifier rank, the
treewidth is exponentially decreased.

2. We consider increasing the treewidth and decreasing quantifier rank as well
as decreasing the treewidth and increasing the quantifier rank. We show that
under ETH our reduction cannot be improved significantly, i.e., the reductions
are already ETH-tight with respect to treewidth. This is in contrast to other
results [3,23,45], which do not provide tight bounds for arbitrary domains.

3. We investigate on the effect of applying the reductions when assuming ETH.
In particular, quantifier elimination allows for establishing complexity lower
bounds and show that results by Chen [14] cannot be significantly improved
unless ETH fails. In turn, we obtain runtime bounds for using treewidth in
QCSP solving under ETH.

2 Preliminaries

Basics. For an integer x, we define tower : N × N → N by tower(0, x) := x
and tower(� + 1, x) := 2tower(�,x) for all � ∈ N. The domain D of a function f :
D → A is given by scope(f). By log(·) we mean the binary logarithm and we
let logb(·) be the logarithm with base b. We assume familiarity with notions in
computational complexity [46] and parameterized complexity [16,19,27]. For a
given finite alphabet Σ, we call I ∈ Σ∗ an instance and ‖I‖ denotes the size
of I.

Quantified Constraint Satisfaction Problems (QCSPs). We define Con-
straint Satisfaction Problems (CSPs) over finite domains and their evalua-
tion [21] as follows. A CSP C is a set of constraints and we denote by var(C) the
set of (constraint) variables of C. These constraint variables are over a (fixed)
finite domain D = {0, . . .} consisting of at least two values (at least “Boolean”).
An assignment is a mapping ι : scope(ι) → D defined for a set scope(ι) of vari-
ables. For a set X, let ass(X,D) be the set of all assignments of the form X → D.
We say an assignment ι′ extends ι (by scope(ι′)\ scope(ι)) if scope(ι′) ⊇ scope(ι)
and ι′(y) = ι(y) for any y ∈ scope(ι). Further, we let an assignment α|X restricted
to X be the assignment with scope(α|X) = X ∩ scope(α) and (α|X)(y) := α(y)
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for y ∈ scope(α|X). A constraint C ∈ C restricts certain variables var(C) of C
and contains assignments to D. More precisely, each c ∈ C with C ∈ C is an
allowed assignment c : var(C) → D of each variable v ∈ var(C) to D. For-
mally, C is satisfiable, if there is an assignment A : var(C) → D, called satisfying
assignment, such that for every C ∈ C there is an assignment c ∈ C that equals
A|var(C).

Let � ≥ 0 be an integer. A quantified CSP (QCSP) Q is of the form
Q1V1.Q2V2. · · · Q�V�.C where Qi ∈ {∀,∃} for 1 ≤ i ≤ �, Q� = ∃, and Qj �= Qj+1

for 1 ≤ j ≤ � − 1; and where Vi are disjoint, non-empty sets of constraint vari-
ables with

⋃�
i=1 Vi = var(C); and C is a CSP. We call � the quantifier rank of Q

and let matrix(Q) := C. The evaluation of QCSPs is defined as follows. Given
a QCSP Q and an assignment ι, then Q[ι] is a QCSP that is obtained from Q,
where every occurrence of any x ∈ scope(ι) in matrix(Q) is replaced by ι(x), and
variables that do not occur in the result are removed from preceding quantifiers
accordingly. A QCSP Q evaluates to true, or is valid, if � = 0 and the CSP
matrix(Q) is satisfiable. Otherwise, if Q1 = ∃, Q evaluates to true if and only if
there exists an assignment ι : V1 → D such that Q[ι] evaluates to true. If Q1 = ∀,
then Q[ι] evaluates to true if for any assignment ι : V1 → D, Q[ι] evaluates to
true. Given a QCSP Q, the decision problem QCSat asks whether Q evaluates
to true.

For brevity, we denote constraints by a formula using equality = between
variables and elements of domain D, negation ¬, which inverts (in-)equality
expressions, as well as disjunction ∨, conjunction ∧, and implication →. For any
Boolean variable v ∈ var(Q) the expression “v” is used as a shortcut for v = 1.

Example 1. Consider the QCSP Q = ∀w, x.∃y, z.C over domain D =
{0, . . . , 4}, where C := {C1, C2, C3} such that C1 := z + 1 ≤ w + y,
C2 := (w + x > 4) ∨ (y ≥ w + x), and C3 := y ≤ w + x + 1. Given
any assignment ι of {w, x}, we can construct an assignment κ of Q, which
sets κ(y) := max(1,min(4, w+x)) and κ(z) := w. Observe that then Q[ι][κ] sim-
plifies to ∀w, x.{(w+1 ≤ w+1), (w+x ≥ 4)∨(w+x ≥ w+x), (w+x ≤ w+x+1)},
which is valid over D. �

Tree Decompositions (TDs). For basic terminology on graphs and digraphs,
we refer to standard texts [12,18]. For a tree T = (N,A, r) with root r and a
node t ∈ N , we let chldr(t, T ) be the set of all nodes t′, which have edge (t, t′) ∈ A.
Let G = (V,E) be a graph. A tree decomposition (TD) of graph G is a pair
T = (T, χ) where T is a rooted tree, r of T is the root, and χ is a mapping that
assigns to each node t of T a set χ(t) ⊆ V , called a bag, such that the following
conditions hold: (i) V =

⋃
t of T χ(t) and E ⊆

⋃
t of T {{u, v} | u, v ∈ χ(t)}; and

(ii) connectedness : for each s, t, u, such that t lies on the path from s to u, we
have χ(s) ∩ χ(u) ⊆ χ(t). For a given vertex x ∈ V , we let NodeI(x) := {t |
t of T, x ∈ χ(t) \ (

⋃
ti∈chldr(t) χ(ti))} be the set of nodes, where x is introduced.

Then, width(T ) := maxt of T |χ(t)|−1. The treewidth tw(G) of G is the minimum
width(T ) over all tree decompositions T of G. For arbitrary but fixed w ≥
1, it is feasible in linear time to decide if a graph has treewidth at most w
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w z

x
y {w, x, y}

t1
{w, y, z}

t2
{w, y}t3

Fig. 1. Primal graph PQ of Q from Example 1 (left) and a TD T of PQ (right).

and, if so, to compute a tree decomposition of width w [10]. For a given tree
decomposition T = (T, χ) and an element x ∈

⋃
t of T χ(t), we denote by T [x]

the result T ′ of restricting T only to nodes, whose bags contain x. Observe that
by the connectedness of T , we have that T [x] is connected as well.

In order to apply tree decompositions for QCSPs, we need a graph represen-
tation of constraints. The primal graph PC of a CSP C has the variables var(C)
of C as vertices and an edge {x, y} if there exists a constraint C ∈ C such that
x, y ∈ var(C). For a QCSP Q, we define its primal graph as the primal graph of
its matrix, i.e., PQ := Pmatrix(Q). Assume a tree decomposition T = (T, χ) of PQ.
Then, we let Ct for a node t of T be defined by Ct := {C | C ∈ C, var(C) ⊆ χ(t)}.

Example 2. Figure 1 illustrates the primal graph PQ of the QCSP from Exam-
ple 1 and a tree decompositions of PQ of width 2, which coincides with the
treewidth of PQ since, e.g., vertices w,x,y are completely connected to each
other [40]. �

3 Treewidth-Aware Quantifier Elimination

In this section, we present a reduction R↓ for eliminating the inner-most quanti-
fier block while increasing the treewidth by a single exponent. Let Q be a given
QCSP of the form Q := Q1V1.Q2V2. · · · ∃V�.C over fixed domain D.

3.1 Eliminating Quantifiers

In the reduction, we eliminate the last quantifier involving variables V�. The over-
all process is guided along a tree decomposition T = (T, χ) of PQ of width k in
order to ensure that the reduction is aware of the width and to increase treewidth
only single-exponentially. More precisely, in Q′ we get rid of the inner-most quan-
tifier ∃V� but at the cost of an increase of treewidth, where the treewidth of the
primal graph of the resulting QCSP Q′ = R↓(Q, T ) will be bounded by O(|D|k).
The construction of our reduction is influenced by so-called (non-serial) dynamic
programming algorithms that traverse tree decompositions [8,9]. Such algorithms
compute for each node of the tree decomposition a table of assignments, which
ensure that the subinstance given by the node evaluates to true. Then, these
algorithms are typically designed in such a way that, whenever the table for the
root node of the tree decomposition is not empty (i.e., in our case the table needs
to contain at least one assignment), there is a solution to the problem. In our
approach this is done similarly, but only for assignments α of variables V� of the
inner-most quantifier block. Further, the reduction solves the inverse problem,
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where the reduced QCSP obtained by R↓ is valid if and only if Q is invalid.
However, if needed, one can invert the reduced QCSP accordingly, or use an
adapted definition of QCSat considering the inversion, cf. [15,35].

In the following, we present R↓ that simulates such an algorithm. To this end,
we require the following variables. For each assignment α : V� ∩χ(t) → D of each
tree decomposition node t of T , we require O(|D|k) many (Boolean) variables of
the form usatα

t ,usatα
<t, and usatα

>t. Intuitively, if a variable usatα
t evaluates to

true for an assignment α, we have that at least one constraint in Ct cannot be
satisfied with α. Then, we use usatα

>ti
for a child node ti ∈ chldr(t) of t to indicate

that no assignment β : V�∩χ(ti) → D in node ti, which is compatible with α, can
be extended to a satisfying assignment. However, the reason for that might lie
even in a node below ti. Finally, usatα

<t evaluating to true implies that there is no
assignment for at least one child node of t, that is compatible with α and can be
extended to a satisfying assignment. These unsatisfiability variables are referred
to by VarUSatAss := {usatα

t ,usatα
<t, | t of T, α ∈ ass(V� ∩ χ(t),D)} ∪ {usatα

>t |
t of T, t is not the root of T, α ∈ ass(V� ∩ χ(t),D)}.

The reduction R↓ takes Q and T and creates a fresh QCSat instance

Q′ :=Q2 V1. Q3 V2. · · · Q�−1. V�−2 ∃V�−1,VarUSatAss. C′,

where C′ is a CSP, whose constraints are denoted by the following formulas:

usatα
t →

∨

C∈Ct

[
∧

c∈C
α=c|V�

∨

x∈var(C)\V�

x�=c(x)] for each t of T, α ∈ ass(V� ∩ χ(t), D) (1)

usatα
>ti

→
∧

β∈ass(V�∩χ(ti),D),
β|χ(t)=α|χ(ti)

[usatβ
<ti

∨ usatβ
ti

] for each t of T, ti∈chldr(t), α ∈ ass(V� ∩ χ(t), D) (2)

usatα
<t →

∨

ti∈chldr(t)

usatα
>ti

for each t of T, α ∈ ass(V� ∩ χ(t), D) (3)

∧

α∈ass(V�∩χ(n),D)

[usatα
<n ∨ usatα

n] for root node n of T (4)

The reduction will be presented in two different blocks, namely Con-
straints (1) and Constraints (2)–(4), respectively. Constraints (1) ensure that
unsatisfiability is computed accordingly. More precisely, with Constraints (1) we
make sure that we have usatα

t for node t and assignment α, if there is some
constraint C ∈ Ct, where each allowed assignment compatible with α fails. Note
that these variables usatα

t are used to separate evaluations of Ct for different
assignments α.

The second block takes care of defining variables of the form usatα
>t

and usatα
<t, and “guiding” the evaluation of constraints along tree decompo-

sition T . Constraints (2) ensure that we set usatα
>ti

only for a child node ti
of t and an assignment α for node t, if there is no assignment β for ti that is
compatible with α and can be extended to a satisfying assignment. Intuitively,
this achieves transport of unsatisfiability information for compatible assignments
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Table 1. Detailed data on Constraints (1)–(4) consisting of the following: Number of
instantiations, number of constraints per instantiation, as well as the size (number of
allowed assignments) and arity (number of variables) per constraint.

#Instantiations #Constraints Size Arity

(1) O(‖T‖ · |D|k+1) O(‖C‖ · k) O(|D|) 4

(2) O(‖T‖ · |D|k+1 · maxt of T {|chldr(t)|}) O(|D|k+1) 23 3

(3) O(‖T‖ · |D|k+1) maxt of T {|chldr(t)|} 24 4

(4) 1 O(|D|k+1) 22 2

between neighboring nodes. Then, Constraints (3) provide that finally for set-
ting usatα

<t to 1, at least one usatα
ti

for any child node ti of t is sufficient. Finally
for the root n of T , we require that no assignments α of n leads to a satisfying
one, which is ensured by Constraints (4). Table 1 lists details of constructed
constraints.

Remark: Reducing Treewidth Using Constraint Variables. While it is easier to
consider the assignment variables in VarUSatAss over the Boolean domain, dur-
ing the construction of R↓ one can easily represent the same information by
using variables over domain D. Thereby, we form a group g for �log(|D|)� many
assignments and variables in VarUSatAss are of the form usatg

t over domain D,
which allows for referring to any of the 2�log(|D|)� combinations of unsatisfia-
bility for the assignments in g. Constraints (1) to (4) can be easily rewritten,
where instead of usatα

t being 0 or 1, the corresponding bit of variable usatg
t

for group g containing α is 0 or 1. The treewidth of the result R↓(Q, T ) is
in O(|D|k+1

/�log(|D|)�).

Example 3. Recall QCSP Q over D from Example 1 and TD T = (T, χ) of PQ

of Fig. 1. Next, we sketch instance R↓(Q, T ). Below, we denote constraints by
formulas, as given in Example 1. For node t1, we create constraints usatα

t1 →
([w + x ≤ 4] ∧ [α(y) < w + x]) ∨ (α(y) > w + x + 1) of the Form (1) for
each α ∈ ass({y},D). Intuitively, this ensures that usatα

t1 can be set to 1 only
if α cannot be extended to a satisfying assignment of Ct1 . Further, since an
empty disjunction evaluates to false, we create ¬usatα

<t1 of the Form (3) for
each α ∈ ass({y},D). Similar, for t2, we create constraints of the Form (1),
resulting in usatα

t2 → (α(z) + 1 > w + α(y)) for each α ∈ ass({y, z},D) as well
as constraints of the Form (3), namely ¬usatα

<t2 for each α ∈ ass({y, z},D).
Finally, root node t3 has no constraints to check and hence constructs ¬usatα

t3
of Form (1) for α ∈ ass({w},D). The root t3 lifts information on unsatisfiability
with the help of Constraints (2). To this end, Boolean variables of the Form
of usatα

>t1 and usatα
>t2 for each assignment α ∈ ass({y},D) are used, thereby

requiring assignments β (compatible with α) for both child nodes t1 and t2. Then,
for usatα

<t3 of such an assignment α evaluating to true, either usatα
>t1 or usatα

>t2
is required, as ensured by Constraints (3). Finally, Constraint (4) makes sure
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that unsatisfiability is given, i.e., for each such α, we have that usatα
<t3 evaluates

to true (usatα
t3 is forced to false by Constraints (1)). �

3.2 Correctness, Runtime and Treewidth Expansion

Theorem 4 (Correctness of Quantifier Elimination). Given QCSP Q over
domain D and a tree decomposition T of the primal graph PQ. Then, the reduc-
tion R↓(Q, T ) is correct: For any assignment ι over var(Q) \ V�, we have Q[ι] is
valid, if and only if for Q′ = R↓(Q, T ), we have Q′[ι] is invalid.

Proof (Sketch). Let Q′ = R↓(Q, T ). “⇒”: Given any assignment ι : var(Q) \ V�

such that Q[ι] evaluates to true. We show that for any assignment ι′ :
var(Q) ∪ VarUSatAss extending ι, we have that Q′[ι′] evaluates to false. Assume
towards a contradiction that Q′[ι′] evaluates to true. By Constraints (4), we
have ι′(usatα

<n) = 1 or ι′(usatα
n) = 1 for root node n of T and every assign-

ment α : V� ∩ χ(n) → D. By construction of the reduction (Constraints (3)
and (2)), and connectedness of T , for each such α, we have to find at least
one node t′ (root n or any descendant) of n, where there is an assignment β

with ι′(usatβ
t′) = 1. Then, by Constraints (1) and since ι′ as well as α was an

arbitrary extension of ι, we conclude that ι does not satisfy at least one C ∈ Ct

for any assignment extending ι by V�, contradicting our assumption.
“⇐”: The other direction works similarly by contraposition, where assuming

that Q[ι] is invalid, we extend ι and construct an assignment ι′ by greedily
setting ι′(usatα

t ) = 1 for nodes t and assignments α such that no constraint of
the Form (1) is unsatisfied. We repeat this for the other variables of VarUSatAss
as well as Constraints (2), (3) and (4), and observe by connectedness of T and
the construction of R↓ that then indeed Q′[ι′] evaluates to true. ��

Theorem 5 (Runtime of Quantifier Elimination). Given a QCSP Q over fixed
domain D, where k is the treewidth of the primal graph of Q and C = matrix(Q).
Then, constructing a TD T and R↓(Q, T ) takes time O(2k3 · |var(C)| · |D|2k+2 ·
‖C‖).

Proof. First, we construct [10] a tree decomposition of the primal graph of Q of
width k in time 2O(k3) ·|var(C)|, consisting of at most O(2k3 ·|var(C)|) many nodes.
Without loss of generality, we assume that for each node t of T we have at most
two child nodes in T as well as constant bag differences between two neighboring
bags, since T can be modified accordingly in time O(k2 · 2k3 · |var(C)|) [40,
Lemma 13.1.3] without increasing the width k. Then, the number of variables
in VarUSatAss is at most O(2k3 · |var(C)| · |D|k+1) and the reduction constructs
O(2k3 · |var(C)| · |D|2k+2 · ‖C‖) many constraints, cf. Table 1 for details. ��

Theorem 6 (Treewidth Expansion). Given any QCSP Q over fixed domain D.
Then, there is a TD T = (T, χ) of primal graph PQ of Q with k = width(T ) =

tw(PQ) such that for Q′ = R↓(Q, T ) the treewidth of PQ′ is in O( |D|(k+1)

�log(|D|)� ).
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Proof. We take as T the TD as constructed in Theorem 5. Then, we construct a
tree decomposition T ′ = (T, χ′) of the primal graph of Q′ = R↓(Q, T ). For each
tree decomposition node t of N we set its bag χ′(t) := [χ(t)\V�]∪{usatα

<t,usatα
t |

α ∈ ass(χ(t) ∩ V�,D)} ∪ {usatα
>ti

,usatβ
<ti

,usatβ
ti

| α ∈ ass(χ(t) ∩ V�,D), β ∈
ass(χ(ti) ∩ V�,D), ti ∈ chldr(t), α|χ(ti) = β|χ(t)} ∪ {usatα

<t,usatα
>ti

| α ∈
ass(χ(t) ∩ V�,D), ti ∈ chldr(t)}. Observe that all the properties of TDs are satis-
fied. Indeed, connectedness holds since the only elements that are shared between
two neighboring bags (and which are not in var(C)\V�) are in VarUSatAss due to
Constraints (2), which is taken care of. Each bag χ′(t) contains O(k + |D|(k+1))
variables, which can be decreased to O( |D|(k+1)

�log(|D|)� ) as remarked above. ��

4 Treewidth-Aware Quantifier Expansion

Having established quantifier elimination, we provide a reverse reduction for the
QCSP formalism that exponentially decreases treewidth, but at the same time
increases the quantifier rank by one. The overall procedure is inspired by the
recent work on quantified Boolean formulas (QBFs) [23] and based on the tech-
nique developed in this work. However, the technique for decreasing treewidth
is slightly extended and adapted for the QCSP formalism. In the following,
we define our reduction that takes both an instance Q of QCSat of quantifier
rank � over fixed domain D and a tree decomposition T of the primal graph PQ of
width k, and returns an instance of QCSat of width O(log|D|(k)) and quantifier
rank �+1. The reduction is influenced and guided by the tree decomposition T ,
which then gives rise to a tree decomposition T ′ of PR(Q) of width O(log|D|(k)).
It is crucial that the constructed instance only uses in each bag of T ′ a constant
number of elements of the original bags of T . However, log|D|(k) many elements
in a bag allow us to represent a “pointer” to address one of the k many elements
of each bag of T . Consequently, the restriction to O(log|D|(k)) many elements
in a bag enables constantly many such pointers. Still, values of these pointers
require to be “synchronized”, i.e., it is ensured that if two pointers from differ-
ent, neighboring bags are referring to the same variable, that the corresponding
pointer values coincide. This is then achieved with the help of an additional
quantifier block, by expressing that for all pointer (targets), the target’s values
have to be aligned if two neighboring pointers refer to the same target.

4.1 Decreasing Treewidth by Quantifier Expansion

In the following, we present our reduction R↑. To this end, let Q be a given QCSP
of the form Q := Q1V1.Q2V2. · · · ∃V�.C, where each C ∈ C uses exactly s ≥ 3
many variables, i.e., we present the reduction for QCSP Q, where s is an assumed
constant such that |var(C)| = s. For each C ∈ C we refer to the first, second,
. . . , and s-th variable of C by var(C, 1), var(C, 2), . . . , var(C, s), respectively.
Further, in the following we assume a TD T = (T, χ) of the primal graph PQ.

We use the following sets of variables. The overall idea is to have that Q is
invalid if and only if R↑(Q, T ) is valid. To this end, we need variables VarUSat :=
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{usat≤t,usatt | t of T} to guide the evaluation and information of unsatisfiability
along the tree. For a set V ⊆ var(C) of variables, we denote by VarI(V ) := {xt |
x ∈ V, t ∈ NodeI(x)} the set of fresh variables (called introduce variables) over
domain D generated for each original variable x and node t of T , where x is
introduced. Then, we denote by VarP := {p0t , . . . , p

	log|D|(|χ(t)|)
−1

t | t of T} the
set of fresh variables over D, referred to by pointer variables, for representing a
pointer for each node t that will be used to address particular elements of the
corresponding bags, and by VarPV := {vt | t of T} the set of fresh variables over
domain D, called pointer values, to assign domain values to the pointer targets.
Overall, these variables serve the purpose of guiding the evaluation of C along
tree decomposition T . For checking constraints, we again need these pointers
and pointer values, but s more times since in order to check a constraint C ∈ C,
we require to refer to s many bag elements of χ(t) for each node t of T at once.

This results in the sets VarCP := {p0t,j , . . . , p
	log|D|(|χ(t)|)
−1

t,j | t of T, 1 ≤ j ≤ s}
and VarCPV := {vt,j | t of T, 1 ≤ j ≤ s} of fresh variables over domain D. We
call VarCP check pointer variables, and VarCPV is called check pointer values.

Before we discuss the reduction, we require for the pointers a vector represen-
tation (|D|-ary representation) of the elements in a bag of T , and a mapping that
assigns bag elements to its corresponding |D|-ary representation. In particular,
we assume an arbitrary, but fixed total order ≺ of elements of a bag χ(t) of any
given node t of T . With ≺, we can then assign each element x in χ(t) its unique
(within the bag) induced ordinal number o(t, x). This ordinal number o(t, x) is
expressed in a |D|-ary number system (if |D| = 2, we have binary). For that we

need precisely �log|D|(|χ(t)|)� many variables {p0t , . . . , p
	log|D|(|χ(t)|)
−1

t } ⊆ VarP.
We denote by [[x]]t the (consistent) set of expressions e of the form pi

t = d for a
constant d ∈ D over those variables that encode (in |D|-ary number system) the
ordinal number o(t, x) of x ∈ χ(t) in t, such that whenever pi

t = c is contained in
the set [[x]]t, the i-th position in the unique representation of o(t, x) is c. Analo-
gously, for 1 ≤ j ≤ s we denote by [[x]]t,j the consistent expressions over variables

in {p0t,j , . . . , p
	log|D|(|χ(t)|)
−1

t,j } ⊆ VarCP encoding o(t, x) of x ∈ χ(t).

Example 7. Consider again QCSP Q over domain D from Example 1 as well
as TD T = (T, χ) of PQ of Fig. 1. For encoding a pointer to any element of
bag χ(t1) = {w, x, y} over domain D we only need �log|D|(|χ(t1)|)� = 1 vari-
able p0t1 . We assume from now on, that the ordinal number o(t, x) for each ele-
ment x of any bag and node t of T is in alphabetic order. Consequently, we
reach via p0t1 = 0 variable w, p0t1 = 1 refers to x and p0t1 = 2 targets at y. �

In the reduction, we need to distinguish whether the set Vi of variables is uni-
versally or existentially quantified. Intuitively, since among the introduce vari-
ables we have copies xt of variables x, for each node t in NodeI(x), we need to take
special care of copies xt for universally quantified variables x. More precisely,
we cannot place more than one of these copies xt under universal quantifica-
tion, since ultimately these copies need to have the same value for a variable x.
As a result, universal quantification requires to shift for each x ∈ Vi all but
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one variable of VarI({x}) to the next existential quantifier block Qi+1. To this
end, we let for each universally quantified variable x, one representative variable
in VarI({x}) that is not shifted be denoted by rep(x). Given a quantifier block Qi,
its variables Vi and the variables V ′ of the preceding quantifier block (if exists),
we define the quantified introduce variables: VarI∀(Vi, V

′) := {rep(x) | x ∈ Vi}
for Qi = ∀ and VarI∃(Vi, V

′) := VarI(Vi ∪ V ′) \ VarI∀(V ′, ∅) for Qi = ∃.
The reduction R↑ takes Q and T and creates a fresh QCSat instance Q′ :=

Q2 VarIQ2(V1, ∅). Q3 VarIQ3(V2, V1). · · · ∀ VarI∀(V�, V�−1),VarP.

∃ VarI∃(∅, V�),VarPV,VarCP,VarCPV,VarSat. C′,

where C′ is a CSP, whose constraints are denoted by the following formulas:

[
∧

e∈[[x]]t

e] → xt=vt for each xt ∈ VarI(var(C)) (5)

[
∧

e∈[[x]]t

e ∧
∧

e′∈[[x]]ti

e′] → vt=vti for each t of T, ti∈chldr(t), x∈ χ(t)∩χ(ti) (6)

[
∧

e∈[[x]]t

e ∧
∧

e′∈[[x]]t,j

e′] → vt=vt,j for each t of T, x ∈ χ(t), 1 ≤ j ≤ s (7)

usatt →
∨

C∈Ct

[
∧

1≤i≤s,
x=var(C,i),
e∈[[x]]t,i,

c∈C

e ∧
∨

1≤j≤s,
x=var(C,j)

vt,j �=c(x)] for each t of T (8)

usat≤t →
∨

ti∈chldr(t)

usat≤ti ∨ usatt for each t of T (9)

usat≤n for root node n of T (10)

For each variable x ∈ var(C), Constraints (5) take care of the equivalence
between the introduce variables in VarI({x}) and pointer values if the corre-
sponding pointer targets x. More precisely, Constraints (5) ensure that whenever
the pointer in a node t ∈ NodeI(x) targets an element x ∈ χ(t), pointer value vt

coincides with variable xt. The idea of this is similar to the “element var” con-
straint [5].

The next block of constraints consisting of Constraints (6) as well as (7)
is responsible for keeping both neighboring pointer variables as well as (check)
pointer variables within a bag synchronized, respectively. In more details, Con-
straints (6) take care that whenever the pointer for a node t targets an ele-
ment x ∈ χ(t), and the pointer for a child node ti of t targets also x, the
pointer value variables vt and vti

have to coincide. Further, Constraints (7)
ensure equivalence between pointer value variables if a pointer targets the same
element x that a check pointer targets. However, these constraints can also be
further strengthened if required, by only generating them for those x ∈ χ(t),
where there exists a constraint C ∈ Ct with x = var(C, j), i.e., x occurs in some
constraint in Ct.
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Table 2. Detailed data on Constraints (5)–(10) consisting of the following: Number of
instantiations, number of constraints per instantiation, as well as the size (number of
allowed assignments) and arity (number of variables) per constraint.

#Instantiations #Constraints Size Arity

(5) O(VarI(var(C))) 1 O(|D|2 · k) O(log|D|(k))

(6) O(k · ‖T‖ · maxt of T {|chldr(t)|}) 1 O(|D|2 · k) O(log|D|(k))

(7) O(k · ‖T‖ · s) 1 O(|D|2 · k) O(log|D|(k))

(8) O(‖T‖) O(‖C‖ · s · k) O(|D|) 4

(9) O(‖T‖) maxt of T {|chldr(t)|} 25 5

(10) 1 1 2 1

Then, we ensure by Constraints (8) with the help of check pointer and check
pointer values that if usatt is set, then some constraint of Ct is unsatisfied. Con-
cretely, in this case there has to be a constraint C ∈ Ct such that whenever the
i-th check pointer of t points to the i-th variable x of constraint C for every i,
there has to be some allowed assignment c of C such that some check pointer
value vt,j is different from c(x). Finally, this information of unsatisfiability is
passed towards the root by means of Constraints (9), and enforced by Con-
straint (10). Table 2 lists detailed data of the constraints constructed by the
reduction R↑.

Example 8. Recall QCSP Q over D from Example 1 and TD T =
(T, χ) of PQ of Fig. 1. Instance R↑(Q, T ) equals to ∃wt1 , wt2 , xt1 .∀yt1 , zt2 , p

0
t1 ,

p0t2 , p
0
t3 .∃yt2 , vt1 , vt2 , vt3 , p0t1,1, p

0
t1,2, p

0
t1,3, p

0
t2,1, p

0
t2,2, p

0
t2,3, p

0
t3,1, p

0
t3,2, p

0
t3,3, vt1,1,

vt1,2, vt1,3, vt2,1, vt2,2, vt2,3, vt3,1, vt3,2, vt3,3,usatt1 ,usatt2 ,usatt3 ,usat≤t1 ,usat≤t2 ,
usat≤t3 .C′, such that the matrix C′ contains the constraints discussed below.

For node t1 we construct for each wt1 , xt1 , yt1 Constraints (5) as follows:
p0t1 = 0 → wt1 = vt1 , p0t1 = 1 → xt1 = vt1 and p0t1 = 2 → yt1 = vt1 . Then,
Constraints (7) synchronize pointers and check pointers, where for 1 ≤ i ≤ 3,
we have: p0t1 = p0t1,i → vt1 = vt1,i. Constraints (8) ensure that usatt1 is set to 1
only if a constraint in Ct1 is violated. Concretely, usatt1 → [p0t1,1 = 0∧p0t1,2 = 1∧
p0t1,2 = 2]∧[(vt1,1 �= 0∨vt1,2 �= 0∨vt1,3 �= 0)∧· · · ] ensures that if the check pointer
targets at w, x and y, no allowed assignment of either C2 or C3 coincides with
vt1,1, vt1,2 and vt1,3 respectively. Constraints (9) ensure that usat<t1 → usatt1 .

For node t2 the constructed constraints are similar. Then, for node t3, there
are no Constraints (5), since t3 has no introduce variables, and Constraints (7)
are constructed similar as for t1, but for variables w, y only. Constraints (6)
ensure synchronization of values for w and y between child nodes, constructed as
follows. Concretely, for w we have p0t3 = 0 ∧ p0t1 = 0 → vt3 = vt1 and p0t3 = 0 ∧
p0t2 = 0 → vt3 = vt2 . For y we construct p0t3 = 1 ∧ p0t1 = 2 → vt3 = vt1 and p0t3 =
1∧p0t2 = 1 → vt3 = vt2 . Then, Constraints (8) corresponds to ¬usatt3 since Ct3 =
∅ and (9) simplifies to usat≤t3 → usat≤t1 ∨ usat≤t2 . Finally, we have usat≤t3 as
Constraint (10). Observe that one can easily construct a TD T ′ of R↓(Q, T ) of
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width O(log|D|(width(T ))) if the number of variables in VarI(var(C)) is constant
for each node in T , as discussed in the next section. �

Remark: Reducing the Arity of Constraints. The constraints above can be easily
modified to contain at most s many variables. This requires auxiliary variables,
but does not affect satisfiability and increases treewidth by a constant (cf. [42]).

4.2 Correctness, Runtime and Treewidth Decrease

Assume a given QCSP formula Q := Q1V1.Q2V2. · · · ∀V�.C with at most s ≥ 3
variables per constraint and let T = (T, χ) be a TD of primal graph PQ. Further,
the obtained instance is addressed by Q′ = R↑(Q, T ). Then, correctness relies
on the following lemma, which establishes, that in a satisfying assignment of Q′

introduce variables VarI({x}) for every x ∈ var(C) get assigned equal values.

Lemma 9 (Synchronization, 
[33]). Let xt, xt′ ∈ VarI(var(C)) be any introduce
variables for two nodes t, t′ ∈ NodeI(x). Then, for any assignment ι assigning
variables xt, xt′ such that ι(xt) �= ι(xt′), we have that Q′[ι] is invalid. Further,
let ι be any assignment that assigns for some 1 ≤ j ≤ s all variables in [[x]]t,j ∪
{vt,j} such that assignment ι satisfies [[x]]t,j. Then, if ι(xt′) �= ι(vt,j), Q′[ι] is
invalid.

Theorem 10 (Correctness). Let Q be a QCSP over finite domain D, where
constraints have at most s ≥ 3 variables, and let T = (T, χ) be a tree decompo-
sition of PQ. Then, Q is valid if and only if R↑(Q, T ) is invalid.

Proof (Sketch). Proof by induction on quantifier rank � that shows if Q[α] is
valid under an assignment α to variables V1 of Q, then R↑(Q, T )[α′] is indeed
invalid under any assignment α′. By Lemma 9, there is a bijective correspondance
between α and α′, since all the introduce variables VarI(var(matrix(Q))) have
to have the same value in α′. It is therefore easy to see that in R↑(Q, T ) the
introduce variables except rep(x) for any universally quantified variable VarI({x})
are required to be shifted to the next existential quantifier. Vice versa, one can
show that if Q is invalid, then R↑(Q, T )[α′] is valid under any assignment α′. ��

Theorem 11 (Runtime of Quantifier Expansion, 
[33]). Given a QCSP Q over
domain D with s ≥ 3 variables per constraint, where k is the treewidth of
the primal graph of Q. Then, constructing both a tree decomposition T and
instance R↑(Q, T ) takes time O(s · 2k3 · |D|2 · ‖matrix(Q)‖).

Theorem 12 (Treewidth Decrease). Given any QCSP Q with at most s ≥ 3
many variables per constraint over fixed domain D. Then, there is a tree decom-
position T = (T, χ) of the primal graph PQ of Q with k = width(T ) = tw(PQ)
such that Q′ = R↑(Q, T ) is a QCSP, where tw(PQ′) is in O(s · �log|D|(k)�).

Proof. We take any TD T = (T, χ) of PQ of width k, which has to exist since k =
tw(PQ). We assume that for each node t of T the number |VarI(χ(t))| of intro-
duced vertices is bounded by O(log|D|(k)). This can be assumed without loss of
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generality, since otherwise one can easily modify T by adding intermediate nodes
between t and the parent node of t. Further, as in Theorem 5, we assume at most
two child nodes per node t of T . From this we will construct a TD T ′ = (T, χ′)
of the primal graph of Q′ = R↑(Q, T ). For each TD node t of T with parent
node t∗, where t ∈ chldr(t∗), (if exists) we set its bag χ′(t) := {p | x ∈ χ(t), p ∈
var([[x]]t) ∪ var([[x]]t∗)} ∪ {p | x ∈ χ(t), 1 ≤ j ≤ s, p ∈ var([[x]]t,j)} ∪ {vt′ , vt,j |
t′ ∈ {t, t∗}, 1 ≤ j ≤ s} ∪ VarI(χ(t)) ∪ {usat≤t,usatt,usat≤ti

| ti ∈ chldr(t)}.
Observe that all the properties of TDs are satisfied. Connectedness, in partic-
ular, holds since the only elements that are shared between two neighboring
tree decompositions nodes are in VarP and VarPV. Each bag χ′(t) contains for
each x ∈ χ(t) at most 2 · �log|D|(k + 1)� many variables var([[x]]t ∪ [[x]]t∗) and
at most s · �log|D|(k + 1)� many variables var([[x]]t,j) for 1 ≤ j ≤ s. In total
everything sums up to O(s · �log|D|(k)�) many elements per node. ��

5 Consequences of Quantifier Elimination and Expansion

This section deals with final discussions on limitations of both reductions R↓
and R↑, and covers lower bounds for QCSat. Before we show lower bounds for
the QCSP formalism, we present an adaption of the exponential time hypothesis
(ETH) for CSPs and treewidth, which was originally presented [37] for Sat and
Boolean formulas. For the restricted case of Boolean QCSPs, called quantified
Boolean formulas (QBFs), lower bounds under the ETH are known.

Proposition 13 ([23]). Given any QBF Q of quantifier rank � ≥ 1, where each
constraint has at most 3 variables. Then, under ETH, Q cannot be solved in
time tower(�, o(k)) · poly(matrix(Q)), where k is the treewidth of graph PQ.

The following result presents lower bounds for CSPs over finite domain and
treewidth. Thereby, using the reduction R↓ and existing results for QBFs as
given in Proposition 13, we show that one can indeed generate CSPs of large
domain, by transforming QBFs of quantifier rank � into a CSP.

Proposition 14 (Lower Bound for CSP). Under ETH, an arbitrary CSP C over
finite domain D can not be solved in time |D|o(k) · poly(‖C‖), where k=tw(PC).

Proof (Sketch). We reduce from an arbitrary QCSP formula Q′ with C′ =
matrix(Q′) over quantifier rank �=2, where the treewidth of PQ′ is k′, and
the domain is Boolean (QBF). We construct Q = R↓(Q′, T ′) using a TD T ′

of PQ′ . The treewidth k of PQ is in O(2k′
), but can be reduced to k = f(k′),

where f(k′) := 2O(k′)/�log(|D|)� if using variables VarUSatAss over some fixed
domain D. Consequently, if Q could be solved in time 2o(f−1(k)) · poly(‖C′‖) or
in time 2�log(|D|)�·log(2o(k)) · poly(‖C′‖) = |D|o(k) · poly(‖C‖), then also Q′ can
be solved in time 22

o(k′)
. This contradicts Proposition 13 for Q′ and establishes

the claim for matrix(Q) for domain sizes up to |D| in O(22
k

). One can easily
show the result for |D| in O(tower(�, k)) if reducing from QBF of quantifier
rank � > 2. ��
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This result can be lifted to QCSP, by reducing from an arbitrary instance
of QCSat, but restricted to QBFs, to QCSat, and doing a similar idea to the
proof of Proposition 14, but for each tree decomposition bag. However, the result
is then restricted to QCSPs Q, whose domain sizes |D| are bounded by O(2k),
where k is the treewidth of PQ. The reason for that is that the domain can be
effectively used to reduce Boolean variables within a TD bag only if log(|D|) ∈
O(k). Consequently, we need a different technique. Indeed, for the full result
using finite domains, we use reduction R↓ for quantifier elimination as follows.

Theorem 15 (QCSP Lower Bound). Given any QCSP Q over finite domain D
and quantifier rank � ≥ 1, where each constraint has at most s ≥ 3 many vari-
ables. Then, under ETH, Q cannot be solved in time tower(�−1, |matrix(Q)|o(k))·
poly(‖C‖), where k is the treewidth of the primal graph PQ.

Proof. We show the theorem by induction on the quantifier rank �. For the
base case � = 1, the result follows from the Proposition 14 (ETH). For the
induction step, we assume that the theorem holds for given Q of quantifier
rank � ≥ 1. Let Q′ be any QCSP of quantifier rank � + 1 over fixed domain D,
where k′ = tw(PQ′) and C ′ = matrix(Q′). Then, let T ′ be a TD of PQ′ of width k′,
Q = R↓(Q′, T ′) such that C = matrix(Q). By Theorem 6, k in |D|O(k′) is the
treewidth of the primal graph of C. Since k is in |D|O(k′), by simplifications using
properties of logarithms, k is in |D|O(k′) · log|D|(2) = log|D|(2|D|O(k′)

). By the

induction hypothesis, we can not solve Q in time tower(�−1, |D|o(k))·poly(‖C‖) =

tower(�−1, |D|log|D|(2
|D|o(k′)

)) ·poly(‖C‖) = tower(�, |D|o(k
′)) ·poly(‖C‖). Towards

a contradiction, assume that we can solve Q′ in time tower(�, |D|o(tw(PQ′ ))) ·
poly(‖C′‖). But then since Q can be obtained in polynomial time accord-
ing to Theorem 5, by correctness of the reduction (Theorem 4), and since
the solution of the inverse of Q can be inverted in constant time, we can
solve Q in time tower(�, |D|o(k

′)) ·poly(‖C‖). This contradicts with the induction
hypothesis. ��

Remark 16. The QCSat lower bound above holds for the case of s=2
and |D| ≥3 by reducing from 3-Sat over 3-Col [39] to CSat with s=2
and |D| =3.

With the lower bound of Theorem 15, we can show that the reduction R↓ as
presented in Sect. 3 can probably not be significantly improved.

Theorem 17 (ETH-Tightness: Quantifier Elimination). Given any QCSP Q
over fixed domain D of quantifier rank �. Then, assuming any TD T of PQ,
under ETH, the treewidth increase of R↓(Q, T ) cannot be significantly improved.

Proof. Let T be a TD of PQ of width k = tw(Q), Q′ = R↓(Q, T ) such that
C ′ = matrix(Q′), and k′ be the treewidth of the primal graph of C ′. By Theo-
rem 6, k′ is in O(|D|(k+1)

/ log(|D|). This can be simplified using calculus (equa-
tions for logarithms) accordingly to show that k′ is in O(|D|(k+1) · log|D|(2)) =
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O(log|D|(2|D|(k+1)
)). As a result, since Q′ can be obtained in polynomial time

according to Theorem 5, one can solve Q′ in time tower(�−1, |D|O(k) ·poly(‖C′‖).
This is in line with the lower bound under ETH given by Theorem 15, which
matches with the upper bound [14] and the treewidth k′ cannot be significantly
improved. ��

Notably, a similar result holds for R↑, since for given QCSP over domain D
of treewidth k, one can reshape the expression of the treewidth of the pri-
mal graph of the QCSP obtained by R↑ (cf. Theorem 12) and show that k

is in O(log|D|(k)) = O(log|D|(log(|D|k))). However, since intuitively this
method R↑ works by reducing treewidth, it can not reduce treewidth to a value
smaller than 1. Therefore, one can only show that R↑ can not be significantly
improved if |D| is bounded by O(k), since otherwise the logarithm is smaller
than 1. Consequently, and in contrast to related work on QBFs [23], the reduc-
tion R↑ on treewidth decrease can not be used to establish the full result of
Theorem 15. This is why for fixed, but large (non-binary) domains we indeed
require R↓ to show the result.

6 Conclusion and Future Work

In this work, we present methods for quantifier elimination and expansion for
the formalism of quantified constraint satisfaction problems (QCSPs) over fixed
domains. Our reduction R↓ shows that for QCSPs of bounded treewidth, one
can eliminate quantifiers and still avoid even in the worst-case an exponential
blow-up in the size of the resulting QCSP. However, this comes at the price of an
exponential blow-up in the treewidth of the resulting QCSP. While we hope that
this can be avoided in several special cases, we also showed that under reasonable
assumptions in computational complexity theory, namely if assuming the expo-
nential time hypothesis (ETH), one can not expect to significantly improve this
blow-up of treewidth. This new reduction R↓ for quantifier elimination allows
for lifting a recently established lower bound result [23] for quantified Boolean
formulas (QBFs) to QCSPs, which confirms that the upper bound of solving
QCSPs by Chen [14] is ETH-tight. Further, we also provide the other direction,
namely a reduction R↑ for quantifier expansion, where the treewidth is expo-
nentially decreased, at the cost of increasing quantifier rank. This reduction R↑
is lifted from QBFs [23] and might serve well in reducing treewidth in practice.
In particular, QCSP and QBF solvers based on treewidth and tree decomposi-
tions, such as the solver dynQBF [13] and others [22,26,34], could benefit from
significantly reduced treewidth.
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47. Pichler, R., Rümmele, S., Woltran, S.: Counting and enumeration problems with

bounded treewidth. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS
(LNAI), vol. 6355, pp. 387–404. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17511-4 22

48. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. J. Comb. Theory
Ser. B 35(1), 39–61 (1983)

49. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

https://doi.org/10.1007/978-3-642-17511-4_22
https://doi.org/10.1007/978-3-642-17511-4_22


A Time Leap Challenge for SAT-Solving

Johannes K. Fichte1(B) , Markus Hecher2 , and Stefan Szeider3

1 School of Engineering Sciences, TU Dresden, Dresden, Germany
johannes.fichte@tu-dresden.de

2 Database and Artificial Intelligence Group, TU Wien, Vienna, Austria
hecher@dbai.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
sz@ac.tuwien.ac.at

Abstract. We compare the impact of hardware advancement and algo-
rithm advancement for SAT-solving over the last two decades. In par-
ticular, we compare 20-year-old SAT-solvers on new computer hardware
with modern SAT-solvers on 20-year-old hardware. Our findings show
that the progress on the algorithmic side has at least as much impact as
the progress on the hardware side.
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1 Introduction

The last decades have brought enormous technological progress and innovation.
Two main factors that are undoubtedly key to this development are (i) hardware
advancement and (ii) algorithm advancement. Moore’s Law, the prediction made
by Gordon Moore in 1965 [54], that the number of components per integrated
circuit doubles every year, has shown to be astonishingly accurate for several
decades. Given such an exponential improvement on the hardware side, one is
tempted to overlook the progress made on the algorithmic side.

This paper aims to compare the impact of hardware advancement and algo-
rithm advancement based on a genuine problem, the propositional satisfiability
problem (SAT). This problem is well-suited for such a comparison since it is
one of the first problems for which progress in solving has been measured regu-
larly through competitions [36]. Also, a standardized instance format has been
established very early. By focusing on this problem, the comparison allows us to
fathom the SAT and CP community’s contribution to the overall progress.

Of course, the advancements in hardware and algorithms cannot be sepa-
rated entirely. Targeted algorithm engineering can make use of new hardware
features [10,13,22,37] and hardware development can be guided by the specific
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demands of modern algorithms. This can quickly end up in comparing apples and
oranges. Nevertheless, we think that by carefully setting up the experiment and
choosing hardware and algorithms, it still allows us to draw some conclusions
on the impact of the individual components.

We base the general setup of the comparison on a Time Leap Challenge, where
virtual teams compete. Team SW uses new solvers on old hardware; Team HW
uses old solvers on new hardware. The time between “old” and “new” spans
about two decades. Which team can solve more instances? Depending on the
outcome, one can compare the impact of hardware advancement and algorithm
advancement. The idea for this time leap challenge for SAT-solvers was inspired
by a thought experiment on algorithms in mixed-integer linear programming
(MILP), suggested by Sebastian Stiller [69].

In the early 1990s, the dominant complete method for SAT-solving was the
DPLL Algorithm (Davis-Putnam-Logemann-Loveland [15,16]), which combines
backtracking search with Boolean constraint propagation [72]. However, in the
late 1990s, the CDCL Solvers (Conflict-Driven Clause Learning) took over. They
extended the basic DPLL framework with new methods, including clause learn-
ing [64], lazy data structures like watched literals [55], backjumping [55,64], and
dynamic branching heuristics [55]; the combination of these methods resulted
in a significant performance boost, often referred to as the “CDCL Revolu-
tion.” Although the CDCL paradigm is still predominating today’s SAT-solving,
there have been several significant improvements made over the last two decades,
including efficient preprocessing [17] and inprocessing [37], aggressive clause dele-
tion [2], fast restarts [49], lightweight component caching [59], implication queue
sorting [46], and new branching heuristics [48].

1.1 Experimental Setting

For our Time Leap Challenge, Team HW (old solvers on new hardware) is com-
posed of the solvers Grasp (1996), zChaff (2001), and siege (2003) running on
a computer from 2019 with an Intel Xeon Silver 4112 CPU at 2.60 GHz base
frequency and 128GB RAM. Team SW (new solvers on old hardware) is com-
posed of the solvers MapleSat19 (2019), CaDiCal (2019), and Glucose (2016)
running on a computer from 1999 with a Pentium III processor at 467 MHz fre-
quency and 1.5 GB RAM. An essential question for setting up the experiment
was the choice of a suitable set of benchmark instances. On the one hand, the
instances should not be too challenging so that they are not entirely out of reach
for old solvers or old hardware; on the other hand, the instances should still be
challenging enough to provide interesting results. We settled on the benchmark
set set-asp-gauss [33] that provides a reasonably good compromise, as it contains
a large variety of instances, tailors adapted instance hardness, is free of dupli-
cates, reproducible, and publicly available. We used a timeout of 900 seconds,
which is the default for SAT competitions. Right in the beginning, we state a
clear disclaimer. While a theoretical challenge is easy to design, a practical com-
parison can rarely be comprehensive and complete. About 20 years of evolution
increases the practical search space by orders. There are many possibilities to
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Table 1. Summary of experimental results

Grasp zChaff siege v3 Glucose CaDiCal Maple

(1996) (2001) (2003) (2016) (2019) (2019)

old HW (1999) 73 48 37 106 98 77

new HW (2019) 76 71 93 188 190 195

Team SW

Team HW

combine hardware, software, benchmarks, and solvers. Particularly, there might
be solvers that are still available, but we missed during our research. Still, we
provide a clear guideline on how we selected the teams and provide extensive
details beyond. Our results are reproducible in the setting, and the conclusions
provide a general idea. However, the ideas might not generalize to conclusions
over other benchmark sets or solvers we might have missed. This is, however, a
usual situation in many experiments with combinatorial solving as there is no
good theoretical understanding of the practical effects [58]. Still, we aimed to
put the concept of a time leap challenge from literature in popular science into
a practical scientific context.

1.2 Results

Table 1 gives a summary of our results (we provide more details in Sect. 3).
We see that both teams perform in a similar range with a slight advantage for
Team SW.

1.3 Related Work

Knuth [42] provides an overview of various aspects of SAT-solving, including
commented implementations of algorithms from several epochs of SAT-solving.
His implementations assemble a DPLL solver (SAT10), a DPLL look-ahead solver
(SAT11), and a CDCL solver (SAT13), as well as a preprocessor (SAT12). Since
all these solvers are implemented uniformly, without special implementation
or hardware tricks, they provide an excellent comparison of the algorithmic
advancement of solver techniques. We therefore included, for comparison, the
results of Knuth’s solvers on the same benchmark set and hardware platform as
the time leap challenge. Mitchell [53] provides an overview of techniques, imple-
mentations, and algorithmic advances of the year 2005 and looking back for 15
years. He already mentioned that the success of SAT-solving is due to three fac-
tors: improved algorithms, improved implementation techniques, and increased
machine capacity. However, Mitchell’s work does not provide evaluations on any
actual practical effects at the time. Kohlhase [44] recently published work on
collecting and preserving the comparability of old theorem provers to preserve
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cultural artifacts and history in Artificial Intelligence.1 For an overview on the
technique of CDCL-based solvers we refer the reader to introductory literature
such as a chapter in the Handbook of Knowledge Representation [29], chapters
on the history of modern SAT-solving [24], and CDCL-solvers [52] in the Hand-
book of Satisfiability [9]. Katebi, Sakallah, and Marques-Silva [41,63] considered
various techniques of modern SAT-solvers under an empirical viewpoint. They
designed experiments to evaluate factors and the aggregation of different SAT-
enhancements that contribute to today’s practical success of modern solvers.
Works on targeted algorithm engineering for SAT-solvers are extensive. Just to
name a few examples, there is work on exploiting features such as optimizing
memory footprints for the architecture [10], on implementing cache-aware [13],
on using huge pages [22], on how to benefit from parallel solving [34] or employing
inprocessing. Inprocessing particularly takes advantage of modern hardware as
one can execute much more instructions on a modern CPU than accessing bytes
on memory [30,50]. Very recently, Audemard, Paulevé, and Simon [1] published
a heritage system for SAT solvers. It allows for compiling, archiving, and running
almost all released SAT solvers and is based on Docker, GitHub, and Zenodo.
While they aim for archivability, our work provides an actual experiment incor-
porating soft- and hardware advances. We hope that their system allows for long
term preservation and, if there is no major change in the computer architecture,
that one can repeat our time leap challenge in another decade.

2 The Arena: Designing the Time Leap Challenge

To run a proper challenge, we design an arena by selecting from standard bench-
mark sets and several contestants out of a vast space of possibilities. We aim
for the reasonable oldest hardware on which we can still run modern benchmark
sets and solvers. In turn, this requires to set up a modern operating system
on old hardware. To make it a time leap challenge, we are interested in solvers
and hardware from similar generations, so a preferably small time frame from
which both originate. The physical effort restricts us to consider only two time
frames in the following. We take modern hardware and solvers from 2019 and
old hardware from around 2000 and solvers from 2001/2002. Following academic
ideas by Stallman [68], we focus on benchmark sets and solvers that are publicly
available. Throughout the experimental work, we follow standard guidelines for
benchmarking [45]. In the course of this section, we elaborate on various technical
and organisational obstacles. Setting up a time leap challenge is also somewhat
of an archaeological challenge.

In theory, a variety of competitions have been organized in the past. The
competition results give a broad picture of benchmark instances and solvers.
Old hardware and operating systems should still be widely available. In practice,
neither open source, nor version control systems, nor public platforms to host

1 The Theorem Prover Museum is available online at https://theoremprover-museum.
github.io/.

https://theoremprover-museum.github.io/
https://theoremprover-museum.github.io/
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software projects such as SourceForge2, bitbucket, github, or gitlab, were popular
in the community around the millennium. Publicly funded data libraries such
as Zenodo [57] were also established much later. While the culture of storing
text in libraries dates back to Alexandria and the first librarian Zenodotus in
280 BCE, searching for datasets and source codes from 20 years ago feels like
digging through a burnt library. Enthusiasts maintained datasets and source
codes from early competitions. Sometimes source codes were kept as a secret [28].
Some links redirect to grabbed domains, or people moved and with them, the
webpages. Sometimes binaries show up from private collections or the Internet
Archive [40]. However, it turned out that they do not run, as libraries on which
they depend do not run on modern Linux or Unix distributions.

Below we report and explain details of the selection process.

Instance Format. Johnson and Trick suggested a uniform input format descrip-
tion in 1993, which is still used as the standard for SAT input instances [38]. The
standardized input format and backward compatibility substantially simplified
our selection process.

2.1 Selecting a Suitable Benchmark Set

Our focus on selecting a benchmark set is to consider a larger benchmark set,
say of a cardinality ranging from 100 to 300. We are interested in a safe and
stable choice of instances since benchmarks run a wide variety of experiments
with preferably more than 10 solvers resulting in months of running time. Hence,
we push to a reasonable state-of-the-art benchmark setting. We prefer instances
that (i) are publicly available, (ii) contain a good selection of domains, includ-
ing an industrial background, random, and combinatorial instances, and (iii)
highlight differences for modern solvers. We summarize runtime and number of
solved instances during our instance selection process in Table 2. For an initial
selection, we ran instances only with the solver Glucose [4], which showed robust
performance on many earlier experimental works that we carried out.

Available Instances. The first available benchmark instances DIMACS-2 date
back to 1992 and the 2nd DIMACS Challenge 1992–1993 on NP-hard problems,
which also considered SAT as a problem [71]. The 241 instances are still well
maintained and downloadable3. Note that the 1st SAT competition already took
part in 1992 [11]. However, the instances are not publicly available. Over time
researchers collected benchmarks such as SATLIB [31], which count more than
50,000 instances in total. The instances are still available on an old webpage by
the collector.4 A subset of these instances was also used for the SAT Competi-
tion 2002. However, those instances are not available from the SAT Competition
website due to an abandoned domain. Instances from one of the annual SAT

2 https://en.wikipedia.org/wiki/SourceForge.
3 See: http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/.
4 See: https://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html.

https://en.wikipedia.org/wiki/SourceForge
http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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Table 2. Runtime of a modern solver and modern hardware on selected benchmark
sets. # refers to the number of solved instances, TO refers to the number of instances
on which the solver timed out, ERR refers to the number of instances on which the
solver found an input error, t[h] refers to the total running time on the solved instances
in hours, avg[s] refers to the average running time of an instance.

Benchmark Solver # TO ERR t[h] avg[s]

DIMACS2 Glucose 225 15 1 0.34 5.46

SATLIB Glucose 43892 15 6399 4.45 0.36

Set-asp-gauss Glucose 189 11 0 4.50 85.71

competitions from 2002 to 20195 follow stricter rules and detailed reports are
available [36]. There are plenty of tracks, thousands of instances, and many
of the more modern instances are enormous in size. A popular benchmark set
with various instances from SAT competitions until 2013 and various fields is
the benchmark set set-asp-gauss [33]. The set is a composition of representative
benchmarks from a variety of sources. It has been widely used as a robust selec-
tion for tuning solvers in the past and was obtained by classifying the practical
hardness of the instances from the SAT Competition 2009 and SAT Challenge
2012 and then selecting instances by sampling with the Gaussian probability
distribution [33].

Initial Evaluations. In order to gather initial insights, we run all available solvers
on our cluster. The hardware for the benchmark selection process consisted of a
cluster of RHEL 7.7 Linux machines equipped with two Intel Xeon E5-2680v3
CPUs of 12 physical cores each running at 2.50 GHz, which we enforced by per-
formance governors. The machines are equipped with 64 GB main memory of
which 60.5 GB are freely available to programs. We compare wall clock time and
number of timeouts. However, we avoid IO access on the CPU solvers whenever
possible, i.e., we load instances into the RAM before we start solving. We run
four solvers on one node at most, set a timeout of 900 seconds, and limit available
RAM to 8 GB per instance and solver. We summarize our initial evaluation of
the early benchmark sets in Table 2. The DIMACS-2 instances turned out to be
very easy for modern solvers. For example, the solver Glucose solved almost all
instances within less than one second, only five large instances (par32-X.cnf) of a
parity learning problem remained unsolved within 900 s. The SATLIB instances
are more challenging but still fairly easy for modern solvers. The SAT Compe-
tition 2002–2019 instances provide a broad selection. Since the results are still
publicly available, we refrained from rerunning these sets. The runtime results
on the benchmark set set-asp-gauss reveals that modern solvers can solve many
instances. However, the instances are still challenging as the overall runtimes are

5 The webpage http://www.satcompetition.org/ gives a broad overview on the results
and details of the competitions since 2002.

http://www.satcompetition.org/
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reasonably long. Old solvers are still able to solve plenty of instances on modern
hardware. The benchmark set consists of 200 instances in total.

Decision. After running the instances, we picked one existing benchmark set.
Since the set DIMACS-2 contains almost only easy instances, we rejected the
set right away. While the SATLIB instances contain mainly easy instances, they
are not very challenging for modern solvers. Further, the contained benchmarks
have a strong bias towards handcrafted and random instances. The SAT 2002–
2019 instances contain very interesting sets. However, some of the more modern
instances are very large, and we figured that it is impossible to transfer and run
the instances on old hardware. After reviewing the initial results and sampling
memory requirements from earlier SAT competitions, we decided to use the
benchmark set set-asp-gauss [33], which provides a reasonably good compromise.
It contains a large variety of instances, tailors adapted instance hardness, is free
of duplicates, reproducible, and publicly available.

2.2 Selecting Solvers

In the following section, we describe the selection process of SAT-solvers for
our challenge. In order to foster reproducibility and favor open-source, we focus
on publicly available solvers (binary or source code). Note that modern SAT-
solving also includes various parallel algorithms. Due to the unavailability of
wide parallel computation on old hardware, we restrict ourselves to sequential
solvers. Further, we consider only solvers that are, vaguely speaking, descendants
of the DPLL [15,16] algorithm, i.e., CDCL. These solvers are often referred to
as solvers implementing complete and systematic search. However, restarts and
deletion might affect completeness under certain conditions in practice [52]. To
our knowledge, CDCL-based solvers with various additional techniques on top,
which even extend the underlying proof system, are still the most prevailing
paradigm for SAT-solvers. However, today, some solvers use strong proof tech-
niques such as the division rule in cutting planes [20,27] or Gaussian Elimina-
tion [65,66].

Researching for Solvers. The 1st SAT Competition [11] and 2nd DIMACS Chal-
lenge [71] took place around 1992. However, no online resources on detailed
solvers or source codes are available. The earliest public collection of solvers
which is still available online6, is the SATLIB Solver Collection [32]. The col-
lection contains implementations on DPLL-based implementations as well as
stochastic local search solvers. DPLL-based Implementations in the collection
are Grasp [64], NTAB [14], POSIT [25], various versions of REL SAT [6,39], which
are also available on github7, two versions of SATO [73], and four versions of
Satz [47]. Further, we asked colleagues for the source code of old solvers and
received an even older version of Grasp from 1996 [51]. The era of CDCL solvers

6 See: https://www.cs.ubc.ca/∼hoos/SATLIB/solvers.html.
7 See: https://github.com/roberto-bayardo/relsat.

https://www.cs.ubc.ca/~hoos/SATLIB/solvers.html
https://github.com/roberto-bayardo/relsat
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started in 2001 [55]. There, successful solvers such as BerkMin [28], siege [62],
and zChaff [26] materialized. Siege [62] is publicly available with binaries
in three versions from 2003 to 2004. We contacted colleagues on the source
code of siege, but the author retired and the sources seem to be lost. For
zChaff [26] even the source code is publicly available in four versions from
2001 to 2007. Binaries of BerkMin showed up in a backup of experiments on
SAT-solvers from earlier works. We contacted the authors on source codes but
received no answer. A famous solver in the SAT-solvers line is MiniSat, which
is available online8 in various versions [18,19,67]. The development of MiniSat
started around 2003 [18] intending to create a compact, readable, and efficient
solver for the community. The earliest version online is from 2005 and the most
known and very popular version 2.2 from 2008. Another popular SAT-solver is
Glucose [3], which was developed to aggressively remove clauses that are not
helpful during clause learning of the CDCL procedure. This results in an incom-
plete algorithm as keeping learnt clauses is essential for completeness. We con-
sider the version Glucose syrup 4.2.1 [4]. A very popular, successful and recent
solver is Lingeling [7], which won several SAT competitions and the prize on
the most innovative solver [5] in 2015. Two medalists of the SAT 2019 Race
were CaDiCaL 1.0.3 [8] and a descendant of the solver MapleSAT [48], namely
MapleLCMDistChronoBTDL-v3 (MapleSat19) [43].

Testing the Solvers. In order to benchmark a solver, we first need to compile
it or run the binary with a modern operating system as there is otherwise no
chance to get the solvers running on modern hardware. First, we considered all
solvers from the SATLIB collection. We were able to compile and successfully
run the solvers Grasp, Relsat, Satz, and SATO. However, we had to modify the
source codes and build files so that they would compile with a modern compiler
due to harder interpretations of language standards in modern compilers. Since
the solvers were originally designed for 32bit Linux, we compiled the solvers on
32bit Linux and used them late on 64bit Linux by compatibility layers. While
we were also successful in compiling solvers on 64bit systems, the 64bit binary
would often solve fewer instances on the 64bit system or result in many segfaults.
We suspect compatibility issues as either the developers of the old solvers could
not expect certain datatypes on a future architecture or implemented sloppy
memory management. All versions of the solver siege, which were available as a
binary, still ran on a modern Linux using the 32bit compatibility mode. We were
successful in building all versions of the solver zChaff; both on a 32bit as well as
64bit architecture. Unfortunately, the solver BerkMin does not run on modern or
fairly recent Linux distribution. It turns out that the binary was compiled with
an old gcc and linked to an old version of the glibc, which we discovered in an
old Red Hat Enterprise Linux, but we were unable to integrate it into a modern
Linux distribution. We found that all modern solvers were well maintained and
still compiled on 32 and 64bit Linux distributions as well as a 64bit version of
NetBSD.

8 See: http://minisat.se/MiniSat.html.

http://minisat.se/MiniSat.html
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Final Teams. In order to have a comparison on theoretical advances in SAT-
solving between DPLL and CDCL from an abstract perspective and out of the
hand of programmer, we picked the implementations by Donald Knuth [42]. The
implementations represent particular time periods, more precisely, DPLL solver
(SAT10), a DPLL look-ahead solver (SAT11), and a CDCL solver (SAT13), as
well as a preprocessor (SAT12). We still tested the old solvers Relsat, Satz, and
SATO, which resulted in less than 20 solved instances on our modern hardware
for the best solver among them (SATO). Since it is theoretically well-known that
CDCL can be significantly faster than DPLL [58,60], we already have the solvers
by Knuth. There has already been work on the technological advances of various
techniques between techniques in DPLL and CDCL solvers, we focus on the more
modern CDCL solvers for both teams. However, since the solver Grasp decides
a considerable number of instances and already implements conflict learning,
we include Grasp into Team HW. Then, there are three solvers left for a team
of solvers from about 20 years ago (Team HW), namely, zChaff (2001), siege
(2003), and an early version of MiniSat (2005). We decided to include the ear-
liest solver of zChaff (2001.2.17) into Team HW, since the numbers of solved
instances did not differ much between the 2001 and 2004 versions on our refer-
ence hardware. We preferred to include version 3 of the solver siege (2003) as
it solved about 12 instances more than version 1 (2001) on our modern refer-
ence hardware. We discarded MiniSat as the youngest of the older solvers. We
picked CaDiCaL 1.0.3 [8] and MapleLCMDistChronoBTDL-v3 (MapleSat19) [43]
for Team SW (new solvers on old hardware) due to their good performance in
the SAT 2019 Race. MapleSat19 won the SAT 2019 Race, and CaDiCal scored
a second place. Since the slightly older solver Glucose syrup 4.2.1 [4] solved
about ten instances more than the solver Lingeling 7d5db72 [7] on our modern
reference hardware, we decided to pick Glucose for our Team SW.

2.3 Selecting the Environment: Operating System and Compiler

Since we are interested in comparing the team new solvers on old hardware
and the team old solvers on new hardware, we think that it is only fair to also
include advancements in kernel architecture, compilers, and operating systems
into the consideration for new solvers. Anyway, it is not possible to obtain ancient
Linux or Unix distributions due to missing source code mirrors and it is not
possible to run such Linux or Unix distributions on modern hardware due to the
lack of modern chipset drivers in ancient kernels. Due to long term support of
hardware, we decided to favor Debian 10 codename buster (July 2019) [12] and
try NetBSD 9 (Feb. 2020) [70] as operating systems. We ran the experiments on
Linux kernel version 4.19.0-8-686-pae. We use gcc 8.3.0 on Debian and NetBSD.
Our modern hardware at university was equipped with Linux Mint 19 codename
Tara, kernel version 4.15.0-91, and gcc compiler version 7.5.0-3.
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2.4 Selecting the Hardware

To have a wide variety of hardware, we started to gather old hardware from
friends and colleagues. We collected ten systems over different generations, more
precisely, systems containing a Pentium II (1998), a Pentium III (1999), an
Ultra Sparc IIe (2001), a Pentium IV (2002), a Pentium IV Prescott (2004), a
Core2 Duo (2007), an i5 Nehalem (2009), a Xeon Haswell (2013), a Xeon Skylake
(2017), and an i7 Icelake (2019). A colleague prepared a SPARCstation II (1995)
and SPARCstation Voyager (1995) for us.

Technical Restrictions. The selection of a benchmark set and operating systems
restricted the space of possibilities on the potential old hardware. Preferably,
we are interested in the oldest possible hardware and the youngest possible
hardware. In more detail, modern Linux distributions such as Debian 10 still
supports all x86-based (IA-32) i686 processors, including various AMD, Intel,
and VIA processors. However, the i686 architectures limits experiments to Pen-
tium II processors (1997) or later [35]. BSD distributions such as NetBSD 9 still
supports the Sparc64 architecture, which in theory still allows the running of
systems with processors SPARC64 (1995) and UltraSPARC IIe (1999). We were
able run NetBSD 9 on a system with an Ultra Sparc IIe, namely, the Sun Netra
X1 from about 2000/2001. Since for some solvers, we only had access to Linux
or Solaris binaries and we were unable to setup Debian 10 or Solaris onto the
Netra system in decent time due to a required setup via serial LOM interface
and network boot, we discarded the Sun system from our final hardware selec-
tion. It is well known that modern operating systems and SAT-solvers are very
memory-demanding [23] resulting in a requirement of having at least 1GB of
total RAM inside the system. Since the L2 cache controllers of the Pentium II
only allow the use of 512 MB of RAM and we could not get access to a system
with a Pentium Pro processor, our oldest possible system (1999) was a Pen-
tium III processor running at 467 MHz equipped with 1.5 GB RAM. Hence, we
picked this system to run the solvers of Team SW. While the most modern CPU
architecture we had access to was an i7 Icelake (2019), we decided to prefer the
system running a Xeon Skylake due to the much larger caches, which are usually
beneficial for SAT-solving. Still, the modern system with the Xeon Skylate was
bought in 2019 for dedicated benchmarking, while the i7 was just a small-form-
factor barebone desktop computer for which we feared that high permanent load
over months might significantly degenerate performance due to overheating. The
system for Team HW then contained two Intel Xeon Silver 4112 CPUs (Skylake
architecture) of 2.60 GHz base-frequency equipped with 128 GB RAM. We ran
the experiments at the maximum frequency of 3.00 GHz. Since the Netra X1
from 2000 was equipped with 2 GB and the NetBSD allowed to still run all
source code based solvers, even the very modern ones, the Sun system serves as
a point of reference.
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Fig. 1. Runtime for the SAT-solvers on all considered instances. The x-axis refers to
the number of instances, and the y-axis depicts the runtime sorted in ascending order
for each solver individually. vbest refers to the virtual best solver, i.e., we take the union
over the solved instances for each team and consider the minimum for each instance.
In the legend [X] refers to a number of X solved instances. HW19 refers to the new
hardware, and HW99 refers to the old hardware. SAT19 refers to a modern solver on
modern hardware, which one can consider as a potential baseline.

2.5 The Final Stage: Experimental Setting and Limitations

We compare wall clock time and number of timeouts. However, we avoid IO
access on the CPU solvers whenever possible, i.e., we load instances into the
RAM if a network file system is involved and store uncompressed instances. We
set a timeout of 900 s, and limited available RAM to 512 MB per instance and
solver. We also tested for some solvers with resident set size restricted to 1 GB
RAM and observed only a very small difference. Since Intel hardware around
2002 rarely had more than 512 MB RAM available, we went for the 512 MB
setup. We follow standard guidelines for benchmarking [45]. Note that we do
not validate for correctness of the solver outputs. We set and enforce resource
limits by the tool runsolver [61].

3 The Trophies

Table 3 gives an overview on the number of solved instances for each solver and
the two hardware generations. Figure 1 illustrates the runtime of the selected
solvers and hardware as a cactus plot. Our results and gathered source codes
are all publicly available [21]. Note that we report only on the two Intel-based
hardware generations in this table. The results on the Ultra Sparc IIe system
look very similar, usually, a few more instances were solved. Detailed data can
be found in the supplemental material [21].
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Table 3. Overview of the number of solved instances for the various solvers on our old
and new hardware. HW99 represents the number of solved instances on the old hardware.
HW19 represents the number of solved instances on the new hardware. vbest represents
virtual best solvers, which are virtual solvers that we obtain by taking all instances
that have been solved by the solvers considered in the group listed above.

Solver Year/Generation HW99 HW19

MapleSat19 2019

T
e
a
m

S
W 77 195

CaDiCal 2019 98 190

Glucose 2016 106 188

vbest 124 198

sum 281 573

avg (%) 46.8 95.5

siege v3 2003 37

T
e
a
m

H
W 93

zChaff 2001 48 71

Grasp 1996 73 76

vbest 87 124

sum 158 240

avg (%) 26.3 40.0

K
n
u
th

SAT13+12 CDCL+P 31 104

SAT13 CDCL 31 98

SAT11+12 LH+P 8 15

SAT11 LH 15 20

SAT10+12 DPLL+P 4 45

SAT10 DPLL 6 4

O
th

er
S
o
lv

er
s

Lingeling 2019 70 179

Lingeling-aqw-27d9fd4 2013 87 186

Lingeling-276 2011 83 177

MiniSat 2008 84 178

siege v4 2004 45 93

siege v1 2003 33 81

sato 2000 15 19

satz 1998 7 9

3.1 Results

When we consider the number of solved instances on the hardware from 2019,
MapleSat19 solves 195 instances. Recall that Team HW consists of the old solvers
on modern hardware. It solves 93 instances (siege v3), 76 instances (Grasp),
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and 71 instances (zChaff). On average, it solves about 80 instances (40% of the
instances) at a standard deviation of about 12. However, the virtual best solver
(vbest) for Team HW solves 124 instances, i.e., about 62% of the instances.
The virtual best solver is the virtual solver that we obtain from taking the union
over the solved instances by all three solvers and keeping the instance with best
solved runtime. Team SW consists of the new solvers on old hardware. It solves 77
instances (MapleSat19), 98 instances (CaDiCal), and 106 instances (Glucose).
On average, it solves about 94 instances (46.8% of the instances) with a standard
deviation of 15. Its virtual best solver (vbest) solves 124 instances, i.e., about
62% of the instances. When considering the results on the solvers MapleSat19,
CaDiCal, and Glucose on modern hardware, they solve 191 instances on average
with a very low standard deviation of 3.6 instances. When considering the results
on the solvers siege v3, zChaff, and Grasp) on old hardware, they solve on
average about 53 instances (26% of the instances) at a standard deviation of
about 18.

3.2 Discussion of the Results

Comparing the Teams. The solver MapleSat19, which is the best solver from
the 2019 SAT Race, solves as expected the highest number of instances on the
new hardware. We are not surprised that neither Team SW nor Team HW or
their virtual best solver gets anywhere close to this result. In view of Table 3
and Fig. 1, there are plenty of ways to compare the two teams. One can carry
out (i) an individual comparison by the best (vbest), worst, or average solver,
or even consider the individual solvers in direct comparison to each other, but
one could also (ii) consider the virtual best solver for each team. If we choose
Method (i) and individually compare the solvers, Team SW clearly wins for the
measure best, worst, or average solver. We can also do one-by-one comparison
and compare the solvers from each team individually with the solvers from the
other team. Then, we take the number of solved instances for each solver X
from Team SW against each solver Y from Team HW, and we give X a point
if it solves more instances than Y or give a point to Y in the opposite case.
Then, Glucose obtains 3 points (because it solves more instances than siege v3,
zChaff, and Grasp), CaDiCal obtains 3 points, and MapleSat19 obtains 1 point,
which totals 7 points for Team SW. In comparison, Team HW receives 0 points
for zChaff, 0 points for Grasp, and 1 point for siege v3, which totals 1 point.
Hence, Team SW also wins. Nevertheless, if we consider the virtual best solvers,
Team HW performs equally well as Team SW.

Notable Observations. The winner from the SAT Race 2019 (MapleSat19/HW99)
solves less instances than the best solver (siege v3/HW19) of Team HW. This
seems surprising to us and we currently do not have a good explanation why
MapleSat19 solves so few instances on the old hardware, namely 21 instances less
than CaDiCal and 29 instances less than Glucose. Since we observed a similar
behavior with the latest implementation of Lingeling but not with CaDiCal,
which also implements inprocessing techniques, we suspect that the advanced
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data structures in the solvers, the learning and restarting policy, and strong tun-
ing towards modern hardware might be contributing factors. We found it inter-
esting that the old solvers siege v3, zChaff, and Grasp still solve a considerable
number of instances on the new hardware. In particular, the solver siege v3
seems to benefit substantially from the new hardware, while Grasp gains almost
no benefit from the new hardware. When we consider the implementations by
Knuth, it is particularly remarkable that the DPLL solver with preprocessing on
new hardware overtakes the CDCL solver with 45 solved instances. The CDCL
implementation solves 31 instances with or without preprocessing on the old
hardware.

3.3 Summary

When reviewing the results, we believe that our test setting reveals that both
Team SW and HW perform in a similar range. If we compare individually,
Team SW wins, which is also well visible in the cactus plot in Fig. 1. However, if
we consider virtual best solvers, Team HW performs equally well. This leaves us
with the conclusion that the last decades have brought enormous technological
progress and innovation for SAT-solving, and the two main factors (i) hardware
advancement and (ii) algorithm advancement both have a considerable influence.

4 Conclusion

We compare the impact of hardware and algorithm advancement on a genuine
problem, namely, the propositional satisfiability problem (SAT). We describe
in detail the decisions and challenges from a thought experiment to an actual
experiment between old solvers and new solvers on new and old hardware with
a time difference of about two decades. Our experiment’s outcome confirms that
modern algorithms have a strong influence on the performance of solvers, even
when they run on old hardware. Nonetheless, solving significantly profits from
technological advancement in hardware development and there is no clear winner
between Team SW (new solvers on old hardware) and Team HW (old solvers
on new hardware) in our time leap challenge. Overall, both teams perform in
a similar range with a slight advantage for Team SW, which leads us to the
conclusion that both hardware and software advances in science and industry
have a mutual influence on modern solving. Hence, algorithm advancements are
at least as important for the field of SAT-solving as hardware advancement.
Further, algorithm engineering becomes of greater importance.

During our research, we noticed that long term reproducibility highly depends
on available source code or static binaries with few dependencies. Further, it
turned out helpful if the setup of a solver requires few additional system tools
and few dependencies on external libraries. The dependencies within the oper-
ating system and source codes usually were not the problem as architectural
dependencies would forbid to run the solvers. From our archaeological investi-
gations, we suggest avoiding any external system for the setup for future long
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term experiments, i.e., tight dependencies on kernel versions or software contain-
ers such as Docker. Still, one uniform shared system for the entire community
such as the SAT heritage project might prove helpful [1] if implemented also by
competition organizers. Further, we think that public data libraries would be
beneficial to understand long term advancements, not just source code reposito-
ries of private companies or university webpages.

One could post an open call and repeat the experiment with any solver.
However, we believe that this would probably challenge developers of modern
solvers to optimize their implementation for old hardware, which would result in
a distorted picture for old solvers. Hence, we do not primarily intend to repeat
the experiments in the near future [56].

We hope that our work stimulates research for others to also set up a time
leap challenge in their fields such as for stochastic SAT-solvers, CSP-solvers,
MaxSAT-solvers, and ILP-solvers.
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Abstract. Bounded fractional hypertree width is the most general
known structural property that guarantees polynomial-time solvability
of the constraint satisfaction problem. Fichte et al. (CP 2018) presented
a robust and scalable method for finding optimal fractional hypertree
decompositions, based on an encoding to SAT Modulo Theory (SMT).
In this paper, we provide an in-depth study of two powerful symmetry
breaking predicates that allow us to further speed up the SMT-based
decomposition: RootClique fixes the root of the decomposition tree; Lex-
TopSort fixes the elimination ordering with respect to an underlying
DAG. We perform an extensive empirical evaluation of both symmetry-
breaking predicates with respect to the primal graph (which is known in
advance) and the induced graph (which is generated during the search).
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1 Introduction

Bounded fractional hypertree width, introduced by Grohe and Marx [24,25], is
the most general known purely structural restriction that guarantees polynomial-
time tractability of the CSP. It generalizes all previously introduced structural
restriction, including treewidth [11,19], spread-cut width [10] and hypertree
width [22]. However, in order to utilize bounded fractional hypertree width of
a CSP instance for solving it efficiently, one needs to have a fractional hyper-
tree decomposition of the constraint hypergraph of the CSP instance available,
witnessing the bounded fractional hypertree width. Computing such a decom-
position of smallest width is again an NP-hard task [18]. Nevertheless, previous
work by Fichte et al. [16] showed that a practically feasible SMT (SAT Modulo
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Theory) encoding exists, which supports the computation of optimal fractional
hypertree decompositions of constraint hypergraphs with several hundred of
vertices.

Contribution. In this paper, we introduce and study new symmetry breaking
methods that speed up the SMT-approach for finding optimal fractional hyper-
tree decompositions. Fractional hypertree decompositions are defined in terms of
an (unrooted) decomposition tree, whose nodes are labeled with so-called bags
of vertices of the decomposed hypergraph. However, the SMT encoding is based
on a characterization of fractional hypertree width in terms of linear elimination
orderings of the vertices of the decomposed constraint hypergraph. A hypergraph
with n vertices has n! linear elimination orderings, where many of these corre-
spond to the same decomposition tree. Consequently, that there is much room
for symmetry breaking (SB) strategies. We take a closer look at two symmetry
breaking methods: RootClique and TopSort.

RootClique is based on the observation, that we can pick any clique of the
primal graph of the decomposed hypergraph, and assume that this clique appears
in the bag of the decomposition tree’s root; hence we call it a root clique. This
symmetry breaking predicate allows us to restrict the considered linear orderings
to only those where vertices of the root clique appear at the very end.

A linear ordering of the vertices gives rise to a decomposition DAG on the
same vertex set, whose arcs correspond to the edges of the induced primal graph
of the decomposed hypergraph, oriented according to the linear ordering. Lex-
TopSort is based on the observation that from the many linear orderings that
are all topological sort of the same decomposition DAG, it suffices to consider
only one of them.

For both symmetry breaking predicates, we consider static and dynamic vari-
ants. The static variants operate on the primal graph of the given hypergraph.
The dynamic variant operates on the induced primal graph, which is obtained
from the primal graph during the search by adding fill-in edges according to the
computed elimination ordering. Whereas the static variants have the advantage
that the symmetry breaking constraints can be computed in a preprocessing
phase before the decomposition process starts, it has the disadvantage of having
fewer edges available and thus breaks fewer symmetries. Our experiments show
whether advantage or disadvantage dominates.

A static version of RootClique was initially suggested for tree decompositions
by Bodlaender et al. [7] and then ported to fractional hypertree decompositions
by Fichte et al. [16]. For tree decompositions, it is reasonable to take a largest
clique as the root clique, as it has the best chance to break the most symmetries.
For a hypergraph, it is not clear what makes a clique well-suited for symmetry
breaking. In addition to the size of the root clique, we consider several other
criteria such as the size of the root clique including its neighborhood, the size
of the root clique not counting twin vertices, or the number of hyperedges being
incident with a vertex of the root clique. We also introduce a dynamic variant
of RootClique, which requires a nontrivial SMT encoding.
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For the other symmetry breaking predicate, LexTopSort, it is the other way
around: a dynamic version has been suggested for hypertree decompositions by
Schidler and Szeider [35], and we introduce and test a first static variant.

We provide an extensive experimental evaluation of all the discussed variants
and combinations of RootClique and LexTopSort within the basic SMT encoding
for fractional hypertree width frasmt by Fichte et al. [16]. For the experiments,
we ran all the mentioned variants on the two leading SMT solvers z3 [32] and
optimathsat [36]. Overall, RootClique seems to show better results than Lex-
TopSort. However, combining the two techniques at the same time even further
improved the performance and the number of solved instances. Notably, it seems
that using both solvers z3 and optimathsat in combination, where we preferred
the latter for instances of higher fractional hypertree width, the resulting port-
folio is quite close to the virtual best solver of our experiments.

2 Preliminaries

Hypergraphs. A hypergraph is a pair H = (V (H), E(H)), consisting of a set
V (H) of vertices and a set E(H) of hyperedges, each hyperedge is a subset
of V (H). For a hypergraph H = (V,E) and a vertex v ∈ V , we write EH(v) =
{ e ∈ E | v ∈ e } and NH(v) = (

⋃
EH(v))\{v}; the latter set is the neighborhood

of v. If u ∈ NH(v) we say that u and v are adjacent. The hypergraph H − v is
defined by H = (V \{v}, {e\{v} | e ∈ E}). The primal graph (or 2-section) of a
hypergraph H = (V,E) is the graph P (H) = (V,EP (H)) with EP (H) = { {u, v} |
u �= v, there is some e ∈ E such that {u, v} ⊆ e }.

Consider a hypergraph H = (V,E) and a set S ⊆ V . An edge cover of S
(with respect to H) is a set F ⊆ E such that for every v ∈ S there is some
e ∈ F with v ∈ e. A fractional edge cover of S (with respect to H) is a mapping
γ : E → [0, 1] such that for every v ∈ S we have

∑
e∈EH(v) γ(e) ≥ 1. The

weight of γ is defined as
∑

e∈E γ(e). The fractional edge cover number of S
(with respect to a hypergraph H), denoted fnH(S), is the minimum weight over
all its fractional edge covers with respect to H.

A tree decomposition of a hypergraph H = (V,E) is a pair T = (T, χ) where
T = (V (T ), E(T )) is a tree and χ is a mapping that assigns each t ∈ V (T ) a set
χ(t) ⊆ V (called the bag at t) such that the following properties hold:

– for each v ∈ V there is some t ∈ V (T ) with v ∈ χ(t) (“v is covered by t”),
– for each e ∈ E there is some t ∈ V (T ) with e ⊆ χ(t) (“e is covered by t”),
– for any three t, t′, t′′ ∈ V (T ) where t′ lies on the path between t and t′′, we

have χ(t′) ⊆ χ(t) ∩ χ(t′′) (“bags containing the same vertex are connected”).

The width of a tree decomposition T of H is the size of a largest bag of T
minus 1. The treewidth tw(H) of H is the smallest width over all its tree decom-
positions.

Hypertree Decompositions. A generalized hypertree decomposition of H is a
triple G = (T, χ, λ) where (T, χ) is a tree decomposition of H and λ is a mapping
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that assigns each t ∈ V (T ) an edge cover λ(t) of χ(t). The width of G is the size
of a largest edge cover λ(t) over all t ∈ V (T ). A hypertree decomposition is a
generalized hypertree decomposition that satisfies a certain additional property,
which was added to make the computation of the decomposition tractable [22].
The generalized hypertree width ghtw(H) of H is the smallest width over all
generalized hypertree decompositions of H. The hypertree width htw(H) is the
smallest width over all hypertree decompositions of H.

A fractional hypertree decomposition of H is a triple F = (T, χ, γ) where
(T, χ) is a tree decomposition of H and γ is a mapping that assigns each t ∈ V (T )
a fractional edge cover λ(t) of χ(t) with respect to H. The width of F is the
largest weight of the fractional edge covers λ(t) over all t ∈ V (T ). The fractional
hypertree width fhtw(H) of H is the smallest width over all fractional hypertree
decompositions of H.

To avoid trivial cases, we consider only hypergraphs H = (V,E)
with EH(v) �= ∅ for all v ∈ V . Consequently, every considered hypergraph H
has a (fractional) edge cover and fhtw(H) is always defined. If |V | = 1 then
fhtw(H) = 1.

Since an edge cover can be seen as the special case of a fractional edge cover,
with weights restricted to {0, 1}, it follows that for every hypergraph H we have
fhtw(H) ≤ ghtw(H) ≤ htw(H) ≤ tw(P (H)).

Elimination Orderings. The first SAT encoding of treewidth was suggested
by Samer and Veith [34]. It uses an ordering-based characterization of treewidth
which is also used by more recent SAT encodings of treewidth [3,6]. Later,
ordering-based encodings where used for hypertree width [35], generalized hyper-
tree width [5], and fractional hypertree width [16,28].

Let H = (V,E) be a hypergraph with n = |V | and L = (v1, . . . , vn) a
linear ordering of the vertices of H. We define the hypergraph induced by L as
Hn

L = (V,En) where En is obtained from E by adding hyperedges successively
as follows. We let E0 = E, and for 1 ≤ i ≤ n we let Ei = Ei−1 ∪ {ei} where
ei = { v ∈ {vi+1, . . . , vn} | there is some e ∈ Ei−1 containing v and vi }. We
consider the binary relation ArcL = { (vi, vj) ∈ V × V | i < j and vi and
vj are adjacent in Hn

L }. We write ArcL(i) = {vi} ∪ { vj | (vi, vj) ∈ ArcL },
hence ArcL(i) = {vi} ∪ ei. We refer to P (Hn

L), the primal graph of the induced
hypergraph Hn

L, as the induced primal graph.
The fractional hypertree width of H with respect to a linear ordering L,

denoted fhtwL(H), is the largest fractional edge cover number with respect to
H over all the sets ArcL(i), i.e.,

fhtwL(H) =
n

max
i=1

fnH(ArcL(i)).

Theorem 1 ([16]). The fractional hypertree width of a hypergraph H equals the
smallest fractional width over all its linear orderings: fhtw(H) = minL fhtwL(H).
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3 Symmetry Breaking for Elimination Orderings

In this section, we define all the symmetry breaking predicates, static and
dynamic, and describe their encoding. Throughout this section, let H = (V,E)
be a fixed hypergraph.

As laid out in the proof of Theorem1, one can translate back and forth
between linear orderings and fractional hypertree decomposition, preserving the
fractional width. The translation from the linear ordering into a decomposition
is canonical and deterministic. The translation in the other direction, however,
depends on several choices. Let us briefly describe the translation.

Let F = (T, χ, γ) be a fractional hypertree decomposition of H. First, we
choose a node r of T as the root and consider a rooted version Tr of T . For each
vertex v ∈ V , let t = f(v) be the node of Tr with v ∈ χ(t) that is closest to the
root r. This consideration yields a partial ordering ≤F of V , where u ≤F v if and
only if f(u) is a descendant of f(v) in Tr. The proof of Theorem 1 [16] shows that
any linear ordering L of V that refines ≤F , has the same fractional width as F .
We observe that the linear orderings that refine ≤F are exactly the topological
sorts of the DAG DF = (V,A) where A = { (u, v) | u �= v and u ≤F v }.
Any topological sort L can be obtained from DF by repeatedly deleting vertices
without incoming arcs until all vertices have been deleted: L is then the set of
vertices arranged by their succession of deletion.

When we fix the root and the topological sort, we have determined the linear
ordering uniquely. We will fix the root with the RootClique symmetry breaking
predicate, and we will fix the topological sort with the LexTopSort symmetry
breaking predicate.

3.1 RootClique

The static RootClique predicate is based on the well-known fact that, if (T, χ) is
a tree decomposition of a graph G and K a clique in G, then there exists a node
t ∈ V (T ) with V (K) ⊆ χ(t) (see, e.g., [8]). Hence, when we choose any clique
K in the primal graph P (H), the static RootClique predicate requires that the
root r is chosen among the nodes for which V (K) ⊆ χ(r) holds. This is not
a full symmetry breaking, since a clique may appear in different bags. Hence,
we suggest several strategies for choosing a clique that suits this purpose. In
particular, we choose a clique in P (H), maximizing

1. the size of the clique,
2. the size of the clique including its neighborhood NH(K) in P (H),
3. the size of the clique not counting twin vertices, which are any two vertices u, v

sharing the same neighborhood, i.e., where NH(u) = NH(v), and
4. the number of hyperedges being incident with a vertex of the clique.
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We also consider k-hypercliques which are cliques in P (H) not intersecting
with any hyperedge of H in more than k vertices. This concept was proposed by
Fichte et al. [16], and was primarily intended to obtain lower bounds during the
computation of fractional hypertree width. The dynamic RootClique predicate
is based on the fact that each bag χ(t) is a clique in the induced primal graph,
and conversely, every maximal clique in the induced primal graph corresponds
to χ(t) for some node t. We uniquely determine the root of the decomposition
tree by fixing the largest clique of the induced primal graph as the root clique.

Further details and the encodings are given after the next subsection.

3.2 LexTopSort

We start by explaining the dynamic variant of LexTopSort. For better integra-
tion with RootClique, we use the inverse variant of topological sorting, where
vertices without outgoing arcs are deleted, proving the ordering “from right to
left.” When there are several vertices without outgoing arcs, we choose the lex-
icographically smallest vertex next. This choice uniquely determines the linear
ordering, which corresponds to the reflected lexicographically smallest topolog-
ical sort. We denote for two vertices vi, vj by lex(vi, vj) that vi precedes vj in
the lexicographic ordering.

We enforce this restriction on the linear ordering L = (v1, . . . , vn) of V with
the following predicate: For any 1 ≤ i < j ≤ n, if lex(vi, vj), then there must
be some k ∈ {i + 1, . . . , j} such that the induced primal graph contains the edge
{vi, vk}. In other words, when we delete the lexicographically larger vertex vj
before we delete the lexicographically smaller vertex vi, then vi must have a
neighbor vk which has not been eliminated at that time, i.e., vi has an outgoing
arc in DF to a vertex vk that is still present when vj is deleted.

Since the encoding of dynamic LexTopSort is expensive, we propose a new
relaxed static version, which does not break all symmetries but can be encoded
in a significantly more compact way. The static version is obtained by a small
but influential change in the symmetry breaking predicate, by using the primal
graph, not the induced primal graph: For any 1 ≤ i < j ≤ n, if lex(vi, vj), then
there must be some k ∈ {i + 1, . . . , j} such that the primal graph contains the
edge {vi, vk}.

3.3 Encodings for Symmetry Breaking

In this section, we describe how RootClique and LextTopSort can be encoded
within the SMT encoding for fractional hypertree width due to Fichte et al. [16],
which we briefly review. To this end, let H = (V,E) be a given hypergraph with
V = {v1, . . . , vn} and w be a rational number. The encoding is an SMT formula
that is satisfiable if and only if the hypergraph has a linear ordering L of V such
that fhtwL(H) ≤ w. For computing the relation ArcL, it uses Boolean ordering
variables oi,j for 1 ≤ i < j ≤ n and Boolean arc variables ai,j for 1 ≤ i, j ≤ n.
Clauses are added that ensure that an ordering variable oi,j is true if and only
if i < j and vi precedes vj in L. In the following, we let o∗(i, j) refer to o(i, j) if
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i < j and ¬o(j, i) otherwise. The arc variables are used to represent the relation
ArcL for the ordering L represented by the ordering variables, where a(i, j) is
true if and only if (vi, vj) ∈ ArcL, i.e., if vj ∈ ArcL(i). Finally, weight variable
w(i, e) for each 1 ≤ i ≤ n and e ∈ E is used to represent the weight of e in a
fractional edge cover γL(i) of the set ArcL(i), where L is the ordering represented
by the ordering variables.

Static RootClique (s-RQ). We encoded all the different variants for choosing
cliques, and computed them by a solver in a separate solving step, executed
before the actual decomposition. To this end, we use Boolean clique variables of
the form k(i) for each vertex vi ∈ V (H), where those vertices set to true form a
clique K. All variants have in common, that a clique is computed as follows.

[¬k(i) ∨ ¬k(j)] for any two vertices vi, vj ∈ V (H) with vj �∈ NH(vi).

Then, we considered different maximization constraints on top, resulting in
different variants. In the following, we present variants for computing cliques
that require adding different constraints to the constraint above.

Largest Clique (LQ). For obtaining a clique of size at least �, we add the following
constraints.

[
∑

vi∈V (H) k(i) ≥ �]

Largest Clique Including Neighbors (LQ+N). We also considered maximizing a
clique, where we additionally count the neighbors of the clique.

[
∑

vi∈V (H) k(i)+ |NH(vi)| ≥ �]

Largest Clique Excluding Twins (LQ-T). The following variant excludes twin
vertices, when computing a maximal clique.

[
∑

vi∈V (H) k(i)− (
∑

vi∈V (H) |{vj ∈ V (H) | j > i,NH(vj)=NH(vi)}|) ≥ �]

Largest k-Hyperclique (k-Hy). For k-hypercliques, we need the following addi-
tional constraints.

[¬k(i1) ∨ · · · ∨ ¬k(ik)] for any k vertices vi1 , . . . , vik of hyperedge e ∈ E(H),

[
∑

vi∈V (H) k(i) ≥ �]

Clique with Largest Number of Used Hyperedges (LuH). This variant concerns
only about maximizing the number of hyperedges that are adjacent to a clique.

[
∑

e∈E(H)(
∨

vi∈e
k(i)) ≥ �]

Finally, after having computed a clique K, which can be obtained with any
of the variants above, one can add the following constraints to the base encoding
in order to actually break symmetries, statically guided by K. More precisely,
the clique K is ensured to be eliminated before the other vertices (and consid-
ered the root of the decomposition) such that each vertex of K is eliminated in
lexicographic order, i.e., according to L.
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[o∗(i, j)] for vj ∈ V (H) \ K, vi ∈ K,

[o∗(i, j)] for vi, vj ∈ K, vi �= vj , lex(vi, vj).

Dynamic RootClique (d-RQ). While the main idea of this approach is similar
to static RootClique, here we aim for a largest bag of the resulting decomposition
to be the root node. However, this does not depend on the presence of a clique in
the primal graph P (H). Instead, we require such a clique in the induced primal
graph of H. As a result, the SMT encoding for fractional hypertree decomposi-
tions based on elimination orderings is directly extended. For finding a largest
bag, Boolean variables B(i), b(i) for 1 ≤ i ≤ n and integer variables d(i) for
computing the degree of outgoing arcs in the induced primal graph of H are
used. Intuitively, B(i) indicates that vi ∈ V (H) is the lexicographically largest
vertex in L that is contained in a largest bag. Consequently, smaller vertices of i
are in this largest bag, whose member elements are indicated by variables b(j).

The following constraints model this construction, where the degree variables
are computed and only one largest bag is allowed.

[d(i) =
∑

1≤j≤n,j �=i a(i, j)] for 1 ≤ i ≤ n,

[¬B(i) ∨ ¬B(j)] for 1 ≤ i < j ≤ n,

[
∨

vi∈V (H) B(i)].

We ensure that if for vertex vi there is a lex-smaller vertex vj , where there is
no arc from vi to vj , vi cannot be the largest vertex in a largest bag. Further, for
vertex vi with B(i) it is not allowed that there is a larger bag (of larger degree)
with a lexicographically larger vertex vj .

[¬o∗(j, i) ∨ a(i, j) ∨ ¬B(i)] for 1 ≤ i, j ≤ n, i �= j,

[¬o∗(i, j) ∨ B(j) ∨ ¬B(i) ∨ d(j)≤d(i)] for 1 ≤ i, j ≤ n, i �= j.

For fixing the order of the elements within the bag and in relation to elements
outside this bag, we compute the elements of this largest bag as follows.

[¬b(i) ∨ ¬o∗(j, i) ∨ ¬B(j)] for 1 ≤ i, j ≤ n

[¬B(i) ∨ ¬o∗(j, i) ∨ b(j)] for 1 ≤ i, j ≤ n.

Then, we fine-tune the symmetry breaking by setting the order within this
(largest) bag and in relation to the other vertices. This is similar to symmetry
breaking for RootClique, but depending on the elements of the largest bag.

[¬b(i) ∨ b(j) ∨ o∗(i, j)] for 1 ≤ i < j ≤ n,

[¬b(i) ∨ ¬b(j) ∨ o∗(i, j)] for 1 ≤ i < j ≤ n, lex(vi, vj).
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LexTopSort. For encoding LexTopSort, we need the following additional SMT
variables. Boolean variables s(i, j) for each 1 ≤ i, j ≤ n with i �= j are used
to represent that vi has vj as the lex-smallest vertex with an arc from vi to vj
in the induced primal graph. For connected hypergraphs H, obviously, such a
vertex vj has to exist for every vertex vi, except for the smallest vertex in the
ordering L. Being the smallest vertex vi is represented with Boolean variables l(i)
(for every 1 ≤ i ≤ n).

For both static and dynamic LexTopSort, we need to encode that there is
only one such smallest vertex. Further, we need to make sure that if for three
vertices vi, vj , vk with lex(vi, vj) either we have that o∗(i, j) (i is eliminated
before j), or vk is not the lex-smallest vertex of vi, or otherwise it is guaranteed
that j is eliminated before k. Intuitively, this ensures that either the succession
of elimination coincides with L or deleting the lexicographically larger vertex vj
is allowed since vk is present in DF when vj is deleted.

[¬l(i) ∨ ¬l(j)] for 1 ≤ i < j ≤ n,

[o∗(i, j) ∨ ¬s(i, k) ∨ o∗(j, k)] for 1 ≤ i, j, k ≤ n, lex(vi, vj).

Then, we add one of the following two blocks of constraints, depending on
the static or dynamic variant of LexTopSort.

Static LexTopSort (s-LT). The static variant ensures that for every vertex vi
that either vi is the smallest vertex or vi has a lex-smallest vertex. Then, for two
neighbors vj , vk of vi, if s(i, k), vj cannot be eliminated before vk in DF .

[
∨

{vi,vj}∈E(P (H)) s(i, j) ∨ l(i)] for vi ∈ V (H),

[¬o∗(j, k) ∨ ¬s(i, k)] for 1 ≤ i, j, k ≤ n, j �= k, {vj , vk}⊆NH(vi).

Dynamic LexTopSort (d-LT). Conceptually, dynamic LexTopSort is similar to
static LexTopSort, although the variants show major differences in runtime as
we will see in Sect. 4.2. First, for every vertex vi either vi is the smallest vertex or
there is a lex-smallest vertex for vi. Then, if vi has vj as the lex-smallest vertex,
we require an arc from vi to vj in the induced primal graph of H. Similar to
static LexTopSort, if there are two candidates vj and vk for being the lex-smallest
vertex of vi, it is prohibited to take vk if vj is eliminated before vk.

[
∨

i�=j s(i, j) ∨ l(i)] for vi ∈ V (H),

[¬s(i, j) ∨ a(i, j)] for 1 ≤ i, j ≤ n, i �= j,

[¬a(i, j)∨¬a(i, k)∨¬o(j, k)∨¬s(i, k)] for 1 ≤ i, j, k ≤ n, i �= j, i �= k, j �= k.

Combining RootClique with LexTopSort. For combining RootClique with
LexTopSort, we have to take care that the ordering L is in line with the vertices
of the root clique being lexicographically first.

Further, for static RootClique, where we have a (static) clique K prior the
actual solving with the SMT encoding, we can easily fix the smallest vertex of
the LexTopSort encoding as follows.

[l(i)] for vi ∈ K, if for every vj ∈ K with j �= i, we have lex(vi, vj).
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4 Implementation and Experiments

We ported frasmt to Python 3.8. and implemented the different strategies for
symmetry breaking. The source code of our solver frasmt is readily available
at github.com/daajoe/frasmt and detailed results as well as analysis are online
at Zenodo [12]. In our implementation, we support two SMT solvers, namely z3
4.8.7 [32] as well as optimathsat 1.6.4 [36]. Hence, we have two configurations:
frasmt z3, which uses the SMT solver z3 and frasmt om, which uses the SMT
solver optimathsat. As it turns out, while one solver is overall better than the
other, both solvers complement each other quite well. To demonstrate this find-
ing, our results also show a portfolio variant frasmt z3+om that uses both solvers,
where for instances of fractional hypertree width larger than 4 solver optimathsat
is invoked and below, solver z3 is invoked. Further, for computing the cliques
that are used in the static variant of RootClique, we applied a solver called
clingo 5.4.0 [20], which is an extension of SAT solvers and allows for incremen-
tal solving as well as optimization without manual cardinality constraints. For
obtaining these cliques, we relied on the any-time algorithm of clingo. We allowed
this solver to use up to 500 s, which showed almost the same results as using no
internal time limit and –in the worst case– spending the total runtime on symme-
try breaking only. Indeed, for symmetry breaking, we then used the best clique
according to the optimization criteria of the clique variant that could be com-
puted within these 500 s. However, we observed that it is indeed crucial to allow
some time for symmetry breaking since the vanilla configuration of frasmt z3
is almost identical to frasmt, which spends only 10 s on limited approaches of
symmetry breaking.

4.1 Benchmark Setup

We compared the different strategies of symmetry breaking with respect to the
goal of finding the best variant. To this end, we configured the following setup.

Measure and Resources. In order to draw conclusions about the efficiency of the
compared solvers, we mainly inspected wall clock times. We set a timeout of
7200 s and limited available RAM to 16 GB per instance. Resource limits were
set and enforced by the tool runsolver [33].

Benchmark Instances. We considered a selection of 2191 instances collected by
Fischl et al. [17] (publicly available at [15]) from various sources, consisting of
hypergraphs that originate from CSP instances and conjunctive database queries.
The instances and their original sources are summarized in Table 1. The instances
contain up to 2993 vertices and 2958 hyperedges.

https://github.com/daajoe/frasmt/releases/tag/v2.0.0
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Table 1. The benchmark sets consisting of the type, the number of instances as well
as the origin, of the instances we considered in our experiments. Note that some bench-
mark sets are overlapping and therefore the numbers do not add up to 2191.

Benchmark set Type #Instances Origin

DaimlerChrysler Industrial 15

Grid2D Grid 12

ISCAS’89 Competition 24 [23]

MaxSAT MaxSAT 35 [5]

csp application XCSP 1090 [2]

csp random XCSP 863 [2]

csp other Misc 82

CQ Conjunctive Queries 156 [1,4,21,26,30,37]
∑

Hyperbench 2191 [17]

Benchmark Hardware. Solvers were executed on a cluster of 12 nodes. Each node
is equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical cores
each at 2.2 GHz clock speed, 256 GB RAM and 1 TB hard disc drives (not an
SSD) Seagate ST1000NM0033. The results were gathered on Ubuntu 16.04.1
LTS machines with disabled hyperthreading on kernel 4.4.0-139.

Compared Solvers. We mainly compare variants of frasmt z3 and frasmt om to
see the influence of symmetry breaking. The vanilla configuration frasmt z3 has
the same features as the best reported configuration [16] of frasmt, where no
extensive symmetry breaking is used. The results of frasmt z3 and frasmt are
almost identical (small differences may occur due to Python version upgrade),
which is why we refrained from further adding additional data to our plots and
tables. We also considered the recent solver triangulator [29]. While triangulator
overall is extremely fast on about half of the instances (about 1190), we observed
that the solver quickly runs out of main memory on most of the other instances,
which still persists if increasing main memory to 64GB. In consequence, we only
report results for the more recent solver triangulator-msc, which uses cplex and
is available at github.com/Laakeri/triangulator-msc. However, we follow other
recent work on symmetry breaking [9] and stress that the main goal of our exper-
iments is to demonstrate the benefit of our symmetry breaks, not to compare
the speed of our approach to other algorithms with different techniques.

https://github.com/Laakeri/triangulator-msc/commit/1bd6e5d233e9ff707ce216c81a9501c865865321
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4.2 Benchmark Results

We discuss the following three aspects, where we first elaborate on the vari-
ants of RootClique. Then, we cover the performance of LexTopSort, including
the combination with RootClique, followed by static vs. dynamic symmetry
breaking.

Fig. 1. A cactus plot of the static variants of RootClique, compared to the vanilla con-
figuration frasmt z3. The x-axis shows the number of instances and the y-axis depicts
wall clock runtimes in seconds, which are sorted in ascending order, but for each solver
configuration individually. Solver “frasmt vbest” refers to the virtually best solver by
taking for each instance the best result among all displayed solver (configurations). The
legend is ordered from best to worst (from right to left in the plot).

Computing Static RootCliques. Figure 1 depicts a cactus plot of the variants s-RQ
for static RootClique, as presented in the previous section. In this figure, the x-
axis refers to the number of instances, where for each solver the runtime (y-axis)
is sorted in ascending order. Therefore, this plot provides an overview of the
variants over all instances. In this plot, we mainly focused on showing the vari-
ants for solver z3, which showed overall the best performance, since the results
for om, while different compared to z3, draw a similar picture. Surprisingly, the
k-hyperclique variant (k-Hy) shows the best results1, which is, however, almost
as good as the two variants LQ-T and LQ for computing largest cliques. While
the variant on aiming for the largest clique without twin vertices (LQ-T) seems
to have a slight advantage over going for the largest clique (LQ), the differences
are minor. The fact that k-hyperclique performs best was, however, surprising.

1 For comparability with frasmt, we used k = 6 (the option reported best [16]).
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On the other hand, if one also considers the variant LuH for preferring cliques
with the largest number of used hyperedges, it seems that k-hypercliques might
form a good compromise. Notably, if also considering LexTopSort, the situation
changes slightly. It turns out that the variant LQ-T performs better than using
the k-hyperclique, followed by LQ.

Fig. 2. A cactus plot showing (combinations of) both RootClique and LexTopSort
symmetry breaking, where the x-axis refers to the number of instances, and the y-axis
depicts wall clock runtimes in seconds. Runtimes are sorted in ascending order for
each solver configuration individually. Solver “frasmt vbest” refers to the virtually
best solver by taking for each instance the best result among all displayed frasmt
configurations. The legend is ordered from best to worst (from right to left in the plot).

Combining RootClique with LexTopSort. Before we discuss the combination of
RootClique with LexTopSort, we briefly elaborate on the performance of the
variants of LexTopSort without RootClique. It seems that especially dynamic
LexTopSort worsens the picture. In more detail, both static and dynamic Lex-
TopSort without RootClique show a rather bad performance, which is sometimes
even worse than the vanilla configuration frasmt z3. This observation is under-
lined by Fig. 2, which shows a cactus plot of variants of LexTopSort and combi-
nations with variants of RootClique. The best variants use full static symmetry
breaking only (s-LT, s-RQ). While the result for frasmt z3 suggests not much
difference between full static symmetry breaking and static RootClique only (s-
RQ), the results for frasmt om reveal that indeed with static LexTopSort, one
can further improve the results obtained by static RootClique only. This might
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also be emphasized due to the fact that the combination of solvers z3 and opti-
mathsat provides significant improvements compared to both single configura-
tions. Notably, triangulator-msc is very fast, but overall frasmt z3 solves more
instances. Table 2 reports on the number of solved instances and total runtimes
for the larger benchmark sets, where timeouts count as 7200 s, and results are
detailed and grouped by fractional hypertree width.

Fig. 3. Scatter plots comparing runtimes of instances (in seconds) one-by-one of our
best configuration (x-axis) with the best dynamic symmetry breaking method (y-axis,
left) and with the worst dynamic configuration (y-axis, right).

Static vs. Dynamic Symmetry Breaking. The results of the previous paragraphs
seem to be rather bad for the dynamic variants of symmetry breaking. However,
this is not too surprising if one considers that the encoding size of dynamic Lex-
TopSort is in O(n3) and that for RootClique the encoding is in O(n2), where n
is the number of vertices contained in the hypergraph. Still, against all odds
the cactus plot of Fig. 2 already depicts dynamic variants, whose curve is some-
times below other static variants and even below our best variant frasmt z3+om.
Further, Fig. 3 shows two scatter plots comparing runtimes instance-by-instance
of the best variant of the previous paragraph (frasmt z3+om, x-axis) with (y-
axis) both the best variant (left) of dynamic symmetry breaking and the worst
dynamic variant (right). Both dynamic variants show that, while frasmt z3+om
performs better on plenty of instances, there are still instances on the bottom
left of the plots, where the dynamic variants are faster. Further, some instances
on the bottom right of both plots cannot be solved by frasmt z3+om, which are
solved by dynamic variants.
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Table 2. Detailed results on the number of solved instances grouped by fractional
hypertree width of the solved instance. Runtimes are cumulated wall clock times in
hours, where timeouts count as 7200 s.

Set Solver
∑ fhtw range group

time[h]
max(fhtw) 0-2 3-4 >4

cs
p
ot
he

r

frasmt vbest 46 7.0 28 5 13 103.57
frasmt z3 s-RQ(LQ-T) 44 6.0 28 5 11 104.62
frasmt z3 s-LT s-RQ(LQ-T) 43 6.0 27 5 11 106.09
frasmt z3 s-LT s-RQ(k-Hy) 43 6.0 27 5 11 106.69
frasmt z3 43 6.0 28 5 10 110.17
frasmt z3 s-LT d-RQ 41 6.0 27 5 9 111.02
frasmt z3+om s-LT s-RQ(LQ-T) 40 7.0 27 5 8 112.63
frasmt z3 d-LT s-RQ(LQ-T) 37 6.0 26 4 7 118.04
frasmt om s-LT s-RQ(LQ-T) 37 7.0 26 3 8 118.76
frasmt om s-RQ(LQ-T) 36 6.0 26 3 7 119.69
frasmt z3 d-LT 36 6.0 26 4 6 124.27
frasmt om s-LT d-RQ 34 6.0 26 3 5 123.96
frasmt z3 d-LT d-RQ 34 6.0 25 4 5 125.89
triangulator-msc 25 5.3̄ 17 4 4 139.92

cs
p
ap

pl
ic
at
io
n

frasmt vbest 674 7.0 43 397 234 775.44
frasmt z3 s-LT s-RQ(LQ-T) 648 7.0 43 396 209 835.76
frasmt z3 s-RQ(LQ-T) 646 7.0 43 396 207 824.72
frasmt z3 s-LT s-RQ(k-Hy) 641 7.0 43 396 202 842.05
frasmt z3+om s-LT s-RQ(LQ-T) 640 7.0 43 396 201 827.50
frasmt z3 559 7.0 43 370 146 974.08
frasmt z3 s-LT d-RQ 554 7.0 43 365 146 980.45
frasmt om s-LT s-RQ(LQ-T) 552 7.0 41 310 201 1003.93
triangulator-msc 551 7.0 43 288 220 973.13
frasmt z3 d-LT s-RQ(LQ-T) 549 7.0 40 326 183 997.30
frasmt om s-RQ(LQ-T) 535 7.0 40 293 202 1040.55
frasmt z3 d-LT 498 7.0 40 312 146 1113.74
frasmt z3 d-LT d-RQ 498 7.0 40 312 146 1114.50
frasmt om s-LT d-RQ 482 7.0 38 293 151 1146.85

cs
p
ra
nd

om

triangulator-msc 860 6.6̄ 54 39 767 203.21
frasmt vbest 835 9.0 54 39 742 365.57
frasmt om s-RQ(LQ-T) 830 9.0 54 38 738 444.29
frasmt z3+om s-LT s-RQ(LQ-T) 826 9.0 54 39 733 419.60
frasmt om s-LT s-RQ(LQ-T) 824 9.0 54 37 733 424.79
frasmt z3 s-LT s-RQ(LQ-T) 757 9.0 54 39 664 478.49
frasmt z3 d-LT s-RQ(LQ-T) 755 9.0 54 39 662 488.93
frasmt z3 s-LT s-RQ(k-Hy) 747 9.0 54 39 654 478.59
frasmt z3 s-RQ(LQ-T) 734 9.0 54 39 641 490.29
frasmt om s-LT d-RQ 670 9.0 54 31 585 691.12
frasmt z3 s-LT d-RQ 590 9.0 54 23 513 808.34
frasmt z3 d-LT d-RQ 585 9.0 54 19 512 830.63
frasmt z3 d-LT 584 9.0 54 19 511 830.89
frasmt z3 582 9.0 54 18 510 824.62

∑

frasmt vbest 1706 9.0 271 446 989 1247.01
frasmt z3+om s-LT s-RQ(LQ-T) 1657 9.0 270 445 942 1362.19
frasmt z3 s-LT s-RQ(LQ-T) 1600 9.0 270 445 885 1423.34
triangulator-msc 1585 7.0 259 336 990 1322.97
frasmt z3 s-LT s-RQ(k-Hy) 1583 9.0 270 445 868 1430.35
frasmt z3 s-RQ(LQ-T) 1576 9.0 271 445 860 1422.65
frasmt om s-LT s-RQ(LQ-T) 1564 9.0 267 355 942 1549.95
frasmt om s-RQ(LQ-T) 1553 9.0 266 339 948 1607.00
frasmt z3 d-LT s-RQ(LQ-T) 1493 9.0 266 374 853 1607.46
frasmt om s-LT d-RQ 1337 9.0 264 332 741 1966.01
frasmt z3 s-LT d-RQ 1336 9.0 270 398 668 1903.86
frasmt z3 1335 9.0 271 398 666 1912.94
frasmt z3 d-LT 1269 9.0 266 340 663 2073.04
frasmt z3 d-LT d-RQ 1268 9.0 265 340 663 2075.15
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5 Conclusion and Future Work

In this work, we analyzed different strategies for symmetry breaking in character-
izations of fractional hypertree width. While we focused on this particular width
parameter, the overall idea of our methods immediately apply to the computa-
tion of other width parameters, such as treewidth. Hence, we expect that our
findings can be used to gain significant improvements for other ordering-based
encodings [34]. Our two methods RootClique and LexTopSort for eliminating
symmetries seem to be good companions, since a combination of both state-
of-the-art SMT solvers z3 [32] and optimathsat [36] reached the virtually best
configuration. Still, we only considered the best variant of RootClique in this
configuration, and it seems there is potential for algorithm selection involving
machine-learning tools like autofolio [31]. Overall, we perceived static symmetry
breaking strategies as superior to dynamic techniques. While this might not be
too surprising, we observed that some instances could still be solved faster with
dynamic techniques. We see future work in analyzing the impact of fractional
hypertree width for practical solving (counting) similar to treewidth [13,14,27]
and in the context of other measurements such as bag size and domain size.
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eral way to enable faster memory access by using the memory cache line
of modern hardware more effectively. Therefore, we extend the standard
C library (glibc) by dynamically allowing to use a memory management
feature called huge pages. Huge pages allow to reduce the overhead that
is required to translate memory addresses between the virtual memory of
the operating system and the physical memory of the hardware. In that
way, we can reduce runtime, which in turn decreases costs of running AR
tools and applications with similar memory access patterns by linking
the tool against this new glibc library when compiling it. In every day
industrial applications, runtime savings allow to include more detailed
verification tasks, getting better results of any-time optimization algo-
rithms with a bound execution time, and save energy during nightly
software builds. To back up the claimed speed-up, we present experi-
mental results for tools that are commonly used in the AR community,
including the domains ASP, hardware and software BMC, MaxSAT, and
SAT.

The work has been supported by the Austrian Science Fund (FWF), Grants P32441
and W1255. We would like to thank the anonymous reviewers for very detailed
feedback and their suggestions. Special thanks go to the reviewer who provided
comments on CP solvers and propagators. The implementation is available at
github:daajoe/thp docker build.

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 304–322, 2020.
https://doi.org/10.1007/978-3-030-58475-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_18&domain=pdf
http://orcid.org/0000-0002-8681-7470
https://github.com/daajoe/thp_docker_build
https://doi.org/10.1007/978-3-030-58475-7_18


Towards Faster Reasoners by Using Transparent Huge Pages 305

1 Introduction

Automated reasoning (AR) tools such as solvers for Answer Set Programming
(ASP), Bounded Model Checking (BMC), and Boolean Satisfiability (SAT) are
widely used to test and verify software and hardware in industry [14,20,27].
When improving AR tools, which usually run in industry each day for a few hours,
one is also interested in speeding up existing implementations. A classical way
to improve such tools is to consider their memory dependency when designing
algorithms and data structures. While algorithm engineering often focuses on
the source code of each of the solvers, we believe that an entirely overlooked
direction is to take the interplay between hardware and software into account
and speed up solving by modifying standard libraries (glibc) that programmers
use to handle memory management. In the following, we outline how and why
one can gain considerable improvements for many solvers by modifying glibc.

The underlying algorithms for AR tools are often based on a technique called
conflict driven no-good learning (CDNL) with watch lists whose efficiency highly
depends on their memory consumption [13]. On modern hardware, the accessi-
ble memory is virtual and handled by a physical memory management unit
(MMU). The mapping between virtual and physical memory is stored in page
tables by the MMU. In order to reduce access time, recently used mappings are
stored in a translation lookaside buffer (TLB). In practice, when using watch
lists extensively, high memory consumption results in unpredictable memory
accesses, many cache misses, and so called page translation failures (TLB misses).
A common way to speed up a CDNL-solver is to use advanced data structures,
which improve the memory access for frequently running operations in the solver,
for example, data structures for learnt clauses, two watched literals, and lin-
ear lookup tables. Another way to obtain a speed-up is to respect the memory
caches of the underlying hardware in the implementation. For example, one can
considerably improve the performance of a naive SAT solver by modifying the
implementation in such a way that the memory cache is used as much as possible
(reducing cache misses) as implemented in Riss [29], using cache pre-fetching as
done in the solver CryptoMiniSat [50], or implementing very sophisticated data
structures with the goal to optimize the overall memory usage as in the solver
Lingeling [9]. The hardware related line of optimization opens the research ques-
tion whether one can obtain further speed-up by exploiting other cache layers
that are available in modern CPUs. One such cache layer is used for address
translation, i.e., the translation look aside buffer (TLB). As an extension, we
want to investigate whether this kind of improvement is applicable to multiple
AR tools.

New Contribution

In this paper, we introduce a simple and transparent approach to effectively
reduce the number of TLB misses in order to speed up the execution of modern
memory dependent solvers, in particular, unit propagation, sometimes also called
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Boolean constraint propagation. We employ a Linux memory management fea-
ture called transparent huge pages (THP), which reduces the overhead of virtual
memory translations by using larger virtual memory page sizes [52], effectively
increasing the size of that cache. Our approach is based on modifying the stan-
dard C library (glibc), which is the default standard library in Linux systems [2].
Whenever a solver allocates memory, we make sure that we additionally give the
operating system kernel advice about the use of the memory (madvise). This
feature can then be used for a solver simply by recompiling it and statically link-
ing it against our modified glibc. In that way, we obtain a significant speed-up
on benchmarks in model checking of up to 15% and for most other solvers of
up to 10%. The approach is based on a hardware feature and thus generalizable
to other operating systems and CPU architectures supporting large page sizes.

Our advances summarize as follows:

1. We propose an easily accessible way to reduce the number of TLB misses in
combinatorial memory-dependent solvers by patching the glibc in a way that
our modifications can be activated or deactivated at runtime.

2. We provide a build system to easily patch glibc and statically link a solver
against the patched version. Our system is based on a setup that uses OS-level
virtualization (Docker) [31] and is available to all modern Linux systems. We
already provide various pre-compiled state-of-the-art reasoning tools.

3. We carry out extensive benchmarks and present detailed results for various
reasoning tools.

Related Work

Chu, Hardwood, and Stuckey [17] as well as Hölldobler, Manthey, Saptawi-
jaya [29] considered cache utilization in SAT solvers and illustrated how a
resource-unaware SAT solver can be improved by utilizing the cache sensibly,
resulting in reasonable speed-ups. The latter already hinted that using larger
pages results in a speed-up of 10% for SAT solvers, and was a motivation for
this work. The effect of huge pages has already been widely investigated in the
field of operating systems, e.g., [47]. However, the focus was mostly on database
systems, while an analysis of the effect for reasoning tools was not yet avail-
able. Recent research considered benchmarking system tools [38], selecting bench-
marks to tune solvers [30], and treating input benchmarks for benchmarking [12].
These topics are orthogonal to our work. In contrast, we consider computational
resources and memory management of solvers, in particular, its effect on the
runtime. Bornebusch, Wille, and Drechsler [16] analyzed the memory footprint
of SAT solvers and tried to improve them. However, they did not consider prop-
agation and its data structures, which is reasonable from a complexity point of
view due to large formula sizes.

2 Modern CDNL-Based Solvers and Memory

Before we present our advances, we give a brief explanation on how modern
SAT solvers are implemented and introduce components and mechanisms that
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are relevant for memory access. As many reasoners are based on SAT technol-
ogy, e.g., [13,35,53], core concepts are very similar for various reasoners. First, we
define (propositional) formulas and their evaluation in the usual way and assume
familiarity with standard notations, including satisfiability. For basic literature,
we refer to introductory work [36]. We consider a universe U of propositional
variables. A literal is a variable or its negation and a clause is a finite set of
literals. A (CNF) formula is a finite set of clauses. A (partial) truth assignment
is a mapping τ : var(X) → {0, 1} defined for a set X ⊆ U of variables. For x ∈ X,
we put τ(¬x) = 1−τ(x). For a formula F , we abbreviate by var(F ) the variables
that occur in F . We say that a truth assignment τ satisfies a clause C, if for
at least one literal � ∈ C we have τ(�) = 1. We say that a truth assignment τ
falsifies a clause C, if it assigns all its literals to 0. We call a clause C unit if τ
assigns all but one literal to 0. A truth assignment τ is satisfying if for each
clause C ∈ F , the truth assignment τ satisfies C.

2.1 SAT Solvers

So far, there are two main contributing factors to advances in the efficiency of
modern SAT solvers: (i) theoretical improvements in terms of more advanced
algorithms and heuristics and (ii) algorithm engineering in terms of data struc-
tures. The core algorithm that drives search in modern SAT solvers is based on
conflict driven no-good learning (CDNL) or also known as conflict driven clause
learning (CDCL) [26,42], which was widely extended by search heuristics [13,34]
and simplification techniques during search [33]. A key technique is unit propaga-
tion, which aims at finding clauses where all literals but one are already assigned
and then setting the remaining literal to a value that satisfies the clause. Unit
propagation is responsible for the vast majority of the overall runtime even in
modern solvers [34]. Hence, algorithm engineering and efficient data structures
are essential for practical solving, i.e., the two-watched-literal scheme for unit
propagation [45] and fast lookup tables, which are also important for the used
heuristics and learning techniques. The watched literal scheme reduces the num-
ber of steps in the algorithm and memory accesses, but decreases the efficiency
of the memory access [29]. Still, this results in a considerable overall runtime
improvement [34]. While lookup tables provide fast access to relevant clauses,
they result in a much higher memory footprint and may yield unpredictable
memory access [29].

2.2 CPUs, Virtual Memory, and Paging

Modern operating systems (OSes) provide the concept of virtual memory to
applications. Thereby, the OS releases software developers from worrying about
the actual physical memory layout and also allows for overcommitting resources.
Virtual memory is managed at the granularity of pages. A page is a contiguous
block of memory in the virtual address space. The OS can map a page to a
page frame, which is a corresponding location in physical memory. On the Intel
Architecture [32], page tables describe the mapping from pages to page frames
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Fig. 1. This figure illustrates how pages cover a sequence of memory accesses for two
different sizes of pages for a given amount of memory.

and thus virtual to physical addresses. On 64-bit Intel systems, these page tables
are trees with a depth of commonly up to four levels for 248-byte address spaces.

Walking these data structures to provide a translation for each memory access
is infeasible, because it would add one page table read per level for each intended
memory access. Instead, processors take advantage of spatial and temporal local-
ity of memory accesses and cache translations in Translation Lookaside Buffers
(TLBs). An Intel Skylake system has two levels of TLBs and the unified L2 TLB
can hold 1536 entries [54]. Other recent CPUs have similar specifications. With
4 KiB pages, this translates to holding translations for 6 MiB of virtual mem-
ory in the TLB. A straight-forward way to increase the capacity of the TLB
is for the processor architecture to allow for larger page sizes. On Intel 64-bit
systems, in addition to 4 KiB pages, the system also supports 2 MiB and 1 GiB
pages. While 1 GiB pages have (few) dedicated TLB entries, 2 MiB pages share
the same entries as 4 KiB entries in the TLB on Skylake.

To benefit from large pages, the OS needs to make them accessible to appli-
cations [1] by constantly freeing memory (defragmenting) to obtain continuous
blocks from which large pages can be allocated [46]. In more detail, fragmen-
tation originates from applications that use 4 KiB pages for which short blocks
of memory are frequently allocated and freed. If many applications using 4 KiB
pages run in parallel, memory fragmentation is more likely. Then, it is harder to
obtain free blocks of 2 MiB memory. To still be able to use larger pages, the OS
tries to restructure the memory mapping for future 2 MiB requests.

Figure 1 illustrates the usage of memory with pages of different sizes. When
using larger pages, fewer pages are required to cover the same area of memory.
Hence, fewer TLB entries are occupied. In more detail, the black boxes in Fig. 1
illustrate a sequence of accesses (from top to bottom). While for larger pages
(right) it is sufficient to memorize the translation for three pages, smaller pages
require seven pages (left). In case the TLB can only hold four entries, the entry
of Page 0 would be evicted before it can be re-used to access the same clause
again. When using larger pages, fewer initial translations have to be done, and
only three pages are required to perform all accesses.

2.3 Large Pages in Linux

Large page sizes are supported in Linux by a feature called transparent huge
pages (THP), which offers both implicit and explicit use of large page sizes and
was introduced in Linux 2.6.38 [52]. If THP is enabled, memory does not have
to be statically provisioned for applications to use large pages, which is a clear
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advantage over previous attempts involving large pages [48]. Instead, the sys-
tem is continuously compacting memory to free up contiguous space to allocate
large pages. The Linux kernel can then, depending on the system configuration,
transparently allocate large pages for applications. If intended, a system adminis-
trator can still additionally provision large pages manually. THP can be globally
enabled or configured as an opt-in feature. Both mechanisms degrade gracefully
when no large pages are available and will instead back memory using the stan-
dard page size. When THP is configured for opt-in, an application can use the
system call “madvise” with the “MADV HUGEPAGE” flag to mark memory
regions as eligible. If this is done for virtual memory regions that have not been
backed by physical memory yet, e.g., directly after a “mmap” call, the kernel
will try to allocate a large page on the first access to this memory. Otherwise, the
kernel will occasionally scan virtual memory that is eligible for THP to create
large pages. One downside of THP is that the kernel has to run scan and com-
pact operations. Linux allows to configure this behavior to mitigate the impact
by paying the cost for scanning and compacting at allocation time instead of
doing it as a background job.

2.4 The Effect of THP

System workloads are known to speed up with huge pages. However, it may also
reduce reproducibility, as huge pages have to be enabled in the kernel and glob-
ally for all applications on the system [48] and not every request might actually
get a huge page. Hence, it is recommended to use small pages for benchmark-
ing. Unfortunately, the StarExec cluster [51] has enabled THP by default for
all executed programs making it incomparable to standard university comput-
ers, clusters, and industrial settings. The presented contribution is hence more
targeted towards industrial use cases that want to solve a problem at hand as
fast as possible. In case of virtualized machines, using small pages can result in
almost 50% of the runtime being spent in address translation [39]. Using huge
pages in both the guest and the host, which is 2M instead of 4k on the given
architecture, reduces this value to about 4%. We expect similar savings for tools
that are run in a virtualized environment, as virtualization typically uses huge
pages internally. In the remainder of the paper, we investigate the actual effect
on a bare metal setup for our experimental work.

3 TLB Misses in SAT Solvers

Typically, SAT solvers do not exhibit the memory access locality that caches or
TLB are optimized for. While previous works considered caches [17,29], memory
translation and the TLB have not been taken into account. Hence, we focus on
memory accesses in the most time consuming part of SAT solvers: unit propaga-
tion, also called Boolean constraint propagation.
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UnitPropagate (formula F , truth assignment τ , literals P , watch lists L)

while the list P of literals to propagate is not empty //compute closure

pick p ∈ P , and remove from P //typically DFS

access watch list Lp of clauses such that ¬p ∈ C //propagate

for all clauses C in Lp:

if C �= ∅, x ∈ C, and x not falsified in assignment τ //watchable literal

remove C from Lp //maintain lists

add C to watch list L¬x for ¬x //maintain lists

else if C = (x) unit, extend P and τ with x //unit rule

else if C is falsified, trigger conflict analysis(τ , C) //conflict

Listing 1: Pseudo code for an implementation of unit propagation with the watched
literal scheme. The state of the solver holds the formula F as watch lists L, one list Lx

for each literal x, as well as a truth assignment τ , and the list P of literals to propagate.
The result of the algorithm will either be an extension of the truth assignment, or a
tuple truth assignment τ and a conflict clause that is falsified by truth assignment τ .

Assume that a formula F and a partial truth assignment τ is given and a
two watched literal data structure is used [45]. Briefly, unit propagation works
as outlined in Listing 1. Initially, for each clause C ∈ F , one selects two liter-
als from C, which are not non-falsified by truth assignment τ . Then, the truth
assignment τ is extended by setting additional variables. Since assigning a lit-
eral � ∈ C such that τ(�) = 1 results in clause C that is satisfied, which in
turn allows to remove clause C from the considered clauses right away, the only
interesting case is if truth assignment τ sets literal � ∈ C such that τ(�) = 0. In
that case, the clause C might be falsified and be involved in a conflict or have
unassigned literals, which can be used to imply the truth value of other literals.
Then, UnitPropagate checks every clause C that contains a literal which might
be falsified during propagation. Therefore, the list P of literals to propagate is
traversed (Line B1), and each watch list Lp for literal p is processed (Line B3).
Then, each clause C in list Lp contains ¬p, so that the new state of clause C
has to be evaluated by processing the other literals in clause C. Hence there
are two cases: either (i) clause C is satisfied by another literal, or (ii) clause C
contains another literal x that is not yet falsified by the truth assignment τ
(Line B5). Then, we watch literal x ∈ C for being set to false instead of ¬p, and
consequently have to update list Lp (Line B6) and list L¬x (Line B7). Other-
wise, clause C might be a unit clause (Line B8) or might be falsified by truth
assignment τ (Line B9). In both cases, clause C can remain in list Lp.

When considering the memory access pattern, the unit propagation algorithm
has the following properties: the literals in list P are not easily determined in
advance. Hence, accesses in Line B3 to load the list are hard to predict. One
could reduce the memory accesses in Lines B3 and B4 by pre-fetching data from
memory in advance. This has been proposed in previous works [29]. Accessing
the clauses in Line B4 are hard to predict, as the order of the clauses in list Lp

changes. In more detail, in Line B6 some clauses are removed and in Line B8
or B9 others are kept. To improve the access behavior in Line B5, Een and
Sorensson [22] proposed for MiniSAT 2.1 an optimization to avoid the access
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of clause C for the satisfied case. There, another literal of clause C is stored in
list Lp. Since their introduction, blocking literals are commonly used in most
modern solvers. Accessing literal x in Line B5 is also unpredictable, as literal
order in clauses also changes. Typically, the two watched literals are the first two
stored literals and they change whenever the clause is moved to another list.

Our hypothesis is that unit propagation is the major source of memory
accesses, as most runtime is spent in unit propagation, and many different mem-
ory locations, i.e., clauses are accessed non-linearly during unit propagation. This
drives us to the following hypothesis:

Hypothesis 1. Accessing clauses during unit propagation as well as updating
and accessing watch lists has a high impact on TLB misses.

We support our hypothesis by the following observation. The two watched
literals data structure allows to keep the number of overall accesses low, but has
high memory footprint with additional data structures and lists. Further, the
memory accesses for (i) clause to access next, (ii) literals of a clause to watch
next, or (iii) list to place it are difficult to predict. Hence, Lines B3, B4, and B7
are prime candidates to access memory locations that have not been accessed
recently, and hence, are not cached, nor served with current TLB entries.

Analyzing Unit Propagation. To back up Hypothesis 1 with data, we analyze the
distribution of TLB misses in the SAT solvers MiniSat and Glucose1. When run-
ning MiniSat [22], we observe that 90% of TLB misses occur in unit propagation;
thereof, about 10% when moving clauses to another (unpredictable) watch list
and about 80% when accessing the first literal of the next watched clause. This
data matches the assumption that Line B3 and B4 are responsible for most of the
TLB misses. In addition, moving clauses to new watch lists contributes another
10%. When running Glucose version 4.2.1 [3], we can see similar results. 90%
of the TLB misses happen in unit propagation. In the modern solver Glucose,
unit propagation is split into (i) propagating binary clauses that contributed 5 %
of all TLB misses, (ii) propagating during learned clause minimization [40] that
contributes about 20 %, and (iii) propagating larger clauses and pushing them to
watch lists that consume the majority of the TLB misses. Empirical observations
for these two solvers confirm our hypothesis, unit propagation is the major source
for TLB misses. The random memory accesses to check the next clause in the list
for being unit, which can have an arbitrary memory location, as well as putting
clauses into another watch list, are the major contributors. Unit propagation is
responsible for a large fraction of the runtime of SAT solvers, which is actually
spent in address translation. In Lingeling, Biere [8] places watch lists and its
clauses closer to each other, to avoid TLB misses related to Line B4 (matching
our observations in Sect. 5.1). Here, we present an orthogonal approach to avoid
TLB misses, which allows to improve the implementation [8] further and can be
applied to many other solvers.

1 We use a sampling approach of CPU performance counters for TLB misses with the
system tool perf.
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Unit Propagation Implementation Outlook. We believe that additional data
structure improvements along [17] are hardly feasible. Clauses would have to be
even more compact and the changes require a huge effort for a single solver [7].
Changes to the underlying algorithms likely result in reduced performance and
require tuning parameters again. On that account, we propose a general app-
roach to THP, which can be easily used by many other tools.

4 Improving Unit Propagation with THP via Madvise

Modern Linux distributions provide native support for transparent huge pages.
Usually, the systems allow a superuser to define the behavior via the config-
uration file “/sys/kernel/mm/transparent hugepage/enabled” whose values
“always” or “never” apply to all running processes. Because there might be appli-
cations running on the host that would suffer from larger pages, THP is usually
disabled on physical systems and it is not advised to set the value to always.
Fortunately, as described above, Linux also allows to use huge pages via the
madvise system call. While this sounds fairly trivial, it requires (i) lots of man-
ual adaption of the source code to mark memory regions as eligible and in turn
makes the implementations of solvers (ii) fairly incomparable on an algorithmic
level. When using “madvise” in combination with every malloc in a SAT solver,
no speed-up is obtained, as most allocations are not aligned to the required large
page size of 2M, and consequently are not backed by a huge page. In the follow-
ing, we suggest an easily accessible way to reduce the number of TLB misses in
combinatorial memory-dependent solvers.

4.1 Using More Huge Pages

In the previous section, we explained that using more huge pages seems to be
a reasonable approach to speed up the memory access of modern solvers. This
can be obtained by running a madvise system call to instruct the kernel to
use transparent huge pages of 2M whenever the solver allocates memory. Then,
we align all requested memory to 2M addresses and increase the size of the
reservation accordingly, so that huge pages can actually be used. If we would
not do so, two memory requests of the application can be in the middle of a 2M
page, which results in not using a huge page. Compared to the system setting,
this change results in using one more huge page per misaligned memory request.

4.2 Patching the Standard C Library (glibc)

In order to provide a transparent way to various solver developers, and offering
a way for algorithms engineering to consider the effect of transparent huge pages
on many AR tools, we want to avoid manual source code adaption as much as
possible. To this end, we put our focus on the standard C system library glibc,
which already provides standard functions to access the system memory. The
library is used in Linux to compile most of the solvers. Instead of modifying
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the source code of various solvers, we implement the above mentioned ideas
into glibc2. Whenever a certain runtime flag is activated, our modified glibc
takes care of the above mentioned changes. The current approach uses a system
environment variable (GLIBC THP ALWAYS=1) that can be specified before calling
a program. This way we allow setting the flag for a specific program instead of
all running programs. Globally enabling transparent huge pages for all running
applications on the system is usually forbidden both in industry and academia by
administrators due to a variety of potential side effects, which might slow down
a variety of programs. If the flag is not set, we disable the use of huge pages. The
additional cost, compared to glibc, is a single if-statement in combination with
the madvise system call. We implemented our patches into glibc 2.23 [2] and
enable the feature without any source code modification of the various solvers
themselves. In that way it is entirely sufficient for the user of a solver to recompile
the solver and link it against our modified glibc.

4.3 Huge Pages in a Solver

In order to use the feature, there are two ways to proceed: (i) link the solver
statically against our modified glibc or (ii) patch the system glibc and then
dynamically link the solver against the new glibc. We provide an easy and acces-
sible way for the former, since patching the system glibc is usually considered
problematic due to side effects and as it requires superuser permissions, which
makes it very unlikely that actual users of the reasoning tools will use this fea-
ture. We introduce a virtual environment that allows for easy compiling of the
solver, in order to avoid problematic setups of a new secondary glibc.

Our system is based on the OS-level virtualization Docker [31], which isolates
running programs entirely from each other. Docker itself is available on all mod-
ern OSes and allows to deliver software in packages, which are called containers.
A running container is entirely isolated and can bundle its own software. We use
this to not interfere with the system glibc. But we do not publish only a Docker
container, instead we provide the scripts to build containers in which the compi-
lation then runs. The user just needs to install Docker and we provide the tooling
to link a solver with THP support. Along, we give many exemplary scripts to
highlight how to run the tools and various pre-compiled state-of-the-art solvers.

We would like to emphasize that in our approach Docker is only used to
compile the solver, not to actually run the solver. Compiling within a Docker
environment can be done on a local machine or a trusted machine where the
user has privileged access (as Docker often requires certain additional privileges)
or is simply allowed to run Docker containers. Then, the resulting binary is
transferred to the runtime environment. Since we compile files statically inside
the Docker container to the modified glibc, there is absolutely no need to install
a patched glibc or a Docker environment on the actual runtime system.

2 Our latest implementation is publicly available at github:daajoe/thp docker build
and the glib patch at github:conp-solutions/thp. An upstream to the glibc library is
in progress and we are in contact with the glibc maintainers.

https://github.com/daajoe/thp_docker_build
https://github.com/conp-solutions/thp
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Table 1. Overview on the speed-up between solving when using THP for SAT solvers.
We distinguish by non-THP and THP by ·n and ·thp, respectively. # counts the number
of solved instances. t contains the runtime in hours for the mutually solved instances,
s the saved runtime in %, i.e., s = (tn − tthp)/tn · 100 factor. TLB represents the TLB
load misses on the mutually solved instances. rtlb summarizes the % of TLB misses
over the original TLB misses, i.e., rtlb = TLBthp/TLBn · 100. tlb[s] contains the TLB
misses per second in relation to the physical bus speed of the CPU for 4 threads sharing
the memory (9.6 GT/s /4).

Solver #n #thp tn tthp s[%] TLBn TLBthp rtlb tlb[s]n tlb[s]tlb

1 Winner19 194 197 7.38 6.13 16.97 3.4e+11 1.3e+10 3.94 5.35 0.25

2 MergeSAT 190 192 6.89 5.70 17.24 3.4e+11 1e+10 3.04 5.77 0.21

3 CaDiCaL 189 191 5.62 5.00 11.04 1.7e+11 5.6e+09 3.22 3.55 0.13

4 Glucose 189 191 4.50 3.66 18.72 2.6e+11 6.3e+09 2.44 6.61 0.20

5 CryptoM 183 185 6.54 5.75 12.06 2.5e+11 8.2e+09 3.21 4.51 0.16

6 Lingeling 177 178 6.29 5.97 5.08 5.6e+10 6.3e+08 1.12 1.04 0.01

7 MiniSat 169 173 6.99 5.96 14.75 2.8e+11 3.3e+09 1.20 4.56 0.06

5 Experimental Evaluation

We conducted a series of experiments using standard benchmark sets for various
reasoning tools to analyze the effect of THP beyond pure SAT. All benchmark
sets and our results are publicly available.

Benchmarked Solvers and Instances. In our experimental work, we present
results for recent versions of publicly available SAT solvers: CaDiCaL, Crypto-
MiniSat 5, Glucose 4.2.1 [3], Lingeling [9], MapleLCMDistChronoBTDL (Win-
ner2019) [37], MergeSAT [41], and MiniSat [22]. We selected the recommended
benchmark for tool tuning [30] and compare MiniSat and MergeSAT from the
above set of SAT tools again on a second hardware. For answer set program-
ming (ASP), we used clasp [35] and a robust benchmark set, which was devel-
oped for solver optimization and provides a large variety of instances, with
adapted instance hardness, and free of duplicates [30]. From software model
checking (SWMC), we use CBMC [18], which uses a single call to a SAT solver.
As SWMC benchmark, we use the benchmark provided when introducing the
LLBMC tool [44]. As another group, we collected tools, which use incremental
SAT solvers as a backend. For hardware model checking (HWMC), we use the
bounded model checker aigbmc [11], with an unrolling limit of 100, and use the
benchmark of the deep bound track of the HWMC Competition of 2017 [10]. For
optimization, we use the MaxSAT solver Open-WBO [43], which uses the SAT
solver Glucose as a backend. As MaxSAT benchmark, we picked the weighted par-
tial maxsat formulas from 2014, to make sure the incremental interface is actually
used. Finally, we consider muser-2 [6], which computes a minimal unsatisfiable
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subformula (MUS) from a CNF formula, and use the group MUS benchmark
from the MUS competition 20113.

5.1 Evaluating Boolean Satisfiability (SAT) Solvers

For plain SAT solvers we carried out the following extensive study.

Measure, Setup, and Resource Enforcements. Our results were gathered
on a cluster of RHEL 7.7 Linux machines with kernel 3.10.0-1062 with activated
Meltdown and Spectre mitigations4. We evaluated the solvers on machines with
two sockets equipped with Intel Xeon E5-2680v3 CPUs of 12 physical cores each
at 2.50 GHz base frequency. We forced the performance governors to 2.5 Ghz [28]
and disabled hyper-threading. To follow the hardware structure of the system,
we manually grouped the solver resources as follows: on each socket the first
two cores where restricted to controlling threads and processor cores 2, 3, 4, 5,
8 (virtual cores 2–6) and 9, 10, 11, 12, 13 (virtual cores 7–11) were assigned
each to one running solver. The machines are equipped with 64 GB main mem-
ory of which 60.5 GB are freely available to programs. We compare wall clock
time and number of timeouts. However, we avoid IO access on the CPU solvers
whenever possible, i.e., we load instances into the RAM before we start solving.
We run at most 4 solvers on one node, set a timeout of 900 s, and limited avail-
able RAM to 8 GB per instance and solver. We follow standard guidelines for
benchmarking [38].

SAT Results. Table 1 gives an overview of the number of solved instances for
each solver with and without THP. Note that we report in this table only for
columns #n and #thp on individually solved instances. To obtain comparability
for all other columns, we present data for instances that have been solved by both
configurations. The results show that a solver with activated THP solves overall
more instances than without THP. When considering runtime, the configurations
that employ THP solve the considered instances faster. Runtime improvements
range from a smaller improvement for Lingeling, which was about 5% faster
(which translates to 0.32 h), up to more than 17% (i.e. one hour) faster for
MergeSAT, MiniSat, and Winner2019. In terms of factor of saved runtime hours,
we can see that the solvers that employ THP are up to almost 19% faster. As
these values are gathered over the whole benchmark, these values are averages.
For higher run-times, the speed-up is typically higher than for instances with a
smaller runtime. The number of TLB misses that we observed reduce up to 2
orders, namely, rtlb = TLBthp/TLBn goes down to 1% for Lingeling and MiniSat.
When we consider the number of solved instances, the value improves for all
presented solvers when using THP, between 1 and 4 instances. As the presented

3 MUS benchmarks are available at cril.univ-artois.fr/SAT11.
4 Note that we initially also ran experiments with an earlier kernel 3.10.0-693. There,

non-THP runtime results were comparable, but improvements were slightly smaller.

http://www.cril.univ-artois.fr/SAT11/bench/SAT11-Competition-GMUS-SelectedBenchmarks.tar
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technique is a linear speed-up, we do not expect a major change in number of
solved instances for a specific timeout, due to the heavy-tailed runtime behavior
of SAT solvers. Three solvers show a slightly different pattern. For Lingeling,
we reduced the TLB misses to 1.1% and obtained only a speed-up of 5.4%. For
CaDiCaL, we reduced the TLB misses to 3.22% and obtained a speed-up of only
12.4%. For CryptoMiniSat, we reduced the TLB misses to 3.21% and obtained a
speed-up of 13.7%. The last two columns illustrate the number of TLB misses per
second (on average) in relation to the physical bus speed for 4 threads. Solvers
with a higher initial value have a higher potential to benefit, which is reflected
in our results.

Discussion and Summary. The results show that a solver with activated
THP solves overall more instances than without THP. Throughout all solvers,
we reduced the overall running time by 5% up to 19%. Our approach makes all
solvers faster without spending a significant amount of time on optimizing the
solver itself. Throughout our experiments, the number of TLB misses goes down
significantly for all considered solvers. For Lingeling and MiniSat, the number
of TLB misses even reduces to 1% of the original number of misses. Since unit
propagation is a major source of memory accesses and a major cause of a high
number of TLB misses and responsible of a large part of the solving time, the
reduced TLB misses also yield a speed-up in the overall runtime. The observed
results above confirm our hypothesis that improving on the number of TLB
misses improves the runtime. We observe that three solvers have a somewhat
different pattern, namely, CaDiCaL, CryptoMiniSat, Lingeling. While we obtain
a speed-up, it is smaller than the order of the reduction of the TLB misses.
If we compare the numbers to TLB misses per second and relate this to the
physical bus speed that is shared by 4 threads – the value tlb[s] in Table 1, it
suggests that the solvers CaDiCaL, CryptoMiniSat, Lingeling, and MiniSat are
more optimized than the other solvers, where MiniSat also only maintains one
watch list per literal, whereas the other solvers have a separate list for binary
clauses, resulting in more memory fragmentation.

5.2 Evaluating Other Reasoners

We believe that the THP approach does not only boost SAT solvers, but other
reasoners as well. On that account, we run additional experiments on tools that
are either based on SAT solvers or implemented closely to the CDNL algorithm.
To broaden the applicability, we also consider tools that use SAT solvers via
their incremental interface [22]. As the SAT calls in these tools are shorter, we
expect that the benefit of using THP is smaller.

Hypothesis 2. When using incremental SAT solvers inside a reasoner, the ben-
efit of THP is smaller.
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Table 2. Overview on the runtime of various reasoners with(out) THP evaluated on
their respective competition benchmarks. tn and tthp represent the overall (PAR1)
runtime of the reasoner in hours and s represents the saved runtime in %.

Category Tool tn tthp s[%]

SAT MiniSat 8.17 7.03 13.99

SAT MergeSAT 7.94 6.90 13.13

ASP clasp 3.66 3.29 10.18

MaxSAT open-wbo 1.19 1.09 8.49

MUS muser2 4.18 3.97 5.16

HWMC aigbmc 0.89 0.86 4.11

SWMC cbmc 0.23 0.22 2.76

Measure, Setup, and Resource Enforcements. To support Hypothesis 2, we run a
second analysis. To make sure the above results are not CPU and OS dependent,
we used a second environment of the same architecture and repeat the results for
MiniSat and MergeSAT. The computer has an Intel Core i5-2520M CPU running
at 2.50 GHz, with an Ubuntu 16.04 and Linux 4.15, using 5 GB as memory limit
and the 900 s as timeout per instance.

Results. Table 2 states the results for the considered tools and benchmarks. To
measure the speed-up, we show only instances that have been solved by both
variants. When using THP, we can usually solve a few more instances. First,
we can see a similar improvement like in the previous setting where we used
the same architecture, but different hardware. The improvement when using
THP for tools with a single call is similarly high as presented above, i.e., SAT
as well as ASP show improvements above 10%. Only cbmc from SWMC is an
outlier, which might be related to its memory usage and the time it spends in
other algorithms. For tools that use incremental SAT solvers as a backend, the
improvements range from 4% from HWMC to 8% in MaxSAT. The low speed-
up can be explained with their memory usage: over each benchmark, cbmc’s
memory usage is rather low, i.e., the median memory footprint is 8.8 MB. For all
the other tools and categories, the memory footprint is higher, e.g., the median
for ASP is 28.8 MB and for SAT 123.3 MB. The tools with incremental SAT
backends also consume more memory than cbmc: MaxSAT 21.3 MB, HWMC
164 MB, and MUS 298.1 MB. As expected, tools with a higher memory footprint
result in a higher speed-up due to transparent huge pages.

6 Conclusion and Future Work

Summary. Although reasoners solve NP-hard problems, they are used across the
research community to solve many tasks in artificial intelligence. Reasoners are
also employed in industry to verify properties, generate tests, or run similar tasks.
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In this paper, we introduced a simple and transparent approach to effectively
speed up memory access of reasoners by reducing the number of TLB misses,
which in turn allows to significantly improve their runtime. Our approach is based
on a modification of glibc, which is the C standard library of the GNU Project
and widely used in Linux for C and C++ programs. A user of a reasoner can
benefit from our improvement simply by recompiling his favorite reasoner and
enabling the feature by an environment flag when invoking it. Our experiments
confirmed that an application can save up to 25% runtime on certain instances
and on average more than 10%. Since the tools based on SAT solvers are often
also used for long running jobs, for example in systems biology or verification,
we can save a significant amount of runtime, and hence operational cost. In that
way, the number of solved instances might not always be the right measure to
evaluate a reasoner, but the overall runtime should be taken into account as well.

Other Applications. We believe that our approach can also be very beneficial
for other tools in automated reasoning, because there are many memory inten-
sive applications that have simply not been tuned to reduce the number of
TLB misses by using THP. One such domain might be computing (hyper-)graph
parameters, which employ SAT [25] or SMT [23,24,49]. Another domain might
be graph algorithms [15,19,21], which can have random memory access patterns
if the underlying data structure is updated often.

Potential Benefits for CP Solvers. Our current work is tailored to algorithms
that heavily use unit propagation and two watched literal data structures. While
we expect similar behavior for algorithms that employ similar features and mem-
ory usage behavior, many CP solvers implement propagators that are heavily
computation intensive and less memory dependent. So far, we have no evidence
that the proposed techniques improve such CP solvers. Still, it could be helpful
for some solvers that use lazy clause generation. This, however, requires more
detailed experimental evaluations on a variety of benchmarks.

Industrial Effects. We believe that our approach can be very beneficial for indus-
try in settings where AR tools are used for continuous builds, testing, and inte-
gration. In particular, we expect that the technique proves useful when there
are monetary demands introduced by using computation platforms, which allow
for easy scalability, but bill resources by allocation time, such as Amazon Web
Services, Microsoft Azure, and Google Cloud [4,5].

Future Work. In the future, we are interested in the influence of THP on various
other domains and in increasing the amount of tested benchmarks and reasoning
tools. We hope that this opens up both theoretical and practical research on more
general algorithm engineering techniques.
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Abstract. The argmax function returns the index of the (first copy of
the) maximum value occuring in a list of values. argmax is important
in models where we choose a characteristic value based on a seperate
criteria, and for modelling neural networks which make use of argmax in
their definition. The argmax constraint has been studied for the special
case of its use to find the index of the first true in a list of Booleans,
since this is useful for encoding if-then-else chains. Here we examine
the general argmax constraint for the first time. We define an efficient
domain consistent propagator and a decomposition for integers which
implements domain consistency.

1 Introduction

The argmax function returns the index of the maximum value occuring in a list
of values. Importantly, if two or more entries in the list take the maximum value
it returns the index of the first such value. While argmax is a well understood
mathematical operator, it not nearly as widely used as, for example, max. In that
sense it has not been carefully considered previously. Recently, a propagation
algorithm for argmax was developed for the restricted case of a Boolean array
with known upper bound [12]. However, the general case of non-fixed numeric
arguments has never been considered in detail.

argmax is important as a constraint since it allows us to embed optimization
problems as subproblems of another problem, where we want have access to the
solution that leads to the optimal result, rather than just the optimal value.

Example 1. argmax is used to model selecting a value based on a separate
criteria. Let (xi, yi) be pairs of possible values to be selected xi and the wor-
thiness criteria for that selection yi, then a model to select the best value v is
v = xargmax y. More concretely, in MiniZinc this is modelled as

1 array [1..n] of var int: x;
2 array [1..n] of var int: y;
3 var int: v = x[arg_max(y)];

argmax is increasingly important for discrete optimization because of its use
in machine learning models. Many forms of machine learning rely on argmax
to define the result of a machine learning algorithm. If we want to use these
models inside a discrete optimization problem then we need to be able to model
the argmax behaviour.
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Example 2. An important modern use of argmax is in the output layer of clas-
sification style neural nets, where the last layer is typically an argmax returning
the class which is most highly likely to be present. A simple MiniZinc model for
such a neural net layer is

1 array[CLASS] of var float: likelihood; % likelihood from NN of each class
2 var CLASS: x = arg_max(likelihood); % most likely class

This is particularly important given the trend towards embedding classi-
fiers as part of optimization models (e.g. [2]). But also given recent interest in
techniques for explainable AI (e.g. [1,4]). Given a classifier K, observations (or
hypotheses) H and output class c, an abductive explanation [7] is a (minimal)
subset of H which still guarantees output class c. For multi-class classification
problems, this requires querying whether H ′ ∧ c �= argmax(likelehood) is satis-
fiable for various subsets H ′ of H. Hence the need to reason about classifiers.

In this paper we investigate the argmax constraint from a constraint pro-
gramming perspective. The contributions of this paper are:

– A complete characterization of the domain consistent propagation possible
from an argmax constraint;

– An efficient domain consistent propagator for argmax;
– A new decomposition for argmax over integers which maintains domain

consistency; and
– Experimental results showing the benefit of the new propagator and decom-

position

The remainder of this paper is organized as follows. In the next section we
introduce notation. In Sect. 3 we examine the current default decomposition for
argmax in the MiniZinc [9] library, which is the only existing argmax imple-
mentation we are aware of, and highlight its shortcomings. In Sect. 4 we define
all the propagation rules that are possible for an argmax constraint, and indeed
prove that applying them results in a domain consistent propagator. In Sect. 5 we
define a new decomposition for argmax which is domain consistent (under some
easy to satisfy conditions about the constraints that implement it). In Sect. 6
we discuss a simpler variant of argmax. In Sect. 7 we provide experiments to
demonstrate the effectiveness of the new propagator and decomposition, on both
unit tests and complete examples that make use of argmax. Finally in Sect. 8
we conclude.

2 Preliminaries

A constraint problem P = 〈V,Dinit, C, o〉 consists of a set of variables V, an initial
domain Dinit, a set of propagators for constraints C and an objective o w.l.o.g.
to be minimized. A domain D is a mapping from each v ∈ V variables to a set of
integer values D(v), which defined the possible values that v can take. We will
use range notation l..u to represent the set of integer R = {d ∈ Z|l ≤ d ∧ d ≤ u}
to define domains.
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An assignment θ is a mapping from V to integers. We say θ ∈ D iff ∀v ∈
V, θ(v) ∈ D(v). An assignment satisfies a constraint c ∈ C if θ(c) is true. A
solution of problem P = 〈V,Dinit, C, o〉 is an assignment θ ∈ Dinit that satisfies
all constraints c ∈ C. An optimal solution θ of P is a solution of P such that for
all other solutions θ′ of P, θ(o) ≤ θ′(o).

We will be interested in discussing propagation behaviour so we introduce
some finer grained notation for reasoning about the current state of a CP solver.
The least value a variable x can take in domain D is lbD(x) = min D(x), similarly
the greatest value variable x can take in domain D is ubD(x) = max D(x). The
atomic constraints for problem P are defined as

{false} ∪ {〈x = d〉 | x ∈ V, d ∈ Dinit(x)} ∪ {〈x ≥ d〉 | x ∈ V, d ∈ Dinit(x) − {lbDinit
(x)}

We treat atomic constraints as propositions that reason about the current
domain D. For example, 〈x = d〉 is true in the current domain D if D(x) = {d},
false if d �∈ D(x) and unknown otherwise. Similarly 〈x ≥ d〉 is true if lbD(x) ≥ d,
false if ubD(x) < d and unknown otherwise.

For real variables1 we need to introduce the additional open atomic con-
straints {〈x > d〉 | d ∈ Dinit(x) − {lbDinit(x)(x)}. For integers 〈x > d〉 is just
shorthand for 〈x ≥ d + 1〉.

We use the notation 〈x �= d〉 as shorthand for ¬ 〈x = d〉, 〈x ≤ d〉 as shorthand
for ¬ 〈x > d〉, and 〈x < d〉 as shorthand for ¬ 〈x ≥ d〉.

Finally, we introduce the notation x 
b y where x and y are numeric and b
is Boolean, which is shorthand for x ≤ y if b = 0 and x < y where b = 1. That is
b is an indicator of the strictness of the comparison. x �b y is similarly defined.
Note that for integers x 
b y is equivalent to x ≤ y−b, and x �b y is equivalent
to x ≥ y + b. The importance of this notation is that given an array [x1, . . . , xn]
if xi 
i<j xj , i �= j then position i cannot be the argmax of the array since xj

is either equal and earlier or greater.

3 Current Argmax Decomposition

The standard MiniZinc encoding (as of 2.4.3) of z = argmax ([x1, . . . , xn]) is
reasonably straightforward: it introduces auxiliary variables mi and pi respec-
tively indicating the value and position of the maximum over the first i elements,
with constraints:

m1 = x1 ∧ p1 = 1
mi+1 = max(mi, xi+1)
pi+1 = if mi < xi+1 then i + 1 else pi

z = pn

This encoding is sound, but unsatisfactory. Assuming an appropriate encod-
ing of the conditional [12] it can propagate forwards to z, but neither enforces
domain consistency on z nor effectively incorporates knowledge of z back into
the bounds.
1 Implemented by floating point ranges.
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Example 3. Consider z = argmax ([x1, x2, x3, x4]), with current domains {z �→
{1, 3, 4}, x1 ∈ 1..3, x2 ∈ 2..10, x3 ∈ 3..5, x4 ∈ 4..6}. Using the decomposition
above, we find:

i 1 2 3 4
D(mi) 1..3 2..10 3..10 4..10
D(pi) {1} 1..2 1..3 {1, 3, 4}

At this point, no further pruning can be performed. However, we miss several
inferences. First, since lbD(x4) > ubD(x1), we can infer 1 /∈ D(z). And for x2

not to be the max, it can be at most 5. ��
The underlying problem with the decomposition is that it doesnt propagate

information backwards about pi. We know that p4 �= 2 which means p2 �= 2
which would allow the pruning of x2.

4 Propagation Behaviour of Argmax

A domain consistent propagator for argmax is the strongest possible imple-
mentation we can hope for in a constraint programming solver. The constraint
z = argmax ([x1, . . . , xn]) can correctly propagate as follows:

– If a value j is known not to be the maximum index value z, then it cannot
take a value greater than (or equal to if it occurs earlier than the index of the
max ubi) to the maximum possible value of the maximum of x1, . . . , xn, ub:

∀j.ubi = argmax i∈D(z)ubD(xi) ∧ ub = ubD(xubi) ∧ 〈z �= j〉
⇒ 〈

xj 
j<ubi ub
〉 (1)

– If a variable xj ’s maximum value is less than the least possible maximum
value of x1, . . . , xn, lb, (or equal to and it occurs at a later position than
where this value first occurs lbi) then it cannot be the argmax position z:

∀j.lbi = argmax i∈1..nlbD(xi) ∧ lb = lbD(xlbi)
∧ 〈

xj 
j<lbi lb
〉 ⇒ 〈z �= j〉 (2)

– If the index of the max z is known to be j then xj cannot take values that
would be too low to be consistent with the least possible value lb of the max
of x1, . . . , xn:

D(z) = {j} ∧ lbi = argmax i∈1..nlbD(xi) ∧ lb = lbD(xlbi)
⇒ 〈

xj �j>lbi lb
〉 (3)

Example 4. Consider Example 3. Figure 1 illustrates the application of the prop-
agation rules. Equation (1) finds ubi = 4, ub = 6 and prunes any values which
would set z to a removed value (marked in green), inferring x2 < 6. Equation (2)
finds lbi = 4, lb = 4 and removes any indices which can no longer become lbi ,
discovering z �= 1 since x1 < 4.

Suppose instead that also D(z) = 1 then Equation 3 will apply enforcing
that x1 ≥ 4 and thus causing failure. ��
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x1 x2 x3 x4

lbi

ubi

4

6

Fig. 1. Propagation of argmax from domains in Example 3. 2 has already been
removed from D(z), so cannot be chosen as ubi .

We can indeed show that these three rules define all the propagation
behaviour we can correctly define for the constraint z = argmax ([x1, . . . , xn]).

Theorem 1. Exhaustive application of the rules of Eqs. (1), (2) and (3) enforces
domain consistency for z = argmax ([x1, . . . , xn]).

Proof. Given domain D which results from the exhaustive application of the
rules of Eqs. (1), (2) and (3), we show that it provides a supporting solution for
each value remaining in the domain.

Suppose j ∈ D(z). We construct a solution θ ∈ D of the constraint where z =
j. We claim that θ = {z �→ j, xj �→ ubD(xj), xi �→ lbD(xi), i �= j} is a solution.
Suppose to the contrary, then there exists i �= j where either lbD(xi) > ubD(xj)
or lbD(xi) = ubD(xj)∧ i < j. Let lbi and lb be defined as in Eq. (2), then clearly
lb ≥ lbD(xi) and the conditions for the Eq. (2) hold, so j �∈ D(z). Contradiction.

Suppose v ∈ D(xj). We construct a solution θ ∈ D of the constraint where
xj = v. Let ubi and ub be defined as in (Eq. 1).

Consider the case where j �= ubi . Consider the valuation θ = {z �→ ubi, xj �→
v, xi �→ ubD(xi), i �= j}. We claim this is a solution. Suppose to the contrary then
v > ubD(xubi) or v = ubD(xubi) ∧ j < ubi . For this to occur j �∈ D(z) otherwise
its impossible by the definition of ubi and ub. But then all the conditions of
Eq. (1) apply and we would have imposed xj 
j<ubi ub, meaning v �∈ D(xj).
Contradiction.

Consider the case where j = ubi . Consider the valuation θ = {z �→ j, xj �→
v, xi �→ lbD(xi)), i �= j}. We claim this is a solution or we can construct an
alternate. Note that j = ubi ∈ D(z) by definition.

Suppose to the contrary θ is not a solution. Then there exists i �= j where
either lbD(xi) > v or lbD(xi) = v ∧ i < j. Let lbi and lb be defined as in Eq. (3),
then clearly lb ≥ v. There are two cases. If D(z) = {j} then the conditions
of Eq. (3) hold and we would have imposed xj �j>lbi lb, meaning v �∈ D(xj).
Contradiction.
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argmax([x1, . . . , xn], z)
ubi ← argmax(ubD(xi)|i ∈ D(z))
ub ← ubD(xubi)
for(j ∈ 1..n − D(z))

post(
〈
xj �j<ubi ub

〉
)

lbi ← argmax(lbD(xi)|i ∈ 1..n)
lb ← lbD(xlbi)
for(j ∈ D(z))

if(ubD(xj) �j<lbi lb):
post(〈z �= j〉)

if(D(z) = {j})
post( xj �lbi<j lbD(xlbi) )

Fig. 2. Basic propagator for z = argmax([x1, ..., xn]).

Otherwise, there is some other value j′ �= j, j′ ∈ D(z). We construct θ′ =
{z �→ j′, xj �→ v, xj′ �→ ubD(x′

j), xi �→ lbD(xi), i �∈ {j, j′}}. Suppose to the
contrary that θ′ is not a solution, then there exists i �= j′ where either lbD(xi) >
ubD(xj′) or lbD(xi) = ubD(xj′) ∧ i < j′. Note that v ≤ lb so it cannot be the
unique cause why ubD(xj′) does not represent the max value assigned to an x
variable in θ′. But this means the conditions of Eq. 2 apply for j = j′ which
would mean we would propagate z �= j′. Contradiction.

Since every value in the domain D is supported by a solution θ of the con-
straint in D the propagation enforces domain consistency. ��

Theorem 1 shows that the propagation rules enforce domain consistency, but
we need to enforce them efficiently. A straightforward propagator implementa-
tion is shown in Figure 2, more or less a direct implementation of rules (1)–(3).
Note that post(a) make the domain change given by the atomic constraint a.
The propagator is clearly O(n).

Table 1 implicitly defines an incremental propagator for the argmax con-
straint. It shows how Eqs. (1–3) are applied on relevant domain change events. lbi
and ubi are maintained between calls. Whenever the current ubi is (potentially)
invalidated, we call filter-ub to compute an updated ubi , then apply Eq. (1) to
tighten upper bonds. When the maximum lower bound increases, filter-z is called
to apply Eq. (2) to prune any invalidated indices. Equation (2) is also applied
upon 〈xi ≤ k〉, but only for the changed index. The complexity of the incremen-
tal propagator is still O(n) since it may need to update ubi or filter multiple
domains.

Example 5. Consider Example 3 where the initial domains are instead {z ∈
{3, 4}, x1 ∈ 1..3, x2 ∈ 2..5, x3 ∈ 3..5, x4 ∈ 4..6} which is a fixpoint for the rules.
The propagator state has ubi = 4, and lbi = 4. If we have new event 〈x2 ≥ 3〉 then
the test immediately fails and nothing happens. If we have new event 〈x1 ≤ 2〉
similarly both test fails and nothing happens. On 〈z �= 4〉 we determine the new
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Table 1. Propagation events for z = argmax([x1, ..., xn]).

on 〈z �= j〉:
if(j = ubi):

filter-ub(D)
else:

post(xi �j<lbi ubD(xubi))
if(D(z) = {j′}):

filter-lb(j′,D)

on 〈xj ≤ k〉:
if(j = ubi):

filter-ub(D)

if(k �j<lbi lbD(xlbi)):
post(z �= j)

on 〈xj ≥ k〉:
if(¬(k �j≤lbi lbD(xlbi)))

lbi ← j
if(D(z) = {j′})

filter-lb(j′,D)
else

filter-z(D)

filter-ub(D):
ubi ← argmax(ubD(xi)|i ∈ D(z))
ub ← ubD(xubi)
for(j ∈ 1..n − D(z))

post(
〈
xj �j<ubi ub

〉
)

filter-z(D):
for(j ∈ D(z)):

if(ubD(xj) �j<lbi lb):
post(〈z �= j〉)

filter-lb(j,D):

post(
〈
xj 
lbi<j lbD(xlbi)

〉
)

lbi ← j

upper bound ub = 5 and ubi = 3 and post 〈x4 ≤ 5〉 and since D(z) is now a
singleton we also post 〈x3 ≥ 4〉. ��

As mentioned above, lbi and ubi are perserved between propagator calls. In
practice, we also persistently track the set Ir = {i ∈ 1..n−D(z) | ¬(ub(xi) 
i<lbi

lb(xlbi))}. This is the set of indices which may be updated by filter-ub: they
have been removed from D(z), but would otherwise be candidates for the max-
imum index. Then in filter-ub we iterate over Ir directly, skipping irrelevant
indices.

Explaining Propagation. In any lazy clause generation [10] solver (as we shall
use in Sect. 7), a propagator for constraint c must provide an explanation for
any inference ϕ: a conjunction E of atomic constraints such that D → E, and
E ∧c → ϕ. Fortunately, for argmax the explanations are readily extracted from
Eqs. (1–3). The explanation for Eq. (1) for

〈
xj 
j<ubi ub

〉
is the most involved,

as we need to justify why ub(xubi) takes its value. That is, for each index, why
it does not support a greater upper bound. The explanation becomes:

∀k∈D(z)

〈
xk 
k<ubi ub

〉 ∧ ∀k/∈D(z) 〈z �= k〉 → 〈
xj 
j<ubi ub

〉
.

The explanation from Eq. (2) as to why 〈z �= j〉 is that there was some other index
k such that lb(xk) �k>j ubD(xj). At the time of propagation, lbi is always such
an index, so our explanation is

〈
xj 
j<lbi lb

〉 ∧ 〈xlbi ≥ lb〉 → 〈z �= j〉 .
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Similarly, the explanation from Eq. (3) for
〈
xj �lbi>j c

〉
is always

〈z = j〉 ∧ ¬ 〈
xlbi 
lbi<j c

〉 → 〈
xj �lbi>j c

〉
.

Example 6. Examining the propagation in Example 4, the explanation for
〈x2 ≤ 5〉 is 〈x1 < 6〉 ∧ 〈x3 ≤ 6〉 ∧ 〈x4 ≤ 6〉 ∧ 〈z �= 2〉 → 〈x2 < 6〉, while the expla-
nation for 〈z �= 1〉 is 〈x1 < 4〉 ∧ 〈x4 ≥ 4〉 → 〈z �= 1〉. ��

5 Decomposition

For the case of integer values, can produce a better decomposition of the argmax
propagator by reasoning lexicographically about the pairs (xj ,−j). The maxi-
mum of these pairs defines the position and value of the max. Using this idea
results in the decomposition below. We introduce auxiliary variables qj to repre-
sent the value of the pair (xj ,−j) as a single integer n×xj +n−j. We introduce
M to represent the maximum value of the pairs. The decomposition is:

qj = n × xj + n − j, 1 ≤ j ≤ n
M = max([q1, . . . , qn])

z �= j ↔ M > qj , 1 ≤ j ≤ n

Note that qi < qj iff xi 
i<j xj . (We cannot do the same for real or floating
point values, as we cannot readily define a view T s.t. T (xi, i) < T (xj , j) ≡
xi 
i<j xj). Note that the qj variables can be defined by variable views [11] and
hence dont exist as separate variables, thus the main cost of the decomposition
is the global max constraint and the reified inequalities bj ↔ M > qj , where bj
is equated to 〈z �= j〉.
Theorem 2. The decomposition defined above implements domain consistency
for the constraint z = argmax([x1, . . . , xn], assuming bounds consistent propa-
gation of max and the reified inequalities, and domain consistent propagation of
qj = n × xj + (u − j).

Proof. We show that it implements all the propagation behaviour discussed in
Sect. 4. Note that qj = n×xj +(n−j) is often implemented by a view [11] which
is equivalent to domain consistent propagation.

Examining Eq. (1) and give a domain D where ubi and ub are defined as
shown in the equation. Suppose the value ubD(M ) arises from position i. If
i ∈ D(z) then ubi = i by definition and bounds consistency of the max and
ubD(M ) = n × ub − (n − ubi). The fact that z �= j will immediately assert
qj < n × ub + (n − ubi) which is equivalent to xj ≤ ub − (j < ubi). This
holds since the propagation of qj = n × xj + (n − j) is domain consistent. Now
consider when i �∈ D(z). Then by bounds consistency of the max ubD(M ) =
n × ubD(xi) − (n − i). But since z �= i the decomposition enforces qi <
n × ubD(xi) − (n − i) or equivalently xi < ubD(xi) by the domain consistent
propagation of qj = n × xj + (n − j). This reduces the upper bound of xi. This
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process will continue until the (new) index i giving the max value for M is in
D(z) otherwise its upper bound will also be reduced. So eventually we hit the
first case above. Hence Eq. (1) is implemented by the decomposition.

Examining Eq. (2) and give a domain D where lbi and lb are defined as shown
in the equation. By bounds consistency of the max lbD(M ) = n × lb + (n − lbi).
The fact that xlbi ≤ lb − (j < lbi) means that qlbi < n × lb + (n − lbi) is known
to be true (by domain consistency of qi = n × xj + (n − j)), meaning that the
constraint will immediately assert z �= j. Hence Eq. (2) is implemented by the
decomposition.

Examining Eq. (3) and give a domain D where lbi and lb are defined as shown
in the equation. By bounds consistency of the max lbD(M ) = n × lb + (n − lbi).
Making z = j enforces M ≤ qj which given the bound on M bounds consistency
enforces (for all qk and in particular) qj ≥ n × lb + (n − lbi) which is by domain
propagation of qi = n × xj + (n − j) equivalent to xj ≥ lb + (lbi < j). Hence
Eq. (3) is implemented by the decomposition. ��

The decomposition has an advantage over the propagator since the intro-
duced variables M and q allow for concise explanations.

Example 7. Consider Example 3. Using the new decomposition we the definition
of the new variables gives domains.

i 1 2 3 4 M
D(qi) 7..15 10..42 13..21 16..24 16..42

The fact that q1 < M must hold enforces 〈z �= 1〉. The explanation is simply
〈q1 ≤ 15〉 ∧ 〈M ≥ 16〉 → 〈z �= 1〉. Assuming the q are defined by views this will
be 〈x1 ≤ 3〉 ∧ 〈M ≥ 16〉 → 〈z �= 1〉. Note that this is more reusable than the
explanation by the propagator which commits to a single variable x4.

Then 〈z �= 2〉 enforces that 〈q2 < 42〉 which removes the top value from its
domain, this then changes the domain of x2 to 2..9 and q2 to 10..38, the process
repeats until the domain of x2 becomes 2..5 and q2 is 10..22 and M is 16..24.
The explanation chain is long, the final explanation for 〈x2 ≤ 5〉 is 〈z �= 2〉 ∧
〈M ≤ 26〉 → 〈x2 ≤ 5〉, which again is agnostic about the reason for the upper
bound on M . ��

6 Argmax Variant

There is a very similar constraint to argmax in the global constraint catalog,
called max index [8]. This relation is defined as

max index(z, [x1, . . . , xn]) ≡ xz = max([x1, . . . , xn])

so it simply requires z to be an index where the maximum value occurs, not
the first. This means it is not functional, and cannot thus be used for encoding
conditional constructs like argmax. The simple definition by decomposition
above is not domain consistent.
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Example 8. Consider the problem of Example 3 where the constraint is instead
max index(z, [x1, x2, x3, x4]). Then the decomposition determines max(x) ∈ 4..10
and propagates z �= 1. It does not determine that x2 ≤ 6 which is a consequence
of the constraint since if x2 = 7 then z could not be the correct index 2. ��

We can define the domain consistent propagator for max index by using rules
analogous to rules (1)–(3).

– If a value j is known not to be the maximum index value z, then it cannot
take a value greater than the maximum possible value of the maximum of
x1, . . . , xn, ub:

∀j.ub = maxi∈D(z) ubD(xi) ∧ 〈z �= j〉 ⇒ 〈xj ≤ ub〉 (4)

– If a variable xj ’s maximum value is less than the least possible maximum
value of x1, . . . , xn, lb, then it cannot be the argmax position z:

∀j.lb = maxi∈1..n lbD(xi) ∧ 〈xj < lb〉 ⇒ 〈z �= j〉 (5)

– If the index of the max z is known to be j then xj cannot take values that
would be too low to be consistent with the least possible value lb of the max
of x1, . . . , xn:

D(z) = {j} ∧ lb = maxi∈1..n lbD(xi) ⇒ 〈xj ≥ lb〉 (6)

We can straightforwardly modify the propagator of Fig. 1 and incremental
update rules of Table 1 to implement this simpler variant.

7 Experimental Evaluation

We have implemented the argmax propagator presented in Sect. 4 in geas [5],
a lazy clause generation-based CP solver. We compare the standard MiniZinc
decomposition dec with the new propagator prop and the new decomposition
new presented in Sect. 5. Experiments were conducted on a Core i7 7820-HQ
2.9 Ghz with 32 Gb ram, running Ubuntu 18.04. All experiments were conducted
with a 600 s timeout. All times are in seconds; a ‘—’ entry indicates a time-
out. Models and instances used in this section are available at https://gkgange.
github.io/papers/2020/argmax.

7.1 Unit Tests

Let π be an n × n matrix of values generated randomly in [1, n]. We construct
a constraint system:

1 forall (i in 1..n) (x[i] = arg_max( [ pi[i, j] * x[j] | j in 1..n ] ));
2 alldifferent(x);

https://gkgange.github.io/papers/2020/argmax
https://gkgange.github.io/papers/2020/argmax
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n dec prop new
30 4.1 0.07 0.11
40 57.16 0.14 0.25
50 362.71 0.86 1.32
60 — 3.88 5.72
70 — 5.96 9.89
80 — 21.82 31.67
90 — 43.93 82.46

100 — 152.32 224.06
110 — 258.95 345.13
120 — — —

Fig. 3. Unit-test performance for argmax on integer variables, for increasing n.

The constraint system is vanishingly unlikely to be satisfiable (and indeed this
occurs in none of our tests).

Results comparing the time for the three argmax implementations to prove
unsatisfiability are given in Fig. 3, for increasing values of n. The standard decom-
position is evidently not competitive. For these problems, the faster propaga-
tion speed of the propagator is more essential than the search reduction from
more expressive nogoods generated by the decomposition. Its often the case that
nogood learning is of limited utility for random problems.

7.2 Wireless Signal Selection

We consider a modified facility location problem, modelling a WLAN planning
task. The problem is to assign signal strengths to a set of access points A,
maximizing connection quality for a set of clients C, subject to:

– Each client connects to the access point with maximum (observed) signal
strength;

– Each client has a desired throughput; and
– Each access point has a maximum total throughput; all connected clients

incur a penalty if their combined bandwidth demands are not met.

We generated instances by placing n access points and m clients randomly on
a 70 × 70 grid, for n ∈ {10, 15, 20} and m ∈ {40, 55, 70, 85}. Each client is
assigned a random throughput chosen uniformly in [1, 100], and each access
point has maximum throughput 300. The argmax constraint is used for the
first constraint.

The results shown in Fig. 4 given the average time on 10 instances of each size,
and in parentheses the number of the 10 instances that succeeded. They clearly
demonstrate that the new propagator and decomposition are substantially better
than the current decomposition. Here the intermediate variable M provides more
reusable nogoods, meaning the new decomposition improves over the propagator.
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APs clients dec prop new
10 40 22.81 (10) 1.87 (10) 1.40 (10)
10 55 264.87 (9) 91.47 (10) 31.01 (10)
10 70 570.91 (2) 416.46 (7) 173.07 (10)
10 85 — (0) 564.23 (1) 461.60 (6)
15 40 49.32 (10) 3.86 (10) 2.00 (10)
15 55 437.44 (5) 185.84 (8) 78.14 (10)
15 70 583.80 (1) 403.88 (4) 310.15 (7)
15 85 — (0) 384.45 (5) 164.66 (10)
20 40 78.58 (10) 7.03 (10) 5.81 (10)
20 55 366.93 (7) 96.25 (9) 55.10 (10)
20 70 545.76 (3) 303.65 (7) 138.06 (9)
20 85 — (0) 574.85 (1) 519.16 (2)

Fig. 4. Comparison of methods on wireless signal selection problems of various sizes.
Columns give average runtime over instances of each size (timeouts are counted as
600 s), and number of instances solved (out of 10).

7.3 Boosted Tree Explanation

For this experiment, we considered the soybean and chess (king-rook vs.
king) classification tasks from the UCI Machine Learning Repository.2 These
tasks have 35 and 6 attributes respectively, and both have 18 possible output
classes. We generated boosted-tree models using XGBoost [3], consisting of 50
trees per class, and encoded the resulting classifiers into MiniZinc. We then took
the first 300 instances from each data-set set, and derived cardinality-minimal
explanations for the observed class label using geas’ core-guided optimization
capabilities [5] to emulate the implicit hitting-set method of [6].

Fig. 5. Time to compute cardinality-minimal explanations for instances of the soybean
and chess classification tasks.

These instances contain only a single argmax constraint, at the head of
a very large system of element and linear constraints. Here, the argmax

2 https://archive.ics.uci.edu/ml/.

https://archive.ics.uci.edu/ml/
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n b-dec b-prop new
25 0.00 0.00 0.00
50 0.00 0.00 0.00

100 0.00 0.00 0.01
200 0.01 0.00 0.01
400 0.01 0.00 0.01
800 0.01 0.00 0.03

1600 0.01 0.01 0.05
3200 0.03 0.01 0.10
6400 0.05 0.02 0.25

n b-dec b-prop new
25 0.00 0.00 0.00
50 0.01 0.00 0.01

100 0.02 0.01 0.02
200 0.04 0.02 0.02
400 0.13 0.08 0.04
800 0.51 0.36 0.09

1600 18.69 2.05 7.53
3200 121.64 13.05 33.08
6400 - 59.09 127.88

(a) Unit test from [12] (b) Alternate unit test.

Fig. 6. Performance of the new decomposition for the specialized Boolean case of
argmax.

propagation constitutes a smaller fraction of runtime – the model spends much
more time in the score computations – but its strength is still important. On
these instances, we see that the propagator and new decomposition perform
similarly, both of which demonstrate advantage over the old decomposition.

7.4 Boolean Arg-Max

Given that the decomposition of Sect. 5 is domain consistent, it is interesting to
consider how it compares to the specialised decomposition of [12] which is also
domain consistent for the case of a Boolean array with at least one true value
(Fig. 5).

Figure 6 compares the performance of our new decomposition with the
decomposition (b-dec) and propagator (b-prop) presented in [12]. Figure 6(a)
give results on the unit-test given in [12]. On this, the existing decomposition
appears better. However, we note that all solvers prove this problem unsatisfi-
able without search – so overhead in setting up the constraints plays a major
factor. (b) reports performance on the following constraint system:

1 array [1..n] of int: d1 = [ (23*i+2) mod n + 1 | i in 1..n];
2 array [1..n+1] of int: t1 = [ (37*i) mod n + 1 | i in 1..n+1];
3

4 array [1..n] of int: d2 = [ (17*i+3) mod n + 1 | i in 1..n];
5 array [1..n+1] of int: t2 = [ (31*i) mod n + 1 | i in 1..n+1];
6 y = t1[ arg_max ([ x = d1[i] | i in 1..n] ++ [true]) ];
7 x = t2[ arg_max ([ y = d2[i] | i in 1..n] ++ [true]) ];

This system is still unsatisfiable, but the unsatisfiability is not discovered at
the root. In this case, the results are rather different. The new decomposition
shows a 2 − 4× speedup compared with the existing decomposition. However,
the dedicated propagator still has a clear advantage on larger instances.

8 Conclusion

The argmax constraint is a valuable if not well studied constraint. The Boolean
version is important for if-then-else-endif constructs, and has recently been
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improved [12]. In this paper we define the domain consistent propagation possible
for argmax and then devise a propagator, and domain consistent decomposi-
tion for the integer case. We show that these markedly improve on the default
decomposition. The decomposition is usually superior for integer problems in
learning solvers which can take advantage of the reasoning about the introduced
variable M . The propagator is superior in contexts where the new decomposition
cannot be used (e.g. for floating point/rational domains), and presumably also
for non-learning solvers which cannot take advantage of the richer language of
learning of the decomposition.
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Abstract. An algorithm is said to be certifying if it outputs, together
with a solution to the problem it solves, a proof that this solution is
correct. We explain how state of the art maximum clique, maximum
weighted clique, maximal clique enumeration and maximum common
(connected) induced subgraph algorithms can be turned into certifying
solvers by using pseudo-Boolean models and cutting planes proofs, and
demonstrate that this approach can also handle reductions between prob-
lems. The generality of our results suggests that this method is ready for
widespread adoption in solvers for combinatorial graph problems.

1 Introduction

McConnell et al. [40] argue that all algorithm implementations should be cer-
tifying : that is, along with their output, they should produce an easily verified
proof that the output is correct. Given the relative frequency of bugs in con-
straint programming (CP) solvers and in dedicated algorithms for hard combi-
natorial problems [7,12,25,42], it would be desirable to see certification becom-
ing a social requirement for all new solvers—as has already happened in the
Boolean satisfiability community through proof logging formats such as RUP
[27], TraceCheck [5], DRAT [29,30,74], LRAT [13] and GRIT [14]. A proof log
is a particular kind of certificate which records the steps taken by a solver in
such a way that the correctness of each step can easily be checked, given that
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all previous steps are known to be correct; the intent is that verifying a proof
log should be very simple, even if solvers carry out complex reasoning.

Until recently, it was generally assumed that proof logging for more pow-
erful CP-style solvers would require either very complicated (and hard to ver-
ify) certificates that must be aware of every kind of propagation performed by
every constraint [72], or an exponential slowdown [22]. However, it has recently
been shown that reasoning over pseudo-Boolean formulae can compactly express
all-different reasoning [19], as well as all of the reasoning carried out by state-
of-the-art subgraph isomorphism solvers [26], despite pseudo-Boolean reasoning
not knowing anything about Hall sets, matchings, vertices, degrees, or paths.

The general idea behind this proof logging is that a constraint satisfac-
tion problem (or other hard problem) is compiled to a pseudo-Boolean (PB)
formula—that is, a 0–1 integer linear program. Then, either a witness of satis-
fiability is provided, or a proof showing that the PB formula implies 0 ≥ 1 is
given. (Optimisation and enumeration problems are also supported.) The proofs
of unsatisfiability demonstrated so far have consisted of a mix of “reverse unit
propagation” (RUP) steps [19,24] to describe the backtracking search tree pro-
duced by the solver, and assistance in deriving any information used by propaga-
tors that is not immediately apparent to unit propagation (such as Hall sets and
Hall violators). In this work, we report that this approach can be used in a more
general way to obtain certifying algorithms (with proofs that can be checked by
the VeriPB verifier [19]) for a range of other hard problems:

– We show how a wide variety of maximum clique algorithms from the literature
can all be enhanced with proof logging, using very similar proof techniques.
We also explain how to adapt this proof logging method to cover the inference
used by a state of the art maximum weight clique solver. Finally, we discuss
certification for all maximal clique enumeration algorithms.

– We also demonstrate proof logging for a state of the art CP-style maximum
common induced subgraph algorithm, including for the connected variant of
the problem.

– Finally, we look at a reduction from maximum common induced subgraph to
maximum clique, which outperforms CP approaches on certain graph classes.
We show that this reduction can be expressed inside the proof log, so we can
take a PB model that was generated for the CP encoding, but then provide
a proof from a clique algorithm—this is a bit like channelling [8], but for
proofs. There are also clique-like algorithms with a propagator to enforce
connectedness. Because the reduction can be viewed as a bijection, we can
continue to express the connectedness constraint only on the CP encoding
(where it is much easier to understand than on the clique encoding), but still
validate clique-like proofs.

Our main conclusion is that proof logging using pseudo-Boolean reasoning is
general and powerful enough to concisely describe the inference used in a wide
range of combinatorial graph algorithms. Although the current implementation
does not scale well enough to deal with the largest instances, it can already
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be used to provide, for the first time, fully verifiable proofs of correctness for
some highly nontrivial medium-sized instances. Also, even if the overhead is
currently too high to have proof logging switched on by default in production,
it provides an excellent tool for debugging of nontrivial optimisation techniques
during solver development. This is because incorrectly implemented steps are
likely to lead to incorrect proofs, which can be detected even when the results
produced by the solver happen to be correct. We believe this tool is mature
enough for widespread adoption, and that requiring all solvers be able to output
proofs would be a natural and desirable step to increase the confidence in the
correctness of state-of-the-art solvers.

2 Clique Problems

A clique in a graph is a set of vertices, where every vertex in this set is adjacent
to every other in this set. The problem of finding a maximum-sized clique in a
graph is broadly applicable, and there are many dedicated solvers for the problem
(which we will discuss below). However, as McCreesh et al. [42] note, at least
some of these solvers are buggy—including the one [35] which was used as a sub-
component by the winner of the 2019 PACE Implementation Challenge [28]. We
therefore begin with a worked example, showing how a machine-verifiable proof
could be constructed to demonstrate and prove the correctness of a solution for
a simple maximum clique instance.

Consider the graph in Fig. 1. To prove that the maximum clique size of this
graph is four, we have to show two things: that it has a clique of four vertices,
and that there is no larger clique. To do so, we use the VeriPB proof verifier,
which takes two files as its input: a pseudo-Boolean model in the standard OPB
format [55], and a proof log which provides a verifiable solution to this model.
Therefore, our first step is to encode the problem of finding a maximum clique in
this graph as a pseudo-Boolean model. We have a 0–1 variable xi for each vertex
i in the graph, an objective which is to maximise the sum of the vertices taken,
and for every non-adjacent pair of vertices, a constraint saying they cannot both
be taken simultaneously. In OPB format, this looks like:

* #variable= 12 #constraint= 41
min: -1 x1 -1 x2 -1 x3 -1 x4 ...and so on... -1 x11 -1 x12 ;
1 ~x3 1 ~x1 >= 1 ;
1 ~x3 1 ~x2 >= 1 ;
1 ~x4 1 ~x1 >= 1 ;
* ...and a further 38 similar lines for the remaining non-edges

Here the first line is a special header comment, the second line specifies that
the objective is to minimise

∑12
i=1 −xi (i.e. to maximise the number of vertices

selected,
∑12

i=1 xi, but OPB supports only minimisation), and subsequent lines
specify constraints. An expression like 1 ~x3 1 ~x1 >= 1 corresponds to the
linear inequality 1x3 + 1x1 ≥ 1, where the overline means negation, xi = 1 − xi.



Certifying Solvers for Clique and Maximum Common Subgraph 341

3

4

6
7

9

10

11
12

1

2

5

8

A: ∅
P: {1 . . . 12}

A: {12}
P: {1, 6, 7, 9}

A: {7, 12}
P: {6, 9} {7, 9, 12}

A: {7, 12}
P: {6}

A: {12}
P: {1, 6, 9}

A: {11}
P: {1, 3, 7, 9, 10}

A: {10, 11}
P: {1, 3, 9}
A: {11}
P: {1, 3, 7, 9}

A: {8}
P: {1, 2, 5, 9}

A: {5, 8}
P: {1, 2} {1, 2, 5, 8}

A: {8}
P: {1, 2, 9}

A: ∅
P: {1, 2, 3, 4, 5, 6, 7, 9, 10}

b1b2

b3b4

b5b6

done obj1

obj2

12 7 9

11

8

10

5 1, 2

12

11

8

7 9

10

5

i ii iii

ivv

vi vii

viii

ix x

xi

xii

Fig. 1. On the left, a graph, with a 4-vertex clique highlighted. On the right, an illustra-
tion of the proof tree used in our worked example to show that this clique is maximum.
The solid arrows show the solver’s view of the search tree, and are labelled either
with a vertex number being accepted or an overlined vertex number being rejected.
Shaded boxes represent states in the search tree where we have accepted the vertices
labelled “A” and can potentially accept the ones labelled “P”, dashed boxes represent
states that are eliminated by a bound, and clear boxes are candidate solutions. Roman
numerals denote states discussed in the text. Dotted lines show the search tree used by
the proof: the crosses with labels correspond to statements that justify a backtrack.

Note the simplicity of this encoding. This is important: the proof we will
produce is expressed in terms of this encoding, and because this process is not
formally verified, any errors in the encoding could potentially lead to a proof
which “proves the wrong thing” being accepted.1

Now we move on to the proof. We could produce proofs of the decision
problems for 4- and 5-cliques, but the VeriPB format also allows us to verify a
branch-and-bound search directly. We now give such a proof, tracing a possible
(and intentionally not very good) algorithm execution as we do so. The proof
log must begin with a header, as follows (asterisk lines are comments):

pseudo-Boolean proof version 1.0
* load the objective function, and the 41 model constraints
f 41 0

Typically, maximum clique algorithms maintain two sets during search: a set
of accepted vertices, A, which is always a growing clique, and a set of possible
vertices P , each of which is adjacent to every vertex in A. Rather than a binary
branching scheme, we will iterate over each vertex in P in turn and first accept

1 We are not aware of any obstacles for providing formal verification for this translation
step. However, since this translation is so simple, in this paper we focus on the more
challenging task of formally verifying the correctness of solvers’ reasoning.
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that vertex, then reject it and accept a second vertex instead. We will carry out
a typical depth-first branch and bound search, with a rather ad hoc bound for
illustration purposes. Our solver will begin in the state labelled i in Fig. 1, with
no vertices accepted and every vertex being possible.

Suppose our solver first branches by deciding to accept vertex 12. Then by
adjacency, only vertices 1, 6, 7 and 9 remain acceptable; we are in state ii.
Suppose now we also accept vertex 7. This leaves vertices 6 and 9 possibly to be
accepted; we are in state iii. We accept vertex 9, which is not adjacent to 6. We
have found a maximal clique with three vertices. We therefore record this in the
proof log, using an “o” rule. This rule tells the verifier to check that the solution
we specified is in fact feasible, and then to create a new constraint,

∑12
i=1 xi ≥ 4,

saying that any future solution must be better; this constraint also allows us to
backtrack, which is marked as “obj1” in Fig. 1. We log this as:

o x7 x9 x12

We are now back to having accepted vertices 7 and 12, but now only 6 remains
possible; this is state iv. Now that we have introduced a new constraint saying
we must set at least four variables to true, it is obvious to a human that we are
at a dead-end and must backtrack. We now have two options: we can explicitly
justify why we can backtrack by deriving a new constraint manually, or we can
rely upon some help from the proof verifier.

To derive the constraint manually, we would proceed as follows. If we sum
the objective line, every non-adjacency constraint involving x7 or x12, and the
non-adjacency constraint involving x6 and x9, we get x2 + x3 + x4 + x5 + 6x7 +
x8 + x10 + 6x12 ≥ 7. Now, for any variable xi, we have an axiom xi ≥ 0. By also
adding these axioms for each i ∈ {2, 3, 4, 5, 8, 10}, and normalising by using the
fact that xi + xi = 1, the sum reduces to 6x7 + 6x12 ≥ 1, which we may then
divide by 6 to get x7 + x12 ≥ 1 as desired. We could express these steps explicitly
in the proof log—and we could also explain an algorithm a solver could use to
know exactly which constraints to sum together and what constant to divide by.
But fortunately, there is an easier approach. By using a “u” rule, we may tell
the proof verifier to introduce a new constraint which is “obviously” true, given
what it knows already. So, we may simply assert:

u 1 ~x12 1 ~x7 >= 1 ;

and the proof verifier will work out the rest. It is able to do this because this new
constraint follows by reverse unit propagation (RUP) [19,24]: that is, if we add
the negation of this constraint and unit propagate,2 then contradiction follows
without search. We may verify this: the negation of the constraint x12 + x7 ≥ 1
is x12 + x7 ≥ 2. From this, unit propagation infers that both x7 and x12 are
1. Then, using the non-adjacency constraints, all variables except x6 and x9

2 In a PB setting, unit propagation is equivalent to achieving integer bounds consis-
tency [9] on all constraints. This is identical to SAT unit propagation on clausal
constraints, but is stronger in general.
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will unit propagate to 0. Now, looking at the new objective constraint, we have
to set at least four variables to 1, so x6 and x9 must both be 1. However,
vertices 6 and 9 are non-adjacent, and so there is a constraint forbidding them
both to be 1. Thus, RUP can derive a contradiction, and can safely add the
asserted constraint—without our hypothetical solver authors having to perform
any complicated bookkeeping. This new constraint is labelled “b1” in Fig. 1.

Our solver is now back in the state that it has accepted vertex 12, and it
has vertices 1, 6, and 9 to choose from; this is state v. Observe that vertices 1
and 6 are non-adjacent, and so it is not possible to make a 4-clique using vertex
12 plus a subset of these vertices. We may therefore backtrack—again, this fact
follows using RUP. We label this “b2” in the figure, and log it as:

u 1 ~x12 >= 1 ;

We are now back at the top of the search tree, having rejected vertex 12
entirely. Suppose we accept vertex 11 next: this leaves vertices 1, 3, 7, 9, and 10
as possibilities, state vi. Then suppose we accept vertex 10, leaving vertices 1,
3, and 9 as possibilities, state vii. Note that none of these vertices are adjacent,
and so we may select at most one of these. To a human, it is now obvious that
we may backtrack, but we must give the proof verifier a little help. Before we
can use a RUP rule to backtrack, we must derive an at-most-one rule showing
that x1 + x3 + x9 ≤ 1. We may do this as follows:

p 1 2 * 19 + 21 + 3 d
p 42 47 +
u 1 ~x11 1 ~x10 >= 1 ;

However, these two “p” lines are not easy to read, as expressed: some of the
numbers are literal constants, some refer to constraints in the model file, and
some refer to constraints we have generated earlier in the verification process.
For this discussion, we will therefore take a few liberties with the proof format in
our running example. Instead of writing “42” for the objective constraint (which
got that number because it was the first introduced constraint, and there are 41
model constraints before it), we will write obj1. Similarly, rather than writing
19 to refer to the model constraint x1+x9 ≥ 1, we will write nonadj1 9. Finally,
we will use the notation � name to give a name to the result of a rule that we
will refer to later on in the proof, or to refer to a point in Fig. 1. After this, any
remaining numbers are literal constants. Thus, the above snippet becomes:

* at most one [ x1 x3 x9 ]
p nonadj1_3 2 * nonadj1_9 + nonadj3_9 + 3 d � tmp1
p obj1 tmp1 +
u 1 ~x11 1 ~x10 >= 1 ; � b3

and we may explain the two “p” rules more easily. In the cutting planes proof
system for pseudo-Boolean formulae [11] upon which VeriPB is based, we can
add together existing constraints, multiply existing constraints by a non-negative
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integer constant, and divide existing constraints by a positive integer constant.
A “p” rule expresses these steps in reverse Polish notation. The first “p” rule
multiplies the non-adjacency constraint x1 + x3 ≥ 1 by 2 to get 2x1 + 2x3 ≥ 2,
adds two more non-adjacency constraints to get 3x1+3x3+2x9 ≥ 4, and divides
this by 3 to get the at-most-one constraint x1+x3+x9 ≥ 2. The second “p” rule
adds this to our objective constraint,

∑12
i=1 xi ≥ 4, to show that the remaining

nine variables must sum to at least 3. This is now sufficient for reverse unit
propagation to justify backtracking step “b3”.

A very similar argument allows us to backtrack again: having accepted ver-
tex 11, and rejected vertices 10 and 12, we may pick at most one of vertices 1, 3,
and 7, plus possibly vertex 9 (state viii). We must help the verifier by generating
another at-most-one constraint:

* at-most-one [ x1 x3 x7 ]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d � tmp2
p obj1 tmp2 +
u 1 ~x11 >= 1 ; � b4

We are back at the top of search. Having rejected vertices 11 and 12, if we now
branch accepting vertex 8 (state ix ), and then vertex 5 (state x ), the remaining
possible vertices 1 and 2 can both be added to form a clique. We thus log this
as a solution, which generates a new objective constraint

∑12
i=1 xi ≥ 5.

o x1 x2 x5 x8 � obj2
u 1 ~x8 1 ~x5 >= 1 ; � b5

Backtracking to the top of the search tree from state xi can be justified by
observing that we may pick at most one of vertices 1 and 9:

p obj2 nonadj1_9 +
u 1 ~x8 >= 1 ; � b6

Finally, having rejected vertices 8, 11, and 12 at the top of search, we are in
state xii, and the remaining nine vertices can be partitioned into independent
sets to create three at-most-one constraints. To allow RUP to unset all nine
vertices, we will combine these constraints incrementally, as follows.

* at-most-one [ x1 x3 x7 ] [ x2 x4 x9 ] [ x5 x6 x10 ]
p nonadj1_3 2 * nonadj1_7 + nonadj3_7 + 3 d � tmp3
p obj2 tmp3 +
p nonadj2_4 2 * nonadj2_9 + nonadj4_9 + 3 d � tmp4
p obj2 tmp3 + tmp4 +
p nonadj5_6 2 * nonadj5_10 + nonadj6_10 + 3 d � tmp5
p obj2 tmp3 + tmp4 + tmp5 +

The proof terminates by asserting that we have proved unsatisfiability—that
is, there is nothing remaining that can beat the best solution we have found.
This is done through a RUP check for contradiction, i.e. that 0 ≥ 1, followed by
a “c” rule to terminate the proof.
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u >= 1 ; � done
c done 0

Having produced this log, we may now hand it and the associated pseudo-
Boolean model file to VeriPB, which will successfully verify it.

There is one other important detail that we have omitted from this proof: in
practice, it is extremely helpful to the verifier if we delete temporary constraints
when they are used, as well as intermediate backtracking constraints after we
have backtracked further up the tree. (This is also crucial for the performance
of proof logging for SAT [74].) VeriPB supports both deletion of numbered con-
straints, and a notion of “levels” which allow all constraints generated below a
certain depth to be deleted simultaneously.

2.1 Maximum Clique Algorithms in General

The majority of maximum clique algorithms that are aimed at hard, dense graphs
make use of backtracking search with branch and bound [4,33,35–37,39,44,51,
53,57,58,60,62,66–69,71]. The inference on adjacency performed by all of these
algorithms is straightforward, with all of the cleverness being in branching and
how bounds are computed [1]. We may therefore produce proof logs for all of
these algorithms using only RUP, logging of solutions as they are found, and
some additional help for the bounds.

Colour Bounds. If a graph can be coloured using k colours (where adjacent ver-
tices must be given different colours) then it cannot contain a clique of more
than k vertices. Producing an optimal colouring is hard (and typically harder
in practice than finding a maximum clique), but various greedy methods exist,
and have been used to give a dynamic bound during search inside clique algo-
rithms. Suppose we have, after branching, our set of accepted vertices A, a set
of undecided vertices P , and have already found a clique of n vertices. If c(P ) is
the number of colours used in some legal colouring of the subgraph induced by
P , then if |A| + c(P ) ≤ n, we can immediately backtrack.

Using cutting planes, if we are given a colouring then it is easy to produce a
proof that this bound is valid. By definition, for each pair of vertices in a given
colour class, the PB model must have a constraint saying that both vertices can-
not be taken simultaneously (because they do not have an edge between them).
As we saw in the worked example, it is routine to combine these constraints
into an at-most-one constraint, using a single sequence of arithmetic operations
that mentions each pairwise constraint only once. We can then sum these new
at-most-one constraints, add them to the objective constraint, and the rest of
the work follows by unit propagation.

Incremental Colour Bounds. Producing a colouring can be relatively expensive.
In order to reduce the number of colourings needed, many solvers reuse colour-
ings. Suppose we have produced colour classes C1, . . . , Cc. Instead of making a
single branching decision, we may branch on accepting each vertex in colour class
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Cc in turn first, followed by those in Cc−1, then Cc−2 and so on, stopping after
we have visited only n − |A| + 1 colour classes. Ideally, in a proof log, we would
not have to produce individual statements to justify not exploring each vertex
in each remaining colour class. This is indeed possible: we derive an at-most-one
constraint for colour class C1, and remember its number �1. We then add this
constraint to the objective constraint. Next, we derive an at-most-one constraint
for colour class C2, add this to �1, and remember its number �2. Now we sum
the objective constraint, �1, and �2. We continue until we reach a colour class
which was used for branching—again, the worked example made use of this.

Other changes to the details of how colour bounds are produced has formed
a substantial line of work in maximum clique algorithms [33,51,53,57,58,62,66–
69]. However, proof logging is completely agnostic to this: we care only that we
have a valid colouring, and do not need to understand any of the details of the
algorithm that produced it.

Stronger Bounds. Even when a good colouring is found, colour bounds can be
quite weak in practice. Some clique solvers identify subsets of k colour classes
which cannot form a clique of k vertices. For example, San Segundo et al. [60]
will find certain cases where there is a pair of colour classes C1 and C2, together
with a vertex v, such that no triangle exists using v and a vertex each from C1

and C2, and uses this to reduce the bound by one for vertex v. If such a case
is identified, RUP is sufficient to justify it. Similarly, because pseudo-Boolean
unit propagation is at least as strong as SAT unit propagation, bounds using
MaxSAT reasoning on top of colour classes [35–37] are also easily justified.

Algorithm Features Not Affecting Proof Logging. Maximum clique algorithms
have used a variety of different search orders [44]; as with the details of how
colourings are produced, these details are irrelevant for proof logging. Similarly,
bit-parallelism [59,61] has no effect on proof logging; thread-parallelism [16,43,
45] remains to be seen, but since proof logging is largely I/O bound, it is likely
that gains from multi-core parallelism will be lost on current hardware when
logging. And finally, running a local search algorithm and “priming” the branch
and bound algorithm with a strong initial incumbent [4,39,71] requires only
that the new incumbent be logged before the search starts, regardless of how
that incumbent was found.

Implementation. We implemented proof logging for the dedicated clique solver
which is included in the Glasgow Subgraph Solver [48], and tested it on a system
with dual Intel Xeon E5-2697A v4 CPUs, 512 GBytes RAM, and a conventional
hard drive, running Ubuntu 18.04. Without proof logging, this solver is able to
solve 59 of the 80 instances from the second DIMACS implementation challenge
[32] in under 1,000 s. With proof logging enabled, we produced proof logs for 57
of the 59 instances, incurring a mean slowdown of 80.1; the final two instances
were cancelled when their proof logs reached 1 TByte in size. We were then able
to verify all 57 of these proofs, with verification being a mean of 10.1 times
more expensive than writing the proofs. Note that the logging slowdown is to
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a: 2

b: 5

c: 2

d: 7

e: 2

f: 2

pseudo-Boolean proof version 1.0

f 8 0

o xa xd � obj

p nonadja_e 2 * nonadja_f + nonadje_f + 3 d 2 * � cc1

p nonadjb_d 5 * � cc2

p nonadjc_d 2 * � cc3

p obj cc1 + cc2 + cc3 + � done

c done 0

Fig. 2. On the left, a weighted graph, with a clique of weight ten from vertices a and
d highlighted. On the right, a proof that there is no heavier clique.

be expected [26]: the original solver is able to carry out a full recursive call and
bounds calculation in under a microsecond. If each such call requires 1 KByte of
logged information then this already exceeds the 100 MBytes per second write
capabilities of a hard disk by an order of magnitude.

2.2 Weighted Clique Algorithms

In the maximum weight clique problem, vertices have weights, and we are now
looking to find the clique with the largest sum of the weights of its vertices, rather
than the most vertices. A simple bound for this problem is to produce a colouring,
and then sum the maximum weight of each colour class. Consider the example
in Fig. 2, and the three colour classes {a, e, f}, {b, d} and {c}. By looking only at
the largest weight in each colour class, we obtain a bound of 2+7+2 = 11. This
bound may be justified in a cutting planes proof by generating the at-most-one
constraints for each colour class as previously, and then multiplying each colour
class by its maximum weight before summing them. However, better bounds can
be produced by allowing a vertex to appear in multiple colour classes, and by
splitting its weight among these colour classes. If we allow vertex d to appear in
the second colour class with weight 5 and in the third colour class with weight
2, then our bound is 2+5+2 = 9. This technique originates with Babel [2], and
is used in algorithms due to Tavares et al. [64,65], which are the current state
of the art for many graph classes [46]. From a proof logging perspective, this
splitting does not affect how we generate the bound, and so we may generate
the proof shown on the right of Fig. 2.

Implementation. We implemented a simple certifying maximum weight clique
algorithm using the Tavares et al. [64,65] bound in Python. With a timeout
of 1,000 s, we were able to produce proof logs for 174 of the 289 benchmark
instances from a recent collection [46]; all were verified successfully.

2.3 Maximal Clique Enumeration

Finally, in some applications we want to find every maximal clique (that is,
one which cannot be made larger by adding vertices without removing vertices).
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This problem also has a straightforward PB encoding: we express maximality
by having a constraint for every vertex v saying that either xv is selected, or at
least one of its non-neighbours is.

The classic Bron-Kerbosch algorithm [6] uses a simple backtracking search,
employing special data structures to minimise memory usage; it ensures maxi-
mality through a data structure called a not-set. We do not explain this data
structure here, because it turns out to be equivalent in strength to unit propaga-
tion on the above PB model—indeed, to create a proof-logging Bron-Kerbosch
algorithm, one needs only output a statement for every found solution, and a
statement on every backtrack. More recent variations on this algorithm make use
of different branching techniques [20,49,56,70] and supporting data structures
[15,21,56], but although these new techniques can make a huge difference to
theoretical worst-case guarantees and to empirical runtimes, they do not require
any changes to how proof logging is performed.

We are interested in proof logging for this problem because there are discrep-
ancies in tables of published results for some common benchmark instances—for
example, does the “celegensneural” instance from the Newman dataset have 856
[21], 1,386 [20], or some other number of maximal cliques? We implemented proof
logging for Tomita et al.’s variant of the algorithm [70], and were able to confirm
that 1,386 is the correct answer. We were also able to confirm the published val-
ues of Eppstein et al. [20] for all of the BioGRID instances, the listed DIMACS
instances, and for the Newman instances with no more than 10,000 vertices. We
were unable to produce certified results for larger sparse graphs, because the
OPB encoding size is linear in the number of non-edges in the inputs.

3 Maximum Common Induced Subgraph Algorithms

The maximum common induced subgraph problem can be defined in various
equivalent ways, but the most useful is that we are given two graphs, and must
find an injective partial mapping from the first graph to the second, where adja-
cent vertices are mapped to adjacent vertices and non-adjacent vertices are
mapped to non-adjacent vertices, mapping as many vertices as possible. The
problem arises in applications including in chemistry and biology [18,23,54].
However, in many cases, the common subgraph is required to be connected : that
is, if we take any two assigned vertices from the first graph, then we must be
able to find a path from one to the other without using unassigned vertices.

McCreesh et al. [41] compared two approaches to the problem, one based
upon CP [50,73] and one based upon reduction to clique [3,17,34,54], and found
that the best approach varied depending upon the kinds of graph being used.
Since then, improvements have come from two different lines of research: one
based upon weakening subgraph isomorphism algorithms [31], and one called
McSplit which replaces general algorithms and data structures used in CP with
much faster domain-specific ones [38,47]. We will discuss CP and McSplit, and
then the clique reduction later, but first we must provide an appropriate PB
encoding.
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3.1 Pseudo-Boolean Encodings

To encode maximum common induced subgraph in PB form, we may adapt the
subgraph isomorphism encoding of Gocht et al. [26]. For each vertex f in the first
graph F , and for each vertex s in the second graph S, we have a variable xf,s

which takes the value 1 if f is mapped to s; we also have a variable xf,⊥ if f is
unassigned. We then have exactly-one constraints over each set of xf,− variables,
at-most-one constraints over each set of x−,s variables for injectivity, and induced
adjacency constraints which are expressed using Gocht et al.’s second encoding,

xf,⊥ +
∑

s∈V(S)

xf,s = 1 f ∈ V(F )

∑

f∈V(F )

xf,s ≤ 1 s ∈ V(S)

xf,s + xg,⊥ +
∑

t∈N(s)

xq,t ≥ 1 f ∈ V(F ), q ∈ N(f), s ∈ V(S)

xf,s + xg,⊥ +
∑

t∈N(s)

xq,t ≥ 1 f ∈ V(F ), q ∈ N(f), s ∈ V(S)

and the objective is to maximise the sum of the non-⊥ variables.
For the connected version of the problem, expressing connectedness as a con-

straint is a little trickier. Our encoding is informed by two simple observations:
a subgraph with k vertices is connected if, for every pair of vertices in the sub-
graph, there is a walk of length no more than k between them, and secondly, for
k > 1, there is a walk of length 2k between two vertices f and g if and only if
there is some vertex h such that there are walks of length k between f and h
and also between h and g.

Therefore, we first introduce auxiliary variables x1
f,g for every pair of vertices

f and g in the first graph.3 If f and g are non-adjacent, these variables are forced
to false; otherwise we add constraints to specify that x1

f,g is true if and only if
both xf,⊥ and xg,⊥ are false. In other words, x1

f,g is true precisely if f and g
are adjacent and in the chosen subgraph. Writing f ∼F g and f �∼F g to mean
vertices f and g are adjacent or not adjacent in the graph F respectively, this
is:

x1
f,g ≥ 1 f, g ∈ V(F ), f �∼F g

x1
f,g + xf,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

x1
f,g + xg,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

x1
f,g + xf,⊥ + xg,⊥ ≥ 1 f, g ∈ V(F ), f ∼F g

Next, we introduce auxiliary variables x2
f,g, which will tell us if there is a

walk of length 2 between vertices f and g. To do this, for each other vertex h,
3 In all of what follows, these variables are equivalent under the exchange of f and g,

and so we may halve the number of variables needed by exchanging f and g if f > g.
We do this in practice, but omit this in the description for clarity.
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we have a variable x2
f,h,g which we constrain to be true if and only if there is a

walk of length 1 from f to h, and from h to g. Now, x2
f,g may be constrained to

be true if and only if either there is a walk of length 1 between f and g, or at
least one x2

f,h,g variable is true. We then repeat this process for walks of length
4, 8, and so on, until we reach a length k which equals or exceeded the number
of vertices in the first graph. For k ∈ {2, 4, 8, . . . , 2�log|V(F )|�}:

x
k/2
f,h + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

x
k/2
h,g + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

xk
f,h,g + x

k/2
f,h + x

k/2
h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

xk
f,g + x

k/2
f,g +

∑

h∈V(F )\{f,g}
xk
f,h,g ≥ 1 f, g ∈ V(F )

xk
f,g + xk

f,h,g ≥ 1 f, g, h ∈ V(F ), h �= f, h �= g

xk
f,g + x

k/2
f,g ≥ 1 f, g ∈ V(F )

Finally, to enforce connectedness, for each pair of vertices f and g, we require
that either xf,⊥ or xg,⊥ or xk

f,g is true.

xf,⊥ + xg,⊥ + xk
f,g ≥ 1 f, g ∈ V(F ), k = 2�log|V(F )|�

An important property of this encoding is that all the auxiliary variables
are dependent : that is, for every solution to the maximum common connected
induced subgraph problem, there is exactly one feasible way of setting the aux-
iliary variables. In other words, the number of solutions to the PB encoding is
exactly the same as the number of solutions to the real problem.

3.2 Proof Logging for Constraint Programming Algorithms

The McSplit algorithm [47] performs a CP-style backtracking search [50,73],
looking to map as many vertices from the first graph as possible to distinct
vertices in the second graph. We will therefore continue to use RUP to gener-
ate proofs. For adjacency and non-adjacency constraints, McSplit’s reasoning is
equivalent to unit propagation on our PB constraints, and so no help is needed.
For the bound, McSplit performs “all different except ⊥” propagation, but with
the number of occurrences of ⊥ constrained to beat the best solution found so
far. Due to the special structure of the domains during search, it is able to do
this in linear time, without needing the usual matching and components algo-
rithm [52]. However, when it fails, it produces a sequence of Hall sets, and so we
may reuse the justification technique described by Elffers et al. [19] with only a
simple modification to cope with the objective function.

For the connected variant, McSplit uses a restricted branching scheme [47,73]
rather than a conventional propagator: once at least one vertex is assigned a
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non-null value, it may only branch on vertices adjacent to a vertex already
assigned a non-null value. If no such vertices exist, it backtracks. Interestingly,
this requires no explicit support in proof logging: by carefully stepping through
the auxiliary variables in the PB encoding, level by level, it can be seen that
RUP will propagate all remaining variables to false when in this situation.

Therefore, implementing proof logging in McSplit requires four kinds of state-
ment to be logged. Firstly, any new incumbent must be noted, as in the previous
section. Secondly, all backtracks must be logged using a RUP rule. Thirdly,
whenever the bound function detects that the current state may be pruned, we
must derive a new constraint justifying this. And fourthly, it is extremely help-
ful to delete intermediate constraints using “level” statements. Again, this proof
logging is completely agnostic to changes to the branching heuristic [38].

We implemented this proof logging inside the original McSplit implemen-
tation, and tested it for both the connected and non-connected variants of the
problem on a commonly used set of benchmark instances [10,63]. We successfully
verified McSplit’s solutions to all 16,300 instances of no more than 25 vertices.
Proof logging introduced a mean slowdown of 67.0 and 298.9 for non-connected
and connected respectively, whilst verification was a further 13.4 and 21.6 times
slower; again, writing to hard disk was by far the biggest bottleneck, as McSplit
can make over five million recursive calls per second.

3.3 Maximum Common (Connected) Subgraph via Clique

An alternative approach to the maximum common subgraph problem is via a
reduction to the maximum clique problem [3,34,54]. This reduction resembles
the microstructure encoding of the CP representation, and is the best known
approach on labelled graphs; we refer to McCreesh et al. [41] for a detailed expla-
nation. From a proof logging perspective, one might expect that this encoding
would require a whole new PB representation, or perhaps a large change to how
proof logging is performed by a maximum clique algorithm. However, this is not
the case: given the PB model for a maximum common subgraph problem from
earlier in this section, we can derive the non-adjacency constraints needed for
the clique model described in the previous section using only RUP, whilst the
objective function needs no rewriting at all. Therefore, the only changes needed
to a proof-logging clique algorithm is in the lookup of constraint identifiers.

McCreesh et al. [41] also show how a maximum clique algorithm can be
adapted to deal with the connected variant of the problem, by embedding a
propagator inside the clique algorithm. From a proofs perspective, we can work
with the PB model and the clique reformulation, similar to channelling [8]—
and since connectedness propagation requires no explicit proof logging with the
original PB representation, it also requires no proof logging when performed
inside a clique algorithm.

We therefore reimplemented McCreesh et al.’s clique common (connected)
subgraph algorithm [41], and added proof logging support. Proof logging imme-
diately caught a bug in our reimplementation that testing had failed to identify:
we were only updating the incumbent when a maximal clique was found, which
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is correct in conventional clique algorithms but not for the connected variant,
but this very rarely caused incorrect results. Once corrected, for both variants of
the problem, we were able to verify all 11,400 instances of no more than 20 ver-
tices from the same set of instances [10,63]. Proof logging introduced an average
slowdown of 28.6 and 39.7 for non-connected and connected respectively, and
verification was on average a further 11.3 and 73.1 times slower.

4 Conclusion

We have shown that pseudo-Boolean proof logging is sufficiently powerful and
flexible to make certification possible for a wide range of graph solvers. Partic-
ularly of note is how proof logging is largely agnostic towards most changes to
details in algorithm behaviour (such as search order, methods for calculating
bounds, and underlying algorithms and data structures), and how it is able to
deal with reformulation or changes of representation. This suggests that requir-
ing certification should not be an undue burden on solver authors going forward.
We also stress the simplicity of implementation: for every algorithm we consid-
ered, proof logging only required access to information that was already easily
available inside the existing solvers. In particular, we do not need to implement
any form of pseudo-Boolean constraint processing in order to generate these
proofs, nor does a solver have to in any way understand or otherwise reason
about the proofs it is producing. Furthermore, in each case, adding in support
for proof logging was considerably easier than implementing the algorithm itself.

It is important to remember that proof logging does not prove that any
algorithm or solver is correct. Instead, it provides a proof that a claimed solution
is correct—and if a solution was produced using unsound reasoning, this will
be caught, even if the solution is correct, or if it was produced by a correct
algorithm being run on faulty hardware or with a buggy compiler. Additionally,
this process does not verify that the encoding from a high level model to the PB
representation is correct. To offset this, the encodings we use are deliberately
simple, and when a more complex internal representation is used (such as in the
clique model for maximum common subgraph), we can log the reformulation and
verify the log in terms of the simpler model. This reformulation also suggests
that for competitions, providing a standard encoding would not be a problem.

Although proof logging introduces considerable overheads (particularly when
compared to the techniques used in the SAT community, which do not need to
deal with powerful but highly efficient propagators), it can still be used to ver-
ify medium-sized instances involving tens of millions of inference steps. Given
the abundance of buggy solver implementations that usually produce correct
answers, we suggest that all authors of dedicated graph solvers should adopt
proof logging from now on, and that competition organisers should strongly
consider requiring proof logging support from entrants. For larger and harder
instances, proof logging can be disabled, but because proof logging does not
require intrusive changes to solver internals, this would still give us a large
increase in confidence in the correctness of results compared to conventional
testing.
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Abstract. The study of phase transition behaviour in SAT has led to
deeper understanding and algorithmic improvements in modern SAT
solvers. Motivated by these prior studies of phase transitions in SAT,
we seek to study the behaviour of size and compile-time behaviour for
random k-CNF formulas in the context of knowledge compilation.

We perform a rigorous empirical study and analysis of the size and
runtime behavior for different knowledge compilation forms (and their
corresponding compilation algorithms): d-DNNFs, SDDs and OBDDs
across multiple tools and compilation algorithms. We employ instances
generated from the random k-CNF model with varying generation
parameters to empirically reason about the expected and median behav-
ior of size and compilation-time for these languages. Our work is similar
in spirit to the early work in the CSP community on phase transition
behavior in SAT/CSP. We identify the interesting behavior with respect
to different parameters: clause density and solution density, a novel con-
trol parameter that we identify for the study of phase transition behavior
in the context of knowledge compilation. We summarize our empirical
study in terms of two concrete conjectures; a rigorous study of these
conjectures will possibly require new theoretical tools.

1 Introduction

Phase transition is concerned with a sudden change in the behavior of a prop-
erty of interest of an object pertaining to variations of a parameter of interest.
In the context of combinatorial problems, the phase transition behavior was first
demonstrated in random graphs in the seminal work of Erdos and Renyi [18].
With the advent of SAT as a modeling language, the initial studies observed
phase transition in the satisfiability of random k-CNF formulas and the seminal
work of Mitchell, Selman, and Levesque [26] demonstrated empirical hardness
around the phase transition region for modern SAT solvers. Theoretical investi-
gations into determining the location of the phase transition region have led to
several exciting results that yield insights into the algorithmic behavior of mod-
ern SAT heuristics [2]. In a significant theoretical breakthrough, the existence
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of the phase transition behavior for random k-CNF for large k was theoretically
proved; the question for small k (>2) is still open [15].

The success of SAT solvers has led the development of tools and techniques
for problems and sub-fields broadly classified under the umbrella of Beyond NP.
This has led to an interest in the behavior of solvers through the lens of phase
transition [16,17,31]. Motivated by the success of these studies in uncovering
surprising insights into the solution space structure and regions of hardness for
the modern SAT solvers, we turn our focus to another sub-field in Beyond NP
that has found several practical applications: Knowledge Compilation.

Knowledge compilation broadly refers to the approaches that seek to com-
pile propositional formulae into tractable representations; tractability is defined
with respect to queries that can be performed in polynomial time over the
compiled form. As the runtime of queries such as counting, sampling, equiv-
alence is often polytime in the size of a representation, efficient compilation
gains importance. Several compilations forms have been proposed showcasing the
tradeoff between tractability and succinctness: OBDDs (Ordered Binary Deci-
sion Diagrams) [9], SDDs (Sentential Decision Diagrams) [13] and d-DNNFs
(deterministic-Decomposable Negation Normal Forms) [11] and others. We refer
the reader to [14] for a detailed survey on the size and tractability for several
target languages. While every tractable language known so far has exponential
size complexity in the worst case when the input is presented in CNF form, the
size of compiled forms can often be only polynomially larger than the input CNF
formula, which has highlighted the need for more detailed study of the size and
runtime complexity of compilation procedures.

In this work, we undertake a rigorous empirical study of phase transition
behavior in knowledge compilation. Our experimental setup employs instances
generated from the random k-CNF model with varying generation parameters
(number of variables and clauses as well as length of clauses). Our study is mul-
tidimensional, comparing and contrasting phase transition behaviors spanning:

– knowledge compilations: d-DNNFs, SDDs and OBDDs;
– properties of interest: size and compilation times;
– compilation algorithms and tools:
• C2D [12], D4 [25], DSharp [28] for d-DNNF,
• MiniC2D [29] and TheSDDPackage [33] for SDD,
• CUDD with different variable ordering heursitics [19,32] for BDD.

A primary contribution of the seminal work of Mitchell et al. [26] was the
establishment of clause density as a popular parameter of interest in the study
of SAT solving. In a similar spirit, one of the key contributions of this work is
the proposal of solution density as a new control parameter, along with clause
density, for studying knowledge compilations. Solution density is defined as the
ratio of the logarithm of the number of satisfying assignments to the number
of variables. We show that while clause density is linked with solution density
in expectation, the size and compilation-time varies significantly with varying
solution density for a fixed clause density. We discover that for low clause den-
sities, varying solution density has minimal effect on the size of compilations. In
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contrast, for high clause densities, solution density dictates the size as there is a
minimal variation with clause density for a given fixed solution density.

Based on our experiments, we make two conjectures for compiled structures
in a language L that is a subset of DNNF:

1. Over a population of k-CNF formulas, Fk(n, �rn�) of k-clauses over n variables
with a clause density r, for all integers k ≥ 2, there exists a clause density r
that witnesses a phase transition on the size of the compiled structures in a
language L; that is, there always exists a clause density rt s.t.:
(a) for each pair (r1, r2), such that r1 < r2 < rt, the expected size of the

compiled structure in L for Fk(n, r1n) is strictly smaller than that for
clause density r2;

(b) for each pair (r1, r2), such that rt < r1 < r2, the expected size of the
compiled structure in L for Fk(n, r1n) is strictly larger than that for
clause density r2.

2. Over a population of k-CNF formulas, Gk(n, �2αn�) of k-clauses over n vari-
ables and having �2αn� solutions, for all integers k ≥ 2, there exists a solution
density αk that witnesses a phase transition on the size of the compiled struc-
tures in a language L; that is, there always exists a solution density αt s.t.:
(a) for each pair (α1, α2) such that 0 ≤ α1 < α2 < αk, the expected size of

the compiled structure in L for Gk(n, 2α1n) is strictly smaller than that
for solution density α2;

(b) for each pair (α1, α2) such that αk < α1 < α2 ≤ 1, the expected size of
the compiled structure in L for Gk(n, 2α1n) is strictly larger than that for
solution density α2.

The study of phase-transition behavior for satisfiability of CNF formulae was
instrumental in driving several breakthroughs in the design of new solvers and
better understanding the problem structure [1,8]. We hope that our experimental
study of phase transitions for knowledge compilations would lead to similar
developments in the knowledge compilation. Our work is similar in spirit to
the seminal work by the CSP community in empirical identification of phase
transition phenomenon in the early 1990s and their summarization in the form
of conjectures [10,21–23]. It is worth emphasizing that theoretical proofs of these
conjectures were presented nearly 20 years since the first empirical studies [15],
and the efforts to establishing these conjectures contributed to the development
of several theoretical tools of widespread applicability [2]. We hope our empirical
results will inspire similar efforts in the context of knowledge compilation.

The organization of the rest of the paper is as follows: Sect. 2 describes the
notations and preliminaries, along with a survey of prior work. Section 3 describes
the design of our experiments while Sects. 4 and 5 provide detailed observations
with respect to clause density and solution density respectively. Due to space
restrictions, this article is limited to experiments using the following tools: D4 for
d-DNNF, TheSDDPackage for SDD, and CUDD (with SIFT variable reordering)
for BDD. We, however, observed similar behaviors across all the other tools and
summarise them in Sect. 6. Furthermore, throughout the article, we present only
representative plots and an extended collection of corresponding plots is deferred
to the full version of the paper.
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2 Notations and Preliminaries

Let X = {x1, x2, . . . , xn} be a set of propositional variables. A literal is a propo-
sitional variable (xi) or its negation (¬xi). For a formula F defined over X, a
satisfying assignment or witness of F is an assignment of truth values to the
variables in X such that F evaluates to true. The total number of witnesses for
a formula F is denoted by #F .

Let a k-clause be a disjunction of k literals drawn over X without repetition.
Given k ∈ N, n ∈ N and r ∈ R>0, let the random variable Fk(n, �rn�) denote
a Boolean formula consisting of the conjunction of �rn� k-CNF clauses selected
uniformly and independently from

(
n
k

)
2k possible k-clauses over n variables. For

a given k, k-CNF denotes the set of all possible boolean formulas Fk(n, �rn�). For
any given formula F , we denote the clause density (r) as the ratio of number of
clauses to variables and the solution density (α) as the ratio of logarithm of the
number of satisfying assignments to the number of variables, i.e. α = log(#F )/n.
We denote the SAT phase transition clause density for random k-CNF by rp

k.
Given an α ∈ [0, 1], we define another random variable Gk(n, �2αn�) that denotes
a randomly chosen boolean formula from k-CNF with n variables and �2αn�
satisfying assignments.

2.1 Target Compilation Languages

We briefly describe some of the prominent target compilation languages that we
study—d-DNNFs, OBDDs and SDDs [14].

Definition 1 [14]. Let V be the set of propositional variables. A formula in NNF
is a rooted, directed acyclic graph (DAG) where each leaf node is labelled with
true, false, x or ¬x, x ∈ V ; and each internal node is labelled with ∨ or ∧ and
can have arbitrarily many children.

Deterministic Decomposable Negation Normal Form (d-DNNFs), a subset of
NNF, satisfies determinism (operands of ∨ are mutually inconsistent) and decom-
position (operands of ∧ are expressed on a mutually disjoint set of variables).

Ordered Binary Decision Diagrams (OBDD) is a subset of d-DNNFs where the
root node is a decision node and the order of decision variables is same for all
paths from the root to a leaf; OBDDs are canonicalised by the variable ordering.
A decision node is either a constant (T/F), or of the form (X ∧ α) ∨ (¬X ∧ β),
on decision nodes α and β, and decision variables X.

Sentential Decision Diagrams (SDDs) are a subset of d-DNNFs that hold the
properties of structured decomposability and strongly deterministic decomposi-
tions. The idea of structured decomposability is captured by the notion of
vtrees; vtrees are binary trees whose leaves correspond to variables of the
formula and internal nodes mark the decomposition into variables given by
their left and right child. Vtrees seek to generalise variable ordering and pre-
cisely specify a decomposition scheme to be followed by the corresponding
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SDD. Strongly deterministic decompositions seek to generalise Shannon’s expan-
sion in which decision is made on a single variable. For a formula F where
∀U, V ⊆ vars(F ) such that vars(F ) = U ∪ V and U ∩ V = φ, representing
F = (p1(U) ∧ s1(V )) ∨ . . . ∨ (pn(U) ∧ sn(V )) where pi’s and qi’s are boolean
functions and pi(U) ∧ pj(U) = ⊥ for i �= j captures the idea of strongly deter-
ministic decompositions. Here, the decomposition of vars(F ) into U and V is
the decomposition scheme.

We denote a target language by L ∈ {d-DNNF, OBDD, SDD}. For a formula
F compiled to L, let NL(F ) denote the size (in the number of nodes) of the target
representation and TL(F ) denote the compilation time. The expected size for k-
CNF with clause density r and target language L can, therefore, be represented
as E(NL(Fk(n, rn))) and the expected time as E(TL(Fk(n, rn))).

2.2 Related Work

Cheeseman et al. [10] studied the phase transition behavior for several CSP
problems, noting an easy-hard-easy behavior with respect to an order param-
eter for these problems. For Hamiltonian circuits, graph coloring and k-SAT,
the average connectivity of the graph (which translates to clause density for
k-SAT) was found to be a good order parameter demonstrating phase transi-
tion behavior. Subsequently, exploring phase transition behaviors with various
random generative models has drawn considerable attention [3,21–23,27,34].

Aguirre and Vardi [4] identified an “easy-hard-less hard” behaviour in OBDD
compilations with clause density and discovered a phase transition from polyno-
mial running time to exponential running time for SAT. Huang and Darwiche [24]
proposed a new top-down algorithm for OBDD compilation based on the DPLL
algorithm typically used for SAT solving and observed that the expected size
of OBDD peaks around clause density equal to 2. Later, Gao, Yin, and Xu [20]
conducted an experimental study for phase transitions in random k-CNF for-
mulas taking d-DNNFs, OBDDs and DFAs (Deterministic Finite Automata) as
the target compilation languages. They observe a phase transition behavior with
respect to size of compilations and draw a conjecture stating that all subsets of
DNNF show a “small-large-small” behavior with a unique peak. Our study is
more comprehensive and we discuss in Sect. 4 several behaviors that were not
explored by Gao et al.

Birnbaum and Lozinskii [6] presented a procedure called as Counting Davis-
Putnam (CDP) for #SAT whose trace lies in FBDD, a stricter subset of d-
DNNF language. They found that the median number of recursive calls of CDP
reaches its peak when for clause density is 1.2 for random 3-CNF formulas. A
different DPLL extension for solving #SAT, called Decomposing Davis-Putnam
(DDP) leveraging component decomposition, was developed by Bayardo and
Pehoushek [5]. The trace of DPP-model counter lies in d-DNNF language and
the authors observed phase transition around the clause density of 1.5.
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3 Design of Experiments

We aim to dive deeper into the size and compile-time behavior for d-DNNF, SDD
and OBDD compilations owing to their wide range of applications. We measure
the size of compilations by the number of nodes (edges also display a very similar
behavior). To study the phase transition behavior, we identify a new parameter,
solution density, the ratio of log of the number of satisfying assignments to the
number of variables. While it is trivial to generate a random instance Fk(n, rn)
given r, a direct way to generate Gk(n, 2αn) given α is unknown. Therefore, to
analyze the effect of varying α in compilations, we study the variation in size
and compile-time against α for individual instances generated by varying r. Our
experimental observations with varying clause density are given in Sect. 4 while
those with solution density follow in Sect. 5.

As SAT is a decision problem, its phase transition is often characterized
by the existence of a unique cross-over point, at the intersection of the curves
representing probability of true (satisfiable) decision against clause density for
different number of variables. However, in our case, we are dealing with a func-
tional problem and therefore, we characterize phase transition with respect to
the gradient of the function, i.e., when the underlying function achieves a local
maxima. More concretely, we will be concerned with the size and runtime of the
underlying knowledge compilation form and its corresponding compiler.

We carried out our experiments on a high performance compute cluster whose
each node is an Intel E5-2690 v3 CPU with 24 cores and 96 GB of RAM. We
utilize a single core per benchmark instance. Note that knowledge compilation is
significantly harder and memory intensive than satisfiability, which restricts the
scale of our experiments. Therefore, we have conducted experiments up to the
largest number of variables for which we could gather all the needed statistics.
We utilized more than 40,000 computational hours for our experimentation.

3.1 The Variables of Our Study

We conducted our experiments on a large number of random k-CNF formulas
with a varying number of variables and clauses. For studying variations with
clause density, we aggregated the results over 1000 instances of the random
variable Fk(n, rn) for each r given a fixed n and k. Here, r is incremented with
step size of at least 0.1 in a range containing 0 to rp

k. For studying variations with
solution density, we aggregated the results over at least 5 instances of the random
variable Fk(n, rn) for each r given a fixed n and k. Here, r is incremented with
step size of 1/n in a range from 0 to rp

k. As clause density and solution density
are linked in expectation, we vary r finely for study with solution density to
facilitate uniform distribution of instances with α. Specifically, a representative
subset of the following variations are a part of our study:

– number of variables(n): 20–70 in general, upto an exponential number
(�1.337�) for small r

– length of clauses(k): 2–7
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– target languages: d-DNNFs, OBDDs, SDDs
– knowledge compilers: D4 [25], CUDD [19,32], TheSDDPackage [33]

4 Phase Transition with Clause Density

In this section, we present our observations for variations in size and compile
times with d-DNNFs, SDDs, and OBDDs as target languages. We also dive
deeper into the complexity of compilations. We present plots for a representa-
tive subset of the experimental results here; a more comprehensive set of plots
appears in the full version of the paper.

4.1 Observing the Phase Transitions

Size of Compilations. Figure 1 shows the variations in the mean and median
of the number of nodes for d-DNNF, SDD, and OBDD with respect to clause
density. Figure 2 shows variations in mean number of nodes for d-DNNF on a
log scale versus number of variables. The small-large-small pattern in the size
of compilations is reminiscent of the empirical hardness of SAT near the phase
transition, which is marked by an exponential increase in SAT solvers’ runtimes
near a specific (phase transition) clause density.

Runtime of Compilation. From an empirical usage perspective, the runtime
of compilation assumes paramount importance. It is worth emphasizing that the
size of the compiled form does not solely determine the runtime. In particular, the
runtime of compilation broadly depends upon: (1) the search space itself, (2) the
time spent in heuristics. In state-of-the-art knowledge compilers, newer heuristics
increasingly attempt to prune the search space leading to reduced memory and
runtime for subsequent exploration. However, they incur an increased overhead
of applying heuristics. Therefore, to provide a holistic view of the hardness of
compilations, Fig. 1 also shows the variation in average runtimes against clause
density for d-DNNF, SDD, and OBDD. We observe that the location of phase
transition appears slightly shifted (within ±0.3) compared to that for the size of
compilations in the case of d-DNNF and SDD. However, in the case of OBDD,
we have a starkly different behavior due to the different compilation procedures,
even though both SDDs and OBDDs are compiled by repeatedly conjoining the
clauses one by one using the polytime APPLY operation.

A plausible explanation is that while SDD compilation using TheSDDPackage
involves dynamic vtree search with clause reordering, OBDD compilation using
CUDD supports only dynamic variable ordering. This can lead to an easy-hard-
less hard behavior for SDD compilations as clause reordering facilitates early
pruning of intermediate SDDs [33]. On the other hand, OBDD compilation
involves large intermediate OBDDs near phase transition clause density irre-
spective of the total number of clauses as clauses are selected randomly for the
APPLY operation. This can lead to a sharp step transition in runtimes as the
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Nodes in d-DNNF , 70 vars d-DNNF compile-time, 70 vars

Nodes in SDD , 50 vars SDD compile-time, 50 vars

Nodes in OBDD, 50 vars OBDD compile-time, 50 vars

Fig. 1. Mean number of nodes, compile-times for 3-CNF

addition of more clauses after phase transition prunes the OBDD, translating to
reduced cost of successive APPLY operations.

We refer the reader to the full version for variation with respect to clause
length. We sum up our observations via the following conjecture:
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Conjecture 1. For every integer k ≥ 2, given the number of variables n and a
target language L that is a subset of DNNF, there exists a positive real number
rk such that
For each pair (r1, r2), if r1 < r2 < rk then,

E(NL(Fk(n, r1n))) < E(NL(Fk(n, r2n)))

For each pair (r1, r2), if rk < r1 < r2 then,

E(NL(Fk(n, r1n))) > E(NL(Fk(n, r2n)))

4.2 Diving Deep into the Asymptotic Complexity

The size and runtime of compilations are exponential in the number of variables
in the worst case. We are, however, interested in more precise relationship as size
and runtime play crucial roles in many applications. While it is known that the
exponent increases towards phase transition clause density [20], it is not clear if
the exponent is linear or sublinear in the number of variables and whether this
behavior changes with changing clause density.

Since, the size of OBDDs (and d-DNNFs and SDDs being more succinct [7]) is
bounded by O(2n), we plot log(E(Nd-DNNF(Fk(n, rn))))/n for different n against
varying r in Fig. 2 and 3 for further investigation. From Fig. 2, we observe
phase transition with respect to clause density even though the location of the
phase transition point seems to shift slightly with different n. Next, we turn
our attention to Fig. 3, wherein we observe that log(E(Nd-DNNF(Fk(n, rn))))/n
decreases while showing signs of possible convergence with increasing n for a
given r for all compilations in our study. In order to understand it better, we
scale our experiments to a larger n for small r in Fig. 3b. However, even in
this case, the answer remains unclear if log(E(Nd-DNNF(Fk(n, rn))))/n shall con-
verge to a constant >0. Therefore, we can only say that for a constant, c ≥ 0,
lim

n→∞
log(E(NL(Fk(n,rn))))

n = c.

Fig. 2. log(E(NL(Fk(n, rn))))/n vs r for different n for L = d-DNNF
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(a) clause densities 0.6 and 0.4 (b) clause density 0.2

Fig. 3. log(NL(Fk(n, rn)))/n vs n for L = d-DNNF

(a) log(NL(Fk(n, rn))) vs log(n) (b) log(TL(Fk(n, rn))) vs log(n)

Fig. 4. log-log graph at r = 0.2 for d-DNNF

(a) clause densities 0.6 and 0.4 (b) clause density 0.2

Fig. 5. log(Td-DNNF(Fk(n, rn)))/n vs n for d-DNNF
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Fig. 6. Size vs solution density for individual instances with r = 3.0 for d-DNNF

While the question if c = 0 remains open for size, the case for runtime
of compilation is a different story: Fig. 5 shows that E(TL(Fk(n,rn))))

n increases
with n. Knowing that the runtime in worst case is poly(2n) and extrapolating
the observation, we conjecture that lim

n→∞
E(TL(Fk(n,rn))))

n = c where c > 0 and

depends on r. In other words, E(TL(Fk(n, rn)))) = θ(2cn) for state-of-the-art
compilers.

Polynomial to Exponential Size Phase Transition. Gao et al. [20] had
shown the existence of a polynomial to exponential phase transition for size
of compilations around r = 0.3 by showing increase in slope for r > 0.3 and
near constant slope for r < 0.3 on a log(E(Nd-DNNF(Fk(n, rn))))-log(n) graph.
Relationships of the form y = axk appear as straight lines in a log-log graph.
Our observations in Fig. 3 and 4a show that while the instances with r = 0.2
are indeed very easy compared to r = 0.4, the behavior is still exponential or
quasi-polynomial for r = 0.2 which becomes dominant for large enough number
of variables. In Fig. 4a, the behavior appears to change from a straight line to
a line with increasing slope around n = 7482. On extrapolating the behavior
for even smaller r, we can conjecture that ∀ r, E(Nd-DNNF(Fk(n, rn))) is at least
quasi-polynomial in n.

5 Phase Transitions with Solution Density

Since knowledge compilations are a compact way of representing solutions, one
can expect that they show variations in sizes with respect to the solution density
as well. The solution density, however, is not independent of clause density for
random k-CNF as given a clause density, expected solution density is fixed,
and vice versa. Notwithstanding, we observe (Fig. 6) that solution density also
appears to be a fundamental parameter given a fixed clause density, instances
with different solution density have marked changes in their size of d-DNNF
compilations. We, now, look at the size and compile-time behavior with respect
to solution density.
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Nodes in d-DNNF, 70 vars d-DNNF compile-time, 70 vars

Nodes in SDD, 50 vars SDD compile-time, 50 vars

Nodes in OBDD, 50 vars OBDD compile-time, 50 vars

Fig. 7. Number of Nodes and compile-times for individual instances of 3-CNF against
solution density

5.1 Observing the Phase Transition

Figure 7 shows the small-large-small variation in size of compilations with respect
to solution density. We can observe that there exists a region of critical solution
density for each target language around which the size of instances are very large.
The location of phase transition appears to depend upon the target compilation
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(a) 2-CNF and 600 vars (b) 7-CNF and 30 vars

Fig. 8. Nodes in d-DNNF vs solution density for different clause lengths(k)

(a) 40 vars (b) 60 vars

Fig. 9. Nodes in d-DNNF vs solution density(α) for different number of variables

but it is difficult to comment upon the precise location and an extended study
is required to generate independent instances for a given solution density.

We see that solution density is a major parameter affecting the size and
runtime of compiled instances. In this context, we seek to understand the impact
of other parameters on the phase transition location with respect to solution
density. We focus on two such parameters: clause length and the number of
variables.

Impact of Clause Length. Figure 8 shows that as we increase the clause length,
the location of phase transition point with respect to solution density moves
closer to 1. It is worth remarking that in the context of the satisfiability, the
location of phase transition, albeit with respect to clause densityk, is known to
depend on the clause length, so a similar behavior in the context of knowledge
compilation is indeed not surprising.
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(a) r ∈ [0.1, 1.4] (b) r ∈ [3.1, 5.0]

Fig. 10. log(Nodes) in d-DNNF in solution vs clause density grid for 3-CNF

Size with Number of Variables. From Fig. 9 we observe that the distribution
of Nodes in d-DNNF compilation becomes sharper around the phase transition
solution density with increasing number of variables.

Runtime of Compilation. From Fig. 7, we observe that the distribution of run-
times follows a similar easy-hard-easy pattern for d-dNNFs as well as SDDs
but not OBDDs. The runtime behavior is similar to that of distribution of the
number of nodes, as discussed in Sect. 4.

We sum up our observations in the following conjecture:

Conjecture 2. For every integer k ≥ 2, given the number of variables n and a
target language L that is a subset of DNNF, there exists a positive real number
αk such that for each pair (α1, α2), if 0 ≤ α1 < α2 < αk then,

E(NL(Gk(n, 2α1n))) < E(NL(Gk(n, 2α2n)))

For each pair (α1, α2), if αk < α1 < α2 ≤ 1 then,

E(NL(Gk(n, 2α1n))) > E(NL(Gk(n, 2α2n)))

5.2 Combined Effect of Clause and Solution Density

We have seen that the density of solutions and clauses play a pivotal role, affect-
ing the size and runtime. Also, given a clause density, the expected solution
density is fixed and vice versa. This makes one wonder if there is a more com-
plex relationship at play that affects the phase transition behavior of knowledge
compilations. To investigate, we plot a heatmap (Fig. 10) on α×r grid where the
colours indicate the size of compilations. We employ random 3-CNF instances
with 70 variables used for comparisons with clause density, as described earlier
in Sect. 3. For each cell in the grid, we take an average of instances with the cor-
responding clause density that lie within the interval of solution density marked



372 R. Gupta et al.

by the cell. Since the number of such instances can differ across the cells, we
mark the average for a cell only if the number of instances is greater than 5 to
minimize the variance to a feasible extent. From Fig. 10, we observe that for low
clause densities, varying solution density has minimal effect on the size of com-
pilations. In contrast, for high clause densities, solution density has a dominant
effect on the size as there is a minimal variation with clause density. On the
other hand, near phase transition, both the parameters play a significant role,
and the precise relationship is murkier.

6 Effect of Different Tools

Heuristics and compilation algorithms play a crucial role in perceived hardness
as elaborated in Sect. 4.1. We experimented with bottom up (TheSDDPackage)
as well as top down (MiniC2D) compilation strategies for SDDs, predefined total
variable ordering against dynamic ordering for OBDDs (CUDD) and different
decomposition techniques for d-DNNFs (C2D, Dsharp and D4). Notably, target
language for MiniC2D is decision-SDD and CUDD with predefined total variable
order is OBDD> [14,30], which are less succinct than SDD and OBDD respec-
tively. We state our representative observations for 3-CNF here. We observed
that both MiniC2D and The SDD Package show maximum number of nodes
around clause density 1.8 and solution density around 0.62. However, runtime for
MiniC2D peaks around clause density 1.8 while TheSDDPackage peaks around
clause density 2.0. In case of BDDs, we observed that disabling dynamic vari-
able reordering shifts the peak (number of nodes) clause density from 2.0 to 1.5
and peak (number of nodes) solution density from 0.62 to 0.75. The observa-
tions for runtimes of OBDDs are much more involved due to reasons discussed
in Sect. 4.1. For d-DNNFs, we observe that the peak (number of nodes) clause
density stays around 1.8 and peak solution density stays around 0.62 irrespective
of the hypergraph partitioning algorithm. Similar observations were recorded for
runtime as well in case of d-DNNF. Summing up, we observe that while the pre-
cise behaviour of phase transition (for example, its location) can depend upon
the heuristics employed in the process, the general behaviour persists irrespec-
tively.

7 Conclusion

Our study provides evidence of phase transition behavior with respect to clause
as well as solution density. While, both these parameters are linearly linked in
expectation, it is interesting that varying the number of solutions on a fixed
clause density leads to significant variation in the expected size of compilations.
In terms of the complexity of compilations, we found the expected size is at least
quasi-polynomial and expected runtime is exponential in the number of variables
with varying clause density for state-of-the-art knowledge compilers. We believe
that this paper opens up new directions for theoretical studies in an attempt to
explain our empirical observations and conjectures.
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Abstract. The Exact Satisfiability problem, XSAT, is defined as the
problem of finding a satisfying assignment to a formula in CNF such
that there is exactly one literal in each clause assigned to be “1” and the
other literals in the same clause are set to “0”. If we restrict the length
of each clause to be at most 3 literals, then it is known as the X3SAT
problem. In this paper, we consider the problem of counting the number
of satisfying assignments to the X3SAT problem, which is also known as
#X3SAT.

The current state of the art exact algorithm to solve #X3SAT is given
by Dahllöf, Jonsson and Beigel and runs in O(1.1487n) time, where n
is the number of variables in the formula. In this paper, we propose an
exact algorithm for the #X3SAT problem that runs in O(1.1120n) time
with very few branching cases to consider, by using a result from Monien
and Preis to give us a bisection width for graphs with at most degree 3.

Keywords: #X3SAT · Counting models · Exponential time
algorithms

1 Introduction

Given a propositional formula ϕ in conjunctive normal form (CNF), a common
question to ask would be if there is a satisfying assignment to ϕ. This is known
as the satisfiability problem, or SAT. Many other variants of the satisfiability
problem have also been explored. An important variant is the Exact Satisfiability
problem, XSAT, where it asks if one can find a satisfying assignment such that
exactly one of the literals in each clause is assigned the value “1” and all other
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literals in the same clause are assigned “0”. Another variant that has been heavily
studied is the restriction of the number of literals allowed in each clause. In both
SAT and XSAT, one allows arbitrary number of literals to be present in each
clause. If we restrict the number of literals to be at most k in each clause, then
the above problems are now known as kSAT and XkSAT respectively. The most
famous of these variants are 3SAT and X3SAT. All the mentioned problems,
SAT, 3SAT, XSAT and X3SAT are known to be NP-complete [1–3,10,17].

Apart from decision problems and optimization problems, one can also work
on counting the number of different models that solves the decision problem.
For example, we can count the number of different satisfying assignments that
solves SAT, and this is known as #SAT. The problem #3SAT, #XSAT and
#X3SAT are defined similarly. Counting problems seem much harder than their
decision counterparts. One may use the output of a counting algorithm to solve
the decision problem. Another convincing example can be seen in that 2SAT is
known to be in P [11] but #2SAT is #P-complete [18]. In fact, #SAT, #3SAT,
#X3SAT and #XSAT are all known to be in #P-complete [18,19]. The problem
of model counting has found wide applications in the field of AI such as the use
of inference in Bayesian belief networks or probabilistic inference [15,16]. In this
paper, we will focus on the #X3SAT problem.

Let n denote the number of variables in the formula. Algorithms to solve
#XSAT have seen numerous improvements [4,5,14,20] over the years. To date,
the fastest #XSAT algorithm runs in O(1.1995n) time [21]. Of course, to solve
the #X3SAT problem, one can rely on any of the mentioned algorithm that solves
#XSAT to solve them directly. However, it is possible to exploit the structure
of X3SAT and hence solve #X3SAT in a much faster manner. Dahllöf, Jonsson
and Beigel gave an #X3SAT algorithm in O(1.1487n) time [5].

In this paper, we propose a faster and simpler algorithm to solve the #X3SAT
problem in O(1.1120n) time. The novelty here lies in the use of a result by Monien
and Preis [13] to help us to deal with a specific case. Also using a different way
to analyze our algorithm allows us to tighten the analysis further.

2 Preliminaries

In this section, we will introduce some common definition needed by the algo-
rithm and also the techniques needed to understand the analysis of the algo-
rithm. The main design of our algorithm is a Davis Putnam Logemann Loveland
(DPLL) [6,7] style algorithm, or also known as the branch and bound algorithm.
Such algorithms are recursive in nature and have two kinds of rules associated
with them: Simplification and Branching rules. Simplification rules help us to
simplify a problem instance. Branching rules on the other hand, help us to solve
a problem instance by recursively solving smaller instances of the problem. To
illustrate the execution of the DPLL algorithm, a search tree is commonly used.
We assign the root node of the search tree as the original problem. The subse-
quent child nodes are assigned whenever we invoke a branching rule. For more
information, one may refer to [8]. Let μ denote our parameter of complexity.
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To analyse the running time of the DPLL algorithm, one in fact just
needs to bound the number of leaves generated in the search tree. This
is due to the fact that the complexity of such algorithm is proportional
to the number of leaves, modulo polynomial factors, i.e., O(poly(|ϕ|, μ) ×
number of leaves in the search tree) = O∗(number of leaves in the search tree),
where the function poly(|ϕ|, μ) is some polynomial based on |ϕ| and μ, while
O∗(g(μ)) is the class of all functions f bounded by some polynomial p(·)
times g(μ).

Then we let T (μ) denote the maximum number of leaf nodes generated by
the algorithm when we have μ as the parameter for the input problem. Since the
search tree is only generated by applying a branching rule, it suffices to consider
the number of leaf nodes generated by that rule (as simplification rules take only
polynomial time). To do this, we employ techniques in [12]. Suppose a branching
rule has r ≥ 2 children, with t1, t2, . . . , tr number of variables eliminated for these
children. Then, any function T (μ) which satisfies T (μ) ≥ T (μ − t1) + T (μ −
t2)+ . . . T (μ− tr), with appropriate base cases, would satisfy the bounds for the
branching rule. To solve the above linear recurrence, one can model this as x−t1+
x−t2 + . . . + x−tr = 1. Let β be the root of this recurrence, where β ≥ 1. Then
any T (μ) ≥ βμ would satisfy the recurrence for this branching rule. In addition,
we denote the branching factor τ(t1, t2, . . . , tr) as β. Tuple (t1, t2, . . . , tr) is also
known as the branching vector [8]. If there are k branching rules in the DPLL
algorithm, then the overall complexity of the algorithm can be seen as the largest
branching factor among all k branching rules; i.e. c = max{β1, β2, . . . , βk}, and
therefore the time complexity of the algorithm is bounded above by O∗(cμ).

We will introduce some known results about branching factors. If k < k′, then
we have that τ(k′, j) < τ(k, j), for all positive k, j. In other words, comparing
two branching factors, if one eliminates more variable, then this will result in a
a smaller branching factor. Suppose that i + j = 2α, for some α, then τ(α, α) ≤
τ(i, j). In other words, a more balanced tree will give a smaller branching factor.

Finally, suppose that we have a branching vector of (u, v) for some branching
rule. Suppose that for the first branch, we immediately do a follow up branching
to get a branching vector of (w, x), then we can apply branching vector addition
to get a combined branching vector of (u + w, u + x, v). This technique can
sometimes help us to bring down the overall complexity of the algorithm further.

Finally, the correctness of DPLL algorithms usually follows from the fact
that all cases have been covered. We now give a few definitions before moving
onto the actual algorithm. We fix a formula ϕ:

Definition 1. Two clauses are called neighbours if they share at least a com-
mon variable. Two variables are called neighbours if they appear in some clause
together. We say that a clause C is a degree k clause if C has k neighbours.
Finally, a variable is a singleton if it appears only once in ϕ.

Suppose we have clauses C1 = (x ∨ y ∨ z), C2 = (x ∨ a ∨ b) and C3 = (y ∨ a ∨ c).
Then C1 is a neighbour to C2 and C3. In addition, all three are degree 2 clauses.
Variables a, b, y, z are neighbours of x, while b, c, z are singletons.
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Definition 2. We say that two variables, x and y, are linked when we can
deduce either x = y or x = ȳ. When this happens, we can proceed to remove
one of the linked variable, either x or y, by replacing it with the other.

For example, in clause (0 ∨ x ∨ y), we know that x = ȳ to satisfy it. Thus, we
can link x with ȳ and remove one of the variables, say y.

Definition 3. We denote the formula ϕ[x = 1] obtained from ϕ by assigning a
value of 1 to the literal x. We denote the formula ϕ[x = y] as obtained from ϕ
by substituting all instances of x by y. Similarly, let δ be a subclause. We denote
ϕ[δ = 0] as obtained from ϕ by substituting all literals in δ to 0.

Suppose we have ϕ = (x ∨ y ∨ z). Then if we assign x = 1, then ϕ[x = 1] gives
us (1 ∨ y ∨ z). On the other hand, if we have ϕ[y = x], then we have (x ∨ x ∨ z).
If δ = (y ∨ z), then ϕ[δ = 0] gives us (x ∨ 0 ∨ 0).

Definition 4. A sequence of degree 2 clauses C1, C2, . . . , Ck, k ≥ 1 is called a
chain if for 1 ≤ j ≤ k − 1, we have Cj is a neighbour to Cj+1. Given any two
clauses Ce and Cf that are at least degree 3, we say that they are connected
via a chain if we have a chain C1, C2, . . . , Ck such that C1 is a neighbour of Ce

(respectively Cf ) and Ck is a neighbour of Cf (respectively Ce). Moreover, if we
have a chain of degree 2 clauses C1, C2, . . . , Ck, C1, then we call this a cycle.

Suppose we have the following degree 3 clauses: (a∨b∨c) and (s∨ t∨u), and the
following chain: (c∨ d∨ e), (e∨ f ∨ g), . . ., (q ∨ r ∨ s). Then note that the degree
3 clause (a ∨ b ∨ c) is a neighbour to (c ∨ d ∨ e) and (s ∨ t ∨ u) is a neighbour to
(q ∨ r ∨ s). Therefore, we say that (a ∨ b ∨ c) and (s ∨ t ∨ u) are connected via a
chain.1

Definition 5. A path x1, x2, . . . , xi is a sequence of variables such that for each
j ∈ {1, . . . , i − 1}, the variables xj and xj+1 are neighbours. A component is a
maximal set of clauses such that any two variables, found in any clauses in the
set has a path between each other. A formula is connected if any two variables
have a path between each other. Else we say that the formula is disconnected,
and consists of k ≥ 2 components.

For example, let ϕ = (x ∨ y ∨ z) ∧ (x ∨ a ∨ b) ∧ (e ∨ c ∨ d) ∧ (e ∨ f ∨ g). Then
ϕ is disconnected and is made up of two components, since x has no path to e,
while variables in the set {(x ∨ y ∨ z), (x ∨ a ∨ b)} have a path to each other.
Similarly, for {(e ∨ c ∨ d), (e ∨ f ∨ g)}. Therefore, {(x ∨ y ∨ z), (x ∨ a ∨ b)} and
{(e ∨ c ∨ d), (e ∨ f ∨ g)} are two components.

Definition 6. Let I be a set of variables of a fixed size. We say that I is semi-
isolated if there exists an s ∈ I such that in any clause involving variables not
in I, only s from I may appear.

1 The definition of chains and cycles will be mainly used in Sect. 4.3 and Sect. 4.4.
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For example consider the set I = {x, y, z, a, b} and the clauses (x∨y∨z), (x∨a∨b),
(b ∨ c ∨ d), (c ∨ d ∨ e). Since b is the only variable in I that appears in clauses
involving variables not in I, I is semi-isolated.

Definition 7. Suppose G = (V,E) is a simple undirected graph. A balanced
bisection is a mapping π : V → {0, 1} such that, for Vi = {v : π(v) = i}, |V0| and
|V1| differ by at most one. Let cut(π) = |{(v, w) : (v, w) ∈ E, v ∈ V0, w ∈ V1}|.
The bisection width of G is the smallest cut(·) that can be obtained for a balanced
bisection.

Theorem 8 (see Monien and Preis [13]). For any ε > 0, there is a value n(ε)
such that the bisection width of any 3-regular graph G = (V,E) with |V | > n(ε)
is at most ( 16 + ε)|V |. This bisection can be found in polynomial time.

The above result extends to all graphs G with maximum degree of 3 [9].

3 Algorithm

Our algorithm takes in a total of 4 parameters: a formula ϕ, a cardinality vector
c, two sets L and R.

The second parameter, a cardinality vector c, maps literals to N. The idea
behind introducing this cardinality vector c is to help us to keep track of the
number of models while applying simplification and branching rules. At the start,
c(l) = 1 for all literals in ϕ and will be updated along the way whenever we link
variables together or when we remove singletons. Since linking of variables is a
common operation, we introduce a function to help us perform this procedure.
The function Link(.), takes as inputs the cardinality vector and two literals
involving different variables to link them2. It updates the information of the
eliminated variable (y) onto the surviving variable (x) and after which, drops
the entries of eliminated variable (y and ȳ) in the cardinality vector c. When we
link x and y as x = y (respectively, x = ȳ), then we call the function Link(c, x, y)
(respectively, Link(c, x, ȳ)). We also use a function MonienPreis(.) to give us
partition based on Theorem8.

Function: Link(.)
Input: A Cardinality Vector c, literal x, literal y
Output: An updated Cardinality Vector c′

– Update c(x) = c(x)× c(y), and c(x̄) = c(x̄)× c(ȳ). After which, drop entries
of y and ȳ from c and update it as c′. Finally, return c′

Function: MonienPreis(.)
Input: A graph Gϕ with maximum degree 3
Output: L and R, the left and right partitions of minimum bisection width

For the third and fourth parameter, we have the sets of clauses L and R. L
and R will be used to store partitions of clauses after calling MonienPreis(.),
2 As seen in Definition 2.
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based on the minimum bisection width. Initially, L and R are empty sets and
will continue to be until we first come to Line 17 of the algorithm.3

We call our algorithm CountX3SAT (·). Whenever a literal l is assigned a
constant value, we drop both the entries l and l̄ from the cardinality vector
and multiply the returning recursive call by c(l) if l = 1, or c(l̄) if l̄ = 1. In
each recursive call, we ensure that the cardinality vector is updated to contain
only entries where variables in the remaining formula have yet to be assigned
a constant value. By doing so, we guarantee the following invariant: For any
given ϕ, let Sϕ = {h : h is an exact-satisfiable assignment for ϕ}. Now for any
given ϕ and a cardinality vector c, the output of CountX3SAT (ϕ, c, L,R) is
given as

∑
h∈Sϕ

∏
l:l is assigned true in h c(l). Initial call to our algorithm would

be CountX3SAT (ϕ, c, ∅, ∅), where the cardinality vector c has c(l) = 1 for
all literals at the start. The correctness of the algorithm follows from the fact
that each step will maintain the invariant that CountX3SAT (ϕ, c, L,R) returns∑

h∈Sϕ

∏
l:l is assigned true in h c(l), where if ϕ is not exactly satisfiable, it returns

0. Note that in the algorithm below possibilities considered are exhaustive.

Algorithm: CountX3SAT(.)
Input: A formula ϕ, a cardinality vector c, a set L, a set R
Output:

∑
h∈Sϕ

∏
l:l is assigned true in h c(l)

1: If any clause is not exact satisfiable (by analyzing this clause itself) then
return 0. If all clauses consist of constants evaluating to 1 or no clause is left
then return 1.

2: If there is a clause (1 ∨ δ), then let c′ be the new cardinality vector by
dropping the entries of the variables in δ. Drop this clause from ϕ.
Return CountX3SAT (ϕ[δ = 0], c′, L,R) × ∏

i is a literal in δ c(̄i)
3: If there is a clause C = (0 ∨ δ), then update C = δ in ϕ.

Return CountX3SAT (ϕ, c, L,R).
4: If there is a single literal x in a clause, then let c′ be the new cardinality

vector by dropping the entries x and x̄ from c.
Return CountX3SAT (ϕ[x = 1], c′, L,R) × c(x).

5: If there is a 2-literal clause (x ∨ y), for some literals x and y with x 	= y and
x 	= ȳ, then c′ = Link(c, x, ȳ). Return CountX3SAT (ϕ[y = x̄], c′, L,R).

6: If there is a clause (x ∨ x̄), for some variable x. Check if x appears in
other clauses. If yes, then drop this clause from ϕ and return CountX3SAT
(ϕ, c, L,R). If no, then let c′ be the new cardinality vector by dropping x and
x̄. Drop this clause from ϕ and return CountX3SAT (ϕ, c′, L,R) × (c(x) +
c(x̄)).

7: If there are k ≥ 2 components in ϕ and there are no edges between L
and R, then let ϕ1, . . . , ϕk be the k components of ϕ. Let ci be the car-
dinality vector for ϕi by only keeping the entries of the literals involving
variables appearing in ϕi, and dropping the rest. Let L = R = ∅. Return
CountX3SAT (ϕ1, c1, L,R) × . . . × CountX3SAT (ϕk, ck, L,R).

8: If there exists a clause (x ∨ x ∨ y), for some literals x and y, then let c′ be
the new cardinality vector by dropping the entries x and x̄ from c.
Return CountX3SAT (ϕ[x = 0], c′, L,R) × c(x̄)

3 More details about their role will be given in Sect. 4.3.
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9: If there is a clause (x ∨ x̄ ∨ y), then let c′ be the new cardinality vector
by removing the entries y and ȳ. Return CountX3SAT (ϕ[y = 0], c′, L,R)
× c(ȳ)

10: If there exists a clause containing two singletons x and y, then update c as:
c(x) = c(x) × c(ȳ) + c(x̄) × c(y), c(x̄) = c(x̄) × c(ȳ).
Let c′ be the new cardinality vector by dropping the entries y and ȳ from c.
Drop y from ϕ. Return CountX3SAT (ϕ, c′, L,R).

11: There are two clauses (x∨ y ∨ z) and (x∨ y ∨w), for some literals x, y, z and
w. Then in this case, let c′ = Link(c, z, w). Drop one of the clauses. Return
CountX3SAT (ϕ[w = z], c′, L,R).

12: There are two clauses (x∨ y ∨ z) and (x∨ ȳ ∨w), for some literals x, y, z and
w. Then let c′ be the new cardinality vector by dropping entries of x and x̄.
Return CountX3SAT (ϕ[x = 0], c′, L,R) × c(x̄).

13: There are two clauses (x∨ y ∨ z) and (x̄∨ ȳ ∨w), for some literals x, y, z and
w. Then c′ = Link(c, x, ȳ). Return CountX3SAT (ϕ[y = x̄], c′, L,R).

14: If there exists a semi-isolated set I, with 3 ≤ |I| ≤ 20, then let x be the
variable appearing in further clauses with variables not in I. Let c′ be the
new cardinality vector by updating the entries of x and x̄, dropping of entries
of variables in I − {x}. Drop all the entries of I − {x} from ϕ. Return
CountX3SAT (ϕ, c′, L,R).4

15: This rule is not analyzed for all cases, but only specific cases as mentioned in
Sections 4.1 and 4.2 (more specifically this applies only when some variable
appears in at least 3 clauses). If there exists a variable x such that branching
x = 1 and x = 0 allows us to either remove at least 7 variables on both
branches, or at least 8 on one and 6 on the other, or at least 9 on one
and 5 on the other, then branch x. Let c′ be the new cardinality vector by
dropping the entries x and x̄. Return CountX3SAT (ϕ[x = 1], c′, L,R) ×
c(x) + CountX3SAT (ϕ[x = 0], c′, L,R) × c(x̄)5.

16: If there exists a variable x appearing at least 3 times, then let c′ be
the new cardinality vector by dropping the entries x and x̄. Return
CountX3SAT (ϕ[x = 1], c′, L,R)×c(x)+CountX3SAT (ϕ[x = 0], c′, L,R)×
c(x̄)5.

17: If there is a degree 3 clause in ϕ, then check if ∃ an edge between L and R.
If no, then construct Gϕ and let (L′, R′) ← MonienPreis(Gϕ). Then return
CountX3SAT (ϕ, c, L′, R′). If ∃ an edge between L and R, apply only the
simplification rules (if any) as stated in Section 4.3. Choose an edge e between
L and R. Then branch the variable xe represented by e. Let the cardinality
vector c′ be the new cardinality vector by dropping off entries xe and x̄e.
Return CountX3SAT (ϕ[xe = 1], c′, L,R) × c(xe) + CountX3SAT (ϕ[xe =
0], c′, L,R) × c(x̄e)3.

18: If every clause in the formula is degree 2, choose any variable x and we
branch x = 1 and x = 0. Let c′ be the new cardinality vector by dropping
the entries x and x̄. Return CountX3SAT (ϕ[x = 1], c′, L,R) × c(x) +
CountX3SAT (ϕ[x = 0], c′, L,R) × c(x̄)5.

4 More details on the updating of c′ below in this section.
5 More details on this branching rule is given in Section 4.
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Note that every line in the algorithm has descending priority; Line 1 has higher
priority than Line 2, Line 2 than Line 3 etc.

Line 1 of the algorithm is our stopping condition. If any clause is not exact
satisfiable, immediately return 0. When no variables are left, then check if every
clause is exactly satisfied. If yes, then return 1, else 0.

Line 2 of the algorithm deals with any clause that contains a constant 1.
In this case, all the other literals in the clause must be assigned 0 and we can
safely drop off this clause after that. Line 3 deals with any clause with a constant
0 in it. We can then safely drop the constant 0 from the clause. Line 4 deals
with single-literal clauses. This literal must be assigned 1. Line 5 deals with two
literal clauses when the two literals involve two different variables. Line 6 deals
with two literal clauses when they come from the same variable, say x. Now if
x does not appear elsewhere, then either x = 1 or x = 0 will satisfy this clause.
Thus as done in Line 6, multiplying CountX3SAT (ϕ, c′, L,R) by the sum of
(c(x) + c(x̄)) would give us the correct value. Regardless of whether x appears
elsewhere or not, drop this clause.

After Line 6, we know that all clauses are of length 3. In Line 7, if the
formula is disconnected, then we deal with each components separately. Line
7 has some relation with Line 17. If the algorithm is not currently processing
Line 17, then basically we just call the algorithm on different components. The
explicit relationship between Line 7 and Line 17 will be given in Sect. 4.3. In
Line 8, we deal with a literal that appears twice in a clause. Then we can assign
that literal as 0. In Line 9, we have a literal and its negation appearing in the
same clause, then we assign the last literal to be 0. In Line 10, we deal with
clauses having two singletons and we need to update the cardinality vector c
before we are allowed to remove one. Suppose we have two singletons x and y
and we wish to remove say y, then we need to update the entries of c(x) and
c(x̄) to retain the information of c(y) and c(ȳ). Note that in the updated x,
when x = 0, this means that both the original x and y are 0. On the other
hand, when we have x = 1 in the updated x, this means that we can either
have x = 1 in the original x, or y = 1. Thus, this gives us the following update:
c(x) = c(x) × c(ȳ) + c(x̄) × c(y) when x is assigned “1”, and c(x̄) = c(x̄) × c(ȳ)
when x is assigned “0”. After which, we can then safely remove the entries of y
and ȳ from the cardinality vector c.

In Lines 11, 12 and 13, we deal with two overlapping variables (in different
permutation) between any two clauses. After which, any two clauses can only
have at most only 1 overlapping variable between them. In Line 14, we deal with
semi-isolated sets I such that we can remove all but one of its variable. In Line 15,
if we can find a variable x such that by branching it, we can remove that amount
of variables as stated, then we proceed to do so. The goal of introducing Line 14
and Line 15 is to help us out for Line 16, where we deal with variables that appear
at least 3 times. Their relationship will be made clearer in the latersections. After
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which, all variables will appear at most 2 times and each clause must have at
most degree 3. In Line 17, the remaining formula must consist of clauses of degree
2 and 3. Then we construct a graph Gϕ, apply MonienPreis(.) to it and choose
a variable to branch, followed by applying simplification rules. We’ll continue
doing so until no degree 3 clauses exist. Lastly in Line 18, the formula will only
consist of degree 2 clauses, and we will select any variable and branch x = 1 and
x = 0. Hence, we have covered all cases in the algorithm.

Now, we give the details of Line 14. As I is semi-isolated, let x be the variable
in I, such that x appears in further clauses containing variables not in I. Note
that when x = 1 or when x = 0, the formula becomes disconnected and clauses
involving I − {x} become a component of constant size. Therefore, we can use
brute force (requiring constant time), to check which assignments to the |I| − 1
variables satisfy the clauses involving variables from I, and then correspondingly
update c(x) and c(x̄), and drop all variables in I − {x} from ϕ. We call such a
process contraction of I into x. Details given below.

Updating of Cardinality Vector in Line 14 (Contracting Variables).
Let S be the set of clauses which involve only variables in I. δ below denotes
assignments to variables in I − {x}. For i ∈ {0, 1}, let

Zi = {δ : all clauses in S are satisfied when variables in I are set according
to δ and x = i}.

The following formulas update the cardinality vector for coordinate x and x̄, by
considering the different possibilities of δ which make the clauses in S satisfiable.
This is done by summing over all such δ in Zi (for i = x = 0 and i = x = 1),
the multiplicative factor formed by considering the cardinality vector values at
the corresponding true literals in δ. Here the literals 	 in the formula range over
literals involving the variables in I − {x}.

Let c(x) = c(x) × ∑
δ∈Z1

∏
� is true in δ c(	).

Let c(x̄) = c(x̄) × ∑
δ∈Z0

∏
� is true in δ c(	).

4 Analysis of the Branching Rules of the Algorithm

Note that Lines 1 to 14 are simplification rules and Lines 15 to 18 are branching
rules. For Line 7, note that since the time of our algorithm is running in O∗(cn),
for some c, then calling our algorithm onto different components will still give
us O∗(cn). Therefore, we will analyse Lines 15 to 18 of the algorithm.

4.1 Line 15 of the Algorithm

The goal of introducing Lines 14 and 15 is to ultimately help us to simplify our
cases when we deal with Line 16 of the algorithm. In Line 16, there can be some
ugly overlapping cases which we don’t have to worry after adding Lines 14 and
15 in the algorithm. The cases we are interested in are as follows.
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(A) There exists a variable which appears in at least four clauses.
Suppose the variable is x0, and the four clauses it appears in are (x′

0∨x1∨x2),
(x′′

0 ∨ x3 ∨ x4), (x′′′
0 ∨ x5 ∨ x6), (x′′′′

0 ∨ x7 ∨ x8), where x′
0, x

′′
0 , x′′′

0 , x′′′′
0 are either

x0 or x̄0. Note that x0, x1, x2, . . . , x8 are literals involving different variables
(by Lines 8,9,11,12,13). Note that setting literal x′

0 to 1 will correspondingly
set both x1 and x2 to 0; when x′

0 is set to 0 correspondingly x1 and x̄2 get
linked. Similarly, when we set x′′

0 , x′′′
0 , x′′′′

0 . Thus, setting x0 to 1 or 0 will give us
removal of i variables on one setting and 12 − i variables on the other setting,
where 4 ≤ i ≤ 8. Thus, including x0, this gives us, in the worst case, a branching
factor of τ(9, 5).

(B) There exists a variable which appears in exactly three clauses.
Suppose x0 is a variable appearing in the three clauses (x′

0∨x1∨x2), (x′′
0∨x3∨

x4), (x′′′
0 ∨x5∨x6) where x′

0, x
′′
0 , x′′′

0 are either x0 or x̄0. Note that x0, x1, x2, . . . , x6

are literals involving different variables. Let I = {x0, v1, v2, . . . , v6}, where vi is
the variable for the literal xi.

(B.1) If I is semi-isolated, or I ∪ {u} is semi-isolated for some variable u,
then Line 14 takes care of this.

(B.2) If there are two other variables u,w which may appear in any clause
involving variables from I, then we can branch on one of the variables u and then
do contraction as in Line 14 for I ∪ {w} to w. Thus, we will have a branching
factor of at least τ(8, 8).

(B.3) If there are at most two clauses C1 and C2 which involve variables
from I and from outside I and these two together involve at least three variables
from outside I, then consider the following cases.

Case 1: If both C1 and C2 have two variables from outside I. Then, let C1
have literal x′

i and C2 have literal x′
j , where x′

i is either xi or x̄i and x′
j is either

xj or x̄j , and i, j ∈ {0, 1, . . . , 6}. Now, one can branch on literal x′
i being 1 or 0.

In both cases, we can contract the remaining variables of I into xj (using Line
14). Including the two literals set to 0 in C1 when x′

i is 1, we get branching
factor of τ(8, 6).

Case 2: C1 and C2 together have three variables from outside I. Without
loss of generality assume C1 has one variable from outside I and C2 has two
variables from outside I. Then let C1 have literal y which is outside I and C2
have literal x′

j , where x′
j is either xj or x̄j . Now, one can branch on literal y

being 1 or 0. In both cases, we can contract the variables of I into xj (using Line
14). Including the literal y we get branching factor of τ(7, 7).

(B.4) Case 2.3 and Case 2.4 in Lemma 10 for Line 16.

Lemma 9. Branching the variable in Line 15 takes O(1.1074n) time. (The
worst branching factor is τ(9, 5)).

4.2 Line 16 of the Algorithm

In this case, we deal with variables that appear exactly 3 times.

Lemma 10. The time complexity of branching variables appearing 3 times is
O(1.1120n).
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Proof. Suppose x0 appears three times. Then we let the clauses that x0 appear
in be (x′

0 ∨ x1 ∨ x2), (x′′
0 ∨ x3 ∨ x4), (x′′′

0 ∨ x5 ∨ x6), where the primed versions
of x0 denote either x0 or x̄0.

Let I = {x0, v1, . . . , v6}, where vi is the variable in the literal xi.
Note that when x′

0 is set to 1, then x1 and x2 are also set to 0. When x′
0 is set

to 0 then x1 and x2 get linked. Similarly, for setting of x′′
0 and x′′′

0 . Thus, setting
of x0 to 1 or 0 allows us to remove i variables and 9 − i variables respectively
among v1, . . . , v6, where 3 ≤ i ≤ 6 (the worst case for us thus happens with
removal of 3 variables on one side and 6 on the other). We will show how to
remove three further variables outside I in the following cases (these may fall on
either side of setting of x0 to 1 or 0 above). Including x0, we get the worst case
branching factor of τ(10, 4).

Let the variables outside I be called outside variables for this proof. Let a
clause involving both variables from I and outside I be called a mixed clause.
By Line 14 and 15 of the algorithm, there are at least 3 mixed clauses, and at
least three outside variables which appear in mixed clauses.

Consider 3 mixed clauses C1 = (x′
i ∨ a1 ∨ a2), C2 = (x′

j ∨ a3 ∨ a4) and
C3 = (x′

k ∨ a5 ∨ a6), where a2, a4, a6 are literals involving outside variables, and
x′

i, x
′
j , x

′
k are literals involving variables from I.

Case 1: It is possible to select the three mixed clauses such that a4 involves a
variable not appearing in C1 and a6 involves a variable not appearing in C1, C2.

Note that this can always be done when there are at least four outside vari-
ables which appear in some mixed clauses.

In this case, x′
i is set in at least one of the cases of x0 being set to 1 or 0.

Similarly for x′
j and x′

k. In the case when x′
i is set, one can either set a2 or link

it to a1. In the case when x′
j is set, one can either set a4 or link it to a3. In the

case when x′
k is set, one can either set a6 or link it to a5. Note that the above

linkings are not cyclic as the variable for a4 is different from that of a1 and a2.
and the variable for a6 is different from that of a1, a2, a3, a4. Thus, in total three
outside variables are removed when x0 is set to 1 and 0.

Case 2: Not Case 1. Here, the number of outside variables which appear
in some mixed clause is exactly three. Choose some mixed clauses C1, C2, C3
such that exactly three outside variables are present in them. Suppose these
variables are a, b, c. Suppose the number of outside variables in C1, C2, C3 is
given by triple (s1, s2, s3) (without loss of generality assume s1 ≤ s2 ≤ s3).
We assume that the clauses chosen are so as to have the earlier case applicable
below. That is, if all three variables a, b, c appear in some mixed clause as only
outside variable, then Case 2.1 is chosen; Otherwise, if at least 2 mixed clauses
involving 2 outside variables are there and a mixed clause involving only one
outside variable is there then Case 2.2. is chosen. Otherwise, if only one mixed
clause involving two outside variable is there then Case 2.3 is chosen. Else, case
2.4 is chosen.

Case 2.1: (s1, s2, s3) = (1, 1, 1). This would fall in Case 1, as all three outside
variables are different.
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Case 2.2: (s1, s2, s3) = (1, 2, 2). As two variables cannot overlap in two differ-
ent clauses, one can assume without loss of generality that the outside variables
in C1 is a or b, in C2 are (a, b) and C3 are (b, c). But then this falls in Case 1.

Case 2.3: (s1, s2, s3) = (1, 1, 2). For this not to fall in Case 1, we must have
the same outside variable in C1 and C2. Suppose a appears in C1, C2 and b, c
in C3. Furthermore, to not fall in Case 1, we must have that all other outside
clauses must have a only as the outside variable (they cannot have both b, c
as outside variable, as overlapping of two variables is not allowed). Thus, by
branching on a, and then contracting, using Line 14, I to xk, will allow us to
have a worst case branching factor τ(7, 7). Thus, this is covered under Line 15.

Case 2.4: (s1, s2, s3) = (2, 2, 2). Say a, b are the outside variables in C1, a, c are
the outside variables in C2 and b, c are the outside variables in C3. Furthermore,
no other mixed clauses are there (as no two clauses can overlap in two literals).

Case 2.4.1: At least one of a, b, c appears both as positive and negative literal
in C1, C2, C3.

Suppose without loss of generality that a appears as positive in C1 and
negative in C2. Then, setting a to be 1, allows us to set b as well as contract all
of I to c using Line 14. Setting a to be 0, allows us to set c as well as contract
all of I to b using Line 14. Thus, we get a worst case branching factor of τ(9, 9).

Thus, this is covered under Line 15.
Case 2.4.2: None of a, b, c appears both as positive and negative literal in

C1, C2, C3. Without loss of generality assume a, b, c all appear as positive literals
in C1, C2, C3.

When, we set x′
i = 1, we have that a = b = 0 and we can contract rest of

I to c using Line 14. This gives us removal of 9 variables. When we set x′
i = 0,

we have that a = b̄, and thus c must be 0 (from C2 and C3), and thus we can
contract rest of I into a using Line 14. Thus we get a worst case branching factor
of τ(9, 9). Thus, this is covered under Line 15.

Therefore, the worst case time complexity is O(τ(10, 4)n) ⊆ O(1.1120n).

4.3 Line 17 of the Algorithm

We now deal with degree 3 clauses.
17: If there is a degree 3 clause in ϕ, then check if ∃ an edge between L and R.

If no, then construct Gϕ and let (L′, R′) ← MonienPreis(Gϕ). Then return
CountX3SAT (ϕ, c, L′, R′). If ∃ an edge between L and R, apply only the
simplification rules (if any) as stated in this section (Section 4.3). Choose
an edge e between L and R. Then branch the variable xe represented by
e. Let the cardinality vector c′ be the new cardinality vector by dropping
off entries xe and x̄e. Return CountX3SAT (ϕ[xe = 1], c′, L,R) × c(xe) +
CountX3SAT (ϕ[xe = 0], c′, L,R) × c(x̄e).
Now, we discuss Line 17 of the algorithm in detail. As long as a degree 3

clause exists in the formula, we repeat this process. First, we describe how to
construct the graph Gϕ.
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Construction. We construct a graph Gϕ = (V,E), where V = {vC : C is a
degree 3 clause in ϕ}. Given any vertices vC′ and vC′′ , we add an edge between
them if any of the below conditions occur on clauses C ′ and C ′′, where C ′ and
C ′′ are clauses with 3 neighbours:

1. If a common variable appears in both C ′ and C ′′

2. C ′ and C ′′ are connected by a chain of 2-degree clauses.

By construction, the graph Gϕ has maximum degree 3. Let m3 denote the num-
ber of degree 3 clauses in ϕ. This gives us |V | = m3. We can therefore apply the
result by Monien and Preis, with the size of the bisection width k ≤ m3( 16 + ε).

We construct the graph Gϕ when there are no edges between L and R, and
then apply MonienPreis(.) to get our new partitions L′ and R′, which are sets of
clauses. These partitions will remain connected until all edges between them are
removed. In other words, the variables represented by them are branched. Now
instead of bruteforcing all the variables in the bisection width at the same time,
we branch them edge by edge. After each branching, we apply simplification rules
before branching again. By our construction, we will not increase the degree of
our clauses or variables (except temporarily due to linking; the corresponding
clause will then be removed via Line 6). Therefore, we never need to resort to
the earlier branching rules (Line 15 and 16) that deal with variables appearing
at least 3 times again. In other words, once we come into Line 17, we will be
repeating this branching rule in a recursive manner until all degree 3 clauses have
been removed. Applying the simplification rules could mean that some variables
have been removed directly or via linking, or some degree 3 clauses have now
been dropped to a degree 2 clause etc. In other words, the clauses in the sets L
and R have changed. Therefore, we need to update L and R correspondingly to
reflect these changes before we repeat the branching again.

After branching the last variable between the two partitions, the formula
becomes disconnected with two components and Line 7 handles this. Recall
that in Line 7, we gave an additional condition to check for any edges between
L and R. During the course of applying simplification rules or branching the
variables, it could be that additional components can be created before all the
edges between L and R have been removed. Therefore, this condition to check
for any edges between the partition is to ensure that Line 7 will not be called
prematurely until all edges have been removed. We will now give in detail the
choosing of the variable to branch below.

Choosing of Variables to Branch. Based on the construction earlier, an edge
is added if any of the two possibilities mentioned above happen in the formula.
Let e be an edge in the bisection width. We choose a specific variable to branch
in the different scenarios listed.

1. Case 1: The edge e represents a variable sitting on two degree 3 clauses.
Branch this variable.

2. Case 2: The edge e represents a chain of 2 degree clauses. We alternate the
branchings between the variables that appear in a degree 3 clause and a
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degree 2 clause at both ends whenever Case 2 arises for symmetry reasons. For
example, if we have degree 3 clause (a ∨ b ∨ c) in the left partition connected to
degree 3 clause (s ∨ t ∨ u) in the right partition via a chain (c, d, e), . . . , (q, r, s),
and it is left partition end turn, then we branch on variable c; if it is right
partition end turn then we branch on variable s. These branchings will remove
the whole chain, and convert the two degree 3 clauses into degree two or lower
clause by compression as described below.

Compression. Suppose C ′ and C ′′ are two degree 3 clauses connected via a
chain C1, C2, . . . , Ck, where c is a common variable between C ′ and C1, and s
is a common variable between C ′′ and Ck. When s is assigned either a value of
0 or 1, C ′′ drops to a clause of degree at most 2. Ck becomes a 2-literal clause
(in the worst case) and we can link the two remaining literals in it together and
the clause is dropped. Therefore, the neighbouring clause Ck−1 has now become
a degree 1 clause. By Line 10 of the algorithm, we can remove 1 singleton and
Ck−1 drops to a 2-literal clause. Continuing the process of linking, dropping of
clause and removing of singletons, the degree 3 clause at the end, C ′, will drop
to become a clause of at most degree 2 when C1 is removed. Therefore, C ′ and
C ′′ will drop to a clause of at most degree 2.

With the Compression method, we now have the following. Let C be a degree
3 clause. Since C is a degree 3 clause, it has an edge to three other degree 3
clauses, say E1, E2, E3. Choose any edge, say between E1 and C. Now this edge
can either represent a variable appearing in both C and E1, or a chain between E1

and C with variables at both ends appearing in E1 and C. Therefore, assigning
a value of 0 or 1 to this chosen variable represented by the edge will cause C to
drop to a clause of degree at most 2.

Self-loop. Note that such a case can arise, where a degree 3 clause can be
connected via a degree 2 chain to itself. The idea to handle this is similar to Line
14 and by adopting the idea in Compression. Due to space constraints, details
are omitted. More information is available at https://arxiv.org/abs/2007.07553.

Based on the choice of variables as mentioned above, we now give the time
analysis for Line 17 of the algorithm. Note that the measure of complexity for
our branching factors here is m3, the number of degree 3 clauses.

Lemma 11. The time complexity of dealing of branching variables in the bisec-
tion width is O(1.1092n).

Proof. For m3, the current number of degree 3 clauses, we have that each
variable in a degree 3 clause occurs in exactly one further clause and that
there are three variables per clause. Thus 3m3 ≤ 2n and m3 ≤ 2

3n, where
n is the current number of variables. Note that the bisection width has size
k ≤ m3( 16 + ε).

Once we remove the edges in the bisection width, the two sides (call them
left (L) and right (R)) get disconnected, and thus each component can be solved
independently. Here note that after the removal of all the edges in the bisection
width, we have at most m3/2 degree 3 clauses in each partition. As we ignore
polynomial factors in counting the number of leaves, it suffices to concentrate

https://arxiv.org/abs/2007.07553
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on one (say left) partition. We consider two kinds of reductions: (i) a degree 3
clause on the left partition is removed or becomes of degree less than three due
to a branching, and (ii) the degree 3 clauses on the right partition are not part
of the left partition. The reduction due to (ii) is called bookkeeping reduction
because we spread it out over the removal of all the edges in the bisection width.
Note that after all the edges between L and R have been removed, m3

2 many
clauses are reduced due to the right partition not being connected to the left
partition. As the number of edges in the bisection width is at most m3

6 , in the
worst case, we can count at least m3

2 ÷ m3
6 = 3 degree 3 clauses for each edge in

the bisection width that we remove. For the removal of degree 3 clauses in the
left partition, we analyze as follows.

Let an edge be given between L and R. We let the degree 3 clause C =
(a ∨ b ∨ c) be on the left partition, and the degree 3 clause T = (s ∨ t ∨ u) be on
the right partition. Then the edge can be represented by c, with s = c or s = c̄,
or the edge is represented by a chain of degree 2 clauses, with the ends being c
and s. We branch the variable c = 1 and c = 0.

When c = 0, C gets dropped to a degree 2 clause. Now this also means that
the given edge gets removed (either directly or via Compression). Counting an
additional 3 degree 3 clauses from the bookkeeping process, we remove a total
of 4 degree 3 clauses here.

When c = 1, then a = b = 0. Since C is a degree 3 clause, it is connected to 3
other degree 3 clauses. Now all 3 degree 3 clauses will either be removed, or will
drop to a degree 2 clause (again either directly, or via Compression). Hence, this
allows us to remove 1+3i+(3− i) degree 3 clauses, where removing C counts as
1, i is the number of neighbours of C in the right partition (bookkeeping) while
(3− i) be the number of neighbours on the left. Since i ∈ {1, 2, 3}, the minimum
number of degree 3 clauses we can remove here happens to be for i = 1, giving
us 6 degree 3 clauses for this branch. This gives us a branching factor of τ(6, 4).

When we branch the variable s = 1 and s = 0, C gets dropped to a degree
2 clause via Compression, and in both branches, the edge gets removed and we
can count 3 additional clauses from the bookkeeping process. In both branches,
we remove 4 degree 3 clauses. This gives us a branching factor of τ(4, 4). Since
we are always doing alternate branching for Case 2 (branching at point c and
then at point t), we can apply branching vector addition on (6, 4) to (4, 4) on
both branches to get a branching vector of (8, 8, 10, 10).

Hence, Case 1 takes O(τ(6, 4)m3) time, while Case 2 takes O(τ(8, 8, 10, 10)m3)
time. Since Case 2 is the bottleneck, this gives us O(τ(8, 8, 10, 10)m3) ⊆
O(τ(8, 8, 10, 10)

2
3n) ⊆ O(1.1092n), which absorbs all subexponential terms.

4.4 Line 18 of the Algorithm

In Line 18, the formula ϕ is left with only degree 2 clauses in the formula. Now
suppose that no simplification rules apply, then we know that the formula must
consist of cycles of degree 2 because of Lines 2, 3, 5, 6 and 10 of the algorithm.
Now if ϕ consists of many components, with each being a cycle, then we can
handle this by Line 7 of the algorithm. Therefore, ϕ consists of a cycle.
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Now, we choose any variable x in this cycle and branch x = 1 and x = 0.
Since all the clauses are of degree 2, we can repeatedly apply Line 10 and other
simplification rules to solve the remaining variables (same idea as in Compres-
sion). Therefore, we would only need to branch one variable in this line. This,
and repeatedly applying the simplification rules, will only take polynomial time.

Putting everything together, we have the following result.

Theorem 12. The whole algorithm runs in O(1.1120n) time.
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Abstract. In this paper, we argue that metrics that assess the perfor-
mance of backtrack search for solving a Constraint Satisfaction Problem
should not be visualized and examined only at the end of search, but their
evolution should be tracked throughout the search process in order to
provide a more complete picture of the behavior of search. We describe a
process that organizes search history by automatically recognizing quali-
tatively significant changes in the metrics that assess search performance.
To this end, we introduce a criterion for quantifying change between two
time instants and a summarization technique for organizing the history
of search at controllable levels of abstraction. We validate our approach
in the context of two algorithms for enforcing consistency: one that is
activated by a surge of backtracking and the second that modifies the
structure of the constraint graph. We also introduce a new visualization
for exposing the behavior of variable ordering heuristics and validate its
usefulness both as a standalone tool and when displayed alongside search
history.

Keywords: Search · Visualization · Constraint Satisfaction

1 Introduction

In this paper, we propose a new perspective and visualization tools to under-
stand and analyze the behavior of the backtrack-search procedure for solving
Constraint Satisfaction Problems (CSPs). Backtrack search is commonly used
for solving CSPs. However, its performance is unpredictable and can differ widely
on similar instances. Further, maintaining a given consistency property during
search has become a common practice [13,22,30,42,43] and new strategies for
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dynamically switching between consistency algorithms are being investigated [1–
3,9,15,16,18,25,29,41,46,48]. While consistency algorithms can dramatically
reduce the size of the search space, their impact on the CPU cost of search
can vary widely. This cost is currently poorly understood, hard to predict, and
difficult to control.

To gain an understanding of the behavior of search and its performance, most
previous work has focused on the visualization of various metrics at the end of
search. In contrast, we claim that it is sometimes advantageous to inspect the
history [20] or evolution of these metrics along the search process in order to
detect bottlenecks that can be addressed by specific tools (e.g., modify the topo-
logical structure of the constraint network [43] or enforce a particular high-level
consistency). As we demonstrate in this paper, it is sometimes not practical, or
even feasible, to manually carry out such an analysis. For this reason, we advo-
cate to automatically organize the history of search (i.e., its evolution over time)
as a sequence of regimes [23] of qualitatively distinct behaviors detected by sam-
pling the performance metrics during search. We claim that our visualizations
are useful to the researcher designing new adaptive strategies and consistency
algorithms as well as to the savvy engineer deploying constraint-programming
solutions.

Building on the visualizations proposed by Woodward et al. [46] for describing
search performance, we introduce the following contributions:

1. A criterion for computing the distance between two samples, quantifying the
change in search behavior.

2. A clustering technique for automatically summarizing the history of search
and its progress over time in a hierarchical structure that a human user can
inspect at various levels of details.

3. A new visualization that reveals and summarizes the behavior of a dynamic
variable ordering heuristic.

This paper is structured as follows. We first review background information
and the relevant literature. Then, we describe our contributions. For each contri-
bution, we highlight its usefulness with illustrative examples. Finally, we discuss
the usefulness of our approach and conclude with directions for future research.

2 Background and Related Work

Constraint Satisfaction Problems (CSPs) are used to model many combinatorial
decision problems of practical importance in Computer Science, Engineering, and
Management. A CSP is defined by a tuple (X,D,C), where X is a set of variables,
D is the set of the variables’ domains, and C a set of constraints that restrict the
combinations of values that the variables can take at the same time. We denote
the number of variables |X|= n. A solution to a CSP is an assignment of values
to variables such that all constraints are simultaneously satisfied. Determining
whether or not a given CSP has a solution is known to be NP-complete. The
constraint network of a CSP instance is a graph where the vertices represent the
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variables in the CSP and the edges represent the constraints and connect the
variables in their scope.

To date, backtrack search (BT) is the only sound and complete algorithm for
solving CSPs [7]. Backtracking suffers from thrashing when it repeatedly explores
similar subtrees without making progress. Strategies for reducing thrashing
include intelligent backtracking, ordering heuristics, learning no-goods, and
enforcing a given consistency property after every variable instantiation. Enforc-
ing consistency reduces the size of the search space by deleting, from the vari-
ables’ domains, values that cannot appear in a consistent solution given the
current search path (i.e., conditioning). In recent years, the research commu-
nity has investigated higher-level consistencies (HLC) as inference techniques
to prune larger portions of the search space at the cost of increased processing
effort [6,13,17,33], leading to a trade-off between the search effort and the time
for enforcing consistency. We claim that our visualizations are insightful tools to
understand why and where to apply HLCs and to assess their effectiveness.

In this paper, we use by default dom/wdeg [10], a dynamic variable ordering
heuristic (and dom/deg [5] where indicated). Below, we summarize the consis-
tency properties that we enforce. We always maintain Generalized Arc Con-
sistency (GAC) [26] during search. In addition to GAC, we enforce, as HLCs,
Partition-One Arc-Consistency (POAC) [4], which filters the domains of the
variables by performing singleton testing, and Partial Path Consistency (PPC)
[8], which filters the constraints after triangulating the constraint graph. Both
POAC and (strong) PPC are strictly stronger than GAC. In order to control their
cost, we enforce the HLCs in a ‘selective/adaptive’ manner using the PrePeak+

strategy of Woodward et al. [46] for POAC (denoted PrePeak+-POAC) and
the Directional Partial Path Consistency of Woodward [45] (denoted DPPC+).
PrePeak+ triggers POAC by watching the numbers of backtracks and follows
geometric laws to increase or decrease the calls to POAC. DPPC+ chooses a
subset of the triangles of the triangulated constraint network on which it calls
PPC in a manner to reduce the addition of new constraints while increasing
propagation across the network. Finally, we use a k-way branching strategy for
search. However, preliminary tests on Choco [12], on which we tested GAC and
implemented POAC, show similar shapes of the visualizations.

Prior research on search visualization has appeared in the Constraint Pro-
gramming literature. Most previous approaches, such as the ones discussed
below, can be viewed as tools for inspecting and debugging search. The DiS-
CiPl project provides extensive visual functionalities to develop, test, and debug
constraint logic programs such as displaying variables’ states, effect of constraints
and global constraints, event propagation at each node of the search tree, and
identifying isomorphic subtrees [11,38]. Many useful methodologies from the
DiSCiPl project are implemented in CP-Viz [39] and other works [37]. The OZ
Explorer displays the search tree allowing the user to access detailed informa-
tion about each tree node and to collapse and expand failing trees for closer
examination [34]. This work is currently incorporated into Gecode’s Gist [35].
The above approaches focus on exploring in detail the search tree to examine
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and inspect the impact of individual search decisions on a particular variable,
constraint, variable domain, or even a subtree of the search. In contrast, our
work proposes to summarize the evolution of search along a given dimension
(i.e., projection), providing a qualitative, abstract view of a search tree that is
too large to be explored. We believe that the above approaches are orthogonal
and complementary to ours.

Ghoniem et al. [19] propose a variety of heatmap visualizations to illustrate
the operation of constraint propagation across an instance. Their heatmaps illus-
trate the impact of the activity of a variable or of a constraint on other variables
or constraints in terms of filtering the variables’ domains or causing further con-
straint propagation. These visualizations are fine grained and inform the user
of the effect of a particular decision. They have pedagogical value and can also
be useful for debugging. They differ from our approach in that the user has the
burden of identifying the animation frames of interests. Relatively short behav-
iors can go unnoticed and long behaviors can be wasteful of the user’s time. In
contrast, our regime-identification process automatically organizes search his-
tory into a sequence of ‘interesting’ episodes. We consider their contribution too
to be orthogonal and complementary to our approach.

Tracing the search effort by depth of the search tree was first proposed for
the number of constraint checks and values removed per search level (Epstein
et al. [16]) and for the number of nodes visited (Simonis et al. [39] in CP-Viz, also
used for solving a packing problem [40]). More recently, Woodward et al. [46]
propose to focus on the number of backtracks per depth (BpD) to assess the
severity of thrashing and on the number of calls to an HLC per depth (CpD)
to explain the cost of enforcing an HLC, see Fig. 1. Further, they split the CpD
into three line charts, showing in green the HLC calls that prune inconsistent
subtrees and yield domain wipeouts (most effective), in blue those that filter the
domains of future variables (effective), and in red those that do not filter the

Fig. 1. From Woodward et al. [46]: Number of backtracks (BpD) and calls (CpD) to
POAC per depth at the end of search for benchmark instance pseudo-aim-200-1-6-4
using dom/wdeg. Left: GAC. Right: APOAC, an adaptive POAC by Balafrej et al. [1].
The CPU time, #NV (number of nodes visited), and #BT (number of backtracks) are
typically used to indicate the cost of search. (Color figure online)
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domain of any future variable (wasteful). Finally, they superimpose the CpD to
the BpD chart in order to reveal the effectiveness of the consistency enforced
(and that of the adaptive strategy for enforcing an HLC, when applicable).

3 Tracking Search History

To the best of our knowledge, previous approaches to visualizing the various
search ‘metrics per depth’ of the search tree (e.g., number of nodes visited, con-
straint checks, or backtracks) present the values reached at the end of search thus
providing a ‘blanket’ summary where thrashing occurred and search invested the
most resources. They fail to identify the problems that occur during search. We
argue that these visualizations may mask important information, such as tran-
sient behaviors of search, that an algorithm developer or a savvy user need to
examine and address in order to solve the problem. In this paper, we propose
to track the progress of search by collecting samples of the BpD ‘profile’ during
search, see Fig. 2.1 In the examples discussed in this paper, we use a sampling
rate of 100 ms. To this end, we propose a criterion for deciding whether two con-
secutive samples are ‘equivalent’ and pertain to the same qualitative regime [23]
of search. The sequence of regimes yields a history [20] of the search.

Fig. 2. BpD and CpD are sampled, during search, at times ti (0 < i ≤ max), and the
corresponding line charts are portioned into successive regimes of equivalent behavior
that collectively describe the history of search progress

Below, we first introduce a criterion for assessing distance between two BpD
samples. Then, we describe how to build a summarization tree using agglomera-
tive hierarchical clustering and how the tree can be used to allow the human user
to examine the search history at the desired level of detail. Finally, we provide
two illustrative examples.

3.1 Distance Between Two BpD Samples

We adopt the following notations. D = [1, dmax] is the domain of the depth of
the search tree for solving the CSP. In a k-way backtrack search, dmax = n; in a
binary-branching scheme, dmax ≤ na, where a is the maximum domain size. We
sample search, recording the cumulative number of backtracks per depth (BpD)

1 Note that we can interrupt search at any time to conduct the analysis and need not
wait until the end of search.
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at each sampling instant. BT(d, t) designates the number of backtracks executed
by search at depth d ∈ D from the beginning of search until time t. The first
regime starts at t = 0 and we set BTd∈D(d, 0) ≡ 0. The last regime ends at tm
and corresponds to the last sample collected. We say that two time instants t
and t′ do not belong to the same qualitative regime if their corresponding BpD
curves ‘differ enough’ according to some divergence or distance criterion. Below,
we introduce one such criterion.

To measure the distance between BpDs at time stamps t and t′, we
adapt, to our context, the Kullback-Leibler (KL) divergence (also called rela-
tive entropy) [24]. Given two discrete probability distributions P and Q defined
on the same probability space, χ, the KL-divergence from Q to P , which is
always non-negative, is defined as: DKL(P || Q) =

∑
x∈χ P (x) log

(
P (x)
Q(x)

)
.

In order to adapt the KL-divergence to our context, we introduce the proba-
bility that BT(d, t) take a given value as p(d, t) = BT(d,t)∑

d∈D BT(d,t) . In order to avoid
having this probability be zero when BT(d, t) = 0, we use Laplace Smoothing
[27], approximating this probability with p̂(d, t) = BT(d,t)+α∑

d∈D BT(d,t)+αdmax
and using

α = 0.1 in our experiments. Finally, we define the divergence div(t, t′) = div(t′, t)
between two BpD curves at time t and t′ as

div(t, t′) = max

(
∑

d∈D

p̂(d, t) log
(

p̂(d, t)
p̂(d, t′)

)

,
∑

d∈D

p̂(d, t′) log
(

p̂(d, t′)
p̂(d, t)

))

(1)

Further, we define the distance between two regimes as the divergence
between the two BpDs located at the middle sample of the corresponding
regimes. Another alternative, a little more costly, is to use the largest diver-
gence between any two samples in the regimes. Other options exist, preliminary
evaluations did not exhibit a significant sensitivity to this choice.

3.2 Clustering Tree and Summarization Tree

We propose to summarize the history of the search following the idea of agglom-
erative hierarchical clustering described by Nielsen [28, Chapter 8], which yields
a binary tree.

Starting from the sequence of BpD samples (collected during search and
ordered along the time line), we form the leaf nodes of the clustering tree storing
one sample per node. We place these nodes in a vector Q. Then,

1. We determine the divergence between every two consecutive nodes in Q (those
that store temporally adjacent samples).

2. We generate a parent for the two nodes with the smallest divergence value.
3. We replace, in Q, the two nodes with their parent.
4. We associate, to the parent, the concatenation of the sample sequences of the

two children, ordered in increasing time.
5. We store, for the parent, the divergence value between its children.
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6. We choose as representative of the new node the middle sample, breaking ties
by using the earlier sample.

We iteratively apply the process until |Q|= 1. We call this tree the clustering
tree and reuse it every time a new summarization is needed.

Finally, we identify the deepest nodes in the tree with a stored divergence
value larger than or equal to a user-defined value δ and replace each such node by
a new regime node. The regime node inherits from the node that it replaces, its
representative middle sample, its divergence value, and the sequence of samples
stored at the leaves of the corresponding subtree. We call the resulting structure
a δ-summarization tree. The dendrogram shown in Fig. 3 illustrates this process.

Fig. 3. Dendrogram of the summarization tree, showing the sequence of ‘cluster’ merg-
ers and the divergence value at which each merger occurs (with ε ≥ 0)

The clustering tree stores samples at its leaves and does not use or depend on
δ. The summarization tree uses δ to ‘trim’ the lower levels of the clustering tree,
replacing them with regimes for explanation, which can be done interactively
and is computationally cheap. Thus, if the summarization is too detailed or too
abstract, the user may adjust δ to quickly regenerate a new history from the
clustering tree to reach a level of detail that is cognitively satisfying. Further,
iteratively adding samples to the clustering tree as search proceeds can be done,
online, in logarithmic time. Consequently, building and maintaining the cluster-
ing tree can efficiently be done online, during search. However, this direction
remains to be investigated.

In addition to the data structures used for the hierarchical clustering [36],
we introduce two data structures: first, Q, implemented as a vector of size m,
where m is the number of samples collected. Then, another vector to store the
data of the non-leaf nodes of the clustering tree. This size of this vector is m− 1
because the clustering tree is a full binary tree. The clustering tree can be built
in O(m2) time and O(m) space [14].

3.3 Illustrative Example: Explaining Adaptive Consistency

In this section, we compare the behavior of search for solving the SAT instance
aim-200-2-0-sat-1 [50]. GAC takes less than 10 min and generates 14 million
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backtracks. PrePeak+-POAC, on the other hand, solves the instance in little
over a minute, netting only 1.2 million backtracks. To see why, we examine
the corresponding search histories shown in Fig. 4a and 4b. We see that initially,
both searches proceed exactly in the same manner. The behavior of PrePeak+-
POAC starts to diverge from that of GAC at the fifth regime of PrePeak+-
POAC (Fig. 4b) where PrePeak+ reacts to the sharp increase of the number
of backtracks around depth 100 and triggers POAC. POAC successfully prunes
inconsistent subtrees (green calls) or decreases the size of search tree (blue calls).
By examining the last three regimes of PrePeak+ (Fig. 4b), we see how the
HLC successfully reduces the severity of the backtracking, reducing the peak in
height, width, and even in position. By investing in opportunistic and effective
(even if costly) calls to POAC, we significantly reduce the search time.

3.4 Illustrative Example: Analyzing Structure

In this section, we show how the identification and visualization of the regimes
of search provide insight into the structure of a problem instance and guide the
choice of the appropriate type of consistency for solving it.

We consider the graph-coloring instance mug100-25-3 [50] and try to solve
it with GAC using dom/wdeg for dynamic variable ordering. Search fails to
terminate within two hours. The inspection of the BpD of GAC (left of Fig. 5)
at the end of the unsuccessful search reveals the presence of a ‘dramatic’ peak
of the number of backtracks at depth 83 (i.e., relatively deep in the search tree).
This behavior hints that search may have made a bad decision at a shallower
level of search from which it could not recover.

Fig. 5. mug100-25-3: GAC (left); constraint network (center); DPPC+ (right).

The inspection of the history of search, shown in Fig. 6a, reveals six regimes.
Search generates a first peak at depth 34 (Regimes 1 and 2) before generating
a second peak at depth 86 (Regimes 3 and 4). Then, this second peak grows
larger, dwarfs the first, shifts to depth 61, and settles at depth 83. Further,
Regime 1 reveals a peak of magnitude 2834 backtracks at depth 34, which corre-
sponds to instantiating about one third of the variables in the problem. Regime 2
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shows that search has overcome the initial bottleneck in the instance occurring at
depth 34 with a magnitude of 4556 backtracks but is struggling again with a sec-
ond bottleneck at depth 86 with a magnitude of 4624 backtracks. Regime 3 shows
that the severity of the first bottleneck is dwarfed by a dramatic increase of the
second bottleneck, which reaches 237705 backtracks at depth 86. As time pro-
gresses, the peak moves to shallower levels, to depth 61. Although the peak keeps
moving to deeper levels, search struggles and is unable to conclude. Another note-
worthy information is the time scale at which the regimes are identified. The first
three regimes take place within the first five seconds of search whereas the last
three regimes occur at larger time scales. It seems presumptuous to expect a
human user to identify and isolate behavior occurring at such small time scales.

The observation of the two bottlenecks prompts us to examine the constraint
network of the problem instance looking for some structural explanation for the
non-termination of search. Indeed, we expect the graph to exhibit some par-
ticular configuration such as two overlapping cliques. The examination of the
constraint graph, shown at the center of Fig. 5, refutes our two-cliques hypoth-
esis but reveals the existence of a few large cycles as well as many cycles of size
three or more. Previous work argued that the presence of cycles can be detrimen-
tal to the effectiveness of constraint propagation and showed how triangulation
of the constraint network allows us to remedy the situation [43,44,47]. With this
insight, we consider enforcing, during search, Partial Path Consistency (PPC)
instead of GAC because the algorithm for PPC operates on existing triangles and
on triangulated cycles of the constraint network [8]. Because PPC is too expen-
sive to enforce during search, Woodward proposed a computationally competitive
algorithm to enforce a relaxed version of Directional Partial Path Consistency
(DPPC+) [45]. By enforcing a strong consistency along cycles, search is able to
detect the insolvability of mug100-25-3 and terminates in less than 20 s. The
corresponding history of search, shown in Fig. 6b, exhibits a unique regime.

Figure 5 (right) shows the BpD of search while enforcing DPPC+ on the
mug100-25-3 instance. This chart shows a peak of 13536 backtracks at depth 34.
Table 1 compares the cost of search with GAC and with DPPC+. The sign ‘>’
indicates that search does not terminate within the allotted two hours.

Table 1. Performance of search (dom/wdeg) on mug100-25-3: GAC versus DPPC+

GAC DPPC+

CPU time (sec) >8082.4 19.8

#Nodes visited 851130992 288976

#Backtracks 697346084 236356

maxd∈D(BT(d, tmax)) 25953973 13536

arg maxd∈D(BT(d, tmax)) 83 34

Above, we showed how the visualizations and regimes of search behavior allow
us to form a hypothesis about the issues encountered by search and attempt an
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alternative technique that is usually avoided because of its cost, culminating in
successfully solving a difficult instance.

4 Visualizing Variable Ordering

Heuristics for variable ordering remain an active area of research in Con-
straint Programming. Currently, dom/wdeg [10] is considered the most effec-
tive general-purpose heuristic. When running experiments on benchmark prob-
lems, we encountered a puzzling case where search did not terminate when
using dom/wdeg but safely terminated, determining inconsistency, when using
dom/deg. We propose variable-instantiation per depth (VIpD) as a visualization
to summarize the behavior of a variable ordering heuristic.

4.1 Variable-Instantiation per Depth (VIpD)

We denote by I(v, d, t) the number of times variable v is instantiated at a given
depth d from the beginning of search until time t. For a variable v ∈ X, we
define the weighted depth:

dw(v, t) =
∑

d∈D I(v, d, t) · d
∑

d∈D I(v, d, t)
(2)

We introduce the VIpD chart at time t as a two-dimensional heatmap of I(·, ·, t)
using, as x-axis, the depth of search and, as y-axis, the variables of the CSP listed
in their increasing dw(·, t) values (ties broken using a lexicographical ordering of
the names of the variables).

4.2 Illustrative Example

We try to solve the instance mug100-1-3 [50] of a graph coloring problem using
GAC, but searches with dom/wdeg and with dom/deg fail to terminate after
two hours of wall-clock time. In a next attempt, we maintain POAC during
search; search with dom/wdeg did not terminate but, with dom/deg, it ter-
minated after 47 min and determined that the instance is inconsistent. Table 2
compares the performance of POAC with dom/wdeg and dom/deg. The sign ‘>’
indicates that search did not terminate within two hours.

Table 2. Performance of search on mug100-1-3 using POAC

POAC dom/wdeg dom/deg

CPU time (sec) >8085.4 2836.5

#Nodes visited 37811011 25178511

#Backtracks 32031950 14955444

maxd∈D(BT(d, tmax)) 1042601 1393204

arg maxd∈D(BT(d, tmax)) 54 57
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Fig. 7. Variable Instantiation per Depth (VIpD) on mug100-1-3. Left: POAC with
dom/wdeg after two hours. Right: POAC with dom/deg after 47min.

The comparison of the VIpD of POAC with dom/wdeg and that with
dom/deg reveals an erratic behavior of dom/wdeg (Fig. 7). Indeed, dom/wdeg,
which learns from domain wipeouts, is unable to determine the most conflicting
variables on which it should focus. Instead, it continually instantiates a large
number of variables over a wide range of depth levels in search. In contrast,
dom/deg exhibits a more stable, less chaotic behavior. It focuses on the vari-
ables that yield inconsistency and is able to successfully terminate. The VIpD
charts are also available as an Excel file where the user may analyze individual
cells to examine their I(·, ·, t) values.

Comparing the histories alongside the VIpD charts (see Fig. 8), we see clearly
that dom/wdeg is erratic and chaotic since the beginning of search whereas
dom/deg is able to quickly focus on a relatively localized conflict to deter-
mine inconsistency of the problem instance. The peak of the BpD is sharper
for dom/deg than for dom/wdeg and the VIpD shows a smaller set of variables
is affected by the backtracking in dom/deg than in dom/wdeg. Future work could
analyze this information to identify the source of conflict.

5 Discussion

We illustrated the usefulness of our approach in three case studies (summarized
in Table 3). The first example (Sect. 3.3) compares two search histories to explain
the operation and effectiveness of an adaptive technique (perhaps to a student or
to a layperson). The same process can be used by a researcher or an application
developer to explore the impact of, and adjust, the parameters of a new method.
In the second example (Sect. 3.4), search fails because of a transient behavior at
a tiny time scale detected by our automatic regime identification. Without this
tool, the user may never notice the issue in order to explore effective solutions.

Beyond the scenarios and the metrics discussed above, we believe that build-
ing and comparing search histories are useful to explore, understand, and explain
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(a) POAC with dom/wdeg after two hours.

(b) POAC with dom/deg after 47 minutes.

Fig. 8. History and VIpD of POAC on mug100-1-3: dom/wdeg (top), dom/deg (bot-
tom)

the impact, on the behavior and performance of search, of many advanced
techniques such as no-good/clause learning, restart strategies, consistency algo-
rithms, variable ordering heuristics, as well as the design of new such algorithms.

We strongly believe that our approach is beneficial in the context of existing
constraint solvers such as Choco [12] and Gecode [35]. As stated above, prelimi-
nary tests on GAC and POAC [32] on Choco have shown similar BpD and CpD
line-charts to those we see in k-way branching. Further, propagators in such
solvers are often implemented on the individual constraints themselves, which
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Table 3. Illustrative examples: the instances used and the corresponding search history

aim-200-2-0-sat-1 mug100-25-3 mug100-1-3

Consistency GAC PrePeak+-POAC GAC DPPC+ POAC

Displayed in. . . Fig. 4a Fig. 4b Figs. 5, 6a Figs. 5, 6b Figs. 7, 8a Figs. 7, 8b

CPU (ms) 569633.2 60953.1 8082215.3 19833.0 8085417.6 2836475.7

Threshold (δ) 0.1 0.05 0.1 0.1 0.1 0.1

# Samples 5639 604 80014 197 79, 345 28025

# Regimes 5 7 6 1 3 3

History H1 H2 H3 H4 H5 H6

The histories with the durations of their regimes, listed chronologically:

H1: [202ms, 101ms, 606ms, 17982ms, 550742ms]

H2: [101ms, 202ms, 101ms, 1010ms, 6370ms, 16175ms, 36994ms]

H3: [1515ms, 606ms, 4848ms, 107067ms, 423119ms, 7545060ms]

H4: [19833ms]

H5: [101ms, 304ms, 8085012ms]

H6: [101ms, 101ms, 2836273ms]

makes the accounting of the calls to various types of consistencies particularly
well adapted.

The SAT community is another one that could benefit from our work. In
SAT solvers, inprocessing (in the form of the application of the resolution rule)
interleaves search and inference steps [21,49]. Resolution is allocated a fixed per-
centage of the CPU time (e.g., 10%) and sometimes its effectiveness is monitored
for early termination. We believe that inference should be targeted at the ‘areas’
where search is struggling rather than following a predetermined and fixed effort
allocation. We claim that understanding where search struggles and how that
struggle changes can be used to identify where inference is best invested.

While our work does not generate verbal explanations, we claim that the
graphical tools directly ‘speak’ to a user’s intuitions.

6 Conclusions

In this paper, we presented a summarization technique and a visualization to
allow the user to understand search behavior and performance on a given prob-
lem instance.

Currently, our approach provides a ‘post-mortem’ analysis of search, but our
ultimate goal is to provide an ‘in-vivo’ analysis and allow the user to intervene
in, and guide, the search process, trying alternatives and mixing strategies while
observing their effects on the effectiveness of problem solving. A significantly
more ambitious objective is to use the tools discussed in this paper as richer
representations than mere numerical values to automatically guide search [31].

Future work includes the development of animation techniques based on the
proposed visualizations.
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Abstract. The currently best CP method for solving the Travelling
Salesman Problem is the Weighted Circuit Constraint associated with
the LCFirst search strategy. The use of Embarrassingly Parallel Search
(EPS) for this model is problematic because EPS decomposition is
a depth-bounded process unlike the LCFirst search strategy which is
depth-first. We present Bound-Backtrack-and-Dive, a method which
solves this issue. First, we run a sequential solving of the problem with a
bounded number of backtracks in order to extract key information from
LCFirst, then we decompose with EPS using that information rather
than LCFirst. The experimental results show that we obtain almost a
linear gain on the number of cores and that Bound-Backtrack-and-Dive
may considerably reduce the number of backtracks performed for some
problems.

1 Introduction

In graph theory, the Travelling Salesman Problem (TSP) consists in searching
for a single cycle covering a graph such that the sum of the cycle edge cost
is minimal. This problem has been widely studied as there is a huge number
of direct applications such as routing problems, school bus problems, etc. and
indirect applications such as scheduling where cities are tasks and arcs are tran-
sition times. As the decision version of the TSP is NP-Complete, many methods
have been tried to solve it (MIP, CP, SAT, etc.). Among them, a MIP method,
named Concorde [1], is indisputably the state of the art for solving the pure TSP.
Unfortunately, there are a lot of applications of the TSP where side constraints
are involved. For example, precedence constraints between nodes or time win-
dows (i.e. a period of time during which a node can be visited). In such cases,
Concorde can no longer be used and CP with the Weighted Circuit Constraint
(WCC) [2,3] and k-cutsets constraint [8] becomes a competitive approach for
exact solving.

The WCC is composed of a Lagrangian relaxation of a 1-tree (i.e. a special
minimum spanning tree plus one minimum cost edge) and a degree constraint.
The Weighted Circuit and cutsets Constraint (WCCC) is the association of the
WCC and k-cutsets constraint. In addition, it uses a search strategy integrating
a graph interpretation of Last Conflict heuristics [5,10], named LCFirst [4]. This
search strategy selects one node from the graph according to a heuristic and
keeps branching on the node until there are no more candidates around it, no
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 410–426, 2020.
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matter if we backtrack or not. Hence, this search strategy learns from previous
branching choices and tends to keep those that previously caused a fail. Results
in [4] show that LCFirst clearly outperforms all other search strategies, it is the
only one that really exploits the graph structure. So far, LCFirst beats all other
search strategies by one or more orders of magnitude.

Over the last few years, machines with multiple cores have been commercial-
ized. When the solving time is important, making the best use of your machine is
also important. As a result, parallelism has been widely used to improve the solv-
ing of some problems. When the solving method uses branch-and-bound, Embar-
rassingly Parallel Search (EPS) [11,12] allows parallelism in problem solving in
a non-intrusive way. The idea is to statically decompose the initial problem into
a huge number of sub-problems that are consistent with propagation (i.e. run-
ning the propagation mechanism on them does not detect any inconsistency).
These sub-problems are added to a queue, which is managed by a master. Then,
each waiting worker takes a sub-problem from the queue and solves it. The pro-
cess is repeated until all the sub-problems have been solved. The decomposition
is done by selecting a subset of the variables and enumerating the consistent
combinations of the values of these variables. More precisely, EPS decomposes
step by step and at each step, sub-problems are decomposed into other sub-
problems. The decomposition of a subproblem is done by calculating a set of
variables to be assigned, then, generates all subproblems consistent with prop-
agation assigning the set of variable to be affected. The decomposition is done
when a specific number of sub-problems is obtained, therefore EPS repeats this
step in a breadth-first way. Thus, we define an assignment limit in the enumer-
ation mechanism, which we will increase iteratively until we obtain at least the
required number of sub-problems.

Since LCFirst is a depth-based search strategy, it must solve a left branch
completely before starting to solve a right branch to complete its learning. How-
ever, EPS involves a breadth-based decomposition method, thus it stays shallow
in the search tree. The use of LCFirst during the decomposition is therefore
difficult since one requires to go deep while the other stays shallow. Experiments
show that the use of LCFirst during the decomposition gives results that are not
robust. Sometimes the decomposition will be deep enough for LCFirst, but most
of the time this is not the case and it leads to sub-problems such that the over-
all number of solving backtracks will be several times higher than a sequential
execution.

The parallel solving of the TSP cannot be performed without LCFirst, since
the results would be deteriorated by several orders of magnitude. Thus, we intro-
duce Bound-Backtrack-and-Dive, a method used to approximate the information
learned by LCFirst. It consists of running a sequential execution with a low num-
ber of backtrack allowed in order to build an ordered set containing the nodes
selected by LCFirst in the search tree. The order is defined according to the
number of times the nodes are backtracked and how deep they are. Then, the
parallel execution of the TSP is started (decomposition step) such that the LCN-
odes are chosen accordingly to the previous defined order. Finally, the solving
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step is performed with the classical LCFirst algorithm. The idea comes from our
analysis of LCFirst behavior, we notice that it quickly distinguishes some nodes
and then refines its knowledge. We propose to study the information learned by
LCFirst at the beginning of the search and to use it to simulate the main trends
of LCFirst during the decomposition with EPS. We experimentally show that
the study of the first 1, 000 backtracks of the search tree is enough to simulate
LCFirst during the decomposition.

Indeed, without Bound-Backtrack-and-Dive we show that the decomposition
is not robust and that it sometimes leads to low or no gains compared to a
sequential execution. We also show that Bound-Backtrack-and-Dive allows us to
obtain robust results on 4 cores, and then to improve solving times by a factor
of 5.4 and backtracks by a factor of 2.3 compared to a sequential execution.

The decomposition of a problem such as TSP is not trivial and requires some
modifications of the EPS decomposition mechanism for two reasons. First, the
model of the TSP in CP contains a set-variable with the mandatory edges as
lower bound and optional edges as upper bound. Decomposing with a set-variable
is not as trivial as a classical Cartesian product because we have to be careful
with the order while enumerating. Second, a new phenomenon appeared in the
decomposition while experimenting: the increase of the assignment limit in the
enumeration may not lead to an increase in the number of sub-problems. It turns
out that the TSP search tree is extremely heterogeneous. Thus, we introduce an
extended mechanism for coherent enumeration of set-variables and for stopping
the decomposition in case of non-progression.

The article is organized as follows. We recall some definitions. Then, we give
details on the modification of EPS decomposition mechanisms. Afterwards, we
detail the difficulties of integrating EPS into TSP because of the combination
of LCFirst and decomposition. Thus, we introduce the Bound-Backtrack-and-
Dive algorithm to fix the issue of LCFirst during the decomposition. Before
concluding, we give some experimental results.

2 Preliminaries

2.1 Graph Theory

A directed graph or digraph G = (X,U) consists of a vertex set X and an
arc set U, where every arc (u, v) is an ordered pair of distinct vertices. We will
denote by X(G) the vertex set of G and by U(G) the arc set of G. The cost of an
arc is a value associated with the arc. An undirected graph is a digraph such
that for each arc (u, v) ∈ U , (u, v) = (v, u). If G1 = (X1, U1) and G2 = (X2, U2)
are graphs, both undirected or directed, G1 is a subgraph of G2 if V1 ⊆ V2 and
U1 ⊆ U2. For each arc (u, v) ∈ U , (u, v) ∈ δ(u) and (u, v) ∈ δ(v). A path from
node v1 to node vk in G is a list of nodes [v1, ..., vk] such that (vi, vi+1) is an arc
for i ∈ [1..k − 1]. The path contains node vi for i ∈ [1..k] and arc (vi, vi+1) for
i ∈ [1..k−1]. The path is simple if all its nodes are distinct. The path is a cycle
if k > 1 and v1 = vk. A cycle is hamiltonian if [v1, ..., vk−1] is a simple path and
contains every vertices of U. The length of a path p, denoted by length(p), is
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the sum of the costs of the arcs contained in p. For a graph G, a solution to the
Travelling Salesman Problem (TSP) in G is a Hamiltonian cycle HC ∈ G
cycle minimizing length(HC). An undirected graph G is connected if there is
a path between each pair of vertices, otherwise it is disconnected. A tree is
a connected graph without a cycle. A tree T = (X ′, U ′) is a spanning tree of
G = (X,U) if X ′ = X and U ′ ⊆ U . A Minimum Spanning Tree (MST) is
a spanning tree T = (X ′, U ′) minimizing the sum of the costs of U ′.

Without loss of generality, we will only consider undirected graphs.

2.2 Constraint Programming

A finite constraint network N . is defined as a set of n variables X =
{x1, . . . , xn}, a set of current domains D = {D(x1), . . . , D(xn)} where
D(xi) is the finite set of possible values for variable xi, and a set C of
constraints between variables. We introduce the particular notation D0 =
{D0(x1), . . . , D0(xn)} to represent the set of initial domains of N . on which
constraint definitions were stated.

A constraint C on the ordered set of variables X(C) = (xi1 , . . . , xir ) is
a subset T (C) of the Cartesian product D0(xi1) × · · · × D0(xir ) that specifies
the allowed combinations of values for the variables xi1 , . . . , xir . An element of
D0(xi1) × · · · × D0(xir ) is called a tuple on X(C). A value a for a variable x
is often denoted by (x, a). Let C be a constraint. A tuple τ on X(C) is valid
if ∀(x, a) ∈ τ, a ∈ D(x). C is consistent iff there exists a tuple τ of T (C)
which is valid. A value a ∈ D(x) is consistent with C iff x �∈ X(C) or there
exists a valid tuple τ of T (C) with (x, a) ∈ τ . A constraint is arc consistent
iff ∀xi ∈ X(C),D(xi) �= ∅ and ∀a ∈ D(xi), a is consistent with C. A set-
variable xi is a particular variable such that its domain is a set of set defined
by D(xi) = {S|lb(xi) ⊆ S ⊆ ub(xi)}. The domain can also be represented by the
sets lb(xi) and ub(xi) such that v ∈ lb(xi) iff ∀S ∈ D(xi), v ∈ S and v ∈ ub(xi)
iff ∃S ∈ D(xi), v ∈ S. We say that lb(xi) is the set of mandatory elements,
and ub(xi) \ lb(xi) is the set of optionals elements. Usually a set-variable is also
associated with an interval representing its cardinality. A constraint is bound
consistent iff ∀xi ∈ X(C), ub(xi) �= ∅ and ∀a ∈ lb(xi).

2.3 TSP Model

The TSP has three strong constraints: connectivity, cycle covering, and cycle
unicity. The WCC is a constraint mainly based on Lagrangian relaxation. Intu-
itively, it takes a lower bound of the TSP computable in a polynomial time and
derives it until the optimal solution of the TSP is obtained. More precisely, this
Lagrangian relaxation computes a succession of 1-trees. A 1-tree is a minimum
spanning tree in G = (X − {x}, U) such that x ∈ X and x is connected to the
MST by its two closest neighbors. Thus, this lower bound respects the constraint
of connectivity and unicity of the cycle. We still need to cover the whole graph
with this cycle. If every node of the 1-tree has a degree 2 then the cycle cov-
ering constraint is respected, and therefore the 1-tree is an optimal solution of
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the TSP. From this observation, the idea of Held and Karp [6,7] was to use a
Lagrangian relaxation integrating the degree constraint into the objective func-
tion. For each node i of the graph a multiplier πi is associated. Suppose d is the
neighbor number of the node i in the 1-tree. If d > 2 then the value of πi is
increased. If d < 2 then the value of πi is decreased. At each iteration, the cost
of the edges of the graph is modified such that w′((i, j)) is the new cost and
w′((i, j)) = w((i, j)) + πi + πj .

In the WCC, the Held and Karp Lagrangian relaxation is coupled with a
branch-and-bound and some filtering algorithms. In order to strenghten the
results, we use the WCCC which is an extension of the WCC including the
k-cutsets constraint. The k-cutsets constraint finds all sizes 2 and 3 cutsets
in the graph and imposes that an even number of edges for each cutset is
mandatory.

Then, we use a single undirected graph variable where all nodes are manda-
tory. The branch-and-bound considers only the edges, it consists in making a
binary search where a left branch is an edge assignment and a right branch is
an edge removal. In the context of a single undirected graph variable, we note O
the set of optional edges, M the set of mandatory edges and D the set of deleted
edges such that O ∪ M ∪ D = U and OΔMΔD = U .

2.4 LCFirst

Introduced by Fages et al. [4], LCFirst introduces the principle of Last Con-
flict [10] in the context of a single graph variable. It selects an edge (u, v) with
a search strategy and keeps one of its two extremities, say u. Then, next edge
decisions will be made in the neighborhood of u until there are no more optional
edges around u, no matter if a fail is raised. Next, we will note u as the LCNode.

Algorithm 1 is the LCFirst algorithm, an example is depicted in Fig. 1.

Algorithm 1: LCFirst(G = (X,U), γ)
LCFirst(G, γ):

global LCNode;
if LCNode �= nil then

//set of optional edges in the neighborhood of the LCNode;
set ← O(δ(LCNode));
if set �= ∅ then

//select an edge in set w.r.t heuristic search strategy;
return select(set);

//select an edge in all the optional edges w.r.t heuristic search strategy;
(u, v) ← select(O(U));
LCNode ← u;
return (u, v);
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fail ...

fail fail fail

fail fail

a; (a, b) e; ¬(a, b)

a; (a, c) d; ¬(a, c) e; (e, b) e; ¬(e, b)

d; (d, e) d; ¬(d, e) d; (d, f) e; ¬(d, f)

e; (e, a) e; ¬(e, a)

Fig. 1. An example of a search strategy with LCFirst. We note “LCNode; (u, v)” where
(u, v) is an assigned edge, ¬(u, v) is a removed edge. We observe that when (d, e) and
¬(d, e) have caused a fail, d is backtracked as the LCNode choice. We also observe that
the choice of LCNode=e is backtracked from the fail of (e, a) to the first refutation
because no choice could so far exhaust the neighborhood of e.

As the results show in [4], the use of LCFirst combined with selection heuris-
tics outperforms all selection heuristics without a LCFirst policy. Thus, it is
currently considered as the best search strategy for solving the TSP in CP.

However, the interaction of LCFirst with the TSP model is not obvious.
As shown in [8], the use of k-cutsets improves the solving times. If a static
search strategy (i.e. without LCFirst) is used as maxCost (i.e. select the edge
by decreasing cost), the use of k-cutsets improves even more the solving times.
Before k-cutsets, LCFirst maxCost and WCC was considered as one of the best
models in CP. However, the integration of k-cutsets with WCC and LCFirst
maxCost has the effect of degrading the results. On the other hand, using the
search strategy LCFirst minDeltaDegree (i.e. selects the edge for which the sum
of the endpoint degrees in the upper bound minus the sum of the endpoint
degrees in the set-variable lower bound is minimal) combined with WCC and k-
cutsets constraint allows to obtain a strong gain on solving times and to become
the best CP model.

If not specified, the TSP model is the WCCC and the search strategy is
LCFirst minDeltaDegree.

2.5 EPS

Embarrassingly Parallel Search (EPS) decomposes the initial problem into a
huge number of sub-problems that are consistent with propagation (i.e. running
the propagation mechanism on them does not detect any inconsistency), and
adds them to a queue. Then, each waiting worker takes a sub-problem from the
queue and solves it. The process stops when all sub-problems have been solved.

The main challenge of the decomposition is not to define equivalent problems,
it is to avoid having some workers without work whereas some others are running
during the solving step. In order to increase our chances to obtain well-balanced
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activity times for the workers1, EPS decomposes the initial problem into a lot of
sub-problems. It is usually considered that a good number of sub-problems per
worker is between 30 to 300.

EPS must also avoid doing something in parallel that we would not have
done sequentially. In order to reach that goal, EPS generates only sub-problems
that are consistent with the propagation, that is such that if we run the propa-
gation mechanism on them then there is no failure. This means that they are not
known to be inconsistent, and would be considered by a sequential process. The
generation of q sub-problems is not straightforward because the number of sub-
problems consistent with the propagation may not be related to the Cartesian
product of some domains. A simple algorithm could be to perform a Breadth
First Search (BFS) in the search tree until the desired number of sub-problems
consistent with the propagation is reached. Unfortunately, it is not easy to per-
form a BFS efficiently mainly because BFS is not an incremental algorithm like
Depth-First Search (DFS). Therefore, EPS uses a process resembling an itera-
tive deepening depth-first search [9]: we consider a set Y ⊆ X of variables: we
only assign the variables of Y and we stop the search when they are all assigned.
In other words, we never try to assign a variable that is not in Y . This process
is repeated until all assignments of Y consistent with the propagation has been
found. Each branch of a search tree computed by this search defines an assign-
ment (i.e. a sub-problem). To generate q sub-problems, we repeat the previous
method by adding variables to Y if necessary, until the number of sub-problems
is greater than or equal to q. Note that the decomposition can be performed in
parallel.

Optimization Problems, like the TSP, deserve a little more attention. EPS
manages the value of the objective function as follows: when a worker takes a
sub-problem, he also takes the best objective value that a worker has obtained so
far, and when a worker solves a sub-problem, he communicates the best objective
value found in order to update it for the next sub-problems. EPS do not use any
additional communications. Note that it is not possible to use the objective value
while decomposing the problem, because the objective value associated with the
assignment of a subset of variable is not necessarily a valid bound for the problem
and that assignment cannot necessarily be extended to a solution.

3 Adaptation of EPS Mechanism

3.1 Set-Variable

A set-variable is an efficient way to represent a set of classic variables and to
break symmetries existing between these variables. When decomposing with
EPS, we have two possibilities for the set-variables: we try to transform them into
a set of classic variables and constraints (to break symmetries), or we adapt the
usual algorithm to the set-variables. In the first case, it is important to break the
symmetries. Indeed, a set-variable sx involving the values {a, b, c, d} and whose

1 The activity time of a worker is the sum of the solving times of its sub-problems.
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cardinality is equal to 3 has only one solution which implies the values a, b and
c, whereas if we replace sx by 3 variables x1, x2 and x3 we risk generating the
solutions x1 = a, x2 = b, x3 = c, and x1 = b, x2 = a, x3 = c, etc. The introduc-
tion of an order between the variables avoids this concern. Nevertheless, when
the cardinality is not fixed, this transformation is more delicate. It is therefore
preferable to adapt the decomposition algorithm to the set-variable. When we
consider a set Y ⊆ X of variables, we pay attention to the set-variables. A clas-
sical variable is instantiated by a single value, whereas for a set-variable we will
determine how many of its values should be instantiated at most. For instance,
sx can be instantiated with at most 1, 2 or 3 values. Its cardinality defines only
the maximum because we search for partial assignments. In general, all but one
set-variable of Y will be potentially instantiated with their maximum possible
values (i.e. the maximum cardinality).

3.2 Decomposition Issue

While experimenting on the TSP, results have shown some special cases such as
decomposition. We observed in some cases that the increase of the enumeration
limit on the mandatories leads to a reduction in the number of sub-problems
generated. If suddenly many branches fail in the search tree, it may be possible
that more problems have been removed than generated. For special cases such
as this one, it is preferable to stop the decomposition as it may go into com-
binatorial. Thus, we have defined a stopping criterion other than the number
of sub-problems generated. Now, if there is a decrease of the number of gen-
erated sub-problems greater than a given quantity, from our experiments we
have empirically chosen 20%, we stop the decomposition in order to avoid this
pathological case.

4 LCFirst and Decomposition

As explained above, the search strategy uses a graph interpretation of Last
Conflict heuristic. Such a search strategy learns from left branches for the right
branches. If the depth is bounded, as in the decomposition of EPS, it can happen
that we do not reach the bottom of the search tree and therefore the right
branches use different LCNode than the one they would have obtained if the left
branch had been completely performed. This leads to different search tree and
therefore different results (see Fig. 2).

In Fig. 2, with an enumeration limit set to 2, the grey area is not visited since
the size of all assigned edges ({ab, ac}) is equal to 2. When solving sequentially,
the grey area is visited since there is no enumeration limit whereas the grey area
is not visited when decomposing the problem because an enumeration limit is set
to 2. Thus, the LCNode value (yellow zone) for the branch root−ab−¬ac depends
on the visit of the grey area. If it is visited then LCNode=d otherwise LCNode=a.
For the branch root − ¬ab (orange zone) the LCNode value depends on the
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fail

fail

fail fail

a; (a, b) ?; ¬(a, b)

a; (a, c) a or d?; ¬(a, c)

d; (d, b) d; ¬(d, b)

d; (d, a) d; ¬(d, a)

d; (d, c) d; ¬(d, c)

Fig. 2. Search for an assignment enumeration limit of 2, represented by a blue node
when it is reached. The black area is the search tree with an enumeration limit. The gray
area is the search tree when there is no assignment enumeration limit. The orange and
yellow areas are where decomposition does not have full information about LCNode.
(Color figure online)

result of the previous LCNode values (yellow zone). Hence, the decomposition
can generate a very different search tree than a sequential execution.

One can legitimately ask the following question: how is the solving impacted
if we get the wrong LCNode?

The impact can be very bad. For example, if we take the instance pcb442
of TSPLib [13], its sequential solving time is 17, 109 s for 3, 571, 219 backtracks,
but its solving time on 4 cores with EPS is 21, 539 s for 11, 473, 274 backtracks.
So, the parallel version is 26% slower and it loses a factor of 3.2 in backtracks
whereas it involves 4 more cores. Later, the various experiments will show that
this problem is not unusual. These results can be explained by the remarks
made for Fig. 2. This shows that a few bad LCNode can significantly increase
combinatorics. Disabling LCFirst from the decomposition strongly degrades the
results. In practice, it leads to a search strategy that jumps in the graph and
does not exploit the structure of the graph.

Thus, the classical EPS decomposition is not enough for a dynamic search
strategy such as LCFirst.

5 Bound-Backtrack-and-Dive and Decomposition

To solve the problem of LCFirst during the decomposition, we propose to use
a diving heuristic, named Bound-Backtrack-and-Dive. It consists in running a
sequential solving of the problem with a bounded number of backtracks in order
to build an ordered set of nodes, called γ, that we use to represent the impact
of LCNode choice. Then, we run EPS with γ as a parameter and we use it for
LCNode selection during decomposition.
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5.1 Computation of γ

For each γi such that i ∈ X, a value representing the fail impact of branching
around i is associated. Thus, the higher γi is, the more important the node is for
LCFirst. More exactly, when a node i is backtracked in the search tree, we update
γi with γi ← γi + C/depth2 where C is a constant such that C > depth2

max.
Therefore, a fail thrown at a shallow depth in the search tree will increase the
value of γLCNode much more than if the fail is thrown at a deep depth in the
search tree. In order to represent this priority, a non-linear denominator has
been chosen. The idea of prioritizing LCNodes causing shallow fails in the search
tree allows us to narrow the search strategy to the difficult areas of the graph.
Thus, we propose to calculate γ with the above method for a fixed number of
backtracks, when the limit is reached we stop the solving and return γ.

5.2 Decomposition

After computing γ, we decompose the initial problem with a modified LCFirst
algorithm. When a node is emptied (i.e. there are no more selectable edges
around LCNode) LCFirst will usually look for an edge in the graph using a
heuristic, keep one end and empty it again. Here, we propose that when a node
is emptied, instead of looking for an edge in the graph and keeping one extremity,
we select the non-emptied node with the highest value in γ. Then, with a classical
search strategy (i.e. minDeltaDeg), we select an edge around this node until we
have emptied it. A possible implementation of modified LCFirst is described in
Algorithm 2.

At the end of the decomposition, we drop γ and go back to classical LCFirst.
We mainly use γ because the decomposition is done in breadth and LCFirst
gets good LCNode by depth. Thus, while solving EPS sub-problems we can use
depth-based methods (classical LCFirst) since we solve them. It allows us to
learn locally about each sub-problem and provide better results.

6 Experiments

The algorithms have been implemented in Java 11 in a locally developed con-
straint programming solver. The experiments were performed on a Windows 10
laptop with an Intel Core i7-7820HQ CPU @ 2.90 GHz and 32 Go of RAM. The
reference instances are from the TSPLib [13], a library of reference graphs for
the TSP. All instances considered are symmetric graphs.

In order to represent as well as possible current machines, the parallel exper-
iments were carried out on 4 cores. We present the results in tables. Each of
them reports the solving time in seconds. If it is strictly greater than 48 hours,
it is specified as t.o. The number of backtracks is denoted by #bk. The load
balancing, noted l.b., is the sum of the solving times of each worker divided
by the wall clock time. It allows us to evaluate the distribution quality of the
done work, the closer the load balancing is to the number of workers the better.
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Algorithm 2: LCFirst(G = (X), γ)
LCFirst(G, γ):

global LCNode;
if LCNode �= nil then

set ← O(δ(LCNode));
if set �= ∅ then

return select(set);

idMax ← nil;
valMax ← −MAX VALUE;
for each γi ∈ γ do

//search for the node with the highest γi having optional neighbors;
if γi > valMax and O(δ(i)) �= ∅ then

idMax ← i;
valMax ← γi;

if idMax �= nil then
(u, v) ← select(O(δ(idMax));
LCNode ← idMax;

else
(u, v) ← select(O(U));
LCNode ← u;

return (u, v);

We give the arithmetic mean and the geometric mean, the latter is less affected by
large variations between the values. The Bound-Backtrack-and-Dive algorithm
is noted BBD.

Initially, the goal is to make the overall same number of backtracks with and
without EPS. In practice, it is very difficult to achieve it because of the dynamic
strategies, the Lagrangian relaxation and the order of each sub-problems are
taken. However, we show by experiments that the use of Bound-Backtrack-and-
Dive allows to obtain a similar or even improving backtrack number. Because
of load balancing problems in parallelism, backtracks are a good metric. Indeed,
a problem can be solved with less backtrack and a higher solving time. For
example, if 1, 000 sub-problems are generated and each sub-problem takes 1 s to
solve except one that takes 1, 000 s to solve. If this problem is the last one to be
handled, only one worker will work while the others have finished their jobs. It
often happens because the TSP sub-problems can be extremely heterogeneous.

In Table 1, compared to a sequential solving, EPS improves the results on
average with or without LCFirst during the decomposition. More precisely, the
gain factor is better if we have LCFirst during the decomposition. It can be
explained by the fact that we keep branching in the same areas of the graph.
However, if we look at the ratio column for each of the runs with EPS, many
instances do many more backtracks than their sequential runs. For example,
pcb442 does 3, 571, 219bk with a sequential solving compared to 11, 473, 274bk
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Table 1. Comparison of sequential solving, EPS without diving, EPS without diving
and without LCFirst during decomposition. A ratio column compares the sequential
method with each EPS method. Greater ratio are better.

Instance Sequential EPS noDiveLCDec ratio EPS noDiveNoLCDec ratio

time #bk time #bk l.b time #bk time #bk l.b time #bk

pr136 23.4 19,147 11.1 25,748 3.1 2.1 0.7 9.0 22,650 3.7 2.6 0.8

kroA150 3.8 2,493 4.8 9,796 3.5 0.8 0.3 4.7 9,654 3.2 0.8 0.3

kroB150 212.1 176,773 82.4 183,964 2.9 2.6 1.0 91.1 190,276 2.7 2.3 0.9

si175 461.0 401,428 277.7 220,874 1.0 1.7 1.8 504.7 424,430 1.0 0.9 0.9

rat195 36.8 20,977 15.9 29,062 3.7 2.3 0.7 17.0 28,030 3.5 2.2 0.7

kroA200 650.0 309,343 209.3 396,704 3.9 3.1 0.8 157.0 279,564 3.7 4.1 1.1

kroB200 113.5 61,107 55.4 105,660 3.6 2.0 0.6 65.4 132,836 3.8 1.7 0.5

tsp225 161.4 76,397 69.9 95,016 3.2 2.3 0.8 126.9 134,348 2.4 1.3 0.6

gr229 247.0 165,826 77.4 167,368 3.7 3.2 1.0 128.4 139,272 1.9 1.9 1.2

a280 9.3 2,829 8.8 9,442 3.2 1.1 0.3 6.5 6,408 2.8 1.4 0.4

lin318 19.1 4,063 14.1 6,396 3.2 1.4 0.6 19.1 10,290 3.8 1.0 0.4

pcb442 17,109.4 3,571,219 21,539.2 11,473,274 2.6 0.8 0.3 20,988.8 12,829,764 3.2 0.8 0.3

gr431 1,532.2 211,585 852.0 258,832 2.3 1.8 0.8 657.7 242,232 3.1 2.3 0.9

d493 t.o. 24,733,443 57,995.1 12,934,364 2.2 >3.0 >1.9 32,590.3 10,927,816 3.5 >5.3 >2.3

ali535 123,620.0 13,119,783 85,733.0 10,014,704 1.0 1.4 1.3 t.o. t.o. - >0.7 t.o.

mean >21,133 >2,858,427 11,130 2,395,414 >15,211 >3,037,520

geo mean >340 >129,436 189 175,493 >207 >190,302

with EPS and LCFirst during the decomposition compared to 12, 829, 764bk
with EPS and no LCFirst during the decomposition. Due to the large increase
in the number of backtracks, this instance with these models takes more time to
solve with EPS than in sequential. Conversely, other instances such as kroA200
work well with these models and EPS. While its sequential execution performs
309, 343bk, EPS noDivLCDec performs 396, 704bk and EPS noDiveNoLCDec
performs 279, 564bk. Thus, a gain of a factor of 3.1 and 4.1 respectively in
solving time is observed. It can also happen that instances like d493 have a
better behavior without LCFirst during the decomposition, here it gets a gain
of 16% of backtracks. In short, EPS without diving works but is not robust.

In Table 2, we observe that the limit on the number of backtracks for diving
has an impact on the overall solving time. First, for problems with a low solving
time, the time spent diving can become significantly high compared to the overall
solving time. For example, for a280 with limitBk = 1, 000, we spend 3.7 s diving
and 2.0 s decomposing and solving the problem. Increasing limitBk here increases
the overall solving time significantly since the value of limitBk exceeds the num-
ber of backtracks performed sequentially. Thus, the instance is completely solved
in sequential before being solved with EPS. The lin318 instance has the same
issue, increasing the backtrack limit fully solves the problem in sequential dur-
ing diving before doing the decomposition and solving, which is actually very
fast (about 5 s) while diving takes 5 s for limitBk = 1, 000, then about 16.5 s for
limitBk = 5, 000 and 10, 000. Thus, it is better to use a very small limitBk for
problems having very low solving times because the diving should not take a sig-
nificant amount of time from the overall solving time. Then, for bigger problems,
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Table 2. Benchmark of the results according to the limit of the number of backtrack
allowed for diving.

Instance BBD limitBk=1k BBD limitBk=5k BBD limitBk=10k

Div. Decomp. and Solving Div. Decomp. and Solving Div. Decomp. and Solving

time time #bk l.b. time time #bk l.b. time time #bk l.b.

pr136 1.7 13.9 37,134 3.9 6.6 8.9 24,522 3.9 12.7 7.4 19,648 3.9

kroA150 1.8 0.8 792 1.1 3.9 0.9 858 1.1 3.9 0.9 896 1.3

kroB150 1.6 17.2 42,320 3.5 6.4 41.5 105,696 4.0 13.2 35.8 88,812 3.6

si175 2.1 129.2 338,752 3.6 7.1 133.3 399,854 3.8 13.6 147.6 446,822 3.9

rat195 2.4 12.1 21,468 3.8 9.5 10.4 17,726 3.9 18.0 12.4 20,826 3.9

kroA200 2.4 103.4 180,692 3.9 9.7 63.5 105,470 3.7 19.4 86.4 150,470 3.8

kroB200 2.4 21.0 37,548 3.8 9.6 29.7 53,248 3.9 19.3 24.3 43,962 4.0

tsp225 2.7 39.1 65,572 4.0 12.1 31.6 53,876 3.9 23.2 30.5 50,210 3.8

gr229 2.3 90.9 158,970 4.0 9.9 118.8 222,222 3.8 18.2 75.0 143,458 4.0

a280 3.7 2.0 934 0.3 9.1 1.6 742 0.5 9.1 1.5 710 1.0

lin318 5.0 5.0 1,284 0.3 16.4 5.3 1,648 0.1 16.7 5.5 1,298 0.1

pcb442 7.5 2,541.7 1,761,286 3.7 36.7 3,906.3 2,263,926 3.0 70.5 1,643.5 1,043,384 3.3

gr431 11.7 420.5 153,428 3.9 51.0 888.3 253,494 2.0 92.3 602.3 220,972 3.9

d493 14.8 6,303.4 2,621,658 3.8 64.4 14,644.7 4,554,156 2.8 128.6 12,880.4 4,221,914 3.0

ali535 16.7 55,186.4 20,216,560 3.5 87.4 35,869.5 6,517,890 1.7 173.5 37,523.1 7,574,870 1.9

mean 4,326 1,709,227 3,717 971,689 3,538 935,217

geo mean 73 74,031 82 77,552 73 69,964

limitBk also has an impact. Indeed, we notice that the best mean solving times
are obtained with limitBk = 5, 000 and the best geometric mean solving times
are obtained with limitBk=1, 000 and limitBk = 10, 000. However, the geomet-
ric mean shows that the differences between them are actually quite small in
terms of solving time and backtracks. We also observe that increasing limitBk
increases on average the robustness of results. In Table 3, we notice that, con-
trary to Table 1, almost all backtracks ratios are positive, very often improving.
It allows to obtain a factor up to 5.41 in mean solving time and 2.35 in mean
number of backtracks. Thus, the ratios show that whatever the choice of the
limit for Bound-Backtrack-and-Dive, the results are robust and allow to obtain
a strong gain in solving time.

If we look at the results in more detail, we notice that limitBk = 1, 000 per-
formed particularly well for kroB150 (gain of a ratio 11.28 vs 4.43 vs 4.33 for
resp. limit = {1, 000, 5, 000, 10, 000}) and especially for d493 (gain of a ratio
27.35 vs 11.75 vs 13.28 for resp. limit = {1, 000, 5, 000, 10, 000}). The advantage
of limitBk = 1, 000 is that the diving learns very quickly on some areas of the
graph. With limitBk = 5, 000 or limitBk = 10, 000, the diving can learn on more
areas of the graph. If these areas are equivalent, it is possible that the search
strategy will focus less on specific areas. This can be an advantage as well as a
drawback depending on the instance. So, without loss of generality, we choose
limitBk = 1, 000 for the next experiments.

In Table 4, we compare the impact of the number of sub-problems per worker
(sppw) on the results. We can observe that no matter how many sub-problems
are required for the decomposition, the load balancing remains good and similar
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Table 3. Ratio of solving time and numbers of backtracks. It is calculated by respec-
tively dividing the results of a sequential execution with the results of Bound-Backtrack-
and-Dive execution.

Instance seq./limitBk = 1k seq./limitBk = 5k seq./limitBk = 10k

time #bk time #bk time #bk

pr136 1.50 0.52 1.51 0.78 1.16 0.97

kroA150 1.46 3.15 0.79 2.91 0.79 2.78

kroB150 11.28 4.18 4.43 1.67 4.33 1.99

si175 3.51 1.19 3.28 1.00 2.86 0.90

rat195 2.54 0.98 1.85 1.18 1.21 1.01

kroA200 6.14 1.71 8.88 2.93 6.14 2.06

kroB200 4.85 1.63 2.89 1.15 2.60 1.39

tsp225 3.86 1.17 3.69 1.42 3.01 1.52

gr229 2.65 1.04 1.92 0.75 2.65 1.16

a280 1.63 3.03 0.87 3.81 0.88 3.98

lin318 1.91 3.16 0.88 2.47 0.86 3.13

pcb442 6.71 2.03 4.34 1.58 9.98 3.42

gr431 3.55 1.38 1.63 0.83 2.21 0.96

d493 27.35 9.43 11.75 5.43 13.28 5.86

ali535 2.24 0.65 3.44 2.01 3.28 1.73

mean 5.41 2.35 3.48 2.00 3.68 2.19

geo mean 3.68 1.75 2.55 1.67 2.55 1.85

(around 3). In fact, the average number of backtrack is quite close (1, 709, 227
vs 1, 940, 812 vs 1, 553, 287). The solving time is slightly better for sppw = 100,
but again, d493 worked particularly well and greatly reduced the solving time. If
we look instance by instance, we can see that the variations are relatively small,
and despite the variations the results remain robust. Thus, no matter how many
sub-problems are generated, the requested robustness and a strong improvement
of the solving times is obtained.

To increase the number of workers, the overall number of sub-problems gen-
erated must be at least 50 sub-problems per worker. In Table 4, we show that
the solving times are good for 400 sub-problems per workers and 4 workers,
i.e. 1, 600 sub-problems. In EPS, communication times are negligible. Then, we
observe results of the same order although not as good for up to 32 workers (32
workers × 50 sub-problems).

In Table 5, EPS without BBD allows to obtain a mean improvement of 1.9
in solving time and 0.8 in backtracks compared with a sequential execution. The
average number of backtracks gain shows a lack of robustness, many instances do
more backtracks in parallel than in sequential, and therefore does not exploit the
set up resources as desired. Thus, times can be bad with a naive EPS application
at the TSP. Finally, Bound-Backtrack-and-Dive allows to better decompose the
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Table 4. Comparison of the number of sub-problems per worker (sppw) with lim-
itBk = 1, 000.

Instance BBD sppw=100 BBD sppw=2× 100 BBD sppw=4× 100

Div. Decomp and Solving Div. Decomp and Solving Div. Decomp and Solving

time time #bk l.b. time time #bk l.b. time time #bk l.b.

pr136 1.7 13.9 37,134 3.9 1.7 16.0 42,738 3.9 1.7 20.7 56,578 3.9

kroA150 1.8 0.8 792 1.1 1.8 0.8 762 1.0 1.8 0.9 994 2.7

kroB150 1.6 17.2 42,320 3.5 1.6 22.8 58,556 3.7 1.8 31.3 68,940 3.6

si175 2.1 129.2 338,752 3.6 1.9 132.0 339,744 3.6 2.0 189.0 516,548 3.7

rat195 2.4 12.1 21,468 3.8 2.5 15.5 27,384 3.9 2.5 16.7 29,318 3.8

kroA200 2.4 103.4 180,692 3.9 2.4 100.1 182,132 3.9 2.4 120.9 225,610 4.0

kroB200 2.4 21.0 37,548 3.8 2.3 22.2 40,436 3.9 2.3 22.8 43,442 3.8

tsp225 2.7 39.1 65,572 4.0 2.7 34.6 56,854 3.7 2.8 41.0 65,522 3.9

gr229 2.3 90.9 158,970 4.0 2.3 96.4 171,222 4.0 2.3 118.6 191,146 3.8

a280 3.7 2.0 934 0.3 3.9 1.5 656 0.5 3.9 1.5 680 0.6

lin318 5.0 5.0 1,284 0.3 5.2 5.2 1,336 0.2 5.2 5.5 1,398 0.1

pcb442 7.5 2,541.7 1,761,286 3.7 7.5 1,356.1 883,406 3.6 7.6 4,402.6 1,698,740 1.8

gr431 11.7 420.5 153,428 3.9 11.8 585.4 203,692 3.9 11.9 716.7 249,318 4.0

d493 14.8 6,303.4 2,621,658 3.8 14.8 13,649.6 3,587,410 2.2 15.0 7,321.5 2,439,330 2.8

ali535 16.7 55,186.4 20,216,560 3.5 20.1 65,758.0 23,515,850 3.9 19.9 57,045.1 17,711,738 3.4

mean 4,326 1,709,227 3.1 5,453 1,940,812 3.1 4,670 1,553,287 3.0

geo mean 73 74,031 2.4 78 76,190 2.4 92 87,072 2.3

Table 5. General Results. It shows the differences between sequential execution, naive
EPS application and Bound-Backtrack-and-Dive with limitBk=1, 000 and sppw=100.

Sequentiel LCFirst noDiveLCDec BBD

ratio Div. Decomp. and Solv. ratio

Instance time #bk time #bk time #bk time time #bk time #bk

pr136 23.4 19,147 11.1 25,748 2.1 0.7 1.7 13.9 37,134 1.5 0.5

kroA150 3.8 2,493 4.8 9,796 0.8 0.3 1.8 0.8 792 1.5 3.1

kroB150 212.1 176,773 82.4 183,964 2.6 1.0 1.6 17.2 42,320 11.3 4.2

si175 461.0 401,428 277.7 220,874 1.7 1.8 2.1 129.2 338,752 3.5 1.2

rat195 36.8 20,977 15.9 29,062 2.3 0.7 2.4 12.1 21,468 2.5 1.0

kroA200 650.0 309,343 209.3 396,704 3.1 0.8 2.4 103.4 180,692 6.1 1.7

kroB200 113.5 61,107 55.4 105,660 2.0 0.6 2.4 21.0 37,548 4.9 1.6

tsp225 161.4 76,397 69.9 95,016 2.3 0.8 2.7 39.1 65,572 3.9 1.2

gr229 247.0 165,826 77.4 167,368 3.2 1.0 2.3 90.9 158,970 2.7 1.0

a280 9.3 2,829 8.8 9,442 1.1 0.3 3.7 2.0 934 1.6 3.0

lin318 19.1 4,063 14.1 6,396 1.4 0.6 5.0 5.0 1,284 1.9 3.2

pcb442 17,109.4 3,571,219 21,539.2 11,473,274 0.8 0.3 7.5 2,541.7 1,761,286 6.7 2.0

gr431 1,532.2 211,585 852.0 258,832 1.8 0.8 11.7 420.5 153,428 3.5 1.4

d493 172,800.0 24,733,443 57,995.1 12,934,364 >3.0 >1.9 14.8 6,303.4 2,621,658 >23.7 >9.4

ali535 123,620.0 13,119,783 85,733.0 10,014, 704 1.4 1.3 16.7 55,186.4 20,216,560 2.2 0.6

mean >21,133 >2,858,427 11,130 2,395,414 >1.9 >0.8 4,326 1,709,227 >5.4 >2.3

geo mean >339 >129,436 189 175,493 >1.7 >0.7 73 74,031 >3.7 >1.7

TSP by simulating LCFirst. Indeed, EPS with BBD obtain a mean improvement
of 5.4 in solving time and 2.3 in backtracks, so all instances have an improved
robust result.
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7 Conclusion

We have shown that the application of EPS to the TSP is not trivial. Indeed, EPS
decomposition is breadth-based whereas TSP embeds LCFirst, a depth-based
search strategy, so the two methods are incompatible. In order to combine the
two approaches, we introduced Bound-Backtrack-and-Dive, a diving algorithm,
which consists in a first step of performing a sequential execution with a bounded
number of backtrack in order to study the behavior of LCFirst. Then, run EPS,
simulate LCFirst during the decomposition using our preliminary study and
finally solve with a classical LCFirst the generated sub-problems in parallel.

Experimental results show that the application of Bound-Backtrack-and-Dive
allows to obtain robust results. Thus, the efficiency of parallelism applied to TSP
with Bound-Backtrack-and-Dive allows a mean gain of a factor 5.4 in solving
times and 2.3 in number of backtracks with 4 cores.

We think that this method can sometimes allow us to avoid dynamic learning
strategies when it is an issue, here for the application of parallelism, and obtain a
great improvement of solving times. We hope that similar results will be obtained
for other learning search strategies.
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2. Benchimol, P., Régin, J.-C., Rousseau, L.-M., Rueher, M., van Hoeve, W.-J.:
Improving the held and karp approach with constraint programming. In: Lodi, A.,
Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 40–44. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0 6
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Abstract. We propose that CDCL SAT solver heuristics such as
restarts and clause database management can be analysed by study-
ing the resolution proofs produced by the solvers, and by trimming these
proofs to extract the clauses actually used to reach the final conclusion.

We find that for non-adaptive Luby restarts higher frequency makes
both untrimmed and trimmed proofs smaller, while adaptive restarts
based on literal block distance (LBD) decrease proof size further mainly
for untrimmed proofs. This seems to indicate that restarts improve the
reasoning power of solvers, but that making restarts adaptive mainly
helps to avoid useless work that is not needed to reach the end result.

For clause database management we find that switching off clause
erasures often, though not always, leads to smaller untrimmed proofs,
but has no significant effect on trimmed proofs. With respect to quality
measures for learned clauses, activity in conflict analysis is a fairly good
predictor in general for a clause ending up also in the trimmed proof,
whereas for the very best clauses the LBD score gives stronger correla-
tion. This gives more rigorous support for the currently popular heuristic
of prioritizing clauses with very good LBD scores but sorting the rest of
the clauses with respect to activity when deciding which clauses to erase.
We remark that for these conclusions, it is crucial to use the actual proof
found by the solver rather than the one reconstructed from the DRAT
proof log.

1 Introduction

Boolean satisfiability (SAT) solving is one of the most striking success stories
of computer science, but also one of its most puzzling mysteries. Though mod-
ern conflict-driven clause learning (CDCL) SAT solvers [29,31]1 are used on
an every-day basis to solve real-world instances with hundreds of thousands or
even millions of variables, there is still a very poor understanding of how they
can perform so well on problems that are, after all, widely conjectured to be
exponentially hard in the worst case [14,21].
1 A similar idea in the context of constraint satisfaction problems (CSPs) was inde-

pendently developed in [5].
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The most important difference between CDCL and classic DPLL backtrack
search [15] is in how conflicts guide the search by generating new learned
clauses [29] and informing branching decisions [31], and this accounts for most
of the performance gain of CDCL over DPLL [24]. Further improvements have
been obtained through careful implementation of the basic CDCL algorithm with
highly optimized data structures, as well as through the use of sophisticated
heuristics such as activity [17] or literal block distance (LBD) [2] to identify use-
ful clauses, phase saving [35] to guide variable decisions, adaptive restarts [3,10]
to speed up the search, et cetera.

Unfortunately, our scientific understanding of the performance of these
heuristics is still very limited. A natural approach to gain insights would seem to
be to collect real-world benchmarks and run experiments with different heuris-
tics to study how they contribute to overall performance. This has been done
in [24,27], and there are also in-depth studies focusing specifically on, e.g., vari-
able decisions [11] and restart schemes [12,20], but it has been hard to reach
clear-cut conclusions from the diverse set of formulas found in real-world bench-
mark sets. Another approach has been to run experiments on crafted bench-
marks [18,23], where detailed knowledge of the theoretical properties of the
formulas makes it possible to draw conclusions about solver performance, but
although this can uncover intriguing findings, it is not clear to what extent the
conclusions are relevant in a real-world setting.

Our Contributions. In this paper, we investigate whether the proofs generated
by SAT solvers can shed light on the effectiveness of solver heuristics. When a
CDCL solver decides that a formula is unsatisfiable, it does so, in effect, by
deriving a proof of contradiction in the resolution proof system [7].2 Once the
solver has terminated, such a proof can be trimmed to keep only the subset of
clauses needed to reach this conclusion. We study such untrimmed and trimmed
proofs obtained from a selection of benchmarks from the SAT competitions [36]
in order to gain insights into solver performance, focusing on restarts and clause
database management and how they affect the solver reasoning.

It is well-known that frequent restarts are crucial for the performance of
CDCL solvers, but it has remained stubbornly open whether such restarts are
just a helpful heuristic or whether they fundamentally increase the theoretical
reasoning power. This question cannot be settled by experiments, but we give
some empirical evidence that the latter alternative might apply by showing that
solvers not only run faster with frequent restarts but also reason more efficiently.

In more detail, we study adaptive restarts as in Glucose [3,19] and compare
to the non-adaptive Luby restarts in MiniSat [17,30], but with different multi-
plicative constants to get non-adaptive restart frequencies in the full range from
the most frequent to least frequent adaptive restarts encountered for our bench-
marks. For the non-adaptive policy we find that higher restart frequency corre-
lates with smaller proof size for both untrimmed and trimmed proofs. Adaptive
restarts yield smaller untrimmed proofs than all non-adaptive restart frequen-
cies, so the effect of adaptiveness is not only about the frequency but also the
2 Note, though, that this is not quite true for some pre- and inprocessing techniques.
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exact timing of the restarts. The improvements from adaptive restarts are not as
clear for the trimmed proofs, however. Our interpretation of this is that more fre-
quent restarts improve the reasoning power of solvers, but that adaptive restarts
mainly help to abort useless stages of the search process earlier.

When managing the clauses learned during search, there is a tension between
on the one hand keeping as many clauses as possible, since they prune the search
space and thus make the reasoning stronger, and on the other hand getting rid
of them, since as the number of clauses grows the solver has to spend increasing
time on handling them, which makes the reasoning slower. Conventional wisdom
dictates that solvers should aggressively minimize memory usage, erasing an ever
increasing fraction of learned clauses as the running time increases, but there
is little scientific understanding of how this affects the quality of the reasoning
performed, or of how to assess which clauses should be kept or thrown away.

When we experiment with switching off erasures completely, so that the
solver keeps all learned clauses, we see that this most often leads to smaller
untrimmed proofs, but far from always. That is, there exist formulas for which,
perhaps somewhat counter-intuitively, clause erasures not only make the solver
reason faster, but also better. Even more interestingly, even when the untrimmed
proofs get smaller, we do not observe any significant effect on the trimmed proofs.
This suggests that the core reasoning needed to decide the formula does not get
stronger with more clauses in memory, only that these extra clauses help the
solver to “focus” and avoid work that turns out to be useless with hindsight.

Regarding which learned clauses are more or less useful for the solver, it is
not obvious how to answer this question, since it is unclear how to measure “use-
fulness”. One approach is to fix a non-adaptive strategy for how many clauses
should be removed at clause database reduction, and then decide which clauses
to erase based on literal block distance (LBD) score or activity, as in Glucose
and MiniSat , respectively. We find that both untrimmed and trimmed proof
size is smaller for LBD-based erasure than activity-based erasure, and that (as a
control) both are clearly better than randomly choosing which clauses to erase.

Another approach, following [4,25], is to consider learned clauses in the
untrimmed proof “useful” if they remain in the proof after trimming. We find
that very good LBD scores strongly correlate with appearing in the trimmed
proof, but that clause activity is a better predictor over a wider range of val-
ues for which learned clauses survive the trimming process. This provides more
rigorous evidence for the empirical claim in [34] that the clause database reduc-
tion policy should prioritize top LBD scores but gives more weight to clausal
activity for clauses with worse LBD scores, a claim that is also supported by the
experiments in [22].

A relevant observation in this context is that the conclusions in the last
paragraph above rely on using the actual proof found by the solver. It is also
possible to reconstruct a resolution proof from the DRAT proof logs used in the
SAT competitions by applying DRAT-trim [41], but we find that such proofs
can look quite different from the ones constructed by the solver during search,
and so provide less insight into how the solver actually reasoned.
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One obvious criticism of this approach is that our notion of usefulness of
clauses is narrow—it might well be the case that learned clauses can be helpful
for the solver in other ways than by appearing in a final, trimmed proof (as also
noted in [4]). Furthermore, even if a clause appears in the trimmed proof, it
might be that this appearance comes very soon after the clause was learned, and
that after this the clause can safely be thrown away. A more refined approach
here is to ask how likely it is at any given point in time that a given clause will be
used in the future, a question that was approached in [39] using machine learning
techniques. While these are valid points, we nevertheless hope that usage in the
trimmed proof can serve as one relevant measure providing insights, even though
there is certainly room for other measures providing additional information.

Another possible concern is that since we are looking at resolution proofs,
we have to limit our attention to only unsatisfiable formulas. Since SAT solvers
should work well on both satisfiable and unsatisfiable instances, it could be that
we are missing out on important observations by studying only one of these
categories of benchmarks. This is also true, but we consider this to be less of
a concern. It is in fact possible to come up with a notion of “proofs” also for
satisfiable formulas—namely, the learned clauses that guided the solver to the
satisfying assignment found, together with all other clauses used to derive these
guiding clauses—but we have to leave as interesting future work the task of
studying such proofs for satisfiable formulas, and investigating which of our
conclusions hold also in this setting and what new observations can be made.

Related Work. A very thorough study of untrimmed and trimmed proofs was
performed in [37], where Glucose was used to examine the proportion of useful
learned clauses across different instances, the effect of shuffling on the number of
useful clauses in the input formula, and the correlation of proof size with maximal
clause size. Interestingly, usages of older clauses were reported to be more likely
to appear in trimmed proofs, but since these experiments were performed only
with clause erasures switched on, it was pointed out that this might be due
to the solver erasing bad clauses early. Glucose was also compared to a solver
with MiniSat-style policies for restarts and database management, but these
experiments did not try to isolate the effects of different heuristics. Furthermore,
clause features such as size and LBD score were studied, and LBD was observed
to be a better predictor of usefulness than size, but the method used did not
allow for an analysis of more dynamic features such as activity.

An analogous idea of trimming appeared in [28], where a dependency graph
containing both learned clauses and decided and propagated variables was con-
structed, and then pruned to contain only the clauses and propagations useful for
reaching the final conflict (or the satisfying assignment in the case of satisfiable
instances). This was used to study decision heuristics, but the same approach
could be harnessed to define a broader notion of clause usefulness, giving credit
for useful propagations even if the clause does not appear in conflict analysis.

Outline of This Paper. We start in Sect. 2 by discussing how resolution proofs
can be extracted from CDCL solvers. In Sect. 3 we describe our experimental
set-up, and in Sect. 4 we present our detailed results. Some final remarks, includ-
ing suggestions for future research, are made in Sect. 5.
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(b) Extracted resolution proof (with long arrows from used learned clauses).

Fig. 1. CDCL execution on formula in (1) and corresponding resolution proof.

2 CDCL SAT Solvers and Resolution Proofs

In this section we discuss briefly, and mostly by example, how resolution proofs
can be obtained from CDCL solvers. We refer the reader to, e.g., [13,33] for more
details on connections between the theory and practice of SAT solving.

The solver input is a formula in conjunctive normal form (CNF) such as

(u ∨ x ∨ y) ∧ (v ∨ w ∨ z) ∧ (x ∨ y ∨ z) ∧ (v ∨ w ∨ z)∧
(x ∨ z) ∧ (y ∨ z) ∧ (x ∨ z) ∧ (u ∨ w) ∧ (u ∨ w)

(1)

(or, in words, a conjunction of clauses, where every clause is a disjunction of
literals, i.e., unnegated or negated variables, with negation denoted by overline).
A possible CDCL run for this formula is illustrated in Fig. 1a. At all times,
the solver maintains a trail of variable assignments, and we show how this trail
grows and shrinks vertically as time flows from left to right.

The solver starts by deciding the variable w to false, or 0, which makes the
clause u ∨ w unit propagate u = 0, since all of this clause except the literal u
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has been falsified. The solver marks the reason clause for this propagation on
the trail (stacked on the top of the assignment in our illustration). No further
propagations can be made, so w = 0 and u = 0 are all the assignments at
decision level 1 of the trail. To move things forward the solver has to make a
second decision, in our example v = 0. Then the clause v ∨ w ∨ z propagates z
to true, or 1, which leads to a conflict since the clause v ∨ w ∨ z is now falsified.
At the time of conflict, decision level 2 contains v = 0 and z = 1. During conflict
analysis the solver learns a new clause by applying the resolution rule—which
resolves two clauses of the form C ∨ z and D ∨ z over the variable z to derive
C ∨ D—to the conflict clause and the reason clauses. In this case, v ∨ w ∨ z and
v∨w∨z are resolved to yield v∨w, after which the analysis stops (since this is a
unique implication point (UIP) clause with a single literal from the last decision
level).

After learning v ∨w, the solver backjumps to the assertion level , which is the
second highest decision level of any literal in the learned clause, by undoing all
decisions and propagations at later levels, in our example leaving only w = u = 0
at assertion level 1. This causes unit propagation on the learned clause, flipping
the value of v (called the asserting literal). A new decision x = 0 followed by
a couple of propagations lead to a second conflict where u ∨ x is learned, after
which a third conflict results in the learned unit clause x. Unit clauses cause
backjumps to decision level 0 (incidentally, this has exactly the same effect as
making a restart). In our example, this triggers a fourth conflict, and since no
decisions have been made the solver can conclude that the formula is unsatisfi-
able. If, however, we would let the solver run a final conflict analysis, applying
the resolution rule to the reasons propagating to the conflict, this would derive
the empty clause ⊥ containing no literals, as shown on the far right in Fig. 1a.

To obtain a resolution proof of unsatisfiability for (1) from Fig. 1a, we start
with the final (imagined) derivation of ⊥, and then go back in time, including
the conflict analyses for all clauses used in this derivation, and then the conflict
analyses for these clauses, et cetera, leading to the proof visualized in Fig. 1b.
During this process, learned clauses that are not needed can be trimmed away.
In our example, we see that the first conflict analysis was not needed to decide
unsatisfiability. In this way, we obtain untrimmed and trimmed resolution proofs
from CDCL executions. Our simplified description ignores aspects like clause
minimization [40], but such steps also correspond to resolution derivations. Some
preprocessing steps are not captured by resolution, however, and therefore we
analyse CDCL executions on formulas as output by the preprocessor.

In complexity theory, the proof size is defined to be the number of clauses in a
resolution proof, which in Fig. 1b is 16 for the untrimmed and 13 for the trimmed
proof. In this paper, we will be slightly more relaxed and count just the number
of learned clauses, so that the untrimmed and trimmed proofs have sizes 4 and 3,
respectively. We have verified that this choice does not affect the analysis of our
experiments. Conveniently, this means that the size of the untrimmed proof is
just the total number of conflicts encountered during execution.
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Clause size is defined to be the number of literals in a clause, so that v∨w∨z
has size 3. The literal block distance (LBD) of a clause with respect to the current
trail is the number of different decision levels represented in the clause. At the
time of the first conflict in Fig. 1a, w is assigned at level 1 and v and z at level 2,
so the LBD score of v ∨w ∨ z is 2. The clauses active in the first conflict analysis
are v ∨ w ∨ z and v ∨ w ∨ z, and in the second conflict analysis the clauses that
take part are y ∨ z, x∨ y ∨ z, and u∨x∨ y. Such clauses get their clause activity
increased by 1, and a mild exponential smoothing is applied to the activity score
to give greater weight to the recent history of conflicts.

3 Experimental Set-Up

Let us now describe our CDCL solver configuration and choice of benchmarks.

Solver Configuration We use version 3.0 of Glucose [19] (which serves as
a basis also for many other modern CDCL solvers), but enhanced to output
resolution proofs and to vary restart and clause database management policies.

For restarts, we compare the following policies:

Adaptive restarts. The default in Glucose, where, essentially, restarts are
triggered when the average LBD score of recently learned clauses becomes
bad compared to the overall average.

Luby restarts. As proposed in [20] and used in MiniSat , the solver restarts
after a predetermined number of conflicts as specified by the Luby sequence
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . ., multiplied by some constant.

Fixed-interval restarts. Restart after a constant number of conflicts.

We study how adaptive restarts affects proof size compared to restarting at
predetermined points in time. To investigate whether the effect of adaptivity is
mainly to adjust the overall restart frequency or to trigger restarts at specific
points in time, we compare to Luby restarts with factors that give similar restart
frequencies. Fixed-interval restarts are considered as a theoretically interesting
extreme case, though in practice this is too inefficient in terms of running time.

We use Luby sequences with factors 1, 10, 20, 50, 100, and 200. In prelim-
inary experiments with default Glucose, for around 95% of unsatisfiable SAT
competition benchmarks the total number of restarts are below what would be
obtained with Luby restarts with factor 200. We also compare adaptive restarts
to the “virtual best Luby solver”, picking the best Luby-restarting solver for each
benchmark, and the “virtual closest Luby solver” with closest average restart fre-
quency for this particular benchmark. Finally, we run experiments with solvers
that restart every 20 conflicts, every 10 conflicts, and every conflict. For all these
experiments we use the default Glucose clause database management policy.

Concerning learned clause deletion , we investigate how untrimmed and
trimmed proof size is affected when the clause database reduction is completely
switched off, so that all learned clauses are kept. We run these experiments both
for adaptive restarts and for Luby restarts with factor 100 (the MiniSat default).
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We also consider how the solver chooses which clauses to erase when database
reduction is switched on, something we refer to as clause assessment . A first
rough description of how the CDCL clause database is managed is as follows.
When the solver reaches a certain number of conflicts, a method reduceDB is
called that sorts the clauses in the database according to some clause assessment
criterion, after which the worst half of the clauses are removed (but binary
clauses, i.e., clauses of size 2, are never removed). The number of conflicts until
the next database reduction is then increased by some constant, meaning that
the number of learned clauses in memory after N conflicts will be proportional
to

√
N . Glossing over some low-level details (due to space constraints), Glucose

refines the above model in the following way:

– Clauses with LBD score 1 or 2, so-called glue clauses, are never deleted.
– When a clause appears in conflict analysis the LBD score is recomputed, and

decreased scores protect from deletion at the next database reduction.
– If many clauses with good LBD scores have been learned, the next clause

reduction will be delayed, meaning that more clauses will be kept in memory.

It follows from this that there is a strong feedback loop between the LBD scores
and how many learned clauses are kept in memory. As we report in this paper, it
is also the case that more clauses in memory tends to yield more efficient reason-
ing (measured in terms of proof size, not time). If we want to compare different
ways of assessing the quality of clauses, we have to break this feedback loop in
order to get a fair comparison, since otherwise clause assessment based on LBD
might look good just because it leads to more clauses being kept. The problem
is, however, that the aggressive clause deletion policy in Glucose works well only
because the solver keeps more clauses when the LBD scores are good [38].

Therefore, in our clause assessment experiments we use a non-adaptive
database reduction strategy that yields clause database sizes that are reason-
ably close to standard Glucose, so that the comparisons will be meaningful, but
(almost) never smaller, so that our experiments will not be biased by deleting
clauses more aggressively than Glucose would do. After some experimentation,
the best solution we found was to make each reduceDB call erase only 30% of
the clauses and to increase the database reduction interval by 4600. This leads
to database sizes that are larger than default Glucose except for 5% of our
benchmarks.

We now have database reduction policy that always erases the same number
of clauses regardless of how these clauses are chosen, so that we can study the
effect of different clause assessment policies in isolation. Or at least almost: one
final problem is that every time a unit clause is learned, all clauses implied by
that unit are erased, meaning that the number of clauses in memory shrink,
potentially quite significantly. Thus, if a particular clause assessment policy is
successful in the sense of leading to more unit clauses being learned, this will
make the solver manage memory more aggressively. In contrast to the LBD
feedback loop discussed above, we see no way of countering this effect, since not
erasing satisfied clauses immediately would also lead to unpredictable effects on
the database size (which we cannot explain in detail due to space constraints).
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In our clause assessment experiments, we always keep binary clauses and
remove the worst 30% of the other clauses sorted according to the following
criteria (except for the first default configuration):

LBD+bumps. Default policy in Glucose with database size being bumped if
the LBD scores of clauses are good enough (evaluated for comparison).

LBD. Simulation of Glucose but with non-adaptive database size policy, priori-
tizing (a) first glue clauses (LBD score 1 or 2), (b) then clauses with updated
LBD, and (c) finally other clauses sorted by LBD (breaking ties by activity).

Activity. Activity in conflicts, with higher activity being better (as in MiniSat).
Size. Clause size, with smaller clauses being better.
Random. Random choice of which clauses to erase.

For these experiments we use Luby restarts (with factor 100) to avoid feedback
between clause assessment and restarts (except for the default configuration).

Benchmark Selection and Analysis. We ran three separate sets of experi-
ments to measure the effects of restarts, clause deletion, and clause assessment
as described above. To select benchmarks for these experiments, we first ran-
domly sampled 200 unsatisfiable instances from the SAT competitions and races
2015–2019 [36] and ran them through the preprocessor of Glucose (since the
extracted proofs are for CDCL search after preprocessing). Since we want to
analyse proofs we cannot deal with time-outs, and so have to select benchmarks
solvable by all solver configurations. We therefore ran each solver configuration
for all 200 benchmarks, and let each configuration select the 150 instances that
were solvest fastest. The final collection of benchmarks for each set of experi-
ments was chosen as the intersection of the sets of benchmarks selected by each
solver configuration. Just to give a sense of the computational effort involved,
for standard Glucose this approach led to running times of around 6, 000 s or
less. For the restart experiments, we had running times of up to 13, 000 s, for
experiments with clause deletion switched off up to 55, 000 s, and for the clause
assessment the control experiment with random erasures resulted in times of
up to 173, 000 s (2 days). One instance was solved in only 9 conflicts, before
any restarts or clause erasures, so it was ignored in the analysis. The number of
benchmarks in the final experiments was between 120 and 133.

For each solver configuration and each instance, we collected data about
trimmed and untrimmed proof size (where, as mentioned before, the latter is
the total number of conflicts during execution), and compared different solver
configurations for both trimmed and untrimmed proofs. In order not to give
undue weight to the very hardest benchmarks, we consider logarithms of proof
sizes. For two different solvers, we use the standard paired t-test to find a 99%
confidence interval for the mean of the difference of the logarithms. This confi-
dence interval can be transformed back to a confidence interval for the geometric
mean of the ratio of the proof sizes. It is important to note that since we perform
multiple experiments and tests, the 99% confidence level cannot be regarded as
a proper measure of statistical significance, but the confidence intervals still
provide a useful way of understanding the magnitude of the differences.



436 J. I. Kokkala and J. Nordström

Features of Useful Clauses. For the experiments with clause deletion switched
off, we compare untrimmed and trimmed proofs to see whether different proper-
ties of learned clauses can predict whether they will be useful or not, i.e., remain
in the final, trimmed, proof. In order to obtain results that could be useful for
future solver development, we focus on clause features that the solver could know
during execution, rather than on information that can be computed only with
hindsight. We consider static features, which are determined when the clause is
learned, and dynamic features, which can change while the solver is running.
Since dynamic features can vary over time, what we measure are features of
clause usages in derivations rather than of the clauses themselves. If a clause in
the database is used several times, every usage gives rise to a new data point.

Because features are often used to assess clauses relative to other clauses in
the database, and because clauses that are never used by the solver would not
appear in our analysis of usages, we also consider the percentile ranks of features
in the database at the time of usage. The percentile rank also changes over time
when the distribution of features of learnt clauses changes. When collecting data
for the percentile ranks, ties are broken randomly.

We collect the following static features computed when the clause is learned:

Size. Size of the learned clause.
Initial LBD. Clause LBD score (with respect to the trail when learned).
Decision level. Decision level of conflict when learned.
Backjump length. Difference of conflict level and assertion level.
Conflicts since restart. Number of conflicts since the latest restart.

We also consider the following dynamic features:

Dynamic LBD. When a clause is learned, its dynamic LBD is set to the initial
LBD score. Whenever a clause is used as a reason during conflict analysis,
a new candidate LBD score is computed based on the current trail, and the
dynamic LBD is updated if the score decreased by at least 2.

Activity. Conceptually speaking, the initial activity of a newly learned clause
is 1; it is increased by 1 every time the clause appears in conflict analysis; and
all clausal activities are multiplied by a factor α = 0.999 after every conflict.

Since solvers will not remove unit or binary clauses, we focus on features for
clauses of size at least 3, and the percentile ranks are also computed among these
clauses. The reason that clause deletion is switched off is that we do not want
the choice of which clauses to erase to bias which clauses seem useful. For the
same reason, we use non-adaptive Luby restarts (with factor 100).

By the nature of how CDCL solvers work, we expect some features to corre-
late strongly with clause usage for trivial reasons. For example, small clauses are
more likely to propagate and thus to appear more often in conflict analysis, and
will also tend to have low LBD scores. A clause that currently has high activity
has been used a lot in conflict analysis, meaning that all other things being equal
it is also more likely to show up in the trimmed proof. Such correlations may not
say too much about whether the clauses actually contribute to terminating the
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search, as they could also have many usages that do not appear in the trimmed
proof. To measure the predictive power of a feature, we focus on the conditional
probability that a usage of a clause appears also in the trimmed proof, condi-
tioning on the value of the feature. For a completely uninformative predictor,
this would simply be the ratio of all clause usages in the trimmed proof versus
the untrimmed proof. If the conditional probabilities for some values of a feature
differ from that, it suggests that the feature can be a predictor for usefulness.

We combine data from multiple benchmarks by summing the absolute counts
of usages over all benchmarks. In general, this approach may make a few bench-
marks with large proofs dominate. To check whether we have this problem, we
performed the same analysis on random subsets of the selected instances. The
results were similar, so the analysis appears robust to the effect of single large
instances.

4 Results

The results of our experiments, and our analysis of them, are as follows. For full
data and source code, see https://doi.org/10.5281/zenodo.3951538.

4.1 Proof Sizes

In Tables 1–3, we present the experimental data for some selected pairwise com-
parisons of solver configurations. For each pair of solvers and type of proof
(untrimmed/trimmed), we calculate the ratio of sizes of the proofs provided
by the solvers for each instance. In the tables, we show the quartiles of these
ratios in the data and the geometric mean with the 99% confidence interval,
computed independently for untrimmed and trimmed proofs.

Comparing different restart frequencies (see Table 1), we find that smaller
Luby factors (i.e., faster restarts) tend to give shorter untrimmed and trimmed
proofs on average. Restarting at every 20 conflicts gives shorter proofs than Luby
restarts with factor 20, but for factor 1 there is no clear difference between Luby
and fixed-interval restarts. For fixed-interval restarts every 1, 10, and 20 con-
flicts, more frequent restarts seem to increase the proof sizes, but the difference
is not statistically significant. We interpret this as evidence that up to a cer-
tain limit, more frequent restarts generally improve the reasoning power of the
solver. Adaptive restarts appear to be better than even the most frequent Luby
restart policy, though, yielding clearly smaller untrimmed proofs, and perhaps
also slightly smaller trimmed proofs. This seems to indicate that the advantage
of adaptive restarts comes mainly from recognizing when the solver is doing use-
less work and not as much from finding better proofs. One could ask whether
adaptive restarts work by simply selecting the best restart frequency for each
instance. However, our data gives evidence to the contrary, as choosing the Luby
solver with the closest average restart frequency for each instance would perform
worse.

https://doi.org/10.5281/zenodo.3951538
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Table 1. Comparison of restart policies. Values larger than 1 mean that the first solver
generates larger proofs.

Untrimmed proof Trimmed proof

Solvers quartiles geom. mean quartiles geom. mean

Luby-200 Luby-100 0.93 1.03 1.19 1.06 ± 0.11 0.91 1.01 1.17 1.04 ± 0.08

Luby-100 Luby-50 0.92 1.04 1.19 1.08 ± 0.12 0.95 1.06 1.26 1.11 ± 0.09

Luby-50 Luby-20 0.89 0.99 1.17 0.97 ± 0.11 0.92 1.01 1.12 1.02 ± 0.11

Luby-20 Luby-10 0.95 1.03 1.19 1.07 ± 0.09 0.95 1.04 1.19 1.06 ± 0.10

Luby-10 Luby-1 0.89 1.01 1.16 1.03 ± 0.09 0.94 1.03 1.15 1.06 ± 0.06

Luby-20 Fixed-20 0.78 1.13 1.56 1.13 ± 0.17 0.92 1.18 1.61 1.23 ± 0.15

Luby-1 Fixed-1 0.72 0.96 1.19 0.93 ± 0.12 0.91 1.10 1.28 1.03 ± 0.11

Fixed-20 Fixed-10 0.88 1.02 1.14 0.96 ± 0.09 0.90 1.01 1.10 0.98 ± 0.07

Fixed-10 Fixed-1 0.81 0.98 1.13 0.95 ± 0.10 0.86 0.99 1.09 0.96 ± 0.09

adaptive Luby-20 0.68 0.84 0.97 0.79 ± 0.09 0.80 0.95 1.07 0.92 ± 0.09

adaptive Luby Closest 0.63 0.83 1.02 0.75 ± 0.08 0.76 0.91 1.04 0.83 ± 0.09

adaptive Luby VBS 0.89 1.06 1.24 1.10 ± 0.13 0.99 1.13 1.33 1.19 ± 0.11

adaptive Fixed-20 0.57 0.90 1.35 0.89 ± 0.14 0.85 1.06 1.58 1.13 ± 0.14

Table 2. Effect of turning clause erasures off with adaptive restarts and Luby-100
restarts. Values larger than 1 mean that the first solver generates larger proofs.

Untrimmed proof Trimmed proof

Solver erasures/restarts quartiles geom. mean quartiles geom. mean

Off/adaptive On/adaptive 0.70 0.81 0.96 0.77±0.07 0.86 1.00 1.15 0.98±0.06

Off/Luby On/Luby 0.67 0.80 0.99 0.77±0.07 0.82 0.98 1.18 0.98±0.08

Turning clause erasures completely off decreases the untrimmed proof size in
83% of the instances, and by 23% on average, but there appears to be no mea-
surable average difference for the trimmed proofs. The results are similar when
using Luby restarts with factor 100 instead of adaptive restarts (see Table 2).

Comparing the two popular policies LBD and activity for clause assessment,
we see (as shown in Table 3) that using LBD gives significantly smaller proofs. We
also find that LBD is better than clause size, which is evidence that LBD contains
more useful information than just size despite being strongly correlated with it.
Clause size, in turn, seems to be slightly better than activity, but the difference
is not statistically significant. Choosing which clauses to erase at random is
clearly worse than all other policies, but even so it is not a completely hopeless
approach, as it yields shorter proofs than LBD for 10–15% of the instances.3

To verify that our solver with fixed database size updates and LBD clause
assessment is reasonably close to the actual behaviour of Glucose with adaptive
3 For one of the selected benchmarks the solver with random clause erasures produced

a proof too large to analyse with our tool chain, so this data point is missing.
However, it would not make any significant difference.
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Table 3. Comparison of clause assessment policies. Values larger than 1 mean that
the first solver generates larger proofs.

Untrimmed proof Trimmed proof

Solvers quartiles geom. mean quartiles geom. mean

LBD activity 0.74 0.92 1.02 0.84 ± 0.09 0.74 0.88 1.00 0.84 ± 0.09

LBD size 0.79 0.94 1.01 0.91 ± 0.07 0.78 0.91 1.00 0.87 ± 0.07

LBD random 0.66 0.80 0.97 0.73 ± 0.07 0.61 0.74 0.88 0.66 ± 0.08

size activity 0.83 1.01 1.23 0.93 ± 0.10 0.85 1.00 1.14 0.96 ± 0.09

activity random 0.81 0.91 1.00 0.86 ± 0.08 0.73 0.86 0.97 0.79 ± 0.09

LBD+bumps LBD 1.00 1.17 1.37 1.21 ± 0.12 0.94 1.08 1.23 1.10 ± 0.10

Glucose LBD 0.83 1.00 1.20 0.97 ± 0.12 0.81 1.00 1.13 0.95 ± 0.12

database size and adaptive restarts, we also compare the proof sizes for these
two solvers. There is no statistically significant difference for the proof sizes, and
50% of proof sizes obtained from Glucose are within 19% of our LBD model, so
we believe that this clause assessment experiment is relevant in practice.

Clause Features. We estimate the conditional probability that a clause usage
in the untrimmed proof appears also in the trimmed proof by dividing the sam-
pled frequency distribution of a feature in the trimmed proofs by the frequency
distribution in the untrimmed proofs. In Fig. 2, we visualize the computed con-
ditional probabilities for some features. In addition, the plots contain a dashed
line that shows the ratio of all clause usages in the trimmed proof versus the
untrimmed proof, which is what the graph for an uninformative, completely
uncorrelated, predictor would look like. Similar values can also be computed for
the DRAT-trim proof instead of the trimmed solver proof (although they can-
not be interpreted as conditional probabilities since DRAT-trim usages are not
a subset of solver usages); these are shown in the same plots for comparison. To
indicate which values are relevant, plots also show the frequency distribution of
all solver usages, transformed for the logarithmic x-axis so that area under the
curve corresponds roughly to a probability measure (but with arbitrary scaling).

For dynamic LBD, glue clauses (with LBD scores at most 2) occur in the
trimmed proofs more than average, and the top 5% of clauses have clearly larger
probability of appearing in the trimmed proof than the rest. In the plot, there
is also a peak around the value 250; however, as the solver usage distribution
line shows there are not many usages with these values, so this is likely to be
an effect of small sample size. Initial LBD and size are somewhat similar, but
dynamic LBD is a better predictor for the top clauses than either of them.

Clauses with very small activity score are sometimes used by the solver,
but they tend to be less common in trimmed proofs. Higher values indicate
usefulness, except that clauses with very high activity scores (above 30) tend
not to be useful; it appears that the solver uses some clauses a lot that are not
needed in the final proof. Curiously, activity scores just below small integer values
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(a) Dynamic LBD. (b) Activity. Note the reversed x-axis in
the absolute value plot.

(c) Decision level when clause was learned. (d) Comparison of usefulness as a function
of percentile rank.

Fig. 2. Sampled conditional probabilities that usages of clauses in the untrimmed proof
appears also in the trimmed solver proof, and the analogous ratio for the DRAT-trim
proof.

are less common in trimmed proofs. These come mostly from clauses that have
been used recently and where the activity has not had much time to decay. One
possible explanation is that being used many times in short succession may not
indicate usefulness, but clauses that are used many times throughout a longer
time interval are better.

A comparison of the computed conditional probabilities for percentile ranks
of dynamic LBD, initial LBD, size, and activity is shown in Fig. 2d. When
comparing the predictive power of the most popular measures, i.e., dynamic
LBD and activity, it seems that LBD is a good predictor for the very best
clauses, but that activity is relevant for a wider range of values. If we would
use the DRAT-trim frequency distribution instead, we would not see as clear a
difference between dynamic LBD and initial LBD or size. Also, it is clear that
low-activity clauses are used by DRAT-trim much more often than by the solver.

Measuring the time elapsed from the most recent restart to when a clause
is learned does not seem to provide any predictive power. Clauses that cause a
backjump of only one decision level seem to appear often in conflict analysis,
but tend to be less useful than clauses yielding longer backjumps. The data for
the decision level at which a clause is learned seem contradictory: usages with
small absolute value are more likely to appear in the trimmed proof, but so are
usages with high percentile rank values. Such behaviour could potentially be
caused by the distribution of the feature in the database changing over time,
but understanding this in detail will require further research.
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5 Concluding Remarks

The main philosophy underlying this paper is that in order to gain a better
understanding of how CDCL SAT solvers work, it is fruitful to investigate the
reasoning that they perform. Since CDCL solvers are search algorithms for res-
olution proofs when run on unsatisfiable formulas, we can study what kind of
proofs they find, and what parts of these proofs are essential for establishing
that the formulas are indeed unsatisfiable.

Using this method of analysis, we find that more frequent Luby-style restarts
help solvers to produce shorter proofs (even if all too frequent restarts cause too
much of a penalty in running time). Making restarts adaptive can significantly
decrease proof size further, but mainly for the untrimmed proofs containing all
derivations rather than for the trimmed proofs containing only essential clauses.
This indicates that adaptive restarts are often successful in helping the solver
avoid unnecessary work. When assessing whether a learned clause is likely to
be useful, as measured by the probability of the clause appearing in the final,
trimmed proof, we find that very good literal block distance (LBD) score is a
strong predictor, but that clausal activity appears to be more relevant over a
larger range of values. This supports the currently popular approach of prior-
itizing clauses with low LBD scores but sorting other clauses with respect to
activity [34].

We consider our paper, and previous works in a similar spirit such as [28,37],
to be only first steps, and see ample scope for future research in this direction. In
particular, it would be very interesting to extend our method to satisfiable for-
mulas, by looking at the “proofs” obtained by concatenating the conflict analyses
for the learned clauses guiding the solver to the satisfying assignment.

In addition to the heuristics for restarts and clause database management
studied in this work, it would be relevant to investigate variable decision heuris-
tics such as VSIDS and phase saving, building on and extending [28]. An arguably
even more urgent task is to gain a better understanding of relatively new tech-
niques such as learned clause minimization [26] and chronological backtrack-
ing [32], which have played an important role in the SAT competitions [36] in
recent years.

Our data analysis is relatively simple, and there should be room for using
more advanced tools. A tempting idea is to combine our approach with the
machine learning techniques in [39] (but, importantly, applied on the actual proof
found by the solver rather than the one reconstructed by DRAT-trim). Also, it
would be interesting to study more properties of proofs such as space complexity,
and whether theoretical time-space trade-offs as in [1,6,8,9] could show up also
in practice, in view of the aggressive memory management in modern solvers.

Finally, it is intriguing that some of our results are quite different from those
in [18]. As an example, that paper found that activity-based clause assessment
when choosing which clauses to erase is almost equally bad as random, whereas in
our work it is clearly better. A natural question is how much of this discrepancy
might be due to that we use “applied” SAT competition benchmarks, whereas
only crafted, combinatorial formulas were considered in [18].
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measures and practical hardness of SAT. In: Milano, M. (ed.) CP 2012. LNCS, pp.
316–331. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-
7 25

24. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy
of modern SAT solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 343–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21581-0 27

25. Katsirelos, G., Sabharwal, A., Samulowitz, H., Simon, L.: Resolution and paral-
lelizability: barriers to the efficient parallelization of SAT solvers. In: Proceedings
of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), pp. 481–488,
July 2013
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Abstract. Constraint propagation and SAT solvers often underperform when
dealing with optimisation problems that have an additive (or separable) objec-
tive function. The core-guided search introduced by MaxSAT solvers can over-
come this weakness by detecting and exploiting cores: subsets of the objective
components that cannot collectively take their lower bounds. This paper shows
how to use the information collected during core-guided search, to reformulate
the objective function for an entire class of problems (those captured by the prob-
lem model). The resulting (currently manual) method is examined on several case
studies, with very promising results.

1 Introduction

Modern approaches for solving combinatorial optimisation problems first specify a
model that formally describes the problem’s parameters, variables, constraints and
objective function. All parameters are later instantiated with input data, describing an
instance of the problem. Each instance is then compiled to the format required by the
selected solver, which explores the model’s search space to find high quality solutions.

The economic impact of combinatorial optimisation problems has fuelled the design
of powerful modelling languages, such as AMPL [9], OPL [23], Essence [10] and
MINIZINC [18], and powerful solvers within the Mixed Integer Programming (MIP),
Constraint Programming (CP), and MaxSAT solving paradigms. However, while there
have been many advances in the variety and quality of solvers available, advances in
technology that helps users improve their models have been scarce. This is unfortunate
since, while the way in which a problem is modelled can significantly affect its solving
time, designing good models is still very challenging, even for expert users. As a result,
users must follow a time consuming, iterative, modify-and-test approach that can still
yield poor results.

This paper aims at helping users identify model improvements, by taking advantage
of some of the great advances achieved by Lazy Clause Generation (LCG) [8,19] and
MaxSAT solvers. LCG solvers, such as Chuffed [6], GEAS [11] and ORTools [20],
combine the strengths of the CP and SAT solving paradigms. This allows LCG solvers
to infer nogoods (i.e., reasons for failure), and use them to avoid repeatedly exploring
infeasible subproblems. Previous work [24] showed that the nogoods inferred by LCG
solvers for a model’s instances can be used to identify (a) existing constraints that may
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be strengthened, and (b) new redundant constraints on the existing model variables that
are likely to increase performance.

Our work complements this line of research by providing a (currently manual)
method that uses the information inferred by the core-guided search ofMaxSAT solvers,
to improve a common class of optimisation models: those with an additive (or separa-
ble) objective function, i.e. a sum of components, each containing a single variable.
In particular, we show how the cores found by a core-guided solver can help iden-
tify components in the model (rather than in the instance) that can yield better bounds
when grouped. We then show how to use these components to reformulate the model
itself, by adding new variables to the model. Note that most previous works on model
reformulation, have only used variables appearing in the original model. One of the
few exceptions is [5], which introduced new variables to achieve a lower computational
complexity in handling the SEQUENCE constraint. While adding new variables to a
model is very unusual and challenging, our experimental results indicate that, if done
appropriately, it can significantly speed up LCG (and sometimes CP) solvers. In addi-
tion, we show how the first two steps of the method can be automated. Automating the
last step is a challenging and important future goal.

2 Background

Constraint Optimisation Problems: A constraint optimisation problem P is a tuple
(C,D, f), where C is a set of constraints, D a domain mapping each variable x appear-
ing in C to set of values D(x), and f an objective function. C is logically interpreted
as the conjunction of its elements, and D(x) as the conjunction of unary constraints on
x. A literal of P is a unary constraint whose variable appears in C. To solve problem
P ≡ (C,D, f), a CP solver first applies constraint propagation to reduce domain D to
D′, by executing the propagator associated with the constraints in C until reaching a
fixpoint. If D′ is equivalent to false (D′(x) is empty for some variable x), we say P
fails. If D′ is not equivalent to false and fixes all variables, we have found a solution to
P . Otherwise, the solver splits P into n subproblems Pi ≡ (C ∧ ci,D

′, f), 1 ≤ i ≤ n,
where C ∧ D′ ⇒ (c1 ∨ c2 ∨ . . . ∨ cn) and ci are literals (the decisions), and then
iteratively searches these subproblems.

The search proceeds propagating and making decisions until either (1) a solution
is found, or (2) a failure is detected. In case (1) the search computes the value of f ,
constraints the next value of f to be better (greater or smaller, depending on f ) and
continues the search for this better value (the traditional branch-and-bound). In case
(2) the search usually backtracks to a previous point to make a different decision.

Lazy Clause Generation: LCG solvers [8,19] extend CP solvers by instrumenting
their propagators to explain domain changes in terms of equality (x = d for d ∈ D(x)),
disequality (x �= d) or inequality (x ≥ d or x ≤ d) literals. An explanation for literal
� is S → �, where S is a set of literals (interpreted as a conjunction). For example, the
explanation for the propagator of constraint x �= y, which infers literal y �= 5 given
literal x = 5, is {x = 5} → y �= 5. Each literal inferred when solving problem P
is recorded with its explanation, forming an implication graph. If failure is detected
for subproblem P ′, LCG solvers use this graph to compute a clause L (or nogood): a
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disjunction of literals that holds under any solution of P but is inconsistent under P ′. 1

L is then added to P ’s constraints, to avoid failing for the same reasons.

Core-Guided Optimisation: CP solvers often underperform when proving optimality
for additive objectives. This is because the lower bound of any objective component, say
oci of variable xi for minimising function f ≡ oc1 + · · · + ocn, can often be achieved
by sacrificing others, and f ’s lower bound is inferred only from the bounds of its com-
ponents. Core-guided solvers overcome this weakness by first fixing all components to
their lower bounds, and then searching for a solution. If this succeeds, an optimum has
been found. Otherwise, they return a core: a (hopefully small) subset of components
that cannot collectively take their lower bounds. They then update f ’s bound without
committing to which core component incurs the cost, and adjust the lower bounds of the
components in the core. Finally they re-solve, repeating this process until a solution is
found. Different core-guided solvers differ mostly in how the interaction between cores,
component bounds, and the objective is handled. We assume such solvers return either
an empty set, indicating the current subproblem is satisfiable, or a set S of literals of the
form xi ≥ k where variable xi appears in the objective, indicating at least one literal in
S must hold. Extending LCG solvers to support this interface is straightforward.

This paper uses the LCG, core-guided solver GEAS [11]. Its core-guided approach is
based on the OLL [1] method, which progressively reformulates the objective to use the
discovered cores: upon finding core S, OLL introduces a new variable p =

∑
S (with

lower bound increased by at least 1), and rewrites the objective in terms of p. GEAS

improves the basic OLL with stratification [2,17] (extracting cores on high-coefficient
terms first), weight-aware core extraction [4] (delaying the introduction of new variables
until no cores can be found), and the ‘hardening rule’ [2] (upper-bound propagation on
new variables).

3 Motivation for Core-Guided Model Reformulation

The reformulation of the objective performed by GEAS when solving an instance, can
significantly reduce the search and, thus, the solving time for both LCG and branch-and-
bound solvers. This is somewhat counter-intuitive, as the reformulation introduces new
instance variables. The reasons for such reduction are twofold. First, LCG solvers can
use the new variables to learn nogoods that shorten their optimality proof. This shows
the importance of what we call the language of learning. Second, branch-and-bound
solvers can use the bounds on the new variables to detect failed subproblems earlier.

This paper aims to achieve similar improvements to those achieved by core-
guided solvers, but at the model (rather than instance) level. Thus, performance can
be improved for multiple instances (rather than only for the one being executed), and
also for non-core-guided solvers (either because they are not available, or are not as
fast for the instance in question). Let us demonstrate via two (extreme) examples the
radical performance improvements made possible by reformulating the objective to use
variables whose bounds are detected by core-guided search.

1 Note our nogoods denote a positive (implied) clause. In other works they denote the (conjunc-
tive) negation of its literals.
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Example 1. Consider an optimisation problem with n pairs of variables, xi, yi : i ∈
1..n, where each variable has 0..m domain, ∀i ∈ 1..n : xi + yi ≥ k, and the objective
is to minimise the sum of the variables (

∑n
i=1 xi + yi). With a CP or LCG solver,

propagation ensures assignments to xi and yi are mutually consistent and, if the lower
values in the domains are tried first by the search, the first solution to be found will be
optimal. Given a direct model for this problem, the first row of the table below shows,
for n = 10 and m = 5, the number of search steps required by CP solver Gecode [12]
to find the first solution and prove its optimality, for several values of k.

Search steps with: k = 2 k = 3 k = 4

original objective 21 73,955 11,163,595

reformulated objective 21 21 21

The last row shows the number of search steps required after (a) adding to the model
new variables xyi and constraints xyi = xi + yi, xyi ≥ k for each i ∈ 1..n, and (b)
reformulating its objective as

∑n
i=1 xyi. With this model reformulation, once Gecode

finds the first solution and starts searching for a better (smaller) objective, the bounds
on the xyi variables allow it to immediately realise that no higher value is possible for
any xi or yi. Thus, the search to prove optimality efficiently finishes right after the first
solution is found, regardless of the value of k. �
Example 2. Consider now a problem with n decision variables x1 . . . xn, with domain
0..1. Each triple of variables (xi, xj , xk) : i > j > k has a target values (ai, aj , ak)
and the triple incurs a benefit of 1 if xi = ai, xj = aj and xk = ak. The objective is the
sum of these benefits. Given a direct model for this problem, the first row of the table
below gives the average CPU time it took the Gecode, Chuffed and Gurobi [13] solvers
to find an optimal solution and prove optimality for 10 randomly generated instances.

CPU time (secs) Gecode 6.1.1 Chuffed 0.10.4 Gurobi 7.5.2

original objective 57 236 232

reformulated objective 4 3 152

The last row shows the time required after (a) adding to the model a new variable
xai for each decision variable xi, and (b) reformulating its objective as

∑
i xai. To

define xai, let tv1 be the first variable in the tth triple; ta1 be its first matching value;
valt be the value of this triple in an assignment; and xai(b) be

∑
t:tv1=xi∧ta1=b valt.

Then xai = max(xai(1), xai(0)). �

4 Methodology

The examples presented in the previous section clearly show the potential benefits of
introducing new variables to a model. However, picking an effective reformulation is
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very difficult, since the number of possible new variables is huge. This is true even for
our reduced scope, where these new variables must be formed from any (iterative) com-
bination of the variables in the objective. The challenge then is to chose those variables
that will achieve good improvements in a large number of instances.

Our core-guided reformulation method is designed to address this challenge. To
achieve this, it takes two inputs: an optimisation model whose objective function is
additive, and a set of input data files. It then performs the following main steps:

1. Use a core-guided solver to find, for each model instance, cores that are candidates
for new variables;

2. Select some of these candidates, based on their likely reduction in solving time;
3. Modify the model to add new variables for the selected cores, constrain them, and

use them to reformulate the objective, without changing the optimal solutions.

The rest of this section discusses the above three steps in more detail, using the
Resource-Constrained Project Scheduling Problem with Weighted Earliness and Tar-
diness cost to illustrate the method. This problem tries to schedule tasks that have a
given duration and desired start time, subject to precedence constraints and cumulative
resource restrictions. The objective is to find an optimal schedule that minimises the
weighted cost of the earliness and tardiness of any task that is not completed by their
desired deadline.

The model we use (rcpsp-wet in the MINIZINC benchmarks) has the objective:

objective = sum (i in Tasks) (

deadline[i,2]*max(0,deadline[i,1]-s[i]) + % earliness cost

deadline[i,3]*max(0,s[i]-deadline[i,1])); % tardiness cost

that is, the sum of the earliness and tardiness costs for every task i in input set of Tasks,
where parameter deadline[i,1] gives the desired start time for i, parameters deadline
[i,2] and deadline[i,3] give the cost per time unit for task i to start before or after
its desired time, respectively, and variable s[i] represents the start time for task i.

4.1 Step 1: Finding Core Candidates

Step 1.1 Solver Instrumentation: As we will see below, we currently find new variables
by manually interpreting the cores found by the solver. Therefore, the solver needs to
be instrumented to output them in human readable form. The GEAS solver, which con-
nects to the MINIZINC system and is the core-guided solver we use, already produces
verbose output for debugging purposes. This includes, for each iteration in which the
objective is modified, the value of the objective function at the end of each iteration,
and all cores found together with their individual impact on the lower bound (for a
minimising objective). While our current manual method simply uses this output, any
future automation of the method will require a formal protocol for communicating with
the core-guided solver, similar to that used in the profiling of CP solvers [21].
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Step 1.2 Collect the Cores: To collect the cores for a given problem, we run GEAS in
core-opt mode on a subset of the model instances we have, and record its verbose output.
Currently, the subset selected corresponds to at most 2 small instances, as this will
simplify the remaining manual steps. For the case of rcpsp-wet, we used the instances
obtained by instantiating the model with data files j30_1_3.dzn and j30_43_10.dzn.
Once this step is automated, better results will be obtained by using a large and diverse
set of instances. Note that we disabled GEAS core hardening for this step, as we do
not want any literals (including those made false by hardening) to be omitted from the
reported cores.

Step 1.3 Rename the Cores: Solvers express cores in terms of the variables created
when compiling the instance, or those created by the solver itself. These names are
generic, making them difficult for humans to interpret. For example, the following
shows an extract from the verbose output created by GEAS when solving the j30_1_3.

dzn instance:

Found core of size 2, new lb: 5

CORE: X_INTRODUCED_261_ >= 7,

X_INTRODUCED_217_ >= 1

indicating that the core has 2 literals, resulted in a new lower bound of 5 for the objective
function, and contains instance variables X_INTRODUCED_261_ and X_INTRODUCED_217_.
Typically, solver writers who want to interpret such names, must examine the compiled
instance output to see what these variables might refer to. In [24], the authors used a
source map produced by the MINIZINC compiler, to map instance variables back to
variables and expressions in the original model. Herein, we use the same method to link
back the core variables, which for the above core results in:

Found core of size 2, new lb: 5

CORE: ’max(0, deadline[16, 1] - s[16])’ >= 7,

’max(0, s[25] - deadline[25, 1])’ >= 1

The variables can now be easily recognised (from the objective) as the earliness of task
16, and the tardiness of task 25.

Step 1.4 Collect New Variable Core Candidates: Cores containing more than one literal
are candidates for new variables to be introduced in the model (singleton cores contain
a variable that already exists in the model and are, therefore, not useful for our method).
We collect all such cores by performing the previous two steps for the selected subset
of model instances, and recording the results.

4.2 Step 2: Selecting Good Candidates

Step 2.1 Find Patterns Among the Cores: Once all candidate cores are collected, the
next main step in our method involves interpreting these cores to determine subsets that
are likely to reduce solving time for many instances. To achieve this, we first try to find
patterns among the different cores found. The following details three of the patterns we
have often found in our experiments. Importantly, we focus on finding patterns for the
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most effective cores, i.e., those with greater impact on the objective function value and
its lower bound. In GEAS, these are often the cores found early in the search.

Identical Up to Renaming: Many of the cores collected differ only in the name of the
parameters present in the core’s variables, and their bounds. For example, core:

Found core of size 2, new lb: 10

CORE: ’max(0, s[14] - deadline[14, 1])’ >= 4,

’max(0, deadline[8, 1] - s[8])’ >= 1

and the one in Step 1.3, have two variables with pattern max(0,deadline[i,1]-s[i]),
max(0,s[j]-deadline[j,1]), where i represents tasks 16 in the first core and 8 in the
second, and j represents tasks 25 and 14. Note that we always ignore the literals’ bound
(e.g., 4 and 1 in the above core). While we currently find these patterns manually, the
method described in [24] for finding nogood patterns across instances, can be easily
adapted to cores.

Simple Ordering: A simple but common pattern consists of pairs or triplets of variables
that appear “near” each other in some ordering in the model. For example, variables
representing the state of some object at time points t and t+1, or variables representing
two tasks where one is a successor of the other, as task 14 is of task 8 in the above core
for rcpsp-wet.

Element Constraints: Sometimes cores have literals assigning all (or most of) the pos-
sible values of a variable, e.g., 1 ∗ (x = 1) + 5 ∗ (x = 2) + 6 ∗ (x = 3) . . .. This
often occurs when the variable’s contribution to the objective is non-linear. These cores
reconstruct an element global constraint (see, for example, the reformulation for the
jp-encoding model in Sect. 5.1).

Step 2.2 Interpret the Patterns: We now look for reasons for the patterns to appear, that
is, for the associated variables to appear often together in effective cores. This usually
requires in-depth knowledge regarding the relationship between these variables. For
example, for the pattern max(0,deadline[i,1]-s[i]), max(0,s[j]-deadline[j,1])
mentioned above, we must understand what connects the earliness of the tasks repre-
sented by i (16 or 8) to the tardiness of those represented by j (25 or 14, respectively).
Visualising the input data using a variation of a Gantt chart helped us realise, for exam-
ple, that task j is often the direct successor of task i, they overlap in time, and have the
highest earliness and tardiness costs. In other cores j is often a non-direct successor of
i, and the penalty for scheduling the chain of tasks is also very high due to overlaps.

4.3 Step 3: Reformulating the Model

Step 3.1 Reformulate the Objective: Once the patterns are interpreted, we reformulate
the objective using this information. The aim is to group objective components that
are expected to form effective cores. We have observed that patterns often suggest an
ordering of components that places them in cores together. For example, for rcpsp-wet
we can sort the earliness/tardiness components of direct successor tasks that overlap,
based on the cost of enforcing their precedence (we call this ordering direct), leaving
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the remaining components unchanged. Alternatively, we can use an ordering obtained
by simply sorting the earliness/tardiness components based on the desired start time of
their task (we call this ordering start).

For any such ordering of the components in the objective, our method recursively
creates new variables for each disjoint pair of adjacent components, and replaces them
in the objective function with the new variable. We achieve this by using the following
group function, which we have implemented in MINIZINC and added to its library:

group([x]) = x
group([x1, . . . , x2n]) = group([z1, . . . , zn])

s.t. zi ≥ x2i−1 + x2i, ∀. i ∈ 1 . . . n
group([x1, . . . , x2n, x2n+1]) = group([z1, . . . , zn, x2n+1])

s.t. zi ≥ x2i−1 + x2i, ∀. i ∈ 1 . . . n

The function receives as its argument a list with the objective components in the given
ordering [x1, . . . , xm], and creates a new variable zi for each pair of adjacent compo-
nents x2i−1 + x2i. It then recursively calls itself with a list of the new variables in the
order they were created as input, while appropriately dealing with the case of m being
odd or even. The recursion ends when the list contains a single component x, simply
returning x as the new objective to minimize. Note that the best performance for GEAS

occurs when zi is bound from below. However, other solvers may perform better when
zi is defined as zi = x2i−1 + x2i. Therefore, in practice we use the bounding strat-
egy that is best for a given solver. Note also that the group function uses recursion to
combine more distant components. We do this to compensate for the locality brought
by the fact we currently only consider the early cores of a very small selected subset of
small instances, since these are the ones that are easier to interpret by hand. Once better
support for the interpretation step is achieved, this should be reconsidered.

Our method adds to the model both the function that produces the ordering and the
group function which uses it (in the case of the group function, this is done by adding
it to the MINIZINC library, but it has the same effect). As a result, the time needed
to compute this ordering is an overhead to the execution of the instance. Therefore,
care needs to be taken when defining orderings that might be too time consuming to
compute. The same can be said for the group function, although in this case reducing the
time overhead might not be as important as reducing the number of variables created.
We therefore experimented with a version of the group function that only performs k
iterations, with the aim of introducing fewer new variables. The resulting models did
not yield noticeable improvements in our experiments (data not shown).

Step 3.2 Add Bounds for New Variables: The reformulation of the objective can
improve the solving time of any clause-learning solver (such as LCG and MaxSAT).
This is because it introduces new variables that can be used by these solvers to learn
new clauses and, thus, reduce the search space. However, the reformulation would not
usually help CP solvers, as they will be unable to infer tighter bounds on the introduced
variables.

To counter this, we modify group to add a bound to the new zi variables it creates.
For example, for rcpsp-wet, if the first iteration creates the following variable:
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new_var = deadline[i,2]*max(0,deadline[i,1]-s[i]) +

deadline[j,3]*max(0,s[j]-deadline[j,1])

we also add to the model the constraint:

new_var >= min(deadline[i,2],deadline[j,3])*
(deadline[i,1]+d[i]-deadline[j,1]);

ensuring new_var is greater or equal than the minimum cost to enforce the precedence,
that is, the minimum of the earliness cost of task i and the tardiness cost of task j,
multiplied by their overlap (d[i] is a parameter of the model representing i’s duration).

4.4 Automating the Method

The initial stages of our method (all substeps in step 1: finding core candidates) are
automatic, thanks to the use of core-guided optimisation to generate the cores and their
information, and the use of existing MINIZINC infrastructure to collect and rename the
cores, and identify the core candidates. While substep 2.1 (finding patterns among the
cores) is currently done manually, it can be automated using similar technology to that
used by [24] to identify patterns among nogoods.

The most difficult manual stages to automate are the analytical ones: pattern inter-
pretation (step 2.2), and designing the reformulation (step 3). As these rely on insights
regarding the underlying model structure, full automation is quite challenging. How-
ever, it is possible to automate certain processes to make these stages easier. For exam-
ple, interpreting the patterns requires understanding why the cores represented by the
pattern hold. Since each such core typically only relates to a small fragment of the
model, identifying this fragment can often immediately reveal the meaning of the core.
And this identification is something that can be automated: given a model M and core
C, we know M ∧ ¬C is unsatisfiable. Thus, we can use tools such as FINDMUS [16]
to identify a minimal unsatisfiable subset of M that causes the failure.

Example 3. Consider the following core which was part of the output created by GEAS
for the rcpsp-wet model, with the instance obtained from data file j30_1_3.dzn.

CORE: ’max(0, s[27] - deadline[27, 1])’ >= 3,

’max(0, deadline[17, 1] - s[17])’ >= 1

We update the model with name annotations that explain what each constraint means.

constraint forall ( i in Tasks, j in suc[i] ) (

( s[i] + d[i] <= s[j] )

:: "Task \(i) must finish before task \(j) starts" );

We then add the negation of the core to the MINIZINC model as follows:

constraint :: "Core 5"

not ( max(0, s[27] - deadline[27, 1]) >= 3

\/ max(0, deadline[17, 1] - s[17]) >= 1);
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With just these modifications, FINDMUS is able to output the following:

MUS: Core 5

Task 17 must finish before task 24 starts

Task 24 must finish before task 27 starts

Note that, while the core only mentions tasks 17 and 27, FINDMUS is able to identify
the chain of precedence constraints required for explaining the negated core. This makes
the task of interpreting the cores much easier.

Automating the model reformulation (step 3) is more involved, as it requires the
design of higher-level groupings using the reasons for the cores found in step 2.2. How-
ever, as we will see in the next section, the reformulations we produce are usually struc-
turally simple: either an ordering or hierarchical clustering, based on proximity with
respect to numeric parameters (i.e. jp-encoding and seat-moving), or constraint
structures (i.e. spot5 and rcpcsp-wet). It is thus possible (although non-trivial) to
use structural analysis methods, such as [15], to do this, since they are able to identify
subsets of the model constraints that correspond to pre-defined constraint structures.

5 Experimental Evaluation

This section illustrates how to apply our core-guided model reformulation method to
five models, and experimentally evaluates the efficiency of the reformulations obtained
for different orderings.

5.1 Models and Their Reformulation

To evaluate the effectiveness of our method, we require models of optimisation prob-
lems with an additive objective function, and for which core-guided solvers can obtain
better results than branch and bounds ones (otherwise, the method has no chance of
success). Therefore, we selected the top five models in the MINIZINC annual com-
petition [22], for which core-guided GEAS performs drastically better on at least one
instance, than branch-and-bound GEAS. This yielded the rcpsp-wet model used above
to illustrate our method, and the four models described below.

For each model, we selected 1–2 instances to analyze (typically, the smallest
instance to identify cores, and a moderate one to check that the identified patterns reoc-
cur). After modification, we evaluated the reformulated model over all instances from
the challenge. The following describes how our core-guided reformulation method was
applied to the other four selected models.

The seat-movingModel: Given a set of seats and the people sitting in them (some may
be empty), the problem is to find the minimum number of moves and time-steps needed
to reach a target seating plan. Some people can swap seats with anyone in one move;
the rest must first move to an empty seat to make way. The objective is defined as:

cost = sum(i in 1..MAX_STEP -1,p in 1..P)

(person[i,p]!=person[i+1,p]);

objective = cost + step*MAX_STEP*P;
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where variable cost counts, for each time-step i and person p, the seats where p is at
time i but not at i+1 (note that boolean person[i,p]!=person[i+1,p] is coerced to an
integer), and variable step is the number of time-steps needed. Therefore, the objective
sums all moves performed in every step by any person,

Studying the early cores GEAS finds for instances sm-10-12-00 and sm-10-20-00,

we realised they contain the moves of a single person, rather than those of a time-step,
which is how they appear in the sum that defines variable cost. Thus, we grouped the
components using a reverse ordering that simply reverses the order of the sum indices:

cost = group(p in 1..P, i in 1..MAX_STEP -1)

(person[i,p]!=person[i+1,p]);

In addition, we also added a (very weak) bound on the first set of new variables (i.e.,
those created in the first iteration of the group function), that ensures the number of
moves for people not starting in their target seat is ≥ 1.

The jp-encoding Model: The Japanese Encoding problem tries to find the most likely
encoding used for each byte in a byte stream of encoded Japanese text, where multiple
encodings may be used. The model considers the ASCII, EUC-JP, SJIS and UTF-8
encodings, each with a scoring table that maps each byte to its penalty score (based on
likelihood) for that encoding, plus an “unknown” encoding with a large penalty. The
objective to minimise is defined in the model as:

objective = 1000*n_unknown + sum(i in 1..len) (

(encoding[i]==e_euc_jp)*eucjp_score[stream[i]+1]

+ (encoding[i]==e_sjis)*jis_score[stream[i]+1]

+ (encoding[i]==e_utf8)*utf8_score[stream[i]+1]);

that is, it sums the penalties (given by parameter tables eujp_score, sjis_score and
utf8_score) for the encoding chosen by variable encoding[i] for each byte (repre-
sented by parameter stream[i]) in position i of the input stream. Note that the penalty
is 0 for the ASCII encoding, and 1000 for an unknown encoding (in this case variable
n_unknown has been incremented by 1).

Studying the early cores found by GEAS on data200.dzn, we realised they refer
to all possible encodings of the byte in a given position (it must get some encoding).
We thus used the element global constraint to create new variables encoding_cost(i),
representing the encoding penalty of position i:

function var int: encoding_cost(int: i) =

array1d(0..4,[0,eucjp_score[stream[i]+1],
sjis_score[stream[i]+1],

utf8_score[stream[i]+1],1000])[encoding[i]];

objective = sum(i in 1..len)(encoding_cost(i));

We then re-applied our method to the reformulated model and realised that the new
cores were local, i.e., involved encoding_cost(i) and either encoding_cost(i+1) or
encoding_cost(i+2). Thus, we defined a local ordering that simply sorted the encod-
ings by position (which is the same as the original order in the model):
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objective = group(i in 1..len)(encoding_cost(i));

The rel2ontomodel: The Relational-To-Ontology Mapping problem takes as input (a)
an alignment graph formed by cnodes, corresponding to the ontology’s classes, dnodes
corresponding to the data properties of the classes, and weighted edges, (b) the set of
attributes of a relational database, and (c) the set of dnodes each attribute might be
matched to with a given cost. The problem is to find a single match for all attributes and
a Steiner Tree for the alignment graph, such that the matched dnode of every attribute
is in the tree, and the cost of the edges in the Steiner Tree and of the matched attributes
is minimised. The objective to minimise is defined in the model as:

w = sum(i in edges)(es[i]) * ws[i]);

wm = sum(a in atts)(match_costs[a, match[a]]);

objective = w + wm;

that is, the sum w of the weight (given by parameter ws[i]) of every edge i in the graph
that appears in the Steiner tree (true if variable es[i] holds), plus the sum wm of the cost
for every attribute a of the match (given by variable match[a]).

When studying the cores inferred by GEAS for 5_5.dzn and 5_28.dzn, we dis-
covered many cores involve two variables es[i] and es[j], where i and j are edges of
the alignment graph. Moreover, the cores were generated for attributes that could only
be associated with two possible dnodes, indicating that, since each attribute must be in
the matching, some edge adjacent to that attribute must be in the Steiner tree. Based
on this, we constructed an adjacent ordering that groups edges associated with a given
attribute. As this did not perform as well as hoped, we looked deeper into the cores and
realised that, when an attribute’s matches overlapped with a previous one, the solver
would merge the old variable with the new adjacent edges. Thus, we encoded a similar
iterative merging strategy: starting with each edge in a singleton partition, we repeat-
edly select a new attribute a, and introduce a fresh variable for the sum of all partitions
containing edges adjacent to a. Once all attributes are processed, the objective sums the
resulting cost variables.

The spot5 Model: The SPOT5 earth observation satellite management problem [3]
tries to find a subset of a given set of photographs to take, given many different con-
straints, including minimum distance, non-overlapping, and recording capacity. The
model encodes these constraints as a set of binary and ternary table constraints. The
objective to minimise is defined in the model as:

objective = sum(j in 1..num_variables)(costs[j]*(p[j]=0));

which sums the cost (given by parameter costs[j]) of each given photograph j (j in

1..num_variables) that is not taken (given by variable p[j] having value 0).
While the table encoding of constraints makes interpretation difficult, we did

observe for 54.dzn that the early cores have two variables connected by some binary
table, constraining one of them to be 0. This ensures at most one of two photos is taken.
Later cores also contain 2 or 3 variables, connecting a new variable to existing reformu-
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Fig. 1. Constraint structure of two spot5 instances (left|right). Nodes represent variables; edges
binary constraints (red if non-zero cost). (Color figure online)

lated costs, or grouping some new variables together. Moreover, the variables in these
expanded cores formed cliques connected by non-zero cost tables.

Our first reformulation used a merging strategy that, given a set of (initially single-
ton) clusters, iteratively merged the two with greatest inter-cluster cost (creating a new
cost variable). This yielded effective reformulations but was too slow to compute. Visu-
alising the constraint graph of two instances, Fig. 1, we realised that they form almost
(but not always) interval graphs: those where vertices are real intervals and edges their
intersection [14].2 If they form an interval graph, there must be an ordering where mem-
bers of any maximal clique appear sequentially. This interval ordering would be a good
candidate for grouping, as it keeps related vertices nearby. For interval graphs, the order-
ing can be obtained using lexicographic breadth-first searches (LexBFSs) [7]. We used
this procedure, expecting suitable orderings even for constraints that do not form inter-
val graphs. The bounds for group G are computed by a greedy vertex cover of the
subgraph of non-zero cost tables containing only leaves of G.

5.2 Experimental Results

Each of the sub-figures in Fig. 2 shows the results obtained for the problem shown in
the caption. For each problem, the results are grouped by the data files used to create
the instances, as given in the x-axis. The results for each data file are divided into 3
sets of bars separated by spaces. Each set of bars corresponds to the results given by
one solver when executing the instances obtained by adding the data file to each of
the reformulations named in the caption in the given order. Note the captions always
start with the original model and a naı̈ve grouping of the components in the order they
appear in the original objective. The three solvers used are Gecode (set of bars on the
left), Chuffed (middle) and the branch-and-bound version of GEAS (right). The values
shown per instance are as follows: (a) the solving time as the height of the bar w.r.t. left
y-axis in logarithmic scale, and with a 300 s timeout; (b) the objective value as a black
dot on the bar w.r.t. right y-axis, and scaled to the range [0, 1], and (c) the baseline for

2 Vertices in the model correspond to observations made along the trajectory of a satellite (have
an underlying ordering); edges correspond to observations that are close enough to interfere.
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Fig. 2. Results for our five models
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each instance (core-guided GEAS on the original model) as the horizontal blue line for
time, and the black dotted line for the objective value. Note that we also obtained results
for reformulations with random orderings. These results were consistently worse, and
are omitted to improve legibility.

Fig. 3. Visualising three rel2onto instances: black edges for ontology structure; magenta for
possible attribute/concept matchings.

For rcpsp-wet, start, direct and direct-bound achieve very good improvements for
both LCG solvers (given the logarithmic scale for time), with direct able to improve
the time of the largest instance, and direct-bound often performing best. As expected,
Gecode does not benefit from start or direct, but drastically improves with direct-bound
on two instances and gets a much better objective bound on the remaining three.

For seat-moving, both reverse and reverse-bound significantly improve the perfor-
mance of the two LCG solvers for most instances. Instance sm-10-12-00 is interesting,
as the LCS solvers often outperforms the baseline time. The reverse-bound reformula-
tion did not improve Gecode (the bound was too weak).

For jp-encoding element and local both yield good performance, with element
often performing much better for Chuffed, and local performing outstandingly for
GEAS (often better than the baseline). Interestingly, naı̈ve performs badly for Chuffed
but, for GEAS, despite never proving optimality, discovers similar or better bounds
than element. This is because the terms in the implied element constraint are grouped
together in the original objective, resulting in similar reformulations.

For rel2onto, adjacent and merging make Chuffed worse for 3_9, whose structure
is quite different from the two instances we used for our cores, as shown in Fig. 3).
However, they significantly improve Chuffed and GEAS on most other instances except
Interestingly, core-guided GEAS on the original model times out for three instances, but
branch-and-bound LCG solvers perform much better with the reformulations.

For spot5, interval and interval-bound perform significantly better than original or
naı̈ve for both LCG solvers, while interval-bound did not improve Gecode.
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6 Conclusions and Future Work

From the above results we conclude the following. First, non-bound core-guided refor-
mulations are often enough to achieve excellent improvements for LCG solvers, as
bounds can be learned for the new variables. Second, tight bounds (as for rcpsp-wet)
can drastically improve CP solvers. Finally, our reformulations of simple models yield
great results, but we believe the insights of model owners should enable even better
groupings and tighter bounds for all models, as in-depth knowledge is key. Given the
scarcity of core-guided (and LCG) solvers, a key contribution is to show modellers
the importance of appropriately grouping the objective components and tightly bound-
ing them. In particular, we show that significant speedups can be obtained by simply
using our grouping function on orderings of the objective components that are based on
“relatedness”. While these orders can be tried speculatively without using core-guided
optimization, its use can help to quickly identify where to look for “usefully related”
terms (i.e., orderings), and for candidates for analytic bounds to add. We also show how
parts of the process can be either automated or supported by automation. We are par-
ticularly excited by the idea of using an MUS enumeration tool to identify the reasons
behind the cores. We are following this approach in our future work, where we aim to
further automate our method as much as possible.
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11. Gange, G., Berg, J., Demirović, E., Stuckey, P.J.: Core-guided and core-boosted search for
CP. In: Hebrard, E., Musliu, N. (eds.) Proceedings of Seventeenth International Conference
on Integration of Artificial Intelligence and Operations Research techniques in Constraint
Programming (CPAIOR2020). Springer, Heidelberg (2020, to appear)

12. Gecode Team: Gecode: Generic Constraint Development Environment (2006). http://www.
gecode.org

13. Gurobi Optimization Inc.: Gurobi Optimizer Reference Manual Version 7.5. Houston, Texas:
Gurobi Optimization (2017)

14. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real
line. Fundamenta Mathematicae 51(1), 45–64 (1962)

15. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint models. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 432–447. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40627-0 34

16. Leo, K., Tack, G.: Debugging unsatisfiable constraint models. In: Salvagnin, D., Lombardi,
M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 77–93. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59776-8 7

17. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization:
algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)

18. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards
a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7 38

19. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation. In: Bessière,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74970-7 39

20. Perron, L., Furnon, V.: OR-Tools (2019). https://developers.google.com/optimization/
21. Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M.: Visual search tree profiling.

Constraints 1–18 (2015)
22. Stuckey, P., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Constraints 15(3),

307–316 (2010). https://doi.org/10.1007/s10601-010-9093-0
23. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge

(1999)
24. Zeighami, K., Leo, K., Tack, G., de la Banda, M.G.: Towards semi-automatic learning-based

model transformation. In: Hooker, J.N. (ed.) CP 2018. LNCS, vol. 11008, pp. 403–419.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-98334-9 27

http://www.gecode.org
http://www.gecode.org
https://doi.org/10.1007/978-3-642-40627-0_34
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-319-59776-8_7
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_39
https://doi.org/10.1007/978-3-540-74970-7_39
https://developers.google.com/optimization/
https://doi.org/10.1007/s10601-010-9093-0
https://doi.org/10.1007/978-3-319-98334-9_27


Filtering Rules for Flow Time
Minimization in a Parallel Machine

Scheduling Problem

Margaux Nattaf1(B) and Arnaud Malapert2

1 Institute of Engineering, Univ. Grenoble Alpes, CNRS,
Grenoble INP, G-SCOP, 38000 Grenoble, France

margaux.nattaf@grenoble-inp.fr
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Abstract. This paper studies the scheduling of jobs of different fami-
lies on parallel machines with qualification constraints. Originating from
semi-conductor manufacturing, this constraint imposes a time threshold
between the execution of two jobs of the same family. Otherwise, the
machine becomes disqualified for this family. The goal is to minimize
both the flow time and the number of disqualifications. Recently, an effi-
cient constraint programming model has been proposed. However, when
priority is given to the flow time objective, the efficiency of the model
can be improved.

This paper uses a polynomial-time algorithm which minimize the flow
time for a single machine relaxation where disqualifications are not con-
sidered. Using this algorithm one can derived filtering rules on different
variables of the model. Experimental results are presented showing the
effectiveness of these rules. They improve the competitiveness with the
mixed integer linear program of the literature.

Keywords: Parallel machine scheduling · Job families · Flow time ·
Machine disqualification · Filtering algorithm · Cost-based filtering

1 Introduction

This paper considers the scheduling of job families on parallel machines with
time constraints on machine qualifications. In this problem, each job belongs to
a family and a family can only be executed on a subset of qualified machines.
In addition, machines can lose their qualifications during the schedule. Indeed,
if no job of a family is scheduled on a machine during a given amount of time,
the machine lose its qualification for this family. The goal is to minimize the
sum of job completion times, i.e. the flow time, while maximizing the number of
qualifications at the end of the schedule.

This problem, called scheduling Problem with Time Constraints (PTC), is
introduced in [11]. It comes from the semiconductor industries. Its goal is to
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introduce constraints coming from Advanced Process Control (APC) into a
scheduling problem. APC’s systems are used to control processes and equip-
ment to reduce variability and increase equipment efficiency. In PTC, qualifica-
tion constraints and objective come from APC and more precisely from what
is called Run to Run control. More details about the industrial problem can be
found in [10].

Several solution methods has been defined for PTC [7,10,11]. In particular,
the authors of [7] present two pre-existing models: a Mixed Integer Linear Pro-
gram (MILP) and a Constraint Programming (CP) model. Furthermore, they
define a new CP model taking advantage of advanced CP features to model
machine disqualifications. However, the paper shows that when the priority
objective is the flow time, the performance of the CP model can be improved.

The objective of this paper is to improve the performances of the CP model
for the flow time objective. To do so, a relaxed version of PTC where qualification
constraints are removed is considered. For this relaxation, the results of Mason
and Anderson [9] are adapted to define an algorithm to optimally sequence jobs
on one machine in polynomial time. This algorithm is then used to define several
filtering algorithms for PTC.

Although, the main result of this paper concerns the filtering algorithms
for PTC, there is also two more general results incident to this work. First,
those algorithms can be directly applied to any problem having a flow time
objective and which can be relaxed to a parallel machine scheduling problem with
sequence-independent family setup times. Secondly, the approach is related to
cost-based domain filtering [3], a general approach to define filtering algorithms
for optimization problems.

The paper is organized as follows. Section 2 gives a formal description of the
problem the CP model for PTC. Section 3 presents the relaxed problem and the
optimal machine flow time computation of the relaxed problem. Section 4 shows
how this flow time is used to define filtering rules and algorithms for PTC.
Finally, Sect. 5 shows the performance of the filtering algorithms and compares
our results to the literature.

2 Problem Description and Modeling

In this section, a formal description of PTC is given. Then, a part of the CP
model of [7] is presented. The part of the model presented is the part that is
useful to present our cost based filtering rules and correspond to the modeling
of the relaxation. Indeed, as we are interested in the flow time objective, the
machine qualification modeling is not presented in this paper.

2.1 PTC Description

Formally, the problem takes as input a set of jobs, N = {1, . . . , N}, a set of
families F = {1, . . . , F} and a set of machines, M = {1, . . . , M}. Each job j
belongs to a family and the family associated with j is denoted by f(j). For
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each family f , only a subset of the machines Mf ⊆ M, is able to process a job
of f . A machine m is said to be qualified to process a family f if m ∈ Mf . Each
family f is associated with the following parameters:

– nf denotes the number of jobs in the family. Note that
∑

f∈F nf = N .
– pf corresponds to the processing time of jobs in f .
– sf is the setup time required to switch the production from a job belonging

to a family f ′ �= f to the execution of a job of f . Note that this setup time is
independent of f ′, so it is sequence -independent. In addition, no setup time
is required neither between the execution of two jobs of the same family nor
at the beginning of the schedule, i.e. at time 0.

– γf is the threshold value for the time interval between the execution of two
jobs of f on the same machine. Note that this time interval is computed on
a start-to-start basis, i.e. the threshold is counted from the start of a job of
family f to the start of the next job of f on machine m. Then, if there is a
time interval ]t, t + γf ] without any job of f on a machine, the machine lose
its qualification for f .

The objective is to minimize both the sum of job completion times, i.e. the
flow time, and the number of qualification looses or disqualifications. An example
of PTC together with two feasible solutions is now presented.

Example 1. Consider the instance with N = 10, M = 2 and F = 3 given in
Table 1(a). Figure 1 shows two feasible solutions. The first solution, described
by Fig. 1(b), is optimal in terms of flow time. For this solution, the flow time
is equal to 1 + 2 + 9 + 15 + 21 + 1 + 2 + 12 + 21 + 30 = 114 and the number
of qualification losses is 3. Indeed, machine 1 (m1) loses its qualification for f3
at time 22 since there is no job of f3 starting in interval ]1, 22] which is of size
γ3 = 21. The same goes for m2 and f3 at time 22 and for m2 and f2 at time 26.
The second solution, described by Fig. 1(c), is optimal in terms of number of
disqualifications. Indeed, in this solution, none of the machines loses their qual-
ifications. However, the flow time is equal to 1 + 2 + 9 + 17 + 19 + 9 + 18 +
20 + 27 + 37 = 159.

2.2 CP Model

In the following section, the part of the CP model of [7] which is useful for
this work is recalled. This part corresponds to a Parallel Machine Scheduling
Problem (PMSP) with family setup times. New auxiliary variables used by our
cost based filtering rules are also introduced. These variables are written in
bold in the variable description. To model the PMSP with family setup times,
(optional) interval variables are used [5,6]. To each interval variable J , a start
time st(J), an end time et(J), a duration d(J) and an execution status x(J) is
associated. The execution status x(J) is equal to 1 if and only if J is present in
the solution and 0 otherwise.
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f nf pf sf γf Mf

1 3 9 1 25 {2}
2 3 6 1 26 {1, 2}
3 4 1 1 21 {1, 2}

(a) Instance with N =
10, M = 2 and F = 3

m1

m2

2 9 12 15 2122 26 30

f1 f1 f1

f2 f2 f2f3f3

f3f3

(b) An optimal solution for the flow time objective

m1

m2

2 3 9 11 17 20 27 37

f1 f1 f1

f2 f2

f2

f3f3 f3

f3

(c) An optimal solution for qualification losses

Fig. 1. Two solution examples for PTC.

The following set of variables is used:

– jobsj , ∀j ∈ N : Interval variable modeling the execution of job j;
– altJj,m, ∀(j,m) ∈ N ×Mf(j): Optional interval variable modeling the assign-

ment of job j to machine m;
– flowtimem and flowtime: Integer variables modeling respectively the flow

time on machine m and the global flow time;
– nbJobsf ,m,∀(f,m) ∈ F ×Mf : Integer variable modeling the number of jobs

of family f scheduled on m;
– nbJobsm,∀m ∈ M: Integer variable modeling the number of jobs scheduled

on m.

To model the PMSP with setup time, the following sets of constraints is used:

flowTime =
∑

j∈N
et(jobsj) (1)

alternative
(
jobsj ,

{
altJj,m|m ∈ Mf(j)

})
∀j ∈ N (2)

noOverlap
({

altJj,m|∀j s.t. m ∈ Mf(j)

}
, S

)
∀m ∈ M (3)

flowtime =
∑

m∈M
flowtimem (4)

flowtimem =
∑

j∈N
et(altJj,m) ∀m ∈ M (5)

nbJobsf,m =
∑

j∈N ;f(j)=f

x(altJj,m) ∀(f,m) ∈ F × Mf (6)

∑

m∈M
nbJobsf,m = nf ∀f ∈ F (7)

∑

f∈F
nbJobsf,m = nbJobsm ∀m ∈ M (8)

∑

m∈M
nbJobsm = N (9)
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Constraint (1) is used to compute the flow time of the schedule. Con-
straints (2)–(3) are used to model the PMSP with family setup time. Con-
straints (2) model the assignment of jobs to machine. Constraints (3) ensure
that jobs do not overlap and enforce setup times. Note that S denotes the setup
time matrix: (Sf,f ′) is equal to 0 if f = f ′ and to sf otherwise. A complete
description of alternative and noOverlap constraints can be found in [5,6].

In [7], additional constraints are used to make the model stronger, e.g. order-
ing constraints, cumulative relaxation. They are not presented in this paper.

Constraints (4)–(9) are used to link the new variables to the model. Con-
straints (4) and (5) ensure machine flow time computation. Constraints (6)
compute the number of jobs of family f executed on machine m. Constraints (7)
make sure the right number of jobs of family f is executed. Constraints (8)
and (9) are equivalent to constraints (6) and (7) but for the total number of
jobs scheduled on machine m. The bi-objective optimization is a lexicographical
optimization or its linearization [2].

3 Relaxation Description and Sequencing

3.1 R-PTC Description

The relaxation of PTC (R-PTC) is a parallel machine scheduling problem with
sequence-independent family setup time without the qualification constraints
(parameter γf ). The objective is then to minimize the flow time. In this section,
it is assumed that a total the assignment of jobs to machines is already done and
the objective is to sequence jobs so the flow time is minimal. Therefore, since
the sequencing of jobs on M machines can be seen as M one machine problems,
this section presents how jobs can be sequenced optimally on one machine. In
Sect. 4, the cost-based filtering rules handle partial assignments of jobs to the
machines.

3.2 Optimal Sequencing for R-PTC

The results presented in this section were first described in [8]. They are adapted
from Mason and Anderson [9] who considers an initial setup at the beginning of
the schedule. The results are just summarized in this paper.

First, a solution can be represented as a sequence S representing an ordered
set of n jobs. Considering job families instead of individual jobs, S can be seen as
a series of blocks, where a block is a maximal consecutive sub-sequence of jobs in
S from the same family (see Fig. 2). Let Bi be the i-th block of the sequence, S =
{B1, B2, . . . , Br}. Hence, successive blocks contain jobs from different families.
Therefore, there will be a setup time before each block (except the first one).

The idea of the algorithm is to adapt the Shortest Processing Time (SPT )
rule [12] for blocks instead of individual jobs. To this end, blocks are considered
as individual jobs with processing time Pi = sfi + |Bi| ·pfi and weight Wi = |Bi|
where fi denotes the family of jobs in Bi (which is the same for all jobs in Bi).
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f1 f1 f1f2f3

0 5 10 15 20 25 30 35

B1 B4B3B2

0 5 10 15 20 25 30 35

Fig. 2. Block representation of a solution.

The first theorem of this section states that there always exists an optimal
solution S containing exactly |F| blocks and that each block Bi contains all jobs
of the family fi. That is, all jobs of a family are scheduled consecutively.

Theorem 1. Let I be an instance of the problem. There exists an optimal solu-
tion S∗ = {B1, . . . , B|F|} such that |Bi| = nfi where fi is the family of jobs in
Bi.

Proof (Sketch). For a complete proof of the theorem, see [8].
Consider an optimal solution S = {B1, . . . , Bu, . . . , Bv, . . . , Br} with two blocks
Bu and Bv (u < v), containing jobs of the same family fu = fv = f . Then,
moving the first job of Bv at the end of block Bu can only improve the solution.

Indeed, let us define P and W as: P =
∑v−1

i=u+1 Pi+sf and W =
∑v−1

i=u+1 |Bi|.
In addition, let S′ be the sequence formed by moving the first job of Bv, say job
jv, at the end of block Bu. The difference on the flow time between S and S′, is
as follows:

FTS′ − FTS =
{

W · pf − P if |Bv| = 1
W · pf − P − ∑r

i=v+1 |Bi| · sf if |Bv| > 1

Using Lemma 1 of [8] stating that P/W ≥ pf , then FTS′ − FTS < 0 and
the flow time is improved in S′. Hence, moving the first job of Bv at the end of
block Bu leads to a solution S′ at least as good as S.

Therefore, a block Bi contains all jobs of family fi. Indeed, if not, applying
the previous operation leads to a better solution. Hence, |Bi| = nfi and there
are exactly F blocks in the optimal solution, i.e. one block per family.

At this point, the number of block and theirs contents are defined. The next step
is to order them. To this end, the concept of weighted processing time is also
adapted to blocks as follows.

Definition 1. The Mean Processing Time (MPT) of a block Bi is defined as
MPT (Bi) = Pi/Wi.

One may think that, in an optimal solution, jobs are ordered by SMPT
(Shortest Mean Processing Time). However, this is not always true since no
setup time is required at time 0. Indeed, the definition of block processing time
always considers a setup time before the block. In our case, this is not true for
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the first block. Example 2 gives a counter-example showing that scheduling all
blocks according to the SMPT rule is not optimal.

Example 2 (Counter-example – Fig. 3). Consider the instance given by
Table 1(a) that also gives the MPT of each family (MPTf = pf + (sf ÷ nf )).
Figure 3(b) shows the SMPT rule may lead to sub-optimal solutions when no
setup time is required at time 0. Indeed, following the SMPT rule, jobs of family
1 have to be scheduled before jobs of family 2. This leads to a flow time of 198.
However, schedule jobs of family 2 before jobs of family 1 leads to a better flow
time, i.e. 181.

f nf pf sf MPTf

1 2 11 2 12
2 3 12 9 15

(a) Instance with N = 5 and
F = 2.

Family 1 precedes family 2 (SMPT).

FT = 19811 22 43 55 67

FT = 181

Family 2 precedes family 1 (No SMPT).

12 24 36 49 60

(b) Scheduling jobs of a family before those of the other
one. Numbers are completion times of the jobs.

Fig. 3. Scheduling all blocks according to the SMPT rule is not optimal.

Actually, the only reason why the SMPT rule does not lead to an optimal
solution is that no setup time is required at time 0. Therefore, in an optimal
solution, all blocks except the first one are scheduled according to the SMPT
rule. That is the statement of Theorem 2 for which a proof is given in [8].

Theorem 2. In an optimal sequence of the problem, the blocks 2 to |F| are
ordered by SMPT (Shortest Mean Processing Time). That is, if 1 < i < j then
MPT (Bi) ≤ MPT (Bj).

The remaining of this section explains how these results are used to define a
polynomial time algorithm for sequencing jobs on a machine so the flow time is
minimized. This algorithm is called sequencing in the remaining of the paper.

Theorem 1 states that there exists an optimal solution S containing exactly
|F| blocks and that each block Bi contains all jobs of family fi. Theorem 2 states
that the blocks B2 to B|F| are ordered by SMPT . Finally, one only needs to
determine which family is processed in the very first block.

Algorithm sequencing takes as input the set of jobs and starts by grouping
them in blocks and sorting them in SMPT order. The algorithm then computes
the flow time of this schedule. Each block is then successively moved to the first
position (see Fig. 4) and the new flow time is computed. The solution returned
by the algorithm is therefore the one achieving the best flow time.
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B1, . . . , Bf−1 sf Bf sf+1Bf+1, . . . , B|F|

(a) SMPT Sequence

Bf s1 B1, . . . , Bf−1 sf+1Bf+1, . . . , B|F|

(b) Bf is moved in the first position.

Fig. 4. SMPT sequence and move operation.

The complexity for ordering the families in SMPT order is O(F log F ). The
complexity of moving each block to the first position and computing the corre-
sponding flow time is O(F ). Indeed, there is no need to re-compute the entire
flow time. The difference of flow time coming from the Move operation can be
computed in O(1). Hence, the complexity of sequencing is O(F log F ).

4 Filtering Rules and Algorithms

This section is dedicated to the cost-based filtering rules and algorithms derived
from the results of Sect. 3. They are separated into three parts, each one cor-
responding to the filtering of one variable: flowtimem (Sect. 4.1); nbJobsf,m
(Sect. 4.2); nbJobsm (Sect. 4.3). Note that the two last variables constrained by
the sum constraint 8.

During the solving of the problem, jobs are divided for each machine m into
three categories based on the interval variables altJj,m: each job either is, or can
be, or is not, assigned to the machine. Note that the time windows of the interval
variables are not considered in the relaxation. For a machine m, let NA

m be the
set of jobs for which the assignment to machine m is decided. In the following
of this section, an instance I is always considered with the set NA = ∪m∈MNA

m

of jobs already assigned to a machine. Thus, an instance is denoted by (I,NA).
Some notations are now introduced. For a variable x, x (resp. x) represents

the lower (resp. the upper) bound on the variable x. Furthermore, let FT ∗(X )
be the flow time of the solution returned by the algorithm sequencing applied
on the set of jobs X .

4.1 Increasing the Machine Flow Time

The first rule updates the lower bound on the flowtimem variable and follows
directly from Sect. 3. The complexity of this rule is O(M · F · log F ).

Rule 1. ∀m ∈ M, f lowtimem ≥ FT ∗(NA
m)

Proof. It is sufficient to notice that, for a machine m, sequencing gives a lower
bound on the flow time. In particular, FT ∗(NA

m) is a lower bound on the flow
time of m for the instance (I,NA).
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Example 3. Consider an instance with 3 families. Their parameters are given
by Table 1(a). A specific machine m is considered and set NA

m is composed of
one job of each family. This instance and NA

m is used in all the example of this
section.

Suppose flowtimem ∈ [0, 35]. The output of sequencing is given on the
top of Fig. 5(b). Thus, the lower bound on the flow time can be updated to
2 + 7 + 13 = 22, i.e. flowtimem ∈ [22, 35].

Suppose now that an extra job of family f2 is added to NA
m (on the bottom

of Fig. 5(b)). Thus, FT ∗(NA
m) = 2+8+11+16 = 37 and 37 > flowtimem = 35.

Thus, the assignment defined by NA
m is infeasible.

f nf pf sf

1 3 2 5
2 3 3 3
3 4 4 1

(a) Instance data.

f1 f3 f2

0 5 10

f1 f3f2 f2

0 5 10 15

(b) Illustration of Rule 1 and Rule 3.

Fig. 5. Illustration of flowtimem filtering (Rule 1).

Another rule can be defined to filter flowtimem. This rule is stronger than
Rule 1 and is based on NA

m and nbJobsm. Indeed, nbJobsm denotes the minimum
number of jobs that has to be assigned to m. Thus, if one can find the nbJobsm
jobs (including the one of NA

m) that leads to the minimum flow time, it will give
a lower bound on the flow time of machine m.

Actually, it may be difficult to know exactly which jobs will contribute the
least to the flow time. However, considering jobs in SPT order and with 0 setup
time gives a valid lower bound on flowtimem. First, an example illustrating the
filtering rule is presented and then, the rule is formally given.

Example 4. Consider the instance described in Example 3. Suppose NA
m is

composed of one job of each family and flowtimem ∈ [22, 60]. Suppose also
nbJobsm = 6. Thus, 3 extra jobs need to be assigned to m.

Families in SPT order are {f1, f2, f3} and the remaining number of jobs in
each family is 2, 2, 3. Hence, the 3 extra jobs are: 2 jobs of f1 and 1 job of f2.

To make sure the lower bound on the flow time is valid, those jobs are
sequenced on m with no setup time. In Fig. 6, fj denotes “classical” jobs of
family fj while f ′

j denotes jobs of family fj with no setup time.
Figure 6 shows the results of sequencing on the set of jobs composed of NA

m

plus the 3 extra jobs, i.e. nbJobsm = 6. Here, FT ∗ = 2 + 4 + 6 + 9 + 14 + 20 =
55. Thus, the lower bound on flowtimem can be updated and flowtimem ∈
[55, 60].

Note that, because Rule 1 does not take nbJobsm into account, it gives a
lower bound of 22 in this case.
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f1 f ′
1 f ′

1 f ′
2 f3 f2

0 5 10 15 20

Fig. 6. Illustration of flowtimem filtering (Rule 2).

Let NO
m denotes the set composed of the first nbJobsm−|NA

m | remaining jobs
in SPT order with setup time equal to 0.

Rule 2. ∀m ∈ M, f lowtimem ≥ FT ∗(NA
m ∪ NO

m )

Proof. First note that if NO
m = ∅, Rule 1 gives the result. Thus, suppose

that |NO
m | ≥ 1. By contradiction, suppose ∃m ∈ M such that flowtimem <

FT ∗(NA
m ∪ NO

m ). Thus, there exists another set of jobs NO
m with:

FT ∗(NA
m ∪ NO

m) < FT ∗(NA
m ∪ NO

m ) (10)

First, note that w.l.o.g. |NO
m| = |NO

m |. Indeed, if |NO
m| > |NO

m |, we can remove
jobs from |NO

m| without increasing the flow time. Furthermore, w.l.o.g. we can
consider that ∀j ∈ NO

m, sfj = 0. Indeed, since setup times can only increase the
flow time, thus inequality (10) is still verified.

Let S = {j1, · · · , jnbJobsm} be the sequence returned by the sequencing

algorithm on NA
m∪NO

m. Let also ji be the job in NO
m \NO

m with the SPT . Finally,
let jk be the job with the SPT in ∈ NO

m \NO
m. Thus, since pfji

> pfjk , sequence

S
′
= {j1, · · · , ji−1, jk, ji+1, · · · jnbJobsm} has a smaller flow time than S.
Repeated applications of this operation yield to a contradiction with Eq. (10).

The complexity of Rule 2 is O(M · F · log F ). Indeed, sorting families in
SPT order can be done in O(F · logF ). Creating the set NO

m is done in O(F )
and sequencing is applied in O(F · logF ) which gives a total complexity of
O(F · logF + M · (F + F · log F )).

4.2 Reducing the Maximum Number of Jobs of a Family

The idea of the filtering rule presented in this section is as follows. For a family f ,
nbJobsf,m define the maximum number of jobs of family f that can be scheduled
on m. Thus, if adding those nbJobsf,m to NA

m leads to an infeasibility, nbJobsf,m
can be decreased by at least 1. Let denote by N f

m the set composed of nbJobsf,m
jobs of family f minus those already present in NA

m .

Rule 3. If ∃(f,m) ∈ F × M such that FT ∗(NA
m ∪ N f

m) > flowtimem, then
nbJobsf,m ≤ nbJobsf,m − 1

Proof. Suppose that for a family f and a machine m, we have a valid assignment
such that FT ∗(NA

m∪N f
m) > flowtimem and nbJobsf,m = nbJobsf,m. By Rule 1,

the assignment is infeasible which is a contradiction.
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Example 5. Let us consider the instance defined by Example 3. In the first part
of this example, NA

m is composed of one job of each family and flowtimem ∈
[22, 35]. Suppose that nbJobsf2,m = 2. Thus, NA

m∪N f
m contains one job of family

f1 and f3 and two jobs of family f2. The bottom part of Fig. 5(b) shows that
FT ∗(NA

m ∪ N f
m) = 37 > flowtimem = 35. Thus, nbJobsf2,m < 2.

The complexity of Rule 3 is O(M · F · log F + M · F 2 · log |DMAX
nbJobsf,m

|) with
|DMAX

nbJobsf,m
| the maximum size of the domain of variables nbJobsf,m. Indeed, the

first part corresponds to the complexity for applying the sequencing algorithm
on all machine. This algorithm only need to be applied once since each time we
remove jobs from N f

m, FT ∗ can be updated in O(F ). Indeed, only the position of
the family in the sequence has to be updated. Thus, the second part corresponds
to the updating of FT ∗ for each family and each machine. By proceeding by
dichotomy, this update has to be done at most log |DMAX

nbJobsf,m
| times. Thus, the

complexity of Rule 3 is O(M · F · (log F + F · log |DMAX
nbJobsf,m

|)).

4.3 Reducing the Maximum Number of Jobs on a Machine

The idea behind Rule 2 can be used to reduce the maximum number of jobs on
machine m. Indeed, for a machine m, nbJobsm is the maximum number of jobs
that can be scheduled to m. Thus, if it is not possible to schedule nbJobsm on
m without exceeding the flow time, then nbJobsm can be decreased.

The extra jobs that will be assigned on m must be decided. Note that those
jobs must give a lower bound on the flow time for nbJobsm jobs with the pre-
assignment defined by NA

m . Thus, jobs can be considered in SPT order with no
setup time. Before giving the exact filtering rule, an example is described.

Example 6. Consider the instance described in Example 3. In the first part of this
example, NA

m is composed of one job of each family and flowtimem ∈ [22, 60].
Suppose nbJobsm = 7. Thus, the 4 extra jobs assigned to m are: 2 jobs of f1 and
2 jobs of f2. Figure 7 shows the results of sequencing on the set of jobs composed
of NA

m plus the 4 extra jobs. Here, FT ∗ = 2 + 4 + 6 + 11 + 14 + 17 + 23 = 77
which is greater than flowtimem = 60. Thus, nbJobsm cannot be equal to 7 and
can be filtered.

f1 f ′
1 f ′

1 f ′
2 f ′

2f3 f2

0 5 10 15 20

Fig. 7. Illustration of Rule 4.

Let NNS
m denotes the set composed of the first nbJobsm −|NA

m | jobs in SPT
order with setup time equal to 0.
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Rule 4. If ∃m ∈ M such that FT ∗(NA
m∪NNS

m ) > flowtimem, then nbJobsm ≤
nbJobsm − 1

Proof. The arguments are similar to those for Rule 2.

The complexity of Rule 4 is O(M · F · log F + M · F 2 · |DMAX
nbJobsm

|) with
|DMAX

nbJobsm
| the maximum size of the domain of variables nbJobsm. Indeed, as for

Rule 3, the algorithm sequencing only needs to be applied once and then can
be updated in O(F ). For each machine and each family, this update has to be
done at most |DMAX

nbJobsm
| times. Indeed, proceeding by dichotomy here implies

that FT ∗ cannot be updated but has to be re-computed each time. Thus, the
complexity of Rule 4 is O(M · F · (log F + F · |DMAX

nbJobsm
|)).

5 Experimental Results

This section starts with the presentation of the general framework of the exper-
iments in Sect. 5.1. Following the framework, the filtering rules are evaluated in
Sect. 5.2. Then, the model is compared to those of the literature in Sect. 5.3.
Last, a brief sensitivity analysis is given in Sect. 5.4.

5.1 Framework

The experiment framework is defined so the following questions are addressed.

Q1. Which filtering rule is efficient? Are filtering rules complementary?
Q2. Which model of the literature is the most efficient?
Q3. What is the impact of the heuristics? Of the bi-objective aggregation?

To address these questions, the following metrics are analyzed: number of feasi-
ble solutions, number of proven optimum, upper bound quality; solving times;
number of fails (for CP only).

The benchmark instances used to perform our experiments are extracted
from [10]. In this paper, 19 instance sets are generated with different number
of jobs (N), machines (M), family (F ) and qualification schemes. Each of the
instance sets is a group of 30 instances. There is a total of 570 feasible instances
with N = 20 (180), N = 30 (180), N = 40 (30), N = 50 (30), N = 60 (60),
N = 70 (90).

The naming scheme for the different solving algorithms is described in
Table 1. The first letter represents the model where ILP model, CPO model and
CPN model denotes respectively the ILP model and CP model of [7], and the
CP model detailed in Sect. 2.2. The models are implemented using IBM ILOG
CPLEX Optimization Studio 12.10 [4]. That is CPLEX for the ILP model and
CP Optimizer for CP models. The second letter indicates whether two heuris-
tics are executed to find solutions which are used as a basis for the models.
These heuristics are called Scheduling Centric Heuristic and Qualification Cen-
tric Heuristic [10]. The goal of the first heuristic is to minimize the flow time
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while the second one tries to minimize the number of disqualifications. The third
letter indicates the filtering rules that are activated for the CPN model. Rule 2
is used for the letter L because it has been shown more efficient than Rule 1 in
preliminary experiments. The fourth letter indicates the bi-objective aggregation
method: lexicographic optimization; linearization of lexicographic optimization.
The last letter indicates the objective priority. Here, the priority is given to the
flow time in all experiments because the cost-based filtering rules concern the
flow time objective.

Table 1. Algorithms encoding.

Model Heuristic Filtering rule Bi-objective Priority

I ILP model None L Rule 2 None S Weighted sum F Flow time

O CPO model H All F Rule 3 A All L Lexicographic Q Disqualifications

N CPN model M Rule 4

All the experiments were led on a Dell computer with 256 GB of RAM
and 4 Intel E7-4870 2.40 GHz processors running CentOS Linux release 7 (each
processor has 10 cores). The time limit for each run is 300 s.

5.2 Evaluation of the Filtering Rules

In this section, the efficiency and complementary nature of the proposed filter-
ing rules are investigated. In other words, the algorithms N *LF are studied. To
this end, the heuristics are not used to initialize the solvers. The lexicographic
optimization is used since it has been shown more efficient in preliminary exper-
iments.

First, all algorithms find feasible solutions for more than 99% of the instances.
Then, for each algorithm, the number of instances solved optimally is drawn as
a function of the time in Fig. 8(a). The leftmost curve is the fastest whereas the
topmost curve proves the more optima. Clearly, compared to N LF, the filtering
rules accelerates the proof and allow the optimal solving of around eighty more
instances. One can notice that the advanced filtering rules (N FLF, N MLF, N ALF),
also slightly improves the proof compared to the simple update of the flow time
lower bound (N LLF). Here, the advanced filtering rules are indistinguishable.

Table 1(b) ranks the filtering rules according to a scoring procedure based on
the Borda count voting system [1]. In this procedure, each benchmark instance
is treated like a voter who ranks the algorithms. Each algorithm scores points
based on their fractional ranking: the algorithms compare equal receive the same
ranking number, which is the mean of what they would have under ordinal rank-
ings. Here, the rank only depends on the answer: the solution status (optimum,
satisfiable, and unknown); and then the objective value. So, the lower is the
score, the better is the algorithm. Once again, advanced rules are really close,
and slightly above the simple lower bound update. They clearly outperform the
algorithm without cost-based filtering.
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0 100 200 300
Time (s)

#o
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al

algorithm N__LF N_ALF N_FLF N_LLF N_MLF

(a) Cumulative number of optima.

Algorithm Score

N MLF 1612
N ALF 1644
N FLF 1650
N LLF 1712
N LF 1932

(b) Borda ranking.

Fig. 8. Evaluation of filtering rules.

5.3 Comparison to the Literature

In this section, the best possible algorithms using the ILP model, CPO model,
and CPN model are compared. Here, the heuristics are used to initialize the
solvers, and thus the algorithms IH SF, OH LF, NHALF are studied.

0

100

200

300

400

0 100 200 300
Time (s)

#o
pt

im
al

algorithm IH_SF NHALF

(a) Cumulative number of optima.

Algorithm Score

IH SF 942.5
NHALF 951.5
OH LF 1526.0

(b) Borda ranking.

Fig. 9. Comparison of the models.
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First, the models exhibit very different behaviors in terms of satisfiability
and optimality. Then, for each model, the number of instances solved optimally
is drawn as a function of the time in Fig. 9(a). The CPO model is not visible
because it does not prove any optimum. The CPN model is faster than the ILP
model, but proves less optimum (around seventy).

Table 1(b) ranks the models rules according to the Borda count voting system
(see Sect. 5.2). It confirms the poor efficiency of the CPO model, but brings closer
the performance of CPN model and ILP model. Table 1(a) explains these close
scores. ILP model proves 67 = 70 − 3 more optima than CPN model, but CPN

model finds feasible solutions for 32 more instances.
To conclude, the CPN model is competitive with the ILP model and they

offer orthogonal performance since the ILP model is more efficient for proving the
optimality whereas the CPN model is more efficient for quickly finding feasible
solutions.

5.4 Sensitivity Analysis

Here, the impact of the heuristics and of the bi-objective optimization on the
efficiency of the models is analyzed. The CPO model is excluded since it is clearly
dominated by the two other models.

The heuristics have a little impact on the CPN model (see Table 1(a)). The
solution status stay identical 98.5% of the time and the solving times remain in
the same order of magnitude. However, Table 1(b) shows the significant impact
of the heuristics on the ILP model where the answer for 50 instances becomes
satisfiable. For both models, the heuristics do not help to prove more optima.

Table 1(c) shows the significant impact of using the lexicographic optimiza-
tion instead of the weighted sum method on the CPO model. Indeed, 69 instances
with unknown status when using the weighted sum method become satisfiable
using the lexicographic optimization. Note that the lexicographic optimization
is not available for the ILP model.

NHALF IH SF

OPT SAT UNK

OPT 369 3 0
SAT 70 94 32
UNK 1 0 1

(a) Two best algorithms.

I SF IH SF

OPT SAT UNK

OPT 433 3 0
SAT 6 44 0
UNK 1 50 33

(b) Heuristics impact.

N ALF N ASF

OPT SAT UNK

OPT 360 8 1
SAT 4 125 69
UNK 0 0 3

(c) Aggregation impact.

Fig. 10. Contingency table of the solution status between pairs of algorithms.

6 Conclusion

In this paper, cost-based domain filtering has been successfully applied to an
efficient constraint programming model for scheduling problems with setup on
parallel machines. The filtering rules derive from a polynomial-time algorithm
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which minimize the flow time for a single machine relaxation. Experimental
results have shown the rules efficiency and the competitiveness of the overall
algorithm. The first perspective is to tackle larger industrial instances since CP
relies on its ability at finding feasible solutions. The second perspective is to pay
more attention to the propagation of the flow time based on what has been done
for the makespan.
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Abstract. Treedepth is an increasingly popular graph invariant. Many
NP-hard combinatorial problems can be solved efficiently on graphs of
bounded treedepth. Since the exact computation of treedepth is itself
NP-hard, recent research has focused on the development of heuristics
that compute good upper bounds on the treedepth.

In this paper, we introduce a novel MaxSAT-based approach for
improving a heuristically obtained treedepth decomposition. At the core
of our approach is an efficient MaxSAT encoding of a weighted gen-
eralization of treedepth arising naturally due to subtree contractions.
The encoding is applied locally to the given treedepth decomposition
to reduce its depth, in conjunction with the collapsing of subtrees. We
show the local improvement method’s correctness and provide an exten-
sive experimental evaluation with some encouraging results.

Keywords: Tree-depth · Elimination-tree height · SAT encoding ·
MaxSAT · Computational experiments

1 Introduction

The treedepth [29,30] of a connected graph G is the smallest integer k such that
G is a subgraph of the transitive closure [T ] of a tree T of height k. The transitive
closure [T ] is obtained from T by adding all edges uv whenever u is an ancestor
of v in T (see Fig. 1 for an example). We call T a treedepth decomposition of G
of depth k. The notion of treedepth was first investigated employing elimination
trees (e-trees) and elimination height [18,20,22,34]. 1-partition trees [16] and
separation game [23] are some other names used in literature for alternative
approaches to treedepth.

Treedepth has algorithmic applications for several problems where treewidth
cannot be used [8,10,15]. It admits algorithms for these problems whose running
times are exponential in the treedepth but polynomial (of constant order) in the
input size. These results request methods for computing treedepth decomposi-
tions of small (ideally minimal) depth, which is generally an NP-hard task [36].
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Fig. 1. Left: graph P7. Right: treedepth decomposition of P7 of depth 3.

Exact algorithms for computing the treedepth of graphs have been suggested
in theoretical work [6,38]. Until recently, only very few practical implementations
of algorithms that compute treedepth decompositions have been reported in the
literature. Villaamil [42] discussed several heuristic methods based on minimal
separators, and Ganian et al. [9] suggested two exact methods based on SAT-
encodings. In general, exact methods are limited to small graphs (up to around 50
vertices [9]), whereas heuristic methods apply to large graphs but can get stuck
at suboptimal solutions.

Contribution. In this paper, we propose the novel MaxSAT-based algorithm TD-
SLIM that provides a crossover between exact and heuristic methods, taking
the best of two worlds. The basic idea is to take a solution computed by a
heuristic method and apply an exact (MaxSAT-based) method locally to parts
of the solution, chosen small enough to admit a feasible encoding size. Although
the basic idea sounds compelling and reasonably simple, its realization requires
several conceptual contributions and novel results.

At the heart of our approach, local parts of the treedepth decomposition must
reflect certain properties of the global decomposition. That way, an improved
local decomposition can be fit back into the global one. This additional informa-
tion gives rise to the more general decomposition problem, namely the treedepth
decomposition of weighted graphs with ancestry constraints, for which we present
a partition-based characterization, which leads to an efficient MaxSAT encoding.
As the weights can become large, a distinctive feature of our encoding is that its
size remains independent of the weights appearing in the instance.

We establish the correctness of our local-improvement method and provide
an experimental evaluation on various benchmark graphs. Thereby, we compare
different parameter settings and configurations and the effect of replacing several
SAT calls by one MaxSAT call.

Our findings are significant, as they show that an improvement in the initial
decomposition is feasible in practically all cases. The best configuration could,
on average, almost reduce the depth of the initial treedepth decomposition by
a half (52%) for a simple heuristic (DFS) and by a third (29%) when starting
from a more elaborate heuristic (Sep). Somewhat surprisingly, it turned out
that on smaller instances, that admit a single SAT encoding, the SAT-based
local improvement method outperforms a single SAT call, achieving a similar
depth in a tenth of the time.
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2 Related Work

The idea of using SAT encodings for computing a decompositional graph invari-
ant is due to Samer and Veith [39]. They proposed an ordering-based encod-
ing for treewidth, which provides the basis for several subsequent improved
encodings [1,2]. Heule and Szeider [13] proposed a SAT encoding for clique-
width, thereby introducing a first partition-based encoding. These two general
approaches (ordering-based and partition-based encodings) have been worked
out and compared for several other decompositional graph invariants (also
known as width parameters) [9,25]. Recently, several papers have proposed SMT-
encodings for decompositional hypergraph parameters [4,40].

All the encodings mentioned above suffer from the limitation that the encod-
ing size is at least cubic in the size of the input graph or hypergraph, which lim-
its the practical applicability of these methods to graphs or hypergraph whose
size is in the order of several hundred vertices. Lodha et al. [24,26] introduced
the SAT-based local improvement method (SLIM), which extends the appli-
cability of SAT-encodings to larger inputs. So far, there have been three con-
crete approaches that use SLIM, one for computing branchwidth (in the papers
cited above [24,26]), one for computing treewidth [5], and very recently one for
treewidth-bounded Bayesian network structure learning [33]. SLIM is a meta-
heuristic that, similarly to Large Neighborhood Search [35], tries to improve a
current solution by exploring its neighborhood of potentially better solutions.
As a distinctive feature, SLIM defines neighboring solutions in a structurally
highly constrained way and uses a complete method (SAT) to identify a better
solution.

The comprehensive thesis by Villaamil [42] discusses four heuristics for
computing treedepth. The first heuristic is based on computing a depth-first
search (DFS) spanning tree of the given graph, which happens to be a valid
treedepth decomposition. The remaining three heuristics are all based on find-
ing minimal separators. Two of them are greedy local-search techniques while
the third one makes use of a spectral algorithm to compute the separators, pro-
viding better decompositions at the expense of longer running times [37]. Several
algorithms have been proposed for minimizing the height (among other metrics)
of e-trees in the context of matrix factorizations [11,19,21,28]. More specifically,
treedepth has been studied in the area of CSP under the name pseudo-tree
height [3,7,17,19]. However, only few papers focus on minimizing the treedepth
alone, they usually minimize a secondary measure such as fill-in. Very recently,
due to the PACE Challenge 20201, the implementations of several new heuristics
for computing treedepth decompositions became available.

3 Preliminaries

All considered graphs are finite, simple, and undirected. Let G be a graph. V (G)
and E(G) denote the vertex set and the edge set of G, respectively. The size
1 https://pacechallenge.org/2020.

https://pacechallenge.org/2020
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of the graph, denoted by |G|, is the number of vertices, i.e., |V (G)|. We denote
an edge between vertices u and v by uv (or equivalently by vu). The subgraph
of G induced by a set S ⊆ V (G), denoted by G[S], has as vertex set S and
as edge set {uv ∈ E(G) | u, v ∈ S }. As a shorthand, we sometimes use G[H]
to represent G[V (H)], where G,H are graphs. For a set S ⊆ V (G) we define
G − S = G[V (G) \ S].

For a rooted tree T and a vertex v ∈ V (T ), we let Tv denote the subtree
of T rooted at v. The vertex v is the parent of vertex u if v is the first vertex
(after u) on the path from u to the root of the tree. A vertex v is an ancestor
of vertex u if v lies on the path from u to the root of the tree and v �= u. We
use r(T ) to denote the root of a tree T . The height of a vertex v in a rooted
forest T , denoted by heightT (v), is 1 plus the length of a longest path from v to
any leaf not passing through any ancestor (the height of a leaf is 1). The height
of a rooted tree T is then heightT (r(T )), i.e., the height of the root. Naturally,
the height of a rooted forest is the maximum height of its constituent trees. The
depth of a vertex v in a tree T , denoted by depthT (v), is the length of the path
from r(T ) to v (the depth of r(T ) is 1). The transitive closure [T ] of a rooted
forest T is the undirected graph with vertex set V (T ) having an edge between
two vertices if and only if one is an ancestor of the other in T .

The treedepth of an undirected graph G, denoted by td(G), is the smallest
integer k such that there is a rooted forest T with vertex set V (G) of height k
for which G is a subgraph of [T ]. A forest T for which G is a subgraph of [T ] is
also called a treedepth decomposition, whose depth is equal to the height of the
forest. Informally, a graph has treedepth at most k if it can be embedded in the
closure of a forest of height k. If G is connected, then it can be embedded in the
closure of a tree instead of a forest.

Alternatively, letting C(G) denote the set of connected components of a
graph G, the treedepth of G can be defined recursively as follows [29]:

td(G) =

⎧
⎪⎨

⎪⎩

1 if |V (G)| = 1;
maxG′∈C(G) td(G′) if |C(G)| > 1;
1 + minv∈V (G) td(G − v) otherwise.

Based on this definition, it is clear that when we want to compute a treedepth
decomposition T of a graph G, we can assume without loss of generality, that G
is connected, and that the decomposition T is a rooted tree.

4 Local Improvement

In this section, we lay out the theoretical foundations of our approach. Due
to space constraints, we have omitted some proofs. For this section, let us fix a
connected graph G for which we would like to obtain a treedepth decomposition.
We assume that G is too large to admit a practically feasible SAT encoding.
Hence, we can use a heuristic method (i.e., a global solver) to obtain a possibly
suboptimal treedepth decomposition T . Now we would like to use a SAT-based
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encoding (i.e., a local solver) to possibly improve the decomposition T and reduce
its depth. We refer to this approach as the SAT-based Local Improvement Method
for Treedepth (TD-SLIM).

In our description of the procedure, we use a stack data-structure, which is
essentially an ordered set allowing constant-time access, insertion, and deletion
at the last position. We denote an empty stack by ∅. Inserting a new element
at the last position is called pushing. Retrieving and deleting the last element is
called popping. Finally, we denote the last element of a stack S by last(S).

A first idea is to select subtrees Tv at nodes v of T that are located low
enough in T such that G[Tv] is small enough to admit a SAT encoding but
G[Tu] is not, where u is the parent of v. This way, we could try all such v and
successively replace subtrees Tv with new subtrees T ′

v of possibly lower height
as long as [T ′

v] contains all the edges of the induced graph G[Tv]. All other edges
of G, in particular those with one end in Tv and one end outside Tv, still remain
included in the overall closure. This simple procedure, however, can only improve
those parts of T that are close to the leaves, therefore, leaving large parts of T
untouched.

In order to overcome this limitation, we use an operation that contracts an
entire subtree Tv of T into the single node v, and we label v with the depth of Tv.
With such contractions, we can successively eliminate lower parts of T , so that
eventually all parts of T become accessible to a potential local improvement.
This requires the local solver not only to deal with weighted vertices, but now,
the edges outside the induced graph G[Tv] are “not safe” anymore, and one
must take special care for that. We accomplish this by labeling v with a set A(v)
of ancestors, which are all the vertices u ∈ V (G) \ V (Tv), which are adjacent
in G with a vertex w ∈ V (Tv) \ {v}. Since T is a treedepth decomposition, all
ancestors of v lie on the path between the root of T and v. We add two more
labels to v: d(v) holding the weighted depth of Tv (which we formally define
in the next subsection) and S(v) which is a stack maintaining the sequence of
subtrees rooted at v that were contracted, i.e., after contracting Tv, we push Tv

onto S(v) so that we can reverse the contraction later. We refer to the process
of storing or associating a decomposition with a particular vertex as “tagging.”

For uniformity, we assume that already at the beginning, for all vertices v
of G, we have the trivial labels A(v) = ∅, S(v) = ∅, and d(v) = 0 and consider G
as a (trivially) labeled graph. We frequently deal with pairs of the form (G,T )
where G is a labeled graph, and T is a treedepth decomposition of G.

4.1 Treedepth of Labeled Graphs

The above considerations lead us to the following recursive definition of treedepth
for labeled graphs. Let G = (V,E, d,A, S) be a labeled graph. Importantly, when
we delete a vertex and obtain G − v, the vertex v is also deleted from all the
ancestor sets A(u) for all u ∈ V (G − v).
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td(G) =

⎧
⎪⎨

⎪⎩

1 + d(v) if |V (G)| = 1;
maxG′∈C(G) td(G′) if |C(G)| > 1;
1 + minv∈V (G) with A(v)=∅ max(td(G − v), d(v)) otherwise.

Now, T is a treedepth decomposition of the labeled graph G of weighted
depth D if all the following properties hold:

T1 T is a treedepth decomposition of the unlabeled graph (V,E),
T2 for every v ∈ V , d(v) + depthT (v) ≤ D,
T3 for every v ∈ V and u ∈ A(v), u is an ancestor of v in T .

Given a labeled graph G, the weighted depth of a rooted tree T , denoted
by depth(T ), with V (T ) ⊆ V (G) is maxv∈V (T ) depthT (v) + d(v). Since our defi-
nitions extend smoothly to the unlabeled case by means of trivial labels, we may
sometimes refer to “weighted depth” simply as “depth.”

4.2 Contracting Subtrees

For a labeled graph G and a vertex v ∈ V (G), we denote the operation of
contracting the subtree Tv in the decomposition T of graph G by (G,T ) ↑ v =
(G′, T ′), yielding a new graph G′ and a decomposition T ′. G′ is obtained by
identifying the vertices V (Tv) in G and updating the labels as follows: we set
d(v) = depth(Tv), we push Tv onto S(v), we add to the set A(v) the set of
vertices u ∈ V (G) \ V (Tv) which are adjacent to some w ∈ V (Tv) \ {v}, and we
tag the newly added elements in A(v) with the decomposition Tv. T ′ is obtained
by deleting the vertices V (Tv)\{v} from the decomposition T . It is easy to verify
that T ′ is a treedepth decomposition of G′.

4.3 Expanding Subtrees

Let (G′, T ′) be a pair consisting of a labeled graph and the corresponding decom-
position obtained from (G,T ) by a sequence of contractions. Let v ∈ V (G′)
be a vertex with a nontrivial label S(v); v is not necessarily a leaf of T ′.
From (G′, T ′) we obtain a labeled graph G∗ and a decomposition T ∗ by the
operation of expanding the vertex v in the decomposition T ′ of graph G′ denoted
as (G′, T ′) ↓ v = (G∗, T ∗). G∗ is obtained as follows: we delete from A(v) the
elements tagged with Tv, we pop Tv from S(v), we set d(v) = depth(last(S(v))),
and we add to G′ all the vertices from V (Tv) \ {v} and all the edges uw ∈ E(G)
with u ∈ V (Tv) \ {v}, w ∈ V (G) \ V (Tv). Although the tree T ′ can be very
different from the original T we started with, we can still extend it with Tv,
just adding it as a subtree of v (possibly next to some existing subtree in T ′),
obtaining a new tree T ∗.

Lemma 1. If (G′, T ′) ↓ v = (G∗, T ∗) is obtained by the process described above,
then T ∗ is a treedepth decomposition of G∗.
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4.4 Improving a Subtree

Let G = (V,E, d,A, S) be a labeled graph and T a treedepth decomposition
of G. Let v ∈ V (G) and Tv a treedepth decomposition of the induced labeled
graph G[Tv]. Let T ′′ be a different treedepth decomposition of G[Tv] of weighted
depth not exceeding that of Tv (note that the root of T ′′ need not necessarily
be v). Finally, let T ′ be the tree obtained from T by replacing Tv by T ′′.

Lemma 2. T ′ is a treedepth decomposition of G of weighted depth not larger
than the weighted depth of T .

4.5 The Improvement Procedure

We now provide a high-level overview of the local improvement procedure (see
Algorithm 1). The procedure takes as input a (possibly labeled) graph G, a start-
ing treedepth decomposition T of G, and returns a treedepth decomposition T ′

of G such that depth(T ′) ≤ depth(T ). It requires three parameters:

– budget β which indicates a conservative estimate of the maximum size of
instances that is practically feasible for a SAT-solver to solve reasonably
quickly (within a few seconds),

– timeout τ (in seconds) for each individual SAT (or MaxSAT) call,
– contraction size κ which denotes the maximum size of subtrees that can be

contracted.

Input : Graph G, decomposition T of G, budget β,
timeout τ (in seconds), contraction size κ

Output: Decomposition T ′ of G such that td(T ′) ≤ td(T )

1 begin
2 (G′, T ′) ←− (G, T )

// Contraction Phase

3 repeat
4 v ←− GetNode(T ′, β)
5 Improve T ′

v (either by using SAT-solver or Lemma 4)
6 while contraction condition do
7 u ←− GetNode(T ′, κ)
8 (G′, T ′) ←− (G′, T ′) ↑ u // contract at u

9 end

10 until r(T ) ∈ T ′
v

// Expansion Phase

11 while there exists u with nontrivial S(u) do
12 (G′, T ′) ←− (G′, T ′) ↓ u // expand at u
13 end
14 return T ′

15 end

Algorithm 1. Pseudocode for TD-SLIM
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One individual pass of the procedure consists of a contraction phase dur-
ing which only improvement and contraction operations occur and an expan-
sion phase during which the contracted treedepth decomposition is expanded
to obtain a treedepth decomposition for the original graph G. The contraction
phase terminates when we encounter, as the instance to be improved, a local
instance containing the root of the starting decomposition T . The contraction
condition on Line 6 determines how many contractions to perform and is only
relevant when κ < β. We stop contracting when the size (or depth) of the con-
tracted subinstance falls below a threshold (see partial contraction strategy in
Sect. 6.3). The local improvement procedure itself can be repeated any number of
times and the potentially improved treedepth decomposition T ′ returned by one
iteration can be used as the starting decomposition for the next iteration. Each
individual iteration requires polynomial time in addition to the time required
for the SAT (or MaxSAT) call.

At the heart of the contraction phase of the improvement procedure is the
GetNode subroutine, which is responsible for finding nontrivial sub-instances
which can be improved and then contracted. This subroutine takes as input
a treedepth decomposition T and a budget β. It first tries to find a nonleaf
vertex v ∈ V (T ) such that |Tv| ≤ β. If no such vertex exists, it instead returns
a vertex u ∈ V (T ) such that heightT (u) is 2 and u has at least β children, the
existence of which is proven by the following lemma.

Lemma 3. Given an integer k and a rooted tree T such that |T | ≥ 2, at least
one of the following conditions is true:

1. There exists a nonleaf vertex v ∈ V (T ) such that |Tv| ≤ k and |Tp| > k
where p is the parent of v in T .

2. There exists a vertex u ∈ V (T ) such that heightT (u) is 2 and u has at least k
children.

Proof. Let us assume for the sake of contradiction that both conditions are
false. Let v be a deepest leaf in T and let u be the parent of v in T . Note
that heightT (u) = 2, otherwise v would not be a deepest leaf. Since by our
assumption, the second condition is false, p can have at most k − 1 children
and since its height is 2, p’s children are its only descendants. Hence |Tp| ≤ k,
implying that the first condition is true, thus contradicting our assumption. 
�

When we are unable to find a nonleaf vertex v such that |Tv| ≤ β, it means
that there are no subinstances remaining which can be improved and hence the
contraction phase of the algorithm would have to terminate abruptly. It is also
worth noting that any improvement in the depth of the final decomposition T ′,
as compared the initial decomposition T , can be traced back to the contraction
phase. Thus, an early termination of this phase means a narrower scope for
improvement. But as can be seen in Lemma 3, whenever we are unable to find
a reasonably-sized subinstance, we can use this fact—it must be due to a high-
degree parent—to our advantage by tackling this case separately.

Lemma 4. Given a labeled graph G which is a star on n vertices, the treedepth
of G can be determined in time O(n log n).
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5 MaxSAT Encoding

Ganian et al. [9], introduced and compared two SAT-encodings for treedepth,
one explicitly guessing the tree-structure of a treedepth decomposition and one
using a novel partition-based characterization of treedepth, the latter outper-
forming the former significantly. In both cases, given an unlabeled graph G and
an integer k, a CNF formula F (G, k) is produced, which is satisfiable if and only
if the treedepth of G is at most k. By trying out different values of k one can
determine the exact treedepth of G.

In this section, we build upon Ganian et al.’s [9] partition-based encod-
ing and describe extensions required to employ the SAT encoding for labeled
graphs thereby addressing the problem of computing treedepth decomposition
of weighted graphs with ancestry constraints. We further explain how the encod-
ing can be lifted to MaxSAT, yielding a significant speedup.

5.1 Partition-Based Formulation

A weak partition of a set S is a set P of nonempty disjoint subsets of S. The
elements of P are called equivalence classes. Let P, P ′ be two partitions of S,
then P ′ is a refinement of P if any two elements x, y ∈ S that are in the same
equivalence class of P ′ are also in the same equivalence class of P . Given a set S,
a derivation P of length � is a sequence (P1, P2, . . . , P�) of weak partitions of S.
Pi is called the i-th level of P. For some 2 ≤ i ≤ �, we say that a set c ∈ Pi−1 is
a child of a set p ∈ Pi if c ⊆ p. We denote by ci

P(p) the set of all children of p at
level i. Further, χi

P(p) denotes the set p\⋃
c∈ciP(p) c. Finally, the shorthand

⋃
Pi

denotes the set
⋃

p∈Pi
p. Given a labeled graph G, a derivation P of G is a

sequence (P1, . . . , P�) of weak partitions of the set V (G) satisfying the following
properties:

D1 P1 = ∅ and P� = {V (G)};
D2 for every 1 ≤ i ≤ � − 1, Pi is a refinement of Pi+1;
D3 for every 1 ≤ i ≤ � and p ∈ Pi, |χi

P(p)| ≤ 1;
D4 for every edge uv ∈ E(G), there is a p ∈ Pi for some 1 ≤ i ≤ � such

that u, v ∈ p and χi
P(p) ∩ {u, v} �= ∅;

D5 for every v ∈ V (G) and 1 ≤ i ≤ �, if v ∈ ⋃
Pi then d(v) + 2 ≤ i; and

D6 for every v ∈ V (G) and u ∈ A(v), there is a p ∈ Pi for some 1 ≤ i ≤ � such
that u, v ∈ p and u ∈ χi

P(p); together with D3 that implies χi
P(p) = {u}.

Theorem 1. Let G = (V,E, d,A, S) be a labeled graph and D an integer. G has
a treedepth decomposition of weighted depth at most D if and only if G has a
derivation of length at most D + 1.

Proof. Let T be a treedepth decomposition of G of weighted depth D. Let P
be the derivation consisting of weak partitions (P1, . . . , PD+1) where P1 = ∅,
Pi = {V (Tu) | u ∈ V (T ) and depthT (u) = D − i + 2 } for every 2 ≤ i ≤ D + 1.
It is easy to see that P is a derivation of the unlabeled graph (V,E) and the
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length of P is D + 1. For any vertex v ∈ V (G), let 2 ≤ i ≤ D + 1 such that
v ∈ ⋃

Pi, thus, by construction of P, we get depthT (v) ≥ D − i + 2. Since T
is a treedepth decomposition of the labeled graph G, it satisfies property T2,
meaning D ≥ d(v) + depthT (v) ≥ d(v) + D − i + 2 which implies i ≥ d(v) + 2,
which is precisely property D5. To show property D6, let v ∈ V (G) and u ∈ A(v),
let k = D − depthT (u) + 2. We observe that there exists p ∈ Pk such that u ∈ p,
and since u is an ancestor of v (from property T3), v ∈ Tu therefore v ∈ p. We
further observe that u /∈ ⋃

Pk−1 meaning u ∈ χk
P(p), hence property D6 holds.

Towards showing the converse, let P be a derivation of length D + 1 of
the labeled graph G. Note that w.l.o.g we can assume χi

P(p) �= ∅ for every
1 ≤ i ≤ D + 1 and p ∈ Pi, because otherwise we could replace p with all
its children without increasing the length of the derivation and retaining all the
properties. For every v ∈ V (G) there exists exactly one 1 ≤ i ≤ D+1 and p ∈ Pi

such that χi
P(p) = {v}; in that case we say that the set p introduces v. Now we

construct the treedepth decomposition T with vertex set V (G) by adding an edge
between u, v ∈ V (G) if the set introducing u is a child of the set introducing v
or vice versa. It can be seen that T is a treedepth decomposition of depth at
most D of the unlabeled graph (V,E).

Towards showing T2, let v ∈ V (G) and 1 < i ≤ D + 1 such that v ∈ ⋃
Pi

and v /∈ ⋃
Pi−1; in other words, i is the smallest index such that v ∈ ⋃

Pi.
By construction of T , this implies that v is introduced in the i-th layer,
meaning depthT (v) = D − i + 2. Combining this with property D5, we get
d(v) + depthT (v) ≤ D, thus satisfying property T2. Now, to show T3, since P
satisfies property D6, let 2 ≤ i ≤ D + 1 such that u, v ∈ p for some p ∈ Pi

and χi
P(p) = {u}. Thus p introduces u. Further, v ∈ ci

P(p) since v /∈ χi
P(p),

meaning u is an ancestor of v in T , therefore satisfying property T3. Hence T is
indeed a treedepth decomposition of the labeled graph G. 
�

We note that the treedepth of a labeled graph G = (V,E, d,A, S) can be as
large as |V | + maxv∈V d(v). Since the above proof explicitly encodes the weight
labels d(v) in the derivation, the treedepth D affects the number of layers in
the derivation, which in turn affects the size of the encoding. Thus, for graphs
with large d(v), the encoding size is also large. A neat observation can however
remedy this: the derivation of G does not need to have any more than |V | + 1
layers.

Observation 1. Let G = (V,E, d,A, S) be a labeled graph and D > |V | be
an integer. Let G′ = (V,E, d′, A, S) where d′(v) := max(0, d(v) − (D − |V |))
for v ∈ V (G). G has a derivation of length at most D + 1 if and only if G′ has
a derivation of length at most |V | + 1.

5.2 Encoding of a Derivation

We now tersely describe the encoding of the formulation discussed in the previous
subsection.
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Theorem 2. Given a labeled graph G and an integer D, one can construct in
polynomial time, a CNF formula F (G,D) that is satisfiable if and only if G has
a derivation of length at most D.

The remainder of this section describes the clauses constituting the for-
mula F . We have a set variable s(u, v, i), for every u, v ∈ V (G) with u ≤ v
and every i with 1 ≤ i ≤ D. The variable s(u, v, i) indicates whether ver-
tices u and v appear in the same equivalence class of Pi, and s(u, u, i) indicates
whether u appears in some equivalence class of Pi. The following clauses ensure
D1 and D2:

¬s(u, v, 1) ∧ s(u, v,D) for u, v ∈ V (G), u ≤ v, and
¬s(u, v, i) ∨ s(u, v, i + 1) for u, v ∈ V (G), u ≤ v, 1 ≤ i ≤ D.

The following clauses ensure D3 and D4:

¬s(u, v, i) ∨ s(u, u, i − 1) ∨ s(v, v, i − 1) for u, v ∈ V (G), u < v, 2 ≤ i ≤ D,
¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(u, u, i − 1) ∨ s(u, v, i)
¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(v, v, i − 1) ∨ s(u, v, i)

for uv ∈ E, u < v, 2 ≤ i ≤ D.

The following clauses ensure the semantics of the set variables of the form
s(u, u, i) as well as the transitivity of the set variables:

(¬s(u, v, i) ∨ s(u, u, i)) ∧ (¬s(u, v, i) ∨ s(v, v, i))
for u, v ∈ V (G), u < v, 2 ≤ i ≤ D,

(¬s(u, v, i) ∨ ¬s(u,w, i) ∨ s(v, w, i))
∧(¬s(u, v, i) ∨ ¬s(v, w, i) ∨ s(u,w, i))
∧(¬s(u,w, i) ∨ ¬s(v, w, i) ∨ s(u, v, i))

for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ D.

Finally, the following clauses ensure D5 and D6:

¬s(u, u, i) for u ∈ V (G), 2 ≤ i ≤ D, if |V (G)| + d(u) ≥ D and i < d(u) + 2,
¬s(v, v, i) ∨ s(u, u, i) for u ∈ V (G), v ∈ A(u) and 2 ≤ i ≤ D.

This concludes the description of the SAT encoding. Note that, due to Obser-
vation 1, without loss of generality, we may assume that D ≤ |V | + 1.

We now extend the above encoding to a Partial MaxSAT formula-
tion F ′(G,D) containing soft clauses. An optimal solution for F ′(G,D) sat-
isfies μ soft clauses if and only if G has treedepth D−μ+1. First, all the clauses
from the SAT encoding are added as hard clauses into F ′. Then we introduce
a free layer variable fi for 1 ≤ i ≤ D, which is false if some vertex appears in
the i-th layer, i.e., u ∈ ⋃

Pi for some u ∈ V (G). Further, if the i-th layer is free
then all the lower layers must also be free. These conditions are encoded via the
following hard clauses:
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¬fi ∨ ¬s(u, u, i) for u ∈ V (G) and 2 ≤ i ≤ D,
¬fi ∨ fi−1 for 2 ≤ i ≤ D.

Additionally, we need to take special care in the case of labeled graphs, as the
depth labels could mean that even though no vertices appear in a layer, they
are still occupied by a subtree represented by the depth labels. In other words, a
vertex v must not only “occupy” its own layer but also d(v) many layers below
its own layer. The following hard clause captures this condition:

¬s(u, u, i) ∨ ¬fi−j for u ∈ V (G), 2 ≤ i ≤ D and 1 ≤ j ≤ min(d(u), i).

Finally, we introduce a soft unit clause fi for 1 ≤ i ≤ D. This sets the objective
of the MaxSAT solver to maximize the number of free layers, which consequently,
minimizes the depth of the decomposition. This concludes the description of the
MaxSAT encoding.

6 Experimental Evaluation

6.1 Experimental Setup

We ran all our experiments on a 10-core Intel Xeon E5-2640 v4, 2.40 GHz CPU,
with each process having access to 8 GB RAM. We used Glucose 4.02 as the SAT-
solver and UWrMaxSat as the MaxSAT-solver, both with standard settings. We
use UWrMaxSat primarily due to its anytime nature (i.e., it can be terminated
anytime, and it outputs the current best possibly suboptimal result). We also
tried other solvers like RC2 and Loandra from the 2019 MaxSAT Evaluation
contest, but UWrMaxSat worked better for our use case. The details of all the
MaxSAT solvers can be found on the 2019 MaxSAT Evaluation webpage3.

We implemented the local improvement algorithm in Python 3.6.9, using the
Networkx 2.4 graph library [12] and the PySAT 0.1.5 library [14] for the MaxSAT
solver RC2. The source code of our implementation is available online [32]. Our
experiments aim to demonstrate the benefit of applying local improvement to
any external heuristic, and not to provide a comparison between our approach
coupled with the two considered heuristics and other standalone algorithms.

6.2 Instances

We tested our implementation on subsets of the public benchmark instances used
by the PACE Challenge 2020, from both the Exact Track (smaller instances
on average) and the Heuristic Track. We formed two datasets as follows:
(i) Dataset A consists of all the instances on which the heuristic algorithms
were able to compute a solution within 2 h. This yielded 140 instances in the
range |V | ∈ [10, 4941], |E| ∈ [15, 86528]. This dataset is meant to serve as a

2 https://www.labri.fr/perso/lsimon/glucose/.
3 https://maxsat-evaluations.github.io/2019/descriptions.html.

https://www.labri.fr/perso/lsimon/glucose/
https://maxsat-evaluations.github.io/2019/descriptions.html
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comprehensive dataset with a large variance in the graph sizes. (ii) Dataset B
consists of 30 instances from the Exact Track (27–85). This dataset represents
the set of instances that we expect to lie in the practically feasible zone of SAT-
solvers (or MaxSAT solvers). The resulting graphs lie in the range |V | ∈ [30, 72],
|E| ∈ [48, 525].

6.3 Experiment 1

We evaluate the quality of the solution in terms of the improvement in depth,
where absolute improvement (or simply improvement) refers to the difference
between the starting heuristic depth and the final reported depth, and relative
improvement (RI) refers to the absolute improvement expressed as a percentage
of the starting heuristic depth. Our implementation of the algorithm can be
configured using the following parameters:

– budget β, can either be a single value or a sequence of budget values (we
denote by Multibudget the sequence (5+(5i mod 40))i≥0 where the next bud-
get value is used when the current value fails to provide any improvement),

– timeout τ ,
– contraction ratio γ which determines the contraction size κ = γβ,
– partial contraction strategy which determines when we switch from contrac-

tion to improvement—either when the local instance’s size has been reduced
by half or when the local instance’s unweighted depth has been reduced by 2,

– target solver, i.e., SAT or MaxSAT,
– random seed, and
– global timeout.

Since the number of possible parameter configurations is huge, we first ran
a preliminary experiment on a small number of instances with a large number
of parameter configurations to narrow down the better performing configura-
tions. We gathered a smaller set of configurations from this initial run, which we
then tested rigorously on Dataset A. We tried β ∈ {20,Multibudget}, τ = 20,
γ ∈ {0.5, 1}, partial contraction by depth, target solver MaxSAT, and random
seed ∈ {1, 2, 3}. For the starting decomposition, we compared two heuristics
proposed by Villaamil [42]—a randomized variant of the DFS heuristic and one
of the separator-based heuristics (denoted by Sep). Given a treedepth heuris-
tic algorithm X, we denote by TD-SLIM(X) the algorithm obtained by run-
ning the local improvement procedure on top of the heuristic solution pro-
vided by algorithm X. The implementation of Sep was kindly provided to us
by Oelschlägel [31]. We precomputed the heuristic solutions for Dataset A with
a 2-h timeout and then ran the improvement procedure for 30 min.

We use three solvers or configurations to present the performance data and
convey the likelihood of the different results:

– Virtual Best Solver (VBS): the hypothetical solver which, for each instance,
knows the configuration that yields the best improvement,
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– Single Best Solver (SBS): the solver with the configuration that resulted in
the best improvement on average across all instances,

– Average Solver (AS): the hypothetical solver representing the average perfor-
mance across all the configurations for a particular instance.

The average relative improvements (including the cases with no improvement)
for AS, SBS, and VBS were 45.9%, 52.2%, and 53.0% when starting from the
DFS heuristic and 21.9%, 29.2%, and 30.2% when starting from the Sep heuristic,
respectively. Table 1 shows the instances from Dataset A with the best relative
improvement. The parameter combination to achieve the best average relative
improvement across all the 140 instances across both heuristics (i.e., SBS) was
(Multibudget, MaxSAT, γ = 0.5, partial contraction by depth). In the exper-
iment, we observed a rather robust performance over all considered configura-
tions.

Table 1. Top 15 instances from Experiment 1 sorted by best relative improvement
among both heuristics. Start and Final refer to the starting heuristic depth and the
final reported depth, respectively Imp. refers to the absolute improvement.

Instance |V | |E| DFS heuristic Sep heuristic

Start Final Imp. RI (%) Start Final Imp. RI (%)

heur 055 590 668 92 18 74 80.43 27 17 10 37.04

heur 033 255 507 129 34 95 73.64 155 34 121 78.06

heur 071 1023 2043 486 108 378 77.78 657 418 239 36.38

exact 165 176 186 49 11 38 77.55 17 10 7 41.18

exact 193 449 2213 128 29 99 77.34 151 75 76 50.33

heur 021 195 340 100 23 77 77.00 43 22 21 48.84

exact 173 198 692 69 16 53 76.81 57 50 7 12.28

exact 169 181 253 77 18 59 76.62 44 20 24 54.55

exact 195 451 587 131 31 100 76.34 74 23 51 68.92

exact 157 163 195 49 12 37 75.51 27 13 14 51.85

exact 103 92 131 57 14 43 75.44 24 16 8 33.33

heur 025 212 257 67 17 50 74.63 36 19 17 47.22

exact 177 204 248 34 9 25 73.53 16 11 5 31.25

exact 107 95 121 41 11 30 73.17 23 13 10 43.48

exact 185 276 1187 63 20 43 68.25 85 23 62 72.94

Out of the 140 instances solved by both heuristics, TD-SLIM(DFS) provided
a strictly lower depth than TD-SLIM(Sep) for 48 instances and strictly higher
depth for 38 instances. In the remaining 54 instances, both TD-SLIM(DFS) and
TD-SLIM(Sep) reached the same depth value. Thus, TD-SLIM is often capable of
achieving a comparable or even lower depth despite starting from a significantly
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Fig. 2. TD-SLIM vs SAT

worse heuristic decomposition, but there are also cases that show that TD-
SLIM is capable of utilizing and building upon a better starting decomposition.
Comparing these depths with the lowest known depths from the PACE challenge,
TD-SLIM(DFS) matches the lowest depth on 53 instances and is off by one on 20
instances. TD-SLIM(Sep) matches the lowest depth on 41 instances and is off
by one on 17 instances.

Very recently, the results for the PACE challenge were announced and the
implementations of the solvers were made available. Consequently, we tested
TD-SLIM on top of the winning heuristic ExTREEm [41]. We ran the heuris-
tic for 15 min and then TD-SLIM on top of the solution provided by the
heuristic for 15 min, using the same total time limit of 30 min as used in
the PACE challenge. Somewhat surprisingly, we observed that for 6 instances,
TD-SLIM(ExTREEm) was able to compute better decompositions than simply
running ExTREEm for 30 min. For 3 of these instances, TD-SLIM(ExTREEm)
was even able to find a better decomposition than all the 55 participating heuris-
tic solvers.

6.4 Experiment 2

We tested the effectiveness of TD-SLIM over a one-shot SAT or MaxSAT encod-
ing where the entire instance is passed to the solver. To give the one-shot SAT
or MaxSAT a massive advantage, we chose Dataset B, which contains much
smaller instances, and we set the global timeout for TD-SLIM to 30s, whereas
for SAT and MaxSAT we chose 300s. For this experiment, we used DFS as the
starting heuristic. We observed that TD-SLIM performs comparably to SAT
in terms of the final depth achieved, computing the best upper bound for 18
instances while SAT arrives at the best upper bound for 22 instances. Never-
theless, when it comes to slightly larger instances, TD-SLIM even outperforms
SAT in 7 instances despite only having a tenth of the time. We also noticed
that MaxSAT tends to perform significantly worse than SAT. We suspect this
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might be the case because the MaxSAT solver spends time improving the lower
bounds, which is of little use in this case.

As a part of Experiment 2, we also compared the trajectory of improvement
over time of TD-SLIM and SAT. We use graphs ‘exact 031.gr’ and ‘dolphin.gml’
(from [27]) as typical examples. As can be seen in Fig. 2a and Fig. 2b, TD-SLIM
is much faster than SAT. Another interesting observation is that TD-SLIM
is able to achieve depth values which were previously not possible, e.g., for
the graph ‘B10Cage’, TD-SLIM improved the previously known upper bound
from 23 [9] to 22 with a runtime of around 50s.

7 Concluding Remarks

Our (Max)SAT-based local improvement approach to treedepth provides a com-
pelling showcase for demonstrating how (Max)SAT encodings can be scaled
to large inputs, thus widening the scope of potential applications for exact
constraint-based methods. Our experiments show that in many cases, our app-
roach allows a significant improvement over heuristically obtained treedepth
decompositions. We observed that TD-SLIM is able to improve even over strong
heuristics like the winning heuristic from the PACE challenge. Rather unex-
pected is the finding that on smaller instances, the local improvement method
significantly outperforms a one-shot (Max)SAT encoding.

In future work, we plan to systematically study the effect of postprocess-
ing for different types of heuristics, as have been made available by the PACE
challenge. Other topics for future work include the utilization of incremental
solving techniques for the SAT-based optimization of treedepth, and its compar-
ison to the MaxSAT approach, as well as the development of symmetry breaking
methods for further speeding up the encoding.
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Abstract. Variable ordering heuristics are one of the key settings for
an efficient constraint solver. During the last two decades, a considerable
effort has been spent for designing dynamic heuristics that iteratively
change the order of variables as search progresses. At the same time,
restart and randomization methods have been devised for alleviating
heavy-tailed phenomena that typically arise in backtrack search. Despite
restart methods are now well-understood, choosing how and when to ran-
domize a given heuristic remains an open issue in the design of modern
solvers. In this paper, we present several conceptually simple pertur-
bation strategies for incorporating random choices in constraint solving
with restarts. The amount of perturbation is controlled and learned in
a bandit-driven framework under various stationary and non-stationary
exploration policies, during successive restarts. Our experimental eval-
uation shows significant performance improvements for the perturbed
heuristics compared to their classic counterpart, establishing the need
for incorporating perturbation in modern constraint solvers.

1 Introduction

For decades now, researchers in Constraint Programming (CP) have put a treme-
ndous effort in designing constraint solvers and advancing their internal compo-
nents. Many mechanisms have been combined, leading to a technology that is
now widely used to solve combinatorial problems. A constraint solver is typically
composed of a backtracking search algorithm, a branching heuristic for guiding
search, a filtering procedure for pruning the search space, and no-good recording.

Since the very beginning, the order in which variables are selected (assigned)
by the branching heuristic holds a central place. It is referred to as the variable
ordering heuristic. Choosing the appropriate variable ordering heuristic for solv-
ing a given constraint satisfaction problem is quite important since the solving
time may vary by orders of magnitude from one heuristic to the other. Recent
heuristics are more stable [15,36].

Backtrack search is also vulnerable to unstable behavior because of its inher-
ent combinatorial nature. In the early ’00s, the exponential time differences have
been investigated under the phase-transition phenomena [19] and the heavy-
tailed distributions of solving time [12]. We can decrease such undesired differ-
ences by introducing restart policies, randomization [6] and no-goods recording
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during search. While restarts and no-goods are well established in CP solvers
[11,18,24,27], randomization remains limited to ad-hoc techniques that have
been found to work well in practice.

In this work, we use randomization to perturb the variable selection process.
These perturbations are designed to keep a good and controlled balance between
exploitation and exploration. We introduce conceptually simple perturbation
strategies for incorporating random choices in constraint solving with restarts.
Most of strategies that we present are adaptive, meaning that the amount of
perturbation is learned during successive restarts. We exploit the restart mech-
anism that exists in all modern solvers to control the application of random
choices. We deploy a reinforcement learning technique that determines at each
run (i.e., at the beginning of the restart), if it will apply the standard heuristic,
embedded in the constraint solver, or a procedure that makes random branching
choices. This is a sequential decision problem and as such, it can be modeled
as a multi-armed bandit problem (MAB) [3], precisely, as a double-armed. In
reinforcement learning, the proportion between exploration and exploitation is
specified by various policies. We tried several of them, such as Epsilon-greedy
[31], EXP3 [4], Thompson Sampling [32], the upper confidence bound UCB1 [4] and
MOSS [2]. The learning comes from the feedback taken after each run that reflects
the efficiency of the run under a given choice, referred to as a reward function.
We also propose a static strategy that perturbs a given heuristic with a fixed
probability, found empirically. We evaluate the static and adaptive strategies for
several well known heuristics, showing significant performance improvements in
favor of the perturbed solver independently of the underlying heuristic used. A
perturbed strategy always outperforms its baseline counterpart both in time and
number of solved instances. We have also run experiments allowing the use of no-
goods, an integral component of solvers nowadays, showing that perturbations
still dominate the standard setting, as the no-goods obtained during random
runs do not disorientate search.

Many useful observations are derived from this study. The more inefficient
a heuristic is, the more effective the perturbation. A perturbed solver can com-
pensate for a potentially bad heuristic choice done by the user, as it permits to
automatically improve its performance by visiting unknown parts of the search
space. This is due to the random runs, during which the heuristic acquires extra
knowledge, other than what obtained when running alone. We show that adap-
tive strategies always outperform the static ones, as they can adjust their behav-
ior to the instance to be solved and to the heuristic setting. Overall, the results
show the benefits of establishing perturbation in CP solvers for improving their
overall performance whatever their default setting is.

2 Related Work

Introducing a touch of randomization for better diversifying the search of local
and complete procedures has been shown to be quite effective for both SAT
(Satisfiability Testing) and CP (Constraint Programming). A stochastic local
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search requires the right setting of the “noise” parameter so as to optimize its
performance. This parameter determines the likelihood of escaping from local
minima by making non-optimal moves. In GSAT [30], it is referred as the random
walk parameter and in walkSAT [29], simply as the “noise”. Large Neighborhood
Search uses randomization to perform jumps in the search space while freezing
a fragment of the best solution obtained so far [26].

In complete CP solvers, the first evidence that diversification can boost search
dates back to Harvey and Ginsberg research [17]. Harvey and Ginsberg proposed
a deterministic backtracking search algorithm that differs from the heuristic
path by a small number of decision points, or “discrepancies”. Then, Gomes
et al. [12,13] showed that a controlled form of randomization eliminates the
phenomenon of “heavy-tailed cost distribution” (i.e., a non-negligible probability
that a problem instance requires exponentially more time to be solved than any
previously solved instances). Randomization was applied as a tie-breaking step:
if several choices are ranked equally, choose among them at random. However,
if the heuristic function is powerful, it rarely assigns more than one choice the
highest score. Hence, the authors introduced a “heuristic equivalence” parameter
in order to expand the choice set for random tie-breaking.

More recently, Grimes and Wallace [14] proposed a way to improve the clas-
sical dom/wdeg heuristic (based on constraint weighting) by using random prob-
ing, namely a pre-processing sampling procedure. The main idea is to generate
the weights of the variables with numerous but very short runs (i.e., restarts)
prior search, in order to make better branching decisions at the beginning of the
search. Once the weights are initialized, a complete search is performed during
which weights either remain frozen or continue updating.

3 Preliminaries

A Constraint Network P consists in a finite set of variables vars(P ), and a finite
set of constraints ctrs(P ). We use n to denote the number of variables. Each
variable x takes values from a finite domain, denoted by dom(x). Each constraint
c represents a mathematical relation over a set of variables, called the scope of
c. A solution to P is the assignment of a value to each variable in vars(P ) such
that all constraints in ctrs(P ) are satisfied. A constraint network is satisfiable
if it admits at least one solution, and the corresponding Constraint Satisfaction
Problem (CSP) is to determine whether a given constraint network is satisfiable,
or not. A classical procedure for solving this NP-complete problem is to perform
a backtrack search on the space of partial solutions, and to enforce a property
called generalized arc consistency [23] on each decision node, called Maintaining
Arc Consistency (MAC) [28]. The MAC procedure selects the next variable to
assign according to a variable ordering heuristic, denoted H. Then, the selected
variable is assigned to a value according to its value ordering heuristic, which is
usually the lexicographic order over dom(x).

As mentioned in Sect. 2, backtrack search algorithms that rely on deter-
ministic variable ordering heuristics have been shown to exhibit heavy-tailed
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behavior on both random and real-world CSP instances [12]. This issue can be
alleviated using randomization and restart strategies, which incorporate some
random choices in the search process, and iteratively restart the computation
from the beginning, with a different variable ordering [6]. Since our randomiza-
tion method will be discussed in Sect. 4, we focus here on restart strategies.

Conceptually, a restart strategy is a mapping res : N → N, where res(t)
is the maximal number of “steps” which can be performed by the backtrack-
ing search algorithm at run, or trial, t. A constraint solver, equipped with the
MAC procedure and a restart strategy res, builds a sequence of search trees
〈T (1), T (2), . . .〉, where T (t) is the search tree explored by MAC at run t. After
each run, the solver can memorize some relevant information about the sequence
〈T (1), T (2), . . . , T (t−1)〉, like the number of constraint checks in the previous runs,
the no-goods that have appeared frequently in the search trees explored so far
[20]. The cutoff, res(t), which is the number of allowed steps, may be defined by
the number of nodes, the number of wrong decisions [8], the number of seconds,
or any other relevant measure. In a fixed cutoff restart strategy, the number T
of trials is fixed in advance, and res(t) is constant for each trial t, excepted for
the T th trial which allows an unlimited number of steps (in order to maintain
a complete algorithm). This strategy is known to be effective in practice [13],
but a good cutoff value res(t) has to be found by trial and error. Alternatively,
in a dynamic cutoff restart strategy, the number T of trials is unknown, but
res increases geometrically, which guarantees that the whole space of partial
solutions is explored after O(n) runs [33]. A commonly used cutoff strategy is
driven by the Luby sequence [22].

4 Perturbation Strategies

As indicated in Sect. 3, the process of constraint solving with a restart pol-
icy may be viewed as a sequence 〈1, 2, · · · , T 〉 of runs. For the aforementioned
restart functions, the sequence of runs is finite, but the horizon T is not neces-
sarily known in advance. During each run t, the solver calls the MAC algorithm
for building a search tree Tt, whose size is determined by the cutoff of the restart
policy. If the solver has only access to a single variable ordering heuristic, say H,
it will run MAC with H after each restart. Yet, if the solver is also allowed to
randomize its variable orderings, it is faced with a fundamental choice at each
run t: either call MAC with the heuristic H in order to “exploit” previous com-
putations made with this heuristic, or call MAC with a random variable ordering
U so as to “explore” new search trees, and potentially better variable orderings.
Here, U is any variable ordering drawn at random according to a uniform dis-
tribution over the permutation group of vars(P ). We need to highlight here,
that the intermediate random runs of U perturb the involved classic heuristic H
by updating its parameters, which ultimately affects the behavior/performance
of H. In other words, the subsequent heuristic runs, will not produce the same
orderings as in the traditional solving process, allowing thus the solver to (poten-
tially) tackle instances that neither H nor U would solve stand-alone.
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Algorithm 1: Bandit-Driven Perturbations
Input: constraint network P , heuristic H, policy B

1 initArmsB(H,U) // Initialize the arms and the bandit policy

2 for each run t = 1, · · · , T do
3 at ← selectArmB() // Select an arm according to the bandit policy
4 rt(at) ← MAC(P, at) // Execute the solver and compute the reward
5 updateArmsB

(
rt(at)

)
// Update the bandit policy

The task of incorporating perturbations into constraint solving with restarts
can be viewed as a double-armed bandit problem: during each run t, we have to
decide whether the MAC algorithm should be called using H (exploitation arm)
or U (exploration arm). Once MAC has built a search tree Tt, the performance
of the chosen arm can be assessed using a reward function defined according
to Tt. The overall goal is to find a policy mapping each run t to a probability
distribution over {H,U} so as to maximize cumulative rewards.

Multi-armed bandit algorithms have recently been exploited in CP in differ-
ent contexts, i.e. for guiding search [21], for learning the right level of propagation
[5] or the right variable ordering heuristic [34,35,37]. In the framework of Xia
and Yap [37], a single search tree is explored (i.e., no restarts), and the bandit
algorithm is called at each node of the tree to decide which heuristic to select.
The trial is associated with explored subtrees, while in our approach, trials are
mapped to runs using a restart mechanism. Our framework makes use of restarts
in the same way as the ones of [34,35], as it was shown in [35] that such a frame-
work offers greater improvements compared to the one of [37]. In our case, we
utilise a double-armed framework in order to construct our bandit-driven pertur-
bation given by Algorithm 1. The algorithm, takes as input a constraint network
P , a variable ordering heuristic H, and a bandit policy B. As indicated above,
the bandit policy has access to two arms, H and U , where U is the random vari-
able ordering generated on the fly, during execution. The three main procedures
used by the bandit policy are initArmsB for initializing the distribution over
{H,U} according to policy B, selectArmB for choosing the arm at ∈ {H,U}
that will be used to guide the search all along the tth run, and updateArmsB for
updating the distribution over {H,U} according to the observed reward rt(at)
at the end of the tth run.

4.1 Reward Function

The feedback rt(at) supplied at the end of each run captures the performance
of the MAC algorithm, when it is called using at ∈ {H,U}. To this end, the
reward function rt maps the search tree Tt built by MAC(at) to a numeric value
in [0, 1] that reflects the quality of backtracking search when guided by at.

As a reward function, we introduce the measure of the explored sub-tree
denoted as esb. esb is given by the number of visited nodes during a run,
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(a) esb(Tleft) = log(16)

log(26)
≈ 0.67 (b) esb(Tright) = log(16)

log(25)
≈ 0.80

Fig. 1. Comparison of two runs with a restart cutoff fixed to 16 nodes.

divided by the size of the complete sub-tree defined over the variables selected
during this run. The later is simply the size of the Cartesian product of the
domains of the variables selected during the run. As selected variables, we con-
sider those ones that have been chosen at least once by the arm in question. esb
represents the search space covered by the solver, under a certain setting of a
run, compared to the total possible space on the selected variables. The intuition
is that an exploration that discovers failures deeply in the tree (meaning that,
many variables are instantiated) will be penalized (due to the big denominator)
against an exploration that discovers failures at the top branches.

In formal terms, given a search tree T generated by the MAC algorithm,
let vars(T ) be the set of variables that have been selected at least once during
exploration of T and nodes(T ) the number of visited nodes. Then,

rt(at) = esb(Tt) =
log(nodes(Tt))

log
(∏

x∈vars(Tt)
|dom(x)|

)

A logarithmic scaling is needed to obtain a better discrimination between the
arms as the numerator is usually significantly smaller than the denominator of
the fraction. The reward values belong to [0, 1]. The higher the ratio/reward is,
the better the performance of at is.

Figure 1, shows a motivating example for the reward function. It displays an
example of tree explorations done by two different runs. For simplicity, domains
are binary and at each level the variable to be instantiated is fixed per run
(namely left and right branches are on the same variable). Empty nodes represent
non-visited or pruned nodes, solid black nodes are the visited ones, solid red
ones denote failures. Below red nodes, there are the pruned sub-trees in dashed
style while the non-visited sub-trees are slightly transparent. For both runs we
consider the same number of node visits, i.e. 16. At the left run (Fig. 1a), the
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solver goes until level 6 (selecting 6 variables) while the solver at the right run
(Fig. 1b) goes until level 5. The left run will take the score of 0.67 and the
right one 0.80. Our bandit will prefer the arm that produced the right tree,
namely a search that goes faster at the right branches than deeper in the tree
(which implies that more search is required). Early failures is a desired effect
that many heuristics consider explicitly on implicitly in order to explore smaller
search spaces until the solution or unsatisfiability.

4.2 Perturbation Rate

As indicated in Algorithm 1, the perturbation framework is conceptually simple:
based on a restart mechanism, the solver performs each run by first selecting an
arm in {H,U}, next, observing a reward for that arm, and then, updating its
bandit policy according to the observed reward. This simple framework, allows
us to use a variety of computationally efficient bandit policies to adapt/control
the amount of perturbation applied during search. From this perspective, we
have opted for five well-studied “adaptive” policies for the double-armed bandit
problem, and one “static” (or stationary) policy which serves as reference for
our perturbation methods.

ε-Greedy. Arguably, this is the simplest adaptive bandit policy that interleaves
exploitation and exploration using a parameter ε. The policy maintains the
empirical means r̂ of observed rewards for H and U . Initially, both r̂1(H) and
r̂1(U) are set to 0. On each run t, the function selectArmεG returns with
probability (1 − ε) the arm at that maximizes r̂t(at), and returns with proba-
bility ε any arm at drawn uniformly at random. Finally, based on the observed
reward rt(at), the procedure updateArmsεG updates the empirical mean of at

according to

r̂t+1(at) =
t

t + 1
r̂t(at) +

1
t + 1

rt(at)

EXP3. The EXPonentially weighted forecaster for EXPloration and EXPloitation
(EXP3) is the baseline bandit policy operating in “non-stochastic” environments,
for which no statistical assumption is made about the reward functions [4]. Sev-
eral variants of EXP3 have been proposed in the literature, but we use here the
simplest version defined in [10]. Here, the procedure initArmsEXP3 sets the initial
distribution π1 of arms to the uniform distribution (1/2, 1/2). During each trial t,
the procedure selectArmEXP3 simply draws an arm at according to the distri-
bution πt. Based on the observed reward rt(at), the procedure updateArmsEXP3
updates the distribution πt according to the multiplicative weight-update rule:

πt+1(a) =
exp(ηtRt(a))

exp(ηtRt(H)) + exp(ηtRt(U))

ηt corresponds to the learning rate (usually set to 1√
t
),

Rt(a) =
t∑

s=1

rs(a)
πs(a)

1a∼πs
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and 1a∼πs
indicates whether a was the arm picked at trial s, or not.

UCB1. Upper Confidence Bound (UCB) policies are commonly used in “stochas-
tic” environments, where it is assumed that the reward value rt(a) of each arm
a is drawn according to a fixed, but unknown, probability distribution. UCB1 is
the simplest policy in the Upper Confidence Bound family [3]. In the setting
of our framework, this algorithm maintains two 2-dimensional vectors, namely,
nt(a) is the number of times the policy has selected arm a on the first t runs,
and r̂t(a) is the empirical mean of rt(a) during the nt(a) steps. initArmsUCB1
sets both vectors to zero and, at each run t, selectArmUCB1 selects the arm at

that maximizes

r̂t(a) +

√
2 ln(t)
nt(a)

Finally, updateArmsUCB1 updates the vectors nt and r̂t according to at and
rt(at), respectively.

MOSS. The Minimax Optimal Strategy in the Stochastic case (MOSS) algorithm
is an instance of the UCB family. The only difference with UCB1 lies in the confi-
dence level which not only takes into account the number of plays of individual
arms, but also the number of arms (2) and the number of runs (t). Specifically,
selectArmMOSS chooses the arm at that maximizes

r̂t(a) +

√
4

nt(a)
ln+

(
t

2nt(a)

)

where ln+(x) = ln max{1, x}.

TS. The Thompson Sampling algorithm is another well-known policy used in
stochastic environments [1,32]. In essence, the TS algorithm maintains a beta
distribution for the rewards of each arm. initArmsTS sets α1(a) and β1(a) to
1 for a ∈ {H,U}. On each run t, selectArmTS selects the arm at that max-
imizes Beta(αt(a), βt(a)), and updateArmsTS uses rt(at) to update the beta
distribution as follows:

αt+1(a) = αt(a) + 1a=at
rt(at)

βt+1(a) = βt(a) + 1a=at
(1 − rt(at))

SP. Finally, in addition to the aforementioned adaptive bandit policies which
learn a distribution on {H,U} according to observed rewards, we shall consider
the following Static Policy (SP): on each round t, selectArmSP chooses H
with probability (1 − ε), and U with probability ε. Although this policy shares
some similarities with the ε-greedy algorithm, there is one important differ-
ence: the distribution over {H,U} is fixed in advance, and hence, SP does not
take into account the empirical means of observed rewards. In other words,
updateArmsSP is a dummy procedure that always returns (1 − ε, ε). This sta-
tionary policy will serve as reference for the adaptive policies in the experiments.
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5 Experimental Evaluation

We have conducted experiments on a large dataset to demonstrate the perfor-
mance of the proposed perturbations. The set includes all instances (612 in total)
from the 2017’s XCSP3 competition1 coming from 60 different problem classes.
The experiments have been launched on an 2.66 GHz Intel Xeon and 32 GB
RAM nodes. We have used the AbsCon2 solver in which we integrated our per-
turbation strategies and the strategies of [13] and [14]. We used 2-way branching,
generalized arc consistency as the level of consistency, Luby progression based
on node visits as restart policy (the constant is fixed to 100 in AbsCon) and the
timeout set to 1, 200 s. We have chosen a big variety of variable ordering heuris-
tics, including recent, efficient and state-of-the-art ones: dom [16], dom/ddeg [7],
activity [25], dom/wdeg [9], CHS [15], wdegca.cd [36] and finally rand which
chooses uniformly randomly a variable order. Among these, dom and dom/ddeg
do not record/learn anything between two runs (dom and ddeg are re-initialized
at the root), while all the others learn during each (random) run and maintain
this knowledge all along the solving process, which might change/improve their
behavior. We have run all these original heuristics separately for a baseline com-
parison. Note that in our first experiments no-goods recording are switched off
in the solver to avoid biasing the results of heuristics and strategies.

Regarding our perturbation strategies, we denote by SP the static perturba-
tion and by e-greedy, UCB1, MOSS, TS and EXP3 the various adaptive perturba-
tion (AP) strategies. Epsilon of SP and e-greedy are fixed to 0.1. This value has
been fixed offline after a linear search of the best value. Apart from comparing to
the default solver settings (i.e., original heuristics), we compare to three other
perturbation strategies from the bibliography. The one is the sampling algo-
rithm of [14] that corresponds to the sampling pre-processing step which is fixed
to 40 restarts with a cutoff of n nodes corresponding to the number of variables
of each instance. When the probing phase finishes, we continue updating the
variable scoring as it produces better results. The second is the equiv-30 that
corresponds to the criterion of equivalence of [13]. This equivalence parameter is
set to 30% as authors proposed. Last, we compare to the standard tie-breaking
denoted equiv-0, where a random choice is done among the top ranked variables
scored equally by the underlying heuristic. Note that there are no ties, equiv-0
has no effect on the heuristic, as opposed to equiv-30.

Table 1 displays the results of the aforementioned settings and strategies
on the XCSP’17 competition dataset. The comparison is given on the number
of solved instances (#inst), within 1, 200 s, the cumulative CPU time (time)
computed from instances solved by at least one method and the percentage
of perturbation (%perturbation) which is the mean perturbation of the solved
instances, computed by the number of runs with the arm U divided by the total of
runs. Each time a setting has not solved an instance that another setting solved,
it is penalized by the timeout time. Numbers in bold indicate that a strategy

1 See http://www.cril.univ-artois.fr/XCSP17.
2 See http://www.cril.fr/∼lecoutre/#/softwares.

http://www.cril.univ-artois.fr/XCSP17
http://www.cril.fr/~lecoutre/#/softwares
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outperformed her corresponding default setting of the solver (i.e., original).
Underlined numbers show the winning strategy. dom and dom/ddeg, the unaf-
fected heuristics, appear at the top of the table as they cannot be perturbed
by randomized runs. After each run their parameters are reinitialized and not
accumulated as for the rest of the heuristics (perturbed ones). Hence, for dom
and dom/ddeg, any additional instance that perturbation strategies are able to
solve comes from an intervening run of U .

Table 1. Comparison of original, sampling, equiv-30 and the proposed perturbed
strategies for the XCSP’17 dataset.

original sampling equiv-0 equiv-30 SP
AP

e-greedy UCB1 MOSS TS EXP3

dom

#inst 287 321 312 308 315 314 323 322 318 323

time (359) 101, 589 58,496 74,064 75,992 72,460 75,474 59,527 61,171 63,856 61,842

%perturb. 0 - - - 10 7.7 32.8 21.0 24.9 44.1

dom/ddeg

#inst 307 321 319 324 343 337 345 346 342 343

time (365) 85, 131 61,071 67,537 66,005 46,179 51,371 41,404 43,280 44,981 40,260

%perturb. 0 - - - 10 8.1 34.3 21.4 26.5 45.3

activity

#inst 342 311 334 329 356 356 352 353 350 351

time (372) 52, 989 82, 041 60, 304 64, 619 36,688 36,125 39,552 37,463 40,306 39,371

%perturb. 0 - - - 10 7.6 33.5 20.7 26.0 44.4

dom/wdeg

#inst 347 342 349 349 358 346 358 354 356 363

time (381) 55, 599 56, 038 54,276 53,263 45,615 58, 888 43,726 49,052 46,896 39,277

%perturb. 0 - - - 10 11.6 34.3 23.9 28.6 45.2

wdegca.cd
#inst 366 354 368 361 370 368 371 372 367 369

time (389) 42, 565 52, 344 43, 944 49, 717 38,966 39,292 41,745 40,433 44, 941 42, 661

%perturb. 0 - - - 10 7.8 32.1 19.9 24.8 42.9

CHS

#inst 370 343 371 361 371 372 367 373 367 367

time (389) 41, 462 64, 779 42, 025 56, 639 37,699 38,158 43, 869 38,190 46, 597 42, 444

%perturb. 0 - - - 10 7.3 32.6 19.9 25.7 44.5

rand
#inst 291

time (291) 12, 921

%perturb. 100

The existing perturbation techniques, sampling, equiv-30 and equiv-0,
solve more instances than their respective baseline heuristic for the case of dom
and dom/ddeg. However, this never happens for sampling and equiv-30 on the
more sophisticated heuristics (except from dom/wdeg), where we see that the
perturbation they apply disorientates totally the search, solving constantly less
instances than the original heuristics (e.g., sampling missed 31 instances for
activity). equiv-0 just marginally outperforms pure heuristics by one or two
instances while it is far inferior to APs (e.g., it missed 22 instances compared
to e-greedy on activity). equiv-30 is superior to sampling on the perturbed
heuristics but still far inferior to all proposed strategies. Among the proposed
perturbation strategies, we observe that both SP and AP strategies constantly



506 A. Paparrizou and H. Wattez

outperform the default setting of the solver, while for many heuristics they have
close performance (e.g., activity). MOSS is the best strategy in terms of solved
instances and time results, except for activity and dom/wdeg heuristics, where
SP (e-greedy too) and EXP3 dominate respectively. UCB1 and MOSS are the best
strategies for dom and dom/ddeg, with only one instance of difference, showing
that a perturbation rate between 20% and 30% is the best choice. On the other
side, TS with a similar rate seems not to select that well the right arm for all
runs. Similarly for equiv-30, which also applies a randomization of 30% on the
top ranked variables, it seems that the way it is applied (i.e., at every decision)
is not that efficient. SP and e-greedy, despite winning their original counter-
parts are less competitive due to their low perturbation rate. EXP3 is also a good
candidate policy for dom and dom/ddeg.

rand solved the less instances in total, i.e. 291, in 12, 921 seconds, which
means that many of them correspond to quite easy instances. As rand is the
“bad” arm, a small participation of 10% in SP is just enough to be beneficial
for the heuristics that are by themselves efficient (e.g., wdegca.cd, CHS), but as
SP is not adaptive, it is rarely better than the AP strategies; it cannot adjust its
behavior to heuristics that require more perturbation to improve (e.g., dom). AP
strategies, being adaptive, allow usually much more exploration of the U arm
that makes them win several instances. An exception is the CHS heuristic, where
a perturbation over 20% might be harmful (i.e., in UCB1, TS and EXP3 policies).
Each bandit policy follows a general trend that can vary between heuristics (e.g.,
UCB1 is around 30%, MOSS around 20% and e-greedy with EPX3 represent the
two extremities). EXP3 sets the initial distribution π1 of arms to (1/2, 1/2) such
that both arms have equal chances at the beginning. As it is a non-stochastic
bandit it needs more exploration than stochastic ones need to converge. Although
one would expect that this could deteriorate the solver, it seems that the bandit
utilizes the right arm at each run since it is efficient both in time and solved
instances. The high perturbation rates come from the mean, that smoothens the
high variance between instances. Also, many of the instances are solved fast and
EXP3 favorizes a lot U , being the best arm at the early (short) runs, while the
long runs at the end are done by H, which explains its good overall performance.
TS despite it is better than original heuristics and existing perturbation methods,
it is usually inferior to SP by small differences.

We distinguish the MOSS policy, which apart from being the best policy for
many heuristics, it never deteriorates the solver for any heuristic (as happens
for some strategies on CHS). It applies the exploration when and where needed
(more at the early runs) and converges faster to the best heuristic. Regarding
the time performance, all perturbation strategies are faster than their baseline
heuristic, even for the most efficient heuristics (i.e., CHS and wdegca.cd).

Figure 2, visualizes in a cactus plot the performance of the best AP strat-
egy, namely MOSS, for all heuristics compared to their corresponding original
heuristic. On x-axis we see the instances solved as time progresses. y-axis dis-
plays the allowed time given to the solver. Dashed lines display the performance
of original heuristics and solid lines the perturbed solver. The closer a line is
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to the right bottom corner the more instances has solved in less time. In gen-
eral, MOSS policy perturbations appear always at the right side of their respec-
tive default heuristic. We observe that for the less efficient heuristics, as dom
and dom/ddeg, the performance gap between the original and the respective
perturbed version is big even for easy instance and increases significantly as
time passes, corresponding to more difficult instances. It worths noticing that,
dom/ddeg after being perturbed, becomes better than activity (solved 4 more
instances), that originally was much more efficient than dom/ddeg. domMOSS solved
in total 35 (resp. 39) more instances than dom (resp. dom/ddeg). For activity
and dom/wdeg, the curves are closer, though the gap is still significant especially
for harder instances. Even for the most efficient heuristics proposed the last two
years, namely CHS and wdegca.cd, MOSS is almost all the time the best setting for
the solver.
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Fig. 2. Comparison of original and MOSS strategies while increasing the allowed time.

In the following, we do not present results for all adaptive strategies, but
only for the most stable and efficient ones. We omit presenting results for EXP3
because it failed for CHS, which is one of the two best heuristics in CP, and for
TS, because it is never the winning strategy.

Table 2 gives complementary information derived from Table 1 for the best
proposed strategies. We have calculated the number of instances solved exclu-
sively by rand (i.e., instances that the heuristic alone could not solve), denoted by
#random, and the number of instances, #perturb, that the solver solved due to
the perturbation rand caused to the corresponding heuristic. Instances in #per-
turb are those that are solved neither by the original heuristic nor the rand
heuristic, making thus the perturbed solver outperform even its corresponding
virtual best solver. As expected, dom and dom/ddeg do not win instances due to
perturbation, but only due to a good ordering during a random run (more than
30 instances for each policy). For other heuristics, we see a more balanced distri-
bution of instances in #random and #perturb. We observe that the most robust
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heuristics (CHS and wdegca.cd) solve extra instances mainly by perturbation (for
MOSS: 10 and 7 respectively) rather than by calling rand (3 and 3). Indeed, both
are so efficient that the majority of solved instances by rand are also solved
by them, which explains why their perturbations’gain’ fewer instances than the
other heuristics do. In contrast, activity and dom/wdeg, that are less efficient
than CHS and wdegca.cd, gain more instances in total, most of which are gained
by rand.

Table 2. Won instances by perturbation or random runs for SP, e-greedy, UCB1 and
MOSS with nodes as cutoff for the XCSP’17 dataset

dom dom/ddeg activity dom/wdeg wdegca.cd CHS

SP
#perturb. 0 0 8 8 5 4

#random 28 36 12 10 3 3

e-greedy
#perturb. 0 0 8 5 5 6

#random 29 31 10 6 3 2

UCB1
#perturb. 0 0 5 7 8 7

#random 38 41 13 10 3 2

MOSS
#perturb. 0 0 6 7 7 10

#random 37 41 12 8 3 3

As the results in Table 1 are quite condensed, in Table 3 we show how strate-
gies operate and adjust for certain problem classes. For each class and each
heuristic, we present the number of solved instances, the total time and the
perturbation rate. For CoveringArray, MOSS is the best strategy to apply the
appropriate perturbation rate, independently of the heuristic chosen, compared
to SP and e-greedy whose rate is too low. For SuperSolutions with dom as heuris-
tic method, we see that e-greedy and MOSS are both winners despite their totally
different rates. Though, it is notable that MOSS is twice faster than e-greedy
on the same instances. SP with a rate close to e-greedy wins the half instances
compared to it (and MOSS). Such observations are clear evidences, that not only
the amount of randomization counts but also the when it appears. Policies as
MOSS learn to discriminate on which run to apply H or U . Recall that, com-
pared to other policies, MOSS considers in selectArmMOSS more parameters, as
the number or arms and the number of runs. In KnightTour, all strategies are
efficient, but APs are always better than SP in terms of time. For Blackhole and
LatinSquare, perturbation is not fruitful and thus, both APs converge to very low
rates even when instances are easy (just few seconds per instance). Notice that,
in general dom/wdeg is helped a lot by perturbation, as in all classes rates are
higher compared to other heuristics (double percentages). Also, the percentage
of perturbation varies a lot depending on the heuristic and the problem class,
which is the reason of the success of APs.
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Table 3. Comparison of original, SP, e-greedy and MOSS strategies on a subset of
families from the XCSP’17 dataset.

original SP e-greedy MOSS

CoveringArray

dom/ddeg 2 (4, 803s, 0%) 3 (4, 533s, 10%) 2 (4, 803s, 3%) 4 (2, 952s, 17%)

dom/wdeg 4 (2, 669s, 0%) 4 (3, 450s, 10%) 3 (3, 605s, 31%) 5 (2, 156s, 34%)

CHS 4 (2, 483s, 0%) 4 (2, 424s, 10%) 5 (1, 705s, 3%) 6 (1, 491s, 17%)

SuperSolutions

dom 2 (8, 404s, 0%) 4 (6, 972s, 10%) 6 (7, 471s, 6%) 6 (3, 912s, 24%)

wdegca.cd 5 (4, 968s, 0%) 7 (3, 101s, 10%) 6 (4, 467s, 9%) 7 (3, 821s, 23%)

CHS 7 (3, 507s, 0%) 6 (3, 788s, 10%) 6 (3, 812s, 6%) 8 (1, 689s, 20%)

KnightTour

dom/ddeg 5 (7, 220s, 0%) 9 (3, 276s, 10%) 9 (2, 623s, 34%) 9 (3, 092s, 37%)

activity 7 (4, 891s, 0%) 9 (3, 530s, 10%) 9 (2, 823s, 26%) 9 (2, 513s, 30%)

dom/wdeg 5 (7, 218s, 0%) 9 (4, 302s, 10%) 7 (5, 509s, 25%) 9 (3, 286s, 39%)

Blackhole

dom 6 (2, 609s, 0%) 6 (2, 489s, 10%) 6 (2, 503s, 4%) 6 (2, 423s, 16%)

dom/ddeg 8 (327s, 0%) 8 (44s, 10%) 8 (55s, 4%) 8 (25s, 20%)

activity 8 (897s, 0%) 7 (1, 618s, 10%) 8 (908s, 6%) 8 (816s, 17%)

LatinSquare

dom 8 (5, 841s, 0%) 8 (5, 840s, 10%) 8 (5, 928s, 2%) 8 (5, 813s, 13%)

dom/wdeg 10 (2, 481s, 0%) 12 (1, 143s, 10%) 10 (3, 262s, 44%) 10 (3, 351s, 40%)

CHS 11 (3, 031s, 0%) 9 (3, 947s, 10%) 9 (4, 469s, 3%) 8 (5, 866s, 13%)

As modern solvers exploit no-goods to improve their overall performance,
we repeated our experiments by activating no-goods in order to examine the
robustness of the proposed strategies and the interaction between no-goods and
perturbation. Table 4 displays the results sampling, equiv-0, equiv-30, SP and
the best AP strategies, namely e-greedy, UCB1 and MOSS. As seen in Table 1,
sampling and equiv-30 make some improvements on the less efficient heuristics
as dom and dom/ddeg, but are still inferior to SP and MOSS, while they are ineffi-
cient on all other heuristics. Surprisingly, equiv-0, despite being still more effi-
cient than sampling and equiv-30, seems to interact badly with the presence of
no-goods, as it can no longer improve the solver for any heuristic (just marginally
dom/ddeg). SP, despite being static, it remains efficient apart from the case of
CHS. Regarding the AP strategies, e-greedy (resp. UCB1) wins almost always
the underlying heuristic except from the case of CHS (resp. wdegca.cd). MOSS is
again the most stable strategy, being able to improve all heuristics it perturbed.
Note that the presence of no-goods has improved the performance of both the
default and the perturbed solver. Therefore, there are slightly smaller differences
between them compared to Table 1. The proposed perturbation strategies are
robust to this fundamental parameter for solvers compared to existing strategies
and adapt their behavior, especially MOSS.
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Table 4. Comparison of original, sampling, equiv-30, SP, e-greedy and MOSS with
nodes as cutoff and no-goods activated.

original sampling equiv-0 equiv-30 SP
AP

e-greedy UCB1 MOSS

dom

#inst 309 321 306 316 338 334 342 340

time (359) 73, 367 57,279 74, 364 68,446 43,327 51,168 42,219 44,027

%perturb. 0 - - - 10 8.6 33.9 21.4

dom/ddeg

#inst 316 322 320 321 347 346 352 347

time (367) 71, 191 62,375 68,703 72,550 40,042 41,530 30,770 38,995

%perturb. 0 - - - 10 8.8 34.9 22.5

activity

#inst 352 319 349 346 356 357 356 355

time (373) 40, 601 74, 680 45, 590 46, 245 32,328 33,161 34,228 35,854

%perturb. 0 - - - 10 7.8 34.1 20.7

dom/wdeg

#inst 352 340 349 344 359 356 364 364

c.time (377) 41, 882 53, 238 48, 073 53, 841 34,253 40,100 29,559 30,995

%perturb. 0 - - - 10 11.9 34.7 23.9

wdegca.cd
#inst 373 356 373 361 373 375 371 377

time (388) 33, 887 50, 009 33, 053 53, 587 33,412 32,359 33, 772 28,614

%perturb. 0 - - - 10 7.8 32.8 19.8

CHS

#inst 375 348 372 366 373 373 375 376

time (387) 30, 990 58, 121 36, 829 47, 159 30,658 31, 547 31, 020 30,585

%perturb. 0 - - - 10 7.1 33.0 19.8

rand
#inst 293

time (293) 16,992

%perturb. 100

6 Conclusion

We presented several strategies that significantly improve the performance and
robustness of the solver by perturbing the default branching heuristic. It is the
first time an approach tries to learn how and when to apply randomization in an
on-line and parameter-free fashion. Controlled random search runs help variable
ordering heuristics to acquire extra knowledge from parts of the search space that
they were not dedicated to explore. We summarize the benefits of our approach
which are manifold:

– Our perturbation techniques constantly improve the performance of the solver
independently of the heuristic used as baseline in the solver. A perturbed
strategy always outperforms its baseline counterpart both in time and solved
instances.

– The presence of no-goods does not impact the efficacy of the perturbed solver.
The produced no-goods are still fruitful.

– Perturbed heuristics can compensate for a wrong heuristic choice done by the
user. Thanks to perturbation, the performance of the solver with a bad initial
heuristic can reach or even outperform the performance of the solver with a
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better baseline heuristic. This is a step towards autonomous and adaptive
solving, where the solver learns and adjusts its behavior to the instance being
solved.

– Our approach is generic and easy to embed in any solver that exploits restarts.
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Abstract. A CNF formula is harder than another CNF formula with
the same number of clauses if it requires a longer resolution proof. The
resolution hardness numbers give for m = 1, 2, . . . the length of a shortest
proof of a hardest formula on m clauses. We compute the first ten reso-
lution hardness numbers, along with the corresponding hardest formulas.
We achieve this by a candidate filtering and symmetry breaking search
scheme for limiting the number of potential candidates for formulas and
an efficient SAT encoding for computing a shortest resolution proof of a
given candidate formula.
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1 Introduction

Resolution is a fundamental proof system that can be used to certify the unsat-
isfiability of a propositional formula in conjunctive normal form (CNF). What
makes resolution particularly interesting is that the length of a shortest reso-
lution proof of a given CNF formula (called the resolution complexity of the
formula) provides an unconditional lower bound on the running time of mod-
ern SAT solvers [17]. Since we know that there are classes of unsatisfiable CNF
formulas (such as the formulas based on the Pigeon Hole Principle) with expo-
nential resolution complexity [6], we have an exponential lower bound on the
runtime. It is a natural question to ask: which formulas are the hardest for res-
olution? i.e., which formulas have the highest resolution complexity? This is a
quite intriguing and hard question, which has been approached mainly in an
asymptotic way by propositional proof complexity [22].

We address this question by following a recent trend in tackling combinatorial
problems using SAT and CSP methods [2,7,8]. For small values of n and m, we
compute all the formulas (modulo isomorphisms) with n variables and m clauses
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that are the hardest formulas for resolution. With these results, we can compute
the first few resolution hardness numbers (hm)m≥1, where hm gives the highest
resolution complexity of a CNF formula with m clauses.

We obtain our results by the combination of two techniques:

1. A candidate filtering and symmetry breaking search scheme for limiting the
number of potential candidate formulas with m variables whose resolution
complexity is hm.

2. An efficient SAT encoding for computing the resolution complexity of a given
candidate formula.

In our search scheme, we reduce the candidate formulas to a certain class of
minimally unsatisfiable (MU) formulas that obey additional degree constraints.
We model these formulas by graphs of a particular kind. We generate these
graphs modulo symmetries by a special adaptation of the Nauty graph symmetry
package.

This still leaves us with a large number of formulas whose resolution com-
plexity we must determine algorithmically. For this task, we devised an efficient
SAT encoding that produces for a given candidate formula F and an integer s, a
CNF formula shorts(F ), which is satisfiable if and only if F admits a resolution
proof of length ≤ s. We determine the resolution complexity of F by feeding
shorts(F ) to a SAT solver with various choices of s. While a SAT encoding for
this problem has been proposed before [14], and we do take some inspiration from
it, we make crucial adaptations tailored towards minimally unsatisfiable formu-
las. Furthermore, we introduce a symmetry-breaking scheme that fully breaks
all symmetries resulting from permutations of the sequence of clauses.

In addition to the values of the resolution hardness numbers, we can draw
a more detailed map of the hardest formulas with a particular number n of
variables and a particular number m of clauses.

Our theoretical results reveal the significance of regular saturated minimally
unsatisfiable (RSMU) formulas, which are unsatisfiable formulas that (i) become
satisfiable by adding any further literal to any clause, and (ii) where each literal
appears in at least two clauses. As a by-product of our computations, we obtain
a catalog of RSMU formulas with a small number of variables and clauses, which
may be of independent interest in the research on minimal unsatisfiability. For
instance, the computed formulas’ structure can possibly be used to come up with
infinite sequences of hard formulas, which can lead to tighter general bounds.

An alternative but not very interesting object of study would be vn, the
highest resolution complexity of formulas with n variables. It is not hard to see
that every unsatisfiable formula on n variables has a resolution refutation of
length ≤ 2n+1 − 1 and that indeed vn = 2n+1 − 1, witnessed by the formula
which contains all possible clauses of width n.

2 Preliminaries

Formulas. We consider propositional formulas in conjunctive normal form (CNF)
represented as sets of clauses. We assume an infinite set var of (propositional)
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variables. A literal � is a variable x or a negated variable ¬x; we write lit :=
{x,¬x | x ∈ var }. For a literal � we put � := ¬x if � = x, and � := x if � = ¬x.
For a set of C literals we put C := { � | � ∈ C }. C is tautological if C ∩C �= ∅. A
finite non-tautological set of literals is a clause; a finite set of clauses is a (CNF)
formula. The empty clause is denoted by �. We write CNF(n,m) for the class of
all CNF formulas on n variables and m clauses, and CNF(m) =

⋃∞
n=0 CNF(n,m).

For a clause C, we put var(C) = { var(�) | � ∈ C }, and for a formula F ,
var(F ) =

⋃
C∈F var(C). Similarly, we put lit(F ) := var(F )∪ var(F ). A formula

F is satisfiable if there is a mapping τ : var(F ) → {0, 1} such that every clause
of F contains either a literal x with τ(x) = 1 or a literal ¬x with τ(x) = 0,
and unsatisfiable otherwise. A formula is minimally unsatisfiable (MU) if it is
unsatisfiable, but every proper subset is satisfiable.

Resolution Proofs. If C1 ∩ C2 = {�} for clauses C1, C2 and a literal �, then the
resolution rule allows the derivation of the clause D = (C1∪C2)\{�, �}; D is the
resolvent of the premises C1 and C2, and we say that D is obtained by resolving
on �. Let F be a formula and C a clause. A sequence P = L1, . . . , Ls of clauses
(proof lines) is a resolution derivation of Ls from F if for each i ∈ {1, . . . , s} at
least one of the following holds.

1. Li ∈ F (“Li is an axiom”);
2. Li is the resolvent of Lj and Lj′ for some 1 ≤ j < j′ < i (“Li is obtained by

resolution”).

We write |P | := s and call s the length of P . If Ls is the empty clause, then
P is a resolution refutation or resolution proof of F . A line Li in a resolution
derivation may have different possible “histories;” i.e., Li may be the resolvent
of more than one pair of clauses preceding Li, or Li may be both an axiom and
obtained from preceding clauses by resolution, etc. In the sequel, however, we
assume that an arbitrary but fixed history is associated with each considered
resolution derivation.

It is well known that resolution is a complete proof system for unsatisfiable
formulas; i.e., a formula F is unsatisfiable if and only if there exists a resolution
refutation of it. The resolution complexity or resolution hardness h(F ) of an
unsatisfiable formula F is the length of a shortest resolution refutation of F (for
satisfiable formulas we put h(F ) := −∞). For a nonempty set C of formulas, we
put h(C) = maxF∈C h(F ).

Isomorphisms of Formulas. Two formulas F and F ′ are isomorphic if there
exists a bijection ϕ : lit(F ) → lit(F ′) such that for each literal � ∈ lit(F ) we
have ϕ(�) = ϕ(�) and for each C ⊆ lit(F ) we have C ∈ F if and only if ϕ(C) ∈ F ′.
For instance the formulas F = {{x, y}, {x, y}, {y}}, and F ′ = {{z, w}, {z, w},
{w}} are isomorphic.

Obviously, two isomorphic formulas have the same properties concerning sat-
isfiability, minimal unsatisfiability, and resolution proof length. For a set C of
formulas, we define Iso(C) to be an inclusion-maximal subset of C such that no
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two elements of Iso(C) are isomorphic. In other words, Iso(C) contains exactly
one representative from each isomorphism class.

A 2-graph is an undirected graph G = (V,E) together with a partition of its
vertex set into two subsets V = V1 � V2. Two 2-graphs G = (V1 � V2, E) and
G′ = (V ′

1 �V ′
2 , E

′) are isomorphic if there exists a bijection ϕ : V1�V2 → V ′
1 �V ′

2

such that v ∈ Vi if and only if ϕ(v) ∈ V ′
i , i = 1, 2, and {u, v} ∈ E if and only if

{ϕ(u), ϕ(v}} ∈ E′.
The clause-literal graph of a formula F is the 2-graph G(F ) = (V1 � V2, E)

with V1 = lit(F ), V2 = F , and E = { {x, x} | x ∈ var(F ) } ∪ { {C, �} | C ∈ F,
� ∈ C }.

The following statement is easy to verify.

Proposition 1. Two formulas are isomorphic if and only if their clause-literal
graphs are isomorphic.

3 Theoretical Framework

We define the m-th resolution hardness number as the highest resolution com-
plexity among formulas with m clauses:

hm = max
F∈CNF(m)

h(F ) = h(CNF(m)).

In this section, we discuss various properties such that it suffices to consider only
formulas with these properties for computing hm.

Let H(n,m) = {F ∈ CNF(n,m) | h(F ) = hm } and H(m) =
⋃∞

n=0 H(n,m);
thus h(CNF(n,m)) = h(H(n,m)), and h(CNF(m)) = h(H(m)).

Lemma 1. All formulas in H(m) are minimally unsatisfiable.

Proof. Suppose to the contrary, that there exists some F ∈ H(m) which is
not minimally unsatisfiable and choose any minimally unsatisfiable subset F ′ �

F and let d = m − |F ′| ≥ 1. Pick a clause C ∈ F ′ and take new variables
x1, . . . , xd /∈ var(F ). We obtain a minimally unsatisfiable formula F ′′ from F ′

by replacing C by the clauses C ∪ {x1, . . . , xd}, {x1}, . . . , {xd}. From a shortest
resolution proof P ′′ of F ′′ we obtain a resolution proof P ′ of F ′. By construction,
|P ′| + d = |P ′′|, hence h(F ) ≤ h(F ′) + d ≤ h(F ′′), which is a contradiction to
h(F ′′) ≤ hm = h(F ), a contradiction. �

A formula is saturated minimally unsatisfiable if it is unsatisfiable and adding
a literal to any of its clauses makes it satisfiable. Every saturated minimally
unsatisfiable formula is minimally unsatisfiable, since adding a pure literal to a
clause has the same effect as deleting the clause.

Lemma 2. H(m) contains a saturated minimally unsatisfiable formula.
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Proof. Let F be an arbitrary formula in H(m). By Lemma 1, F is minimally
unsatisfiable. Assume now that F is not saturated, and we can add to some
clause C of F a literal �, obtaining a minimally unsatisfiable formula F ′. We
claim that h(F ′) ≥ h(F ) = hm. Take a shortest proof P of F ′. Delete � from
the axiom C ∪ {�} in P and propagate this deletion through P to other clauses.
This way, we obtain a sequence P ′ of clauses, which contains as a subsequence a
resolution proof of F . Hence indeed h(F ′) ≥ h(F ) = hm, and so F ′ ∈ H(m). �

A literal � is called r-singular in a formula F if there is exactly one clause in
F that contains �, and there are exactly r clauses in F that contain �. A literal
is singular in F if it is r-singular for some r ≥ 0 [21]. We also say a literal is
≥ r-singular if it is r′-singular for some r′ ≥ r.

We denote by MU(n,m) the class of minimally unsatisfiable formulas with n
variables and m clauses, and by SMU(n,m) ⊆ MU(n,m) the subclass consisting
of saturated formulas. RSMU(n,m) denotes the subclass of SMU(n,m) contain-
ing only formulas without singular variables. We call such formulas regular. We
also use the shorthand SSMU(n,m) = SMU(n,m) \ RSMU(n,m).

Consider a formula F and a variable x of F . Let DPx(F ) denote the formula
obtained from F after adding all possible resolvents that can be obtained from
clauses in F by resolving on x and removing all clauses in which x occurs [21].
We say that DPx(F ) is obtained from F by Davis-Putnam reduction or short
DP-reduction on x [3]. We will mainly use DP-reduction in the opposite direction,
starting with a formula F and generating a formula F ′ such that F = DPx(F ′).
We then say that F ′ has been obtained from F by DP-lifting.

The following result by Kullmann and Zhao [12, Lemma 12] establishes an
important link between DP-reduction on a singular variable and saturated min-
imal unsatisfiability.

Lemma 3 (Kullmann and Zhao [12]). Let F be a formula and x an r-sin-
gular literal of F such that C0 is the only clause of F containing x and
C1, . . . , Cr are the only clauses of F containing x. Then F ∈ SMU(n,m) if
and only if the following three conditions hold: (i) DPx(F ) ∈ SMU(n−1,m−1),
(ii) C0 \ {x} =

⋂r
i=1 Ci \ {x}, and (iii) for every C ′ ∈ F \ {C0, . . . , Cr} there is

some literal � ∈ C0 \ {x} which does not belong to C ′.

The next lemma, a direct consequence of the preceding one, states that in
the context of saturated minimally unsatisfiable formulas, DP-lifting is uniquely
determined by a subset of the lifted formula.

Lemma 4. Let n ≥ 2 and let F ′ ∈ SMU(n − 1,m − 1). Then each formula
F ∈ SSMU(n,m) which can be obtained from F ′ by DP-lifting on a singular
literal x of F , can be generated by selecting r clauses C ′

1, . . . , C
′
r ∈ F ′ such that⋂r

i=1 C ′
i �⊆ C for any C ∈ F \ {C ′

1, . . . , C
′
r}, and replacing them by the r + 1

clauses C0, . . . , Cr where C0 =
⋂r

i=1 C ′
i ∪ {x} and Ci = C ′

i ∪ {x}.
The next lemma is useful when we know hm−1, have a lower bound on hm,

and want to show that a formula F containing singular literals does not require
longer proofs than our current bound on hm, without laboriously computing a
shortest proof of F .
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Lemma 5. Let F ∈ MU(n,m) with an r-singular variable. Then h(F ) ≤ hm−1+
r + 1.

Proof. We perform DP-reduction on the r-singular variable using r + 1 axioms,
then refute the resulting formula on m − 1 remaining clauses. �

The deficiency δ(F ) of a formula F is defined as |F | − |var(F )|. By a lemma
attributed to Tarsi [1], all minimally unsatisfiable formulas have a positive defi-
ciency. That means that a minimally unsatisfiable formula with a fixed number
of clauses cannot have too many variables. It is easy to see that it cannot have
too few variables either: each clause must be falsified by an assignment that sat-
isfies every other clause, whence we infer that the number of assignments bounds
the number of clauses. Putting the two inequalities together yields Lemma6.

Lemma 6 (Aharoni and Linial [1]). Let F be a minimally unsatisfiable for-
mula. Then log2 |F | ≤ |var(F )| < |F |.

The structure of saturated minimally unsatisfiable formulas of deficien-
cies 1 and 2 is well understood [11]. In particular, it is known that for
m > 1, each F ∈ SMU(m − 1,m) has a 1-singular literal. It is also
known that |Iso(RSMU(m − 2,m))| = 1 for m ≥ 4 [10] (otherwise, there
are no minimally unsatisfiable formulas of deficiency 2). We pick the unique
representative F2

m for Iso(RSMU(m − 2,m)), which consists of the clauses
{x1, x2}, . . . , {xn−1, xn}, {xn, x1}, {x1, . . . , xn}, and {x1, . . . , xn}, n = m − 2.

Due to their simple structure, we can determine the resolution hardness of
SMU(m − 1,m) and RSMU(m − 2,m) formulas without any computation.

Proposition 2. For every m ≥ 1, h(SMU(m − 1,m)) = 2m − 1.

Proof. Apart from the formula {�}, every formula from SMU(m−1,m) contains
a 1-singular variable [4, Theorem 12], so the statement follows by induction from
Lemma 5 and the fact that 2m − 1 is the shortest possible proof length. �
Proposition 3. For every m ≥ 4, h(RSMU(m − 2,m)) = h(F2

m) = 3m − 5.

Proof. F2
m consists of binary strict Horn clauses (BSH—one negative and one

positive literal) and the full positive and full negative clause. Resolving any pair
of BSH clauses produces a BSH clause again. Resolving a BSH clause with a
positive (negative) clause produces a positive (negative) clause, which is at most
one shorter. Hence, to get to a positive (negative) unit clause, one must shorten
the full positive (negative) clause at least n− 1 = m− 3 times. In total, we have
m axioms plus 2(m − 3) shortening steps plus a final resolution step, altogether
3m − 5 proof lines. It is easy to see that such proof exists for every m. �

Propositions 2 and 3, together with Lemma 6, give us a lower bound for hm.
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Corollary 1. For m ≤ 3, hm = 2m − 1. For m ≥ 4, hm ≥ 3m − 5.

Proof. For m ≤ 3 Lemma 6 rules out formulas with deficiency higher than 1,
showing h1 = 1, h2 = 3, and h3 = 5. The rest is a direct consequence of
Proposition 3. �

For other formulas, we will need to generate the formulas and compute their
shortest proofs. Our general approach for computing Iso(H(m)) and in turn hm

is to compute the sets Iso(SMU(n,m)) for n = �log2(m)�, . . . , m−1, and test for
each F ∈ Iso(SMU(n,m)) its resolution hardness h(F ) using the SAT encoding,
which we describe in Sects. 4 and 5.

We split the computation of Iso(SMU(n,m)) into two parts. We first generate
Iso(RSMU(n,m)) for �log2(m)� ≤ n < m. Due to Proposition 1, we can do
this by enumerating non-isomorphic 2-graphs, which correspond to clause-literal
graphs of formulas in RSMU(n,m). We can limit ourselves to 2-graphs G =
(V1 � V2, E) where |V1| = 2n and |V1| = m, and where every vertex in V1 has
exactly one neighbor in V1 and at least two neighbors in V2. We use a tailor-
made adaptation of the graph symmetry package Nauty [13] to enumerate such
graphs; further details can be found in Sect. 6.

If n and m are such that 2n−1 < m−1, we know there cannot be any formulas
in SSMU(n,m) because singular DP-reduction would turn them into minimally
unsatisfiable formulas on n − 1 variables with 2n−1 < m − 1 clauses, but no
such formulas exist. Hence, in those cases RSMU(n,m) = SMU(n,m), and we
already have Iso(SMU(n,m)). From these starting points, we repeatedly apply
Lemma 4 to every formula in Iso(SMU(n,m)) to obtain Iso(SSMU(n+1,m+1)).
Together with Iso(RSMU(n + 1,m + 1)) we then obtain Iso(SMU(n + 1,m + 1)).

The rationale for splitting the computation of SMU(n,m) into two pieces is
the following. Enumerating non-isomorphic clause-literal graphs by Nauty for
given parameters n and m is the hardest part of our computation. We often
need to enumerate a significantly larger set than SMU(n,m). Therefore, we need
to prune the enumeration phase as much as possible. When focusing on regu-
lar formulas, we can introduce additional bounds for Nauty, which significantly
speed up the search. Applying then Lemma4 inductively to the rather small set
SMU(n,m) is computationally affordable (as long as the set SMU(n,m) remains
reasonably small).

Since we are interested only in saturated minimally unsatisfiable formulas,
we need to filter the graphs that we generate, which requires multiple calls to
a SAT solver for every graph generated. Re-initializing the SAT solver with
different formulas for different tests is expensive. Therefore it is desirable to
bundle as many SAT calls together either by adding clauses incrementally or by
using assumptions. While incrementally testing minimal unsatisfiability without
solving multiple different formulas is relatively straightforward (via clause selec-
tor variables), it is not immediately clear how to do the same for saturation.
We devised an algorithm that decides saturated minimal unsatisfiability using
assumption-based calls to a SAT solver without the need to solve multiple dif-
ferent formulas. As a bonus, the formula for the saturation test contains all the
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clauses of the formula used for the minimality test, so both tests can proceed
incrementally. The following lemma is the basis for our algorithm (a satisfiability
test precedes the saturation test in our implementation, so it is safe to assume
that the formula tested is unsatisfiable).

Lemma 7. Let F be an unsatisfiable formula, C a clause of F , and x �∈ C a
literal. The formula E = F ∪ (C ∪ {x}) \ C, where the clause C was extended
with the literal x, is unsatisfiable if and only if the formula G = F ∪ {{x}} \ C
is unsatisfiable.

Proof. If E is unsatisfiable, so is G because every clause in G is a subset of
some clause in E. Conversely, assume that E is satisfiable with the assignment
τ . Because τ satisfies F \ C, and F is unsatisfiable, τ must falsify C, and so it
must satisfy x. Hence, it satisfies G. �

Lemma 7 gives rise to the following algorithm: for all C ∈ F and every literal
x �∈ C, check whether F ∪ {x} \ C is unsatisfiable. If so, the clause C can be
extended with x preserving unsatisfiability, meaning that F is not saturated.
This can be implemented in an assumption-based fashion with a single formula
by augmenting F with all possible unit clauses, adding selector variables to every
clause, and turning clauses on and off as necessary using assumptions.

4 Encoding for Shortest Resolution Proofs

This section gives the details of our SAT encoding computing the shortest reso-
lution proof of an input formula. We aim to encode the following question.

Given a formula F with the clauses (axioms) A1, . . . , Am and var(F ) = V =
{x1, . . . , xn}, does there exist a resolution refutation of F of length at most s,
i.e., does there exist a sequence P = L1, . . . , Ls of s lines (clauses), such that
each Li is either some axiom Aj or a resolvent of two previous Li′ , Li′′ , i′, i′′ < i,
and Ls is empty. We denote this problem by SHORT(F, s).

It is easy to see that SHORT(F, s) is coNP-hard (s given in binary): since each
unsatisfiable formula F with n variables has a resolution refutation of length
at most 2n+1 − 1, we have UNSAT(F) = SHORT(F, 2n+1 − 1). Therefore, using
a SAT-based approach is indeed justified. On the other hand, membership in
NEXPTIME can easily be seen as well: guess a refutation of length s and verify
that it is correct. The precise complexity of SHORT(F, s) is an open problem—our
intuition, based on our inability to construct a deterministic single-exponential-
time algorithm for SHORT(F, s), is that it might be NEXPTIME-complete.

The basic idea of our encoding is to have variables pos[i, v] and neg[i, v] that
determine whether v and v occur in Li, and variables arc[i, j], which hold the
information about the structure of the resolution steps in the proof. Together,
these variables fully determine a candidate resolution proof sequence P . We
additionally use auxiliary variables to express certain constraints more succinctly.
Table 1 lists the core variables used by the encoding.
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We drew inspiration from a similar encoding proposed by Marques-Silva
and Menćıa [14] (henceforth referred to as MSM), but took several departures,
afforded by the fact that we focus on minimally unsatisfiable formulas. One of the
strongest points of MSM, enumerating minimal correction subsets (MCSes, i.e.,
inclusion-minimal sets of clauses whose deletion renders the formula satisfiable)
in a preprocessing step, becomes trivial for minimally unsatisfiable formulas:
the MCSes are precisely all singletons by definition of minimal unsatisfiability.
Instead, we require that every axiom of the input formula is used in the proof.

On the other hand, we extend the encoding with powerful symmetry break-
ing predicates. These predicates, explained in detail in Sect. 5, completely break
all symmetries resulting from different permutations of the same sequence of
clauses, and as such, they constitute a valuable theoretical contribution. More-
over, thanks to this additional symmetry breaking, we were able to compute
shortest proofs of several formulas, for which MSM failed to produce an answer
in hours of running time. This symmetry breaking uses further auxiliary vari-
ables, which are introduced in Sect. 5.

Another novelty of our encoding is the capacity to reject a partially con-
structed proof early based on a counting argument involving the number of
times a clause is used in resolution steps. We give the details at the end of this
section.

Table 1. Variables used by the shortest-proof encoding. The symbol v is understood to
range over V , while the symbols i, j range over the set {1, . . . , s} with i < j, except for
ax[i, j], where j ranges over {1, . . . ,m} instead. The ∗-marked terms are asymptotically
dominating (m ≤ s).

Variable Meaning How many

pos[i, v] v ∈ Li O(ns)

neg[i, v] v ∈ Li O(ns)

piv[i, v] v is the pivot variable for the resolvent Li O(ns)

ax[i, j] Li = Aj O(ms)

isax[i] ∃j : Li = Aj O(s)

arc[i, j] Li is a premise of Lj O(s2)

upos[i, v] v occurs in at least one premise of Li O(ns)

uneg[i, v] v occurs in at least one premise of Li O(ns)

poscarry[i, j, v] v ∈ Li and Li is a premise of Lj O(ns2)∗

negcarry[i, j, v] v ∈ Li and Li is a premise of Lj O(ns2)∗

In the following subsections, we list the clauses of the encoding, using complex
Boolean expressions where convenient, and implicitly assuming that those are
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translated into a logically equivalent CNF in the natural way. Sometimes we
write pos|neg to save space, meaning that the surrounding expression should be
interpreted twice, with pos and neg substituted. We will also use cardinality
constraints of the form

∑
x∈X x ≤ k, which can be encoded using an arbitrary

CNF cardinality-constraint encoding. We use the sequential counter [19], which
seemed to perform best in our tests.

Definitions. First, we list all the clauses that provide definitions for the variables
ax, isax, {pos|neg}carry, the union of premises via u{pos|neg}, and piv.

∧

1≤i≤s
1≤j≤m

ax[i, j] →
⎛

⎝
∧

v∈Aj

pos[v, i]
∧

v∈Aj

neg[v, i]
∧

v �∈var(Aj)

pos[v, i] ∧ neg[v, i]

⎞

⎠ ,

∧

1≤i≤s

⎛

⎝isax[i] =
∨

1≤j≤m

ax[i, j]

⎞

⎠ ,

∧

1≤i,j≤s;v∈V

{pos|neg}carry[i, j, v] = {pos|neg}[i, v] ∧ arc[i, j],

∧

1≤j≤s;v∈V

(

u{pos|neg}[j, v] =
∨

1≤i<j

{pos|neg}carry[i, j, v]

)

,

∧

1≤i≤s;v∈V

piv[i, v] = upos[i, v] ∧ uneg[i, v].

Essential Constraints. The final clause is empty:
∧

v∈V pos[i, v] ∧ neg[i, v].

Axioms have no incoming arcs:
∧

1≤i<j≤s isax[j] → arc[i, j].

Clauses are non-tautological:
∧

1≤i≤s
v∈V

pos[i, v] ∨ neg[i, v].

Non-pivot literals are retained after resolution.
∧

1≤i≤s;v∈V

piv[i, v] ∧ u{pos|neg}[i, v] → {pos|neg}[i, v]

No new literals are introduced into resolvents.
∧

1≤i≤s;v∈V

isax[i] ∧ {pos|neg}[i, v] → u{pos|neg}[i, v]
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Every resolvent has a pivot:
∧

1≤i≤s

(
isax[i] → ∨

v∈V piv[i, v]
)
, and the pivot is

unique:
∧

1≤i≤s
v �=v′∈V

piv[i, v] ∨ piv[i, v′]. Every clause has exactly two premises1.

∧

3≤j≤s

∑

1≤i<j

arc[i, j] = 2

Redundant Constraints. If we search for the proof by iteratively incrementing
the bound s, we know that every clause must be used:

∧
1≤i<s

∨
i<j≤s arc[i, j].

Axioms, do not have pivots:
∧

1<i≤s
v∈V

isax[i] → piv[i, v]. We require that the

axioms are placed at the beginning of the proof
∧

1≤i<s isax[i+1] → isax[i], and in
the same order as they appear in the original formula

∧
1≤i≤s;1≤j1≤j2≤m ax[i, j2]∨

ax[i + 1, j1]. Hence, Aj can appear no later than as Lj , expressed by the unit
clauses ax[i, j] for 1 < i ≤ s and 1 ≤ j ≤ min(i − 1,m). When considering only
MU formulas, we can omit the above and directly place all axioms at the start
in a fixed order:

∧m
i=1 ax[i, i]

∧s
i=m+1 isax[i].

Counting the In- and Out-Degrees. For every sequence of clauses P = L1, . . . , Ls

that constitutes a resolution proof we can define a directed acyclic graph (DAG)
G(P ) whose vertices are the clauses of P and which has the arcs (Li, Lk) and
(Lj , Lk) if Lk is a resolvent of Li and Lj . Using the redundant constraints from
above and assuming minimal unsatisfiability of F , we will show how one can place
an additional redundant constraint on the proof DAG structure. This feature is
based on the simple identity

∑
L∈G dout(L) =

∑
L∈G din(L), which holds in every

directed graph G. In a proof DAG G(P ) of size s, axioms have in-degree 0 and
resolvents have in-degree 2, so

∑
L∈G(P ) din(L) = 2(s − m). At the same time,

every clause except for the last has out-degree at least 1. Therefore, at any time
of the search, with d′

out(Li) ≥ 0 outgoing arcs already added to Li in the partial
DAG, it must hold that

s−1∑

i=1

max(d′
out(Li), 1) ≤ 2(s − m) ⇐⇒

s−1∑

i=1

max(d′
out(Li) − 1, 0) ≤ s − 2m + 1.

We encode the latter inequality as a cardinality constraint. To capture the value
of max(d′

out(Li)−1, 0), we introduce the notion of an extra arc: for a clause Li ∈
P with multiple outgoing arcs to clauses Lj1 , . . . , Ljk , j1 < · · · < jk, we say that
the arcs to Lj2 , . . . , Ljk are extra.2 Hence, max(dout(Li) − 1, 0) is precisely the
number of extra outgoing arcs from Li. We define the variables exarc[i, j] whose
meaning is that arc[i, j] is an extra arc and enforce the cardinality constraint on
them.
1 It would be enough to specify the at-most-two constraint here: the presence of at

least two premises for resolvents is already enforced by the existence of a pivot and
because the clauses are non-tautological: the pivot appears in both polarities in
the union of premises (upos and uneg), which could not happen with one premise.
Nevertheless, including both constraints appears to improve performance.

2 This includes symmetry breaking: the single non-extra arc is the first one.
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∧

1≤i<j<k≤s

arc[i, j]∧arc[i, k] → exarc[i, k];
∑

1≤i<j≤s

exarc[i, j] ≤ s−2m+1.

Since the cardinality constraint is unsatisfiable if the right-hand side is nega-
tive, we additionally get that s ≥ 2m − 1; indeed, a shorter proof could not use
all m axioms. In other words, any proof of an MU formula must be “read-at-
least-once.”

5 Symmetry Breaking

Consider the proof DAG G(P ) of a resolution proof P . Any proof P is simply
a topological sort of its DAG G(P ). If two sequences P1 and P2 share the same
DAG G(P1) = G(P2) = G, then P1 and P2 are essentially the same proof. Our
aim now is to make sure that for each candidate proof DAG G, exactly one
topological sort is accepted by the encoding.

A directed acyclic graph can be topologically sorted by repeatedly picking
and deleting from G a source vertex, i.e., one with no incoming arcs, as the next
vertex in the resulting topologically sorted sequence. In the event that several
sources are available, any one can be picked, which is why a given DAG, in
general, has many topological sorts. We define a canonical topological sort of a
given DAG G in the following way. Let ≤∗ be an arbitrary total order on the
vertices of G. The canonical topological sort of G is the topological sort that
results from always picking the greatest source vertex under ≤∗. The idea for
this symmetry breaking is due to Schidler and Szeider [18] who introduced it
in a different context; Fichte et al. [5] further studied this technique under the
name LexTopSort.

To verify that a given sequence P is the canonical topological sort of G(P ),
we need to check that for every pair of vertices Li, Lj , i < j, if Lj was a source
already at the time when Li was inserted, then Lj ≤∗ Li. We can check whether
Lj was a source simultaneously with Li by checking that there is no arc (Lk, Lj)
with i ≤ k. This is the role of the variables sim[i, j].

We also need to reason about the order ≤∗ on clauses. We define the following
order on the literals x1 < x1 < · · · < xn < xn, and order clauses of the proof
lexicographically based on this order: Li <∗ Lj if there is a literal l ∈ Lj such
that l �∈ Li and {l′} ∩ Li = {l′} ∩ Lj for all l′ < l. We represent ≤∗ using
the variables equal[i, j, l], which say that the clauses Li and Lj are equal up to
position l in the ordering of the literals, and the corresponding constraints below.

∧

1≤i<j≤s

equal[i, j, x1] = (pos[i, x1] ⇐⇒ pos[j, x1])

∧

1≤i<j≤s; 1<k≤n

equal[i, j, xk] = equal[i, j, xk−1] ∧ (pos[i, xk] ⇐⇒ pos[j, xk])

∧

1≤i<j≤s; 1≤k≤n

equal[i, j, xk] = equal[i, j, xk] ∧ (neg[i, xk] ⇐⇒ neg[j, xk])
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Definition of sim: for 1 ≤ i < s, sim[i, i + 1] = arc[i, i + 1], and
∧

1≤i<j−1≤s

sim[i, j] = sim[i + 1, j] ∧ arc[i, j].

The following constraint enforces that the sequence is the canonical topological
sort (for resolvents only, the order of axioms is handled differently—see Sect. 4).

∧

1≤i<j≤s

(
sim[i, j] ∧ ax[i]

)
→ (pos[i, x1] ≥ pos[j, x1])

∧

1≤i<j≤s
1≤k≤n

(
sim[i, j] ∧ ax[i] ∧ equal[i, j, xk]

)
→ (neg[i, xk] ≥ neg[j, xk])

∧

1≤i<j≤s
1≤k<n

(
sim[i, j] ∧ ax[i] ∧ equal[i, j, xk]

)
→ (pos[i, xk+1] ≥ pos[j, xk+1])

∧

1≤i<j≤s

equal[i, j, xn]

The following theorem summarizes the properties of our encoding.

Theorem 1. Let F be a propositional formula on n variables and m clauses
and let shorts(F ) be the formula defined above. Then the following statements
hold:

1. the size of shorts(F ) is polynomial in max(n,m, s) (s can be exponential in
the input length);

2. shorts(F ) is satisfiable if and only if F has a resolution refutation of length
s in which every clause is used to derive the empty clause;

3. any model of shorts(F ) can naturally be interpreted as a sequence of clauses
P that constitutes a valid resolution proof of F;

4. P is the canonical topological sort of G(P ).

Theorem 1 gives rise to a simple algorithm. Start with s = 1, and increment s by
one while shorts(F ) is unsatisfiable. As soon as shorts(F ) becomes satisfiable,
s is the length of a shortest resolution refutation of F , and the refutation itself
can be extracted from a model of shorts(F ). An improvement is possible for
MU formulas, by starting not at s = 1, but s = 2m − 1, as described in Sect. 4.

6 Experiments

In this section, we describe how we performed our computations. We will refer to
formulas and graphs interchangeably throughout this section, saying for instance
that a graph is minimally unsatisfiable. In such cases, it is understood that we
are using the correspondence between formulas and graphs sketched in Sect. 3,
and implicitly mean the corresponding object.
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To generate Iso(RSMU(n,m)), we run a modified version of the genbg utility3

from the graph automorphism package Nauty [13], which enumerates isomorph-
free 2-graphs. The modification is that the graphs generated are not bipartite as
in genbg, but V1 induces a matching, i.e., the graph is a clause-literal graph as
defined in Sect. 2. We run genbg with the parameters -cAtd3:2 2n m, meaning
we are interested in connected (-c) triangle-free (-t) 2-graphs G = (V1 � V2, E),
such that V1 has 2n vertices (the literals) whose minimum degree is 3 (every
literal should occur twice, plus the edge between the two literals of a variable),
and V2 has m vertices (the clauses) with minimum degree 2 (a unit clause would
imply a singular literal, so we can skip such graphs), and such that no two
vertices V2 have neighborhoods that are subsets of one another (-A). This gives
us a set S of graphs that contains Iso(RSMU(n,m)), and such that all graphs
in S represent formulas without tautological clauses (triangle-freeness), without
singular literals (degree bounds), and without subsumed clauses (-A). Hence
it remains to filter the output of genbg for saturated minimal unsatisfiability.
For that purpose we use CryptoMiniSAT [20] via its C API, in essentially the
natural way of testing for saturated minimal unsatisfiability, however, with some
technical optimizations worth mentioning.

It turns out that for small values of n and m, the vast majority of graphs
generated are satisfiable4. This, in turn, means that the vast majority of time
is spent checking satisfiability, which happens to be relatively expensive due to
the need to compute an explicit representation of the clauses and to re-initialize
the solver for every graph from scratch. Upon realizing this limitation, we imple-
mented a carefully tuned and highly cache-performant brute-force satisfiability
test that uses Nauty’s data structures directly and simply checks every assign-
ment, and observed an orders-of-magnitude speed-up.

To check minimal unsatisfiability of a formula F , we construct F ′ = {C ∪
{xC} | C ∈ F } with the fresh selector variables xC , and solve all formulas F ′[τC ],
where τC sets xC to 0 and all other xC′ to 1, via assumptions.

If F passes the minimal unsatisfiability test, we build F ′′ = F ′ ∪ { {�, x�} |
� ∈ lit(F ) } by adding the extra clauses to F ′, which is already loaded in the
SAT solver, and test for saturation by solving the formulas F ′′[τC,�], where τC,�

sets xC and x� to 0 (turns off the clause C and turns on the unit clause {�}) and
all other auxiliary variables to 1, again via assumptions.

Once we have generated Iso(RSMU(n,m)), which is equal to Iso(SMU(n,m))
for values of n,m where MU(n−1,m−1) is empty, we use Lemma 4 to compute
SMU(n + 1,m + 1). Whenever we have computed SMU(n + 1,m + 1), we simply
run our encoding on every formula, incrementally increasing the proof length
bound s, and compute all shortest proofs.

3 We gratefully acknowledge the help of Brendan McKay, author of Nauty, who pro-
vided a modification of genbg for our purpose.

4 As an example, for n = 5 and m = 9, a total of 9356316116 out of the 9360503942
generated graphs were satisfiable. The proportion was similar for other parameters.
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We implemented the encoding and the iterative search for a shortest proof
in Python using the PySAT framework [9]. We concluded from our initial tests
that among the SAT solvers available in PySAT, CaDiCaL5 performed best, and
we decided to stick with it.

Table 2. Values of h(H(n,m)), and in parenthesis the number of formulas in
RSMU(n,m), up to isomorphism, that require resolution proofs of length h(H(n,m)).
For all 3 ≤ n ≤ 9 and n + 2 ≤ m ≤ 10, we found H(n,m) ⊆ RSMU(n,m), except for
H(7, 10) which also contains 19 singular formulas up to isomorphism. By Proposition 2,
h(H(m− 1,m)) = 2m− 1 and so, no computation is necessary. By Lemma 6, there are
no minimally unsatisfiable formulas in the areas marked by a hyphen.

n\m 1 2 3 4 5 6 7 8 9 10

0 1 – – – – – – – – –

1 – 3 – – – – – – – –

2 – – 5 7(1) – – – – – –

3 – – – 7 10(1) 11(3) 13(1) 15(1) – –

4 – – – – 9 13(1) 15(1) 19(1) 20(1) 21(5)

5 – – – – – 11 16(1) 18(3) 22(1) 25(1)

6 – – – – – – 13 19(1) 22(3) 26(3)

7 – – – – – – – 15 22(1) 25(5)

8 – – – – – – – – 17 25(1)

9 – – – – – – – – – 19

Table 2 lists the length of the longest shortest proof required by an SMU(n,m)
formula, and, by taking the maximum in each column, also values of hm. In
particular, we obtain the first ten resolution hardness numbers:

(hm)m≥1 = 1, 3, 5, 7, 10, 13, 16, 19, 22, 26, . . .

We observe the interesting phenomenon that all computed formulas attaining
the maximum hardness hm are regular.

It is known that every MU(n,m) formula has a proof of length at most
2m−n−1n+m [11, Section 11.3], and, along with the existence of formulas which
require exponentially long proofs, this implies that maximum hardness cannot
forever be attained by formulas of any bounded deficiency m − n. Our compu-
tations reveal that m = 10 is the tipping point where formulas of deficiency 2
“drop out of the race,” as there is no longer a hardest formula of deficiency 2, see
Table 2. Up to isomorphism, there are exactly three hardest formulas for m = 10,
all of which are of deficiency 4. Figure 1 shows the clause-literal graphs of these
three formulas.

Our encoding [16] and our catalog of SMU formulas [15] are publicly available.
5 https://fmv.jku.at/cadical.

https://fmv.jku.at/cadical


Finding the Hardest Formulas for Resolution 529

Fig. 1. Clause-literal graphs of the three hardest formulas with 10 clauses.

7 Conclusion

We conducted an extensive computational investigation into resolution hardness.
First, we developed theoretical foundations that allowed us to pinpoint classes
of formulas of maximum resolution hardness. Then, using a tight graph repre-
sentation of formulas and carefully tuned generation procedures, we computed
all candidates for hardest formulas for up to ten clauses. With this information,
and using a SAT encoding for the computation of shortest resolution proofs
targeted towards minimally unsatisfiable formulas and with powerful novel sym-
metry breaking, we calculated the first ten resolution hardness numbers. Our
results indicate that regular saturated minimally unsatisfiable formulas achieve
the highest hardness. It remains as an interesting theoretical question whether
the hardest formulas are always regular.
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Abstract. Multi-valued decision diagrams (MDDs) were introduced
into constraint programming over a decade ago as a powerful alternative
to domain propagation. While effective MDD-propagation algorithms
have been proposed for various constraints, to date no system exists
that can generically compile and combine MDD propagation for arbi-
trary constraints. To fill this need, we introduce Haddock, a declarative
language and architecture for MDD compilation. Haddock supports the
specification, implementation, and composition of a broad range of MDD
propagators that delivers the strength one expects from MDDs at a frac-
tion of the development effort and with comparable performance. This
paper describes the language, the framework architecture, outlines its
performance credentials and demonstrates how to specify and implement
novel MDD propagators.

1 Introduction

Binary decision diagrams (BDDs) were first introduced to represent Boolean
functions in the context of switching circuit verification [1,26]. They became
widely popular within various branches of computer science after Bryant pro-
posed effective algorithms to compile BDDs with a fixed variable ordering [7,8].
Since then, many variants of decision diagrams have been developed, including
multi-valued decision diagrams (MDDs) for representing functions with discrete
(multi-valued) variables [30]. In the context of constraint programming, decision
diagrams can be interpreted as a compact graphical representation of the solution
set to a given discrete structure, typically represented by a (global) constraint.
For example, decision diagrams were used to develop propagation algorithms for
constraints over sets [13,20,25], n-ary table constraints [10], and Regular con-
straints [9]. All these works use MDDs as an efficient data structure to perform
traditional domain propagation.

Andersen et al. [2] were the first to recognize that instead of propagating
domains, it is possible to propagate MDDs: in addition to a domain store, the
constraint solver maintains an MDD store on which constraints perform filtering.
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 531–547, 2020.
https://doi.org/10.1007/978-3-030-58475-7_31
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The key contribution of [2] is to introduce relaxed decision diagrams that are
of polynomial size by explicitly limiting their width (the maximum number of
nodes per layer). When the width is limited to one, MDD propagation defaults to
domain propagation. Larger widths can lead to increasingly more effective MDD
propagation, as shown in a range of papers that study the compilation and
application of MDD-based constraint programming [4,11,16–19,22,24].

MDD propagation methods are all based on the same underlying princi-
ples for compiling, refining, and filtering the decision diagram, as summarized
in [22]. Yet, their implementations are often dedicated to their specific task or
purpose [12,14,15,28,29]. To date, no system exists that allows users or develop-
ers to easily define and combine MDD propagators in constraint programming
models. In this work, we take on this task and present Haddock,1 a language
and architecture that uses an MDD specification to automatically compile and
integrate decision diagrams into a CP solver.

Contributions. Our primary contribution is the introduction of a specification
language and associated implementation architecture that not only allows the
automatic compilation of the diagram, but also generates the rules for refining
(splitting) and filtering (propagating) MDD abstractions. This concretizes and
generalizes the framework for MDD-based constraint programming proposed in
[22]. While that framework allows one to describe MDD propagators based on
transitions between states, it does not provide concrete functionality for generic
propagation, refinement, or composition. Another related compilation framework
is proposed in [5,6], which uses a dynamic programming formulation as input to
compile the diagram. We will apply similar concepts, but we note that a dynamic
programming model alone is not sufficient, e.g., for describing some of the MDD
propagation rules or the integration into a CP solver. Instead, we adopt the
formalism of labeled transition systems as an abstraction of MDDs.

We have implemented Haddock in the C++ version of MiniCP [27].2 So far,
Haddock contains MDD specifications for AllDiff, Among, Gcc, Sequence,
and (weighted) Sum constraints, as well as some problem-specific MDD propa-
gators. Haddock allows the user to declare multiple MDDs within a CP model,
each associated with a suitable set of constraints, and automatically integrates
the MDD propagators into the constraint propagation fixpoint computation.
Haddock offers comparable performance for MDD propagation at a fraction of
the development effort needed for dedicated implementations.

Motivating Example. We will use the Among constraint as the running exam-
ple for this paper. Recall that Among(x, lb, ub, S) is defined as

lb ≤
n−1∑

i=0

(xi ∈ S) ≤ ub (1)

1 Haddock stands for ‘Handling Automatically Decision Diagrams Over Constraint
Kernels’. It also refers to a saltwater fish, as well as to a fictional character from the
Tintin comic series by Hergé, both of which are however irrelevant to this paper.

2 Code: https://bitbucket.org/ldmbouge/minicpp/commits/tag/HADDOCK.

https://bitbucket.org/ldmbouge/minicpp/commits/tag/HADDOCK
https://bitbucket.org/ldmbouge/minicpp/commits/tag/HADDOCK
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int main() {
int width = 64, H = 40;
int L1 = 0, U1 = 6, N1 = 8;
int L2 = 22, U2 = 30, N2 = 30;
int L3 = 4, U3 = 5, N3 = 7;
auto cp = makeSolver();
auto vars = boolVarArray(cp, H);
auto mdd = new MDD(cp, width);
for (int i=0; i<H−N1+1; i++)

amongMDD(mdd,
vars.sub(i , i+N1),L1,U1,{1});

for (int i=0; i<H−N2+1; i++)
amongMDD(mdd,

vars.sub(i , i+N2),L2,U2,{1});
for (int i=0; i<H−N3+1; i+=7)

amongMDD(mdd,
vars.sub(i , i+N3),L3,U3,{1});

cp−>post(mdd);
...

}

void amongMDD(MDDSpec& mdd,
vector x,int lb ,int ub,
set<int> S) {

mdd.add(x);
auto c = mdd.makeConstraint(x,”amongMDD”);
int Ld = mdd.addState(c,0),Ud = mdd.addState(c,0);
int Lu = mdd.addState(c,0),Uu = mdd.addState(c,0);
mdd.arcExist(cs,[=](p, c, x, v) −> bool {

return (p[Ld] + v∈S + c[Lu] <= ub) &&
(p[Ud] + v∈S + c[Uu] >= lb);

});
mdd.forward(Ld,[=](o,p,x,v){o[Ld]=p[Ld]+v∈S;});
mdd.forward(Ud,[=](o,p,x,v){o[Ud]=p[Ud]+v∈S;});
mdd.reverse(Lu,[=](o,c,x,v){o[Lu]=c[Lu]+v∈S;});
mdd.reverse(Uu,[=](o,c,x,v){o[Uu]=c[Uu]+v∈S;});
mdd.relax(Ld,[=](o,l, r){ o[Ld]=min(l[Ld],r[Ld]);});
mdd.relax(Ud,[=](o,l,r){ o[Ud]=max(l[Ud],r[Ud]);});
mdd.relax(Lu,[=](o,l, r){ o[Lu]=min(l[Lu],r[Lu]);});
mdd.relax(Uu,[=](o,l,r){ o[Uu]=max(l[Uu],r[Uu]);});

}

Fig. 1. Pseudo-C++ code to create a nurse rostering model using an MDD (left) and
pseudo-C++ Haddock code for creating an Among MDD propagator (right).

for an array of n variables x, a lower bound lb, an upper bound ub, and a
set of values S. In [22], an MDD propagator for Among, establishing MDD
consistency in polynomial time, was proposed and implemented. The pseudo-
C++ Haddock fragment shown on the right of Fig. 1 generates code with
equivalent MDD propagation behavior. The amongMDD function takes a reference
to an MDDSpec object mdd that accumulates all the specifications. Its other
arguments are the array of variables x, the bounds lb and ub, and the set of
values S. Line 4 tracks the array of variables and line 5 creates a descriptor for
the four properties specified in lines 6–7 and to be held in a state. The remainder
of the code relies on closures to define the arc existence condition as well as the
transition functions and relaxations for the four properties. The method forward
is used to add top-down transitions while reverse adds bottom-up transitions.

With 18 lines of code, a developer specifies a reusable factory that models
instances of Among. Multiple calls to this factory results in a composition of
specifications to model their conjunction. An example of this is shown on the
left of Fig. 1 for the nurse rostering problem. It creates the traditional deci-
sion variables (line 8), an MDD propagator (line 9), and multiple amongMDD
constraints for various shifts of windows of length N1, N2, and N3. A call to
x.sub(a,b) returns the sub-sequence of variables [xa, xa+1, ..., xb]. Finally, it
posts the MDD representing the conjunction of these constraints on line 18.
The search is omitted for brevity’s sake. The remainder of the paper explains
this MDD specification language, its semantics, and how to mechanically derive
propagators. Section 2 formally describes MDDs in terms of labeled transition
systems. Section 3 introduces the different elements of our description language
using states and transitions. We formally introduce the resulting MDD language
in Sect. 4. Section 5 describes the implementation details of Haddock, followed
by an experimental evaluation Sect. 6. We conclude in Sect. 7.
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2 Decision Diagrams as Labeled Transition Systems

MDDs are commonly defined as layered directed acyclic graphs [5,30]. For our
purposes, however, it is more convenient to formalize an MDD using a labeled
transition system (LTS) as abstraction. Namely, an LTS allows us to describe
the rules that govern an MDD rather than the MDD itself, and it provides
a computational device to compile MDDs. Furthermore, an LTS abstraction
can more clearly express the steps of generic MDD compilation, such as the
computation of intermediate states, than the concrete acyclic directed graph.

We first recall the definition of labeled transition systems [23]:

Definition 1. A labeled transition system is a triplet 〈S,→, Λ〉 where S is a
set of states, → is a relation of labeled transitions between states from S and Λ
is a set of labels used to tag transitions.

A transition from state S0 to state S1 (both in S) belonging to the relation →
is denoted S0

�→ S1 with � ∈ Λ. A start state S⊥ has no predecessors according
to the transition relation → while an end state S� has no successors.

Next we define an LTS to represent a single constraint (without loss of gen-
erality) from which we will derive our MDD definition.

Definition 2. Given a constraint c(x) of arity k over an ordered set of variables
x = x0, . . . , xk−1 with domains D(x0), . . . , D(xk−1), we define the associated
labeled transition system as L(c, x) = 〈S,→, Λ〉 in which S, Λ and → are defined
as follows:

– the state set S is stratified in k+1 layers L0 through Lk with transitions from
→ connecting states between layers i and i + 1 exclusively;

– the transition label set Λ is defined as
⋃

i∈0..k−1 D(xi);
– a transition between two states a ∈ Li and b ∈ Li+1 carries a label v ∈ D(xi);
– the layer L0 consists of a single source state S⊥;
– the layer Lk consists of a single sink state S�.

By interpreting states as nodes and transitions as arcs, L(c, x) represents a
directed acyclic graph. In particular, a path from S⊥ to S� corresponds to a
complete variable assignment. While Definition 2 directly links variable assign-
ments to transitions between layers in the LTS, the constraint c is implicitly
represented in the states S and the transition function. We next define MDDs
as labeled transition systems with specific properties:

Definition 3. Given a constraint c(x) over an ordered set of variables x, a
relaxed MDD with respect to c(x) is an LTS L(c, x) such that each state in S
lies on at least one S⊥-S� path and each feasible solution to c corresponds to
an S⊥-S� path. An exact MDD with respect to c(x) is a relaxed MDD in which
additionally every path from S⊥ to S� corresponds to a feasible solution to c.

In order to compile an MDD, constraints must be appropriately defined in terms
of states S and the transition function →. We must furthermore specify a suitable
state relaxation function to merge non-identical states.
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Example 1. Consider the constraint Among({x0, x1, x2, x3}, l = 1, u = 2, S =
{1}) where each variable has domain {0, 1}. Similar to [22], we define a state s
by four properties, as a tuple (L↓(s), U↓(s), L↑(s), U↑(s)), where

L↓(s) represents the minimum occurrence of values in S along any S⊥-s path,
U↓(s) represents the maximum occurrence of values in S along any S⊥-s path,
L↑(s) represents the minimum occurrence of values in S along any s-S� path,
U↑(s) represents the maximum occurrence of values in S along any s-S� path.

We initialize layer L0 with the state S⊥ = (0, 0,∞,∞) and layer Ln with the
state S� = (∞,∞, 0, 0).

We next consider the transition relation s
v→ s′ from state s ∈ Li via an arc

labeled with v ∈ D(xi) to a state s′ ∈ Li+1. This transition affects the properties
L↓(s) and U↓(s) as

L↓(s′) = L↓(s) + (v ∈ S)
U↓(s′) = U↓(s) + (v ∈ S).

We call such properties forward properties since they follow the orientation of
the transition. The properties L↑(s) and U↑(s), however, are updated reversely
along the transition:

L↑(s) = L↑(s′) + (v ∈ S)
U↑(s) = U↑(s′) + (v ∈ S).

We therefore call such properties reverse properties. Lastly, we use the state
properties to define an existence rule, i.e., transition s

v→ s′ exists if

(L↓(s) + (v ∈ S) + L↑(s′) ≤ u) ∧ (U↓(s) + (v ∈ S) + U↑(s′) ≥ l).

Figure 2(a) depicts an LTS that represents an exact MDD for our constraint. The
values of the properties are indicated inside the nodes representing the states.
One can inspect that each path from S⊥ to S� corresponds to a solution to the
constraint, and vice-versa. The width of the exact MDD is three.

To define a relaxed MDD, we specify a merge operator that takes two states
a, b ∈ Li and merges them into a single state s. For Among, we define it as:

L↓(s) = min(L↓(a), L↓(b)) L↑(s) = min(L↑(a), L↑(b))
U↓(s) = max(U↓(a), U↓(b)) U↑(s) = max(U↑(a), U↑(b)).

Observe that this merging operator relaxes the state computation. It therefore
may introduce non-solutions to the MDD but will never lead to the removal of
solutions. Figure 2(b) depicts a relaxed MDD, where the width is limited to a
maximum of two. Each solution to the constraint is present as a path from S⊥
to S�, but it also contains non-solutions, e.g., (0, 0, 0, 0). 
�

The properties of a state s in the LTS represent information over the collec-
tion of paths from S⊥ to s (i.e., prefixes) and from s to S� (i.e., suffixes). Note
that producing a suitable LTS specification for any given constraint c will yield a
different set of state properties, transition definitions, existence conditions, and
merging rules. The following sections explain how to do this systematically.
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x0

x1

x2

x3

(0, 0, 1, 2)

(0, 0, 1, 2) (1, 1, 0, 1)

(0, 0, 1, 2) (1, 1, 0, 1) (2, 2, 0, 0)

(0, 0, 1, 1) (1, 1, 0, 1) (2, 2, 0, 0)

(1, 2, 0, 0)

0 1

0 1 0 1

0 1 0 1 0

1 0 1 0

a. Exact decision diagram

(0, 0, 0, 3)

(0, 0, 0, 3) (1, 1, 0, 2)

(0, 1, 0, 2) (2, 2, 0, 1)

(0, 1, 0, 1) (1, 2, 0, 1)

(0, 3, 0, 0)

0 1

0 1 0 1

0 1 0

0 1 0 1

b. Relaxed decision diagram

Fig. 2. Exact (a) and relaxed (b) MDDs for the constraint Among({x0, x1, x2, x3},
l = 1, u = 2, S = {1}), where all variable domains are {0, 1}. Each state s depicts its
tuple of properties (L↓(s), U↓(s), L↑(s), U↑(s)) as defined in Example 1.

3 States and Transition Functions

This section describes the core elements of the LTS representation in Haddock
in terms of states and transitions.

3.1 States

For exposition purposes, we assume that states are defined by properties that are
integer-valued, but we note that these can represent Booleans and even richer
types such as floating points or sets.

Definition 4. A state is a tuple s = 〈Pi0 , Pi1 , . . . , Pin−1〉 with n properties
denoted Pik

where each Pik
∈ Z.

It is important to realize that our LTS, and resulting MDD, can carry proper-
ties for multiple constraints. The identifiers (names) created for a constraint c
are collected in a set P(c) = {i0, . . . , in−1}. These identifiers are unique across
constraints, i.e., two constraints are guaranteed to use different property names.

3.2 Forward and Reverse Transition Rules

As shown in Example 1, a transition s
�→ s′ can be processed following the

orientation of the transition (forward), or reversely. A state property may be
subject to transition rules that are forward, reverse, or both. We therefore define
the set of property indices Δ↓ ⊆ {0, . . . , n−1} and Δ↑ ⊆ {0, . . . , n−1} to indicate
the properties that will be processed by the forward and reverse transition rules,
respectively. We start by defining how individual properties are updated by a
transition, by means of forward and reverse property transition rules:



HADDOCK: A Language and Architecture for Decision Diagrams 537

Definition 5. A forward property transition rule for property Pi is a function
T ↓

i : S × Z × D → Z. It takes as input a source state s ∈ Lj, the layer index j
(i.e., variable xj), and a domain value v ∈ D(xj) to produce a value for property
Pi in the destination state s′ ∈ Lj+1.

Definition 6. A reverse property transition rule for property Pi is a function
T ↑

i : S × Z × D → Z. It takes as input a state s ∈ Lj+1, the layer index j (i.e.,
variable xj), and a domain value v ∈ D(xj) to produce a value for property Pi

in the destination state s′ ∈ Lj.

We next use the individual property transition rules to define forward and
reverse state transition rules:

Definition 7. A forward state transition rule is a function T ↓ : S × S × Z ×
D → S. Given a source state s = 〈P0, . . . , Pn−1〉 ∈ Lj, a destination state
d = 〈Q0, . . . , Qn−1〉 ∈ Lj+1, the layer index j (i.e., variable xj), a domain value
v ∈ D(xj) and the set of forward property indices Δ↓, it computes the forward
property transitions of the successor state s′ in Lj. The function is defined as
follows:

∀i ∈ {0, . . . , n − 1} : Q′
i =

{
T ↓

i (s, j, v) if i ∈ Δ↓

Qi if i /∈ Δ↓

and, finally
T ↓(s, d, j, v) = 〈Q′

0, . . . , Q
′
n−1〉.

Definition 8. A reverse state transition rule is a function T ↑ : S × S × Z ×
D → S. Given a source state s = 〈P0, . . . , Pn−1〉 ∈ Lj+1, a destination state
d = 〈Q0, . . . , Qn−1〉 ∈ Lj, the layer index j (i.e., variable xj), a domain value
v ∈ D(xj) and the set of reverse property indices Δ↑, it computes the reverse
property transitions of the successor state s′ in Lj. The function is defined as
follows:

∀i ∈ {0, . . . , n − 1} : Q′
i =

{
T ↑

i (s, j, v) if i ∈ Δ↑

Qi if i /∈ Δ↑

and, finally
T ↑(s, d, j, v) = 〈Q′

0, . . . , Q
′
n−1〉.

In the definitions of the state transition rules, the destination state d and the
source state s provide values for properties not listed in Δ↓ and Δ↑, respectively.

3.3 Relaxation Functions

By design, a state s is generally subject to multiple forward and reverse state
transitions. These are aggregated, or merged, via pointwise property relaxation
functions. Relaxation functions are also applied to merge non-identical states
when a layer exceeds the given maximum MDD width.

Definition 9. A property relaxation function for property Pi takes the form Ri :
S ×S → Z. It takes as input states s� = 〈P �

0 , . . . , P �
n−1〉 and sr = 〈P r

0 , . . . , P r
n−1〉

and returns P ′
i = Ri(s�, sr) as the merged property.
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The individual property relaxations are used to define state relaxation functions:

Definition 10. A state relaxation function takes the form R : S × S → S.
Given states s� and sr it computes 〈R0(s�, sr), . . . , Rn−1(s�, sr)〉.

3.4 Transition Existence Functions

A critical component of MDD propagation is arc filtering, i.e., the removal of
arcs that do not belong to any path corresponding to a solution to the constraint.
Arc filtering is performed by applying transition existence functions, which rely
on the source and destination states, as well as the transition label:

Definition 11. A transition existence function takes the form Et : S ×S ×Z×
D → B. Given a parent state p, a child state c, a layer j for state c, and a
transition label v, the function returns the existence of path S� � p

v→ c � S⊥
whose labels correspond to a solution to the constraint.

3.5 State Functions

State transitions are defined pointwise in terms of forward and reverse property
transitions. This does not provide for state-wide reasoning involving multiple
state properties. In some cases, for example the MDD propagation for Sequence
constraints [4], it is desirable to process multiple state properties simultaneously.
State update functions provide this capability:

Definition 12. A state update function takes the form U : S → S. It is
a state transformation function that updates property Pi based on properties
P0, . . . , Pi−1, Pi+1, . . . , Pn−1 for i = 0, . . . , n − 1.

Analogous to transition existence functions, we also define state existence
functions:

Definition 13. A state existence function takes the form Es : S → B. Given a
state p the function returns the existence of paths S� � p and p � S⊥ whose
labels correspond to a solution to the constraint.

Example 2. Continuing Example 1, we recognize that the state properties, the
forward and reverse transition functions, the relaxation functions, and the transi-
tion existence function all follow the specifications in this section. As an example
of a state existence function for Among, we could define for a state s:

Es(s) = (L↓(s) + L↑(s) ≤ u) ∧ (U↓(s) + U↑(s) ≥ l).


�
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4 MDD Language

It is, perhaps, valuable to cast an LTS as a virtual machine formalism in which to
capture the computational aspects of an MDD. An LTS faithfully models state
derivation via tentative variable assignments as well as state relaxations with
transitions. Yet, it remains a computational artifact that is delicate to describe
and harder to maintain. This section introduces an MDD language to express
the set of source-to-sink paths forming the MDD that an LTS computes. To a
large extent, MDD languages are to LTS what regular expressions are to DFAs.
Namely, an MDD language enables a developer to elevate the discourse and cap-
ture the language to be recognized in a fairly compact and declarative fashion. It
leaves to a “compiler” the delicate task of producing the state machine. Figure 1
provides an illustration of an MDD language given in pseudo-C++. The purpose
of this section is to describe the language more precisely.

Definition 14. Given a constraint c(x0, . . . , xk−1) over an ordered set of vari-
ables X = {x0, . . . , xk−1} with domains D(x0), . . . , D(xk−1) the MDD language
for c is a tuple Mc = 〈X,P, S⊥, S�, T ↓, T ↑, U,Et, Es, R〉 where P is the set of
properties used to model states, S⊥ is the source state, S� is the sink state, T ↓

is the forward state transition rule, T ↑ is the reverse state transition rule, U is
the state update function, Et is the transition existence function, and Es is the
state existence function.

We note that with the exception of X, all elements in the tuple Mc depend on
the constraint c.

An MDD language is an abstraction to describe the states and rules that
define a labeled transition system 〈S,→, Λ〉 for a given constraint. The LTS
can be interpreted as a computational device that recognizes acceptable paths
forming the MDD for the constraint. This is formalized in the following theorem.

Theorem 1. Let c(x0, . . . , xk−1) be a constraint over an ordered set of variables
X = {x0, . . . , xk−1} with domains D(x0), . . . , D(xk−1). An MDD language Mc

is sufficient to define an exact or relaxed MDD for c.

Proof. The LTS defines states by the properties in P, and relies on S⊥ and S�
for initialization. It produces new states by using the forward and reverse state
transition rules T ↓, T ↑, the state update rule U , and the values in D(xj) for layer
j. The existence of each transition and state is given by Et and Es.

We use the LTS to compute an MDD by organizing the transitions into k+1
layers where S⊥ initializes layer 0, S� initializes layer k, and the transition values
for layer j correspond to the domain values of xj . All transitions out of states in
layer k − 1 are directed to S� via the relaxation operator R. This process may
create paths not connected to S⊥ or S�; we remove such paths from the LTS.

If no maximum width per layer is imposed, the process will create an exact
MDD, which follows from the definition of the properties, state transition rules,
state update rules, and transition and state existence functions, i.e., each path
from S⊥ to S� corresponds to a solution to c.
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In presence of a maximum width per layer, we can arbitrarily merge nodes
using the relaxation operator R, which by definition computes a relaxation of
the merged states. Hence this process produces a relaxed MDD. 
�

Since we use MDDs to represent and propagate multiple constraints simul-
taneously, we need a formalism that supports this functionality. Indeed, MDD
languages can be combined by defining an appropriate conjunction operator, and
the result is again an MDD language, as shown in the following theorem:

Theorem 2. Let M1 and M2 be MDD languages. There exists a conjunction
operator ∧ for MDD languages such that M1 ∧ M2 is also an MDD language,
and represents the set of paths that are common to M1 and M2.

The proof relies on the definition of the conjunction operator, which is detailed
in the Appendix3. It essentially concatenates the tuples that define M1 and
M2. For example, if M1 and M2 are defined on overlapping sets of variables
X1 and X2, the conjunction is defined on X1 ∪ X2 (e.g., ordered first by X1 and
then by X2). The conjunction operator forms the basis of the implementation in
Haddock for composing multiple constraints into an MDD.

Observe that Theorem 1 leaves open many design choices for an actual
implementation of the LTS and associated MDD. Section 5 explains how, opera-
tionally, Haddock uses MDD languages to produce the actual LTS and MDD.

5 Implementation

The purpose of an MDD specification is to mechanize the construction and the
propagation of an actual MDD. Sub-sect. 5.1 first considers the creation (posting)
of an MDD. Sub-sect. 5.2 explores the actual propagation of events occurring
through the course of a CP-style search.

5.1 Posting

Haddock embraces an incremental refinement scheme to construct an
MDD [17]. It starts by creating a width-one MDD connecting S⊥ to S� which is
then refined via node splitting until each layer Li for i ∈ 1..k −1 reaches at most
its target width w and the MDD settles into an MDD propagation fixpoint.

Initialization. Given an MDD language 〈X,P, S⊥, S�, T ↓, T ↑, U,Et, Es, R〉, the
source state S⊥ and sink state S� have their properties initialized to values
suitable for an empty prefix and suffix, respectively, for the constraint c the
MDD models. Specifically, each property in Pi ∈ P subject to a forward property
transition rule T ↓

i should be initialized in S⊥ while each property Pi subject to
a reverse property transition rule T ↑

i should be initialized in S�.

Example 3. Recall that for Among, P = {L↓, U↓, L↑, U↑}, and, therefore, let
S⊥ = [L↓ �→ 0, U↓ �→ 0] and S� = [L↑ �→ 0, U↑ �→ 0]. Namely, the forward
properties are initialized to 0 in the source state and the reverse properties are
initialized to 0 in the sink state. 
�
3 Curious readers can find it in the online supplement.
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Construction. The construction of an MDD proceeds in phases. First, a two
pass (forward and reverse) process creates a width one MDD. The second phase
widens the MDD up to width w through node splitting.

First Phase. The forward pass loops through layers 1..k − 1 to generate states.
Assume that the algorithm operates on layer Lj , i.e., all layers L0 · · · Lj−1 are
already constructed (each layer is a singleton in this phase). It picks the one
state s ∈ Lj−1, and, for each value v ∈ D(xj−1), it computes the successor state
s′ according to s

v→ s′, i.e., it evaluates

sv = T ↓(s, S�, j, v).

Note how it relies on S� as an initial approximation for the reverse-defined
properties. Finally, it uses the state update function U , the relaxation function
R and the domain of D(xj−1) = {v0, v1, v2, . . . , v�} to deliver

s′ = U(R(· · · R(R(sv0 , sv1), sv2) · · · , sv�
))

and define Lj = {s′}. The reverse pass iterates backward through the layers.
At iteration j, it uses the singleton state s′ ∈ Lj , its one child c ∈ Lj+1, and a
value v ∈ D(xj) to compute sv = T ↑(c, s′, j, v). The computation integrates the
down state s′ obtained from the forward pass. Once again, an application of the
relaxation yields the now final value for s′ via

s′ = U(R(· · · R(R(sv0 , sv1), sv2) · · · , sv�
)) with Lj = {s′}.

Second Phase. The purpose is to widen each layer of the MDD to its final
width. The splitting algorithm is applied to relaxed nodes in a layer Lj for
which |Lj | < w. Let s be such a state and let δ−(s) denote the set of its parent
states in layer Lj−1 and δ+(s) denote the set of its child states in layer Lj+1.
One can compute, for each existing transition p

v→ s with p ∈ δ−(s), the true
state one would reach from p according to value v, i.e.,

sp = T ↓(p, s, j − 1, v) : ∀p ∈ δ−(s) and v on p
v→ s.

Several parents p might yield the same sp, which conveys that multiple transi-
tions lead to the same refined state. One can compute

refine(s) = {sp | ∀p ∈ δ−(s) and v on p
v→ s}

as the set of refined states meant to replace s and endow each s′ ∈ refine(s) with
a transition from its parents and the same child states as s, i.e, δ+(s). Some
transitions to states in δ+(s) may be invalid according to Et and are not added.
Any element of refine(s) that ends up childless as a result must be deleted. Such
deletion can trickle back up through multiple layers and bring their width below
the desired value. In such a situation one may wish to reboot the splitting to an
earlier layer rather than continuing on the current one. Pragmatically, it may be
useful to bound how far one can “reboot”, which we investigate in Sect. 6.
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It is desirable to order refine(s) as its cardinality, together with that of Lj\{s}
may exceed w in which case not all states in refine(s) can be adopted “as is”
and some merging is required. Namely, given a state ordering relation � between
states, the ordering of refine(s) is s′

0 � s′
1 � . . . � s′

m−1 (|refine(s)| = m).
This ordering can induce up to � equivalence classes of states deemed similar
enough to warrant the use of a single state to represent each class. Naturally,
� = w − |Lj |+ 1, i.e., � is an upper bound on the number of classes based on the
number of unused slots in layer j. The new layer Lj becomes4

L′
j = Lj \ {s} ∪

⎛

⎝
⋃

Ck∈{C0,...,Cl−1}
U(R(Ck))

⎞

⎠

with C0 · · · Cl−1 as the l ≤ � classes formed from s′
0 � . . . � s′

m−1. Layer j’s
width satisfies |L′

j | ≤ w. Changes to the topology of the MDD (state addition,
deletion and transitions) are events that require a fixpoint propagation to update
the values of properties held in the affected states, which is discussed next.

5.2 Propagation

MDD Events. Propagation occurs in response to events affecting the MDD or
its connection to finite domain variables. Solver events like del(v, xj) reporting
the loss of a value v, i.e., v /∈ D(xj) for a variable xj appearing in the MDD
induce MDD events to convey the deletion of all transitions between layers j and
j + 1 labeled by v. MDD events are handled within the MDD and are detailed
below:

del(s): loss of state s in a layer
add(s): addition of state s in a layer
del(p v→ c): loss of a transition from p to c

add(p v→ c): addition of a transition from p to c
state(i, s): properties i ⊆ P(c) appearing in state s have changed

The first four events change the topology of the MDD and affect one or more
states. The loss of p

v→ c means that the properties of p and c may now be
outdated and should be refreshed as that transition might have contributed to a
relaxation. For any event e, let affected↓(e) and affected↑(e) be the set of states
below and above the state, respectively, or the transition in e and affected by it.

Overall Propagation. Any state s of an MDD depends on its parent states δ−(s)
and its child states δ+(s). The layered and acyclic structure of the MDD graph
provides a natural strategy for updating states when changes occur. Since the
MDD is Berge acyclic [3], processing the updates through forward and reverse
passes that consider changes in reverse topological order and topological order,
respectively, is sensible. Passes can be repeated until a fixpoint is reached.
4 We take some liberty with notation and refer to the relaxation R over a set of states.
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To this end, one needs an event list E and two priority queues Q↓ and Q↑ to
hold onto states. The priority is simply the layer index of the state. Processing
an event e ∈ E schedules affected↓(e) in Q↓ and affected↑(e) in Q↑ accordingly.
Eventually, one processes the states in Q↑ in reverse priority order, followed by
the states in Q↓ in priority order. This propagation may delete transitions as
well as states, which induces additional rounds of splitting (as described in the
previous sub-section). Pragmatically, it may be desirable to bound the number
of passes in which splitting occurs to curtail the computational efforts.

Event Propagation. A comprehensive treatment of events is not possible within
page limitations. Consider as an example the propagation rule for the event
e = state(i, s) concerning a change to the properties in i for state s in layer Lj .
Processing e means scheduling δ−(s) in Q↑ and δ+(s) in Q↓. When a child c of
s is pulled from Q↓ (the case with Q↑ is similar), state c must be updated since
s has changed and the relation s

v→ c connects them. This can be done with

cp = T ↓(p, c, j, vp) ∀p ∈ δ−(c),with p
vp→ c

and computing the relaxation of states cp for all parents p to yield

c′ = U(R({cp|p ∈ δ−(c),with p
vp→ c})).

If Es(c′) does not hold, c′ itself is no longer sound and is deleted. If Es(c′) holds
and c′ �= c, c is changing. Therefore, every transition c

v→ d must be tested with
Et and invalid transitions removed. Such removal should trigger the scheduling
of affected nodes. Since c is now changed to c′, an event state(ψ, c′) should be
processed (ψ refers to the subset of properties whose value differ in c and c′).

6 Empirical Evaluation

Haddock is part of MiniC++, a C++ implementation of the MiniCP specifica-
tion [27]. All benchmarks were executed on a Macbook Pro with an i7-5557U
processor and 16GB. While a generic implementation is unlikely to match dedi-
cated implementations, Haddock let developers produce MDD-based propaga-
tors for global constraints with minimal effort. We demonstrate below 1) how
Haddock compares to an existing MDD implementation, 2) its new modeling
capabilities, and 3) the performance impact of the reboot depth parameter.

Experiment 1: Comparison to State-of-the-Art. First, we compare Haddock
to the ‘Dedicated’ Among MDD propagator developed in [21,22] and a classic
finite-domain model (written in MiniCP) that uses a cumulative-sums encoding
for Sequence constraints as a reasonable baseline for domain propagation. We
evaluate these methods on the nurse rostering benchmark problems from [22].
Those problems ask to schedule work shifts for a nurse, subject to a collection
of Among (or Sequence) constraints. There are three classes of instances with
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Fig. 3. Backtracks (left) and CPU time (right) for finding all solutions for amongNurse.

different lower and upper bounds on the number of work days in a sequence. Class
C-I requires at most 6 out of 8 consecutive work days and at least 22 out of 30
consecutive work days. C-II uses 6 out of 9 and 20 out of 30 while C-III uses 7 out
of 9 and 22 out of 30. Each instance also requires 4 or 5 work days each week and
uses a horizon of 40 days. Runtimes reported in [21] were scaled to account for
processor differences. We used the highest Geekbench 5 scores reported for our
machine CPU (825) and an average score of 330 (standard deviation 10) for an
Intel Xeon E5345 that matches the 2.3 GHz characterization in [21]. This yields
a scaling by 330

825 = 0.4. Important differences between Haddock and [21] are
that the implementation of [21] does not compute an MDD propagation fixpoint
and adopts a dedicated splitting heuristic that differs from ours.

Figure 3 compares the search tree size (left) and runtimes (right) between
the three approaches for finding all solutions (each model uses the same lexico-
graphic search strategy). ‘Classic’ refers to the conventional finite-domain model,
‘Dedicated’ refers to [21], and ‘Haddock’ is our implementation with a reboot
depth of 0 for clearer comparison. Observe that Haddock starts, at width 1,
with the exact same number of backtracks as Classic (a bit better than Ded-
icated, which is attributed to the lack of a fixpoint within [21]). Second, the
number of backtracks of Haddock are roughly comparable to [21]. Third, the
runtimes are within a small factor of each other with Haddock in front for class
C-III and behind (by a factor in the 1×–10× range) on C-II. Those results are
very promising given the generic nature of Haddock.

Experiment 2: Modeling Capabilities. We next demonstrate the modeling
capabilities of Haddock on the classic All-Interval Series problem (#007
on CSPLIB). Given an integer n, the problem asks to find a vector x =
(x0, . . . , xn−1) such that x is a permutation of {0, . . . , n−1}, and the interval vec-
tor y = (|x1−x0|, |x2−x1|, . . . , |xn−1−xn−2|) is a permutation of {1, . . . , n−1}.

To model this problem using MDDs, we defined the AbsDiffMDD(z0, z1, z2)
constraint in Haddock, representing the relation |z0 − z1| = z2. It main-
tains the set of values taken by each of the variables and defines explicit arc
existence functions based on this relationship. We then introduce constraints
AbsDiffMDD(xi, xi+1, yi), for i = 0, . . . , n − 2, which gives us a natural vari-
able ordering, interleaving vectors x and y. Lastly, we define AlldiffMDD(x)



HADDOCK: A Language and Architecture for Decision Diagrams 545

Table 1. MDD propagation on the All-Interval Series problem (n = 11).

Reboot Width 1 Width 2 Width 4 Width 8 Width 16 Width 32 Width 64

0 10,062 9,459 7,815 6,196 4,027 2,368 1,511

2 10,062 9,332 7,522 6,191 3,796 2,264 1,470

4 10,062 9,069 6,972 5,279 3,282 2,100 1,357

8 10,062 5,698 3,277 2,283 1,626 1,839 316

MAX 10,062 1,155 140 40 34 23 6

and AlldiffMDD(y) constraints to model the permutations. The entire Abs-
DiffMDD language requires less than 120 lines for declaring its states, transi-
tions, and relaxation rules. Likewise, the AlldiffMDD language requires only
70 lines. For these constraints, Haddock applies a generic state ordering based
on the number of parent states (smallest first) during the node splitting process.

We apply a lexicographic search on the x variables to compare the perfor-
mance over different settings. We report results for n = 11 (finding all solutions)
in Table 1. To evaluate the impact of MDD propagation, consider the base case
in which the reboot depth is set to 0. The table shows how increasing the width
from 1 (domain propagation) to larger widths reduces the search tree size, yield-
ing a factor 10 for maximum width 64. It is encouraging to see how MDDs can
be used like any other global constraints within a CP solver and deliver huge
reductions in the size of the search tree. We do note, however, that the reduction
in search tree size has no positive impact on the solving time. It remains an area
for future work to exploit better split ordering and an optimized implementation.

Experiment 3: Reboot Depth Sensitivity. We next investigate the impact of vary-
ing the reboot depth. Consider Table 1 once again. Rows 2 through 5 convey
the impact of reboots on the search tree size at all considered widths. Recall
that Haddock only relies on a syntactic value (the number of parents) to rank
states. Also recall that rebooting considers abandoning splitting at layer k when
it has induced state deletion in prior layers and return to those. The reboot
parameter controls how far back Haddock can jump when returning to earlier
layers. In this situation, rebooting can have a dramatic impact on the size of
the search at any width. The most extreme parameter settings of width = 64
and unbounded reboots yield a search tree with only 6 nodes, i.e., 4 orders of
magnitude compared to the baseline in the upper left corner of the table.

7 Conclusion

This paper introduced Haddock, a system for Handling Automatically Deci-
sion Diagrams over Constraints Kernels. It described the language and framed its
implementation in terms of a compilation down to an LTS form. The resulting
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system is generic and capable of capturing and automatically deriving imple-
mentation for several MDDs that were proposed before and for which only ded-
icated implementations exist. The empirical evaluation showed that this very
first implementation of a generic MDD engine exhibits search tree reductions
that are qualitatively on par with prior work and achieves comparable runtime.
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Abstract. In this paper, we propose an interval constraint program-
ming approach that can handle the differential-algebraic CSP (DACSP),
where an instance is composed of real and functional variables (also
called dynamic variables or trajectories) together, and differential and/or
“static” numerical constraints among those variables. Differential-Alge-
braic CSP systems can model numerous real-life problems occurring in
physics, biology or robotics. We introduce a solver, built upon the Tubex

and Ibex interval libraries, that can rigorously approximate the set of
solutions of a DACSP system. The solver achieves temporal slicing and
a tree search by splitting trajectories domains. Our approach provides
a significant step towards a generic interval CP solver for DACSP that
has the potential to handle a large variety of constraints. First experi-
ments highlight that this solver can tackle interval Initial Value Prob-
lems (IVP), Boundary Value Problems (BVP) and integro-differential
equations.

1 Introduction

Differential-Algebraic CSP (DACSP) systems include real variables, functional
variables (also called trajectories or dynamical variables) describing the dynam-
ics of the system, and differential and/or “static” numerical constraints among
those variables. Because they are at the core of so many applications, such as
biological systems, mechanism dynamics, astronomy, robotics, control, a lot of
work has been dedicated to solving specific subclasses of the DACSP. Most of the
approaches follow a probabilistic approach and are limited to linear constraints
with Gaussian errors [17,35].

There are a number of advantages to using interval methods for han-
dling dynamical and/or static systems. They can manage nonlinear con-
straints and approximate the solutions rigorously, whatever the uncertainties
on the parameters (e.g., uncertainties related to measurements or to inaccurate
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 548–565, 2020.
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physical models). Bounded intervals are used to characterize these uncertainties,
as well as the errors due to operations over floating-point numbers.

With Jaulin et al. works [15,16], a significant step has been made towards a
declarative constraint programming approach for dynamical systems. Contrary
to dominant constraint approaches dealing with differential equations such as
[8,30,37], the trajectories are viewed as variables of the CSP. They consider tra-
jectories as variables, differential equations as constraints and tubes as domains.
The solution and the domain are given by a tube representing a set of possible
trajectories (see Fig. 1). This increases the level of abstraction and simplifies
the formalization of the problem. For estimating a trajectory, a set of contrac-
tors, similar to propagators in CP, are applied to filter (contract) the bounds
of the domain/tube. A benefit of the contractor programming approach [3] is
the variety of dynamical systems that can be handled. More recently, the Tubex
library [32] has provided data structures for representing tubes and a catalogue of
contractors, similarly to the catalogue of propagators available in CP solvers [29].
The user defines a sequence of contractors for modeling his problem. The set of
contractors is applied iteratively until a quasi fixpoint in terms of contraction
is reached. For instance, the resulting framework has been recently applied to
actual data for autonomous robot localization. [31] describes the problem of
localizing an underwater robot. Its evolution is depicted by an Ordinary Dif-
ferential Equation (ODE) and bounded measurements, but the initial condition
(position) of the system is unknown. During the mission, its sonar detects indis-
tinguishable rocks on the seabed, that all look alike but are known to belong
to a discrete point map embedded beforehand. The map of rocks positions is
also modeled as a constraint. The constraint propagation approach is able to
merge all data coming from the robot evolution and rocks observations. The
identity of the rocks is finally associated to items in the map, and the trajectory
of the robot is accurately estimated. This application highlights how a complex
problem involving discrete, continuous and differential constraints can be solved
easily following a CP/contractor approach.

Contractor programming is relevant when the problem is defined by heteroge-
neous constraints, provided they are redundant and numerous enough to enable
the contraction phase alone to solve the problem.

Contributions. In this paper, we introduce a generic solver using the Tubex
library that can handle a DACSP instance made of differential constraints and/or
static continuous constraints. The numerical constraints relate real variables that
either represent states of the trajectories at given instants or are independent
from the dynamics (e.g., the rocks positions in the previous example). Compared
to the Tubex approach alone, the solver is endowed with an operator that can
perform a choice point by splitting (bisecting) a tube in two at a chosen time.
Thus, a tree search can accurately estimate distinct trajectories (for problems
with several solutions) and can better handle several hard problems. To our
knowledge, no other tool for solving dynamical systems performs a tree search.

Our solver can manage most of the contractors available in the literature. On
the one hand, several contractors coming from CP, e.g., 3B [22] and CID [36],
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are included naturally to improve the pruning of domains of functional variables,
i.e., tubes. On the other hand, our generic framework enables to wrap existing
solvers dedicated to specific types of (differential) constraints into contractors.
These contractors efficiently reduce domains by taking into account space and
time dependencies. In particular, we show in the experiments the benefits of using
the contractor CtcVnode built upon the state-of-the-art VNODE guaranteed
integration IVP solver [27,28].

This generic CP framework allows separating the problem description, which
includes here all combinations of differential and algebraic problems, from its
resolution. We also wanted to solve difficult standard problems coming from
numerical analysis, e.g., BVP for integro-differential equations, that are out of
the scope of previous CP/ODE frameworks and remain today difficult to solve
in the numerical analysis framework.

Related Work. VNODE [28], CAPD [18], COSY [30] and DynIbex [4] are state
of the art interval analysis solvers dedicated to IVPs.1 They are fully relevant for
determining the guaranteed solution of a system at a final time, that has crucial
applications such as the position determination of celestial bodies in astron-
omy [39] or to characterize chaotic attractors [37]. They use different algorithms
to reliably simulate the initial information over time. In particular, the VNODE
tool used in our solver combines a high-order interval Taylor form to integrate
the state from an instant to a next one, and a step limiting the wrapping effect
implied by interval calculation: it encloses the solution at the discrete times by an
envelope sharper than a box, such as rotated boxes, zonotopes or polygons [23].

A BVP is generally defined by an ODE, but the trajectory is not entirely
determined at the initial or final times, which prevents a solving algorithm from
propagating (integrating) the information from the known state to the rest of
the trajectory. Instead, static constraints are defined on specific states (at spec-
ified instants). To deal with BVPs, the shooting method [12] is a sampling-and-
optimization algorithm that runs several integration processes from the initial
state while trying to minimize the distance to a solution satisfying the ODE.
This makes the approach incomplete and unable to determine several solutions,
if any. Instead, our rigorous and deterministic solver can explore the whole search
space and isolate distinct solutions.

The constraint programming community has contributed to dynamical sys-
tems. Janssen et al. propose a strategy [8] dedicated to interval IVPs that has
similarities with VNODE or CAPD. The integration step between two consec-
utive states (instants) used a box consistency algorithm [1] to better contract
the output state. A first attempt to create a constraint language extended to
ODEs was made a few years later [6,7]. The language considers the entire ODE
as a whole, but the unknown function has a special status that prevents direct
manipulations: any constraint involving the unknown trajectory is managed by

1 An Initial Value Problem is composed of an ODE and an initial condition. Numerical
integration propagates the initial value through the whole trajectory by integrating
the evolution function of the ODE.
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a specific operator. The fact that the function is bounded in an interval requires
the introduction of an ad-hoc constraint called minimum/maximum restriction.
The link with real variables is also achieved via an ad-hoc constraint called value
restriction. This language does not have the level of genericity targeted by our
solver, where the concept of trajectories appears at the same level as other vari-
ables and ODEs are syntactic constructions among others. In our solver, we will
rather use the Ceval contractor [33] to handle value restriction constraints.

Although [11] improves [6] in both modeling possibilities and solving effi-
ciency, it is still restricted to ODE constraints relating solutions values at spec-
ified times. Finally, our model can accept various differential constraints (like
an integro-differential equation) and static constraints such as distance relations
between states at different instants, as long as the corresponding contractors
exist.

Outline. Section 2 introduces the notations used in the paper and the background
useful to understand the following sections. Sections 3 and 4 detail our DACSP
solver and its different procedures and parameters: contractors, choice point
heuristics, etc. Section 5 reports first experimental results obtained on interval
IVPs, but also integro-differential equations and BVPs.

2 Background and Notations

We first provide some background about intervals, inclusion functions and con-
traction. We then present several differential constraints and interval techniques
adapted to dynamical systems.

2.1 Intervals

Contrary to numerical analysis methods that work with single values, interval
methods can manage sets of values enclosed in intervals. Interval methods are
known to be particularly useful for handling nonlinear constraint systems.

Definition 1 (Interval, box, box width, box hull)
An interval [xi] = [xi, xi] defines the set of reals xi such that xi ≤ xi ≤ xi.
IR denotes the set of all intervals. A box [x] denotes a Cartesian product of
intervals [x] = [x1]×...×[xn]. The size, width or diameter of a box [x] is given by
w([x]) ≡ maxi(w([xi])) where w([xi]) ≡ xi − xi. The hull of boxes approximates
the union operator. It returns the smallest box enclosing all the boxes hulled.

Interval arithmetic [26] has been defined to extend to IR the usual mathemati-
cal operators over R For instance, the interval sum is defined by [x1] + [x2] =
[x1 + x2, x1 + x2]. When a function f is a composition of elementary functions, an
inclusion function [f ] of f must be defined to ensure a conservative image com-
putation. There are several inclusion functions. The natural inclusion function
of a real function f corresponds to the mapping of f to intervals using interval
arithmetic. For instance, the natural inclusion function [f ]N of f(x) = x(x + 1)
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in the domain [x] = [0, 1] computes [f ]N ([0, 1]) = [0, 1] · [1, 2] = [0, 2]. Another
inclusion function is based on an interval Taylor form [14].

Interval arithmetics can be used for solving the numerical CSP (NCSP),
i.e. finding solutions to an NCSP instance P = (x, [x], c), where x is an n-
set of variables taking their real values in the domain [x] and c is an m-set of
numerical constraints using operators like +, −, ×, ab, exp, log, sin, etc. NCSP
solvers, like GlobSol [19], Gloptlab [9], RealPaver [13] or Ibex [2] to name a few,
follow a Branch and Contract method to solve an NCSP. The branching opera-
tion subdivides the search space by recursively bisecting variable intervals into
two subintervals and exploring both sub-boxes independently. The combinato-
rial nature of this tree search is not always observed thanks to the contraction
(filtering) operations applied at each node of the search tree. Informally, a con-
traction applied to an NCSP instance can reduce the domain without losing any
solution. A contractor used in this paper is the well-known HC4-revise [1,25],
also called forward-backward. This contractor handles a single numerical con-
straint and obtains a (generally non optimal [5]) contracted box including all
the solutions of that constraint. To contract a box w.r.t. an NCSP instance,
the HC4 algorithm performs a (generalized) AC3-like propagation loop apply-
ing iteratively the HC4-Revise procedure on each constraint individually until a
quasi fixpoint is obtained in terms of contraction.

3B-consistency [22] and CID-consistency [36] are two other stronger consis-
tencies, enforced on an NCSP, that are exploited by our solver. The correspond-
ing 3B and CID algorithms should call their Var3B or VarCID procedure on all
the NCSP variables for enforcing the 3B or CID consistency. In practice however
the algorithms implemented apply these procedures on a subset of the variables
to get a better tradeoff between contraction and performance. VarCID splits a
variable interval in k subintervals, and runs a contractor, such as HC4, on the
corresponding sub-boxes. The k sub-boxes contracted are finally hulled. Var3B
is somehow a dual operator that tries to remove subintervals at the bounds of
a variable interval. If a contraction, like HC4, applied to a sub-box, where the
interval is replaced by a subinterval at a bound, leads to an empty domain, then
it proves that the subinterval contains no solution and can be removed safely
from the variable domain.

2.2 Trajectories and Tubes

A trajectory, denoted x(·) = (x1(·), .., xn(·)), is a function from [t0, tf ] ⊂ R to
R

n. The input (argument) of x(·) is named time in this article (and denoted ·
or t) while the output (image) is called state.

A tube [x](·) is the interval counterpart of a trajectory and is defined as an
envelope over the same temporal domain [t0, tf ]. The concept appeared in [10,20]
in the context of ellipsoidal estimations. In our solver, it is used as a domain on
which we apply operations of contractions and bisections. We employ them as
intervals of trajectories, which is consistent with the aforementioned tools.

Hence, we will use the definition given in [21] where a tube [x](·) : [t0, tf ] →
IR

n is an interval of two trajectories [x(·),x(·)] such that ∀t ∈ [t0, tf ], x(t) �
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x(t). We also consider empty tubes that depict an absence of solutions. A tra-
jectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf ], x (t) ∈ [x] (t). Figure 1
illustrates a one-dimensional tube enclosing a trajectory x(·).

Fig. 1. A one-dimensional tube [x](·), interval of two functions [x(·), x(·)], enclosing a
random trajectory x(·) depicted in orange. The tube is numerically represented by a
set of δ-width slices illustrated by blue boxes. (Color figure online)

Our choice is to represent numerically a tube as a set of boxes corresponding
to temporal slices. More precisely, an n-dimensional tube [x](·) with a sampling
time δ > 0 is implemented as a box-valued function which is constant for all
t inside intervals [kδ, kδ + δ], k ∈ N. The box [kδ, kδ + δ] × [x] (tk), with tk ∈
[kδ, kδ + δ], is called the kth slice of the tube [x](·) and is denoted by [[x]](k).
This implementation takes rigorously into account floating-point precision when
building a tube: computations involving [x](·) will be based on its slices, thus
giving a reliable outer approximation of the solution set. The slices may be of
same width as depicted in Fig. 1, but the tube can also be implemented with a
customized temporal slicing. Finally, we endow the definition of a slice [[x]](k)

with the slice (box) envelope (blue painted in Fig. 1) and two input/output gates
[x](tk) and [x](tk+1) (black painted) that are intervals of IR

n through which
trajectories are entering/leaving the slice.

Once a tube is defined, it can be handled in the same way as an interval. We
can for instance use arithmetic operations as well as function evaluations. If f is
an elementary function such as sin, cos or exp, we define f ([x](·)) as the smallest
tube containing all feasible values: f ([x](·)) =

[ {f (x(·)) | x(·) ∈ [x](·)} ]
.

2.3 Dynamical Systems and Differential-Algebraic CSP

A differential constraint relates one or several trajectories and/or real variables.
Numerous types of differential constraints can be considered in our approach,
including:
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1. ẋ(·) = f
(
x(·)) (ODE)

2. ẋ(t) = f
(
x(t)

)
+

∫ t

t0
x(τ)dτ (integro-differential equation)

3. x(tk) = y, ẋ(·) = v(·) (evaluation constraint)
4. ∀t ∈ [t], x(t) �∈ [y]
5. x(t) = y(t + δ) (delay constraint)

The first one is the most widespread differential constraint (see Definition 2).
The second constraint is a little more complicated in that the state at a given
time depends on the sum (integral) of the previous states. The third evaluation
constraint y = x(tk) states that the trajectory goes through an uncertain real
value in [y] at an uncertain time in [tk]. The fourth constraint is the comple-
mentary, although more complicated, constraint of the evaluation. The fifth one
imposes a delay constraint of unknown real value δ between two trajectories and
is particularly useful for clock calibration purposes in autonomous systems [38].

The idea behind our approach is to decompose a differential-algebraic system
into a set of such primitive constraints associated to contractors (similar to
propagators in CSP solvers [29]) that belong, or can be added to, the Tubex
library. We formally define below the following differential constraints used in
the experimental part.

Definition 2 (ODE and integro-differential equation)
Consider x(·) : [t0, tf ] → R

n, its derivative ẋ(·) : [t0, tf ] → R
n, and an evolution

function f : Rn → R
n, possibly non-linear. An ODE2 is defined by:

ẋ(·) = f
(
x(·))

An integro-differential equation is defined by:

ẋ(t) = f
(
x(t)

)
+

∫ t

t0

x(τ)dτ.

The ODEs considered are explicit, i.e. the evolution function f computes ẋ
directly. These differential constraints can define dynamical systems.

Definition 3 (IVP, interval IVP, BVP)
The initial value problem (IVP) is defined by an ODE ẋ(·) = f

(
x(·)) and

an initial condition x(t0) = x0, where x0 is a constant in R
n. In an inter-

val IVP, the initial condition is bounded by an interval, i.e. x(t0) ∈ [x0]. A
boundary value problem (BVP) is defined by an ODE and a numerical constraint
c
(
x(t1)..x(tn)

)
= 0, where c : Rn → R

n and ∀i ∈ {1..n}, ti ∈ [t0, tf ].

A BVP generalizes an IVP in that no initial condition fully determines the tra-
jectory at a unique instant. Instead, n algebraic constraints relate several states

2 Note that a high-order problem can be transformed automatically into a first-order
ODE shown in Definition 2 by introducing auxiliary variables. Also note that non
autonomous ODEs of the form ẋ(t) = f

(
x(t), t

)
can also be transformed into

autonomous ODEs ẋ(t) = f
(
x(t)

)
whose derivative depends only on the state.
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at times t1..tn and enable the trajectory determination. Note that a condition
known at any instant is equivalent to knowing the state at time t0. Indeed,
numerical integration can propagate the information forward or backward in
time indifferently. We are now in position to define the DACSP.

Definition 4 (Differential-algebraic CSP – DACSP)
A DACSP network is defined by a quintuplet (x(·), [x](·),y, [y], c), where x(·) is
a trajectory variable of domain [x](·) (a tube R → IR

n1 , as defined in the previous
section), y ∈ R

n2 denotes the static numerical variables with a domain/box [y]
and c denotes the set of static or differential constraints. Solving a DACSP
instance consists in finding the set of values in [x](·) and [y] satisfying c.

3 A Generic Solver for Differential-Algebraic CSP

In Algorithm 1, we give a description of a first generic solver for DACSP. The
solver works on a network P = (x(·), [x](·),y, [y], c) and returns a set of tra-
jectories satisfying c. The input tube [x](·) is defined generally with one single
slice [t0, tf ]× [−∞,∞]n. We attempt to tackle a wide class of problems with pos-
sibly different behaviors. This may impair the effectiveness of a unique generic
algorithm. In practice however, the user may already have an intuition of some
instants from which things should propagate. As a consequence, in addition to P ,
we allow the user to provide a set of special times, i.e. elements of the temporal
domain that involve states of the trajectory x(·) and other static constraints. It
allows this first solver to perform contraction more incrementally.

The solver works in two main phases: a so-called slicing step splitting the
temporal domain into time slices, followed by a tree search subdividing the vec-
torial tube [x](·). The last TubeMerge function compensates a potential cluster-
ing effect and merges together pairs of solution tubes that intersect along the
temporal domain (on all the slices) in all the (x) dimensions. It is necessary
when bisection is not used for identifying different solutions, but helps the solver
to compute accurate trajectories.

The main precision parameter of the solver is maxTubeDiam, a size expressed
as the maximum width over all the slices envelopes of the tube. The solver can
indifferently compute “thin” trajectories of theoretical null volume (e.g., when
dealing with pure IVPs) or “thick” trajectories (i.e., continua of trajectories, e.g.
when dealing with interval IVPs). In the latter case, the user has to tune this
precision parameter to get a good approximation of thick trajectories. A second
user-defined #slicesMax parameter is a maximum number of slices created
during the solving, especially during the slicing phase. A large slice number
leads to a better trajectory accuracy at the cost of worse performance. Note
that the CPU time generally grows linearly in the number of slices.

The first slicing phase is performed by the first do..while loop interleaving
contraction of P and time slicing (“discretization”). The latter splits several
slices of [x](·) into two slices of equal temporal size. Three main slicing policies
have been tested:
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Algorithm DACSP-Solver (P = (x(·), [x](·), y, [y], c), specialT imes,
maxTubeDiam, #slicesMax, Integration, ε = (εfpt, εintegr, ε3B),
slicingPolicy, bisectionPolicy)

do
/* Slicing loop: */
([x](·), [y]) ← Contraction(P , specialT imes, Integration, ε, false)
[x](·) ← Slicing([x](·), slicingPolicy)

while MaxDiam([x](·)) > maxTubeDiam and#Slices(tube) < #slicesMax
if MaxDiam([x](·)) ≤ maxTubeDiam then return [x](·)
L ← { ([x](·), null) }
while L �= ∅ /* Depth-first tree search */ do

([x](·), gate) ← Pop(L)
([x](·), [y]) ← Contraction(P , specialT imes, Integration, ε, true,
gate)
if MaxDiam([x](·)) ≤ maxTubeDiam then

solutionsList ← solutionsList ∪ {[x](·) }
else

([x1](·), [x2](·), gate) ← Bisect ([x](·), bisectionPolicy)
L ← {([x1](·), gate)} ∪ {([x2](·), gate)} ∪ L

solutionsList ← TubeMerge(solutionsList, [x](·))
return solutionsList

Algorithm 1: The DACSP solver.

– (all) Split all the slices in two.
– (median) Compute for all the bounded slices a dx difference between the

middle points of 2 consecutive gates, maximum over all the dimensions, i.e.
dx = maxi |m([xk

i ]) − m([xk−1
i ])|, where m([xi]) denotes the middle of [xi].

Split half of the slices with the largest dx and all the unbounded slices.
– (average) Split the slices having a dx greater than the average value and all

the unbounded slices.

If the loop terminates because the number of slices reaches #slicesMax, the
tree search will be in charge to get the maxTubeDiam precision. This slicing
phase seems to contradict the principles of most numerical algorithms that decide
to subdivide a given time step adaptively. However, the Integration procedure
called by the Contraction method carries out these adaptive time discretization
steps, so that both mechanisms, i.e. integration and slicing phases, perform time
discretization in a complementary manner.

The second phase performed by the second while loop is combinatorial. It
implements a tree search branching on the domains of the trajectory variables,
i.e. tubes. Although depth-first search is well-known in the CP community, to
our knowledge, no prior work proposed to make choice points on tubes, defined
as follows.

Definition 5 (Tube bisection)
Let [x](·) be a tube of a trajectory x(·) defined over [t0, tf ].
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Let tk be an instant in [t0, tf ], i a dimension in {1..n}, and [xi] the interval value
of [xi](·) at tk. Let mid(xi) be xi+xi

2 .
The tube bisection (tk, i) of [x](·) produces two tubes [xL](·) and [xR](·) equal to
[x](·) except at time tk, where [xL

i ] = [xi,mid(xi)] and [xR
i ] = [mid(xi), xi].

In practice, a bisection (tk, i) is applied only to a gate of the tube. Two heuristics
are proposed to the user for selecting the instant tk. The first one picks randomly
one instant among the “special times” specified by the user. The second one
selects the tk having the largest box [x](tk). The dimension i ∈ {1..n}, on which
the bisection is performed, is decided according to the largest component [xi].

Note that the DACSP solver is sound because no operator used in Algorithm 1
can eliminate a solution: Contraction, Slicing, Bisect, TubeMerge.

4 Contractions in the Solver

The Contraction function consists of a simple propagation loop that calls the
contractors corresponding to constraints in c until the relative gain in contrac-
tion volume is less than εfp. Contractors can be of any type: HC4-Revise for a
numerical constraint or the “map” contractor mentioned in introduction for the
robotic application. The propagation loop is followed by a call to a contractor
Dyn3B enforcing a strong consistency on the tube (see Algorithm 3).

Let us detail in Algorithm 2 an important contractor, called ExplicitDE, that
carries out tube contractions based on ODEs or integro-differential equations.
The procedure is mainly responsible for launching integration steps forward and
backward in time through the tube. The actual integration method used is a
parameter of Algorithm 2. Note that a guaranteed integration algorithm infer-
ring a new information, like a value of the state known at a specific instant,
is incremental in that it may contract only a subset of a tube if no more con-
traction is obtained at a given gate. The tube contraction is not incremental in
the first slicing phase or at the top of the search tree (gateBis = null) because
the Slicing procedure can subdivide numerous slices everywhere in the tube
(parameter isIncremental set to false). Therefore integration is run from t0 to
tf (forward) and from tf to t0 (backward). Conversely, during the tree search,
integration is triggered by a tube bisection or a domain modification at a special
time (whose state is related with a static variable). That is why incremental
integrations start from each of these instants.3 Our solver is endowed with two
possible Integration procedures. The first one is an “internal” generic inte-
gration algorithm that will be incorporated in the Tubex library. Its signature
is close to the procedure Integration shown in Algorithm2. It can be trig-
gered from any specified time in the tube, forward or backward, and with the
possibility of running the simulation incrementally, i.e. stopping it if no suffi-
cient contraction volume gain has been obtained in a gate box. This procedure

3 The actual code is a little bit more complicated. An instant is skipped if it is handled
by the previous integration step.
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Algorithm ExplicitDE(f , [x](·), specialT imes, Integration, ε,
isIncremental, gateBis)

if gateBis = null or not isIncremental then
[x](·) ← Integration(f , [x](·), t0, FORWARD, ε, false)
[x](·) ← Integration(f , [x](·), tf , BACKWARD, ε, false)

else
gates ← Sort({gateBis} ∪ specialT imes)
forall the gate ∈ gates do

// forward and incremental simulation:

[x](·) ← Integration(f , [x](·), gate, FORWARD, ε, true)

forall the gate ∈ gates, in reverse order do
// backward and incremental simulation:

[x](·) ← Integration(f , [x](·), gate, BACKWARD, ε, true)

Algorithm 2: A generic contractor for ODE and integro-diff equation

Integration is generic in that it can accept an evolution function f describ-
ing either an ODE or an integro-differential equation (see Definition 2). It can
also be specialized by a “slice integration contractor” called at each time step
of the simulation. Two slice contractors are highlighted in this paper. The first
one, called DynBasic hereafter, wraps at the slice level two simple contractors
available since the very first version of Tubex: CtcDeriv and an evaluation of the
evolution function f called iteratively. CtcDeriv (denoted C d

dt
in the literature

[34]) is a tube contractor treating the constraint ẋ(·) = v(·), where x(·) and
v(·) are two trajectories and v(·) is the derivative of x(·) over time. The funda-
mental theorem of calculus that relates differentiation and integration, is used
by CtcDeriv for contracting the tube [x](·). The second slice contractor, called
DynCIDGuess hereafter, generates for each integration step a “slice” contractor
graph, where the variables correspond to the two gates and the slice envelope
(see Sect. 2.1). Based on the input gate box and the envelope, DynCIDGuess can
improve the output gate box using sophisticated singleton consistencies based
on 3B and CID (see Sect. 2.1). This contractor will be detailed in another arti-
cle. This generic integration contractor starts by calling a Picard operator that
allows one to set non-infinite initial bounds on some tube [x](·), which is required
for engaging contraction, and can create new slices adaptively [27].

A second Integration procedure wraps directly the state-of-the-art VNODE
[28] guaranteed integration solver into a CtcVnode contractor. During the slicing
phase, it calls VNODE simulations forward and backward from the smallest gate.
After each bisection, it calls VNODE simulations forward and backward starting
from the bisected gate. To make CtcVnode a contractor, the results obtained by
the VNODE simulations are intersected with the current tube. VNODE per-
forms its own slicing, especially in the first iterations, and the slices produced
are added to those from the slicing phase. Finally, as we will see in the experi-
ments, the contractor CtcVnode, and a slice integration contractor as DynBasic
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or DynCIDGuess, can be called successively inside the contraction loop performed
by the Contraction procedure.

Another new and useful dynamic contractor is the Dyn3B contractor described
in Algorithm 3. This is a dynamic adaption of the 3B algorithm described in
Sect. 2.1. It selects iteratively the instant (gate) tk with the largest interval (the
tube is thus not contracted at all instants) and applies a VarDyn3B shaving
procedure to all the [xi] intervals at tk. VarDyn3B is a straightforward adaptation
of the standard Var3B shaving procedure (see Sect. 2.1) to tubes. Subintervals
at the bounds of [xi] can be safely eliminated if an integration starting from the
corresponding sub-tube leads to an empty domain. This integration procedure
can be achieved by DynBasic, or CtcVnode followed by DynBasic.

Algorithm Dyn3B (P , ε)
do

volumeSave ← volume([x](·))
tk ← SelectGate([x](·))
forall the i ∈ {1..n} do

[x](·) ← VarDyn3B(P , tk, i)

while VolumeGain([x](·), volumeSave) > ε3B

Algorithm 3: The Dynamic 3B algorithm

5 Experiments

The goal of this section is to highlight that the DACSP model, the contractors
available via Tubex and our DACSP solver can handle a large variety of systems
that no competitor or a few ones can deal with. All the results have been obtained
on a CPU computer using an x86-64 processor (1.6 GHz).

5.1 BVP for Integro-Differential Equation

Let us illustrate the versatility of our DACSP solver on the following problem.
It combines an integro-differential equation defined on the domain [0, 1] and a
constraint between the initial and final values, as follows:

{
ẋ(t) = 1 − 2x(t) − 5

∫ t

0
x(τ)dτ ; t ∈ [0, 1]

x(0)2 + x(1)2 = 1
(1)

Our solver can find both solutions in 8.35 seconds and needs to resort to 66
bisections (and a search tree depth of 25) to isolate them at a good accuracy.
For both solutions, Table 1 reports some details. Note that only our generic
Integration algorithm can be used in the solver for this particular problem
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Table 1. Solutions obtained on the integro-differential based system. The table reports
the diameters of the initial and final gates, the tube volume and the slices number.

Solution Diam. of gate
t0 = 0

Diam. of gate
tf = 1

Tube volume slices

1 0.015 0.030 0.018 400

2 0.034 0.022 0.024 400

since there is no ODE, contrarily to the following DACSP systems. It has been
run with maxTubeDiam = 0.02 and #slicesMax = 400.

For the next two DACSP categories tested, we show the best combination of
the CtcVnode (refered by vnode in the tables), DynBasic (basic), DynCIDGuess
(CIDG) and Dyn3B (3Bvnode or 3Bbasic) contractors.

5.2 BVPs and Cruz &Barahona System

We show in Fig. 2 five BVPs and the Cruz system close to a BVP because no
state is fully determined at a given instant. However, note that this system has
a thick tube solution. The results are presented in Table 2.

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(·) = x(·)
x(0)2 + x(1)2 = 1
[t0, tf ] = [0, 1]
maxTubeDiam = 0.0005

(2)

⎧
⎪⎪⎨

⎪⎪⎩

ẍ(·) = −x(·)
x(0) = 0;x(π/2) = 2
[t0, tf ] = [0, π/2]
maxTubeDiam = 0.0005

(3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍ(·) = 5ẋ(·)
x(0) = 1; x(1) = 0
ẋ(0) ∈ [−10, 10]; ẋ(1) ∈ [−10, 10]
[t0, tf ] = [0, 1]
maxTubeDiam = 0.02

(4)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍ(·) = −10(ẋ(·) + x(·)2)
x(0) = 0;x(1) = 0.5
ẋ(0) ∈ [−20, 20]; ẋ(1) ∈ [−20, 20]
[t0, tf ] = [0, 1]
maxTubeDiam = 0.05

(5)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẍ(·) = − exp(x(·))
x(0) = 0; x(1) = 0
ẋ(0) ∈ [−20, 20]
ẋ(1) ∈ [−20, 20]
[t0, tf ] = [0, 1]
maxTubeDiam = 0.05

(6)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(·) = −0.7x1(·)
ẋ2(·) = 0.7x1(·) − (ln(2)/5)x2(·)
x1(0) = 1.25
x2 ∈ [1.1, 1.3] during [1, 3]
[t0, tf ] = [0, 6]
maxTubeDiam = 0.04

(7)

Fig. 2. Five BVPs and the Cruz system. (2) A one-dimensional problem with an alge-
braic constraint between the initial and final states; (3) Classical linear example cited
in Wikipedia; (4) and (5) denote resp. Systems 2 and 23 in the BVPSolve benchmark
[24]; (6) the Bratu system, the only one with two solutions in the BVPSolve bench-
mark, (7) the Cruz system with a partial information in the middle of the temporal
domain.
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5.3 Interval IVPs

Although solving interval IVPs is not the primary purpose of the DACSP solver,
we present results obtained on three interval IVPs (defined in Fig. 3, results
provided in Table 3).

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = −x2

x(0) ∈ [0.1, 0.4]
[t0, tf ] = [0, 5]
eps = 0.2

(8)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = −x1 − 2x2
ẋ2 = −3x1 − 2x2
x1(0) ∈ [5.9, 6.1]
x2(0) ∈ [3.9, 4.1]
[t0, tf ] = [0, 1]
eps = 0.5

(9)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = −x2 + 0.1 x1 (1 − x2
1 − x2

2)
ẋ2 = x1 + 0.1 x2 (1 − x2

1 − x2
2)

x1(0) ∈ [0.7, 1.3]
x2(0) = 0.0
[t0, tf ] = [0, 5]
eps = 0.15

(10)

Fig. 3. Three interval IVPs tested. (8) and (9) were introduced in [8]. (10) describes
a limit cycle and is particularly sensitive to the wrapping effect caused by interval
computation.

Table 2. Solutions obtained on BVP systems. For each system, strategy and solution
(s1 and/or s2), we report the diameters of the two unknown states in t0 and tf (most
of the systems tested are 2-dimensional, but 2 of the 4 bounds are provided as initial
conditions), the volume of the solution tubes, the number of slices, the computational
time and the number of choice points required (#bis.).

Sys. Best strategy #sol t0 diam. tf diam. Tube vol. #slices Time #bis.

(2) vnode+basic s1 2e−8 5e−8 2.e−4 5, 000 7.63 s 1

s2 2e−8 5e−8 2.e−4 5, 000

(3) vnode+basic s1 7e−15 7e−15 6e−4 12, 288 12.7 s 0

(4) vnode+CIDG+3Bvnode s1 2e−9 4e−7 5e−3 1, 216 3.05 s 0

(5) vnode+CIDG+3Bbasic s1 3.e−2 2.e−4 0.012 5, 000 81 s 6

(6) vnode+basic s1 3.e−6 2.e−6 7.e−4 2, 000 75 s 62

s2 5.e−3 5.e−3 0.025 2, 000

(7) CIDG s1 0.0644 0.0282 0.2637 10, 000 6.85 s 1

For the 2 examples from [8], the exact solution is known, so we also report
the relative error (column Gap in Table 3) on interval width of the final gates.

5.4 Discussion on Experiments

Note first that the VNODE solver alone (outside the DACSP solver) cannot cope
with BVPs and is not efficient on the interval IVPs selected. CtcVnode (inside
the DACSP solver) often provides a very good accuracy on the gates. The good
performance is probably due to the high-order interval Taylor form used (order
11 has been set for the experiments). However, CtcVnode does generally not
obtain good contraction on the whole tube (slice envelopes). Additional work is
required to envisage obtaining a better tube volume accuracy using CtcVnode.
DynCIDGuess alone is generally not efficient, except on Systems (7) and (8),
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Table 3. Solutions obtained on interval IVPs systems. For each system, we report the
best strategy, the diameters of the state at tf , the volume of the solution tube, the
number of slices, the computational time and the number of bisections.

Sys. Strategy tf diam. Tube vol. Gap #slices Time #bis.

(8) CIDG 0.06668 0.6934 0.02% 40,000 9.35 s 1

(9) vnode+CIDG (0.544; 0.544) 0.700 (0.01%; 0.01%) 2,000 3.93 s 1

(10) vnode+basic (0.0695; 0.2273) 2.54 1,000 13.3 s 7

because it requires too many slices to reach the precision (recall that the CPU
time generally grows linearly in the number of slices). Finally, the best option for
the Integration procedure is generally to call first CtcVnode and then DynBasic
or DynCIDGuess. A final call to Dyn3B is useful for Systems (4) (using CtcVnode
as subcontractor) and (5) (using DynBasic).

Overall, different solver strategies provide the best results on the different
systems tested. All the devices offered by the solver can be useful on different
instances: contractors, slicing, choice points. When the best strategy includes a
number of bisections, this means that the #slicesMax has been reached and the
solver resorts to choice points to better approximate the solution tube. An issue
for future work is to better study the interplay between slicing and bisection
in order to obtain a more generic DACSP solver that can work without the
#slicesMax parameter.

6 Conclusion and Future Work

We have presented a new generic solver that can handle together differential
and static numerical constraints. The originality of the approach lies both in the
underlying model considering trajectories as variables and in a novel backtrack-
ing mechanism applicable to DACSP. Our DACSP solver is endowed with an
exploration operator that enables to bisect a tube at a chosen time. This allows
the DACSP solver to better handle hard DACSP systems and accurately esti-
mate distinct trajectories of problems having several solutions. We have shown
on first experimental results that our solver is versatile enough to solve DACSP
instances for which no or a few algorithmic solutions currently exist. We have
also demonstrated the benefits of wrapping the state-of-the-art VNODE in a
CtcVnode contractor implemented in Tubex.

With regard to future work, we will first try to limit the number of user-
defined parameters, in particular remove #slicesMax. Also, we want to pro-
pose ideally only one combination of contractors in the DACSP solver for every
DACSP subclass. Second, we will study a more general search tree branching
static and dynamical variables domains indifferently, though we need to explore
new ideas on large-scale problems. Finally, in the current solver, the propagation
between functional and real variables domains is somewhat naive and is partly
ensured by the “special times” specified by the user (see Algorithm2). The quite
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recent Tubex 3.0 accepts bi-level slice/tube variables, which will enable a fully
incremental contraction achieved by a propagation engine.

Supplementary materials including the sources of the solver and the experi-
ments are available on http://simon-rohou.fr/research/dacsp-solve/.
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sia, pp. 122–188, Birkhäuser, Boston (1993). https://doi.org/10.1007/978-1-4612-
0349-0 4

21. Le Bars, F., Sliwka, J., Jaulin, L., Reynet, O.: Set-membership state estimation
with fleeting data. Automatica 48(2), 381–387 (2012)

22. Lhomme, O.: Consistency techniques for numeric CSPs. In: IJCAI, pp. 232–238
(1993)

23. Lohner, R.: Enclosing the solutions of ordinary initial and boundary value prob-
lems. In: Kaucher, E., Kulisch, U., Ullrich, Ch. (eds.) Computer Arithmetic: Sci-
entific Computation and Programming Languages, pp. 255–286. BG Teubner,
Stuttgart (1987)

24. Mazzia, F., Cash, J.R., Soetaert, K.: Solving boundary value problems in the open
source software R: package bvpSolve. Opuscula Math. 34(2), 387–403 (2014)
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Abstract. Constraint Programming models have been recently pro-
posed to solve cryptanalysis problems for symmetric block ciphers such
as AES. These models are more efficient than dedicated approaches but
their design is difficult: straightforward models do not scale well and it is
necessary to add advanced constraints derived from cryptographic prop-
erties. We introduce a global constraint which simplifies the modelling
step and improves efficiency. We study its complexity, introduce propa-
gators and experimentally evaluate them on two cryptanalysis problems
(single-key and related-key) for two block ciphers (AES and Midori).

1 Motivations

Symmetric bloc ciphers use a secret key K to cipher an input text X0 into a
cipher text Xr in such a way that Xr can be deciphered back into X0 with
the same key K. Differential cryptanalysis aims at evaluating if we can guess
K by studying difference propagation during ciphering [6]. These differences are
obtained by applying a xor (bitwise exclusive or, denoted ⊕) between two input
texts. In the related-key attack [5], differences are also introduced in keys. For
mounting these attacks, we must compute Maximum Differential Characteristics
(MDCs), i.e., most probable differences.

A widely used symmetric block cipher is AES [10]. However, AES is rather
time consuming, and lighter ciphers must be designed for devices with limited
computational resources. Each time a new cipher is designed, we must compute
MDCs to evaluate its robustness with respect to differential attacks. In this
section, we illustrate MDCs on Midori128 [2], which is a lighweight cipher simpler
to explain than AES. However, all models can be extended to AES and to other
existing symmetric block ciphers, and we experimentally evaluate our approach
on both Midori and AES.

Midori128. The ciphering iterates r rounds and each round is composed of four
operations: SubBytes replaces every byte with another byte according to a given
lookup table; ShuffleCells moves bytes; and MixColumns and AddKey perform
xors. For each round i ∈ [0, r − 1], Xi denotes the text state at the beginning
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Fig. 1. MDC problem for Midori128.

of round i, and Si, Yi, and Zi denote intermediate text states after each oper-
ation: Si is the result of applying SubBytes on Xi; Yi is the result of applying
ShuffleCells on Si; Zi is the result of applying MixColumns on Yi; and Xi+1 is
the result of applying AddKey on Zi and K.

The goal of the MDC problem is to compute differences. We denote δK the
differences in the key (i.e., δK is the result of applying a xor between two keys),
and δXi (resp. δSi, δYi, and δZi) the differences in the text at the beginning of
round i (resp. after applying SubBytes, ShuffleCells, and MixColumns). For each
A ∈ {K,Xi, Si, Yi, Zi, Xr : i ∈ [0, r − 1]}, δA is a sequence of 16 bytes (where
each byte is a sequence of 8 bits) and, given a byte position b ∈ [0, 15], δA[b]
denotes the byte at position b in δA. δA[b] is called a differential variable, and
δ denotes the set of all differential variables. The domain of each differential
variable δA[b] ∈ δ is D(δA[b]) = [0, 255].

The goal is to find the most probable assignment of differential variables. For
all operations but SubBytes, differences are deterministically computed, i.e., we
can compute δXi+1 given δSi and δK. In this case, the probability of observing
δXi+1 given δSi and δK is equal to 1. However, this is not the case for SubBytes:
when δXi[b] ∈ [1, 255], there are several possible values for δSi[b]. The only case
where we can deterministically compute δSi[b] given δXi[b] is when δXi[b] = 0:
in this case, δSi[b] = 0. The table subBytesTableb contains all triples (δin, δout, p)
such that p is the log2 probability that δSi[b] = δout when δXi[b] = δin. This
table depends on the position b of the byte in δSi. We introduce a variable
Pi[b] which corresponds to this log2 probability and whose domain is D(Pi[b]) =
{−6,−5,−4,−3,−2, 0}.

Figure 1 describes the MDC problem for Midori128. The goal is to maximise
the sum of all log2 probabilities Pi[b]. Constraints (C1) to (C4) correspond to the
4 operations applied at each round: (C1) is the table constraint corresponding
to SubBytes; (C2) corresponds to ShuffleCells, which moves bytes from position
b in δSi to position f(b) in δYi; (C3) and (C4) correspond to MixColumns and
AddKey, respectively, and only involve xor operations.

Two Step Solving Process. Most differential variables are equal to 0 in MDCs.
Indeed, when δSi[b] = δXi[b] = 0, the log2 probability Pi[b] is equal to 0 whereas
in all other cases it is smaller than or equal to −2 for Midori, and −6 for AES.
Hence, the MDC problem is usually solved in two steps [16]: in Step1, we search
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Fig. 2. Step1 problem for Midori128

for difference positions, whereas in Step2 we search for the exact values of the
differential variables.

More precisely, at Step1, the set of variables is Δ = {Δj : δj ∈ δ}. Each
variable Δj ∈ Δ has a binary domain D(Δj) = {0, 1} and indicates if there is
a difference or not in δj , i.e., Δj = 0 ⇔ δj = 0 and Δj = 1 ⇔ δj ∈ [1, 255].
The Step1 problem is defined in Fig. 2 for Midori128. It is very similar to the
problem of Fig. 1. The main difference is that log2 probability variables (Pi[b])
are removed, and the objective function and constraint (C1) are replaced with
constraint (A0) which ensures that the number of ΔXi[b] variables assigned to 1
is equal to a given value n. Constraint (A1) comes from the fact that δXi[b] = 0
iff δSi[b] = 0. Finally, xor constraints (C3) and (C4) are replaced with abstract
xor constraints (A3) and (A4): an abstract xor constraint Δ1 ◦ . . . ◦ Δl = 0 is
satisfied iff, for each Δj assigned to 1 there exists an integer value in [1, 255] such
that the xor of all these values is equal to 0. This constraint may be encoded by∑l

j=1 Δj �= 1. Indeed, when all Δj are assigned to 0, the abstract xor is trivially
satisfied; when exactly one Δj is assigned to 1, it is trivially violated; otherwise,
it is satisfied because it is always possible to find k ≥ 2 values in [1, 255] such
that the result of xoring them is equal to 0. We refer to this encoding of an
abstract xor constraint as the sum�=1 encoding.

Given a Step1 solution s, we define the Step2 model obtained from the model
of Fig. 1 by adding the following constraint for each variable Δj ∈ Δ: if Δj is
assigned to 0 in s then δj = 0, else δj �= 0. This model is much easier to solve
than the original one as many Δj variables are assigned to 0 in s. However,
some Step1 solutions may lead to inconsistent Step2 problems. These Step1
solutions are said to be Step2-inconsistent. These inconsistencies mainly come
from the fact that xors are poorly abstracted at Step1: every abstract xor
constraint ensures that there exist integer values whose xor is equal to 0, but
this is ensured for each constraint separately so that several abstract xors can
be satisfied at Step1 while they are Step2-inconsistent when considering them
all together. For example, the two abstract xor constraints Δ1 ◦ Δ2 = 0 and
Δ1 ◦ Δ2 ◦ Δ3 = 0 are satisfied when Δ1, Δ2, and Δ3 are assigned to 1, but this
assignment is Step2-inconsistent because (δ1 ⊕ δ2 = 0) ⇒ (δ1 = δ2) ⇒ (δ3 = 0).

Finally, to compute MDCs, we iteratively search for all Step1 solutions with
increasing values of n, and for each Step1 solution we solve the associated Step2
problem, until some conditions are reached (see [12] for details).
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Existing Approaches to Compute MDCs. Two main dedicated approaches have
been proposed to solve the Step1 problem for AES: a graph traversal app-
roach [11], and a Branch & Bound approach [7]. Both approaches do not scale
well and they are not able to solve all AES instances within a reasonable amount
of time.

An appealing alternative to dedicated approaches is to use generic solvers
such as Integer Linear Programming (ILP), Boolean satisfiability (SAT) or Con-
straint Programming (CP). ILP has been used to compute MDCs for block
ciphers such as SIMON, PRESENT or LBlock [26]. However, it is difficult to
model the SubBytes operation (modelled by constraint (C1) in Fig. 1) by means
of linear inequalities, and ILP does not scale well to solve Step2.

SAT has also been used to compute MDCs for ciphers such as ARX [21]
or Simon [17]. CryptoMiniSat [23] introduces xor-clauses and uses Gaussian
elimination to efficiently propagate them. These xor-clauses can be used to
model xor constraints (C3) and (C4) in Step2. However, they cannot be used
to model abstract xor constraints (A3) and (A4) in Step1. Indeed, if 1 ⊕ 1 = 0
at a bitwise level (during Step2), this is no longer true during Step1 because
the xor of two bytes different from 0 may be equal to 0. Similarly to ILP, non
linear operations such as SubBytes are not straightforward to model by means
of clauses. In [18], Lafitte shows how to encode a relation associated with a
non linear operation into a set of clauses and, in [24], Sun et al. show how to
reduce the number of clauses by using the same approach as in [1]. However, the
resulting SAT model does not scale well and cannot solve Step2 for AES, for
example.

CP has been used to compute MDCs for AES [14,15], Midori [13], and
SKINNY [25]. These CP models are very efficient. However, if efficient Step2
models are easily derived from problem definitions (such as Fig. 1 for Midori128),
efficient Step1 models are much harder to design. Indeed, a basic model is derived
from Fig. 2 by replacing every abstract xor with its sum�=1 encoding. How-
ever, this model has a lot of Step2-inconsistent solutions. To reduce the number
of Step2-inconsistent solutions, it is necessary to add constraints derived from
advanced cryptographic properties.

Contributions and Overview of the Paper. Our goal is to ease the design of CP
models for computing MDCs, while ensuring an efficient solving process. To this
aim, we introduce a global constraint which propagates xors in a global way in
order to reduce the number of Step2-inconsistent solutions.

In Sect. 2, we introduce notations and preliminary definitions. In Sect. 3, we
introduce the abstractXOR constraint which ensures that a set of abstract xor
constraints is Step2-consistent. We show that deciding of abstractXOR feasibility
is NP-complete when differential variables are constrained to belong to [0, 255]
whereas it is polynomial when the domain of differential variables is not upper
bounded. Hence, we relax abstractXOR by removing this upper bound. In Sect. 4,
we introduce two propagators for abstractXOR: the first one simply ensures
feasibility, and the second one ensures Generalised Arc Consistency (GAC).
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In Sect. 5, we experimentally evaluate them on two MDC problems (related-
key and single-key) for Midori and AES.

2 Notations and Preliminary Definitions

Given two integer values a and b, [a, b] denotes the set of all integer values ranging
from a to b. N+ denotes the set of all natural numbers (excluding 0).

Δ denotes a set of variables such that the domain of each variable Δj ∈ Δ is
D(Δj) ⊆ {0, 1}. Δj is assigned iff #D(Δj)=1, and an assignment is complete
if all variables of Δ are assigned. Δ0 denotes the set of variables assigned to 0
and Δ \ Δ0 denotes the set of variables that are either assigned to 1 or not yet
assigned.

C denotes a set of abstract xor constraints defined on Δ. C↓Δ0 denotes the
set of xor constraints obtained from C by (i) replacing each Δj ∈ Δ0 with 0,
(ii) replacing each Δj ∈ Δ \ Δ0 with an integer variable δj whose domain is
D(δj) = N

+, and (iii) replacing each abstract xor ◦ with the bitwise xor ⊕.
Examples are displayed in Fig. 3 (equations of C↓Δ0 are simplified by replacing
δj ⊕ 0 with δj).

C↓Δ0 is represented by a matrix M which contains one row for each equation
and one column for each variable in Δ \ Δ0: M [i, j] = 1 if δj occurs in the ith

equation of C↓Δ0 ; otherwise, M [i, j] = 0. We denote n and m the numbers of rows
and columns of M . For each row i ∈ [1, n], we define nonZeroi = {j ∈ [1,m] :
M [i, j] = 1}, pivot i = minnonZeroi, and nonPivot i = nonZeroi \ {pivot i}. M is
in reduced row-echelon (RRE) form iff, for every row i ∈ [1, n], there is exactly
one non-zero cell in column pivot i, i.e.,

∑n
i′=1 M [i′, pivot i] = 1 (see examples in

Fig. 3).

Fig. 3. Top: A set Δ of variables and a set C of abstract xor constraints. Bottom:
C↓Δ0 and M when Δ7 is assigned to 0 (Ex. 1, on the left) and when Δ2, Δ3, and Δ7 are
assigned to 0 (Ex. 2, on the right). In Ex. 1, M is in RRE form and nonZero1 = {1, 4, 6},
pivot1 = 1, and nonPivot1 = {4, 6}. In Ex. 2, M is not in RRE form because the pivot
columns of rows 2 and 3 have two non-zero cells.
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3 Definition and Complexity of abstractXOR

When computing MDCs in a two-step process, we aim at minimising as much
as possible the number of Step1 solutions which are Step2-inconsistent. As
many Step2-inconsistencies come from the fact that xor constraints are poorly
abstracted at Step1, we introduce a global constraint to obtain a tighter Step1
model.

Definition 1. Given an integer value u > 0, the constraint abstractXORu,C(Δ)
is satisfied by a complete assignment iff C↓Δ0 ∪ {δj ≤ u : Δj ∈ Δ \ Δ0} is
consistent.

Let us consider Ex. 1 of Fig. 3. If u = 3, then abstractXORu,C(Δ) is satis-
fied because there exists a solution of C↓Δ0 such that every δj belongs to [1, 3]
(e.g., δ1 = δ5 = 1, δ2 = δ6 = 2, and δ3 = δ4 = 3). However, if u = 2, then
abstractXORu,C(Δ) is not satisfied because C↓Δ0 has no solution when every δj

must belong to [1, 2].
In Ex. 2, abstractXORu,C(Δ) is not satisfied because (δ4 ⊕ δ5 = 0∧ δ5 ⊕ δ6 =

0) ⇒ (δ4 = δ5 = δ6) ⇒ (δ4 ⊕ δ6 = 0). Therefore, δ1 must be equal to 0, which is
impossible as δ1 must belong to [1, u].

abstractXOR allows us to easily model Step1 problems. For example, for
Midori128, we replace constraints (A3) and (A4) with abstractXOR255,C(Δ)
where C = {(A3), (A4)}, and Δ contains all variables involved in (A3) or
(A4). The resulting model has less Step2-inconsistent solutions than the basic
model obtained by replacing (A3) and (A4) with sum�=1 constraints: abstrac-
tXOR ensures the consistency of (C3) ∧ (C4) at Step2, whereas the basic model
only ensures the feasibility of each xor separately.

However, checking the feasibility of abstractXOR is intractable.

Theorem 1. Deciding if a complete assignment satisfies abstractXORu,C(Δ) is
an NP-complete problem.

Proof. To decide whether abstractXORu,C(Δ) is satisfied by a complete assign-
ment, we must decide whether C↓Δ0 is consistent when all δj variables occurring
in C↓Δ0 are constrained to belong to [1, u]. This problem trivially belongs to
NP as we can decide in polynomial time whether a given assignment of all
δj variables satisfies C↓Δ0 . To show that it is NP-complete, we give the intu-
ition of a reduction from the graph colouring problem, which aims at deciding if
we can assign a colour ci ∈ [1, u] to each vertex i of a graph so that ci �= cj

for each edge (i, j). Given a graph G, we associate a variable δi (resp. δij)
with every vertex i (resp. edge (i, j)) of G, and we define the xor constraints:
C = {δi ⊕ δj ⊕ δij = 0 : (i, j) is an edge of G}. If each variable must belong
to [1, u], then each xor constraint associated with an edge (i, j) ensures that
δi �= δj (because δi = δj ⇔ δij = 0). Hence, we can show that every solution of
C corresponds to a valid colouring of G, and vice-versa.

Now, let us show that we can decide if abstractXOR is satisfied in polynomial
time when δj variables are not upper bounded. In this case, we have to decide
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Algorithm 1: RRE form of an n × m matrix M

1 i ← 1
2 while i ≤ n do

/* every row i′ ∈ [1, i − 1] is in RRE form, i.e.,
∑n

i′′=1 M [i′′, pivot i′ ] = 1
*/

3 if nonZeroi = ∅ then remove row i and decrement n;
4 else
5 for each row i′ ∈ [1, n] such that i′ �= i and M [i′, pivoti] = 1 do
6 for each column j′ ∈ [1, m] do M [i′, j′] ← M [i′, j′] ⊕ M [i, j′] ;

7 i ← i + 1

if C↓Δ0 is consistent. We first show how to put the matrix M associated with
C↓Δ0 in RRE form. This is done by Algorithm 1, which uses a principle similar
to Gaussian elimination of linear equations. Algorithm 1 does not change the set
of solutions because it only removes empty rows (line 3), or replaces a row i′ with
the result of xoring it with another row i (line 6). To show that Algorithm 1
puts M in RRE form, we show that the comment after line 2 is an invariant
property of the loop lines 2–7. This property is trivially satisfied at the first
iteration when i = 1 and, if it is satisfied at some iteration, then it is satisfied
at the next iteration: if row i is empty (line 3) then it is removed and i is not
incremented so that the property is still satisfied; otherwise (lines 4–7), every
row i′ �= i which contains a non-zero cell on column pivot i is xored with row
i so that column pivot i only contains one non-zero cell on row i just after lines
5–6. The complexity of this algorithm is O(mn2).

We use Property atLeast2 (defined below) to decide if C↓Δ0 is consistent.

Definition 2. A matrix M in RRE form satisfies Prop. atLeast2 if each row
has at least two non-zero cells, i.e., ∀i ∈ [1, n],#nonZeroi ≥ 2.

Theorem 2. C↓Δ0 is consistent iff its associated matrix M in RRE form sat-
isfies Prop. atLeast2.

Proof. If M does not satisfy Prop. atLeast2, then it contains a row with exactly
one non-zero cell, i.e., there exists an equation of the form δj = 0. In this case
C↓Δ0 is inconsistent as D(δj) = N

+.
If M satisfies Prop. atLeast2, then we can always build a solution for C↓Δ0 .

The idea is to first assign values to variables associated with non-pivot columns,
and then compute values of variables associated with pivot columns by xoring
the corresponding non-pivot variables. To ensure that values computed for pivot
variables are always different from 0, we have to choose carefully the values of
non-pivot variables. More precisely, non-pivot variables are assigned one after
the other. When choosing a value for a non-pivot variable δj , for each row i such
that j ∈ nonPivot i, if all variables of nonPivot i but δj are already assigned, then
we must choose a value different from the result of the xor of these assigned
variables. As the domains of δj variables are not upper bounded, we can always
build a solution.
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Algorithm 2: Check Prop. atLeast2 of an n × m matrix M in RRE form
1 for each row i ∈ [1, n] such that nonPivot i = ∅ do
2 if D(Δpivoti) = {1} then return failure;
3 else
4 remove 1 from D(Δpivoti)
5 remove row i and decrement n
6 remove column pivot i and decrement m

7 return success

A consequence of Theorem 2 is that we can decide in polynomial time if
a complete assignment satisfies abstractXOR∞,C(Δ). Indeed, this amounts to
deciding whether C↓Δ0 is consistent. This can be done by using Algorithm 1 to
put the matrix M associated with C↓Δ0 in RRE form, and then checking that
Prop. atLeast2 is satisfied.

4 Propagation of abstractXOR

As deciding of the satisfaction of abstractXORu,C(Δ) is polynomial when u = ∞,
we consider that u = ∞ from now on. In this section, we introduce an algorithm
that checks feasibility (Sect. 4.1), an algorithm that ensures Generalised Arc
Consistency (Sect. 4.2), and we discuss implementation and complexity issues
(Sect. 4.3).

4.1 Checking Feasibility of abstractXOR

Before starting the search, we build the matrix M associated with C↓Δ0 and use
Algorithm 1 to put it in RRE form. During the search, we maintain M in RRE
form: each time a variable Δj ∈ Δ is assigned to 0, we remove column j from
M and, if j is the pivot column of a row i, we execute lines 3–6 of Algorithm 1.

Once M is in RRE form, we check feasibility by exploiting Theorem 2, as
shown in Algorithm 2: for each row i with only one non-zero cell, if Δpivoti is
assigned to 1 we trigger failure, otherwise we assign 0 to Δpivoti and remove row
i and column pivot i from M .

Theorem 3. Algorithm 2 returns success iff abstractXOR∞,C(Δ) can be
satisfied.

Proof. Algorithm 2 returns failure (line 2) when there is a row i with a sin-
gle non-zero cell and the corresponding variable Δpivoti is assigned to 1. This
row corresponds to the equation δpivoti = 0 which cannot be satisfied when
Δpivoti = 1. When Algorithm 2 returns success (line 7), M satisfies Prop.
atLeast2 and, for each column j ∈ [1,m], the variable Δj can still be assigned
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to 1. In this case, Theorem 2 ensures that the constraint can be satisfied by
assigning 1 to each non-assigned variable.

Algorithm 2 does not only check feasibility, but also filters domains: it
removes 1 from the domain of every variable Δpivoti associated with a row i
such that nonPivot i = ∅ (line 4). This does not remove solutions as this row
corresponds to the equation δpivoti = 0 which is satisfied iff Δpivoti = 0.

4.2 Ensuring the Generalized Arc Consistency of abstractXOR

To ensure GAC, we must ensure that for each variable Δj ∈ Δ and each value
v ∈ D(Δj), the couple (Δj , v) has a support, i.e., there exists a consistent
assignment which assigns v to Δj and a value v′ ∈ D(Δj′) to every other variable
Δj′ ∈ Δ \ {Δj}.

By maintaining M in RRE form and ensuring Prop. atLeast2, we ensure that
(Δj , 1) has a support for each variable Δj ∈ Δ such that 1 ∈ D(Δj). Also
(Δj , 0) has a support for every variable Δj ∈ Δ assigned to 0. However, when
Δj is not assigned, (Δj , 0) may not have a support. This occurs when there exist
Δj ,Δj′ ∈ Δ\Δ0 such that D(Δj) = {0, 1}∧D(Δj′) = {1}∧C↓Δ0 ⇒ (δj = δj′).
In this case, the couple (Δj , 0) has no support because C↓Δ0 ∧(δj = 0)∧(δj′ = 1)
is inconsistent.

Hence, to ensure GAC we need to identify cases where the equality of two
variables is a logical consequence of C↓Δ0 . This is done by the following theorem.

Theorem 4. For each pair of variables {Δj ,Δj′} ⊆ Δ \ Δ0, C↓Δ0 ⇒ (δj = δj′)
iff one of the following cases holds in the matrix M in RRE form associated with
C↓Δ0 :

Case 1: ∃i ∈ [1, n],nonZeroi = {j, j′}
Case 2: ∃i, i′ ∈ [1, n], (pivot i = j) ∧ (pivot i′ = j′) ∧ (nonPivot i = nonPivot i′)

Proof. Case 1 occurs when M contains a row i with exactly two non-zero cells,
and this row corresponds to the equation δj = δj′ . Case 2 occurs when M
contains 2 rows i and i′ such that nonPivot i = nonPivot i′ . These rows imply
that δpivoti = δpivoti′ because both δpivoti and δpivoti′ are equal to the result of
xoring a same set of variables.

There is no other case where C↓Δ0 ⇒ (δj = δj′) because, when M is in
RRE form, every row i has a different pivot column pivot i. Therefore, every
equation in C↓Δ0 contains a different pivot variable δpivoti . Hence, δj and δj′ are
constrained to be equal either because they occur in a same equation without any
other variable, or because they are the pivot variables of two different equations
which share the same non-pivot variables.

Let us illustrate these two cases on the example displayed in Fig. 3:
– If Δ0 = {Δ5,Δ7} then C↓Δ0 contains the equation δ2⊕δ4 = 0, and if D(Δ4) =

{1} and D(Δ2) = {0, 1}, then (Δ2, 0) has no support.
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Algorithm 3: Propagation of the assignment of 1 to a variable Δj

1 let Q be an empty queue; enqueue Δj in Q
2 while Q is not empty do
3 dequeue a variable Δj from Q and remove 0 from D(Δj)
4 if j is the pivot column of a row i then
5 if nonPivot i = {j′} and D(Δj′) = {0, 1} then enqueue Δj′ in Q ;
6 else
7 for each i′ ∈ [1, n] such that nonPivot i = nonPivot i′ do
8 if D(Δpivoti′ ) = {0, 1} then enqueue Δpivoti′ in Q;

9 else
10 for each i ∈ [1, n] such that nonPivot i = {j} do
11 if D(Δpivoti′ ) = {0, 1} then enqueue Δpivoti′ in Q;

– If Δ0 = {Δ3,Δ5,Δ6}, then δ1 δ2 δ4 δ7
C↓Δ0 is equal to: δ1 ⊕ δ4 ⊕ δ7 = 0 and M is equal to: 1 0 1 1

δ2 ⊕ δ4 ⊕ δ7 = 0 0 1 1 1
This implies that the pivot variables δ1 and δ2 are both equal to δ4 ⊕ δ7, and
if D(Δ1) = {1} and D(Δ2) = {0, 1}, then (Δ2, 0) has no support.

To maintain GAC during the search, we call Algorithm 3 each time a variable
must be assigned to 1. This algorithm uses a queue Q of variables that must be
assigned to 1. At each iteration of the loop lines 2–11, a variable Δj is dequeued
from Q, and it is assigned to 1. This assignment is propagated on every variable
Δj′ such that C↓Δ0 ⇒ (δj = δj′). We exploit Theorem 4 to identify these
variables:

– Case 1 has two sub-cases: if j is the pivot column of a row i, we simply check
if nonPivot i is reduced to a singleton (line 5); otherwise, we have to search
for every row i such that nonPivot i only contains j (lines 10–11).

– Case 2 only holds when j is the pivot column of a row i, and we have to
search for every row i′ such that nonPivot i = nonPivot i′ (lines 7–8).

Also, each time a variable is assigned to 0, we proceed as explained in Sect. 4.1
to check feasibility. Then, for each line which has been modified when executing
lines 3–6 of Algorithm 1, we check if cases 1 or 2 of Theorem 4 hold and imply
that δj = δj′ with D(Δj) = {0, 1} and D(Δj′) = {1}: in this case, we call
Algorithm 3 to propagate the assignment of 1 to Δj .

4.3 Implementation and Complexities

Sparse Sets. Our propagators mainly involve traversing non-zero cells of rows
and columns of M . As M is very sparse, we represent its rows and columns with
sparse sets [19]: each sparse set contains the non-zero cells of a row or a column.
This allows us to visit every non-zero cell of a column (resp. row) in linear time
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with respect to the number of non-zero cells instead of O(m) (resp. O(n)), and
to decide in constant time if an element belongs to a set. Sparse sets also allow to
restore sets in constant time when backtracking, provided that we only remove
elements at each choice point. Unfortunately, this is not the case here as new
non-zero cells may appear when xoring lines. Hence, when backtracking, we
undo all operations done before the recursive call.

Time Complexity of the Propagators. Let n1 (resp. m1) be the maximum number
of non-zero cells in a row (resp. a column) of M . When using sparse sets, the
complexity of putting M in RRE form, as described by Algorithm 1, becomes
O(nn1m1).

The complexity of the propagation of the assignment of a variable to 0 is
O(n1m1). Indeed, when a variable Δj is assigned to 0, we have to (i) remove
column j, (ii) execute lines 3–7 of Algorithm 1 if j is a pivot column, and (iii)
run Algorithm 2. The complexity of this depends on whether j is a pivot column
or not:
– if j is a pivot column, then (i) is achieved in O(1) as column j only contains

one non-zero cell; (ii) is achieved in O(n1m1); and (iii) is achieved in O(n1)
provided that we keep track of the rows that have been modified at step (ii);

– if j is not a pivot column, then (i) is achieved in O(n1) and (iii) is achieved
in O(n1) provided that we keep track of the rows that have been modified at
step (i).

The complexity of the propagation of the assignment of a variable to 1 by
Algorithm 3 is O(mn1m1). Indeed, in the worst case, this implies to assign 1 to
every other variable. Hence, the loop lines 2–11 is performed O(m) times. The
loop lines 7–8 is iterated O(n1) times (we traverse non-zero cells of the column
of a variable in nonPivot i to identify the rows i′ for which we have to check if
nonPivot i = nonPivot i′), and we decide if nonPivot i = nonPivot i′ in O(m1).
The loop lines 10–11 is iterated O(n1) times as we only have to consider the
non-zero cells of column j.

Implementation. Our global constraint has been implemented in Java and inte-
grated in Choco 4 [22]. As its propagators are rather expensive, we give a low
priority to abstractXOR so that, at each node of the search tree, Choco propa-
gates all other constraints before propagating abstractXOR.

5 Experimental Evaluation

In this section, we experimentally evaluate the interest of abstractXOR. We first
consider the related-key MDC problem, where differences can be injected both in
the key and the input text, and we report results for Midori in Sect. 5.1 and for
AES in Sect. 5.2. In Sect. 5.3, we consider the single-key MDC problem, where
differences are injected only in the input text. All experiments have been done
on a single core of an Intel Xeon E3-1270v3 (3.50 GHz) with 32 GB RAM.
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5.1 Related-Key MDC for Midori

Description of the Problem. The related-key MDC for Midori is described in
Sect. 1 for the case where the input text X0 is a sequence of 128 bits (denoted
Midori128). Midori is also defined for 64 bit texts (denoted Midori64). In this
case, SubBytes and subBytesTable are defined for 4 bit sequences instead of 8 bit
sequences. Also, a key schedule is used to compute a new subkey at each round
(see [2] for details).

We consider different values for r, ranging from 3 to the number of rounds
defined in [2], i.e., 16 (resp. 20) for Midori64 (resp. Midori128). For each value
of r, the constant n used in constraint (A0) of Fig. 2 is set to the smallest value
for which there exists a solution, as this is the most difficult instance: instances
with smaller values of n are often trivially inconsistent, whereas instances with
larger values are useless.

We report results on two problems: Enum1 aims at enumerating all solutions
of the Step1 problem described in Fig. 2 for Midori128; Opt1+2 aims at finding
the MDC whose probability is maximal as described in Fig. 1 for Midori128.

Models for Enum1. We consider two models. The first one, denoted Enum1

Global, is derived from Fig. 2 in a straightforward way, by replacing (A3) and
(A4) with abstractXOR∞,C(Δ) where C = {(A3), (A4)} and Δ contains all vari-
ables occurring in (A3) or (A4). It is implemented in Java with Choco 4 [22], and
we consider two propagators: GlobalFeas only checks feasibility, as described in
Sect. 4.1, and GlobalGAC ensures GAC, as described in Sect. 4.2. In both cases,
we use the minDom/wdeg variable ordering heuristic [8].

The second model, denoted Enum1 Advanced, is introduced in [12] (and is
more efficient than the model of [13]). It is obtained from Fig. 2 by replacing (A3)
and (A4) with their sum�=1 encodings, and by adding a constraint derived from a
property of MixColumns called the Maximum Distance Separable (MDS) prop-
erty. It further adds new variables and constraints to remove Step2-inconsistent
solutions by reasoning on equality relations between Δj variables. This model
is much more difficult to design than Global. For this model, we report results
obtained by Picat-SAT [28], which encodes the problem into a SAT formula and
then uses the SAT solver Lingeling [4]. We made experiments with other CP
solvers (such as Choco, Gecode or Chuffed, for example), and we only report
results obtained with Picat-SAT because it scales much better.

Models for Opt1+2. The problem described in Fig. 1 cannot be solved within a
reasonable amount of time (even for the smallest value of r) without decomposing
it into two steps, as described in Sect. 1. We consider two models for this two step
process. Opt1+2 Global simply merges Enum1 Global with the model of Fig. 1, and
adds a constraint which relates δj and Δj variables, i.e., δj = 0 ⇔ Δj = 0. Also,
we add a variable ordering heuristic to assign Δj variables before δj variables.
This model is implemented in Choco 4.

Opt1+2 Advanced uses Enum1 Advanced to search for Step1 solutions. How-
ever, we do not merge this model with the Step2 model of Fig. 1 and use a single
solver to solve the two steps because CP solvers like Choco cannot efficiently
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solve Enum1 Advanced whereas SAT solvers like Lingeling cannot efficiently solve
Step2 [14]. Hence, Opt1+2 Advanced uses Picat-SAT to solve Enum1 Advanced,
and each time a Step1 solution s is found, it uses Choco with the model of Fig. 1
to search for the best Step2 solution associated with s. This process is stopped
either when there is no more Step1 solution, or when an optimal Step2 solution
is found (i.e., a solution such that all Pi[b] variables are assigned to −2 as this
is the largest possible value).

Results. On the top row of Fig. 4, we display the number of choice points needed
to enumerate all Step1 solutions. GlobalGAC explores less choice points than
GlobalFeas, though the difference is very small for Midori64 when r ≥ 12.

In the middle row of Fig. 4, we display the CPU time spent to enumerate all
Step1 solutions. For Midori64, the two Global variants have very similar times
whereas, for Midori128, GlobalGAC is faster than GlobalFeas. Advanced is much
slower than Global.

In the bottom row of Fig. 4, we display the CPU time needed to solve the
full MDC problem. For Midori64, GlobalFeas and GlobalGAC have very similar
results, and are much faster than Advanced. For Midori128, GlobalGAC is faster
than GlobalFeas, which is faster than Advanced, especially when r increases.

Fig. 4. Comparison of GlobalFeas ( ), GlobalGAC ( ), and Advanced (    ) for
Midori. The x-axis gives the number of rounds r, and the y-axis the number of choice
points for Enum1 (up), and the run time for Enum1 (Middle) and for Opt1+2 (bottom).
Times are in seconds.
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5.2 Related-Key MDC for AES

Description of the Problem. Like Midori, AES iterates r rounds, and each round
is composed of four operations. However, AES computes a new sub-key at each
round according to a key schedule which combines xor and SubBytes opera-
tions. Also, the MixColumns operation is different and it combines xors with
a finite field multiplication by constant coefficients. This multiplication is easily
modelled at Step2 using table constraints. However, it cannot be modelled at
Step1 and constraint (A3) is replaced with the following constraints which are
derived from the MDS property of MixColumns (see [14] for more details):

∀i ∈ [0, r − 2],∀k ∈ [0, 3],
3∑

j=0

(ΔZi[k + 4j] + ΔYi[k + 4j]) ∈ {0, 5, 6, 7, 8}

∀i1, i2 ∈ [0, r − 2],∀k1, k2 ∈ [0, 3],
3∑

j=0

(xi1i2k1k2j + yi1i2k1k2j) ∈ {0, 5, 6, 7, 8}

where xi1i2k1k2j and yi1i2k1k2j are binary variables which are constrained as
follows:

xi1i2k1k2j = 1 ⇔ δZi1 [k1 + 4j] ⊕ δZi2 [k2 + 4j] �= 0
yi1i2k1k2j = 1 ⇔ δYi1 [k1 + 4j] ⊕ δYi2 [k2 + 4j] �= 0

There exist three variants of AES, denoted AESl, where l ∈ {128, 192, 256} cor-
responds to the number of bits in the key. The key schedule depends on l whereas
all other operations do not depend on l. For each key size l, we consider different
values for the number of rounds r, ranging from 3 to an upper bound which
depends on MDC probabilities: when increasing r, the probability decreases and
it is useless to compute MDCs whenever the log2 probability becomes smaller
than −128.

Like in Sect. 5.1, we consider two problems: Enum1 aims at enumerating all
Step1 solutions, and Opt1+2 aims at finding the optimal MDC.

Models for Enum1. We consider two CP models. Global is derived in a straight-
forward way from the definition of AES and the MDS property by replacing
all xor equations with an abstractXOR global constraint. It is implemented
with Choco 4, and we consider two propagators (ensuring feasibility and GAC,
respectively).

Advanced is the model introduced in [14] (which is more efficient than the ones
of [15] and [20]). It uses a preprocessing step to infer new xor equations from
the key schedule, and it adds new variables and constraints to remove Step2-
inconsistent solutions by reasoning on equality relations between Δj variables.
This model is much more difficult to design than Global. It is implemented with
Picat-SAT.

Models for Opt1+2. Like in Sect. 5.1, Global solves the two steps with a single
model implemented with Choco 4 whereas Advanced enumerates Step1 solutions
with Picat-SAT and searches for optimal MDCs with Choco 4.
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Fig. 5. Comparison of GlobalFeas ( ), GlobalGAC ( ), and Advanced ( ) for
AES. The x-axis gives the number of rounds r, and the y-axis the number of choice
points for Enum1 (up), and the run time for Enum1 (Middle) and Opt1+2 (bottom).
Times are in seconds.

Results. On the top row of Fig. 5, we display the number of choice points needed
to enumerate all Step1 solutions. In most cases, GlobalFeas explores slightly more
choice points than GlobalGAC . However, for 5 instances of AES256, GlobalFeas

explores slightly less choice points than GlobalGAC . This is a bit surprising (as
ensuring GAC is stronger than ensuring feasibility) but not impossible as filtering
has an impact on the variable ordering heuristic.

In the middle row of Fig. 5, we display the time spent to enumerate all Step1
solutions. In many cases, GlobalGAC is faster than GlobalFeas, but the difference
is often rather small. Advanced is slower than Global when r ≤ 3 (resp. 6 and
8) for AES128 (resp. 192 and 256), but it has better scale-up properties and
it becomes faster for larger values of r. In particular, Advanced is able to solve
AES192 when r = 9 (resp. r = 10) in 1,326 s (resp. 31,611 s) whereas Global is
not able to complete the run within a time limit of 200,000 s.

In the bottom row of Fig. 5, we display the time needed to solve the full MDC
problem. The performance of the three approaches are rather similar to the one
in the middle row. However, for many instances the fact that the two steps are
solved within a single model improves the solution process. This is the case, for
example, for AES128 when r = 5. In this case, there are 103 Step1 solutions. If
Advanced is more efficient than GlobalGAC to enumerate these solutions (1,694 s
for Advanced instead of 2,656 s for GlobalGAC), Advanced needs much more time
to find the optimal MDC (76,103 s instead of 6,096 s).
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5.3 Experimental Results for the Single-Key Problem

In the single-key differential attack, differences are introduced only in the initial
text X0, and no difference is introduced in the key, i.e., δK = 0. Like for related-
key, we consider two problems: Enum1 (to enumerate all Step1 solutions), and
Opt1+2 (to find the optimal MDC). We also consider two block ciphers, i.e.,
Midori and AES. In all cases, we consider Global and Advanced models, and
these models are obtained from related-key models by assigning 0 to all variables
associated with the key.

CPU times are reported in Table 1. For AES, the problem is the same what-
ever the length of the key (128, 192, or 256), as there is no difference in the key.
For Midori, Enum1 is the same whatever the length of the initial text (64 or 128)
as bit sequences are abstracted by Boolean values. However, Opt1+2 is different
for Midori64 and Midori128. Surprisingly, single-key problems are much harder
to solve than related-key ones, though the size of the search space is smaller (as
all variables associated with the key are assigned to 0). This comes from the fact
that the number of differences (defined by the constant n in Fig. 2) is strongly
increased: n is increased from 3 (resp. 4 and 5) to 7 (resp. 16 and 23) when r = 3
(resp. 4 and 5) for Midori, and from 5 (resp. 12) to 9 (resp. 25) when r = 3
(resp. 4) for AES.

Results for Midori. Advanced finds much more Step1 solutions than Global: it
finds 64 (resp. 4,908) solutions when r = 3 (resp. 4), whereas Global finds 16
(resp. 68) solutions. Every solution found by Advanced and not by Global is
Step2 inconsistent and Advanced spends a lot of time to enumerate these useless
solutions. Hence, Advanced is not able to solve Midori within one hour when
r > 3. When r = 4, Advanced is able to solve Enum1 in 59,036 s, but it is not
able to solve Opt1+2 within a reasonable amount of time because most Step1
solutions are Step2 inconsistent.

Global is able to solve up to r = 5 (resp. r = 4) for Midori64 (resp. Midori128).
Step2 is much harder for Midori128 than for Midori64 because differential vari-
ables associated with the text take their values in [0, 255] for Midori128 and in
[0, 16] for Midori64. Ensuring GAC often pays off and GlobalGAC is faster than
GlobalFeas, except for Opt1+2/Midori128/r = 3.

Results for AES. When r = 3, both Enum1 and Opt1+2 are quickly solved, and
Global is an order faster than Advanced. When r = 4, there is a huge number
of Step1 solutions (we have enumerated 1,715,652 solutions within a 24 h time
limit with GlobalGAC , and all these solutions are Step2 consistent). Hence, Global
fails at enumerating all Step1 solutions within a reasonable amount of time.
However, when merging Step1 and Step2 models to solve Opt1+2, we find an
optimal solution in less than 2 s (the optimality proof is trivial because all Pi[b]
variables are assigned to the largest possible value).

When r = 4, the probability of the optimal MDC is equal to 2−150, which
is smaller than 2−128. Hence, this MDC is useless to mount attacks. However,
the fact that Global is able to enumerate a huge number of Step1 solutions in



582 L. Rouquette and C. Solnon

Table 1. Single-Key results: Time (in seconds) needed by GlobalFeas (GFeas),
GlobalGAC (GGAC), and Advanced (Adv) for Midori (left) and AES (right). We report
‘-’ when time exceeds 3600 s.

Enum1 Opt1+2

Midori 64 and 128 Midori64 Midori128

r GFeas GGAC Adv GFeas GGAC Adv GFeas GGAC Adv

3 0.6 0.6 8.7 0.7 0.6 11.1 1.3 8.1 12.5

4 22.4 8.0 - 17.6 11.1 - 434.9 290.5 -

5 2897.8 686.8 - 2608.1 689.7 - - - -

AES 128, 192, and 256

Enum1 Opt1+2

GFeas GGAC Adv GFeas GGAC Adv

3 1.3 0.7 7.5 1.1 1.0 55.0

4 - - - 1.2 1.4 -

a reasonable amount of time opens new perspectives: we can search for a set of
MDCs that share the same values in the initial text δX0 and in the cipher text
δXr, and combine these MDCs to find better differentials.

6 Conclusion

We have introduced a new global constraint which eases the design of models
for computing MDCs: these models are straightforwardly derived from problem
definitions. This global constraint allows us to compute MDCs much faster than
advanced models (which are much more difficult to design and which combine
SAT and CP solvers) for single-key and related-key Midori, and for single-key
AES. However, for related-key AES, it fails at solving the two largest instances of
AES192 within a reasonable amount of time, and SAT has better scale-up prop-
erties for enumerating Step1 solutions. As pointed out in [14], clause learning is
a key ingredient for solving this problem, and further work will aim at improv-
ing scale-up properties of Choco on this problem by adding clause learning to
Choco.

We believe our new global constraint opens promising perspectives for cryp-
tographs, and we aim at using it to solve new differential cryptanalysis problems
such as those studied in [9] or [27], and new symmetric block ciphers such as
Skinny [3].
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Abstract. SAT solvers have achieved remarkable successes in solving
various combinatorial problems. Nevertheless, it remains a challenge
to find an efficient SAT encoding for the Hamiltonian Cycle Problem
(HCP), which is one of the most well-known NP-complete problems. A
central issue in encoding HCP into SAT is how to prevent sub-cycles,
and one well-used technique is to map vertices to different positions.
The HCP can be modeled as a single-agent path-finding problem. If the
agent occupies vertex i at time t, and occupies vertex j at time t + 1,
then vertex j’s position must be the successor of vertex i’s. This paper
compares three encodings for the successor function, namely, a unary
encoding that uses a Boolean variable for each vertex-time pair, an opti-
mized binary adder encoding that uses a special incrementor with no
carry variables, and a LFSR encoding that uses a linear-feedback-shift
register. This paper also proposes a preprocessing technique that rules
out a position from consideration for a vertex and a time if the agent can-
not occupy the vertex at the time. Our study has surprisingly revealed
that, with optimization and preprocessing, the binary adder encoding is
a clear winner: it solved some instances of the knight’s tour problem that
had been beyond reach for eager encoding approaches, and performed the
best on the HCP instances used in the 2019 XCSP competition.

1 Introduction

The Hamiltonian Cycle Problem (HCP) is one of the most well-known NP-
complete problems. Given a graph, the goal of HCP is to find a cycle in the
graph that includes each and every vertex exactly once. As HCP occurs in many
combinatorial problems, the global constraint circuit(G) has become indis-
pensable in constraint programming (CP) systems. Given a graph G represented
by a list of domain variables, the constraint ensures that any valuation of the
variables constitutes a Hamiltonian cycle.

SAT solvers have achieved remarkable successes in solving combinato-
rial problems, ranging from formal methods [2,27], planning [24,37], answer
set programming [6,14], to general constraint satisfaction problems (CSPs)
[4,20,22,33,39,40,43]. The key issue in encoding HCP into SAT is how to pre-
vent sub-cycles. A naive encoding, which bans sub-cycles in every proper subset
of vertices, requires an exponential number of clauses. One common technique
c© Springer Nature Switzerland AG 2020
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used in SAT encodings for HCP is to map vertices to different positions so that
no sub-cycles can be formed during search. The direct encoding of the mapping,
which requires O(n3) clauses for a graph of n vertices in the worst case, does
not scale well to large graphs [19,28,35]. In order to circumvent the explosive
encoding size of the eager approach, researchers have proposed lazy approaches,
such as satisfiability modulo acyclicity [3] that incorporates reachability check-
ing during search, and incremental SAT solving that incrementally adds clauses
to ban sub-cycles [38]. Recently inspired by the log encoding [21], Johnson pro-
posed a compact encoding for HCP, which employs a linear-feedback-shift reg-
ister (LFSR) for the successor function [18,23].

This paper continues the pursuit of an efficient SAT encoding for HCP. HCP
can be modeled as a single-agent path-finding problem. Given a graph of n
vertices, the agent resides at the start vertex at time 1, moves to a neighboring
vertex in each step, and at time n+1 comes back at the start vertex after having
visited each and every vertex exactly once. Each vertex is mapped to a distinct
position. If the agent occupies vertex i at time t, and occupies vertex j at time
t+1, then vertex j’s position must be the successor of vertex i’s. This encoding is
called distance encoding. This paper compares three encodings for the successor
function, namely, a unary encoding that uses a Boolean variable for each vertex-
time pair, an optimized binary adder encoding that uses a special incrementor
with no carry variables, and a LFSR encoding that uses a linear-feedback-shift
register. This paper also proposes a preprocessing technique that rules out a
position from consideration for a vertex and a time if the agent cannot occupy
the vertex at the time.

The experimental results, using two SAT solvers, show that, with preprocess-
ing, the optimized binary adder encoding significantly outperformed the unary
and the LFSR encodings. The binary adder encoding solved some instances
of the knight’s tour problem that had been beyond reach for eager encoding
approaches, and solved more instances of the HCP benchmark used in the 2019
XCSP competition than other solvers.

2 Preliminaries

This section defines HCP, and gives the basic SAT encodings for domain variables
and the at-most-one constraint that are employed in the SAT encodings for HCP.

2.1 The HCP and the Circuit Constraint

Given a directed graph, the goal of HCP is to find a cycle in the graph that
includes each and every vertex exactly once. In CP, HCP can be described as a
global constraint circuit(G), where G = [V1, V2, . . . , Vn] is a list of domain
variables representing the graph.

For example, Fig. 1 gives a directed graph and its representation using domain
variables, where vertex i is represented by the domain variable Vi (i = 1, 2, 3, 4),
and the domain of Vi indicates the outgoing arcs from vertex i. A valuation
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Fig. 1. A directed graph and its representation using domain variables

Vi = j of the domain variables represents a subgraph of G that consists of
arcs (i, j) (i ∈ 1 . . . n, j ∈ 1 . . . n). The circuit(G) constraint enforces that the
subgraph represented by a valuation of the domain variables forms a Hamiltonian
cycle. For example, for the graph in Fig. 1, [2,4,1,3] is a solution because
1→2, 2→4, 4→3, 3→1 is a Hamiltonian cycle, but [2,1,4,3] is not because
the graph 1→2, 2→1, 3→4, 4→3 contains two sub-cycles.

2.2 Direct Encoding

Let X :: {a1, a2, . . . , an} be a domain variable. The direct encoding [11] intro-
duces a Boolean variable Bi for Bi ⇔ X = ai (i ∈ 1..n), and generates
the constraint exactly-one(B1, B2, . . . , Bn), which is converted to a conjunc-
tion of an at-least-one constraint ≥1 (B1, B2, . . . , Bn), and an at-most-one con-
straint ≤1 (B1, B2, . . . , Bn). The at-least-one constraint is encoded as the clause
B1 ∨ B2 ∨ . . . ∨ Bn.

2.3 SAT Encodings for the At-Most-One Constraint

The at-most-one constraint has numerous encodings into SAT (see [42] for the
latest comparison).

The pairwise (PW) encoding for ≤1 (B1, B2, . . . , Bn) decomposes the con-
straint into ¬Bi ∨ ¬Bj , for i ∈ 1..n − 1 and j ∈ i + 1..n. PW generates O(n2)
clauses, and is therefore not viable for large n.

The bisect (BS) encoding for ≤1 (B1, B2, . . . , Bn) splits the variables into
two groups G1 = {B1, B2, . . . , Bm} and G2 = {Bm+1, . . . , Bn}, where m =
�n
2 	. It introduces a new variable T as the commander for G1, and uses ¬T

as the commander for G2. BS decomposes the constraint into the following:
(BS-1) For i ∈ 1..m: Bi ⇒ T ; (BS-2) For i ∈ m + 1..n: Bi ⇒ ¬T ; (BS-3)
≤1 (B1, B2, . . . , Bm); (BS-4) ≤1 (Bm+1, . . . , Bn). Constraint BS-1 forces T to
be 1 if any of the variables in G1 is 1. Constraint BS-2 forces T to be 0 if
any of the variables in G2 is 1. Since T cannot be both 0 and 1 at the same
time, it is impossible for one variable in G1 and another variable in G2 to be 1
simultaneously. Constraints BS-3 and BS-4 recursively enforce at-most-one on
the two groups. The BS is a special case of the commander encoding [25]. The
number of clauses generated by BS is characterized by f(n) = n + 2f(n/2), and
the number of new variables is characterized by g(n) = 1 + 2g(n/2).

The product (PD) encoding [7] for ≤1 (B1, B2, . . . , Bn) arranges the vari-
ables on an m × m matrix M , where m =

√
n. It introduces two vectors of new
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variables 〈R1, R2, . . . , Rm〉 and 〈C1, C2, . . . , Cm〉, where Ri represents row i and
Cj represents column j. In case n is not a square number, the extra entries of
M are filled with 0. PD decomposes the constraint into the following: (PD-1)
For i ∈ 1..m, j ∈ 1..m: Mij ⇒ Ri ∧ Cj ; (PD-2) ≤1 (R1, R2, . . . , Rm); (PD-3)
≤1 (C1, C2, . . . , Cm). The number of clauses generated by PD is characterized
by f(n) = 2n + 2f(

√
n), and the number of new variables is characterized by

g(n) = 2
√

n + 2g(
√

n).
A hybrid encoding for ≤1 (B1, B2, . . . , Bn) is employed for HCP. When n ≤

4, PW is used. Otherwise, the constraint is divided into smaller at-most-one
constraints using BS or PD, depending on the cost function f(n)+αg(n), where
α is the penalty for introducing a new variable. For example, for n = 64 and
α = 3, the constraint is first divided using PD into two sub-constraints, each of
which involves 8 variables, and then the sub-constraints are divided using BS
into base ones, which are encoded using PW.

2.4 Log Encoding and Logic Optimization

The log encoding [21] is more compact than the direct encoding. The sign-and-
magnitude log encoding uses a sequence of Boolean variables for the magnitude.
If there are values of both signs in the domain, then the encoding uses another
Boolean variable for the sign. Each combination of values of the Boolean variables
represents a value for the domain variable.

Under log encoding, each domain variable can be treated as a truth table,
and a logic optimizer can be utilized to find CNF clauses for it. The Quine-
McCluskey (QM) algorithm [29,36] is popular for two-level logic optimization.
A product is a conjunction of literals. Given a truth table, each tuple is a product,
called a minterm, that involves all the inputs. A minterm is in the on-set if its
output is required to be 1, in the off-set if the output is required to be 0, and
in the don’t-care-set, otherwise. A product of literals is an implicant of a truth
table if it entails no minterms in the off-set. A prime implicant is an implicant
that is not implied by any other implicant. For a truth table, the QM algorithm
first computes all the prime implicants of the table, and then finds a minimal set
of prime implicants that covers all the minterms in the on-set and none of the
minterms in the off-set. The second step of the QM algorithm requires solving
the minimum set-covering problem, which is NP-hard [12]. The Espresso logic
optimizer [5] only computes a partial set of prime implicants based on heuristics,
and therefore a smaller set-covering problem.

For example, consider the domain variable X :: [1, 2, 5, 6]. The log encoding
uses a sequence of three Boolean variables, X2X1X0, to encode the domain. It
is possible to represent 8 different values with three Boolean variables, including
the values in X’s domain and the no-good values in the set {0, 3, 4, 7}. A naive
encoding with conflict clauses [13] for the domain requires four clauses:

X2 ∨ X1 ∨ X0 (X �= 0)
X2 ∨ ¬X1 ∨ ¬X0 (X �= 3)
¬X2 ∨ X1 ∨ X0 (X �= 4)
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¬X2 ∨ ¬X1 ∨ ¬X0 (X �= 7)

Each of these clauses corresponds to a no-good value. The logic optimizer
Espresso only uses two clauses:

X1 ∨ X0

¬X1 ∨ ¬X0

Each clause corresponds to a prime implicant in the disjunctive normal form.
Note that the variable X2 is optimized away.

3 The Distance Encoding for the circuit Constraint

The circuit(G) constraint, where G is a list of domain variables
[V1, V2, . . . , Vn], enforces the following: (1) each of the vertices has exactly one
incoming arc and exactly one outgoing arc; (2) each of the proper subgraphs of
G is a tree, meaning that the subgraph is connected and the number of vertices
is 1 greater than the number of arcs. A SAT encoding based on these properties
does not use any extra variables, but requires an exponential number of clauses.

The distance encoding for HCP employs a matrix of Boolean variables H of
size n × n for the Hamiltonian cycle. The entry Hij is 1 if and only if the arc
(i, j) occurs in the resulting Hamiltonian cycle.

The following channeling constraints connects the matrix H and the original
domain variables [V1, V2, . . . , Vn]:

For each i ∈ 1..n, j ∈ 1..n, i �= j:
Hij ⇔ Vi = j

(1)

Since each variable Vi takes only one value, constraint (1) entails that each vertex
has exactly one outgoing arc. The following degree constraints ensure that each
vertex has exactly one incoming arc:

For each j ∈ 1..n:
∑n

i=1
Hij = 1 (2)

For each pair of vertices (i, j) (i ∈ 1..n, j ∈ 1..n), if the arc (i, j) is not in the
original graph G, then the entry Hij is set to 0. Therefore, the number of Boolean
variables in H equals the number of arcs in G.

Graph H that satisfies constraints (1) and (2) may contain sub-cycles. In
order to ban sub-cycles, the distance encoding maps each vertex to a distinct
position. Let p(i) be the position of vertex i, s(p) denote the successor of position
p,1 and sk(p) be the kth successor of p. Assume that vertex 1 is visited first,
and it is mapped to position 1.2 The following constraints ensure that the cycle

1 The successor function, such as the LFSR described below, may generate a different
sequence of numbers from the natural number sequence.

2 A good heuristic is to start with a vertex that has the smallest degree [41].
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starts at 1 and ends at 1:

For each i ∈ 2..n:
H1i ⇒ p(i) = s(1) (3)
Hi1 ⇒ p(i) = sn−1(1) (4)

Constraint (3) ensures that if there is an arc from vertex 1 to vertex i then i’s
position is the successor of 1. Constraint (4) ensures that if there is an arc from
vertex i to vertex 1 then i’s position is the (n − 1)th successor of 1.

In addition to the above constraints, the following constraints ensure that
the arcs are connected and the vertices are positioned successively:

For each i ∈ 2..n, j ∈ 2..n, i �= j:
Hij ⇒ p(j) = s(p(i)) (5)

Constraint (5) ensures that vertex j is positioned immediately after vertex i if
arc (i, j) is in the Hamiltonian cycle.

Theorem 1. Constraints (1)–(5) guarantee that the graph represented by H is
Hamiltonian.

Proof. Constraints (1) and (2) entail that each vertex in graph H has exactly
one incoming arc and exactly one outgoing arc, and therefore they guarantee
that graph H is cyclic. Assume that the cycle in which vertex 1 occurs is:

1 → v2 → v3 → . . . → vk → 1

According to constraints (3)–(5), the following conditions hold:

p(v2) = s(1)
p(vi) = s(p(vi−1)) for i ∈ 3..k
p(vk) = sn−1(1)

These conditions entail k = n. Therefore, graph H includes all the vertices, and
is Hamiltonian. ��

The theorem shows that it is sufficient to use one-way entailment constraints
in (3)–(5) instead of stronger equivalence constraints.

The final encoding size depends on how the successor function is encoded. The
code size of constraints (1) and (2) is not dependent on the successor function.
The number of Boolean variables in H equals the number of arcs in G. Constraint
(1) mimics the direct encoding of domain variables. Both constraint (1) and
constraint (2) are encoded as exactly-one constraints. Let d be the maximum
degree in G. If the 2-product encoding is used for at-most-one, then constraints
(1) and (2) introduce O(n × √

d) new Boolean variables and require O(n × d)
clauses.
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4 Three Encodings for the Successor Function

There are several different ways to encode the successor function p(j) = s(p(i))
used in constraint (5). This section gives three such encodings, namely, the
unary encoding, the binary adder encoding, and the linear-feedback-shift-register
(LFSR) encoding.

4.1 Unary Encoding

The unary encoding of the successor function employs a matrix U of Boolean
variables of size n × n, where Uip = 1 iff vertex i’s position is p for i ∈ 1..n
and p ∈ 1..n. Since vertex 1 is visited first, U11 is initialized to 1. Each vertex
is visited exactly once, so the following constraint must hold:

For each i ∈ 1..n:
∑n

p=1
Uip = 1 (6)

For each vertex i (i ∈ 1..n), there is exactly one position p (p ∈ 1..n) for which
Uip is 1.

Constraints (3)–(5) given in the previous section are translated into the fol-
lowing under the unary encoding:

For each i ∈ 2..n:
H1i ⇒ Ui2 (3’)
Hi1 ⇒ Uin (4’)

For each i ∈ 2..n, j ∈ 2..n, i �= j, p ∈ 2..(n − 1):
Hij ∧ Uip ⇒ Uj(p+1) (5’)

Constraint (3’) ensures that if there is an arc from vertex 1 to vertex i then
vertex i’s position is 2. Constraint (4’) ensures that if there is an arc from vertex
i to vertex 1 then vertex i’s position is n. Constraint (5’) ensures that if arc (i, j)
is in the Hamiltonian cycle, and vertex i’s position is p, then vertex j’s position
is p + 1. The constraints (3’)–(5’) entail that for each position there is exactly
one vertex mapped to it (

∑n
i=1 Uip = 1 for p ∈ 1..n).

The two dimensional array U has O(n2) variables. In addition, some tem-
porary Boolean variables are introduced by the exactly-one constraints in (6).
The number of clauses is dominated by constraint (5’), which requires O(n2 ×d)
clauses to encode, where d is the maximum degree in G.

4.2 Binary Adder Encoding

The binary adder encoding of the successor function employs a log-encoded
domain variable Pi for each vertex i, whose domain is the set of possible positions
for the vertex. As all the positions are positive, no sign variables are needed in
the encoding.

Since vertex 1 is visited first, P1 = 1. Constraints (3)–(5) given above are
translated into the following under log encoding:
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For each i ∈ 2..n:
H1i ⇒ Pi = 2 (3”)
Hi1 ⇒ Pi = n (4”)

For each i ∈ 2..n, j ∈ 2..n, i �= j:
Hij ⇒ Pj = Pi + 1 (5”)

The efficiency of the encoding heavily depends on the encoding of the successor
function Pj = Pi + 1 used in constraint (5”).

Let X’s log encoding be 〈Xm−1Xm−2 . . . X1X0〉 and Y ’s log encoding be
〈Ym−1Ym−2 . . . Y1Y0〉. Consider the unsigned addition:

Xm−1 . . . X1 X0

+ 1
Ym−1 . . . Y1 Y0

A naive encoding performs the addition using ripple carry adders from the least
significant bit to the most significant bit. If a half-adder is used for each bit
position, then the addition requires, in total, m − 1 carry variables and 7 × m
clauses.

The following sequential incrementor performs the addition using no carry
variables:3

– For bit position 0, Y0 = ¬X0, which is encoded as two clauses: Y0 ∨ X0 and
¬Y0 ∨ ¬X0.

– For bit position 1, the input carry from bit position 0 is X0, so the following
constraints must hold:

X0 ⇒ Y1 = ¬X1

¬X0 ⇒ Y1 = X1

These two constraints are converted into 4 clauses.
– For each other bit position i (i > 1), the carry from bit position i − 1 is 1 iff

Yi−1 = 0 and Xi−1 = 1, so the following constraints must hold:

¬Yi−1 ∧ Xi−1 ⇒ Yi = ¬Xi

otherwise ⇒ Yi = Xi

These constraints can be encoded using 6 clauses.

The total number of clauses used for the addition is 2 + 4 + (m − 2) ∗ 6.
The sequential incrementor is improved as follows. For bit position i (i > 1),

instead of considering one bit at a time, the improved version considers two bits
at a time, imposing the following constraints:

¬Yi−1 ∧ Xi−1 ⇒ Yi = ¬Xi

¬Yi−1 ∧ Xi−1 ∧ Xi ⇒ Yi+1 = ¬Xi+1

otherwise ⇒ Yi = Xi ∧ Yi+1 = Xi+1

3 This encoding is based one suggested by Vitaly Lagoon via personal communication.
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These constraints can be encoded using 11 clauses, resulting in a reduction of
one clause for each two bits.

Furthermore, the improved incrementor treats the top 4 bits as a whole using
the adder in Fig. 2.4 The carry from bit position m− 5 to bit position m− 4 is 1
iff Ym−5 = 0 and Xm−5 = 1. The adder uses 21 clauses, resulting in a reduction
of 3 clauses from 24 clauses needed by the one-bit incrementor and 1 clause from
22 clauses needed by the two-bit incrementor.

Xm−1 ∨ Xm−4 ∨ ¬Ym−1 Xm−2 ∨ Xm−4 ∨ ¬Ym−2
Xm−1 ∨ ¬Ym−1 ∨ ¬Ym−2 Xm−3 ∨ Xm−4 ∨ ¬Ym−3
Xm−1 ∨ ¬Ym−1 ∨ ¬Ym−3 Xm−2 ∨ ¬Ym−2 ∨ ¬Ym−3
Xm−1 ∨ ¬Ym−1 ∨ ¬Ym−4 Xm−2 ∨ ¬Ym−2 ∨ ¬Ym−4
Xm−3 ∨ ¬Ym−3 ∨ ¬Ym−4 ¬Xm−4 ∨ Xm−5 ∨ Ym−4
¬Xm−4 ∨ ¬Ym−5 ∨ Ym−4 Xm−1 ∨ ¬Xm−2 ∨ Ym−1 ∨ Ym−2
Xm−2 ∨ ¬Xm−3 ∨ Ym−2 ∨ Ym−3 Xm−4 ∨ ¬Xm−5 ∨ Ym−5 ∨ Ym−4
Xm−4 ∨ Xm−5 ∨ ¬Ym−4 Xm−4 ∨ ¬Ym−5 ∨ ¬Ym−4
¬Xm−1 ∨ Ym−1 ¬Xm−1 ∨ ¬Xm−2 ∨ ¬Ym−1 ∨ Ym−2
¬Xm−2 ∨ ¬Xm−3 ∨ ¬Ym−2 ∨ Ym−3 Xm−3 ∨ ¬Xm−4 ∨ ¬Xm−5 ∨ Ym−5 ∨ Ym−3
¬Xm−3 ∨ ¬Xm−4 ∨ ¬Xm−5 ∨ Ym−5 ∨ ¬Ym−3

Fig. 2. 4-bit adder 〈Xm−1Xm−2Xm−3Xm−4〉 + (¬Ym−5 ∧ Xm−5) = 〈Ym−1Ym−2Ym−3Ym−4〉

Under log encoding, each of the position variables Pi (i ∈ 2..n) uses log2(n)
Boolean variables. The number of clauses is dominated by constraint (5”), which
requires O(n × log2(n) × d) clauses to encode, where d is the maximum degree
in G.

4.3 LFSR Encoding

The LFSR encoding of the successor function also employs a log-encoded domain
variable Pi for each vertex i (i ∈ 1..n) [23]. Given a binary number X, the
Fibonacci LFSR determines the next binary number Y by shifting the bits of X
one position to left and computing the lowest bit of Y by applying xor on the
taps bits of X. For a given length of n, the LFSR is able to generate all 2n − 1
non-zero numbers from any non-zero start number.

For example, consider the length n = 4 and the taps {2, 3}. Given a binary
number 〈X3X2X1X0〉, the next binary number 〈Y3Y2Y1Y0〉 is calculated as fol-
lows: Y3 = X2, Y2 = X1, Y1 = X0, Y0 = X2 ⊕ X3. Assume the start number is
0001, the LFSR produces the following sequence:

0001 → 0010 → 0100 → 1001 →
0011 → 0110 → 1101 → 1010 →
0101 → 1011 → 0111 → 1111 →
1110 → 1100 → 1000 → 0001

4 One may wonder why the chosen number is 4, not 3 or 5. Interestingly, a choice of
3, 5, or any other number will increase the overall number of clauses for Espresso.
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The LFSR encoding is more compact than the binary adder encoding. The LFSR
encoding does not use any carry variables either. For a number, in order to
produce its successor, the LFSR encoding uses two clauses for each bit except
the lowest bit, for which it uses 4 clauses if the number of taps is 2, and 16
clauses if the number of taps is 4.

5 Preprocessing

The distance encoding treats HCP as a single-agent path-finding problem. At
time 1, the agent resides at vertex 1. In each step, the agent moves to a neigh-
boring vertex. The agent cannot reach a vertex at time t (t ∈ 2..n) if there are
no paths of length t − 1 from vertex 1 to the vertex. Similarly, since the agent
must be back at vertex 1 at time n+1, the agent cannot occupy a vertex at time
t (t ∈ 2..n) if there are no paths of length n − t + 1 from the vertex to vertex
1. This simple reasoning rules out impossible positions from consideration for
vertices during preprocessing.

If the agent cannot occupy vertex i at time t, then vertex i cannot be mapped
to position t. Under the unary encoding, the variable Uit is set to 0; under binary
encoding, the value st−1(1) is excluded from the domain of Pi.

It is expensive to check if there is a path of a given length t from one vertex
to another if t is large.5 For long paths, the shortest-distance heuristic is used.
For each vertex i (i ∈ 2..n), if the shortest distance from vertex 1 to vertex i is
t, then the agent cannot occupy vertex i at times 1, 2, . . . , t. Similarly, if the
shortest distance from vertex i to vertex 1 is t, then the agent cannot occupy
vertex i at times n − t + 2, n − t + 3, . . ., n.

If the graph is undirected, and the start vertex 1 has exactly two neighbors,6

then the agent must visit one of the neighbors at time 2, and visit the other
neighbor at time n. This means that the agent cannot occupy either neighbor
at times 3, 4, . . . n − 1. This idea can be seen as a special case of the Hall’s
theorem [17].

6 Experimental Results

All the encodings described above have been implemented in the Picat compiler.7

An experiment was conducted to compare the three encodings for the successor
function on the knight’s tour problem and the HCP benchmark used in the 2019
XCSP solver competition8, using the SAT solver MapleLCMDiscChronoBT-DL-
v3, the winner of the main track of the 2019 SAT Race9. In order to show how
5 Let M be the adjacency matrix of the graph. A naive algorithm that finds all paths

of length t requires computing M t.
6 The knight’s tour problem belongs to this case if one of the corner squares is chosen

as vertex 1.
7 http://picat-lang.org/.
8 http://xcsp.org/competition.
9 http://sat-race-2019.ciirc.cvut.cz/.

http://picat-lang.org/
http://xcsp.org/competition
http://sat-race-2019.ciirc.cvut.cz/
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the SAT solutions perform in a broader context, the experiment also included
or-tools (version 7.6)10, clingon (version 5.4.0)11, and an incremental SAT-
based approach in the comparison. For or-tools, a lazy clause generation CP
solver, HCP is encoded as as a circuit constraint, and the first-fail strategy
is utilized to label variables. For clingon, an answer-set programming system
that performs search-time reachability testing [3], there are several encodings for
HCP. The following ASP encoding, which has been shown to perform the best,
was used in the experiment:

{hpath(X,Y) : link(X,Y)} = 1 :- node(X).

{hpath(X,Y) : link(X,Y)} = 1 :- node(Y).

reach(1).

reach(Y) :- reach(X),hpath(X,Y).

:- not reach(X),node(X).

The incremental approach treats HCP as an assignment problem. If a solution
does not contain any sub-cycles, then the solution is returned as a valid solution
to the original HCP. If the solution contains a sub-cycle that includes a set of
vertices S, then the clause sum(Hi∈Sj /∈S) > 1 is added into the encoding to ban
the sub-cycle. The incremental approach uses the same SAT solver, and restarts
from scratch after each new sub-cycle elimination clause is added.

The knight’s tour problem is a popular benchmark that has been utilized
to evaluate solvers. The problem can be solved algorithmically in linear-time
[8]. The Warnsdorff’s rule [34], which always proceeds to the square from which
the knight has the fewest onwards moves, is a very effective heuristic used in
backtracking search. With Warnsdorff’s rule, called first-fail principle in CP,
and the reachability-checking capability during search, CP solvers are able to
solve very large instances. Regarding SAT-based solvers, no eager approaches
have been reported to be able to solve instances of size 30 or larger. The HCP
benchmark used in the XCSP competition contains 10 instances selected from
the Flinders challenge set12 with numbers of vertices ranging from 338 to 1584.

All the CPU times reported below were measured on Linux Ubuntu with
an Intel i7 3.30 GHz CPU and 32G RAM. The time limit used was 40 min per
instance.

Tables 1 and 2 compare the encodings on, respectively, the number of vari-
ables and the number of clauses. For each encoding, results from two separate
settings are included, one with preprocessing (pp) and the other with no prepro-
cessing (no-pp). The results are roughly consistent with the theoretical analysis:
The LFSR encoding (lfsr) generates the most compact code, then followed by

10 https://developers.google.com/optimization.
11 https://potassco.org/.
12 http://fhcp.edu.au/fhcpcs.

https://developers.google.com/optimization
https://potassco.org/
http://fhcp.edu.au/fhcpcs
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the binary adder encoding (adder), and finally by the unary encoding (unary).
When preprocessing is excluded, adder and lfsr use the same number of vari-
ables because both of them use log encoding for position variables. When pre-
processing is included, however, adder uses slightly fewer variables than lfsr.
This is because preprocessing produces holes scattered in the domains for lfsr,
sometimes requiring more prime implicants to cover than the original domains,
while preprocessing narrows bounds of the domains or produces holes concen-
trated in the domains for adder, and Picat is able to fix some of the bits at
translation time.

Table 1. A comparison on number of variables

Benchmark adder lfsr unary

pp no-pp pp no-pp pp no-pp

knight-8 820 920 912 920 2,958 5,582

knight-10 1,428 1,481 1,479 1,481 6,883 12,767

knight-12 2,375 2,454 2,442 2,454 13,596 25,477

knight-14 3,217 3,320 3,310 3,320 24,032 46,415

knight-16 4,994 5,386 5,376 5,386 40,385 77,806

knight-18 5,972 6,141 6,131 6,141 62,109 121,129

knight-20 8,065 8,272 8,266 8,272 94,974 182,236

knight-22 10,073 10,318 10,308 10,318 136,612 263,410

knight-24 12,152 12,451 12,443 12,451 189,984 376,426

Table 3 compares the encodings on CPU time, which includes both the trans-
lation and solving times. The column inc gives the time taken by the incremen-
tal approach. The entry MO indicates out-of-memory. Preprocessing is generally
effective in reducing the time. The results of adder are very interesting: when
preprocessing was turned off, adder even failed to solve size 12; with prepro-
cessing, however, it efficiently solved all of the instances. It is also interesting to
note that lfsr does not scale up as well as adder, although lfsr also uses log
encoding for position variables, and uses slightly fewer clauses. One explanation,
as shown in Table 1, could be that preprocessing helps adder more than lfsr in
reducing the number of variables. The inc is generally not competitive; it ran
out of time on two instances, and ran out of memory on another two instances.
The inc keeps track of all the sub-cycles that have been found, and adds clauses
to ban them in subsequent searches. The result indicates that inc is not feasible
when there are a huge number of sub-cycles in the graph. The solvers or-tools
and clingo are very fast on these instances; or-tools solved all in less than 2 s
each, and clingo solved all in less than 1 s each.

Table 4 gives several knight’s tour instances solved by the binary adder encod-
ing. These instances are easy for or-tools and clingon to solve, but had been
out of reach for eager SAT encoding approaches.
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Table 2. A comparison on number of clauses

Benchmark adder lfsr unary

pp no-pp pp no-pp pp no-pp

knight-8 11,161 13,939 8,964 9,284 17,271 33,623

knight-10 22,453 23,535 15,641 14,831 42,802 85,836

knight-12 39,784 41,647 39,214 40,163 92,130 184,775

knight-14 55,846 58,272 56,326 54,044 173,041 345,322

knight-16 81,672 96,232 73,231 76,329 306,414 604,730

knight-18 112,465 116,527 89,033 90,088 486,798 970,960

knight-20 147,513 152,184 120,849 107,883 746,299 1,499,129

knight-22 183,121 188,641 148,018 114,412 1,101,488 2,213,986

knight-24 237,071 244,714 215,516 231,325 1,563,133 3,102,627

Table 3. A comparison on CPU time (seconds)

Benchmark adder lfsr unary inc

pp no-pp pp no-pp pp no-pp

knight-8 2.88 2.39 2.93 3.4 8.92 11.26 0.17

knight-10 2.39 113.18 3.67 3.83 11.76 18.31 0.47

knight-12 4.46 >2400 11.12 81.33 22.15 42.51 5.16

knight-14 4.59 >2400 13.31 126.52 48.96 89.43 88.63

knight-16 7.83 >2400 30.16 52.50 92.61 225.47 >2400

knight-18 10.16 >2400 35.85 153.99 137.91 436.13 MO

knight-20 9.39 >2400 505.40 >2400 208.53 512.10 625.25

knight-22 25.84 >2400 1243.22 >2400 358.51 >2400 >2400

knight-24 9.64 >2400 >2400 >2400 >2400 >2400 MO

Table 5 compares the solvers on CPU time using the XCSP competition
instances.13 The number in parentheses indicates the number of vertices in the
graph. Preprocessing was enabled for the eager encoding approaches. Overall,
adder performed the best. It solved all the instances, none of which took more
than 250 s. The lfsr failed on one instance. For the solved instances, the times
taken by lfsr are much longer than those taken by adder. The unary failed on
6, and inc failed on 7 instances, due to time out or memory out. While or-tools
and clingo demonstrated superior performance on the knight’s tour benchmark,
they are not as competitive as adder on these instances; or-tools failed on 7

13 All the participating solvers in the 2019 XSCP competition, except PicatSAT and
Choco, failed on every single instance. PicatSAT, which is based on an early version
of adder, solved all of the 10 instances, the sequential version of Choco solved 4
instances, and the parallel version of Choco solved 7 instances.
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Table 4. Knight’s tour instances solved by the binary adder encoding (seconds)

size 26 28 30 32 34 36 38

time 57.45 83.04 62.90 346.57 188.00 310.09 304.13

instances, and clingo failed on 1 instance and took more than 500 s to solve two
of the instances each.

Table 5. XCSP competition instances (CPU time)

benchmark adder lfsr unary inc or-tools clingo

graph162 (909) 184.18 676.91 MO 21.98 49.62 16.94

graph171 (996) 27.25 51.58 1887.64 >2400 >2400 52.50

graph197 (1188) 64.18 270.74 >2400 >2400 >2400 1821.98

graph223 (1386) 68.16 144.20 1279.99 >2400 >2400 17.92

graph237 (1476) 91.6 388.25 >2400 >2400 >2400 23.78

graph249 (1558) 52.88 112.60 494.45 336.21 307.30 13.47

graph252 (1572) 98.22 403.25 >2400 >2400 >2400 541.48

graph254 (1582) 63.65 268.23 541.97 168.32 >2400 12.7

graph255 (1584) 45.86 144.83 >2400 >2400 171.0 >2400

graph48 (338) 213.0 >2400 >2400 MO >2400 0.97

For comparison, the same experiment was also conducted using CaDiCaL,
the second-place winner in the 2019 SAT Race. With preprocessing, adder using
CaDiCaL also solved all the instances in Tables 3 and 5, while lfsr failed on
knight-24 and graph48, and unary failed on 4 knight’s tour instances and 6
XCSP instances.

7 Related Work

Various approaches have been proposed for HCP [15]. As HCP is a special variant
of the Traveling Salesman Problem (TSP), many approaches proposed for TSP
[9,16] can be tailored to HCP.

Recently several studies have used SAT solvers for HCP. A common technique
utilized in encoding HCP into SAT in order to prevent sub-cycles is to impose a
strict ordering on the vertices. The bijection encoding [19] uses an edge constraint
for each non-arc pair (i, j) that bans vertex j from immediately following vertex i
in the ordering. This encoding is compact for dense graphs. The relative encoding
[35] imposes transitivity on the ordering: if vertex i reaches vertex k, and vertex
k reaches vertex j, then vertex i reaches vertex j. The reachability encoding,
which is used in translating answer-set programs with loops into SAT [28], also
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imposes transitivity on the ordering. All these encodings use direct encoding
for positions, and require O(n3) clauses in the worst case. It is reported in [41]
that using a hierarchical encoding for domain variables significantly reduces the
encoding size and increases the solving speed for HCP. However, hierarchical
encoding still suffers from code explosion for large graphs.

The distance encoding for HCP is not new. It is based on the standard
decomposer used in MiniZinc [31], which uses an order variable Oi for each
vertex i, and ensures that if Vi = j then Oj = Oi +1. The idea of using order or
position variables could be traced back to the integer programming formulation
that uses dummy variables to prevent sub-cycles [30].

The log encoding [21] resembles the binary representation of numbers used in
computer hardware. Despite its compactness, log encoding is not popular due to
its poor propagation strengths [26]. Johnson first came up with the idea of using
log encoding for position variables and the LFSR for encoding the successor
function [23]. The binary adder encoding for Y = X + 1 proposed in this paper
is a special optimized incrementor that does not use any carry variables.

The preprocessing technique for excluding unreachable positions from the
domains of position variables is well-used in constraint programming. Similar
techniques have been used for maintaining consistency of some of the global
constraints, such as the regular constraint [32], and for eliminating variables in
multi-agent path finding [1]. This work has shown, for the first time, that when
preprocessing is effective the binary adder encoding of the successor function
significantly outperforms the unary and LFSR encodings for HCP.

In order to circumvent the explosive encoding sizes of eager approaches,
researchers have proposed lazy approaches, such as satisfiability modulo acyclic-
ity [3] and incremental SAT solving [38] for HCP. The idea to incrementally
add constraints to avoid code explosion is the pillar of the cutting-plane method
[9,10]. The incremental approach may suffer if the problems require repeated
addition of sub-cycle elimination clauses.

8 Conclusion

A central issue in encoding HCP into SAT is how to prevent sub-cycles, and
one well-used technique is to map vertices to different positions. This paper has
compared three encodings for the successor function used in the distance encod-
ing of HCP, and proposed a preprocessing technique that rules out unreachable
positions from consideration. Our study has surprisingly revealed that, with pre-
processing and optimization, the binary adder encoding outperforms the unary
and the LFSR encodings. While no eager SAT encoding approaches have been
reported to be able to solve size 30 or larger of the knight’s tour problem, the
binary adder encoding, using the SAT solver MapleLCMDiscChronoBT-DL-v3,
succeeded in solving all instances up to size 38 in less than 6 min each. This
is a remarkable advancement of the state of the art. While there is still a long
way to go for eager SAT encoding approaches to be competitive with CP and
ASP solvers on the knight’s tour problem, this paper has showed that the binary
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adder encoding is competitive with the best CP and ASP solvers on the HCP
benchmark used in the 2019 XCSP competition.

An efficient SAT encoding for HCP will expand the successes of SAT solvers in
solving combinatorial problems, such as the travelling salesman problem (TSP),
which is a generalization of HCP, and its variants. Further improvements include
exploiting special graph structures and symmetry-breaking techniques in SAT
encodings.

Acknowledgement. The author would like to thank H̊akan Kjellerstrand for helping
test and tune Picat’s SAT compiler, Marijn Heule for pointing out Andrew Johnson’s
work on the LFSR encoding, Andrew Johnson for clarifications on his LFSR encoding,
and the anonymous reviewers for helpful comments. This work is supported in part by
the NSF under the grant number CCF1618046.

References

1. Barták, R., Zhou, N.F., Stern, R., Boyarski, E., Surynek, P.: Modeling and solving
the multi-agent pathfinding problem in Picat. In: 29th IEEE International Confer-
ence on Tools with Artificial Intelligence, pp. 959–966 (2017)

2. Biere, A., Heule, M., van Maaren, H., Toby, W.: Handbook of Satisfiability. IOS
Press, Amsterdam (2009)

3. Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., Schaub, T.: Answer set
programming modulo acyclicity. In: Logic Programming and Nonmonotonic Rea-
soning (LPNMR), pp. 143–150 (2015)

4. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: a comparative survey. ACM Comput. Surv. 38(4), 1–54 (2006)

5. Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Ams-
terdam (1984)
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Abstract. Demand response is a control problem that optimizes the
operation of electrical loads subject to limits on power consumption dur-
ing times of low power supply or extreme power demand. This paper
studies the demand response problem for centrally controlling the space
conditioning systems of several buildings connected to a microgrid. The
paper develops a mixed integer quadratic programming model that
encodes trained deep neural networks that approximate the tempera-
ture transition functions. The model is solved using standard branch-
and-bound and a large neighborhood search within a mathematical pro-
gramming solver and a constraint programming solver. Empirical results
demonstrate that the large neighborhood search coupled to a constraint
programming solver scales substantially better than the other methods.
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1 Introduction

Electricity utilities are required to ensure supply-demand balance throughout the
power grid since any mismatch can cause voltage or system frequency instabil-
ity, resulting in loss of supply or system blackouts. Supply-demand balance will
become increasingly difficult with increased investment in uncontrollable renew-
able generations such as solar and wind. To more effectively and cost-efficiently
safeguard system reliability, utilities are increasingly deploying demand response
to cater for unforeseen or difficult circumstances in their network, such as
extreme weather, by motivating customers to decrease demand at certain times
or to shift their consumption to off-peak periods.

Figure 1 shows four example power profiles of a building over a typical day.
Normal power consumption, peaking at nearly 8 kW, is shown in black. As appli-
ances and the building’s insulation receive upgrades in energy efficiency, the load
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Fig. 1. Load shapes of a building, with and without demand response [13]. (Color
figure online)

profile is expected to shift from the black line to the green line, which peaks at
just over 6 kW. In the meantime, utilities promote grid reliability and stability
by allowing building management to either curtail power use (shown in red) or
shift power usage to earlier parts of the day (shown in blue) when the temper-
ature is cooler; preserving power for heating, ventilation and air conditioning
(HVAC) systems in the warmer parts of the day.

Utilities target customers with large controllable devices with flexible
usage for participation in demand response. Examples of such devices include
thermostatically-controlled loads (e.g., HVAC systems and electric water
heaters) and shiftable appliances (e.g., dishwashers, washing machines and dry-
ers). Since space conditioning accounts for a large proportion of building energy
use, especially in commercial buildings, HVAC loads are excellent candidates
for demand response. Moreover, slight temperature changes do not immediately
impact occupant comfort because of the thermal storage effect of buildings [13],
a feature that can be further enhanced through building upgrades such as hot
water storage tanks and phase-change materials [3].

Even though a manual approach to demand response can be tediously imple-
mented, HVAC systems in modern commercial buildings can be controlled by
automation systems. This paper develops strategies to jointly control the HVAC
systems of several buildings connected to a microgrid such that their tempera-
tures are maintained within acceptable comfort bounds and all power restrictions
are adhered to. We make use of a deep neural network to automatically learn
a transition function for each of the buildings under control, as a proxy for the
behavior governed by physical laws. This paper shows how these neural network
transition functions can be encoded in a mixed integer quadratic programming
(MIQP) model that decides on the operating mode of the HVAC system in all
connected buildings within a given planning horizon.

The model is implemented in the constraint programming (CP) solver Gecode
and the mathematical programming (MP) solver Gurobi. A large neighborhood



Large Neighborhood Search for Temperature Control with Demand Response 605

search (LNS) is also implemented in the two exact solvers for finding local
improvements. Empirical results show that the best solutions are found using
LNS in Gecode. The remainder of the paper explores these results in detail.

2 Related Work

HVAC systems account for approximately 50% of total building energy consump-
tion [15]. Their large energy footprint, combined with their flexibility due to ther-
mal inertia, has resulted in significant efforts in developing methods to unlock
their potential for demand response, including multiple field tests [12]. Unfortu-
nately, these methods are largely market-based, controlling the HVACs through
price signals rather than computing a globally optimal joint schedule. Given the
true model dynamics for each building, the globally optimal joint schedule can
be approximated efficiently by Lagrangian relaxation methods such as column
generation [14]. However, the use of relaxations means that constraints are not
guaranteed to be satisfied, unless schedules are corrected by re-planning in an
on-line fashion. This requires that the agents are in constant communication,
which is a potential system vulnerability. The optimization methods proposed
in this paper avoid this issue by computing feasible schedules a priori.

When accurate models are not available, one solution is to directly learn a
controller by interacting with the system, through reinforcement learning. This
approach has seen wide application to demand-response problems [20]. However,
the vast majority of these approaches apply only to single-agent problems; learn-
ing to control the joint dynamics directly is highly intractable due to the curse
of dimensionality on the exponential growth of the state and action space, while
multi-agent reinforcement learning does not have a clear pathway to impose
global constraints. In addition, reinforcement learning requires the reward func-
tion coefficients to be fixed a priori, so changes in a user’s comfort preferences
necessitate learning a new solution. To avoid these challenges, we propose sepa-
rating learning the transition function from planning the HVAC schedules.

We adapt a variety of techniques in the combinatorial optimization literature
to the demand response problem. The use of artificial neural networks (ANNs)
as approximations of complex processes in optimization models has been cham-
pioned in [4]. They develop a Neuron global constraint and bounds-consistent
filtering algorithms, which are evaluated in controlling the temperature of com-
puter chips under various workloads. In [2], an ANN is encoded in a mixed
integer linear programming model using facet-defining (i.e., tightest possible)
constraints. However, they show that the new constraints are outperformed by
a simple big-M encoding in practice.

A learned transition function in the form of a ReLU-ANN can be encoded
directly as a mixed-integer linear program [18]. In their work, the authors develop
valid inequalities that allow sparsifying the encoding of an ANN, resulting in
significant speed-up. Among other domains, they apply their approach to a
multi-zone HVAC control problem, with an objective to minimize cost of keeping
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occupants comfortable. Due to the complexity of the mixed-integer linear pro-
gramming, only relatively small instances with short horizons can be solved opti-
mally, requiring on-line planning. Compared to their work, we consider demand-
response in a larger multi-building setting, which we show to be intractable to
solve directly, requiring the use of our local search procedures to solve in rea-
sonable time.

3 The Problem

This section describes the problem and then models it using MIQP.

3.1 Motivation

Monash University has committed to achieving net zero emissions by 2030. It
is investing AUD$135 million to increase the energy efficiency of its operations,
electrify its buildings, and transition to renewable electricity through on-site
solar generation and off-site power purchase agreements. The project aims to
develop solutions to the university’s operations, and to serve as a testbed for sci-
entific and engineering studies by integrating its education, research and industry
activities with its built environment. This approach has been recognized globally,
having won the United Nation’s Momentum for Change Award in 2018.

One component of the project is to redevelop a portion of the main univer-
sity campus at Clayton, Victoria, Australia into an energy-efficient microgrid.
The project has seen the installation of distributed energy resources including
medium-scale solar photovoltaic generation, precinct-scale batteries and electric
vehicles that can supply the microgrid while stationary. Buildings with varied
usage characteristics, including commercial buildings and student residences, are
also refurbished for improved energy efficiency and their HVAC systems, if not
entirely deprecated by gains in energy efficiency, are upgraded for autonomous
control by the microgrid.

The purpose of this paper is to study merely one small portion of a real-world
microgrid project. This paper considers a simplified problem abstracted from the
problem of jointly controlling the internal air temperature of several buildings
subject to occupant comfort and demand response. For simplicity, every building
is assumed to have one independent HVAC system that influences its future
indoor temperature by operating in one of three modes: off, cooling or heating.
However, the approach naturally generalizes to multiple control zones within a
building.

3.2 The State Transition Function

The change in temperature from one timestep to the next (i.e., the state tran-
sition function) is governed by physical laws. The future indoor temperatures
are a function of the current indoor and outdoor air temperature, the internal
mass temperature (a measure from the occupants and furniture), the internal
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humidity, the building insulation, the solar irradiance as well as many other
factors. Ideally, the parameters of the physical laws are estimated from data
collected in the environment, and then a physical model is encoded into an opti-
mization model. However, such physical models are typically non-linear, making
them hard to encode and solve, and high-accuracy simulation is computationally
expensive. Furthermore, estimating the parameters from data already entails the
use of machine learning. Therefore, this paper argues for a data-driven approach
to directly estimate the entire transition function using a deep neural network,
rather than estimating the building parameters in a finite difference discretiza-
tion of the governing differential equations.

The transition function is approximated by a multi-layer perceptron (MLP),
also called a vanilla feedforward neural network. MLPs are a basic workhorse
in machine learning. This section briefly review MLPs. For a formal treatment,
readers are recommended to consult the definitive textbook [10].

An MLP Fθ : Rn → R
m with parameters θ = (θ1, . . . , θk) for some k ∈ N is

a function that maps a real-valued n-dimensional vector input to a real-valued
m-dimensional vector output. Consider a data set D consisting of pairs of real-
valued vectors (x,y) ∈ R

n×R
m. In supervised learning, training Fθ is the process

of finding a good estimate of θ such that the predicted output Fθ (x) is reasonably
close to the actual output y for the entire data set (e.g., by minimizing the sum of
mean squared errors over θ). After training (i.e., θ is chosen and fixed), prediction
refers to the process of evaluating Fθ (x) on any arbitrary input vector x in the
hope that Fθ generalizes to the unknown y corresponding to x.

An MLP Fθ consists of L ≥ 2 layers. Let L = {1, . . . , L} be the set of layers.
Layer 1 is the input layer and layer L is the output layer. The intermediate layers
are hidden layers. If there are two or more hidden layers, Fθ is described as deep.

Each layer consists of units, also known as neurons. Let Ul = {1, . . . , Ul} be
the set of units in layer l ∈ L, where Ul ≥ 1 is the number of units in layer
l. The input layer has n units (i.e., U1 = n) and the output layer has m units
(i.e., UL = m). Each unit u in layer l represents a function fl,u. The units in
the input layer (i.e., l = 1) represents the input vector x to Fθ . Formally, unit
u ∈ U1 represents the identity function f1,u : Rn → R of the uth component of
x = (x1, . . . , xn):

f1,u(x) = xu.

In a fully-connected MLP, every unit u ∈ Ul in layer l > 1 represents a function
f l,u
Wl,u,Bl,u

: RUl−1 → R with parameters Wl,u ∈ R
Ul−1 and Bl,u ∈ R that maps

the outputs of the units in the previous layer l − 1 to one real number:

f l,u
Wl,u,Bl,u

(x) = σl,u(Wl,u · x + Bl,u).

The vector Wl,u is the weights of u, and the scalar Bl,u is the bias of u. The
function σl,u : R → R is the activation function of u. Common activation func-
tions include the sigmoid function σ(x) := 1

1+e−x and the rectified linear unit
(ReLU) σ(x) := max(x, 0). In recent times, ReLU has displaced the sigmoid
activation function [10]. For this reason, this study focuses on ReLU.
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Fig. 2. The architecture of the MLP used to approximate the transition function of
each building b ∈ B.

Let θ = (W2,1, B2,1, . . . ,W2,U2 , B2,U2 , . . . ,WL,1, BL,1, . . . ,WL,UL
, BL,UL

)
be the concatenation of the parameters of all units. Then, the MLP Fθ is a
function composition of all units through its layers, as described above.

It is well-known that MLPs with at least one hidden layer and a sufficiently
large number of units is a universal function approximator under reasonable
assumptions (e.g., [7]). In simpler terms, MLPs can approximate any arbitrary
transition function given enough units and appropriate activation functions. For
this reason, we use an MLP as the transition function.

Let T = {0, . . . , T} be the time periods and T ′ = {0, . . . , T − 1} be the
planning periods in which decisions are made. Consider a set B of buildings.
Every building b ∈ B is associated with an MLP illustrated in Fig. 2. It takes
the following inputs from the building’s environment at timestep t ∈ T ′:

1. An indicator xoff
b,t ∈ {0, 1} of whether the HVAC system is off.

2. An indicator xcool
b,t ∈ {0, 1} of whether the HVAC system is cooling.

3. An indicator xheat
b,t ∈ {0, 1} of whether the HVAC system is heating.

4. The indoor air temperature ib,t ∈ [0, 1] scaled to between 0 and 1.
5. The indoor mass temperature mb,t ∈ [0, 1] scaled to between 0 and 1.
6. The outdoor air temperature ob,t ∈ [0, 1] scaled to between 0 and 1.
7. The solar irradiance sb,t ∈ [0, 1] scaled to between 0 and 1.

These seven inputs are fed through several fully-connected hidden layers with
ReLU activation functions. The output layer has three units:

1. The indoor air temperature ib,t+1 ∈ [0, 1] at the next timestep.
2. The indoor mass temperature mb,t+1 ∈ [0, 1] at the next timestep.
3. The power usage pb,t ∈ [0, 1] for running the mode given in the input layer.
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Unusually, the output units also use the ReLU activation function to ensure non-
negativity. (We observed minuscule negative power usage otherwise.) All inputs
and outputs are normalized to values between 0 and 1 for numerical reasons.

3.3 The Mixed Integer Quadratic Programming Model

MIQP generalizes mixed integer linear programming by allowing quadratic terms
in the objective function. The MIQP model of the problem is shown in Fig. 3. The
model minimizes power consumption and uses soft constraints to penalize the
difference from the indoor air temperatures to a fixed comfortable temperature.
The problem contains two classes of (hard) constraints: (1) constraints that
encode the state transition functions, and (2) constraints that limit the total
power usage during a subset of timesteps for demand response.

This deterministic model assumes that the buildings’ environments (i.e., the
outdoor air temperature and solar irradiance) and the power supply constraints
are known in advance with certainty. These assumptions are acceptable in prac-
tice because 24- h weather forecasts are adequately accurate, and power supply
limitations are ordered by utilities in advance because of extreme heat fore-
casts (e.g., higher than 40 ◦C). Furthermore, since real-time control problems
are solved repeatedly throughout the day, large errors (e.g., drifts) are mitigated
in the next run when more accurate data is available.

The model declares three primary decision variables xoff
b,t, x

cool
b,t , xheat

b,t ∈ {0, 1}
to respectively indicate whether the HVAC system is off, cooling or heating
in building b ∈ B during time t ∈ T ′. Define a decision variable pb,t ∈ [0, 1]
for the power usage due to operating in the mode indicated by xoff

b,t, xcool
b,t or

xheat
b,t . Let ib,t,mb,t, ob,t, sb,t ∈ [0, 1] be the indoor air temperature, indoor mass

temperature, outdoor air temperature and solar irradiance of building b ∈ B in
timestep t ∈ T . As the model is deterministic, the outdoor temperature ob,t and
the solar irradiance sb,t for all timesteps, and the initial conditions ib,0 and mb,0

are known constants. The remaining ib,t and mb,t (i.e., where t > 0) are decision
variables.

Every building b has a copy of its MLP transition function for every timestep;
totaling T copies for every building. Let Lb = {1, . . . , Lb} denote the layers of
the transition function of b, and U l

b = {1, . . . , U l
b} the units in layer l ∈ Lb. For

every b ∈ B and t ∈ T ′, denote the output value of unit u ∈ U l
b in layer l ∈ Lb as

f l,u
b,t ∈ [0, 1]. Using the transition function, all f l,u

b,t (and hence ib,t+1, mb,t+1 and
pb,t) are functionally-defined by the seven inputs xoff

b,t, xcool
b,t , xheat

b,t , ib,t, mb,t, ob,t
and sb,t. Therefore, search is only required on the xoff

b,t, xcool
b,t and xheat

b,t variables.
Let cp ∈ R+ be the cost of power, scaled appropriately. Define R ⊂ T as

the set of timesteps during which the building temperature must be maintained
close to an ideal comfortable temperature i0 ∈ [0, 1]. Any deviation away from
i0 is quadratically penalized by a cost ci ∈ R+. Define Q ⊂ T ′ × [0, 1] as the
set of demand response events, which are pairs of a timestep and the amount of
power available during that particular timestep.
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min
∑

b∈B

∑

t∈ ′
cppb,t +

∑

b∈B

∑

t∈R
ci(ib,t − i0)2 (1a)

subject to

(f1,1
b,t , . . . , f

1,7
b,t ) = (xoff

b,t, x
cool
b,t , xheat

b,t , ib,t,mb,t, ob,t, sb,t) ∀b ∈ B, t ∈ ′, (1b)

f l,u
b,t = max(Wl,u

b,t · (f l−1,1
b,t , . . . , f

l−1,Ul−1
b,t ) + Bl,u

b,t , 0)

∀b ∈ B, t ∈ ′, l ∈ Lb \ {1}, u ∈ U l
b, (1c)

(ib,t+1,mb,t+1, pb,t) = (fLb,1
b,t , f

Lb,2
b,t , f

Lb,3
b,t ) ∀b ∈ B, t ∈ ′, (1d)

xoff
b,t + xcool

b,t + xheat
b,t = 1 ∀b ∈ B, t ∈ ′, (1e)

∑

b∈B
pb,t ≤ q ∀(t, q) ∈ Q, (1f)

xoff
b,t, x

cool
b,t , xheat

b,t ∈ {0, 1} ∀b ∈ B, t ∈ ′, (1g)

ib,t ∈ [0, 1] ∀b ∈ B, t ∈ {1, . . . , T}, (1h)

mb,t ∈ [0, 1] ∀b ∈ B, t ∈ {1, . . . , T}, (1i)

pb,t ∈ [0, 1] ∀b ∈ B, t ∈ ′, (1j)

f l,u
b,t ∈ [0, 1] ∀b ∈ B, t ∈ , l ∈ Lb, u ∈ U l

b. (1k)

Fig. 3. The MIQP model.

The first summation in Objective Function (1a) represents the cost of pow-
ering the HVAC systems, and the second penalizes deviations from the ideal
temperature. Using a quadratic term rather than the absolute value function
ensures that a large deviation in one timestep and a small deviation in another
timestep is worse than two medium-sized deviations, for example.

Constraint (1b) equates the input layer of the MLPs to the environment
of the buildings. Constraint (1c) makes predictions using the MLPs. This con-
straint is written using the max function but can be linearized using a binary
variable [9]. Constraint (1d) equates the output layers to the temperatures in
the next timestep and the power usages in the current timestep. Constraint (1e)
enforces exactly one mode for each building and timestep. Constraint (1f) cou-
ples the buildings together by limiting the total power consumption across all
buildings according to the demand response events. Constraints (1g) to (1k) are
the domains of the decision variables. (The implementation omits Constraints
(1b) and (1d) and uses the MLP inputs and outputs directly.)

4 Search Heuristics

This section describes the branching rules and the LNS.
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4.1 The Variable and Value Selection Strategy

MP solvers and lazy clause generation CP solvers are able to derive good branch-
ing rules dynamically by collecting statistics during the search (e.g., [1,8]). How-
ever, in classical finite-domain CP solvers, a problem-specific search procedure
may be required to be successful. This section presents one such branching rule.

Recall from Sect. 3.3 that branching is only required on xoff
b,t, xcool

b,t and xheat
b,t

because all other variables are functionally-defined by the operating modes and
the input data. The branching rule is driven by one main ideology. During
timestep t, the branching rule prefers the operating mode that brings the indoor
temperature nearest to the ideal comfort temperature i0 if t + 1 requires tem-
perature control for occupant comfort (i.e., t+1 ∈ R). Otherwise, the branching
rule prefers turning off the HVAC systems to reduce power costs.

The variable and value selection heuristic is described as follows. The algo-
rithm begins by generating a random ordering of the buildings. It then loops
through the timesteps from 0 to T − 1. At every timestep t and building b
ordered randomly, it computes the indoor temperature at t + 1 for all three
HVAC operating modes. If t+1 �∈ R (i.e., the temperature in t+1 does not need
to be controlled for occupant comfort), the branching rule first branches for the
HVAC system to be off (xoff

b,t ← 1) to reduce power costs, and then branches either
cooling (xcool

b,t ← 1) or heating (xheat
b,t ← 1) according to the difference between

the ideal comfort temperature i0 and predicted temperature given cooling or
heating. If t + 1 ∈ R, then the predicted temperature after operating in each of
the three modes is calculated, and the branching rule branches on the modes in
order of difference between i0 and the predicted temperature. Put simply, if the
next timestep does not require temperature control for comfort, the branching
rule prefers reduced power costs by branching on turning the HVAC systems
off. Otherwise, the branching rule prefers the operating mode that increases
comfort. Since calculating these predictions involves many matrix multiplica-
tions, the predictions are calculated once during the initialization phase and the
branching rule is fixed for the entire search.

4.2 The Large Neighborhood Search

LNS is a popular local search technique [16,19]. It begins with an initial feasible
solution, perhaps found using a greedy method. Using this solution, LNS fixes a
subset of the variables to their values in the existing solution and then calls an
exact solver on the remaining relaxed variables. If a better solution is found, it
is stored as the incumbent solution. Upon completing the search, the process is
repeated with a new search on a different subset of variables fixed to the values
in the new best solution. The choice of variables to fix and relax is determined
by a subroutine called a neighborhood. For LNS to be effective, several neigh-
borhoods should be implemented to target different causes of suboptimality. Six
neighborhoods are developed. The six neighborhoods are randomly selected with
equal probability. They are described as follows.
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Cool Off Neighborhood. The Cool Off neighborhood attempts to reduce
over-cooling of one building. Consider a building operating in a sequence of 〈
Cool,Cool,Cool,Off〉. Perhaps it is better to have 〈Off,Cool,Off,Cool〉
instead. This neighborhood shuffles around the Off and Cool modes within a
range of timesteps, and leaves the Heat decisions alone by fixing them in all
timesteps. This neighborhood is sketched below:

1. For every building b ∈ B and comfort time t ∈ R, compute a weight wb,t =
(ib,t − i0)2 if xcool

b,t−1 = 1 and ib,t < i0, and wb,t = 0 otherwise. Exit if all
wb,t = 0.

2. Select a b∗ ∈ B and t∗ ∈ R with probability wb∗,t∗
∑

b∈B
∑

t∈R wb,t
.

3. Fix xheat
b∗,t = 0 for all t ∈ T ′. Relax xoff

b∗,t and xcool
b∗,t for all t ∈ {t∗−1−k, . . . , t∗−

1+k}∩T ′ for some radius k ∈ N. Fix all other mode variables to their values
in the incumbent solution.

Heat Off Neighborhood. The Heat Off neighborhood is the heating equivalent
of the Cool Off neighborhood:

1. For every building b ∈ B and comfort time t ∈ R, compute a weight wb,t =
(ib,t − i0)2 if xheat

b,t−1 = 1 and ib,t > i0, and wb,t = 0 otherwise. Exit if all
wb,t = 0.

2. Select a b∗ ∈ B and t∗ ∈ R with probability wb∗,t∗
∑

b∈B
∑

t∈R wb,t
.

3. Fix xcool
b∗,t = 0 for all t ∈ T ′. Relax xoff

b∗,t and xheat
b∗,t for all t ∈ {t∗−1−k, . . . , t∗−

1+k}∩T ′ for some radius k ∈ N. Fix all other mode variables to their values
in the incumbent solution.

Flip Neighborhood. The Flip neighborhood attempts to remove sequences of
alternating cooling and heating:

1. Create a random ordering of B and a random ordering of T ′.
2. Loop through b∗ ∈ B and t∗ ∈ T ′ using the random orderings. Find a b∗ and

t∗ such that (1) xcool
b∗,t∗ = 1 and xheat

b∗,t∗+1 = 1, (2) xheat
b∗,t∗ = 1 and xcool

b∗,t∗+1 = 1,
(3) xcool

b∗,t∗ = 1, xoff
b∗,t∗+1 = 1 and xheat

b∗,t∗+2 = 1 or (4) xheat
b∗,t∗ = 1, xoff

b∗,t∗+1 = 1
and xcool

b∗,t∗+2 = 1. Exit if such a b∗ and t∗ are not found.
3. For some radius k ∈ N, relax xoff

b∗,t, xcool
b∗,t and xheat

b∗,t for all t ∈ {t−k, . . . , t+1+
k}∩T ′ for cases (1) and (2), and for all t ∈ {t−k, . . . , t+2+k}∩T ′ for cases
(3) and (4). Fix all other mode variables to their values in the incumbent
solution.



Large Neighborhood Search for Temperature Control with Demand Response 613

Precool Neighborhood. The Precool neighborhood aims to cool down a building
before the first timestep of an interval of comfort times:

1. Create a random ordering of B.
2. Loop through b∗ ∈ B in random order and t∗ ∈ R in ascending order. Find a

b∗ and t∗ such that t∗ − 1 �∈ R, xcool
b∗,t∗−1 = 1 and ib∗,t∗ > i0. Exit if such a b∗

and t∗ are not found.
3. Create an empty set τ ⊂ T ′ of timesteps.
4. Loop t backwards from t∗ − 2 to 0. Add t to τ if xcool

b∗,t = 0. Stop if |τ | = 2k
for some size parameter k ∈ N.

5. If |τ | = 0, go back to step (2) to find another b∗ and t∗.
6. Fix xheat

b∗,t = 0 for all t ∈ T ′. Relax xoff
b∗,t and xcool

b∗,t for all t ∈ τ . Fix all other
mode variables to their values in the incumbent solution.

Preheat Neighborhood. The Preheat neighborhood is the heating equivalent of
the Precool neighborhood:

1. Create a random ordering of B.
2. Loop through b∗ ∈ B in random order and t∗ ∈ R in ascending order. Find a

b∗ and t∗ such that t∗ − 1 �∈ R, xheat
b∗,t∗−1 = 1 and ib∗,t∗ < i0. Exit if such a b∗

and t∗ are not found.
3. Create an empty set τ ⊂ T ′ of timesteps.
4. Loop t backwards from t∗ − 2 to 0. Add t to τ if xheat

b∗,t = 0. Stop if |τ | = 2k
for some size parameter k ∈ N.

5. If |τ | = 0, go back to step (2) to find another b∗ and t∗.
6. Fix xcool

b∗,t = 0 for all t ∈ T ′. Relax xoff
b∗,t and xheat

b∗,t for all t ∈ τ . Fix all other
mode variables to their values in the incumbent solution.

On Neighborhood. The On neighborhood attempts to turn on the HVAC sys-
tems:

1. Initialize wcool
t = 0 and wheat

t = 0 for all t ∈ R.
2. For every building b ∈ B and comfort time t ∈ R, add a weight (ib,t − i0)2 to

wcool
t if xcool

b,t−1 = 0 and ib,t > i0, or add the weight to wheat
t if xheat

b,t−1 = 0 and
ib,t < i0. Exit if all wcool

t = 0 and wheat
t = 0.

3. Focus on cooling with probability
∑

t∈R wcool
t∑

t∈R wcool
t +wheat

t
. Focus on heating other-

wise.
4. If cooling, select a t∗ ∈ R with probability wcool

t∗∑
t∈R wcool

t
. Relax xoff

b,t and xcool
b,t

for all b ∈ B and t ∈ {t∗ − 1 − k, . . . , t∗ − 1 + k} ∩ T ′ for some radius k ∈ N.
5. If heating, select a t∗ ∈ R with probability wheat

t∗∑
t∈R wheat

t
. Relax xoff

b,t and xheat
b,t

for all b ∈ B and t ∈ {t∗ − 1 − k, . . . , t∗ − 1 + k} ∩ T ′ for some radius k ∈ N.
6. Fix all other mode variables to their values in the incumbent solution.
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5 Experimental Results

This section presents the experimental set-up and analyses the results.

5.1 Generating Exploratory Training Data

To generate the exploratory data for training the neural networks, we assume we
have access to physics-based Equivalent Thermal Parameter (ETP; [17]) models
that are closely matched to the real-world dynamics. By using models, we avoid
having to operate real buildings at uncomfortable temperatures far from their set
points for long periods of time needed to gather sufficient data. We instantiate
an ETP model for each of twenty buildings based on defaults provided by the
grid simulator GridLAB-D [6] plus some small (σ = 0.05µ) Gaussian noise to
vary their structural parameters.

The training data is generated as follows: we use the ETP models to generate
25,000 two-hour trajectories on five-minute timesteps, resulting in 600,000 data
points per building model. Every sample trajectory consists of a fixed outdoor
temperature sampled uniformly at random, o0 ∼ U(0, 45), an initial indoor mass
temperature m0 ∼ U(10, 35), and corresponding initial air temperature close to
the initial mass temperature, i0 ∼ U(−0.5, 0.5) + m0. Then, a sequence of 24
exploratory actions are taken, by choosing actions uniformly from {Off,Heat,
Cool}, and recording for every step: the initial conditions, the power consumed
by the HVAC system, and the indoor air and indoor mass temperatures after
five minutes.

5.2 Training the Neural Networks

The training data is preprocessed by scaling all values to lie between 0 and 1.
This ensures that the loss in all dimensions are evenly considered. The MLPs
are trained using the Adam stochastic gradient descent algorithm [11] over 100
epochs in Tensorflow. One-fifth of the input trajectories are reserved for valida-
tion. For every building, ten randomly-initialized training runs are conducted.
Of the ten runs, the trained parameters resulting in the smallest sum of mean
squared errors are chosen and fixed for planning in the MIQP model.

Three sizes of MLPs are trained: (1) three hidden layers, each consisting of
thirty ReLU units, (2) two hidden layers, each with twenty ReLU units and (3)
two hidden layers, each with ten ReLU units. Averaged over the twenty buildings,
the three sizes respectively have 1.6 × 10−8, 1.5 × 10−8 and 4.7×10−8 validation
loss. We use the smallest MLPs since they still accurately fit the data and the
largest MLPs have marginally more error than the middle option.

5.3 Experimental Set-Up

The MIQP model is solved using Gecode 6.2.0 and Gurobi 9.0.1. Using these
two solvers, the following four methods are evaluated:
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– CP-BB : Branch-and-bound search in Gecode with the branching rule
described in Sect. 4.1.

– MP-BB : Branch-and-bound search in Gurobi.
– CP-LNS : Local search in Gecode with the branching rule from Sect. 4.1 and

the LNS from Sect. 4.2.
– MP-LNS : Local search in Gurobi with the LNS from Sect. 4.2.

Both Gecode and Gurobi have built-in support for the max function in the
ReLU activation function. Hence, the models are directly implemented, and no
attempt was made to manually linearize Constraint (1c) for Gurobi. The radius
parameter k for the neighborhoods is randomly chosen as k = 2 with probability
0.7, k = 3 with probability 0.2 and k = 4 with probability 0.1.

All parameters in Gecode are set to their default values. Default parameters
are also used in Gurobi except the search is set to prioritize the primal bound
and the solver is warm-started with a greedy solution found using a procedure
almost identical to the branching rule from Sect. 4.1.

The solvers are tested on 504 instances. First, 42 typical weather conditions
(correlated outdoor temperature and solar irradiance time series) are generated,
of which 9 cover cold days with extremely low temperatures, and 9 are hot
days with extremely warm temperatures. Then, we control the complexity of
the instances generated by varying the length of the planning horizon, and the
number of buildings to be controlled. The horizon varies between four, eight
and sixteen hours, divided into five-minute time periods resulting in 48, 96, and
192 timesteps, respectively. Each of these instances is then paired with 5, 10, 15
and 20 buildings, making up the 504 instances. Every instance has at least one
demand response event, located at the coldest or warmest parts of the day. The
initial conditions of each building are given, with initial indoor mass temperature
assumed to be equal the initial air temperature. Every instance is run by each of
the four methods on a single thread for thirty minutes on an Intel Xeon E5-2660
v3 CPU at 2.60 GHz.

5.4 Results and Analysis

Figure 4 is a cactus plot showing for each objective value how many instances
have better objective value as found by each solver. The chart shows that LNS
outperforms complete branch-and-bound, and that CP-LNS is significantly bet-
ter than MP-LNS. MP-BB and MP-LNS find feasible solutions to 125 and 215
instances respectively. CP-BB finds solutions to 174 instances, and CP-LNS
finds solutions to all 504 instances. Even though both MP-BB and MP-LNS are
given a warm start solution, they are unable to activate the solution in many
instances, declaring unknown problem status (unknown infeasible or feasible) at
termination. Output logs suggest that Gurobi needs to perform computations to
activate the solution. This may be caused by the need to compute a basis, which
is hindered by the large number of binary variables internally added to linearize
the max constraints.

CP-LNS, MP-LNS, CP-BB and MP-BB find the (equally) best solution to
439, 37, 8 and 20 instances respectively. Given the short time-out, neither exact
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Fig. 4. Cactus plot of objective value against the number of instances for which each
method finds better solutions. On the left of any one value on the horizontal axis is the
number of instances that the method finds a solution with the same or lower objective
value.

method is able to prove optimality on any instance. The optimality gap aver-
ages 97% across the 125 instances with feasible solutions from MP-BB. At best,
the optimality gap is 69%. These numbers suggest that the model features a
weak linear relaxation. Overall, these results indicate that exact methods are
ineffective for real-time control problems that have short time-outs required for
repeated reoptimization.

The MIQP model has simple structure, which should make it relatively easy
for Gurobi. Even though ReLU functions are nearly linear (i.e., they are a max
function composed with an affine function), they actually belong to the class of
non-convex programming problems. (Recall that a convex minimization problem
has convex less-than-or-equal-to constraints and affine equality constraints [5].)
Therefore, we speculate that the linearization of the ReLU function using a
binary variable leads to a very weak linear relaxation, making Gurobi inadequate.
Rather, the fast tree search of CP and its avoidance of computing nearly useless
dual bounds are key to tackling the problem.

5.5 Closing the Loop

The objective values reported in Fig. 4 are predicted by the optimization routine
using the learned dynamics. To verify that the learned transition models are
accurate, we applied the computed schedules to an ETP simulator with the
actual parameters. Figure 5 (left) presents the match between the predicted
temperature trajectory as optimized by CP-LNS and the ground-truth trajectory
obtained by running the schedule through the simulator for an arbitrary instance.
We verified that this behavior is consistent across all instances.

Figure 5 (right) compares the accuracy of the learned dynamics with the
same optimization routine using a simpler MLP that omits the internal mass
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Fig. 5. Comparison of the scheduled and actual temperature trajectory of a building.
Left: MLP trained on both air and mass temperatures. Right: MLP trained only on
air temperatures.

temperature. We observe that training on all simulator inputs is required to get
schedules that closely match the predicted behavior. We hypothesize that the
reason for the large errors observed from the air-only MLP is that this model
does not actually constitute a function: for every input of 〈air, outdoor, solar irra-
diance, control〉, there are multiple correct corresponding next air temperatures.
The MLP learns to fit a least-error mean value, but this necessarily gives an
error in the prediction, which compounds over time into the dramatic mismatch
observed here.

6 Conclusions and Future Work

This paper developed an MIQP model for real-time control of space condition-
ing systems while considering demand response. The problem adjusts the indoor
temperature of several smart buildings connected to a microgrid to ensure occu-
pant comfort while subject to sporadic limitations on power supply. The model
is solved using the MP solver Gurobi and the CP solver Gecode. The paper
develops a problem-specific branching rule and LNS, which comprises six neigh-
borhoods that attempt to repair six different reasons for suboptimality. Gecode
coupled with the branching rule and LNS vastly outperforms Gurobi.

Several directions for future research are available:

– More sophisticated measures of occupant comfort include various other fac-
tors, such as humidity. Future studies should include these variables.

– The model was initially implemented in CP Optimizer but it faced numerical
issues. CP solvers with lazy clause generation should be used, but it appears
that no other production-ready CP solver supports floating point variables.
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– Dedicated propagators for the ReLU function should be investigated. The
outputs of the neural network are calculated using a sequence of matrix mul-
tiplications, which can be implemented very efficiently using single instruction
multiple data (SIMD) CPU instructions. A propagator that reasons over the
entire neural network, rather than an individual neuron, could potentially
improve the CP solver to a large extent.

– Different kinds of approximations to the transition functions should be eval-
uated. Deep neural networks are non-convex, making them difficult to reason
over. Linear models and decision trees are simpler and using them can poten-
tially improve the solving run-time.

– The control problem is naturally reoptimized over a rolling time window.
Adding one additional time period and keeping the existing decisions fixed
may not heavily impact the solution quality, but not does not allow a large
search space to be explored. This early study investigates a once-off overnight
run. Considering that the temperature approximations will drift as the day
progresses, the number of timesteps to reoptimize during the day is a key
question for future studies.
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Abstract. The Group Cumulative Scheduling Problem (GCSP) comes
from a real application, i.e., order preparation in food industry. Each
order is composed of jobs which must be scheduled on machines, and the
goal is to minimize the sum of job tardiness. There is an additional con-
straint, called Group Cumulative (GC), which ensures that the number
of active orders never exceeds a given limit, where an order is active if at
least one of its jobs is started and at least one of its jobs is not finished.
In this paper, we first describe a Constraint Programming (CP) model
for the GCSP, where the GC constraint is decomposed using classical
cumulative constraints. We experimentally evaluate IBM CP Optimizer
(CPO) on a benchmark of real industrial instances, and we show that it
is not able to solve efficiently many instances, especially when the GC
constraint is tight. To explain why CPO struggles to solve the GCSP,
we show that it is NP-Complete to decide whether there exist start
times which satisfy the GC constraint given the sequence of jobs on each
machine, even when there is no additional constraint. Finally, we intro-
duce an hybrid framework where CPO cooperates with an Ant Colony
Optimization (ACO) algorithm: ACO is used to learn good solutions
which are given as starting points to CPO, and the solutions improved
by CPO are given back to ACO. We experimentally evaluate this
hybrid CPO-ACO framework and show that it strongly improves CPO
performance.

1 Introduction

There exist numerous variants of scheduling problems [23]. In [9], a new schedul-
ing problem is introduced, called the Group Cumulative Scheduling Problem
(GCSP). This problem comes from a real application: order preparation in food
industry. Each order is composed of jobs which must be scheduled on machines,
and the goal is to minimise the sum of job tardiness. There is an additional
constraint, called the Group Cumulative (GC) constraint, which comes from the
fact that a pallet is associated with each order: when starting the first job of an
order is started, a pallet is set on the ground and this pallet is removed when the
last job of the order is ended. As physical space is limited, the number of pallets

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 620–636, 2020.
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on the ground must never exceed a given limit. In other words, jobs are grouped
into orders, and GC ensures that the number of active groups never exceeds a
limit, where a group is active if at least one of its jobs is started and at least one
of its jobs is not finished.

Beyond the industrial application described in [9], the GC constraint may
have other applications. In particular, it may be used each time a resource is
required by a group of jobs, so that the resource is consumed when the first job
of the group starts and it is released only when the last job of the group ends.

Contributions. In this paper, we describe a Constraint Programming (CP) model
for the GCSP, and we show that GC may be decomposed using classical cumu-
lative constraints. We experimentally evaluate IBM CP Optimizer (CPO), a
state-of-the-art solver for scheduling, on the industrial instances of [9], and we
show that CPO struggle to solve many of them, especially when GC is tight. To
provide insight into CPO performance, we study the complexity of GC: we show
that it is NP-Complete to decide whether there exist start times which satisfy
GC when the sequence of jobs on each machine is known, even if there is no addi-
tional constraint. Finally, we show how to hybridise CPO with the Ant Colony
Optimisation (ACO) algorithm introduced in [9]: ACO is used to learn good
solutions which are given as starting points to CPO, and solutions improved by
CPO are given back to ACO. We experimentally evaluate this hybrid CPO-ACO
framework, and show that it strongly improves CPO performance.

Plan. In Sect. 2, we describe the GCSP and we define GC. In Sect. 3, we introduce
a CP model for the GCSP, and we report results obtained with CPO. In Sect. 4,
we study the complexity of GC. In Sect. 5, we describe the ACO algorithm of [9].
In Sect. 6, we introduce and evaluate our hybrid CPO-ACO framework. Sects. 2
and 5 are recalls from [9]. Sections 3, 4 and 6 contain new contributions with
respect to [9].

Notations. We denote sets with calligraphic letters, constants with lowercase
letters, and variables with uppercase letters. #A denotes the cardinality of a set
A. [l, u] denotes the set of all integers ranging from l to u.

2 Description of the GCSP

The GCSP is a classical scheduling problem (referred to as the “basic” scheduling
problem and described in Sect. 2.1) with an additional GC constraint (described
in Sect. 2.2). In Sect. 2.3, we describe the benchmark of [9].

2.1 Basic Scheduling Problem

Given a set M of machines and a set J of jobs such that, for each job j ∈ J ,
rj denotes its release date, dj its due date, and pj its processing time, the goal
is to find a start time Bj , an end time Ej , and a machine Mj , for each job
j ∈ J . According to the notation introduced in [6], the basic scheduling problem
underlying the GCSP is denoted Rm, 1, 1;MPS|sij ; rj |

∑
Tj :
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– Rm, 1, 1 means that M contains several machines working in parallel and
each machine m ∈ M can process at most one job at a time;

– MPS stands for Multi-mode Project Scheduling and means that every
machine m ∈ M has its own speed denoted spm (so that the duration of
a job j is pj ∗ spMj );

– si,j indicates that the setup time of a job j ∈ J depends on the job i that
precedes j on the machine (i.e., the time interval between the end time of i
and the start time of j must be larger than or equal to this setup time);

– rj means that a job cannot start before its release date, i.e., ∀j ∈ J , Bj ≥ rj ;
–

∑
Tj indicates that the goal is to minimize the sum of tardiness of every job,

i.e.,
∑

j∈J max(0, Ej − dj).

2.2 GC Constraint

GC is a particular case of cumulative constraint [1,2,21,22], and we show how to
decompose GC using cumulative constraints in Sect. 3. Cumulative constraints
are used to model the fact that jobs require resources (e.g., human skills or
tools) and that these resources have limited capacities, i.e., the sum of resources
required by all jobs started but not ended must never exceed resource capacities.

In the GCSP, the resource is not directly required by jobs, but by job groups.
More precisely, jobs are partitioned into groups (corresponding to orders in the
industrial application of [9]). The start (resp. end) time of a group is defined as
the smallest start time (resp. largest end time) among all its jobs. A group is
said to be active at a time t if it is started and not ended at time t. The GC
constraint ensures that the number of active groups never exceeds a given limit.
More formally, we define the GC global constraint as follows.

Definition 1. Given a set J of jobs, a partition P of J in #P groups (such
that each job j ∈ J belongs to exactly one group G ∈ P), an integer limit l and,
for each job j ∈ J , an integer variable Bj (resp. Ej) corresponding to the start
time (resp. end time) of j, the constraint GCJ ,P,l({Bj : j ∈ J }, {Ej : j ∈ J })
is satisfied iff #{G ∈ P : minj∈G Bj ≤ t < maxj∈G Ej} ≤ l for any time t.

In Fig. 1, we display two examples of schedules: one that violates GC and one
that satisfies it (we assume that setup times are null in this example).

2.3 Benchmark Instances

A benchmark extracted from industrial data is introduced in [9]. It contains
548 instances such that the number of groups (resp. jobs and machines) ranges
from 56 to 406 (resp. from 288 to 2909, and from 1 to 14). For each instance,
an upper bound (denoted x) on the number of active groups is given. It is
computed as follows: first, a greedy algorithm is used to compute a solution s
for the basic scheduling problem (without the GC constraint); then x is assigned
to the maximum number of active groups during the whole time horizon in s.

As our goal is to study the impact of GC on the solution process, we consider
three classes of instances: in the first class, denoted loose, the limit l is set to
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Fig. 1. Schedule examples. (a) A set J of 9 jobs and a partition P of J in 4 groups
represented by colours. (b) Example of schedule on 2 machines which violates GC when
l = 2 (there are 3 active groups from time 3 to time 6, as displayed on the bottom
of (b)). (c) Example of schedule on 2 machines which satisfies GC when l = 2 (an
iddle time is added between j3 and j6 to wait the end of the blue group). (Color figure
online)

Minimize
j∈J

max(0, endOf (Aj) − dj)

subject to Am
j = interval(dj ∗ spm) ∀j ∈ J , ∀m ∈ M (1)

optional(Am
j ) ∀j ∈ J , ∀m ∈ M (2)

Aj = alternative({Am
j : m ∈ M}) ∀j ∈ J (3)

startMin(Am
j , rj) ∀j ∈ J , ∀m ∈ M (4)

Sm = intervalSequence({Am
j : j ∈ J }, jobTypes) ∀m ∈ M (5)

noOverlap(Sm, jobTypes, setupTimes) m (6)

Fig. 2. CPO model for the basic scheduling problem described in Sect. 2.1. (jobTypes is
an array which associates a type with every job and setupTimes is a transition matrix
which defines the setup times between job types).

l = 0.7 ∗ x, in the second class, denoted medium, l is set to 0.5 ∗ x, and in the
third class, denoted tight, l is set to 0.3 ∗ x.

3 CPO Model

We describe a CPO model for the basic scheduling problem in Sect. 3.1, and
a decomposition of GC in Sect. 3.2. We report results obtained with CPO in
Sect. 3.3. We refer the reader to [16] for details on CPO.

3.1 Model of the Basic Scheduling Problem

The CPO model associates an interval variable Aj with every job j ∈ J , i.e.,
Aj corresponds to the interval [Bj , Ej ]. Also, an optional interval variable Am

j is
associated with every job j ∈ J and every machine m ∈ M: if job j is executed
on machine m, then Am

j = Aj ; otherwise Am
j is assigned to ⊥ (i.e., it is absent).

Finally, an interval sequence variable Sm is associated with every machine m to
represent the total ordering of the present interval variables in {Am

j : j ∈ J }.
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span(FG , {Am
j : m ∈ M ∧ j ∈ G}) ∀G ∈ P (7)

Active =
∑

G∈P
pulse(FG , 1) (8)

lowerOrEqual(Active, l) (9)

Fig. 3. CPO decomposition of GC.

The objective function and the constraints are described in Fig. 2. Con-
straint (1) defines the interval variable Am

j whose length is equal to the process-
ing time of job j multiplied by the speed of machine m; Constraints (2) and
(3) ensure that every job j is scheduled on exactly one machine; Constraint (4)
ensures that a job does not start before its release date; Constraint (5) defines
the sequence of jobs on machine m; and Constraint (6) ensures that at most
one job is executed at a time on machine m, and states that there are sequence-
dependent setup times between jobs.

3.2 Decomposition of GC

We can easily decompose GC using a classical cumulative constraint. To this
aim, we associate a new interval variable FG with every group G ∈ P. This
variable corresponds to a fictive job which starts with the earliest job of the
group and ends with its latest job, and which consumes one unit of resource.
A simple cumulative constraint on these fictive jobs ensures that the number of
active groups never exceeds l.

More precisely, Fig. 3 describes a CPO model of this decomposition: Con-
straint (7) ensures that, for every group G, the fictive job variable FG spans
over all jobs in the group; Constraint (8) defines the cumul function (denoted
Active) corresponding to the case where each fictive job consumes one unit of the
resource; and Constraint (9) ensures that Active never exceeds l, thus ensuring
the cumulative constraint on fictive jobs.

3.3 Experimental Evaluation of CPO

CPO is a state-of-the-art solver for scheduling problems, as demonstrated in
[7] on the job shop, for example. In this section, we report CPO results with
the model described in Sects. 3.1 and 3.2 on instances described in Sect. 2.3. All
experiments reported in this paper have been performed on a processor Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20 GHz with 7.2 GB RAM.

CPO provides different levels of filtering, and we have compared results
obtained with two different levels: default filtering (based on Timetable [1]) and
extended filtering (based on energy reasoning and edge finding [5,15,18,22,29]).
For short time limits (less than 100 s), CPO with default filtering usually finds
better solutions than CPO with extended filtering. After one hour, for nearly half
of the instances a better solution is found with the extended filtering, whereas
for the other half a better solution is found with the default filtering, and this
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Fig. 4. Evolution of the cumulative number of solved instances with respect to time
for the basic scheduling problem and for the GCSP when l is loose, medium or tight.

happens in all classes (loose, medium, and tight). In most cases, the difference
between the two levels of filtering is rather small. Hence, we have chosen to
report results obtained with the default level of filtering.

In Fig. 4, we display the evolution of the cumulative number of solved
instances with respect to time for the basic scheduling problem (we consider
that an instance is solved when CPO has completed its run). In this case, CPO
is able to solve 354 instances (among the 548 instances of the benchmark) within
one hour. We also display results on the same set of instances when adding GC,
for the three classes (which only differ on the value of l). Clearly, GC increases
the hardness of the problem, and increasing the tightness of GC (by decreasing
the limit l) also increases hardness: 319 (resp. 300 and 259) instances are solved
within one hour for the loose (resp. medium and tight) class.

This may come from the fact that the decomposition of GC is not well prop-
agated by CPO. A possible explanation is that interval variables FG associated
with groups do not have known durations when starting the search. We can only
compute bounds on group durations. For example, the duration of a group is
lower bounded by the greatest duration of its jobs. However, these bounds are
not very tight at the beginning of the search. In this case, energy-based propaga-
tion techniques are not efficient as the energy of a job is defined as its duration
multiplied by its resource consumption.

In Fig. 5, we display the number of jobs and machines of solved and unsolved
instances, for the basic scheduling problem and the tight GCSP. In both cases,
some large instances (with more than 2500 jobs) are solved whereas some small
instances (with less than 300 jobs) are not solved. Most instances with more than
6 machines are solved (only 8 are not solved for the basic scheduling problem)
whereas many instances with one machine are not solved.
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Basic scheduling problem Tight GCSP

Fig. 5. Sizes of solved and unsolved instances for the basic scheduling problem (left)
and the tight GCSP (right): each point (x, y) corresponds to an instance with x jobs
and y machines. Top (green points): instances solved in less than one hour. Bottom
(red points): instances not solved within one hour. (Color figure online)

4 Deciding of GC Feasibility with List Schedules

CPO exploits precedence relations to solve scheduling problems [16]: all temporal
constraints are aggregated in a temporal network whose nodes represent interval
start and end time-points and whose arcs represent precedence relations. Also,
CPO integrates a Large Neighborhood Search (LNS) component which is based
on the initial generation of a directed graph whose nodes are interval variables
and edges are precedence relations between interval variables.

Reasoning on precedence relations often simplifies the solution process of
scheduling problems. In particular, for the basic problem described in Sect. 2.1
(without GC), given a list schedule (i.e., an ordered list of jobs for each machine),
we can compute optimal start times in polynomial time: for each machine, we
consider jobs according to the order defined by its associated list and schedule
each of them as soon as possible [10,24]. The basic scheduling problem is NP-
hard because it is hard to find the list schedule which leads to the optimal
solution. However, as optimal start times are easily derived from list schedules,
search can focus on precedence relations.

If we add a classical cumulative constraint to the basic scheduling problem,
the problem of computing optimal start times given a list schedule becomes
NP-hard [21]. However, if we remove the objective function (i.e., we simply
search for a schedule which satisfies the cumulative constraint without having to
minimize the tardiness sum), then we can easily compute start times that satisfy
cumulative constraints given a list schedule: Again, this can be done greedily,
by considering jobs in the order of the lists, and scheduling each job as soon as
possible with respect to cumulative constraints.
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Fig. 6. Example of list schedule with 2 machines for the jobs of Fig. 1. (Color figure
online)

However, this is no longer true for GC. For example, let us consider the list
schedule displayed in Fig. 6. We cannot find start times that satisfy GC for this
list schedule when l = 2. Indeed, on machine m1, the yellow job j1 is between
two blue jobs j5 and j4, and this implies that we must start the yellow group to
be able to complete the blue group. Similarly, on machine m1, the blue job j5
is between two yellow jobs (j3 and j1) so that we must start the blue group to
be able to complete the yellow group, and on machine m2, the yellow job j2 is
between two pink jobs (j9 and j8) so that we must start the yellow group to be
able to complete the pink group. This implies that both yellow, blue and pink
groups must be active all together at some time.

More precisely, let us denote LS-GC the problem of deciding whether there
exists a solution of GC which is consistent with a given list schedule, where a list
schedule is consistent with a solution of GC iff, for every j1, j2 ∈ J such that j1
occurs before j2 in a same list, we have Ej1 ≤ Bj2 .

Theorem 1. LS-GC is NP-complete.

Proof. LS-GC clearly belongs to NP as we can check in polynomial time if a
given assignment is a solution of GC which is consistent with a list schedule.

Now, let us show that LS-GC is NP-complete by reducing the Pathwidth
problem to it. Given a connected graph G = (N , E) (such that N is a set of nodes
and E a set of edges) and an integer w, Pathwidth aims at deciding whether
there exists a sequence (N1, ...,Nn) of subsets of N such that (i) N =

⋃n
i=1 Ni;

(ii) ∀{u, v} ∈ E ,∃i ∈ [1, n], {u, v} ⊆ Ni; (iii) ∀i, j, k ∈ [1, n], i ≤ j ≤ k ⇒
Ni ∩ Nk ⊆ Nj ; and (iv) ∀i ∈ [1, n], #Ni ≤ w. Pathwidth is NP-complete [11].

Let us first show how to construct an instance of LS-GC given an instance
of Pathwidth defined by a graph G = (N , E) and an integer w. We assume that
nodes of N are numbered from 1 to #N . For each edge {u, v} ∈ E , we define
three jobs denoted j1uv, j2uv, and j3uv such that every job has a processing time
equal to 1. The partition P associates one group Gu with every vertex u such
that Gu = {j1uv, j3uv : {u, v} ∈ E ∧ u < v} ∪ {j2uv : {u, v} ∈ E ∧ u > v}. In other
words, for each edge {u, v} ∈ E such that u < v, j1uv and j3uv belong to group Gu

whereas j2uv belongs to group Gv. There are #E machines, and the list schedule
associates the list (j1uv, j2uv, j3uv) with every edge {u, v} ∈ E such that u < v.
Finally, we set the limit l to w. Figure 7 gives an example of this reduction.

Now, let us show that every solution (N1, ...,Nn) of an instance of Pathwidth
corresponds to a solution of the corresponding instance of LS-GC. To this aim, we
show how to define the start time Bji

uv
of every job ji

uv associated with an edge
{u, v} ∈ E , with i ∈ {1, 2, 3}: let a be the index of the first subset in (N1, ...,Nn)
which contains both u and v (i.e., a = min{b ∈ [1, n] : {u, v} ⊆ Nb}); we define
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Fig. 7. Reduction from Pathwidth to LS-GC. (a): Example of instance of Pathwidth.
(b): Example of solution of (a). (c): List schedule of the instance of LS-GC correspond-
ing to (a). (d): Solution of (c) corresponding to (b).

Bj1
uv

= 3∗a−3, Bj2
uv

= 3∗a−2, and Bj3
uv

= 3∗a−1; end times are computed by
adding the processing time 1 to every start time. In Fig. 7(d), we display start
and end times computed for a solution of the Pathwidth instance of Fig. 7(a). We
can easily check that start and end times are consistent with the list schedule.
To show that start and end times satisfy GC, we have to show that the number
of active groups never exceeds l, and this is a consequence of the fact that the
number of vertices in a set Nb never exceeds w = l. Indeed if we consider a time
t with 3 ∗ a − 3 ≤ t ≤ 3 ∗ a − 1 (a ∈ [1, n]), then the only groups that can be
active at time t are those associated with nodes in Na and #Na ≤ w = l.

Finally, let us show that every solution of the instance of LS-GC built from
an instance of Pathwidth corresponds to a solution of this Pathwidth instance.
A solution of an instance of LS-GC is an assignment of values to Bj and Ej

for every job j ∈ J (defining start and end times of j). For each node u ∈ N ,
we have a group of jobs Gu, and the start time Bu of this group is the smallest
start time of its jobs (i.e., Bu = min{Bj : j ∈ Gu}) whereas the end time Eu of
this group is the largest end time of its jobs (i.e., Eu = max{Ej : j ∈ Gu}). Let
T = {Bu : u ∈ N} be the set of all group start times, and let (t1, . . . , t#T ) be
the ordered sequence of values in T . The solution of the Pathwidth instance is
(N1, . . . ,N#T ) such that for each i ∈ [1,#T ], Ni = {u ∈ N : Bu ≤ ti < Eu}.
We can check that (N1, . . . ,N#T ) is a solution. Indeed, for each edge {u, v} ∈ E
with u < v, the list (j1uv, j2uv, j3uv) ensures that when j2uv starts both Gu and Gv

are active groups. Hence, ∀i ∈ [1,#T ] such that ti = max(Bu, Bv), {u, v} ∈ Ni.
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Now if we have i, j, k ∈ [1,#T ] with i ≤ j ≤ k, u ∈ Ni and u ∈ Nk then
Bu ≤ ti ≤ tj ≤ tk < Eu. Hence u ∈ Nj , and so Ni ∩ Nk ⊆ Nj . Finally,
∀i ∈ [1,#T ], all groups of Ni are active at time ti. So #Ni ≤ l = w.

5 ACO Algorithm for the GCSP

Many different ACO algorithms have been proposed for solving scheduling prob-
lems, and a review of 54 of these algorithms may be found in [28]. ACO algo-
rithms use pheromone trails to learn promising solution components and pro-
gressively intensify the search around them. The two most widely considered
definitions of pheromone trails for scheduling problems are: Job trails, where a
trail τ(j, j′) is associated with every couple of jobs (j, j′) ∈ J 2 to learn the
desirability of scheduling j′ just after j on a same machine; and Position trails,
where a trail τ(j,m, n) is associated with each triple (j,m, n) ∈ J ×M× [1,#J ]
to learn the desirability of scheduling job j at position n on machine m.

Most ACO algorithms for scheduling problems follow the basic template dis-
played in Algorithm 1. At each iteration of the loop lines 1–9, nants solutions
are constructed in a greedy randomised way, where nants is a parameter which
is used to control exploration (the larger nants, the stronger the exploration).
At each iteration of the greedy construction (lines 4–8), a machine m and a job
j are chosen, and j is scheduled on m, until all jobs have been scheduled. The
choice of m is done according to some heuristics which depend on the scheduling
problem. The choice of j is done in a randomised way, according to a probabil-
ity p(j) which depends on two factors. The pheromone factor fτ (j) represents
the learned desirability of scheduling j on m and its definition depends on the
pheromone trail definition: for Job trails, fτ (j) = τ(j′, j) where j′ is the last job
scheduled on m; for Position trails, fτ (j) = τ(j,m, k) where k is the number of
jobs scheduled on m. The heuristic factor η(j) evaluates the interest of schedul-
ing j on m and its exact definition depends on the scheduling problem. α and β
are two parameters which are used to balance these two factors.

At the end of each cycle (line 9), pheromone trails are updated in two steps.
First, every pheromone trail is decreased by multiplying it with 1 − ρ where
ρ ∈ [0, 1] is a parameter which controls the speed of intensification: the larger
ρ, the quicker search is intensified towards the best solutions found so far. In
a second step, pheromone trails associated with the best solution among the
nants last computed solutions are increased in order to increase the probability
of selecting the components of this solution in the next constructions.

In [9], Algorithm 1 is adapted to solve GCSPs as follows. Line 5, m is the
machine which minimizes the end time of the last job assigned to it. Line 6, the
heuristic factor η(j) is set to 0 whenever the current number of active groups
is equal to the limit l and j belongs to a group which is not yet active. In
this case, the probability p(j) of selecting j is equal to 0, thus ensuring that
solutions always satisfy GC. When j can be scheduled without violating GC
(i.e., the number of active groups is smaller than l, or it is equal to l and j
belongs to an active group), the heuristic factor η(j) is defined as the ATCS
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Algorithm 1: ACO algorithm for scheduling problems
1 while time limit not reached do
2 for i in [1, nants] do

/* Greedy randomised construction of one solution */

3 Cand ← J
4 while Cand �= ∅ do
5 choose a machine m ∈ M according to some heuristic

6 choose j ∈ Cand w.r.t. probability p(j) = [fτ (j)]α·[η(j)]β
∑

j′∈Cand

[fτ (j′)]α·[η(j′)]β

7 assign m to Mj , and assign values to Bj and Ej

8 remove j from Cand

9 update pheromone trails

10 return the best constructed solution

(Apparent Tardiness Cost with Setup-times) score defined in [23]. Line 9, before
updating pheromone trails, the best solution (among the last nants constructed
solutions) is improved by applying a local search step. Also, pheromone trails
are updated according to the MMAS framework of [27], i.e., every pheromone
trail is bounded between two parameters τmin and τmax . Also, every pheromone
trail is initialised to τmax at the beginning of the search process (before line 1).

This ACO algorithm has one hyper-parameter, which is used to choose the
pheromone trail definition (i.e., Job trails, Position trails, or a new definition
introduced in [9] and called Time trails). The algorithm also has the following
parameters: nants, α, β, ρ, τmin and τmax, plus two parameters for the local
search step. In [9], a portfolio of nine complementary parameter configurations
are identified, and the per-instance algorithm selector Llama [14] is used to
select from this portfolio the configuration expected to perform best for every
new instance to solve.

6 New Hybrid CPO-ACO Approach

Many hybrid approaches combine exhaustive solvers (such as CP or Integer
Linear Programming, for example) with meta-heuristics [4]. Some of these hybrid
approaches are referred to as matheuristics [17]. A well known example of hybrid
approach is LNS [25] which uses CP to explore the neighborhood of a local search.

Different hybrid CP-ACO approaches have been proposed such as, for exam-
ple, [8,12,13,19,20,26]. Some approaches use constraint propagation during the
construction of solutions by ACO (lines 3–8 of Algorithm 1), to filter the set of
candidate components and remove those that do not satisfy constraints [12,19].
Some other approaches use ACO to learn ordering heuristics which are used by
CP [13,20]. In [8], a bi-level hybrid process is introduced where ACO is used to
assign a subset of variables, and the remaining variables are assigned by CP.
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6.1 Description of the Hybrid Approach

In this section, we introduce a new hybrid CPO-ACO approach where ACO
and CPO are alternatively executed and exchange solutions: solutions found by
ACO are used as starting points for CPO, whereas solutions found by CPO
are used to update pheromone trails. More precisely, we modify Algorithm 1 as
follows: every k iterations of the loop lines 1–9, we call CPO. When calling CPO,
we supply it with the best solution constructed during the k last iterations of
ACO, and this solution is used by CPO as a starting point. Each call to CPO is
limited to a given number of backtracks. Once CPO has reached this limit, we
get the best solution found by CPO and update pheromone trails according to
this solution.

The limit on the number of backtracks follows a geometric progression, as
often done in classical restart strategies: the first limit is equal to b, and after
each call to CPO, this limit is multiplied by g. Hence, our hybrid CPO-ACO
approach may be viewed as a particular case of restart where ACO is run before
each restart in order to provide a new initial solution, and the best solution after
each restart is given back to ACO to reinforce its pheromone trails.

Our hybrid CPO-ACO algorithm has three parameters: the number k of
ACO cycles which are executed before each call to CPO, and the values b and
g which are used to fix the limit on the number of backtracks of CPO. In all
our experiments, these parameters are set to k = 5, b = 1000, and g = 20. With
these values, the number of calls to CPO (within a time limit of one hour) ranges
from 3 for the smallest instances to 4 for the largest ones.

For the ACO algorithm used in CPO-ACO, we use a parameter setting which
favors a quick convergence, as only k = 5 cycles of ACO are run before each CPO
restart, and only 3 or 4 restarts are done: α = 5, β = 10, ρ = 0.2, nants = 40,
τmin = 0.1, τmax = 4, and the pheromone definition is Position trails.

In CPO-ACO, CPO is run with its default setting so that CPO performs
restarts during each of its runs. We have made experiments with other settings
(including the DepthFirst search mode of CPO, which performs a single search),
and the best results were obtained with the default setting of CPO.

6.2 Experimental Evaluation

Compared Approaches. We compare CPO-ACO with CPO in its default setting
(which is the best performing setting for the GCSP). We also report results
obtained with the ACO algorithm introduced in [9] (we consider the ACO vari-
ant which uses Llama to select ACO parameters for each instance as this variant
obtains the best results).

Finally, we report results obtained with Solution-Guided Multi-Point Con-
structive Search (SGMPCS) [3], which is a constructive search technique that
performs a series of resource-limited tree searches where each search begins either
from an empty solution (as in randomized restart) or from an “elite” solution.
SGMPCS has some similarities with our approach, as it provides initial elite
solutions to the CP solver. Hence, the comparison with SGMPCS allows us to
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evaluate the interest of using pheromone to learn good solution components that
are exploited to compute new starting points. For SGMPCS, we use CPO as CP
solver, and we build elite solutions with the same greedy randomised algorithm
as the one used in CPO-ACO, except that we ignore the pheromone factor fτ

when computing the probability of selecting a job. The parameters of SGMPCS
are set as in [3], i.e. the probability of starting from an empty solution is 0.25
and the size of the elite list is 4.

We separate instances in two classes for analysing results: the closed class
contains every instance for which the optimal solution is known (either because
the objective function is equal to 0, or because an approach has been able to
prove optimality); the open class contains all other instances. For the loose (resp.
medium and tight) class, there are 361 (resp. 356 and 339) closed instances, and
187 (resp. 192 and 209) open instances.

Results for Closed Instances. On the left part of Fig. 8, we display the cumulative
number of solved instances with respect to time, for closed instances. After one
hour of CPU time, CPO-ACO clearly outperforms all other approaches for the
three classes, and it has been able to solve nearly all closed instances. More
precisely, the number of loose, medium and tight instances solved by CPO-ACO
in one hour is equal to 356, 352, and 329, respectively, whereas it is equal to 344,
332, and 297 for SGMPCS, to 344, 318, and 242 for ACO, and to 324, 306, and
261 for CPO. We observe that the gap between CPO-ACO and other approaches
increases when increasing the tightness of GC.

However, for short time limits (smaller than 10 s), conclusions are different.
In particular, after 1 s, the best approach is SGMPCS: The number of loose,
medium and tight instances solved by SGMPCS in 1 s is equal to 122, 100, and
48, respectively, whereas it is equal to 92, 78, and 35 for CPO-ACO. This shows
that good starting points allow CPO to quickly find better solutions. However,
after 10 s, ACO is able to build better starting points by exploiting good solutions
previously constructed by ACO or CPO.

Results for Open instances. We evaluate the quality of a solution of an open
instance by computing its ratio to the best known solution: if this ratio is equal
to 1, the solution is the best known solution; if it is equal to r > 1, the solution
is r times as large as the best known solution.

On the right part of Fig. 8, we display the evolution of the average ratio to
best known solutions with respect to time. After one hour, CPO-ACO clearly
outperforms all other approaches for the three classes. Its average ratio is rather
close to 1, meaning that in many cases it has found the best known solution. More
precisely, for loose, medium, and tight instances this ratio is equal to 1.37, 1.38,
and 1.60, respectively, for CPO-ACO, whereas it is equal to 2.18, 2.51, and 3.24
for ACO, to 2.95, 3.06, and 5.50 for SGMPCS, and to 3.86, 5.95, and 13.44 for
CPO. Like for closed instances, the gap between CPO-ACO and other approaches
increases when increasing the tightness of the constraint. This is particularly true
for CPO which has very poor performance on tight instances. SGMPCS finds
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Fig. 8. Results of CPO-ACO, CPO, ACO, and SGMPCS. Left: Evolution of the cumu-
lative number of solved instances for closed instances. Right: Evolution of the average
ratio to the best known solution for open instances. Top: Loose instances. Middle:
Medium instances. Bottom: Tight instances.

better solutions than CPO, and this shows us the interest of giving good starting
points to CPO. However, like for open instances, we observe that the starting
points learned by ACO allow CPO to find much better solutions.

In Fig. 9, we display ratio distributions. CPO-ACO has much smaller median
ratios and inter-quartile ranges. For loose (resp. medium and tight) instances it
finds the best known solution for 115 (resp.106 and 114) instances, whereas
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Fig. 9. Distribution of ratios to best known solutions after one hour on open instances.

ACO finds it for 9 (resp. 21 and 14) instances, SGMPCS for 48 (resp. 44 and
34) instances and CPO for 27 (resp. 25 and 37) instances.

7 Conclusion

We have shown that GC is a challenging constraint for CP solvers such as
CPO. In particular, reasoning on precedence relations (which is classical to solve
scheduling problems) may be misleading as it is NP-complete to find starting
times that satisfy GC when a list schedule is provided. We have introduced an
hybrid framework which drastically improves CPO performance by providing
good starting points. These starting points are computed by an ACO algorithm
which uses pheromone trails to learn good solution components.

This hybrid framework introduces new parameters: parameters to define the
progression of the limit used to trigger restarts, and classical ACO parameters. In
all experiments reported in this paper, we have used the same parameter setting.
However, it could be interesting to use a per-instance algorithm selector such as
Llama to dynamically choose the best parameter setting within a portfolio
of representative and complementary settings. Other further work will concern
the study of the GCSP: Fig. 5 shows us that some small instances are much
harder than some large instances, and it would be interesting to identify instance
parameters that characterize hardness.
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Abstract. Round-off errors occur each time a program makes use of
floating-point computations. They denote the existence of a distance
between the actual floating-point computations and the intended compu-
tations over the reals. Therefore, analyzing round-off errors is a key issue
in the verification of programs with floating-point computations. Most
existing tools for round-off error analysis provide an over-approximation
of the error. The point is that these approximations are often too coarse
to evaluate the effective consequences of the error on the behaviour of a
program. Some other tools compute an under-approximation of the max-
imal error. But these under-approximations are either not rigorous or not
reachable. In this paper, we introduce a branch-and-bound algorithm to
rigorously enclose the maximal error. Thanks to the use of rational arith-
metic, our branch-and-bound algorithm provides a tight upper bound of
the maximal error and a lower bound that can be exercised by input val-
ues. We outline the advantages and limits of our framework and compare
it with state-of-the-art methods. Preliminary experiments on standard
benchmarks show promising results.

Keywords: Floating-point numbers · Round-off error · Constraints
over floating-point numbers · Optimization

1 Introduction

Floating-point computations involve errors due to rounding operations that char-
acterize the distance between the intended computations over the reals and the
actual computations over the floats. An error occurs at the level of each basic
operation when its result is rounded to the nearest representable floating-point
number. The final error results from the combination of the rounding errors pro-
duced by each basic operation involved in an expression and some initial errors
linked to input variables and constants. Such errors impact the precision and
the stability of computations and can lead to an execution path over the floats
that is significantly different from the expected path over the reals. A faithful
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account of these errors is mandatory to capture the actual behaviour of critical
programs with floating-point computations.

Efficient tools exist for error analysis that rely on an over-approximation
of the errors in programs with floating-point computations. For instance, Fluc-
tuat [6,7] is an abstract interpreter that combines affine arithmetic and zono-
topes to analyze the robustness of programs over the floats, FPTaylor [18,19]
uses symbolic Taylor expansions to compute tight bounds of the error, and PRE-
CiSA [16,22] is a more recent tool that relies on static analysis. Other tools
compute an under-approximation of errors to find a lower bound of the maximal
absolute error, e.g. FPSDP [11] which takes advantage of semidefinite program-
ming or, S3FP [2] that uses guided random testing to find inputs causing the
worst error. Over-approximations and under-approximations of errors are com-
plementary approaches for providing better enclosures of the maximal error.
However, none of the available tools compute both an over-approximation and
an under-approximation of errors. Such an enclosure would be very useful to give
insights on the maximal absolute error, and how far computed bounds are from
it. It is important to outline that approximations do not capture the effective
behaviour of a program: they may generate false positives, that is to say, report
that an assertion might be violated even so in practice none of the input values
can exercise the related case. To get rid of false positives, computing maximal
errors, i.e. the greatest reachable absolute errors, is required. Providing an enclo-
sure of the maximal error, and even finding it, is the goal of the work presented
here.

The core of the proposed approach is a branch-and-bound algorithm that
attempts to maximize a given error of a program with floating-point compu-
tations. This branch-and-bound algorithm is embedded in a solver over the
floats [1,13–15,24] extended to constraints over errors [5]. The resulting system,
called FErA (Floating-point Error Analyzer), provides not only a sound over-
approximation of the maximal error but also a reachable under-approximation
with input values that exercise it. To our knowledge, our tool is the first one that
combines upper and lower bounding of maximal round-off errors. A key point of
FErA is that both bounds rely on each other for improvement.

Maximizing an error can be very expensive for the errors that are unevenly
distributed. Even on a single operation, such a distribution is cumbersome and
finding input values that exercise it often resort to an enumeration process.
A combination of floating-point operations often worsen this behaviour, but
may, in some cases, soften it thanks to error compensations. One advantage
of our approach is that the branch-and-bound is an anytime algorithm, and
thus it always provides an enclosure of the maximal error alongside input values
exercising the lower bound.

1.1 Motivating Example

Consider the piece of code in Example 1 that computes z = (3 ∗ x + y)/w using
64 bits doubles with x ∈ [7, 9], y ∈ [3, 5], and w ∈ [2, 4].
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z = (3∗x+y)/w;

i f ( z − 10 <= δ ) {
proceed ( ) ;

} else {
ra iseAlarm ( ) ;

}
Example 1. Simple program

Table 1. Absolute error bound

Tool Error

FPTaylor 5.15e−15

PRECiSA 5.08e−15

Fluctuat 6.28e−15

FErA 4.96e−15

The computation of z precedes a typical condition of a control-command code.
When z is lower than 10, with a tolerance to errors of δ, values supported by
z are considered as safe and related computations can be done. Otherwise, an
alarm must be raised.

Now, assume that δ is set to 5.0e−15. The issue is to know whether this piece
of code behaves as expected, i.e. to know whether the error on z is small enough
to avoid raising the alarm when the value of z is less than or equal to 10 on R.

Table 1 reports the error values given by FPTaylor [18,19], PRECiSA [22],
Fluctuat [6,7], and our tool FErA. All analyzers but FErA compute a bound
greater than δ. Results from FPTaylor, PRECiSA and Fluctuat suggests that
the alarm might inappropriately be raised.

FErA computes a round-off error bound of 4.96e−15 in about 0.185 sec-
onds. It also computes a lower bound on the largest absolute error of 3.55e−15
exercised by the following input values:

x = 8.99999999999996624922 ex = −8.88178419700125232339e−16

y = 4.99999999999994848565 ey = −4.44089209850062616169e−16

w = 3.19999999999998419042 ew = +2.22044604925031308085e−16

z = 10.0000000000000035527 ez = −3.55271367880050092936e−15

In other words, our sound optimizer not only guarantees that, despite errors
in floating-point computations, this program can never raise an alarm when
z <= 10 over the reals, but it also provides an enclosure of the largest absolute
error. Such an enclosure having a ratio1 of ≈ 1.4 shows that the round-off error
bounds of FErA are close to the actual error. Note that the computed lower
bound corresponds to a case where z over the floats is bigger than 10 while it
remains lower than 10 over the reals.

Now, assume that δ is set to 3.00e−15. The issue here is to know whether
there exists at least one case where raiseAlarm() is reached when z is less than
or equal to 10 on real numbers. The previously computed enclosure of the max-
imal error provided by FErA ensures that there exist at least one case where
raiseAlarm() is reached with an error bigger than δ. The other tools are unable to

1 The ratio between FErA computed upper and lower bound is equal to
4.96e−15/3.5527e−15 = 1.396.
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do so as none of them compute a reachable lower bound on the largest absolute
error.

The rest of the paper is organized as follows: Section 2 introduces nota-
tions and definitions. Section 3 recalls the constraint system for round-off error
analysis and explains how the filtering works. Section 4 formally introduces the
branch-and-bound algorithm and its main properties. Section 5 describes in more
detail related works on computing a lower bound on the maximal error and their
pitfalls. Section 6 provides preliminary experiments on a set of standard bench-
marks.

2 Notation and Definitions

Our system for round-off error analysis focuses on the four classical arithmetic
operations, i.e. +,−,× and /, for which the error can be computed exactly using
rational arithmetic [5]. As usual, a constraint satisfaction problem, or CSP, is
defined by a triple 〈X,D,C〉, where X denotes the set of variables, D, the set of
domains, and C, the set of constraints. The set of rational numbers is denoted
Q, and the set of real numbers is denoted R. F denotes a set of floating-point
numbers whose precision is one of the precision defined in IEEE 754 [10]. Though
the approach presented here applies to other types of floats, in the rest of the
paper, F will denote 64 bits floating-point numbers unless otherwise stated. For
each floating-point variable x in X, the domain of values of x is represented by
the interval x = [x,x] = {x ∈ F, x ≤ x ≤ x}, where x ∈ F and x ∈ F. x
(resp. x) denotes the lower (resp. upper) bound of the interval x. The domain
of errors ex of x is represented by an interval of rationals ex = [ex, ex] = {ex ∈
Q, ex ≤ ex ≤ ex} where ex ∈ Q and ex ∈ Q. xF (respectively, xQ and xR)
denotes a variable that takes its values in F (respectively, Q and R). A variable
is instantiated when its domain of values is reduced to a degenerate interval, or
a singleton, i.e. when ex = ex.

The branch-and-bound algorithm maximizes an error noted e that results
from floating-point computations along a given path in a program. e∗ denotes
the lower bound, i.e. the maximal error computed so far while e denotes the
upper bound, i.e. the currently best known over-approximation of the error.
Both of those bounds are expressed in absolute value. S is the ordered, by error
values, set of couples (e, sol) where e and sol are, respectively, an error and its
corresponding input values. A box B is the cartesian product of variable domains.
For the sake of clarity, a box B can be used as exponent, e.g. xB indicates that
an element x is in box B. L is the set of boxes left to compute.

3 A Constraint System for Round-Off Error

The branch-and-bound algorithm at the core of our framework is based on a
constraint system on errors [5] that we briefly describe in this section.
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3.1 Computing Rounding Errors

The IEEE 754 standard [10] requires a correct rounding for the four basic oper-
ations of the floating-point arithmetic. The result of such an operation over the
floats must be equal to the rounding of the result of the equivalent operation
over the reals. More formally, z = x � y = round(x · y) where z, x, and y are
floating-point numbers, � is one of the four basic arithmetic operations on floats,
namely, ⊕, 
, ⊗, �, while · are the equivalent operations on reals, namely, +,
−, ×, /; round being the rounding function. This property is used to bound the
error introduced by each elementary operation on floats by ± 1

2ulp(z)2 when the
rounding mode is set to round to the “nearest even” float, the most frequently
used rounding mode.

The deviation of a computation over the floats takes root in each elementary
operation. So, it is possible to rebuild the final deviation of an expression from
the composition of errors due to each elementary operation involved in that
expression. Let us consider a simple operation like the subtraction as in z =
x 
 y: input variables, x and y, can come with errors attached due to previous
computations. For instance, the deviation on the computation of x, ex, is given
by ex = xR − xF where xR and xF denote the expected results, respectively, on
reals and on floats.

The computation deviation due to a subtraction can be formulated as follows:
for z = x 
 y, ez, the error on z, is equal to (xR − yR) − (xF 
 yF).

As ex = xR−xF and ey = yR−yF, we have ez = ((xF+ex)−(yF+ey))−(xF

yF). So, the deviation between the result on reals and the result on floats for a
subtraction can be computed by: ez = ex − ey + ((xF − yF) − (xF 
 yF)), where
(xF−yF)−(xF
yF) characterizes the error produced by the subtraction operation
itself. Let’s e� denotes the error produced by the subtraction operation. The
formula can then be denoted by: ez = ex − ey + e�, that combines deviations
from input values and the deviation introduced by the elementary operation.

Computation of deviations for all four basic operations are given in Fig. 1. For
each of these formulae, the error computation combines deviations from input
values and the error introduced by the current operation. Note that, for the
multiplication and division, this deviation is proportional to the input values.

All these formulae compute the difference between the expected result on
reals and the actual one on floats for a basic operation. Our constraint solver
over the errors relies on these formulae.

3.2 A Constraint Network with Three Domains

As usually, to each variable x is associated x, its domain of values. The domain
x denotes the set of possible values that variable x can take. When the variable
takes values in F, its domain of values is represented by an interval of floats:

xF = [x
F
,xF] = {xF ∈ F, x

F
≤ xF ≤ xF} where x

F
∈ F and xF ∈ F

2 ulp(z) is the distance between z and its successor (noted z+).
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Addition: z = x ⊕ y ez = ex + ey + e⊕
Subtraction: z = x � y ez = ex − ey + e�

Multiplication: z = x ⊗ y ez = xFey + yFex + exey + e⊗

Division: z = x � y ez =
yFex − xFey
yF(yF + ey)

+ e�

Fig. 1. Computation of deviation for basic operations

Errors require a specific domain associated with each variable of a problem.
Since the arithmetic constraints processed here are reduced to the four basic
operations, and since those four operations are applied on floats, i.e. a finite
subset of rationals, this domain can be defined as an interval of rationals:

ex = [ex, ex] = {ex ∈ Q, ex ≤ ex ≤ ex} where ex ∈ Q and ex ∈ Q

The domain of errors on operations, denoted by e�, that appears in the compu-
tation of deviations (see Fig. 1) is associated with each instance of an arithmetic
operation of a problem.

3.3 Projection Functions

The filtering process of FErA is based on classical projection functions that
reduce the domains of the variables. Domains of values can be reduced by means
of standard floating-point projection functions defined in [14] and extended in [1,
13]. However, dedicated projections are required to reduce domains of errors.

The projections on the domains of errors are obtained using the natural
extension over intervals of the formulae of Fig. 1. Since these are formulae on
reals, they can naturally be extended to intervals. The projections functions for
the four basic arithmetic operations are detailed in Fig. 2.

As no error is involved in comparison operators, their projection functions
only handle domains of values. So, projection functions on the domain of errors
support only arithmetic operations and assignment, where the computation error
from the expression is transmitted to the assigned variable.

3.4 Links Between Domains of Values and Domains of Errors

Strong connections between the domain of values and the domain of errors are
required to propagate reductions between these domains.

A first relation between the domain of values and the domain of errors on
operations is based upon the IEEE 754 standard, that guarantees that basic
arithmetic operations are correctly rounded.

e� ← e� ∩
[
−min((z − z−), (z − z−))

2
,+

max((z+ − z), (z+ − z))
2

]
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Addition

ez ez ∩ (ex + ey + e⊕)

ex ex ∩ (ez − ey − e⊕)

ey ey ∩ (ez − ex − e⊕)

e⊕ e⊕ ∩ (ez − ex − ey)

Subtraction

ez ez ∩ (ex − ey + e�)

ex ex ∩ (ez + ey − e�)

ey ey ∩ (−ez + ex + e�)

e� e� ∩ (ez − ex + ey)

Multiplication

ez ez ∩ (xFey + yFex + exey + e⊗)

ex ex ∩
(

ez − xFey − e⊗
yF + ey

)

ey ey ∩
(

ez − yFex − e⊗
xF + ex

)
e⊗ e⊗ ∩ (ez − xFey − yFex − exey)

xF xF ∩
(

ez − yFex − exey − e⊗
ey

)

yF yF ∩
(

ez − xFey − exey − e⊗
ex

)

Division

ez ez ∩
(

yFex − xFey

yF(yF + ey)
+ e�

)

ex ex ∩
(
(ez − e�)(yF + ey) +

xFey

yF

)

ey ey ∩
(

ex − ezyF + e�yF

ez − e� + xF

yF

)

e� e� ∩
(
ez − yFex − xFey

yF(yF + ey)

)

xF xF ∩
(
(e� − ez)yF(yF + ey) + yFex

ey

)
yF yF ∩ [min( 1 2),max( 1, 2)]

with

1
ex − (ez − e�)ey − √

Δ
2(ez − e�) 2

ex − (ez − e�)ey +
√

Δ
2(ez − e�)

Δ [0,+ ) ((ez e )ey ex)2 + 4(ez e )eyxF

Fig. 2. Projection functions of arithmetic operation

where x− and x+ denote respectively, the greatest floating-point number strictly
inferior to x and the smallest floating-point number strictly superior to x. This
equation sets a relation between the domain of values and the domain of errors
on operations. More precisely, it states that operation errors can never be greater
than the greatest half-ulp of the domain of values of the operation result. Note
that the contrapositive of this property offers another opportunity to connect
the domain of values and the domain of errors. Indeed, since the absolute value
of an operation error is less than the greatest half-ulp of the domain of values
of the operation result, the smallest values of the domain of the result cannot
be the support of a solution if inf(|e�|) > 0. In other words, these small values
near zero cannot be associated to an error on the operation big enough to be in
e� domain if their half-ulp is smaller than inf(|e�|).

Finally, these links are refined by means of other well-known properties of
floating-point arithmetic like the Sterbenz property of the subtraction [20] or the
Hauser property on the addition [9]. Both properties give conditions under which
these operations produce exact results, the same being true for the well-known
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property that states that 2k ⊗ x is exactly computed, provided that no overflow
occurs.

3.5 A CSP over F with Errors

A CSP over F with errors is made of constraints over F with variables whose
domains specify the allowed values over F, as well as, the allowed values over Q

of the associated error. err(x), which denotes the error associated to variable x,
permits constraints on errors. Note that the latter are constraints over Q.

The constraint network results from elementary constraints issued from the
decomposition of initial constraints. Each elementary constraint is in charge of
applying the set of related projection functions to reduce the domain of the
variables involved in the constraint. They compute a quasi-fixpoint, set to 5%,
in order to avoid some slow convergence issues. Propagation occurs following an
AC3 algorithm.

4 A Branch-and-bound Algorithm to Maximize the Error

Our branch-and-bound algorithm (see Algorithm 1) maximizes a given absolute
error from a CSP. Such an error characterizes the greatest possible deviation
between the expected computation over the reals and the actual computation
over the floats. Note that the algorithm can easily be changed to maximize or
minimize a signed error.

The branch-and-bound algorithm takes as inputs a CSP 〈X,C,D〉, and e, an
error to maximize. It computes a lower bound, e∗ and an upper bound, e of the
maximal error e. e∗ and e bounds the maximal error: e∗ ≤ e ≤ e. The computed
lower bound e∗ is a reachable error exercised by computed input values. These
values and the computed bounds are returned by the algorithm.

Stopping Criteria. The primary aim of the branch-and-bound algorithm is to
compute the maximal error. This is achieved when the lower bound is equal to
the upper bound. However, such a condition may be difficult to meet.

A first issue comes from the dependency problem which appears on expres-
sions with multiple occurrences. Multiple occurrences of variables is a critical
issue in interval arithmetic since each occurrence of a variable is considered as
a different variable with the same domain. This dependency problem results
in overestimations in the evaluation of the possible values that an expression
can take. For instance, let y = x × x with x ∈ [−1, 1], classical interval arith-
metic yields [−1, 1] whereas the exact interval is [0, 1]. Such a drawback arises in
projection functions of errors that contain multiple occurrences like in multipli-
cation and division. It can lead to unnecessary over-approximations of resulting
intervals. A direct consequence of this problem is that the upper bound is over-
estimated and therefore can not be achieve.

A second issue comes from the bounding of errors on operations by the half
of an ulp. An operation error is bounded by 1

2ulp(z) where z is the result of
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an operation. Such a bound is highly dependent on the distribution of floating-
point numbers. Consider an interval of floating-point numbers (2n, 2n+1), every
floating-point number is separated from the next one by the same distance. In
other words, every floating-point number in this interval will have the same ulp.
When the domain of the result of an operation is reduced to such an interval,
the bounds of e� are fixed and can no longer be improved by means of projec-
tion functions. This can be generalized across all operations of a CSP. Once all
operation errors are fixed, then bounds cannot be tighten without enumerating
values. That is why, we stop processing a box when all the related domains are
reduced to such an interval.

Box Management. The algorithm manages a list L of boxes to process whose
initial value is {B = (D, eB ∈ [−∞,+∞])} where D is the cross product of the
domains of the variable as defined in the problem and eB their associated error.
It also manages the global lower and upper bounds with e∗ = −∞, e = +∞
as initial values. A box can be in three different states: unexplored, discarded or
sidelined. unexplored boxes are boxes in L that still require some computations.
A discarded box is a box whose associated error eB is such that eB ≤ e∗. In
other words, such a box does not contain any error value that can improve the
computation of the maximal error. It is thus removed from L. sidelined boxes
are boxes that fullfil the property described in the stopping criteria paragraph.
These boxes cannot improve maximal error computation unless if the algorithm
resorts to enumeration (provided there are no multiple occurrences). As sidelined
boxes are still valid boxes, the greatest over-approximation of such boxes, eS , is
taken into account when updating the upper bound. Solving stops when there
are no more boxes to process or when the lower bound e∗ and the upper bound
e are equal, i.e. when the maximal error is found.

The main loop of the branch-and-bound algorithm can be subdivided in sev-
eral steps: box selection, filtering, upper bound updating, lower bound updating,
and box splitting.

Box Selection. We select the box B in the set L with the greatest upper bound
of the error to provide more opportunities to improve both e and e∗. Indeed, the
global e has its support in this box which also provides the odds of computing
a better reachable error e∗. Once selected, the box B is removed from L.

Filtering. A filtering process (see Sect. 3), denoted Φ, is then applied to B to
reduce the domains of values and the domains of errors. Note that this filtering is
applied to the initial set of constraints enhanced with a constraint on the known
lower bound of e, i.e. e∗ ≤ e. If Φ(B) = ∅, the selected box does not contain any
solution; either because it contradicts one of the initial constraints or because of
known bounds of constraints over e. In both cases, the algorithm discards box
B and directly jumps to the next loop iteration.

Upper Bound Update. Once B has been filtered, if the error upper bound of the
current box was the support of the global e and is no longer, then e is updated.
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Algorithm 1: branch-and-bound — maximization of error
Input : 〈X, C, D〉 — triple of variables, constraints, and domains

e ∈ [−∞, +∞] — error to maximize
Output : (e∗, e, S)
Data : L ← { ∏

x∈X

x | x = (x, ex)} — set of boxes

e ← +∞ — upper bound
e∗ ← −∞ — lower bound
eS ← −∞ — upper bound of sidelined boxes
S ← ∅ — stack of solutions

1 while L �= ∅ and e∗ < e do
/* Box selection: select a box B in the set of boxes L */

2 select B ∈ L ; L ← L \ B ; eBold ← eB

3 B ← Φ(X, C ∧ e > e∗, B)

4 if eBold = e and (B = ∅ or eB < e) then
5 if B �= ∅ then e ← eB else e ← −∞
6 e ← max

({eBi | ∀Bi ∈ L} ∪ {e, eS})

7 if B �= ∅ then
8 if eB > e∗ then
9 if isBound(B) then

10 (eB , solB) ← (eB , B)

11 else
12 (eB , solB) ← LowerBounding(B, X)

13 if eB > e∗ then
14 e∗ ← eB ; push (eB , solB) onto S

15 L ← L \ {Bi ∈ L | eBi ≤ e∗}
16 if eB > eS and eB > e∗ then

/* Variable selection: select a variable x in box B */

17 if (select(xB , ex
B) ∈ B | xB < xB) and ¬isSidelined(B) then

/* Domain splitting: on the domain of values of x */

18 B1 ← B ; B2 ← B

19 xB1 ←
[
xB , xB+xB

2

]
; xB2 ←

[(
xB+xB

2

)+

,xB

]

20 L ← L ∪ {B1, B2}
21 else eS ← max(eS , eB)

22 return (e∗, e, S)

e is updated with the maximum among the upper bound of errors of the current
box, of remaining boxes in L, and of sidelined boxes.

Lower Bound Update. A non empty box may contain a better lower bound than
the current one. A generate-and-test procedure, LowerBounding, attempts to
compute a better one through a two-step process. A variable is first assigned with
a floating-point value chosen randomly in its domain of values. Then, another
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random value chosen within the domain of its associated error is assigned to the
error associated to that variable. We exploit the fact that if the derivative sign
does not change on the associated error domain, then the maximum distance
between the hyperplan defined by the result over the floats and the related
function over the reals is at one of the extrema of the associated error domain.
In such a case, the random instantiation of the error is restricted to the corners
of its domain. When all variables from a function f representing a program have
been instantiated, an evaluation of f is done exactly over Q and in machine
precision over F. The error is exactly computed by evaluating fQ − fF over Q.
The computed error can be further improved by a local search. That is to say, by
exploring floating-point numbers around the chosen input values and evaluating
again the expressions. This process is repeated a fixed number of times until the
error can not be further improved, i.e. a local maximum has been reached. If the
computed error is better than the current lower bound, then e∗ is updated. Each
new reachable lower bound is added to S alongside the input values exercising
it.

Box Splitting. A box is not split up but is discarded when its error upper bound
is less than or equal to eS , the upper bound of sidelined boxes, or e∗. Discarding
such a box speeds up solving time, since none of the errors contained in this box
can improve the lower or the upper bounds. Splitting occurs if and only if there
exist at least one of the variables within B that is not instantiated and if the box
is not sidelined. Otherwise, the box is sidelined and if eB is strictly greater than
eS , the latter is updated. The next variable to split on is selected in round-robin
on a lexicographic order. The bisection generates two sub-boxes that are added
to L.

Note that Algorithm 1 always terminates and gives an enclosure of the max-
imal error: in the worst case, all boxes will be split up to degenerated boxes.
Each degenerated box whose associated error eB is lower than the current lower
bound will be discarded. If e∗ ≤ eB ≤ e holds, eB will be used to update e∗ and
e before discarding the corresponding degenerated box. As a result, since the set
of floating-point numbers is a finite set, the branch-and-bound requires a finite
number of iterations to explore completely the initial box and thus, terminates.

5 Related Work

Different tools exist to compute an over-approximation of floating-point compu-
tation round-off errors. Fluctuat [6,7], is an abstract interpreter that combines
affine arithmetic and zonotopes to analyze the robustness of programs over the
floats. FPTaylor [18,19] relies on symbolic Taylor expansions and global opti-
mization to compute tight bounds of the error. It makes use of Taylor series
of first and second order to evaluate the error. A branch-and-bound algorithm
approximates the first order error terms while the second order error terms are
directly bounded by means of interval arithmetic. This branch-and-bound is very
different from the one of FErA. First, it considers only the first order terms of
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the error whereas FErA branch-and-bound works on the whole error. Second,
it does not compute a lower bound on the largest absolute error but only over-
approximate the first order terms of the error. FPTaylor also generates a proof
certificate of its computed bounds. Such a certificate can be externally checked
in HOL Light [8]. The static analyzer PRECiSA [16,22] computes also a certifi-
cate of proof that can be validated by the PVS theorem prover [17]. PRECiSA
computes symbolic error expressions to represent round-off errors that are then
given to a branch-and-bound algorithm to get the error bounds. Gappa [4] veri-
fies properties on floating-point programs, and in particular computes bounds on
round-off errors. Gappa works with an interval representation of floating-point
numbers and applies rewriting rules for improving computed results. It is also
able to generate formal proof of verified properties, that can in turn be checked
in Coq [21]. Real2Float [12] uses semidefinite programming to estimate bounds
on errors. It decomposes an error into an affine part with respect to the error
variable and a higher-order part. Bounds on the higher-order part are computed
in the same way as FPTaylor. For the affine part, a relaxation procedure based
on semidefinite programming is employed.

FPSDP [11] is a tool based on semidefinite programming that only com-
putes under-approximation of largest absolute errors. In contrast to our approach
FPSDP computes an under-approximation of the maximal error. The point is
that this under-approximation might not be reachable. S3FP [2] relies on ran-
dom sampling and shadow value executions to find input values maximizing an
error. It computes the error as the difference between the execution of a pro-
gram done in a higher precision, acting as R, and a lower precision, acting as F.
S3FP starts with an initial configuration that is cut into smaller configurations.
Then, it selects a configuration and randomly instantiates variables to evaluate
the program in both precision. This process is repeated a finite number of time
to improve the lower bound. Depending on the size of input variable domains,
S3FP can get stuck on a local maximum. To avoid this problem it uses a standard
restart process. S3FP is the closest to our lower bound computation procedure.
Both rely on random generation of input values to compute a lower bound of
errors. However, as S3FP does all computations over F, the resulting error suffers
from rounding issues and thus, might underestimate or overestimate the actual
error. Such a computed error is unreachable. Furthermore, S3FP is highly reliant
on the parametrized partitioning of the initial configuration. It cannot discard
configurations where no improvement of the lower bound is possible. In contrast,
FErA selects boxes to explore on the basis of their upper bounds to try finding
a better lower bound.

6 Experiments

In this section, we provide preliminary experiments of FErA on benchmarks from
the FPBench [3] suite, a common standard to compare verification tools over
floating-point numbers. Table 2 compares the behaviour of FErA with different
stopping criteria while Table 3 compares results from FErA with state-of-the
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Table 2. Comparison of stopping criteria.

filtering
e∗ = e e∗ = e w. s. e

e∗ ≤ 2 e
e∗ ≤ 2 w. s.

e∗ e e∗ e e∗ e e∗ e

carbonGas 4.2e-8 4.2e-9 6.0e-9 2.9e-9 7.0e-9 3.6e-9 7.0e-9 3.6e-9 7.0e-9
0.017s TO 0.345s 1.419s 0.266s

verhulst 4.2e-16 2.4e-16 2.8e-16 2.1e-16 2.9e-16 1.8e-16 2.9e-16 1.6e-16 3.0e-16
0.016s TO 0.034s 0.024s 0.018s

predPrey 1.8e-16 1.5e-16 1.7e-16 1.0e-16 1.7e-16 9.3e-17 1.7e-16 9.8e-17 1.8e-16
0.011s TO 0.084s 0.041s 0.018s

rigidBody1 2.9e-13 2.8e-13 2.9e-13 1.9e-13 2.9e-13 1.4e-13 2.9e-13 1.4e-13 2.9e-13
0.018s TO 1.659s 0.370s 0.543s

rigidBody2 3.6e-11 3.1e-11 3.6e-11 2.5e-11 3.6e-11 1.8e-11 3.6e-11 2.1e-11 3.6e-11
0.022s TO 3.298s 1.367s 1.266s

doppler1 5.0e-13 1.1e-13 1.5e-13 7.3e-14 1.6e-13 1.0e-13 1.5e-13 7.7e-14 1.5e-13
0.021s TO 0.752s 1.099s 0.757s

doppler2 1.3e-12 2.1e-13 2.7e-13 1.1e-13 3.4e-13 1.3e-13 2.7e-13 1.0e-13 3.4e-13
0.034s TO 0.356s 1.416s 0.378s

doppler3 1.9e-13 6.2e-14 8.4e-14 4.0e-14 9.0e-14 4.4e-14 8.7e-14 3.9e-14 9.0e-14
0.023s TO 0.341s 0.455s 0.311s

turbine1 2.2e-13 1.3e-14 1.7e-14 1.0e-14 1.8e-14 1.0e-14 2.0e-14 9.3e-15 1.8e-14
0.016s TO 8.514s 2.289s 6.042s

turbine2 3.0e-14 1.5e-14 2.3e-14 1.3e-14 2.4e-14 1.3e-14 2.4e-14 1.1e-14 2.4e-14
0.025s TO 2.803s 1.581s 2.952s

turbine3 1.6e-13 6.4e-15 1.1e-14 4.7e-15 1.1e-14 5.7e-15 1.1e-14 5.6e-15 1.1e-14
0.026s TO 2.766s 3.961s 1.800s

sqroot 5.8e-16 4.5e-16 5.3e-16 3.3e-16 5.3e-16 2.9e-16 5.8e-16 3.3e-16 5.8e-16
0.032s TO 2.989s 0.277s 0.183s

sine 7.4e-16 2.8e-16 7.4e-16 2.2e-16 7.4e-16 2.6e-16 7.4e-16 2.4e-16 7.4e-16
0.027s TO 12.927s TO 14.833s

sineOrder3 1.1e-15 4.0e-16 6.4e-16 3.2e-16 6.4e-16 3.1e-16 6.4e-16 3.3e-16 6.4e-16
0.021s TO 1.388s 1.433s 1.504s

kepler0 1.2e-13 5.7e-14 9.8e-14 5.4e-14 9.8e-14 5.0e-14 9.8e-14 4.9e-14 9.8e-14
0.037s TO TO 1.937s 2.798s

kepler1 4.9e-13 1.6e-13 3.1e-13 1.4e-13 3.1e-13 1.6e-13 3.1e-13 1.6e-13 3.1e-13
0.031s TO 51.303s 15.136s 12.691s

kepler2 2.4e-12 7.9e-13 1.8e-12 6.5e-13 1.8e-12 6.9e-13 1.8e-12 6.7e-13 1.8e-12
0.027s TO 58.834s TO 72.622s

art tools, namely Gappa [4], Fluctuat [6,7], Real2Float [12], FPTaylor [18,19],
PRECiSA [16,22], and S3FP [2]. Results from all tools but FErA are taken
from [18].

Note that all state-of-the-art tools provide an over-approximation of errors,
except S3FP, which compute a lower bound on largest absolute errors. For FErA,
column filtering gives the over-approximation computed by a single filtering
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Table 3. Comparison of FErA with other tools.

Fluctuat Gappa PRECiSA Real2Float FPTaylor
FErA

S3FP
e∗ e

carbonGas 1.2e-8 6.1e-9 7.4e-9 2.3e-8 6.0e-9 3.6e-9 7.0e-9 4.2e-9
0.54s 2.35s 6.30s 4.65s 1.08s 0.266s

verhulst 4.9e-16 2.9e-16 2.9e-16 4.7e-16 2.5e-16 1.6e-16 3.0e-16 2.4e-16
0.09s 0.41s 4.95s 2.52s 0.99s 0.018s

predPrey 2.4e-16 1.7e-16 1.7e-16 2.6e-16 1.6e-16 9.8e-17 1.8e-16 1.5e-16
0.18s 1.40s 8.08s 4s 1.07s 0.018s

rigidBody1 3.3e-13 3.0e-13 3.0e-13 5.4e-13 3.0e-13 1.4e-13 2.9e-13 2.7e-13
1.96s 1.42s 7.42s 3.09s 0.99s 0.543s

rigidBody2 3.7e-11 3.7e-11 3.7e-11 6.5e-11 3.7e-11 2.1e-11 3.6e-11 3.0e-11
3.87s 2.22s 10.79s 1.08s 1.02s 1.266s

doppler1 1.3e-13 1.7e-13 2.7e-13 7.7e-12 1.3e-13 7.7e-14 1.5e-13 1.0e-13
6.30s 3.31s 16.17s 13.20s 1.97s 0.757s

doppler2 2.4e-13 2.9e-13 5.4e-13 1.6e-11 2.3e-13 1.0e-13 3.4e-13 1.9e-13
6.15s 3.37s 16.87s 13.33s 2.20s 0.378s

doppler3 7.2e-14 8.7e-14 1.4e-13 8.6e-12 6.7e-14 3.9e-14 9.0e-14 5.7e-14
6.46s 3.32s 15.65s 13.05s 1.88s 0.311s

turbine1 3.1e-14 2.5e-14 3.8e-14 2.5e-11 1.7e-14 9.3e-15 1.8e-14 1.1e-14
5.05s 5.54s 24.35s 136.35s 1.10s 6.042s

turbine2 2.6e-14 3.4e-14 3.1e-14 2.1e-12 2.0e-14 1.1e-14 2.4e-14 1.4e-14
3.98s 3.94s 19.17s 8.30s 1.17s 2.952s

turbine3 1.4e-14 0.36 2.3e-14 1.8e-11 9.6e-15 5.6e-15 1.1e-14 6.2e-15
5.08s 6.29s 24.47s 137.36s 1.21s 1.800s

sqroot 6.9e-16 5.4e-16 6.9e-16 1.3e-15 5.1e-16 3.3e-16 5.8e-16 4.7e-16
0.09s 5.06s 8.18s 4.23s 1.02s 0.183s

sine 7.5e-16 7.0e-16 6.0e-16 6.1e-16 4.5e-16 2.4e-16 7.4e-16 2.9e-16
0.11s 25.43s 11.76s 4.95s 1.14s 14.833s

sineOrder3 1.1e-15 6.6e-16 1.2e-15 1.2e-15 6.0e-16 3.3e-16 6.4e-16 4.1e-16
0.09s 2.09s 6.11s 2.22s 1.02s 1.504s

kepler0 1.1e-13 1.1e-13 1.2e-13 1.2e-13 7.5e-14 4.9e-14 9.8e-14 5.3e-14
8.59s 7.33s 37.57s 0.76s 1.31s 2.798s

kepler1 3.6e-13 4.7e-13 crash 4.7e-13 2.9e-13 1.6e-13 3.1e-13 1.6e-13
157.74s 10.68s N/A 22.53s 2.08s 12.691s

kepler2 2.3e-12 2.4e-12 crash 2.1e-12 1.6e-12 6.7e-13 1.8e-12 8.4e-13
22.41s 24.17s N/A 16.53s 1.3s 72.622s

while column e∗ and column e provide, respectively, the best reachable error
and over-approximation of the error computed by FErA. Lines in grey give the
time in second to compute these bounds. Note that experiments have been made
with a timeout, noted TO, of 10 min. In Table 3, bold and italic are used to rank,
respectively, the best and second best over-approximation while red indicates the
worst ones.
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Table 2 compares the behaviour of FErA with different stopping criteria.
The ideal e∗ = e criterion stops if and only if the lower bound reaches the upper
bound. Of course, this criterion is hard to reach and benches are stopped by the
timeout. But these columns yield among the best e∗ and e that can be expected
with FErA. For instance, most of the e∗ provided here are better than the best
known values3, and the values of e are obviously the best values obtained by
FErA. e∗ = e w. s. combines the ideal criterion with sidelined boxes, i.e. boxes
that are sidelined once all operations involved in the CSP produce an operation
error, e�, less or equal to half an ulp. Such a combination of criterion allows
FErA to compute the results in a reasonable amount of time for all benches but
one. However, this is obtained at the price of a degradation of the error bounds.
e
e∗ ≤ 2 relaxes the ideal stopping criterion to a ratio of 2. Here, two benchmarks
reach the timeout. This is to be expected: the results with the ideal criterion
show that FErA have difficulties to reach this ratio on two benchmarks, probably
due to a huge amount of multiple occurrences. e

e∗ ≤ 2 w. s. combines the ratio
of 2 with sidelined boxes and avoid any timeout, though at the price of looser
bounds.

As shown in Table 3, FErA classified as best twice and as second eight times.
Note that it never provides the worst result. In almost all cases, the computed
reachable error e∗ is in the same order of magnitude as e. The lack of dedicated
handling of multiple occurrences in FErA is underlined by the computed upper
bound of the sine bench. Here, the splitting process used in the branch-and-
bound is not sufficient to lower the upper bound value. With the last combination
of criteria, FErA solves most of the problems in a reasonable amount of time
with the exception of kepler2. Indeed, Kepler benches are the problems with
the biggest number of input variables and FErA performs better on small-sized
problems.

7 Conclusion

This paper addresses a critical issue in program verification: computing an enclo-
sure of the maximal absolute round-off errors that occur in floating-point com-
putations. To do so, we introduce an original approach based on a branch-and-
bound algorithm using the constraint system for round-off error analysis from [5].
Alongside a rigorous enclosure of maximal errors, the algorithm provides input
values exercising the lower bound. Knowing such bounds of the maximal error
allows to get rid of false positives, a critical issue in program verification and
validation. Preliminary experiments on a set of standard benchmarks are very
promising and compare well to other available tools.

Further works include a better understanding and a tighter computation of
round-off errors to smooth the effects of the dependency problem, exploring
different search strategies dedicated to floating-point numbers [23] to improve
the resolution process, as well as devising a better local search to speed up the
reachable lower bound computation procedure.
3 See column S3FP in Table 3.
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ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1–2:39 (2018)
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24. Zitoun, H., Michel, C., Rueher, M., Michel, L.: Search strategies for floating point
constraint systems. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 707–722.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 45

https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-319-19249-9_33
https://coq.inria.fr
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-66158-2_45


Application Track



Leveraging Reinforcement Learning,
Constraint Programming and Local

Search: A Case Study in Car
Manufacturing

Valentin Antuori1,2(B), Emmanuel Hebrard1,3, Marie-José Huguet1,
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Abstract. The problem of transporting vehicle components in a car
manufacturer workshop can be seen as a large scale single vehicle pickup
and delivery problem with periodic time windows. Our experimental eval-
uation indicates that a relatively simple constraint model shows some
promise and in particular outperforms the local search method currently
employed at Renault on industrial data over long time horizon. Interest-
ingly, with an adequate heuristic, constraint propagation is often suf-
ficient to guide the solver toward a solution in a few backtracks on
these instances. We therefore propose to learn efficient heuristic poli-
cies via reinforcement learning and to leverage this technique in several
approaches: rapid-restarts, limited discrepancy search and multi-start
local search. Our methods outperform both the current local search app-
roach and the classical CP models on industrial instances as well as on
synthetic data.

Keywords: Constraint programming · Reinforcement learning · Local
search · Scheduling · Traveling salesman problem

1 Introduction

Improving the production line is a constant concern in the industry. The car
manufacturer Renault has long been interested in models and techniques from
Operations Research and Constraint Programming to tackle the various routing
and scheduling problems arising from the production process.

Recent advances in Artificial Intelligence and in particular in Machine Learn-
ing (ML) open up many new perspectives for solving large scale combinato-
rial optimization problems with promising results popularized by the success of
AlphaGo and AlphaZero [14,15]. In particular, several approaches combining
c© Springer Nature Switzerland AG 2020
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reinforcement learning and deep neural networks to guide the reward strategy
have been proposed for solving the traveling salesman problem (TSP) [2,4].
Moreover, the combination of ML and classical combinatorial techniques seems
very promising. For instance, the integration of standard TSP heuristics with a
neural network heuristic policy outperforms the pure ML approaches [5].

In Sect. 2 we introduce the problem of planning the flow of vehicle compo-
nents across the assembly lines. More precisely, given fixed production cycles,
logistics operators are in charge of collecting components from, and delivering
them to, working stations in such a way that there is no break in the manufac-
turing process. This problem is in many ways similar to the Torpedo Scheduling
Problem [7], from the 2016 ACP challenges [13]: pickup and delivery operations
are to be scheduled, and these operations are repeated in time because the com-
modity is being produced constantly at a fixed rate. However, in our problem,
components are carried over using trolleys that can be stacked into a “train”
that should not exceed a given maximal length. It should be noted that in this
paper we consider the problem associated to a single operator whose route is
to be optimized. However, the more general problem for Renault is to assign
components (or equivalently working stations) to operators as well as to plan
the individual routes, and the longer term objective is to proactively design the
layout of the assembly line to reduce the cost of logistics operations.

We first evaluate in Sect. 3 two basic constraint programming (CP) models
in Choco [11] and compare them to the current method used by Renault: a
local search (LS) method implemented in LocalSolver1. From this preliminary
study, we observe that although the problem can be hard for both approaches,
CP shows promising results compare to LS. Moreover, if solving the problem via
backtracking search seems very unlikely given its size, and if stronger filtering
techniques seem to be ineffective, greedy “dives” are often surprisingly successful.

We therefore propose in Sect. 4 to learn effective stochastic heuristic policies
via reinforcement learning. Then, we show how these policies can be used within
different tailored approaches: constraint programming with rapid restarts, lim-
ited discrepancy search, and multi-start local search approach.

Finally, since industrial benchmarks are easily solved by all new methods
introduced in this paper, we generated a synthetic dataset designed to be more
challenging. In Sect. 6 we report experiments on this dataset that further demon-
strates the efficiency of the proposed methods.

2 Problem Definition

The Renault assembly line consists of a set of m components to be moved across a
workshop, from the point where they are produced to where they are consumed.
Each component is produced and consumed by two unique machines, and it is
carried from one to the other using a specific trolley. When a trolley is filled
at the production point for that component, an operator must bring it to its

1 https://www.localsolver.com/home.html.

https://www.localsolver.com/home.html
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consumption point. Symmetrically, when a trolley is emptied it must be brought
to the corresponding production point. A production cycle is the time ci taken to
produce (resp. consume) component i, that is, to fill (resp. empty) a trolley. The
end of a production cycle marks the start of the next, hence there are ni = H

ci

cycles over a time horizon H. There are two pickups and two deliveries at every
cycle k of each component i: the pickup pek

i and delivery dek
i of the empty trolley

from consumption to production and the pickup pfk
i and delivery dfk

i of the full
trolley from production to consumption. The processing time of an operation a
is denoted pa and the travel time between operations a and b is denoted Da,b.

Let P be the set of pickup operations and D the set of delivery operations:

P =
m⋃

i=1

(
ni⋃

k=1

{pek
i , pfk

i }
)

, D =
m⋃

i=1

(
ni⋃

k=1

{dek
i , dfk

i }
)

. The problem is to com-

pute the bijection σ (let ρ = σ−1 be its inverse) between the |A| = n first positive
integers to the operations A = P ∪ D satisfying the following constraints.

Time Windows. As production never stops, all four operations of the k-th cycle
of component i must happen during the time window [(k − 1)ci, kci]. Let rak

i

(resp. dak
i
) be the release date (k − 1)ci (resp. due date kci) of operation ak

i of
the k-th cycle of component i. The start time of operation σ(j) is:

sσ,j =

{
rσ(j) if j = 1
max(rσ(j), sσ,j−1 + pσ(j−1) + Dσ(j−1),σ(j)) otherwise

Then, the completion time eσ,j = sσ,j + pσ(j) of operation σ(j) must be lower
than its due date:

∀j ∈ [1, n], eσ,j ≤ dσ(j) (1)

Precedences. Pickups must precede deliveries.

ρ(pfk
i ) < ρ(dfk

i ) ∧ ρ(pek
i ) < ρ(dek

i ) ∀i ∈ [1,m] ∀k ∈ [1, ni] (2)

Notice that there are only two possible orderings for the four operations of a
production cycle. Indeed, since the first delivery (of either the full or the empty
trolley) and the second pickup take place at the same location, doing the second
pickup before the first delivery is dominated (w.r.t. the train length and the time
windows). Hence Eq. 3 is valid, though not necessary:

ρ(dfk
i ) < ρ(pek

i ) ∨ ρ(dek
i ) < ρ(pfk

i ) ∀i ∈ [1,m] ∀k ∈ [1, ni] (3)

Train Length. The operator may assemble trolleys into a train2, so a pickup need
not be directly followed by its delivery. However, the total length of the train of

2 Trolleys are designed so that they can be extracted out of the train in any order.
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trolleys must not exceed a length Tmax. Let ti be the length of the trolley for
component i, and let tak

i
= ti if ak

i ∈ P and tak
i

= −ti otherwise, then:

∀j ∈ [1, n],
j∑

l=1

tσ(l) ≤ Tmax (4)

This is a particular case of the single vehicle pickup and delivery problem with
capacity and time windows constraints. However, there is no objective function,
and instead, feasibility is hard. Moreover, the production-consumption cycles
entail a very particular structure: the four operations of each component must
take place in the same time windows and this is repeated for every cycle. As
a result, one of the best method, Large Neighborhood Search [12], is severely
hampered since it relies on the objective to evaluate the moves and the insertion
of relaxed requests is often very constrained by the specific precedence structure.

3 Baseline Models

We designed two CP models: a variant of a single resource scheduling problem
and a variant of a TSP. Then, we describe the current LocalSolver model.

Scheduling-Based Model. The importance of time constraints in the problem
studied, suggests that a CP model based on scheduling would be relevant [1]. The
problem is a single resource (the operator) scheduling problem with four types
of non overlapping operations (pickup and delivery of empty and full trolleys).
For each operation a ∈ A, we define the variable sa ∈ [ra, da] as the starting
date of operation a. Moreover, for each pair of operations a, b ∈ A, we introduce
a Boolean variable xab standing for their relative ordering. In practice, we need
much fewer than n2 Boolean variables as the time windows and Constraint (2)
entails many precedences which can be either ignored or directly posted.

xab =
{

1 ⇔ sb ≥ sa + pa + Da,b

0 ⇔ sa ≥ sb + pb + Db,a
∀(a, b) ∈ A (5)

xdfk
i pek

i
∨ xdek

i pfk
i

∀i ∈ [1,m] ∀k ∈ [1, ni] (6)

Constraint (5) chanel the two sets of variables, and constraint (6) encodes Equa-
tion (3). Finally, Constraint (4) can be seen as a reservoir resource with limited
capacity, which is filled by pickups, and emptied by deliveries. We use the algo-
rithm from [9] to propagate it on starting date variables using the precedence
graph implied by Boolean variables and precedences from Constraint (2).

TSP-Based Model. The second model is an extension of the first one, to wich we
add extra variables and constraints from the model for TSP with time windows
proposed in [6]. We need two fake operations, 0 and n + 1, for the start and the
end of the route. For each operation a ∈ A∪{0, n+1}, there is a variable nexta
that indicates which operation directly follows a. Also, a variable posa indicates
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the position of the operation a in the sequence of operations. We need another
variable traina ∈ [0, Tmax] which represents the length of the train before the
operation a. The following equations express the constraints of the problem:

train0 = 0 ∧ trainnexta
= traina + ta ∀a ∈ A ∪ {0} (7)

pospfk
i

< posdfk
i

∧ pospek
i

< posdek
i

∀i ∈ [1,m] ∀k ∈ [1, ni] (8)

s0 = 0 ∧ snexta
≥ sa + pa + Da,nexta

∀a ∈ A ∪ {0} (9)

Constraint (7) encodes the train length at every point of the sequence using
the Element constraint and constraint (8) ensures that pickups precede their
deliveries. Constraint (9) ensure the accumulation of the time along the tour.
Moreover, we use the Circuit constraint to enforce the variables next to form
an Hamiltonian circuit. Additional redundant constraints are used to make the
channeling between variables and improve filtering in addition to the constraint
from the first model: xab =⇒ nextb �= a, posb > posa + 1 =⇒ nexta �= b,
posb > posa ⇔ xab, posa =

∑
b∈A∪{0,n+1} xab and AllDifferent(pos).

Search Strategy. Preliminary experiments revealed that branching on variables
in an ordering “consistent” with the sequence of operations was key to solving
this problem via CP. In the TSP model, we simply branch on the variables next
in ascending order, and choose first the operation with least earliest start time.
In the scheduling model, we compute the set of pairs of operations a, b such
that {sa, sb} is Pareto-minimal, draw one pair uniformly at random within this
set and assign xab so that the operation with least release date comes first. In
conjunction with constraint propagation, this strategy acts as the “nearest city”
heuristic in TSP. Indeed, since the sequence of past operations is known, the
earliest start time of an operation depends primarily on the distance from the
latest operation in the partial sequence (it also depends on the release date).

LocalSolver. The LocalSolver (LS) model is similar to the TSP model. It is
based on a variable of type list seq , a special decision variable type that represent
the complete tour: seqj = a means operation a is performed at position j. This
variable is channeled with another list variable pos with posa = j ⇔ seqj = a.
We need two other list variables: train and s to represent respectively the length
of the train and the start time of the operation at a given position.

s1 = 0 ∧
sj = max(rseqj

, sj−1 + pseqj−1 + Dseqj−1,seqj
) ∀j ∈ [2, n] (10)

train1 = 0 ∧ trainj = trainj−1 + tseqj
∀j ∈ [2, n] (11)

sj + pseqj
≤ dseqj

∀j ∈ [1, n] (12)
pospfk

i
< posdfk

i
∧ pospek

i
< posdek

i
∀i ∈ [1,m] ∀k ∈ [1, ni] (13)

posdfk
i

< pospek
i

∨ posdek
i

< pospfk
i

∀i ∈ [1,m] ∀k ∈ [1, ni] (14)

Count(seq) = 0 (15)
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The last constraint (15) acts like the global constraint All Different and
therefore ensures that seq is a permutation. Surprisingly, relaxing the due dates
and using the maximal tardiness as objective tends to degrade the performance
of LocalSolver, hence we kept the satisfaction version.

3.1 Preliminary Experiments

The industrial data we have collected fall into three categories. In the industrial
assembly line, each category is associated to one logistic operator who has the
charge of a given set of components. In practice, these datasets are relatively
underconstrained, with potentially quite large production cycles (time windows)
for each component. For each category, denoted by S, L and R, we consider
three time horizons: 43 500, 130 500 and 783 000 hundredths of a minutes which
corresponds to a shift of an operator (7 h and 15 min), a day of work (made up
of three shifts) and a week (6 days) respectively.

We then have 9 industrial instances from 400 to more than 10 000 operations.
The main differences between those three categories are the number of compo-
nents, and the synchronicity of the different production cycles. For S instances,
there are only 5 components, and their production cycles are almost the same
and very short. The other two instances have more than 30 components, with
various production cycles (some cycles are short and others are very long).

The CP models were implemented using the constraint solver Choco 4.10 [11],
and the LocalSolver version was 9.0. All experiments of this section were run
on Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz with a timeout of 1 h.

The results are given in Table 1. The first column (Cl) denotes the category
of the instance and second column (H) denotes the temporal horizon. For the
two CP models (Scheduling and TSP), two indicators are given, the CPU time
(in seconds), and the numbers of fails for solved instances. For LocalSolver, we
give the CPU time when the instances are solved before the time limit.

The CP scheduling-based model solves all of the industrial instances without
any fail except for instances R and L on the whole week. Notice, however, that
when using generic heuristics such as Domain over Weighted Degree [3], only 3
instances could be solved by the same model in less than an hour. Moreover,
LocalSolver cannot solve the largest instances, and requires much more CPU
time in general. Although industrial instances are clearly very underconstrained,
they are not trivial. Moreover, even on underconstrained instances, wrong early
choices may lead to infeasible subtrees from which we cannot easily escape. In
particular, the number of fails for the largest instance of category R shows that
the very deep end of the search tree is likely explored in a brute-force manner.

One key factor in solving these instances is for the variable ordering to follow
the ordering of the sequence of operations being built. Indeed, the propagation
is much more efficient in this way, and in particular, the earliest start times of
future operations can be easily computed and, as mentioned in the description
of the heuristic, it reflects the distance from the last operation in the route.

We observe that the scheduling-based model is the fastest. Moreover, the
TSP-based model contains too many variables and constraints, and run out of
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Table 1. Comparison on the industrial instances

Cl H Scheduling TSP LocalSolver

cpu #fail cpu #fail cpu

S Shift 0.275 0 3.999 0 26

S Day 0.840 0 48.855 0 566

S Week 17.747 0 Memory out Timeout

L Shift 7.129 0 36.033 8 121

L Day 23.468 0 344.338 8 3539

L Week 318.008 6 Memory out Timeout

R Shift 8.397 0 41.615 14 1065

R Day 44.215 0 417.116 15 Timeout

R Week Timeout 773738 Memory out Timeout

memory for the bigger horizon. Instances without any fails show that the first
branch can be very slow to explore as propagation in nodes close to the root can
be very costly, in particular with the TSP-based model.

We draw two conclusions from these preliminary experiments: First, the basic
CP (or LS) models cannot reliably solve hard instances3. It is unlikely that
stronger propagation would be the answer, as the TSP model (with stronger
filtering) tends to be less effective, and does not scale very well. Second, building
the sequence “chronologically” helps significantly, which explains why CP models
outperform local search. As a consequence, greedy runs of the CP solver are
surprisingly successful. Therefore, we propose to learn efficient heuristic policies
and explore methods that can take further advantage of these heuristics.

4 Reinforcement Learning

The search for a feasible sequence can be seen as a Markov Decision Process
(MPD) whose states are partial sequences σ, and actions A(σ) are the operations
that can extend σ without breaking precedence (2) nor capacity constraints (4).

In order to apply Reinforcement Learning (RL) to this MDP, it is convenient
to relax the due date constraints and replace them by the minimization of the
maximum tardiness: max{L(σ, j) | 1 ≤ j ≤ |σ|} where L(σ, j) = eσ,j−dσ(j) is the
tardiness of operation σ(j). We also define the maximum tardiness on intervals:
L(σ, j, l) = max{L(σ, q) | j ≤ q ≤ l}, and we write L(σ) for L(σ, 1, |σ|). Since in
this case operations can finish later than their due dates, it is necessary to make
explicit the precedence constraints due to production cycles:

max(ρ(dfk−1
i ), ρ(dek−1

i )) < min(ρ(pek
i ), ρ(pfk

i )) ∀i ∈ [1,m] ∀k ∈ [2, ni] (16)

3 There might be too few data points to make that claim on industrial instances, but
it is clearly confirmed on the synthetic benchmark (see Table 2).
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Then we can further restrict the set A(σ) to operations that would not violate
Constraints (16), nor (3). As a result, any state of the MDP reachable from
the empty state is feasible for the relaxation. Finally, we can define the penalty
R(σ, j) for the j-th decision as the marginal increase of the objective function
when the j-th operation is added to σ: R(σ, j) = L(σ, 1, j) − L(σ, 1, j − 1)).

Now we can apply standard RL to seek for an effective stochastic heuristic
policy for selecting the next operation. Moreover, as the MPD defined above is
exponentially large, it is common to abstract a state σ with a small descriptor,
namely, λ(σ, a) a vector of four criteria for operation a ∈ A in state σ. Let
lst(a, σ) be the latest starting time of the task a in order to satisfy constraint
(1) with respect to the tasks in σ and constraints (2) and (3). For each operation
a ∈ A(σ), we compute λ(σ, a) as follows:

λ1(σ, a) = (lst(a, σ) − max(ra, eσ,|σ| − L(σ) + Dσ(|σ|),a))/max
b∈A

{db − rb} (17)

λ2(σ, a) = max(ra − (eσ,|σ| − L(σ)),Dσ(|σ|),a)/ max
b,c∈A2

{Db,c} (18)

λ3(σ, a) = 1 − |ta|/Tmax (19)

λ4(σ, a) =

{
1 if a ∈ P

0 otherwise
(20)

Criterion (17) can be seen as the operation’s emergency : the distance to the
due date of the task. Criterion (18) is the travel time from the last task in the
sequence. For both of these criterion, we use eσ,|σ| −L(σ) instead of eσ,|σ| as the
end time of the partial sequence σ to offset the impact of previous choices. Crite-
rion (19) is the length of the trolley. Indeed, since all operations must eventually
be done, doing the operations which have the highest consumption of the “train”
resource earlier leaves more freedom for later. Finally, criterion (20) penalizes
pickups as leaving a trolley in the train for too long is wasteful.

We want to learn a stochastic policy πθ , governed by a set of parameters θ
which gives the probability distribution over the set of actions A(σ) available at
state σ. We first define a fitness function f(σ, a) as a simple linear combination
of the criteria: f(σ, a) = θᵀλ(σ, a). Then, we use the softmax function to turn
the fitness function into a probability distribution (ignore parameter β for now).

∀a ∈ A(σ) πθ (a | σ) = e(1−f(σ,a))/β
∑

b∈A(σ) e(1−f(σ,b))/β (21)

4.1 Policy Gradient

As we look for a stochastic policy, the goal is to find the value of θ minimizing the
expected maximum value (i.e., maximum tardiness) J(θ) of solutions σ produced
by the policy πθ . The basic idea of policy gradient methods is to minimize J(θ)
by gradient descent, that is: iteratively update θ by subtracting the gradient.
We resort to the REINFORCE learning rule [16] to get the gradient of J(θ):

∇θJ(θ) = Eσ∼πθ (σ)[L(σ)∇θ log πθ (σ)] (22)
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Which can then be approximated via Monte-Carlo sampling over S samples:

∇θJ(θ) ≈ 1
S

S∑

k=1

L(σk)∇θ log πθ (σk) (23)

We can decompose Eq. (23) in order to give a specific penalty to each decision
(for every position j) of the generated solutions:

∇θJ(θ) ≈ 1
S

S∑

k=1

n∑

j=1

G(σk, j)∇θ log πθ (σk(j) | σk(1, j − 1)) (24)

The penalty function takes into account that a decision can only affect the
future marginal increase of tardiness: we replace the overall tardiness L(σ) by:

G(σ, j) =

{
R(σ, j) if j = n

R(σ, j) + γ ∗ G(σ, j + 1) otherwise

The value of γ controls how much decisions impact future tardiness. For γ = 0,
we only take into account the immediate penalty. Conversely γ = 1 means we
consider the sum of the penalties from position j.

4.2 Learning Algorithm

We learn a value of θ for the synthetic dataset (Sect. 6) with the REINFORCE
rule. Given a set of instances I, we learn by batch of size S = q|I|, in other
words, we generate q solutions for each instance. The value of θ is initialized at
random, then we apply the following three steps until convergence or timeout:

1. Generate S solutions following πθ .
2. Compute ∇θJ(θ) according to Eq. (24)
3. Update the value of θ as follows: θ ← θ − α∇θJ(θ)

We found out that using a classic softmax function did not discriminate
enough, and hence acts as random policy. To circumvent this, we use the param-
eter β in Eq. (21) to control the trade off between the quality and the diversity
of generated solutions. For a low value of β the policy always chooses the best
candidate, whereas a large value yields a more “balanced” policy. It turns out
that β = 0.1 was a good value for learning in our case.

Then, we have evaluated the impact of γ to compute the gradient in Equa-
tion (24). Recall that γ controls how much importance we give to the j-th deci-
sion in the total penalty: the overall increase of the tardiness from j to n for
γ = 1 or only the instant increase for γ = 0. Moreover, we also tried to give
the penalty L(σ) uniformly for every decision j of the policy, instead of giving
individual penalties G(σ, j). We denote this penalty strategy “Uniform”.

For each variant, we plot in Fig. (1a) the average performance L(σ) of the
policy after each iteration (notice the log-scale both for X and Y ). Here we learn
on all generated instances of a day horizon (40 instances), for 2000 iterations.
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(a) Convergence for different values of γ

Cl By Inst. By Cat. All

A 1011 1130 1128

B 6417 6766 6797

C 14622 15184 15069

D 20285 20578 20640

(b) Different training sets

Fig. 1. Behavior of reinforcement learning

High values for γ are always better. For low value of γ, the (local) optimum
is higher, and in some cases the method may not even converge, e.g. for γ = 0.
Using uniformly the overall tardiness gives similar results to γ = 1, however it
is less stable, and in Fig. (1a) we observe that it diverges after 1000 iterations.

Datapoints are colored with the vector θ interpreted as a RGB value (|θ| = 4
but it can be characterized by three values after we normalize so that

∑4
i=1 θi =

1)4. We can see for instance that γ = 0.9 finds a value of θ that is significantly
different from all other methods (〈0, 0.63, 0.29, 0.07〉). Interestingly, “Uniform”
and γ = 1 not only converge to the same average tardiness, but to similar θ’s
(respectively 〈0.30, 0.49, 0.16, 0.04〉 and 〈0.25, 0.56, 0.15, 0.04〉). However, γ = 1
finds values of θ that seem closer to the target (“greener”) earlier, although it
is not really apparent from the value of L(σ). These values of θ indicate that
a good heuristic is mainly a compromise between the emergency and the travel
time5. Moreover, the travel time tends to be more important on larger horizon,
because it a longer term impact: all subsequent operations are affected.

Finally, we report in Fig. (1b) the average tardiness for each instances follow-
ing πθ . The gain of learning specifically for a given (class of) instance(s) is at
best marginal. This is not so surprising as we abstract states with a very simple
model using a few criteria. However, it means that the value of θ learnt on the
full dataset is relevant to most instances.

5 Using the Heuristic Policy

We have implemented two types of approaches taking advantage of the stochas-
tic policy learnt via RL: integrating it within CP as a randomized branching

4 To highlight the differences we also normalize the RGB values and omit γ = 0.
5 Although the importance of a criterion also depends on the distribution of the val-

ues of λ after normalization, we are confident that the first two criteria are more
important than the other two.
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heuristic, and using it to generate sequences to be locally optimized via steepest
descent in a multi-start local search. Here we describe the necessary modifica-
tions of the CP model, and we propose an efficient local search neighborhood.

5.1 Constraint Programming

In order to use the stochastic policy described in Sect. 4 in a CP solver, we need
to slightly change the scheduling model. We introduce a new set of variables
seqj , one for each position j, standing for the operation at that position, with
the following channeling constraint: xseqjseql

= 1 ∀j < l ∈ [1, n].
We branch only on the variables seq in lexicographic order. Therefore, the

propagation for this constraint is straightforward: when branching on seqj = a,
as all variables seql ∀l < j are already instantiated, we set xab = 1, ∀b ∈
A\{seql | l < j}. Conversely, after assigning seqj we can remove a from the
domain of seqj+1 if there exists b ∈ A\{seql | l ≤ j} such that the domain
of the variable xab is reduced to {0}. Moreover, we can easily enforce Forward
Consistency on {seq1, . . . , seqj} with respect to precedence and train size con-
straints (2) and (4) as well as Constraint (3), i.e., when {seq1, . . . , seqj−1} are
all instantiated, we can remove all values of seqj that cannot extend the cur-
rent subsequence. Therefore, we do not need the Reservoir resources propagator
anymore.

We propose two strategies based on this CP model using the learned policy.

1. Softmax policy and rapid restart. In this method we choose randomly the
next operation according to the softmax policy (Eq. 21). In order to explore
quickly different part of the search tree, we rely on a rapid restart strategy,
following a Luby [10] sequence with a factor 15.

2. Limited Discrepancy Search. As the key to solve those instances is to follow
good heuristics, and to deviate as little as possible from them, limited discrep-
ancy search (LDS) [8] fits well with this approach. We run the LDS imple-
mentation of Choco, which is an iterative version: the discrepancy starts from
0, to a maximum discrepancy parameter incrementally. For this approach we
use the deterministic version of the policy π(σ) = arg mina f(σ, a).

5.2 Local Search

The solutions found by the heuristic policy can often be improved by local search
moves. Therefore, we also tried a multi-start local search whereby we generate
sequences with the heuristic policy, and then improve them via steepest descent.
Sequences are generated using the same model used for RL (i.e., with relaxed due
dates). Therefore, generated sequences respect all constraints, except (1) and we
consider a neighborhood that preserves all other constraints as well. Then we
apply the local move that decrease the most the maximum tardiness L(σ) until
no such move can be found. We use two types of moves and the time complexity
of an iteration (i.e., computing, and commiting to, the best move) is in O(nm).

We recall that L(σ, j, l) = max{L(σ, q) | j ≤ q ≤ l} is the maximum tardiness
among all operations between positions j and l in σ.
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Swap Moves. The first type of moves consists in swapping the values of σ(j)
and σ(l). First, we need to make sure that the ordering of the operations within
a given component remains valid, i.e., satifies constraints (2) and (16): a pickup
(resp. delivery) operation must stay between its preceding and following deliver-
ies (resp. pickups) for the same component. For every operation a, a valid range
between the position of its predecessor pr(a) and of its successor su(a) can be
computed in constant time. Then, for all j ∈ [1, n] we shall consider only the
swaps between j and l for l ∈ [j + 1, su(σ(j))] and such that pr(σ(l)) ≤ j.

The second condition for the move to be valid is that the swap does not
violate constraint (4), i.e., the maximum length of the train. Let τj =

∑j−1
l=1 tσ(l)

be the length of the train before the j-th operation. After the swap we have
τj+1 = τj + tσ(l) which must be less than Tmax. At all other ranks until l,
the difference will be tσ(l) − tσ(j), we only need to check the constraint for the
maximum train length, that is: max{τq | j ≤ q ≤ l} + tσ(l) − tσ(j) ≤ Tmax. This
can be done in constant (amortized) time for all the swaps of operations a by
computing the maximum train length incrementally for each l ∈ [j+1, su(σ(j))].

Then, we need to forecast the maximum tardiness of the sequence σ′ where
the operations at positions j and l are swapped, i.e., compute the marginal
cost of the swap. The tardiness of operations before position j do not change.
However, we need to compute the new tardiness L(σ′, j) and L(σ′, l) at positions
j and l, respectively. Moreover, we need to compute L(σ′, j + 1, l − 1) the new
maximum tardiness for operations strictly between j and l and L(σ′, l + 1, n)
the new maximum tardiness for operations strictly after l.

The new end time eσ′,j of operation σ′(j) = σ(l) and hence the tardiness at
position j is L(σ′, j) = eσ′,j − dσ′(j) can be computed in O(1) as follows:

eσ′,j = pσ′(j) + max(rσ′(j), (eσ′,j−1 + Dσ′(j−1),σ′(j)))

Next, operations σ(j +1), . . . , σ(l−1) remain in the same order and σ(j +1)
is shifted by a value Δ = eσ′,j + Dσ′(j),σ′(j+1) − eσ,j − Dσ(j),σ,j+1. However,
subsequent operations may not all be equally time-shifted. Indeed, when Δ < 0
there may exist an operation whose release date prevents a shift of Δ.

Let gj = rσ(j) − sσ(j) be the maximum left shift (negative shift of highest
absolute value) for the j-th operation, and let gj,l = max{gq | j ≤ q ≤ l}.

Proposition 1. If the sequence does not change between positions j and l, a
time-shift Δ < 0 at position j yields a time-shift max(Δ, gj,l) at position l.

Let LΔ(σ, j, l) be the maximum tardiness on the interval [j, l] of sequence
σ time-shifted by Δ from position j. We can define L−∞(σ, j, l) the maximum
tardiness on the interval [j, l] for an infinite negative time-shift:

L−∞(σ, j, l) = max{L(σ, q, l) + gj,q | j ≤ q ≤ l} (25)

Proposition 2. If Δ < 0 then LΔ(σ, j, l) = max(Δ + L(σ, j, l), L−∞(σ, j, l)).

Conversely, when Δ > 0 some of the time-shift may be “absorbed” by the
waiting time before an operation. However, there is little point in moving oper-
ations coming before a position j with a non-negative waiting time (i.e., where
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sσ(j) = rσ(j)), as this operation and all subsequent operations would not profit
from the reduction in travel time. Therefore we consider only swaps whose ear-
liest position j is such that ∀q > j, gq < 0. As a results, if there is a positive
time-shift Δ at q > j, we know that LΔ(σ, q, l) = Δ + L(σ, q, l). Moreover, the
values of L(σ, j, l), gj,l and L−∞(σ, j, l) can be computed incrementally as:

L(σ, j, l + 1) = max(L(σ, j, l), L(σ, l + 1))
gj,l+1 = max(gj,l, gl+1)

L−∞(σ, j, l + 1) = max(L−∞(σ, j, l), gj,l+1 + L(σ, l + 1))

Therefore, when j < l − 1, we can compute the new tardiness
L(σ′, j + 1, l − 1) = LΔ(σ, j + 1, l − 1) of the operations in the interval [j +
1, l − 1] in constant (amortized) time since the query of Proposition 2 can be
checked in O(1).

The new tardiness L(σ′, l) at position l is computed in a similar way as for
L(σ′, j) since we know the new start time of σ′(l − 1) from previous steps.

Finally, in order to compute the new maximum tardiness L(σ′, l + 1, n) over
subsequent operations, we precompute L(σ, j, n), gj,n and L−∞(σ, j, n) for every
position 1 ≤ j ≤ n once after each move in O(n). Then L(σ′, l + 1, n) can be
obtained in O(1) for every potential move from Proposition 2.

Therefore, we can check the validity and forecast the marginal cost of a
swap in constant amortized time and perform the swap in linear time. The time
complexity for an iteration is thus in O(nm) since, for a given component i, the
sum of the sizes of the valid ranges for all pickups and deliveries of this component
is in O(n). Indeed, let a1

i , . . . , a
4ni
i be the operations component i ordered as in

σ. Then su(ak
i ) = ρ(ak+1

i ) and
∑4ni

k=1 su(ak
i ) − ρ(ak

i ) = ρ(a4ni
i ) − ρ(a1

i ) ∈ Θ(n)).

Toggle Moves. As observed in Sect. 3, there are only two dominant orderings for
the four operations of the k-th production cycle of component i. The second type
of moves consists in changing from one to the other of these two orderings, by
swapping the values of σ(pfk

i ) and σ(pek
i ) and the values of σ(dfk

i ) and σ(dek
i ).

This change leaves the size of the train constant, hence all these moves are valid.
Let j1 = pfk

i , j2 = dfk
i , j3 = pek

i , j4 = dek
i be the positions of the four

operations of component i and cycle k in the current solution, and suppose,
wlog, that j1 < j2 < j3 < j4. Let σ′ denote the sequence obtained by applying a
toggle move on component i and cycle k in σ. In order to forecast the marginal
cost of the move, we need to compute the new tardiness at the positions of the
four operations involved L(σ′, j1), L(σ′, j2), L(σ′, j3) and L(σ′, j4). Moreover,
we need the new maximum tardiness on four time-shifted intervals:

L(σ′, j1 + 1, j2 − 1) = LΔ1(σ, j1 + 1, j2 − 1), L(σ′, j2 + 1, j3 − 1) =
LΔ2(σ, j2 + 1, j3 − 1), L(σ′, j3 + 1, j4 − 1) = LΔ3(σ, j3 + 1, j4 − 1) and
L(σ′, j4 + 1, n) = LΔ4(σ, j4 + 1, n).

Computing the marginal costs can be done via the same formulas as for
swaps: we can first compute the new end time for the operation at posi-
tion j1, then from it compute the value of Δ1 that we can use to compute
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LΔ1(σ, j1 + 1, j2 − 1) in O(j2 − j1 − 1) time, and so forth. The difference, how-
ever, is that there is fewer possible moves (n/4), although the computation of
the marginal cost cannot be amortized. The resulting time complexity is the
same: O(nm).

6 Experimental Results

We generated synthetic instances6 in order to better assess the approaches. Due
to the time windows constraints, it is difficult to generate certifiably feasible
instances. Their feasibility has been checked on the shortest possible horizon,
i.e., the duration of the longest production cycle of any component, which is
about 10 000 time units depending on the instances. There are four categories
of instances parameterized by the number of components (15 in category A, 20
in B, 25 in C and 30 in D). In the real dataset, several components have similar
production cycles. We replicates this feature: synthetic instances have from 2 or 3
distinct production cycles in category A, to up to 7 in category D. The latter are
therefore harder because there are more asynchronous productions cycles. We
generated 10 random instances for each category and consider the same three
horizons (shift, day and week) for each, as industrial instances.

Experiments for this section were run on a cluster made up of Xeon E5-2695
v3 @ 2.30 GHz and Xeon E5-2695 v4 @ 2.10 GHz. For the basic CP models,
we add randomization and a restart strategy following a Luby sequence, and
we ran each of the 120 instances 10 times. We could not carry on experiments
on synthetic data with LocalSolver because we were not granted a license.
However, from the few tests we could do, we expect LocalSolver to behave
similarly as on industrial benchmarks.

Table 2. Comparison of the methods on generated instances

Cl H Scheduling TSP CP-softmax LDS Multi-start LS

#S cpu #fail #S cpu #fail #S cpu #fail #S cpu #fail #S cpu Lmax

A Shift 7.1 418 300K 4.0 56 366 9.0 2 15 9.0 2 9 9.0 0 1m

Day 4.0 29 213 3.6 802 1267 9.0 15 815 8.0 21 71 9.0 176 19m

Week 3.1 866 1976 0.0 mem. out 8.0 118 27 5.0 68 0.0 7.0 155 1 h11

B Shift 2.1 389 150K 0.9 844 11K 6.0 4 77 6.0 15 85 6.0 2 11m

Day 1.0 201 15K 0.0 – 5.2 341 20K 4.0 12 19 4.6 346 1 h

Week 0.0 – 0.0 mem. out 3.5 423 715 1.0 99 0.0 1.0 0 4 h59

C Shift 0.0 – 0.0 – 4.0 103 5366 4.0 715 4090 4.0 255 32m

Day 0.0 – 0.0 – 1.0 12 7 1.0 18 27 1.0 1 1 h45

Week 0.0 – 0.0 mem. out 1.0 807 366 0.0 – 0.0 – 11 h51

D Shift 0.0 – 0.0 – 1.9 697 24K 1.0 442 1058 1.6 1165 31m

Day 0.0 – 0.0 – 0.0 – 0.0 – 0.0 – 2 h19

Week 0.0 – 0.0 mem. out 0.0 – 0.0 – 0.0 – 17 h52

6 Avalaible at https://gitlab.laas.fr/vantuori/trolley-pb.

https://gitlab.laas.fr/vantuori/trolley-pb
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For each of the methods using the learnt heuristics, we normalize θ so that∑4
i=1 θi = 1 and set β to 1/150. We learn the policy by batches of size 240

formed by 6 runs on each of the 40 day-long instances, during 2000 iterations.
The learning rate depends on the size of the instances: α = 2−12/n where n is
the average number of task in the batch. The rationale is that the magnitude of
the gradient depends on the tardiness L(σ) which tends to grow with the number
of operations. Therefore, we use the learning rate α to offset this growth, which
is key to have a stable convergence. For the two methods using the stochastic
policy, we made the first run deterministic i.e. the policy becomes stochastic
only after the first restart for the CP based one, and after the first iteration for
the multi-start local search.

The results are presented in Table 2. We report the number of solved instances
(among 10 instances for every time horizon) averaged over 10 randomized runs
for each CP model in the column “#S”. The synthetic dataset is more con-
strained than the industrial dataset and the two basic CP models fail to solve
most of the instances (“–” in the table indicates a time out). However, the rela-
tive performance remains unchanged w.r.t. Table 1: the scheduling-based models
shows better performance in terms of number of solved instances and CPU time
while scaling better in memory. All three of the RL-based methods significantly
outperform previous approaches. The results in Table 2 indicate that the rapid
restarts approach dominates the others. However, it may not be as clear-cut as
that: for other settings of the hyperparameters (α, β and γ) the relative efficien-
cies fluctuate and other methods can dominate. Moreover, one advantage of the
multi-start local search method is that since due dates are relaxed, imperfect
solutions can be produced, even for infeasible instances. We report the average
maximum tardiness in column Lmax.

This global θ also works well with the industrial dataset. All instances are
easily solved by all three methods, except “R” for the week horizon, which is
only solved by the rapid restart approach. We learnt a dedicated policy for the
industrial dataset with the same settings. It turns out that every instance was
solved by the deterministic policy using the new value for θ, except the instance
“L” for the week horizon. However, it is easily solved by all three methods.

7 Conclusion

In this paper we have applied reinforcement learning to design simple yet efficient
stochastic decision policies for an industrial problem: planning the production
process at Renault. Moreover, we have shown how to leverage these heuristic
policies within constraint programming and within local search.

The resulting approaches significantly improve over the current local search
method used at Renault. However, many instances on synthetic data remain
unsolved. We plan on using richer machine learning models, such as neural net-
works, to represent states. Moreover, we would like to embed this heuristic in a
Monte-Carlo Tree Search as it would fit well with our current approach since it
relies on many rollouts. Finally, we would like to tackle the more general problem
of assigning components to operators and then planning individual routes.
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Abstract. Benzenoids are a subfamily of hydrocarbons (molecules that
are only made of hydrogen and carbon atoms) whose carbon atoms form
hexagons. These molecules are widely studied in theoretical chemistry.
Then, there is a lot of problems relative to this subject, like the benzenoid
generation or the enumeration of all its Kekulé structures (i.e. all valid
configurations of double bonds). In this context, the computation of the
local aromaticity of a given benzenoid is an important problematic since
the aromaticity cannot be measured. Nowadays, computing aromaticity
requires quantum chemistry calculations that are too expensive to be
used on medium to large-sized molecules. But, there exist some methods
related to graph theory which can allow us to compute it. In this article,
we describe how constraint programming can be useful in order to com-
pute the aromaticity of benzenoids. Moreover we show that our method
is much faster than the reference one, namely NICS.

Keywords: Constraint programming · Modeling · Graph variables
and constraints · Chemistry

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbons are
forming cycles of different sizes. The properties of these molecules depend on
their aromaticity, which is a fundamental concept in chemistry (defined in Sect.
2). Since the discovery of graphene by Andre Geim and Konstantin Novoselov
awarded with the 2010 Nobel price in physics, the interest in the aromaticity
concept vividly revives due to its potential importance in nanoelectronics: aro-
maticity favors electronic flow through molecules, thus aromatic compounds are
of interest for the design of nanoelectronic compounds. Benzenoids are a sub-
family of PAHs made of 6-membered carbon rings (i.e. each cycle of six carbon
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Fig. 1. Two small benzenoids: benzene (a) and anthracene (b) with their graphical
representations (c) and (d).

atoms forms a hexagon). To fill carbon valency, each atom of carbon is bonded
to either two other carbons and one hydrogen or three carbons. For example,
Figs. 1(a)–(b) are representing two benzenoids: benzene and anthracene.

PAHs are well-studied in various domains because of their energetic sta-
bility, molecular structures or optical properties. In natural environment, these
molecules are created by the incomplete combustion of carbon contained in com-
bustibles [11]. PAHs are also studied in interstellar chemistry because they are
suspected to be present in interstellar clouds and are believed to act as catalysts
for chemical reactions taking place in space [3]. They are also intensively studied
in other domains like molecular nanoelectronics [24] or organic synthesis [13,20].

In this context, aromaticity is very important. It allows chemists to link the
energetic stability of a molecule to its molecular structure [2]. The stability of a
molecule is a measure of the energy needed to break all chemical bonds and sepa-
rate all the atoms of the molecule apart. Because of aromaticity, some molecules
have an extra term in this energy: breaking them apart requires more energy
than for non aromatic molecules with the same number of atoms. Recently,
some methods using quantum chemistry were established in order to compute
the aromaticity of a given molecule. The most popular one called NICS (Nuclear
Independent Chemical Shift [1]) consists of applying a magnetic field perpendic-
ular to the molecular plane and observe the behavior of its electrons. Analyzing
the response of the electronic density allows chemists to quantify the aromaticity
of the molecule. However, this method has a very high cost and computing the
aromaticity of large molecules can easily take a few days. This large computa-
tional cost is due to the fact that quantum chemistry calculations require many
steps involving iterative procedures before doing the actual calculation of aro-
maticity. To circumvent this drawback, some methods using graph theory were
proposed in the 1990s [9,10,19], which roots can be tracked back to the work of
Hückel in the 1930s [7]. They will be presented in the following parts.

In this paper, we present a new method based on constraint programming in
order to compute the local aromaticity of benzenoids. For example, this method
needs to enumerate particular cycles or count the number of Kekulé structures.
Such tasks can be modeled as CSP instances and solved efficiently thanks to
constraint solvers like Choco [4] while requiring a reduced implementation effort
unlike usual methods from theoretical chemistry or any bespoke methods based
on algorithm engineering.

The paper is organized as follows. Section 2 recalls some basic notions about
chemistry and constraint programming. Then, Sect. 3 introduces some existing



Computing the Local Aromaticity of Benzenoids 675

Fig. 2. Kekulé structures of anthracene.

methods to compute the aromaticity of benzenoids. In Sect. 4, we describe a
new method which exploits constraint programming in order to compute the
local aromaticity. In Sect. 5, we present some experimental results which show
the interest of our approach. Finally, we conclude and give some perspectives in
Sect. 6.

2 Preliminaries

2.1 Theoretical Chemistry

Benzene (represented in Fig. 1(a)) is a molecule made of 6 carbon atoms and 6
hydrogen atoms. Its carbon atoms form a hexagon (also called benzenic cycle or
benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids are a
subfamily of PAHs containing all molecule which can be obtained by aggregating
benzenic rings. For example, Fig. 1(b) shows anthracene, which contains three
benzenic rings.

Before going further, we recall some basic definitions of chemistry. Firstly,
the valence of an atom is the number of bonds that it can build with its electrons
(one electron per bond). Carbon and hydrogen atoms have a valence of 4 and 1
respectively. As in a benzenoid, each carbon atom is linked either to two other
carbon atoms and one hydrogen atom or to three other carbon atoms, we can
easily deduce that one of its electron is not used. These electrons are called π-
electron and can be used to enhance one bond by establishing double bonds (i.e.
a bond involving two electrons per atom). Therefore, each carbon is involved in
a double bond and two single bonds.

A Kekulé structure of a benzenoid is a valid configuration of its double bonds
(i.e. a configuration in which each carbon atom is involved in exactly one double
bond). Figure 2 depicts all the Kekulé structures of anthracene. A benzenoid
can have several Kekulé structures or none (Fig. 3(a) depicts an example of
benzenoid which has no Kekulé structure). We denote K(B) the set of all Kekulé
structures of a benzenoid B. Note that the number of Kekulé structures of a
benzenoid can be exponential. Therefore, given a benzenoid, generating all its
Kekulé structures is a hard problem. A benzenoid continually alternates between
its Kekulé structures. This dynamic is at the origin of the notion of aromaticity.
There exist some methods based on graph theory which allow to compute the
resonance energy of a given benzenoid (i.e. the energy induced by its aromaticity)
and these methods require to be able to enumerate all its Kekulé structures [15].
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h h

(a) (b) (c) (d)

Fig. 3. A benzenoid having no Kekulé structure (a), a conjugated circuit in thick line
(b) and an example of redundant circuits (c) and (d).

Aromaticity is a concept built by chemists in the early 20th century in order
to account for the surprising chemical stability of the benzene molecule. In this
molecule, after making a single bond to each of its three neighbors (two carbon
and one hydrogen), each carbon of the hexagonal geometry carries one extra
electron. Electrons tend to form bonds (i.e. pair with another electron) when-
ever possible. Thus, this electron forms a molecular bond with the electron of
a neighboring carbon atom. When all six electrons do the same, the electronic
structure, first proposed by Kekulé [8], is obtained. Yet, two such structures exist
as the pairing for one carbon can be with any of its two neighbors. The inter-
action or resonance of these two coexisting solutions is described by quantum
physics and leads to an over-stabilization energy called aromaticity. This concept
can be extended to fused benzene rings. It turns out that aromatic molecules
often have a characteristic smell and/or taste, hence the name of the concept.

Due to the physical nature of aromaticity, hydrogen atoms do not play any
role in its determination. Thus, it is custom not to take them into account in
connectivity based methods. So, we do not represent them afterwards. Therefore,
a benzenoid can be represented as an undirected graph B = (V,E), with V the
set of vertices and E the set of edges. Every vertex in V represents a carbon atom
and every edge of E represents a bond between the two corresponding carbons.
Moreover, this kind of graph, is connected, planar and bipartite. Figures 1(c) and
(d) represent the graphs related to the molecules of benzene and anthracene.
Finally, we can remark that the set of double bonds of a Kekulé structure is
nothing more than a perfect matching on the benzenoid. As a reminder, a perfect
matching of an undirected graph G = (V,E) is a set of edges E′ ⊆ E such that
∀(e1, e2) ∈ E′ × E′, e1 �= e2, e1 ∩ e2 = ∅ and

⋃

e∈E′
e = V .

2.2 Constraint Programming

An instance P of the Constraint Satisfaction Problem (CSP) is a triplet
(X,D,C). X = {x1, . . . , xn} is a set of n variables. For each variable xi of X,
there exists an associated domain Dxi

∈ D = {Dx1 , . . . , Dxn
} which represents

the values that xi can take. C = {c1, ..., ce} represents a set of e constraints.
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Constraints represent the interactions between the variables and describe the
allowed combinations of values.

Solving a CSP instance P = (X,D,C) amounts to find an assignment of
all the variables of X with a value contained in their associated domain which
satisfies all the constraints of C. Such an assignment is called a solution. This
problem is NP-hard [22].

Many libraries are available to represent and solve CSP instances. In this
paper, we exploit the open-source Java library Choco [4]. This choice is highly
guided by our need to be able to define graph variables and directly apply graph-
related constraints (e.g. connected or cyclic constraints). Graph variables have
as domain a set of graphs defined by a lower bound (a sub-graph called GLB)
and an upper bound (a super-graph called GUB). Moreover, Choco implements
the usual global constraints which make the modeling easier and its solver is
efficient and configurable.

3 Computing Resonance Energy of a Benzenoid

3.1 Definitions

Resonance energy is used to quantify the energy induced by the aromaticity of
a benzenoid. It allows us to get information about its stability (the lower the
energy, the greater the stability). It is possible to compute this energy globally
(on the entire molecule), which is called global aromaticity or locally (by assign-
ing an energy to each hexagon), which is called local aromaticity. The latter is
the most interesting since it allows us to identify the least stable parts of the
molecule. Knowing that chemical reactions are more likely to occur on these
parts, it can be used to predict the location of a reaction.

Randić presented a method which approximates the resonance energy of a
given benzenoid by enumerating all the linearly independent Minimal Conju-
gated Circuits (later called h-MCCs) of each of its Kekulé structures [17]. Before
going further, we have to introduce some definitions:

Definition 1 ([14]). Let B be a benzenoid and K one of its Kekulé structures.
A conjugated circuit C of K is a cycle of B whose edges correspond alternately
to single and double bonds in K. The size of C (noted |C|) is the integer i such
that C contains 4i + 2 edges.

So, a conjugated circuit is a cycle alternating between single and double
bonds. For example, the cycle in thick line in Fig. 3(b) is a conjugated circuit of
size 2.

Given a benzenoid B and one of its cycles C, we call interior of C the sub-
graph induces by all the edges and vertices which are in the interior of C.

Now, let us introduce the covering of a hexagon by a conjugated circuit:

Definition 2 ([18]). Let B be a benzenoid and K one of its Kekulé structure.
A conjugated circuit C of K covers a hexagon h if and only if h is contained into
the interior of C. Two conjugated circuits are said redundant circuits if they
cover the same hexagon.
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For example, let us consider the Kekulé structure in Fig. 3(c). The hexagon
h is covered by two conjugated circuits: a first one of size 4 (Fig. 3(c)) and a
second one of size 3 (Fig. 3(d)). In this case, we pay more attention to the circuit
with the smallest size:

Definition 3 ([18]). Let B be a benzenoid and K one of its Kekulé structure. C
is a minimal conjugated circuit of the hexagon h of B (also called h-MCC)
w.r.t. K if C is one of the covering circuits of h having the smallest size.

So, if we look at Figs. 3(c)–(d), the circuit of size 3 is a h-MCC for the
hexagon h.

An energy is given to each of these conjugated circuits depending on their
size (a smaller circuit has a higher energy). Thereafter, we denote Ri the energy
induced by a conjugated circuit of size i. Initially, these values were calculated
using the formula Ri = 1

i2 , but optimized values were established by linear
regression: R1 = 0.869, R2 = 0.246, R3 = 0.100 and R4 = 0.041 [16]. These val-
ues make it possible to compute the energy induced for a given Kekulé structure:

Definition 4 ([18]). Let B be a benzenoid and K one of its Kekulé structure.
The energy R(K) induced by the minimal circuits of K is defined as follows:

R(K) =
∑

i∈{1,2,...}
ri(K) × Ri

where ri(K) is the number of minimal circuits of size i in K.

By extension, one defines the energy induced by a benzenoid.

Definition 5 ([18]). Let B be a benzenoid. The energy R(B) induced by B is
defined as follows:

R(B) =
∑

K∈K(B)

R(K)

Finally, one can define the resonance energy of a benzenoid:

Definition 6 ([18]). Let B be a benzenoid. The resonance energy E(B) of B
is defined as follows:

E(B) =
R(B)
|K(B)|

For example, if we look at the Kekulé structures of anthracene in Fig. 2
and consider all their h-MCCs, we can easily see that its resonance energy is
6R1+4R2+2R3

4 = 1.57 if we take the optimized Ri values.
To conclude with this part, we call local aromaticity of a benzenoid B on

the hexagon h the energy obtained by using the previous formula, but with only
looking at conjugated circuits which are minimal circuits covering h.
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Definition 7. Let h be a hexagon of a benzenoid B. The local resonance energy
E(B, h) of h is defined as follows:

E(B, h) =

∑

K∈K(B), C a h−MCC w.r.t. K

R|C|

|K(B)|
For example, if we consider Fig. 2, the local aromaticity of hexagon h1 of

anthracene is 2R1+R2+R3
4 = 0.521. Indeed, if we look at hexagon h1, we have:

– A circuit of size 1 for Kekulé structure 1 (the circuit covering h1).
– A circuit of size 1 for structure 2 (the same circuit as before).
– A circuit of size 2 for structure 3 (the circuit covering h1 and h2).
– A circuit of size 3 for structure 4 (the circuit covering h1, h2 and h3).

Note that the sum of E(B, h) over all the hexagons h of B is equal to the energy
E(B).

3.2 Computing the Resonance Energy

Lin and Fan [10] proposed a method based on the definition of the resonance
energy. Given a benzenoid B, this method first enumerates all minimal conju-
gated circuits (i.e. computes a h-MCC for all its hexagons h) for each Kekulé
structure. Then, it deduces the energy induced by each minimal conjugated cir-
cuit and adds them up. Finally, it divides the obtained sum by the number of
Kekulé structures to obtain the resonance energy. Such a method was implied
in Randić’s work. The main contribution of Lin and Fan consists in describing
how to compute the h-MCCs. For that, they identify the specific forms of the h-
MCC depending on the location of the double bonds of h. Therefore this method
requires to analyze the double bonds of all the hexagons.

The main drawback of this method is that it requires to generate all the
Kekulé structures of the benzenoid. As the number of Kekulé structures may be
exponential, this method is clearly inefficient in practice and can only be used
for small benzenoids.

To overcome this, Lin [9] proposed another method that is able to compute
all the minimal circuits of a given benzenoid without generating its Kekulé struc-
tures. This method only considers circuits having a size at most 4. So, it provides
an approximation of the resonance energy. Before describing this method, let us
introduce some needed definitions.

Definition 8. Let B be a benzenoid and C a cycle of B (with 4i + 2 edges
∀i ∈ N). M(C) is the number of perfect matchings of C and its interior inducing
a minimal circuit for at least one of the hexagons it covers.

For example, let us consider C as being the cycle of size 2 represented in Fig. 4(a).
C can induce two different conjugated circuits that are clearly minimal and cover
the two hexagons. So we have M(C) = 2.
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Fig. 4. A cycle C such as M(C) = 2 (a) and an example of computation of the number
of occurrences of a cycle (b). (Color figure online)

Definition 9. ([19]). Let B = (V,E) be a benzenoid and C a cycle of B (with
4i + 2 edges ∀i ∈ N). B[C] is the sub-graph of B induced by C and its interior.

The method presented by Lin [9] relies on the following theorem:

Theorem 1. ([19]). Let B be a benzenoid and C a cycle of B (with 4i+2 edges
∀i ∈ N). C is a h-MCC in |K(B − B[C])| × M(C) Kekulé structures of B where
B − B[C] is the sub-graph induced by the removal of the vertices belonging to C
and its interior.

Let us consider the benzenoid B described in Fig. 4(b) and the cycle C
depicted in red thick line. So, B[C] corresponds exactly to all the hexagons in
the interior of C, namely the hexagons depicted in red thick line in the middle
figure. To compute the number of occurrences of C as a h-MCC, we have to com-
pute the number of perfect matchings of the sub-graph induced by B − B[C]. In
this example, this sub-graph (depicted in red thick solid line in the rightmost
figure) has two perfect matchings. Moreover, we have M(C) = 1 because if we
consider the two Kekulé structures of C which allow it to be a conjugated cir-
cuit, there is only one of them for which C is a minimal circuit for at least one
of its hexagon. So, we can conclude that C appears twice as an h-MCC in all the
Kekulé structures of B.

To sum up, the method presented by Lin [9] (described in Algorithm 1) takes
as input a benzenoid B and a base containing all the cycles of size at most 4 which
can induce at least one h-MCC, and another base containing all the redundant
circuits of the same sizes. On Line 1, it generates the set of cycles of B which
belongs to the first base (we denote this set C∗). Then, for each cycle in C∗, it
counts how many h-MCC are induced by this cycle in all the Kekulé structures
of B (Lines 3–4), as shown in Fig. 4(b). To conclude, it needs to find all couple
of cycles of B which can produce one of the redundant circuits described in the
second base and to take care not to count the cycle having the largest size (Lines
5–8).

The principal interest of this method is that it does not require to enumerate
all the Kekulé structures of the given benzenoid. The only problem it has to
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Algorithm 1: Compute Resonance Energy
Input: a benzenoid B, a base of h-MCC, a base of redundant circuits
Output: the resonance energy E(B)

1 C∗ ← generate circuits(B, 1, 4)
2 energy ← 0
3 foreach C ∈ C∗ do
4 energy ← energy + R|C| × |K(B − B[C])| × M(C)

5 foreach (C1, C2) ∈ C∗ × C∗ do
6 if redundant(C1, C2) then
7 size ← max(|C1|, |C2|)
8 energy ← energy − Rsize × |K(B − B[C1 ∪ C2])|
9 return energy

K(B)

solve is counting the number of perfect matchings in a graph, what was proved
to be polynomial for benzenoids [6].

4 The Proposed Method

4.1 Preliminary Definitions

In this part, we propose a new method, using constraint programming, which
refines method propose by Lin [9] in order to compute local aromaticity. Remind
that local aromaticity is more useful than global one since it helps to predict
the parts of molecules where chemical reactions may take place while leading to
global information like global aromaticity. Before going into details, we have to
introduce some definitions. First, we need to handle coordinates:

Definition 10. Let B = (V,E) be a benzenoid. A coordinate function c :
V → Z

2 of B is a function that maps a couple of integers (c(v).x, c(v).y) (i.e.
an abscissa and an ordinate in the Cartesian coordinate plane) to each vertex v
of B such that if (v0, v1, v2, v3, v4, v5) are the vertices forming a hexagon (given
clockwise) with v0 the vertex having the largest ordinate, we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(v1) = (c(v0).x + 1, c(v0).y − 1)
c(v2) = (c(v0).x + 1, c(v0).y − 2)
c(v3) = (c(v0).x, c(v0).y − 3)
c(v4) = (c(v0).x − 1, c(v0).y − 2)
c(v5) = (c(v0).x − 1, c(v0).y − 1)

Figure 5(a) describes a simple example of coordinates for benzene.
Then, we consider some particular edges:

Definition 11. Let B be a benzenoid and c a coordinate function. An edge e =
(u, v) ∈ E is a vertical edge of B if and only if c(u).x = c(v).x.



682 Y. Carissan et al.
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Fig. 5. Benzene with coordinates (a) and example of interval (b).

The vertical edges of the benzenoid depicted in Fig. 5(a) are {1, 2} and {4, 5}.
We now introduce the notion of interval related to vertical edges:

Definition 12. Let B be a benzenoid and c a coordinate function. An interval
I of B is a couple I = (e1, e2) of vertical edges such as:

⎧
⎪⎪⎨

⎪⎪⎩

e1 = (u1, v1) ∈ E
e2 = (u2, v2) ∈ E
c(u1).y = c(u2).y
c(v1).y = c(v2).y

We denote: ⎧
⎪⎪⎨

⎪⎪⎩

I.x1 = c(u1).x
I.y1 = c(u1).y
I.x2 = c(u2).x
I.y2 = c(v1).y

We denote |I| = |I.x2 − I.x1| the size of I.

To sum up, an interval represents the space contained between two vertical
edges that have the same ordinate. Figure 5(b) shows an example of interval.

4.2 Method Description

In this part, we describe our refined algorithm (see Algorithm 2) based on con-
straint programming. This method takes as input a benzenoid B = (V,E), a
coordinate function c, a base containing all the cycles of size at most 4 that can
induce at least one h-MCC, and another one containing all the couples of cycles
of the first base which can form redundant circuits and it returns an approxi-
mation of the local energy E(B, h) for each hexagon h. With this aim in view,
we first compute the set C∗ of all the cycles of B whose size is at most 6 (Line
1). Then for each cycle C of C∗ (Lines 2–10), we first identify the cycle by a
collection of intervals (Line 3). If C corresponds to a h-MCC of size at most 4,
we add its contribution to the local resonance energy of h (Lines 4–5). However,
C can also correspond to the union of two conjugated circuits (Line 6). If so, we
have not to take into account the contribution of a redundant circuit (Line 10).

Now, we detail below the main steps of Algorithm 2.
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Algorithm 2: Compute Resonance Energy CP

Input: a benzenoid B, a coordinate function c, a base of h-MCC, a base of
redundant circuits

Output: the local resonance energy E(B, h) for each hexagon h of B
1 C∗ ← generate circuits choco(B, 1, 6)
2 foreach C ∈ C∗ do
3 id ← identify circuit(C)
4 if h-MCC(C) then
5 energy[h] ← energy[h] + R|C| × |K(B − B[C])| × M(C)
6 else if union of circuits(C) then
7 foreach (C1, C2) s.t. C = C1

⋃ C2 and redundant(C1, C2) do
8 C′ ← circuit with max size(C1, C2)
9 h ← minimal for hexagon(C′)

10 energy[h] ← energy[h] − |K(B − B[C])| × R|C′|

11 foreach h of B do energy[h] ← energy[h]/|K(B)|
12 return energy

Enumeration of All the Cycles. We need to identify all the cycles which
correspond to either a h-MCC of size at most 4 (Line 4 of Algorithm 2) or a
union of two h-MCCs (Line 6). As the union of two h-MCCs of size 4 is at most
of size 6, we have to enumerate all the cycles of size at most 6.

In order to enumerate all the cycles of size at most 6, we model this problem
as a CSP instance P1 = (X1,D1, C1). First, we consider a graph variable xG

whose domain is all the possible graphs between the empty graph and the graph
B. This variable models the cycle we look for. To ensure that the value of this
variable is a cycle, we impose the graph constraint cycle [5] on xG. It remains
to be ensured that the size of this cycle is at most 6. For this, we introduce
a Boolean variable xe per edge e of B. xe is set to 1 if the edge e appears in
the graph depicted by xG, 0 otherwise. Then, we use a collection of channeling
constraints in order to link the variables xe and the variable xG. More precisely,
for each edge e, we use a channeling constraint between xe and xG which imposes
xe = 1 ⇐⇒ e appears in xG. Finally, we add a global constraint sum over all
the variables xe to impose

∑

xe|e∈E

xe ∈ {6, 10, 14, 18, 22, 26} because we consider

circuits of size at most 6 and a circuit of size i has 4i + 2 edges. The channeling
and sum constraints make it possible to ensure that the size of the built cycle is
suitable. At the end, we obtain the following instance P1:

⎧
⎪⎪⎨

⎪⎪⎩

X1 = {xG} ∪ {xe|e ∈ E}
D1 = {DxG} ∪ {Dxe |e ∈ E} with DxG = {g|∅ ⊆ g ⊆ B} and Dxe = {0, 1}
C1 = {cycle(xG),

∑

xe|e∈E

xe ∈ {6, 10, 14, 18, 22, 26}} ∪ {channeling(xe, xG)|e ∈ E}
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As Choco implements graph variables and offers a large amount of graph-
related constraints and global constraints, this model can be easily expressed
with Choco.

Counting the Number of Kekulé Structures. For each cycle C of C∗, we
need to count the number of Kekulé structures of C (Line 5) or one of B − B[C]
(Lines 5 and 10). In 2001, Rispoli presented a method which can count the
number of Kekulé structures of a benzenoid [21]. The main idea of this method
is to transform the given benzenoid B into a specific matrix whose determinant
is the number of Kekulé structures of B. Unfortunately, although this task is
polynomial, it is too time-consuming. For instance, for a molecule having 19
hexagons and 54 carbon atoms, the method proposed by Rispoli requires more
than 15 min while the approach we propose only needs a few seconds. It seems
that the time-expensive step is the computation of the determinant. So, we
consider an alternative solution based again on constraint programming. We
model this problem as a CSP instance P2 = (X2,D2, C2) for which every solution
corresponds to a Kekulé structure. As any benzenoid B = (V,E) is a bipartite
graph, we can divide V into two disjoint sets V1 and V2 such that every edge
of E links a vertex of V1 to one of V2. We consider a variable yv per vertex
v of V1 whose domain contains every vertex w from V2 such that {v, w} ∈ E.
By so doing, if the variable yv is assigned with value w, it means that the edge
{v, w} corresponds to a double bond. By definition of a solution, this ensures
that there is a single double bond for any carbon atom of V1. It remains to ensure
the same property for the vertices of V2. This can be achieved by considering
an all-different constraint involving all the variables of X2. So we obtain the
following instance P2:

⎧
⎨

⎩

X2 = {yv|v ∈ V1}
D2 = {Dyv

|v ∈ V1} with Dyv
= {w|w ∈ V2, {v, w} ∈ E}

C2 = {all − different(X2)}
Clearly, the solutions of P2 correspond to the Kekulé structures of B and so to

perfect matchings of B. Regarding the filtering of the all-different constraint,
Regin proposed an efficient algorithm based on the matchings of a particular
graph, called the value graph [23]. We can then note that, for our instance P2,
the value graph related to the all-different constraint we use is exactly the
graph B. Moreover, any solver enforcing this filtering at each step of the search is
able to count efficiently the number of solutions since only assignments leading to
solutions are explored. Note that another model was proposed [12]. It considers
binary variables and sum global constraints, but does not provide any theoretical
guarantee about the efficiency, unlike the model we propose. Finally, the model
we describe applies for a benzenoid B and can be easily specialized to apply to
any part of B (e.g. any cycle C or induced sub-graph B − B[C]).

Identification of Cycles. Once Choco returns a cycle, we need to determine
if this cycle belongs to the base of h-MCCs (Line 4) or one of redundant circuits
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I1

I2

I3

(a) (b)

Fig. 6. A cycle and the relations between its intervals (a), and a second example of
redundant circuits (b).

(Line 6). For achieving this task, we first represent any cycle by the bias of a
set of intervals and some relations between these intervals. The purpose of these
relations is to represent the distance between two vertical edges of each couple
of intervals (either the two left edges or the two right edges). So, with a set of
intervals with this kind of relations, we are able to build the associated cycle and
vice versa. Figures 6(a) shows an example of such a representation. Accordingly,
we construct each base by describing every cycle (h-MCC or redundant cycle)
identified by Lin [9] by a set of intervals and some relations between them. Now,
each time a new cycle is returned by Choco, we translate it into a set of intervals
and their relations, and check if it belongs to one of the two bases by simply
comparing sets and relations. So, we are able to determine if this cycle can induce
h-MCC or if it can be obtained by the union of redundant circuits.

Furthermore, the second base contains, for each cycle C, a set of a couple of
cycles whose union forms C. This allows us to remove the energy that we have
over-counted due to redundant circuits (Line 10). For example, let us consider C
as being the union of the two circuits represented in Fig. 6(b). It can be obtained
either by the union of the cycles of the leftmost figure (of sizes 3 and 4), or by
the cycles of the rightmost one (of sizes 3 and 4 too). So, each time Choco finds
C in a benzenoid, we need to remove the energy associated to two circuits of
size 4.

5 Experimentations

In this part, we provide an experimental comparison between our CP-based
method (denoted CRECP for Compute Resonance Energy CP ) and a refer-
ence method, namely NICS. In our comparison, we do not consider the method
proposed by Lin since this latter is not available and re-implementing it is not
a trivial task. Moreover chemists are more interested by local aromaticity than
global one [1].

About the experimental protocol, the CRECP method was implemented in
Java and compiled with Java SE 1.8. It relies on Choco Solver version 4.2.3. Note
that we used the default settings of Choco. For NICS, we exploited the imple-
mentation provided in a commercial program (see http://gaussian.com/). Both
CRECP and NICS are run on server with 2.20 GHz Intel Xeon Gold processor
and 256 Gb under CentOS Linux release 8.1.1911. We consider as benchmark a

http://gaussian.com/
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Fig. 7. Results of NICS (red/bottom values) and CRECP (blue/top values) methods.
(Color figure online)

set of 28 benzenoids of various and reasonable size so that NICS can be executed
within a reasonable amount of time. The sources of CRECP and benchmark are
available at https://github.com/AdrienVaret/CPLocalAromaticity.

First, Table 1 shows a comparison between the runtimes of NICS and CRECP
method. Clearly, the CRECP method is much faster than the NICS method.
Indeed, for the considered benzenoids, the runtime of CRECP does not exceed
one minute while NICS may requires several hours. For instance, for the ben-
zenoid 28, NICS takes about 14 h to compute the local aromaticity, while CRECP
only needs 46 s.

Then, an important question from a chemical viewpoint is the quality of
computed values. Remind that, if both approaches give a description of local
aromaticity, CRECP and NICS cannot lead to similar numbers. Indeed, the
circuit approach of CRECP is an attempt to describe the behavior of the elec-
tronic structure of the molecule as a superposition of closed electronic circuits
whereas the NICS approach measures how much the electronic structure would
be distorted by an external magnetic field. However, their trends should coincide.
Figure 7 presents the values of the local energy of some hexagons for some consid-
ered benzenoids. Blue and red values are respectively ones produced by CRECP
and NICS. The values of unlabeled hexagons can be deduced by symmetry. As
the values produced by the two methods are incomparable in nature, our com-
parison must focus on the ordering that these values induce on the hexagons.
As we can see, both methods lead to similar orderings, what shows that our
approach may constitute an interesting and faster alternative to assess the local
aromaticity of benzenoid.

https://github.com/AdrienVaret/CPLocalAromaticity
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Table 1. Runtimes of NICS and CRECP for the considered set of benzenoids.

Benzenoid Runtime

id. #carbons #hexagons NICS CRECP

1 6 1 1 min 37 s 0.281 s

2 10 2 5 min 56 s 0.210 s

3 14 3 32min 38 s 0.294 s

4 14 3 15min 12 s 0.274 s

5 18 4 21min 19 s 0.296 s

6 18 4 33min 50 s 0.332 s

7 18 4 44min 36 s 0.327 s

8 16 4 16 min 8 s 0.312 s

9 18 4 1 h 5 min 58 s 0.319 s

10 22 5 30min 13 s 0.257 s

11 22 5 1 h 35min 55 s 0.309 s

12 22 5 1 h 29min 32 s 0.325 s

13 22 5 59min 46 s 0.268 s

14 22 5 1 h 42min 51 s 0.228 s

15 22 5 1 h 45min 40 s 0.250 s

16 22 5 55min 47 s 0.278 s

17 22 5 4 h 29 min 7 s 0.249 s

18 20 5 42min 16 s 0.235 s

19 20 5 1 h 22min 30 s 0.242 s

20 20 5 24min 21 s 0.251 s

21 24 7 42min 42 s 0.324 s

22 42 13 3 h 42min 54 s 0.857 s

23 60 20 7 h 4 min 58 s 6.294 s

24 60 19 8 h 43min 33 s 5.170 s

25 72 24 11 h 54 min 4 s 20.091 s

26 78 25 14 h 12min 44 s 50.446 s

27 36 11 2 h 39 min 5 s 0.402 s

28 54 17 4 h 33min 25 s 3.213 s

6 Conclusions and Perspectives

In this paper, we have presented a new method based on constraint program-
ming for computing the local aromaticity of benzenoids. This method refines the
method proposed by Lin by dealing with local aromaticity instead of global one.
In practice, we have shown that it turns to be significantly faster than NICS
(which is considered as a reference by theoretical chemists) while providing sim-
ilar results.
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This work is a preliminary step in which we only consider conjugated circuit
of size at most 4. By so doing, we make an approximation which may be of poor
quality for some classes of benzenoids. An extension of this work consists in
identifying all the h-MCC of size greater than 4 and the corresponding union of
redundant circuits. If this work was done by hand by Lin [9] for h-MCCs of size
at most 4, constraint programming will be of great help here to cope with the
combinatorial explosion. Beyond, many problems about benzenoids in theoretical
chemistry may fall within the scope of constraint programming. For instance,
when no Kekulé structure exists for a given benzenoid, chemists are interested
in finding the structure that comes closest to it, what may be expressed as a
constraint optimization problem.
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12. Mann, M., Thiel, B.: Kekulé structures enumeration yields unique SMILES. In:
Proceedings of Workshop on Constraint Based Methods for Bioinformatics (2013)

13. Narita, A., Wang, X.Y., Feng, X., Müllen, K.: New advances in nanographene
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Abstract. Benzenoids are a subfamily of hydrocarbons (molecules that
are only made of hydrogen and carbon atoms) whose carbon atoms form
hexagons. These molecules are widely studied in theoretical chemistry
and have a lot of concrete applications. Therefore, generating benzenoids
which have certain structural properties (e.g. having a given number of
hexagons or having a particular structure from a graph viewpoint) is an
interesting and important problem. It constitutes a preliminary step for
studying their chemical properties. In this paper, we show that modeling
this problem in Choco Solver and just letting its search engine generate
the solutions is a fast enough and very flexible approach. It can allow to
generate many different kinds of benzenoids with predefined structural
properties by posting new constraints, saving the efforts of developing
bespoke algorithmic methods for each kind of benzenoids.

Keywords: Constraint programming · Modeling · Graph variables
and constraints · Chemistry

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbons are
forming cycles of different sizes. Benzenoids are a subfamily of PAHs made of
6-membered carbon rings (i.e. each cycle is a hexagon). To fill carbon valency,
each atom of carbon is bonded to either two other carbons and one hydrogen or
three carbons. For example, Figs. 1(a) and (b) are representing two benzenoids:
benzene and anthracene.

PAHs are well-studied in various fields because of their energetic stabil-
ity, molecular structures or optical spectra. In natural environment, these
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Fig. 1. Two small benzenoids: benzene (a) and anthracene (b) with their graphical
representations (c) and (d).

molecules are created by the incomplete combustion of carbon contained in com-
bustibles [18]. They are popular research subjects in material sciences, e.g. molec-
ular nanoelectronics where they are used to store or transport energy [2,29] or in
organic synthesis [22,25], where the controlled design of specific shapes remains
challenging. PAHs are also intensively studied in interstellar chemistry because
of their suspected presence in various interstellar and circumstellar environments
where they are believed to act as catalysts for chemical reactions taking place
in space [14].

PAHs exhibit a large variety of physicochemical properties depending on size
and, more specifically, on edge and bond topologies. In the astrophysical com-
munity, the so-called “PAH hypothesis” formulated more than 30 years ago, of
whether the existence of PAHs in space could explain some unidentified mid-
infrared emission bands in astrophysical environments, has motivated numerous
observational, experimental and theoretical investigations. It is now accepted
that mixtures of free PAHs of different size, shapes and ionic states can account
for the overall appearance of the widespread interstellar infrared emission spec-
trum. But the question of relative abundance of PAHs with a given size and/or
shape remains open. Many studies are devoted to explore the effect of the size,
shapes in terms of compacity and symmetry of PAHs, on band positions and
intensities of the infrared spectra [1,3,23]. Very recently, a systematic investi-
gation of a series of 328 PAHs containing up to 150 carbon atoms showed that
PAHs with armchair edges that maximize the Clar number (i.e. the maximum
number of non-adjacent rings containing 6 electrons called a sextet) are poten-
tial emitters of a certain class of astrophysical infrared sources [24]. For their
study, the authors needed to systematically generate all PAHs having armchair
edge topology and selecting a subclass of PAHs whose structure maximizes the
Clar number. They used the algorithm of Caporossi and Hansen [8]. Constraint-
programming is particularly well suited for the generation of such families of
PAHs.

Another important example where the generation of specific shapes is rel-
evant for chemists deals with so-called “non-Kekulean” benzenoids [10]. These
benzenoids cannot be represented by Kekulé structures, i.e. structures that have
only simple and double bonds. From a graph-theoretical point of view, Kekulé
structures are covered by the maximal number of disjoint (double) edges so that
all vertices are incident to one of the disjoint edges. It was accepted among
chemists until recently that “non-Kekulean” benzenoids should be very unstable
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due to their open-shell electronic structure (i.e. one or more electron(s) remain
unpaired, contrary to a closed-shell structure where all electrons are paired) and
thus their synthesis would be a real challenge. The experimental realization and
in-depth characterization of small “non-Kekulean” benzenoids was very recently
achieved on gold surfaces [20,21]. These studies opened the way to the synthesis
of new classes of compounds which show unconventional magnetism induced by
their topology, with promising applications in various fields like molecular elec-
tronics, nonlinear optics, photovoltaics and spintronics. Moreover, it was shown
that some PAHs with specific topologies (e.g. rhombus shapes) may “prefer”
having an open-shell structure when reaching a certain size, although they could
have a closed-shell structure and could thus be described by a set of Kekulé
structures [27]. From a quantum theoretical point of view, the proper descrip-
tion of the electronic structure of open-shell benzenoids is a difficult task. The
use of a constraint programming approach for the systematic search of larger
non-Kekulean or Kekulean benzenoids having an open-shell electronic structure
is undoubtedly advantageous.

In this context, many approaches have been proposed in order to generate
benzenoids having or not a particular shape or satisfying a particular property
(e.g. [5,6]). These are bespoke approaches which have the advantage of being
efficient, but are difficult to adapt to the needs of chemists. Moreover, design-
ing a new bespoke method for each new desired property often requires a huge
amount of efforts. So, in this paper, we prefer to use an approach based on con-
straint programming. With this aim in view, we present a general model which
can be refined depending on the desired properties by simply adding variables
and/or constraints. By so doing, our approach benefits from the flexibility of CP
and requires less efforts of implementation. In the meantime, CP offers efficient
solvers which can be quite competitive with respect to bespoke algorithms.

The paper is organized as follows. First, we recall some definitions about ben-
zenoids and constraint programming in Sect. 2. Section 3 introduces the fastest
existing algorithm for generating benzenoids. Then Sect. 4 presents a new app-
roach using constraint programming, explains its advantages and gives some
examples. Finally, we conclude and provide some perspectives in Sect. 5.

2 Preliminaries

2.1 Theoretical Chemistry

Benzene, represented in Fig. 1(a) is a molecule made of 6 carbon atoms and 6
hydrogen atoms. Its carbon atoms form a hexagon (also called benzenic cycle or
benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids are a
subfamily of PAHs containing all molecules which can be obtained by aggregating
benzenic rings. For example, Fig. 1(b) shows anthracene, which contains three
benzenic rings.

By definition of the valence (i.e. the number of bonds that an atom can
establish) of carbon and hydrogen atom, we know that each carbon atom is
linked to either two other carbon atoms and one hydrogen atom or three other



Using Constraint Programming to Generate Benzenoid Structures 693

1 2

3 4 5

6 7

1 2

3
4

5

6 7

)b()a(

Fig. 2. Coronene (a) and its hexagon graph (b).

carbon atoms. So benzenoids can be perfectly defined by describing only the
interactions between carbon atoms. Hydrogen atoms can then be deduced since
each hydrogen atom is linked to a carbon atom which is only bonded to two
other carbon atoms. As a consequence, any benzenoid can be represented as an
undirected graph B = (V,E), with V the set of vertices and E the set of edges.
Every vertex in V represents a carbon atom and every edge of E represents
a bond between the two corresponding carbons. Moreover, this kind of graph,
is connected, planar and bipartite. Figures 1(c) and (d) represent the graphs
related to the molecules of benzene and anthracene.

In the following, for any benzenoid B, we need to consider some of its faces.
A face of a planar graph is an area of the plan bounded by edges. Figure 2(a)
presents the graph corresponding to coronene (a well-known benzenoid). This
graph has eight faces namely the seven numbered faces and the external face.
Note that in the sequel, we do not take into account the external face. For this
example, the numbered faces correspond exactly to the hexagons of coronene.
However, we will see later that this property does not hold for all the benzenoids.

Then, given a benzenoid, we consider another graph, namely the hexagon
graph. The hexagon graph of a benzenoid B = (V,E) is the undirected graph
Bh = (Vh, Eh) such that there is a vertex vh from Vh per hexagonal face h of
B (the external face and “holes” in the benzenoid are excluded) while there
is an edge {vh, vh′} in Eh if the corresponding hexagonal faces h and h′ of B
share an edge of E. Figure 2(b) presents the hexagon graph of coronene. The
hexagon graph allows us to express the interaction between the hexagons of the
considered benzenoid.

2.2 Constraint Programming

An instance I of the Constraint Satisfaction Problem (CSP) is a triplet
(X,D,C). X = {x1, . . . , xn} is a set of n variables. For each variable xi ∈ X,
there exists an associated domain Dxi

∈ D = {Dx1 , . . . , Dxn
} which represents

the values that xi can take. C = {c1, ..., ce} represents a set of e constraints.
Constraints represent the interactions between the variables and describe the
allowed combinations of values.

Solving a CSP instance I = (X,D,C) amounts to find an assignment of
all the variables of X with a value contained in their associated domain which
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satisfies all the constraints of C. Such assignment is called a solution. This prob-
lem is NP-hard.

Many libraries are available to represent and solve efficiently CSP instances.
In this paper, we exploit the open-source Java library Choco [15]. This choice
is highly guided by our need to be able to define graph variables and directly
apply graph-related constraints (e.g. connected or cyclic constraints). Graph
variables have as domain a set of graphs defined by a lower bound (a sub-graph
called GLB) and an upper bound (a super-graph called GUB). Moreover, Choco
implements the usual global constraints which make the modeling easier and its
solver is efficient and configurable.

3 Generating Benzenoids

We can define the benzenoid generation problem (denoted BGP in the future) as
follows: given a set of structural properties P, generate all the benzenoids which
satisfy each property of P. For instance, these structural properties may deal
with the number of carbons, the number of hexagons or a particular structure for
the hexagon graph. Of course, the more interesting instances of the BGP problem
combine several properties. For example, Fig. 5 shows benzenoids having a tree
as hexagon graph. Such a property-based instances design allows for the search
of benzenoids with chemically relevant properties. Our interest lies in the search
of benzenoids with radical electronic structures (as in the work of Malrieu and
Trinquier [27]), which arise from their geometrical arrangement.

Now, we present an existing method proposed by Brinkmann et al. [5]. Given
an integer n, this method is able to generate all the benzenoids with n hexagons
by generating all the hexagon graphs with at most n vertices. This is done by
adding successively new vertices to the hexagon graph (which is equivalent to
generate all the wanted molecules by successively adding new hexagons).

This method is really efficient. For instance, it could generate the 669,584
benzenoids having 12 hexagons in 1.2 s and 1,000 billions of benzenoids having
21 hexagons in two weeks when launched on an old computer (Intel Pentium, 133
MHz, 2002). However it has some disadvantages. Indeed it is not complete in the
sense that it is unable to generate benzenoids with “holes”. By hole, we mean a
face which does not correspond to a hexagon or the external face. For example,
Fig. 3(a) depicts the smallest benzenoid (in terms of number of hexagons) which
admits a hole. Such a benzenoid cannot be produced by this method. Indeed,
when this method wants to add a new hexagon, it checks whether the added
hexagon allows to close a cycle of hexagons. If so, the hexagon is not added and
so benzenoids with holes cannot be generated. Benzenoids with holes are quite
seldom. There is a single one for 8 hexagons (among 1,436 benzenoids), 5 for
9 hexagons (among 6,510). Note that this proportion grows as we increase the
number of hexagons (see Table 1). Furthermore, this method is unable to take
into account other properties natively and cannot easily be tuned to fit the needs
of chemists. Indeed, it is based on an augmenting procedure that decides how
to add a vertex. So this procedure should be changed and proven adequate to
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avoid generating non canonical graphs (i.e. redundant isomorphic graphs) each
time we want to change the structural property of the benzenoids we wish to
generate. It is therefore a relatively heavy task even for the addition of a basic
property.

(a) (b) (c) (d)

Fig. 3. The smallest benzenoid with hole (a) and coronenoids of size 2 (b), 3 (c) and
4 (d).

In the next section, we present a new method using constraint programming
which is able to generate any benzenoid structure and benefits from the flexibility
of constraint programming.

4 Generating Benzenoid Structures Thanks to CP

In this section, we see how to model a BGP instance as a CSP instance. We first
present a general model which considers the generation of all the benzenoids
having a given number of hexagons. This property is the minimal property to
ensure. Then we provide some examples showing how the model can be easily
specialized to take into account some additional structural properties.

4.1 General Model

In this part, we want to generate all the benzenoids having a given number n of
hexagons. Before modeling this problem as a CSP instance, we highlight some
useful properties. A coronenoid of size k is a molecule of benzene (i.e. a hexagon)
to which we successively add k − 1 crowns of hexagons. Benzene corresponds to
the coronenoid of size 1 (see Fig. 1(c)). Figures 3(b)–(d) present the coronenoids
of size 2, 3 and 4. Note that the diameter (i.e. the number of hexagons of the
central line) of a coronenoid of size k is 2 × k − 1. Our interest for coronenoids
lies in the fact that they are useful to “embed” benzenoids of a given number of
hexagons:

Property 1. Any benzenoid involving n hexagons can be embedded in a coro-
nenoid of size at most k(n) =

⌊
n+1
2 + 1

⌋
.



696 Y. Carissan et al.

So if we reason in terms of hexagon graph, obtaining all the benzenoids with n
hexagons is equivalent to find all the connected sub-graphs of the hexagon graph
of coronenoid of size k(n). The model we propose relies on this property.

So, given an integer n, we model the BGP problem where P is reduced to
“having n hexagons” as a CSP instance I = (X,D,C). First, we consider a graph
variable xG which represents the possible hexagon graph of the built benzenoid.
Its domain is the set of all the sub-graphs between the empty graph and the
hexagon graph of coronenoid of size k(n) (see Fig. 4(a)). We also exploit a set of
nc Boolean variables {x1, . . . , xnc

} where nc is the number of hexagons of coro-
nenoid of size k(n). The variable xi is set to 1 if the ith hexagon of coronenoid
of size k(n) is used in the hexagon graph depicted by xG, 0 otherwise. For sake
of simplicity, hexagons are numbered from top to bottom and from left to right
like in Fig. 2. Likewise, we consider a set of mc Boolean variables {y1, . . . , ymc

}
where mc is the number of edges of the hexagon graph of coronenoid of size
k(n). The variable yj is set to 1 if the jth edge of the hexagon graph of coro-
nenoid of size k(n) is used in the hexagon graph depicted by xG, 0 otherwise.
We must emphasize that the set of xi and yi variables and the channeling con-
straints maintaining the consistency between their values and the value of xG

are automatically generated by Choco Solver through the call of a predefined
method.

Finally, we model the following properties by constraints:

– Link between the graph variable xG and the variables xi. As mentioned above,
the variable xi specifies if the ith hexagon of coronenoid of size k(n) is used in
the graph represented by xG. So we must ensure that their respective values
are consistent each others. For this aim in view, we consider a channeling
constraint per variable xi which involves xi and xG and imposes that xi =
1 ⇐⇒ xG contains the vertex i.

– Link between the graph variable xG and the variables yj . Like previously, we
consider a channeling constraint per variable yj which involves yj and xG and
imposes that yj = 1 ⇐⇒ xG contains the edge j.

– xG is an induced sub-graph of the coronenoid hexagon graph. Any value of xG

is not necessarily a valid hexagon graph. For example, in Fig. 2(b), remov-
ing only edge {1, 2} does not produce a valid hexagon graph. To ensure
that the hexagon graph is valid, we must add a constraint for every triplet
(hj1 , hj2 , hj3) of hexagons which are pairwise adjacent in the coronenoid
hexagon graph. This constraint imposes that if two of these edges exists,
then the third one exists too. This can be achieved by posting a set of ternary
clauses of the form {¬yj1 ∨ ¬yj2 ∨ yj3 , yj1 ∨ ¬yj2 ∨ ¬yj3 ,¬yj1 ∨ yj2 ∨ ¬yj3} for
each possible triple of pairwise adjacent hexagons.

– Benzenoids have n hexagons. It can be easily done by using a sum global
constraint involving all the variables xi:

∑

i∈{1,...,nc}
xi = n.

– Benzenoids correspond to connected graphs. Variable graphs come with partic-
ular constraints. Among them, we consider the connected constraint which
applies on the variable xG ensures that only connected graphs are allowed
values for xG.
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– Six hexagons forming a cycle generate a hexagon. When six hexagons form
a cycle, the face contained in the interior of the cycle is not a hole but a
hexagon. For instance, if we consider the cycle forms by the hexagons 1, 2, 5,
7, 6 and 3 of coronene (see Fig. 2), we have necessarily a hexagon in the middle
of the crown, namely the hexagon 4. To ensure this property, we add a set
of constraints which specify that G cannot have a hole whose size is exactly
one hexagon. For each hexagon u, we consider the set N(u) of the neighbors
of u in the hexagon graph. Then, for each vertex u having 6 neighbors, we
add a constraint between xu and the variables corresponding to its neighbors
which imposes:

∑

v∈N(u)

xv = 6 ⇒ xu = 1.

This model allows us to enumerate all the benzenoids having n hexagons,
possibly with holes. However, some benzenoids may be generated multiple times
due to the existence of symmetries. So we add several additional constraints in
order to break as many symmetries as possible:

– Two constraints which specify that G must have at least one vertex respec-
tively on the top-border and the left-border in order to avoid the symmetries
by translation. So, we have to create a constraint which specifies that the
sum of the binary variables associated to the top border (resp. left border) is
strictly positive.

– A set of constraints which specify that G must be the only representative of its
class of symmetry by axis and rotation. There are up to twelve symmetric solu-
tions: six 60◦ rotation symmetries combined with a possible axis symmetry.
Symmetries are broken thanks to the compact lex-lead constraint described
in [11]. For each of the twelve symmetries, it requires nc new Boolean vari-
ables (each associated with a xi Boolean variable representing a hexagon)
and a total of 3nc ternary clauses.

This model can be easily implemented with the open-source Java library
Choco [15]. Indeed, Choco natively proposes graph variables and the more usual
graph-related constraints (notably connected constraint).

4.2 How to Specialize the Model

The first advantages of our approach is that it is able to generate all the ben-
zenoids, including those with holes unlike the method described in the previous
section. Moreover, using constraint programming makes it easier the addition
of most of structural properties wished by the chemists. Indeed, starting from
the general model, for each new desired property, we simply have to model it by
posting new constraints and eventually by adding new variables.

For example, let us consider that chemists are interested by benzenoids whose
structure is a path of hexagons. Such benzenoid structures can easily generated
by exploiting the general model I and adding the graph constraint path on
xG. Now, if chemists are more interested by catacondensed benzenoids, that is
benzenoids whose structure is a tree, we can just add the graph constraint tree
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Fig. 4. Upper bound of the domain of the graph variable (a), rectangle benzenoid (in
solid line) of dimension 3 × 2 embedded in coronenoid of size 2 (b) and its related
hexagon graph (c).

on xG to the general model I. Figure 5 shows nine (among twelve possible)
examples of 5-hexagon benzenoids obtained by just adding the tree constraint
of Choco on xG.

Of course, depending on the desired property the model may be more com-
plex. Especially, it may require to add new variables or the property cannot be
directly expressed by a single existing constraint. In next subsections, we give
such examples.

4.3 Generating Rectangle Benzenoids

In this part, we present how we can model the property “all the built benzenoids
have a rectangle shape”, in addition to the property “having n hexagons”, and
add it to the model we describe previously. For instance, Fig. 6(i) shows a rect-
angle benzenoid with the dimensions 3 × 3.

First, remember that the general model described in the previous part takes
in input the number n of hexagons, and embeds any generated benzenoid in a
coronenoid of size k(n). We can easily see that the largest rectangle benzenoid
which can be embedded in a coronenoid of size k(n) has a width wmax equal to
k(n) and a height hmax equal to 2 × k(n) − 1 (i.e. the diameter of coronenoid of
size k(n)). Figure 4 shows the rectangle benzenoid of dimensions 2×3 embedded
in coronenoid of size 2 (b) and its hexagon graph (c).

Then, starting from model I, we must add new variables to model the desired
property. Namely, we add two integer variables xw and xh whose domain is
respectively {1, ..., wmax} and {1, ..., hmax}. These variables represent respec-
tively the number of columns and lines of the built benzenoid. In addition, we
denote Li (resp. Ci) the set of variables xi which appear in the ith line (resp. ith
column) in the coronenoid of order k(n). We assume that lines (resp. columns)
are numbered from top to bottom (resp. from left to right). For example, if
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Catacondensed benzenoids with 5 hexagons.

we consider the hexagon graph of the rectangle benzenoid of dimensions 3 × 2
described in Fig. 4(b), we have the following sets:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1 = {x1, x2}
L2 = {x3, x4, x5}
L3 = {x6, x7}
C1 = {x1, x3, x6}
C2 = {x2, x4, x7}

Now we add several constraints to the general model in order to model the
following properties:

– The hexagons of each line are positioned contiguously. We want to avoid to
have a Boolean variable equal to 0 between two Boolean variables equal to
1. For the ith line, this can be modeled by imposing an arithmetic constraint
xi1 ≥ xi2 . . . ≥ xiwmax

if Li = {xi1 , xi2 , . . . , xiwmax
}. We can also use instead

a global constraint ordered applied on the variables of Li with operator ≥.
– The hexagons of each column are positioned contiguously. We proceed as for

the lines by considering Ci instead of Li.
– Lines have a consistent size. Each line must be empty or have a size equal

to the current width of the rectangle. The size of a line can be defined as
the number of hexagons it contains since we know that all the hexagons are
contiguous. For the ith line, we add a constraint linking xw to all the variables
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in Li and imposing
∑

xij
∈Li

xij = 0 ∨ ∑

xij
∈Li

xij = xw. As such a constraint is

added for each line, we are sure that all the lines have the same width.
– Columns have a consistent size. We proceed as for the lines by considering
Ci instead of Li and xh instead of xw.

Figure 6 shows the 9 rectangle benzenoids generated with the parameters
w = h = 3.

In this extended model, we can note that some variables are now useless.
Indeed, only the leftmost hexagons of coronenoid of order k(n) covered by the
rectangle of dimensions wmax ×hmax are required. The other hexagons will only
lead to produce symmetrical structures. So, we can refine our model by removing
useless variables. Likewise, we can filter the domain of xG in order that GUB is
the hexagon graph of the rectangle wmax ×hmax by posting the adequate unary
constraint.

(a) (b) (c) (d) (e)

)i()h()g()f(

Fig. 6. Rectangle benzenoids generated with w = h = 3.

This extension of our general model is given as a simple illustration of our
approach. Of course, we can easily generate benzenoids having a rectangle shape
with a bespoke algorithm. What is interesting in our approach is its flexibility.
For instance, if some chemists are interested by identifying the rectangular ben-
zenoids which has a given Clar number, we have only to model the property
“having a given Clar number” by adding some variables and/or constraints to
be able to find the wished benzenoids. The Clar number of a benzenoid is the
maximum number of non-adjacent hexagons (i.e. hexagons which have no bond
in common) which admit three double bonds [9]. Unfortunately, due to page
limit, we cannot detail the corresponding extended model.

4.4 Generating Coronoids

Chemists refer to benzenoids with at least one hole as coronoids (not to be
confused with coronenoids). These molecules are promising model structures of
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 7. All the ways of digging holes in the coronenoid of size 3. The last one (r) is
not a valid coronoid: the hole in the coronenoid is cyclic and has disconnected the
“coronoid” into two benzenoids. Hence, the constraint that xC must be connected.

graphene with well-defined holes [4,12,13]. Their enumeration and generation
gave rise to several studies (e.g., [6] which enumerates 2-hole coronoids and
generates the smallest 18 and 19-hexagon 3-hole coronoids). The methods for
generating them are quite inefficient or too specific. The first kind of approach
tries to build specific kinds of coronoids by considering cycles of hexagons and try
all possible ways to add hexagons around. The second kind of approach consists
of generating all the benzenoids with n hexagons and then detects the ones with
holes. Another possible approach consists in generating benzenoids without holes
(e.g. with the method of Brinkmann et al. [5]) and then digging holes in the
obtained benzenoids. However we can note that the two latter approaches can
quickly become too time-consuming with respect to an approach which would
directly generate coronoids. Indeed, if the number of hexagons is increased by
one, the number of benzenoids is multiplied by approximately 5 (as well as the
time to generate them [5]), whereas the time to generate the coronoids with
the direct approach we describe below appears to be only twice longer (see
Table 1). So, in this part, we present how we can model the property “all the
built benzenoids have a hole and are contained in a benzenoid with n hexagons”.
This allows to generate easily all kinds of coronoids with any number of holes.

Any coronoid can be seen as a benzenoid that has lost several contiguous
hexagons (which created holes). So, the vertices of the benzenoid can be split
into the vertices belonging to a coronoid and the vertices forming holes. To
model this problem, we consider our general model. First, we define two new
graph variables xC , which represents an underlying coronoid of xG, and xH the
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Table 1. Number of coronoids obtained by digging holes from all the benzenoids with
n hexagons.

n #coronoids Time (s) #benzenoids without holes

10 1 43 30,086

11 4 114 141,229

12 38 262 669,584

13 239 533 3,198,256

14 1,510 1,076 15,367,577

holes to dig in xG to form xC . xC and xH have the same domain as xG. So,
we can have all the possible coronoid xC by generating all the pairs (xG, xH).
There can be several values of xH for a value of xG, as illustrated in Fig. 7. Then
we consider two sets of nc Boolean variables {xC

1 , . . . , x
C
nc

} and {xH
1 , . . . , xH

nc
}

(with nc the number of hexagons of coronenoid of size k(n)). Like xi for xG, the
variable xC

i (resp. xH
i ) is set to 1 if the ith hexagon of coronenoid of size k(n)

is used in the graph depicted by xC (resp. xH), 0 otherwise. Likewise, we define
the set of mc Boolean variables {yH1 , . . . , yHmc

} (with mc the number of edges
in the hexagon graph of coronenoid of size k(n)). The variable yHj is set to 1 if
the jth edge of coronenoid of size k(n) is used in the graph depicted by xH , 0
otherwise.

Finally, we add the following constraints ensuring that variables xH and xC

have the right properties:

– xH is a sub-graph of xG. This is enforced thanks to the subgraph constraint
of Choco applied on variables xH and xG.

– Only fully surrounded vertices of xG can be vertices of xH . For all vertices of
xH if the degree of a vertex in xH is strictly positive then the degree of the
same vertex in xG is 6. Indeed, only the vertices/hexagons in xG surrounded
by six hexagons can belong to a hole. This constraint is enforced thanks to
clauses on the yi and yHi Boolean variables.

– A single hexagon does not form a hole. Each vertex/hexagon of xH must have
a degree strictly greater than 0. This constraint eliminates holes that would
be a sole hexagon and allows multiple holes. We simply use the minDegrees
graph constraint of Choco applied on xH .

– xH involves at least two hexagons. We post the constraint
∑

i∈{1,...,nc}
xH
i > 1.

– xC and xH form a partition of xG w.r.t. hexagons. For all vertices of xG, a
vertex is in xC iff this vertex is in xG and not in xH . This ensures that any
vertex of xG is either in xC or in xH . With this aim in view, we add a clause
xC
i ↔ (xi ∧ xH

i ) on xi, xC
i and xH

i for any i ∈ {1, . . . , nc}.
– xC is connected. If xC is not connected, we may obtain two benzenoids instead

of one (see Fig. 7(r) for instance). Again, this can be achieved by exploiting
the graph constraint connected applied on xC .
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For example, Fig. 8(a) shows how the coronoid of Fig. 9(a) can be embedded
in the coronenoid of size 3. Then, we depict in dashed line the value of xG, xC

and xH respectively in Figs. 8(b)–(d).

1 2 3

4 5 6 7

8 9 10 11 12

13 14 15 16

17 18 19

1 2 3

4
5 6

7

8
9 10 11

12

13
14 15

16

17 18 19

)b()a(

1 2 3

4
5 6

7

8
9 10 11

12

13
14 15

16

17 18 19

1 2 3

4
5 6

7

8
9 10 11

12

13
14 15

16

17 18 19

)d()c(

Fig. 8. The coronoid of Fig. 9(a) embedded in the coronenoid of size 3 (a), the corre-
sponding value of xG (b), xC (c) and xH (d).

Table 1 shows the results of the experiments we ran on a 3.4 GHz Intel Core
i7 iMac with a 12 Gb RAM. We implemented our CSP model in Java 8 with
Choco Solver 4.0.4 using the choco-graph 4.2.3 module. We did not specify any
search strategy or heuristic, so the default ones were used by the search engine.
We generated the coronoids by digging holes in different sizes of benzenoids.
Among all the benzenoids with n hexagons, we show the number of coronoids
we can produce by removing hexagons. For example, the only coronoid produced
from the 10-hexagon benzenoids is the 8-hexagon coronoid of Fig. 3(a). Figure 9
lists the four coronoids for n = 11. To show how rare coronoids are, Table 1
also provides the number of benzenoids without holes [5]. Of course, thanks
to the model we propose for coronoid generation, we do not consider all these
benzenoids. Indeed, they are not generated by Choco Solver because it filters
out benzenoids that cannot have holes through constraint propagation.

4.5 Generating Symmetric Benzenoids

Benzenoids are also classified by chemists by their classes of internal symmetries
(symmetries that let a benzenoid invariant by rotation and/or mirroring). We
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(a) (b) (c) (d)

Fig. 9. Coronoids for n = 11.

can generate such classes of benzenoids by adding the constraints for enforcing
internal symmetries. When searching for all the possible benzenoids embeddable
in a coronenoid of size 3, we obtain the 11,578 benzenoids (with at most 19
hexagons) in 36 min. Enforcing invariance by 60◦ rotation (to obtain the 4 cor-
responding benzenoids), by 120◦ rotation (16 benzenoids) and 180◦ rotation (70
benzenoids) takes less than one second for each task. This strengthens the idea
that constraint propagation in nowadays solvers is efficient enough to allow these
theoretical chemistry problems to be modeled and solved with CP without hav-
ing to define and use bespoke methods. Moreover, interestingly, note that this
extension of our general model may be combined with any extension described
above.

5 Conclusions and Perspectives

In this paper, we addressed the problem of generating benzenoid structures,
which is an interesting and important problem in theoretical chemistry. In this
context, we presented an approach using constraint programming able to gener-
ate benzenoids which satisfy a certain amount of properties. Its main advantage
w.r.t. existing methods in the literature lies in its flexibility. Indeed, from a
general model, we can express additional properties by simply adding variables
and/or constraints while existing bespoke methods rely on more rigid and com-
plex notions and cannot be adapted without requiring heavy tasks. Moreover,
our approach turns to be more general, making it possible to generate benzenoids
with holes for instance.

Chemists are interested in generating benzenoids with particular shapes (e.g.
rectangle or rhombus shapes [27]). We have already dealt with the rectangle
shapes in this paper. So a natural extension of this work relies in taking into
account other specific properties related to the needs of chemists. Another step
consists in studying the limit of our approach both in terms of properties we can
express and our ability to generate benzenoids of large size. Furthermore, this
paper shows how, once again, constraint programming can be useful to tackle
and solve problems related to theoretical chemistry [16,17,19,26,28]. In particu-
lar, many questions about benzenoids can be modeled as decision or optimization
problems under constraints (e.g. computing their aromaticity or finding the clos-
est structure to a Kekulé structure) and can correspond to difficult tasks (e.g.
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computing the Clar number is NP-hard [7]). It could be of interest for both
communities to study them.
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Abstract. Developing industrial robots which are safe, performant,
robust and reliable over time is challenging, because their embedded
distributed software system involves complex motions with force and
torque control and anti-collision surveillance processes. Generating test
trajectories which increase the chance to uncover potential failures or
downtime is thus crucial to verify the reliability and performance of the
robot before delivering it to its final users. Currently, these trajectories
are manually created by test engineers, something that renders the pro-
cess error-prone and time-consuming. In this paper, we present RobTest,
a Constraint Programming approach for generating automatically max-
imal test trajectories for serial industrial robots. RobTest sequentially
calls two constraint solvers: a solver over continuous domains to deter-
mine the reachability between configurations of the robot’s 3D-space,
and a solver over finite domains to generate maximal-load test trajecto-
ries among a set of input points and obstacles of the 3D-space. RobTest
is developed at ABB Robotics, a large robot manufacturing company,
together with test engineers, who are preparing it for integration within
the continuous testing process of the robots product-line. This paper
reports on initial experimental results with three distinct solvers, namely
Gecode, SICStus and Chuffed, where RobTest, has been shown to return
near-optimal solutions for trajectories encounting for more than 80 input
points and 60 obstacles in less than 5min.
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1 Context and Motivations

Industrial robotics is evolving very fast, with ever growing needs in terms
of safety, performance, robustness and reliability. Serial robots are now com-
plex cyber-physical systems which embed complex distributed multi-core soft-
ware systems involving intelligent motion control, anti-collision, advanced
force/torque control. This increased complexity makes these robots more frag-
ile and more error-prone that they were previously. Failures can originate from
many sources including system and software bugs, communication downtime,
CPU overload, robots wear, etc. Hopefully, advanced verification techniques are
more and more used to cope with errors and ensure a better quality of delivered
robots. Adopting these techniques is crucial but a challenge lies in the design
of test scenarios able to drive the robots into demanding corner case scenarios
which maximize the chance to uncover system or software faults. More precisely,
finding robot trajectories, i.e., successive positions, speeds, accelerations of the
end-effector, which exhibit the greatest deviations between the trajectory spec-
ified to the robot and the actual trajectory is crucial to detect faults of the
motion control system. One such deviation is illustrated in Fig. 1, where the
specified path corresponds to the path defined by the user.

Generating stress test trajectories which maximize the chance to uncover
these deviations resulting from design, configurations, system or software faults
has thus become one of the most time-consuming activities of test engineers.
Importantly, to the best of our knowledge, there is no complete analytic model
that can solve the problem with full accuracy. The number of equations required
to model the robot’s (inverse) kinematics along with its various control systems
is far too large to allow any global optimization tool to solve it analytically. Typ-
ically, a 4-DoF1 serial robot already requires to solve no less than 49 4th-degree
polynomial equations with 49 variables [14]. Hopefully, even though its seems
impossible to solve the problem with analytics, industrial robots are sometimes
modeled with a simulated digital twin [13]. This simulated model accurately
represents the actual robot with all its physical features, direct and inverse kine-
matics, and subsystems and is fast to run simulated scenarios. However, it has
also some discrepancies with the physical robot due to imperfect simulation of
CPUs. Using the digital twin to execute and evaluate test trajectories can relieve
test engineers from executing scenarios on real robots and has opened the door
to systematic test and model verification in Continuous Integration (CI). But, a
challenge which still remains, is the automatic generation of stress trajectories
for the digital twin in order to discover significant deviations between specified
and simulated paths on the digital twin.

Building on existing work where Constraint Programming (CP) has been
successfully adopted to generate automatically test cases for painting robots
[16], this paper presents a CP-based methodology, called RobTest, for generat-
ing test trajectories. These trajectories aim to maximize a load function designed
for finding deviations, in the 3D-workspace of the robot’s end-effector. Formally

1 Degree of Freedom: Typical industrial robots have 6-DoF.
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Fig. 1. Deviation between specified and simulated path.

speaking, given a set of 3D-space points and a number of fixed obstacles, the
test objective consists in finding trajectories reaching some of these points by 1)
avoiding all the fixed obstacles and 2) by maximizing the load function (described
in the next section). If found, these test trajectories can be converted into com-
puter programs for the robot and used as test scenarios in CI. RobTest exploits
two constraint solvers: a constraint satisfaction solver over continuous domains
to evaluate the reachability of each pair of points in the Cartesian 3D-space
with obstacles, and a constraint satisfaction solver over finite domains to gener-
ate test trajectories. In the current setting, we have used RealPaver [10] as the
continuous domains solver and MiniZinc [17] with three back-ends (gecode [22],
chuffed [3] and SICStus [2]) for solving constraints over finite domains. Our
model exploits several global constraints such as Inverse, Subcircuit and
Table to construct an effective approach, which results from the refinement of
several previous models.

The problem studied in this paper is close to [20] where the goal is to find the
Longest Simple Path (LSP) in an undirected weighted graph. Interestingly, [20]
proposes an exact constraint model using the Alldifferent global constraint
and exploits known lower bounds of the longest path. A complete study for
solving path exploration with constraint techniques is available in [1]. In [8],
the LSP problem is tackled with a dynamic programming approach while [4]
proposes to use heuristic search. Our problem generalizes LSP, because the label
of our edges depends not only on the node and the successor, but also on the
predecessor. As is well known, LSP is NP-hard, and so it follows that our problem
is NP-hard as well. In [5], we proposed an initial CP-based approach using a-
posteriori verification and a trivial search heuristic, but the model of [5] does not
scale up to real-case instances, i.e., instances with more than 20 input points.

In this paper, we propose a novel CP model with the three above-mentioned
global constraints and deploy that model on real-case instances. Unlike [1,5,20],
our approach RobTest, can handle workspaces containing more than 80 input
points and 60 obstacles and generate quasi-maximal trajectories in less than
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5 min.2 We also consider a realistic load function for the robotic arm moves,
which takes into account the incidence-angle at each point by using a multiple
load-values variable associated to each arc of the reachability graph. To the best
of our knowledge, there is no other model able to deal with so many nodes and
obstacles, having such a realistic load function.

Fig. 2. GUI of RobTest : users can select 3D-points, set obstacles, etc. and visualize
the generated test trajectories.

Finally, the RobTest methodology is available through a dedicated graphical
user interface, as shown in Fig. 2, which prepares the ground for its deployment
into the continuous integration process of ABB Robotics.

Organization of the paper. Section 2 discusses related work while Sect. 3 gives
the background of the approach, necessary to understand the rest of the paper.
Section 4 details our CP-based methodology which makes use of constraint solv-
ing over continuous domains and finite domains while Sect. 5 presents our exper-
imental evaluation. Finally, Sect. 6 concludes the paper.

2 Related Work

Robot motion planning is a rich domain which has been studied for decades [12].
Generating collision-free trajectories which minimize the time taken by robots to
perform its tasks (or reach specific configurations) is known as optimal planning
of robot trajectories [9]. For 4-DoF serial robot, exact models of the direct and
inverse kinematics have been studied with Interval Analysis [14] and constraint
satisfaction problems over continuous domains [18]. But unfortunately, 6-DoF
serial robots involve too complex equations to solve and thus need simulated
models and digital twins.

In most industrial settings, the problem of this paper is tackled without
any automated support. Thus, only trajectories which involve a few number of
2 The experimental benchmark is publicly available at www.github.com/Makouno44/

Robtest.

www.github.com/Makouno44/Robtest
www.github.com/Makouno44/Robtest
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points are generated (typically 10–20 points), while RobTest reaches more than
80 points. Trajectories generation for different robots has been considered in the
context of robot workspace discretization [11]. Such discretization involves the
division of the workspace into surface-equivalent boxes and constraint refutation
can discard boxes where no feasible solution is present. Then, exploring neigh-
bourhood boxes allows the method to find continuous trajectories. Interestingly,
by using Interval Analysis, the method produces trajectories with guaranteed
computation results over the reals [6,21]. In RobTest, we also considered poly-
nomial (in-)equations for the robot workspace, but we did not pay attention to
rounding errors as our target was only test trajectories generation. With the
discretization approach, we can also generate collision-free trajectories but gen-
erating load-optimal trajectories requires more in depth exploration.

Another method considers the joint space for finding trajectories [15,23],
but this method requires to solve the robot’s inverse kinematics equations. This
approach is important when finding singularities is needed [14] and providing
alternative trajectories to avoid them is required [7]. However, the computa-
tion time required by these methods is often prohibitive for their inclusion into
CI. Another method considers the preliminary evaluation of several trajecto-
ries and dynamic re-planning when an unwanted configuration is reached [19].
This method is interesting in trajectory planning but it cannot be used in test
generation as it reassigns tasks to the robot, during scheduling.

3 Background

This section introduces the formalization of the robot workspace. We also present
and justify the hypothesis on which the RobTest approach is based.

An industrial robot is a mechatronic system able to perform various tasks
according to a high-level program written in a dedicated language. A serial
robot (as opposed to a parallel robot) is composed of a base and an end-effector
in charge of grasping, glueing, welding, painting or moving objects. The base is
usually attached to the ground and connects a fixed number of joints, usually
4 or 6 that correspond to the DoF. A configuration of the robot is a position
in which all the DoF are fixed. Generating test trajectories for a serial robot
requires to set up points, moves at various maximum speed and possible posi-
tions of the end-effector. The configuration space Q of a serial robot is the set
of its n possible configurations in a 3D-workspace W, which is a subset of R3.
In W, the robot can move around a set of m obstacles O1 . . . Om, which are
materialized by 3D-rectangles.3 A(q) is the subset of W occupied by the robot
when it is in configuration q. The set of collision-free configurations is defined
as Qfree := Q \ {q ∈ Q : A(q) ∩ Ok = ∅,∀k ∈ 1..m}, while the subset accessible
by the robot’s end-effector is Wfree := {A(q) : q ∈ Qfree}.

3 Actually, typical obstacles are other robots, devices, service material, etc. Their
shape can easily be over-approximated by 3D-rectangles, without any loss of gener-
ality.
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Given the quadruple (Q, qs, qf , l), where Q is the configuration space, qs (resp.
qf ) is the initial (resp. final) configuration, l : Q × Q −→ R is a load function
for each possible transition. Our problem aims at finding a path p that connects
qs to qf such that no obstacle is collided by the end-effector and such that the
load of p is maximized. Note that moving from qs to qf is a continuous function
w.r.t. the time. Thanks to the availability of a digital twin which embeds the
full modeling of direct and inverse kinematics, we focus only on solving the
optimization problem over finite domains. The load function l is determined by
several factors, including the robot’s type of move (linear or circular), the robot’s
speed and acceleration, the distance between points to join, the CPU-load. This
load function is given by an external process which exploits the digital twin to
determine the switching load of each transition. Note that even though the load
function l is defined for each transition between two configurations, namely qi
and qj , it also often takes into account other transitions as detailed in the next
section. Formally speaking, the problem is as follows: Given (Q, qs, qf , l), find a
path p = q1, q2, . . . , qn where q1 = qs and qn = qf such that:

Maximize
∑

∀i∈1..n−1

l(qi, qi+1) (1)

A(qi) ∩ Ok = ∅, ∀i ∈ 1..n, k ∈ 1..m (2)

4 Constraint-Based Generation of Test Scenarios

This section describes the two main components of RobTest, namely CR, the
component which evaluates the reachability of the robot configurations, and TG,
the component which generates maximal trajectories.

4.1 Configurations Reachability with RealPaver (CR)

Computing the Reachability Graph. In RobTest, configuration reachability
is evaluated by using constraint refutation over continuous domains. From an ini-
tial set of points in the 3D-workspace of the robot and a number of 3D obstacles,
the goal is to create a multiple load-labeled oriented graph, called reachability
graph, where an arc exists between point p1 to p2 if the corresponding robot con-
figuration in p2 is reachable from the configuration in p1. The label on the arc
from p1 to p2 corresponds to a load variable, which takes a value which depends
on the predecessors of p1 (transitional load). There are more possible load values
on an arc from p1, than there are predecessors of p1 in the reachability graph.
This reflects the hardness of transitions in the working space, where moving a
robot arm is more stressful when the angle taken in a specific point is more
acute. So, depending on where the robot arm is, the load taken in a transition
will be different.

The robot workspace W is shown in Fig. 3. First, the external envelope of
W is defined as a semi-sphere, given by polynomial inequations. Second, there
is a large non-accessible area due to the robot itself, which is given by planes’
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Fig. 3. The robot workspace and its 2D-projection. (Color figure online)

parametric inequations (in red in Fig. 3). Third, each 3D-rectangle obstacle is
modelled with parametric inequations (in blue in Fig. 3). Note that W is over-
approximated here as a very precise model is not needed to generate test trajec-
tories.

Using this over-approximated model of the workspace, called O in the follow-
ing, we check the intersection between the segment pi−pj and each non-accessible
areas Ok. Using a solver over continuous domains, the reachability of each pair
of configurations is checked by showing the unsatisfiability of the constraints
corresponding to the obstacles and those of the segment. More precisely, Algo-
rithm 1 computes a reachability graph of a set of 3D-points and 3D-obstacles
given as inputs and a load relation, named LR. LR is a relation which captures
the results of the load function computation. In this algorithm, solve is a pred-
icate that determines, given two points and one obstacle, whether the obstacle
hinders movement between the two points. Note that, as current obstacles of
odd shapes are over-approximated by boxes, two points may be determined as
unreachable, while they are actually reachable in the real-world. Dealing with
this restriction is a foreseeable extension of the approach.

The Load Relation. To generate stress test trajectories, it is necessary to
consider a load relation which accounts for robot’s moves, distances and angles.
In our problem, the load relation defines a value for each valid combination of
triplets in the reachability graph (node, one of its successor, one of its predeces-
sor). Figure 4 shows an example of the computation of the load relation for the
transition pj − pl on two distinct paths i-j-l and k-j-l.

Let’s first express the values of α1 and α2 by using the Euclidian distance
between nodes i, j, noted di,j , and the Al-Kashi formulae in general triangles:

d2i,l = d2i,j +d2j,l−2 ·di,j ·dj,l ·cos(α1), d2k,l = d2k,j +d2j,l−2 ·dk,j ·dj,l ·cos(α2) (3)
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Algorithm 1: Computing the reachability graph and load relation
1 In: N : set of ordered points; O: set of obstacles; w: user-selected parameter

(Int)
2 Output: G = (N,E): reachability graph. LR: load relation.
3 n ← |N |, E ← {(pn, p1)}
4 foreach (pi, pj) ∈ (N × N) : i < j do
5 r ← true
6 foreach Ok ∈O do
7 if Solve(pi, pj , Ok) then
8 r ← false
9 break

10 if r then
11 E ← E ∪ {(pi, pj), (pj , pi)}
12 foreach (pj , pi, pk) ∈ N3: (pj , pi), (pi, pk) ∈ E do
13 LR ← LR ∪ {〈pj , pi, pk, loadw(pj , pi, pk)〉}
14 return (G,LR)

Fig. 4. Computation of the load relation for node pj

In our setting, the load relation LR is composed of a set of predicates loadw/3
that depend on a user-selected weighting scheme w, as follows.

On path i-j-l, loadw(pi, pj , pl) � dj,l + w · |cos(α1/2)| (4)

On path k-j-l, loadw(pk, pj , pl) � dj,l + w · |cos(α2/2)| (5)

In Fig. 4, the load of pj − pl is higher if the robot comes from k than if it
comes from i because α2 is more acute than α1 which means that the robot
would have to do a more stressful move. The load formula is designed to account
for these constraints.

Modeling the Workspace with RealPaver. We have selected the open-
source solver RealPaver [10] for implementing Solve. In our setting, we define
equations for W, the segment between i and j and all the obstacles in O. These
equations are given in Fig. 3. In this setting, RealPaver is called several times
for each pair of points: first, a call verifies that the segment is included into
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the semi-sphere which delimits W; second, a call ensures that the robot does
not cross a non-accessible area; and third, the solver is called for each obstacle
present in W. If RealPaver proves the absence of solutions (i.e., by showing
unsatifiability), then j can be reached from i, as there is no intersection between
the robot’s end-effector trajectory and any of the obstacles. If the solver returns a
box, using any kind of continuous domains filtering consistency (with a guarantee
of solution existence [10]), then there is an intersection between the segment and
at least one of the non-accessible areas. The time-complexity of CR component
of RobTest is in O(m · n2 + n3), where n is the number of points and m the
number of obstacles.

4.2 Test Trajectory Generation (TG)

This section presents the second component of RobTest, which is responsible for
the test trajectory generation by using constraint over finite domains. Using the
reachability graph and load relation computed by Algorithm1, the goal is to
find a path in the graph which maximizes the load function, called a maxpath
in the following. Our model seeks for only one such maxpath, which possibly
visits nodes multiple times. An input parameter defines a maximal number of
possible visits for each node. To handle multiple visits, we unfold the graph in
a pre-processing step which duplicates nodes that can be visited multiple times
and create additional arcs. This way, the problem is reduced to the search of a
maxpath where node can be visited only once. This unfolding process is a static
pre-process and it resorts on having an upper bound on the number of times
each node can be visited. This upper bound is given by the users of RobTest,
and using it prevents infinite cycles from occurring in the trajectories.

Variables
Given a reachability graph G = 〈N,E〉 where N and E are sets of labelled nodes
and arcs. We use a simple encoding of nodes as integers, N = {1, . . . , n}. We
create for each node i ∈ N :

– si ∈ N is the successor of i ∈ N . pi ∈ N is the predecessor of i ∈ N ;
– li is the load of switching from point i to its successor si taking into account

all predecessors pi.

Then, the objective function to be maximized over a path 1-2-..-n is:

MaxLoad = Maximize
∑

i∈N

li (6)

Constraints
On path 1-2-..-n, nodes 1 and n must necessarily be visited while all the other
nodes are potentially unknown in the maxpath. Also, the successor of the ending
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point is the source, and the successor and predecessor of an unvisited node is
the node itself.

sn = 1 ∧ p1 = n (7)

The successors and predecessors represent inverse functions. We express this
as the global constraint: [24]

inverse(s, p) (8)

i.e.,

si = j ↔ pj = i,∀i, j ∈ N (9)

The maxpath forms a circular path that includes a subset of N . We express
this as the global constraint: [24]

subcircuit(s) (10)

which in our context holds if N is partitioned into N1 and N2, and the successor
values si, i ∈ N1 form a closed circuit, and sj = j for j ∈ N2. It is worth
noticing that none of the three solvers we have used in our experiments has a
native subcircuit propagator.

As said above, the load function is obtained from the reachability graph.
This function takes into account a node, its successor, its predecessor and the
associated load. The purpose of the load relation is twofold: (i) it gives the
valid combinations of (node to visit, its successor, its predecessor); (ii) it acts as
a partial function that computes, for the given combination, the relevant load
term:

table(〈i, si, pi, li〉,LR),∀i ∈ N (11)

i.e.
〈i, si, pi, li〉 ∈ LR (12)

To solve the constraint model and find a maximal load trajectory, we used
a standard time-limited maximization search which works well enough for an
embedded solution in an industrial setting. It is worth noting that procedure
can be interrupted at any time while giving the current incumbent, i.e., a near-
optimal value.

4.3 Running Example

Figure 5 illustrates our approach on a small instance of 6 points (P1 to P6) and
two obstacles O1 and O2. The CR step computes the Reachability Graph and
the Load Relation using Algorithm1. For instance, Algorithm 1 detects that P4

and P5 cannot be connected due to obstacle O2 (i.e., a solution exists between
the segment P4, P5 and O2 and is returned by the solve predicate). No obstacle
exists between P2 and P5 (i.e., no solution exists between the segment P2, P5
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and any obstacle), then Algorithm 1 add an edge between P2 and P5 to the
reachability graph. The load relation is also computed at this step using robot’s
moves, distances and angles. For instance, to go from P2 to P3 the load can be,
respectively, 5, 8 or 15, if we are coming from, respectively, P5, P4 or P1.

The second step of RobTest consists of generating an optimal test trajectory
from P1 to P6 w.r.t. the reachability graph and the load relation. We assume in
this example that a point is visited at most once. Here, TG returns the trajectory
〈P1, P2, P3, P5, P6〉 as an optimal solution of a load of 50.

Fig. 5. Robtest acting on an instance of 6 points and 2 obstacles

5 Experimental Evaluation

We performed an in-depth evaluation of RobTest for generating collision-free test
trajectories. As the goal is to embed RobTest in an operational robot testing
context, we explored the three following research questions:

RQ1: Which search heuristic is best suited for RobTest to generate true load-
optimal trajectories?

RQ2: How efficient is RobTest under different CP solver?
RQ3: How efficient is RobTest in generating realistic trajectories in a reasonable

amount of time? This RQ is crucial to foster the deployment of RobTest
in a CI process;
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5.1 Experimental Evaluation Protocol

For the experiments, our GUI (Fig. 3) is used to set the points and obstacles
in the robot workspace. Using CR step of RobTest, we generated 14 instances
by considering a number of points/obstacles in the workspace corresponding to
the regular practice of test engineers (from 15 to 100 points and from 11 to
68 obstacles). The obstacles are positioned by the test engineers in a way that
the reachability graphs have (i) their starting and ending points in the same
connected component and (ii) a medium density ranging between 4% to 10%.
For example, Inst 20 18 8 denotes an instance with 20 points, 18 obstacles
and a density of 8%. A full description of each instance is publicly available at
www.github.com/Makouno44/Robtest. The implementation of RobTest is using
the continuous domains solver RealPaver [10] and MiniZinc [17] with three
different back-end CP solvers, namely (Gecode.6.1.1 [22], Chuffed.0.10.4 [3] and
SICStus.4.5.1 [2]). However, it is possible to use graph variables through CP
solvers like Choco-graph4 and OR-Tools.5

Each call to RealPaver is time-negligible as it reduces to checking if a solution
exists between a segment and a given obstacle (i.e., box) in a 3D-space. Knowing
that the time-complexity of CR is bounded by n3 calls to the RealPaver solver,
the CR step is able to generate reachability graphs over the 14 instances of the
benchmark in an acceptable amount of CPU time.

An overall timeout of five minutes (300 s) for each individual experiment is
considered by test engineers as an acceptable waiting time contract. We generate
the multiple load values for each arc by using the pairwise distance between
points plus a transitional load computed with the formula given in Sect. 4.1,
with a user-parameter w = 50.

All our experiments were performed on an Intel(R) Xeon(R) CPU E5-2640
v4 @ 2, 40 GHz with 256 GB RAM.

[RQ1]: Search Heuristics
Our CP model is expressed over successors and load variables. After some pre-
liminary tests and some obvious remarks, we observed that branching first on
load variables and try values in decreasing order is the best policy to follow.
However, which load variable to select first has a significant impact on RobTest
effectiveness. The purpose of our first experiment is to evaluate the performance
of RobTest for generating test trajectories by using classical variable-ordering
heuristics on load variables. We considered systematically the nine following
heuristics:

– input order: Leftmost variable is selected first, from an input sequence of
load variables;

– anti first fail: The variable with the largest domain is selected first;
– first fail: The variable with the smallest domain is selected first;
– largest: The variable with the largest value in its domain is selected first;
4 github.com/chocoteam/choco-graph.
5 developers.google.com/optimization.

www.github.com/Makouno44/Robtest
https://github.com/chocoteam/choco-graph
https://developers.google.com/optimization
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– smallest: The variable with the smallest value in its domain is selected first;
– occurrence: The variable with the largest number of attached constraints is

selected;
– most constrained: The variable with the smallest domain is selected first,

with the number of attached constraints as a break tie;
– dom w deg: The variable with the largest domain is selected first, with the

number of attached constraints weighted by how often they have caused fail-
ure as a break tie;

– max regret: The variable with largest difference between the two smallest
values in its domain is selected first;

For our first experiment, we made a comparison between the 3 solvers, using
the 9 heuristics, on the 14 instances (i.e., 378 runs). As the observations made
on the 378 runs were highly correlated, we selected Inst 55 35 6 to illustrate
the main findings. Fig. 6 reports a comparison between (solver, heuristic) con-
figurations with RobTest (on Inst 55 35 6) to return the first (Fig. 6.a) and the
best solution found within the time limit of 5 min (Fig. 6.b). We report (i) the
convergence rate %conv, which corresponds to the ratio between the first/best
solution and the optimal one (histograms in blue); and (ii) the CPU time in
seconds (curves in black).

Fig. 6. Comparing different variable-ordering heuristics for RobTest
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From Fig. 6, the main finding is that, whichever solver used, the most inter-
esting heuristic for RobTest is max regret. max regret is the right heuristic to
use to quickly get a good-enough solution as it provides a first solution of good
quality (exceeding 88%) in less than 10 ms for Chuffed and Gecode, and less
than 125 ms for SICStus. max regret is also the right heuristic when seeking for
optimality. For instance, using Chuffed we get the optimal solution in less than
5 s, which is 35 times faster than first fail and most constrained. The other
heuristics behave differently according to the used solver. For instance, with the
first fail heuristic, SICStus and Gecode return within the same amount of
time a first solution of, respectively, 20% and 90%. Then, SICStus is faster to
reach the optimal solution than Gecode.

[RQ2] Solver comparison
From Fig. 6, we observe that Chuffed clearly outperforms Gecode and SICStus
on Inst 55 35 6. Whatever be the heuristic, Chuffed returns a first solution
with %conv ranging in between 76% and 91% in [8 ms, 193 ms]. Chuffed always
reaches the optimal solution in [4 s, 173 s], whereas Gecode and SICStus are not
always able to reach the optimal solutions, e.g., when using the input order
heuristic. Similar conclusions were drawn from the analysis of the results on all
the other 13 instances.

[RQ3] Efficiency of RobTest
We performed a second experiment for an in-depth comparison between the three
back-end solvers and for analyzing the efficiency of RobTest . Table 1 reports on
results of RobTest with the three solvers and max regret heuristic, over the 14
instances. We report the %conv rate, the CPU time in seconds, (#s) number of
visited solutions, and the number of fails (#fails). Bear in mind that the sum
of #s and #fails provide an overview on the size of the explored search space.

– Small instances. The three solvers return the optimal solution in less than
one second. However, the explored search space to find an optimal solution is
smaller with Chuffed than with Gecode and SICStus.

– Middle-sized instances. Chuffed returns the optimal solutions of the three
instances in less than 23 s, Gecode in 28 s and SICStus in 76 s. Chuffed
remains the winner in terms of explored search tree.

– Large instances. For Inst 60 33 6 and Inst 70 43 5, Chuffed and Gecode
are able to return the optimal solutions within the allocated CPU time,
whereas SICStus returns solutions of, respectively, 97% and 98% before time-
out. For the three largest instances (80, 90 and 100 points), the three solvers
reaches the timeout of 300 s. On the instance with 80 points, the three solvers
return the optimal solution without proving optimality.6 On 90 points, Gecode
and SICStus return solutions of, respectively, 99% and 97%, where Chuffed
reaches the 100% without proof of optimality. On the largest instance of 100

6 The optimal solution is computed by releasing the timeout.
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Table 1. RobTest experimental results

Inst. Chuffed Gecode SICStus

%conv Time(s) #s #fails %conv Time(s) #s #fails %conv Time(s) #s #fails

small Inst 15 11 7 100% 0.00 2 3.100 100% 0.00 2 7.100 100% 0.07 1 3.101

Inst 20 18 8 100% 0.07 7 6.102 100% 0.04 7 7.102 100% 0.14 9 8.102

Inst 25 20 8 100% 0.01 4 2.101 100% 0.00 4 4.101 100% 0.08 5 2.102

Inst 30 21 10 100% 0.03 3 1.102 100% 0.05 3 7.102 100% 0.22 3 9.102

Inst 35 28 8 100% 0.04 1 1.102 100% 0.02 1 1.102 100% 0.11 7 1.102

Inst 40 31 8 100% 0.45 14 1.103 100% 0.32 13 3.103 100% 0.85 15 3.103

middle Inst 45 27 8 100% 3.48 4 9.103 100% 2.37 4 2.104 100% 5.43 27 2.104

Inst 50 32 7 100% 15.35 24 4.104 100% 11.01 24 1.105 100% 27.22 24 1.105

Inst 55 35 6 100% 4.61 11 1.104 100% 15.88 12 1.105 100% 44.45 22 1.105

large Inst 60 33 6 100% 246.00 54 3.105 100% 233.20 64 1.106 97% TO 51 7.105

Inst 70 43 5 100% 120.38 25 2.105 100% 185.05 25 1.106 98% TO 23 5.105

Inst 80 65 4 100% TO 10 6.105 100% TO 11 1.106 100% TO 11 4.105

Inst 90 64 5 100% TO 13 5.105 99% TO 10 1.106 97% TO 7 4.105

Inst 100 68 4 82% TO 23 5.105 79% TO 27 1.106 75% TO 18 4.105

TO: timeout of 300s

points, Chuffed is the winner with a solution of %conv = 82%. Note that for
the three largest instances, Chuffed returns a first solution of %conv > 80%
in less than 5 s. Gecode returns a first solution of %conv > 70% in less than
60 s and SICStus returns a solution of %conv > 20% in less than 150 s. This
is very good news as RobTest aims to quickly get a good-enough solution.

To sum up, our main finding is that RobTest is able to return good-enough
solutions within a time contract of 300 s, which makes it suitable for industrial
exploitation. The second remark is that RobTest using Chuffed outperforms
Gecode and SICStus. An explanation could come from the usage of a SAT-
solver within Chuffed, to generate lazy clauses. Explaining failures with efficient
nogood recording could be a decisive advantage in our problem, as compared to
a pure CP resolution.

6 Conclusion

This paper presents RobTest, a methodology and a tool for generating collision-
free load-optimal test trajectories for industrial robots. The methodology
exploits two CP solvers for this purpose: a CP-solver over continuous domains
for generating the reachability graph between the robot’s configurations and
a CP-solver over finite domains to find load-optimal paths in a multi-labeled
graph. Through an in-depth experimental evaluation, we bring answers to three
research questions which are crucial to convince test engineers of the maturity
of the approach and to prepare the operational deployment of RobTest . The
experimental evaluation shows that deploying RobTest, in a continuous integra-
tion process is possible as we get good-enough quality solutions for graphs with
more than 80 nodes in a short period of time (i.e., 5 min), typically used in those
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processes. The next step of this work is to deploy it at ABB Robotics and put
the RobTest tool into the hands of test engineers on a more regular basis.
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Abstract. Examination timetabling is a widely studied NP-hard prob-
lem. An additional challenge to the complexity of the problem are many
real-world requirements that can often prevent the relaxation of some
constraints. We report on a project focused on automating the examina-
tion timetabling process of University College Cork (UCC) to enhance
the examination schedules so that they are fairer to student, as well as
being less resource intensive to generate from an administrative point
of view. We work with a formulation developed in collaboration with
the institution and real data that it provided to us. We propose a two-
phase constraint programming approach to solving UCC’s examination
timetabling problem. The first phase considers the timing of examina-
tions while the second phase considers their allocation to rooms. Both
phases are modelled using bin-packing constraints and, in particular,
an interesting variant in which items can be split across multiple bins.
This variant is known as bin packing with fragmentable items. We inves-
tigate the tightly linked constraints and difficulties in decomposing the
centralised model. We provide empirical results using different search
strategies, and compare the quality of our solution with the existing
UCC schedule. Constraint programming allows us to easily modify the
model to express additional constraints or remove the pre-existing ones.
Our approach generates significantly better timetables for the university,
as measured using a variety of real-world quality metrics, than those pre-
pared by their timetabling experts, and in a reasonable timeframe.

1 Introduction

Scheduling is one of the best-known problems in optimisation. It is a broad
field that includes, for example, nurse scheduling in hospitals, task scheduling
in smart manufacturing, and timetabling in schools and universities [26,34,38].
Examination timetabling is a particularly hard variant that has been widely
studied [8]. Many approaches to the problem have been studied, such as graph-
based algorithms, local search or population-based algorithms, constraint-based
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 724–742, 2020.
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techniques, decomposition techniques, etc. [31]. For example, decomposition
approaches often involve first assigning exams to time-slots and then distribut-
ing these exams across a set of rooms, creating sub-problems based on some
groupings. Alternatively, local search approaches start with an initial schedule
which is then subsequently improved by making local changes using a heuristic
search and repair method [9,13,16,20,23,29]. We refer the reader to a number
of recent literature reviews [12,31].

A variety of exact methods have been reported. McCollum et al. provide an
easy-to-understand, integer programming model for the automated timetabling
problem [22]. Arboui et al. improve on this model, mainly by introducing some
pre-processing, clique and data-dependent dual-feasible function valid inequal-
ities, and improving the bounds of some existing constraints [3]. There exist
also some Constraint Programming (CP) approaches that construct an initial
solution to be improved by using heuristics [14,23].

Approaches that decompose timetabling by separately assigning exams to
time-slots and assigning the exams to rooms have existed for almost three
decades. For example, Lotfi and Cerveny tackle the assignment of exams to time-
slots using multiple phases [20]. They model the assignment of exams to rooms
as a minimum-weighted matching problem which they solve using a heuristic
approach. More recently, Mirrazavi et al. apply a similar two-staged approach
to course timetabling in a university department using large-scale integer goal
programming [27]. They first allocate lectures to rooms, then starting times to
lectures. Although the decomposition means that optimality is sacrificed, it is
still preferred by some institutions due to the effort spent by administrative staff
in manually creating timetables [33].

For examination timetabling, many approaches ignore the allocation of exams
to rooms. This is often due to institutions not allowing the splitting of exams
across multiple rooms, or not allowing multiple exams to be held in the same
venue at the same time [12,22,23]. Therefore, some models discard the allocation
of exams to rooms entirely [4,37]. If the splitting is allowed, the solution is often
obtained using meta-heuristic approaches. Unfortunately, in many real-life cases,
it is not possible to disregard the room allocation phase. In fact, in the UCC
case considered here, room allocation is one of the most interesting aspects of
the problem. Many real-life applications of the examination timetabling problem
using hybrid approaches can be found in the literature [18,28].

In this paper, we present a CP model for University College Cork’s (UCC)
examination timetabling process that respects all the requirements of the insti-
tution and produces solutions quickly. Although the solutions found by the pro-
posed CP model are not necessarily optimal, the model improves the current
schedule on all metrics the university wishes to apply by a considerable margin.
Exact models often cannot produce solutions to large-scale problems within rea-
sonable time-limits [18]. We tailored the exact model in [3,22] to UCC. However,
UCC has some requirements that are significantly different from the existing use-
cases. When the extra constraints such as the splitting of exams are added to the
model, a solution could not be obtained within reasonable time-frame. Therefore,
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we developed a decomposition-based model for the problem which we present in
this paper.

2 The UCC Examination Timetabling Problem

2.1 Problem Specification and Data

We summarise the main features of University College Cork (UCC) timetabling
problem.1 The problem comprises both hard and soft constraints. Throughout
the paper, we refer to the requests given by the institution as the requirements,
and the way we model them as constraints. Each hard requirement must be
satisfied in each solution. On the other hand, soft requirements may be violated,
but it is desirable to keep the violations to a minimum.

At the university there are 12,686 students sitting at least one exam. Of
these, 855 students have some special needs that require use of a shared room
(SHR), separate room (SPR), or lab (LAB). The SPR students must sit the
exams alone in an SPR tagged room, but SHR (or LAB) students can share an
SHR (or LAB) tagged room with other SHR (or LAB) students. We refer to
the set of non-special needs students sitting exams as the main group, and the
special needs students with their tags. We denote by S the set of all students.
There are in total 43,002 exam seats required during the whole examination
season. All examinations must be completed within a 10 day horizon. Each day
has one morning time-slot and two afternoon time-slots. Morning time-slots are
180 min long, whereas the afternoon time-slots are 90 min each. We denote by
P the set of all available time-slots. There are 717 exams, where 37 of them are
180 min, and 680 are 90 min long. We denote by E the set of all exams.

There are 9 main rooms available for the main groups with the following
capacities that define the number of students that can be accommodated in a
single sitting: 513, 513, 220, 171, 140, 130, 93, 91, and 56. One of the rooms with
capacity 513 is called the Rex room which is located on a separate campus. We
denote by R the set of all main rooms. Additionally, there are 31 SPR-tagged
auxiliary rooms, 1 SHR-tagged room with capacity 50, and 1 LAB-tagged room
with capacity 60. The sets of these auxiliary rooms are denoted by R

SPR,RSHR,
and R

LAB , respectively. We list below the set of hard and the soft requirements
denoted with the prefixes ‘H’ and ‘S’, respectively.

H1 Each exam must be scheduled in exactly one time-slot where the duration
of the exam is less than or equal to the duration of the time-slot.

H2 Each student must sit at most one exam at any time-slot.
H3 Each student sitting an exam must be allocated a seat.
H4 An exam can be split across multiple rooms with the exception that the

main groups sitting an exam in Rex cannot be split.
H5 More than one exam can be held in the same main room during the same

time-slot as long as all exams have the same duration and the total capacity
is not exceeded.

1 UCC dataset can be found in: http://github.com/begumgenc/ucc-et.

http://github.com/begumgenc/ucc-et
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H6 An examination can have multiple module codes. These exams are identified
by their group-ids. If two exams have the same group-id, they must be co-
scheduled.

H7 Specific requests such as an exam to be held before or during a specific
time-slot, or in a specific room, must be satisfied.

H8 Requests for an exam to be scheduled after another one must be satisfied.
H9 Special needs students must be assigned to rooms that are tagged with the

corresponding tags. They cannot be seated in the same rooms as the main
groups.

H10 Students must not sit more than 270 min of exams in total over any two
consecutive days.

H11 If a student is scheduled for multiple exams on the same day, either all of
those exams must be held in Rex or none of them.

H12 A number of seats in each main room must be left empty for accommodating
ad-hoc students, i.e. students with unforeseen situations.

S1 Exams should be grouped within the same room as much as possible.
S2 Each student should sit at most one exam every two consecutive days.
S3 If Requirement S2 is not fully satisfied, then students should sit at most one

exam a day.
S4 If Requirement S3 is not fully satisfied, then there should be at least one

time-slot between each exam of each student.
S5 The use of some time-slots are more preferred to some other ones.
S6 It is desirable to schedule large exams as early as possible.
S7 It is desirable to minimise exam splits (i.e. the exam being held in more than

one room) for main, SHR, and LAB groups.
S8 It is more preferred to use larger main rooms than smaller ones.

2.2 Notation and Terminology

In this section, we introduce the general notation to be followed in our model. A
pair of exams, ei, ej , are said to be conflicting if there is at least one student who
is enrolled for both ei and ej . To capture the constraints related to conflicting
exams, we make use of a conflict graph [22]. In the conflict graph, each vertex
represents a unique exam. There exists an edge between two vertices if the exams
corresponding to those vertices are conflicting. The weight of each edge a =
(ei, ej), denotes the total number of students sitting both ei and ej . A clique in
this graph, represents a set of exams, where all those exams are conflicting with
each other, and they must all, therefore, be scheduled in different time-slots.
We can find all maximal cliques in the conflict graph using the Bron-Kerbosch
algorithm [6]. We describe below the main notation:

– The list E = 〈e0, ..., e|E|−1〉 is an ordered list representation of exams in set
E.

– The list P = 〈p0, ..., p|P|−1〉 is an ordered list representation of time-slots in
set P.



728 B. Genc and B. O’Sullivan

– The list R = 〈r0, ..., r|R|−1〉 is an ordered list representation of main rooms
in set R. We also denote by RSPR, RSHR, RLAB the ordered lists of special
needs rooms over the sets R

SPR, RSHR, RLAB , similarly.
– The list S = 〈s0, ..., s|S|−1〉 is an ordered list of students in set S. For each

student s, Es denotes the set of exams that student s is enrolled, where
Es ⊂ E.

– List D denotes the available days, in our case D = 〈0, .., |P|/3〉. Each d in
D spans exactly three time-slots pi, pj , pk ∈ P such that �pi/3� = �pj/3� =
�pk/3� = d.

– Set G corresponds to a set of group-ids. For each g ∈ G, g denotes a group-id
for a set of exams to be co-scheduled.

– Graph G = (V, E) denotes the conflict graph, and CG denotes the set of all
maximal cliques in G that contain more than one vertex.

– For each edge represented as a = [ei, ej ] ∈ E , a denotes an edge having its
source and target vertices corresponding to exams ei, ej ∈ V. The weight of
each a is denoted by w(a), and corresponds to the number of students sitting
both ei and ej .

– For each e in E, sizeE
e denotes the total number of students sitting exam

e. Additionally, sizeN
e , sizeSPR

e , sizeSHR
e , sizeLAB

e denote the number of stu-
dents sitting e with the main group, or has SPR, SHR, and LAB tags, respec-
tively.

– For each room r, capR
r denotes the number of seats available in r. For each

p in P , capP
p , capSPR

p , capSHR
p , capLAB

p correspond to the total number of
available seats for main, SPR, SHR, LAB groups during p, respectively.

– For each period p in P, durP
p denotes the duration of time-slot p. Similarly,

durE
e denotes the duration of an exam e in E.

Throughout the paper, we sometimes denote the elements by using indices
when dealing with multiple items from the same set, e.g. p ∈ P or pi, pj ∈ P .
In these cases, let I(X) be a set that denotes the index set of a given set X.
Then, for any element xi in a set X, i ∈ I(X). The list of exams E is ordered in
descending order of the number of non-special needs students sitting each exam.
Additionally, the time-slot list P is ordered in ascending order of the timings of
the corresponding time-slots, i.e. for any i, j ∈ I(P ) with i < j :→ pi < pj , pi

is an earlier time-slot than pj . Finally, the list of rooms (i.e. R) is presented in
descending order of the capacity of each room.

3 The Constraint Programming Models

In this section we present in detail our two CP models, one for each phase of the
problem. Initially, as a pre-processing step, we create a conflict graph to keep
track of conflicting exams efficiently. Subsequently, we use our Phase 1 model
that is based on bin-packing global constraint for determining the timing of
examinations. Finally, in Phase 2, we use the solution generated by Phase 1 to
assign the examinations to rooms within the given time-slot. We model Phase 2
using a variant of the bin-packing constraint.
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3.1 Phase 1: Allocation of Exams into Timeslots

We find timings for each exam using bin-packing global constraints [36]. The
exams correspond to items, and the time-slots correspond to bins. The capacity
of each bin is the total number of available seats during the corresponding time-
slot. In our case, all the bins have equal capacities. The bin-packing problem is
well-known to be NP-hard [15]. We list below the main variables of our Phase 1
CP model.

– For each e in E, an integer variable EP [e] denotes the time-slot in which e
is scheduled, where EP [e] ∈ P . The search branches on this variable.

– For each e in E, an integer variable ED[e] denotes the day in which e is
scheduled, where ED[e] ∈ D.

– For each p in P , integer variables L[p], LSP R [p], LSHR [p], LLAB [p] denote
the total number of students in main, SPR, SHR, and LAB groups, sit-
ting an exam at p, resp. Note that, L[p] ∈ {0, ...,

∑
r∈R

capR
r }, LSHR[p] ∈

{0, ...,
∑

r∈RSHR capR
r }}, LLAB [p] ∈ {0, ...,

∑
r∈RLAB capR

r }}, and LSPR[p] ∈
{0, ..., |RSPR|}.

– For each exam e ∈ E, a boolean variable pl[e] denotes if e is large, and
scheduled late or not, where pσ denotes the time-slot after which the exams
are considered late.

– For each edge a ∈ E , integer variables VS2[a],VS3[a],VS4[a] denote for each
soft requirement Requirements S2, S3 and S4, the number of occurrences a
student is negatively affected due to the violation of the respective require-
ment by the exam pair a. Note that, VS2[a], VS3[a], VS4[a] ∈ {0, w(a)}.

– For each p ∈ P , an integer variable VS5[p] denotes the penalty incurred due
to the violation of Requirement S5, where αp represents a constant penalty
for using p. Note that, VS5[p] ∈ {0, ..., capP

p × αp}.
– Sub-objective values obj2,obj3,obj4,obj5,obj6 denote the total penalty

caused by the violation of Requirements S2, S3, S4, S5, and S6, respectively.
The overall objective obj is a weighted sum of the sub-objective values.

Timeslot Capacities. Constraint 1 uses a global bin-packing constraint in the
form bin packing (items, item weights, bin loads, bin capacities) [36]. It
ensures that each exam is assigned to a time-slot, and each time-slot has enough
seats to accommodate the students sitting the assigned exams considering their
corresponding tags. (see Requirements H1, H3 and H5). Subsequently, Con-
straint 2 ensures that each exam respects the duration of the time-slot it is
assigned to (see Requirement H1) [32].

bin packing(EP, sizeN , L, capP ),
bin packing(EP, sizeSPR, LSPR, capSPR),
bin packing(EP, sizeSHR, LSHR, capSHR),
bin packing(EP, sizeLAB , LLAB , capLAB).

(1)

∀e ∈ E,∀p ∈ P : if durP
p < durE

e , then EP [e] 
= p. (2)
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One Exam at a Time. Let CG denote the set of all maximal cliques on the
conflict graph G. For each clique c, EPc ⊂ EP denotes a subset of decision
variables that correspond to the ones for the exams in c, such that ∀c ∈ CG ,∀e ∈
c : EP [e] ∈ EPc. Constraint 3 ensures conflicting exams are scheduled into a
different time-slot (see Req. H2).

∀c ∈ CG : all different(EPc). (3)

Specific Exam Times. Constraint 4 ensures that the exams with same group
id are co-scheduled (see Requirement H6) [17]. We denote by EPg a subset of
the decision variables that have the same group-id g. More formally, the set of
exams to be co-scheduled denoted by EPg, is defined as ∀g ∈ G,∀e with group-id
g : EP [e] ∈ EPg.

∀g ∈ G : all equal(EPg). (4)

Specific Requests. Req. H7 and H8 can be easily modelled over the decision
variables of the relevant exams using equality and inequality constraints. For
instance, for Req. H8, let Hp denote a set of exam pairs that indicate priority as:
〈ei, ej〉 ∈ Hp, where ei must be scheduled before ej . We model them as follows:
∀〈ei, ej〉 ∈ Hp : EP [ei] < EP [ej ].

Time-Slot Spread. There are four requirements related to time-slot spread (see
Requirements S2, S3, S4, and H10). Recall that, there are exactly three time-
slots in each day. Hence, Constraint 5 expresses the day on which an exam is
scheduled. Consequently, we make use of some logical constraints to calculate
the penalties incurred by the violation of Requirement S2 by Constraint 6, of
Requirement S3 by Constraint 7, and of Requirement S4 by Constraint 8. Note
that, UCC does not hold exams at the weekend. Thus, when calculating the
violation of Requirement S4 by Constraint 8, we ignore the cases where two
time-slots are separated by the weekend.

∀e ∈ E : ED[e] = �EP [e]/3�. (5)
∀a = [ei, ej ] ∈ E : if |ED[ei] − ED[ej ]| < 2, then VS2[a] = w(a), else VS2[a] = 0.

(6)

∀a = [ei, ej ] ∈ E : if ED[ei] == ED[ej ], then VS3[a] = w(a), else VS3[a] = 0.
(7)

∀a = [ei, ej ] ∈ E : if |EP [ei] − EP [ej ]| < 2 ∧ ¬weekend(EP [ei], EP [ej ]),
then VS4[a] = w(a), else VS4[a] = 0. (8)

Constraint 9 ensures that Requirement H10 is satisfied. In order to avoid
repeating, we first analyse the sets of exams Es for each student s as a pre-
processing step. If there are any repeated sets, or if a set is already included in a
larger set, we eliminate the repetition, or the subset. We denote by AE the refined
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set of the Es that does not include any repeated sequences. For Constraint 9,
let each set of exams in AE be denoted by l, where for some student s, l = Es.
Note that, UCC only has exams of duration 90 or 180 min. For each l, for any
consecutive two-day block bi = 〈di, di+1〉, let lenl

bi
[e] be an integer variable with

domain {0, 90, 180} that denotes the duration of exam e for all e ∈ l. The value
of lenl

bi
[e] = 0 if the exam e is not scheduled for the days di or di+1 in the given

block bi. Otherwise, lenl
bi

[e] = durE
e .

∀bi = {di, di+1} with 0 ≤ i < |D| − 1,∀l ∈ AE :
∀e ∈ l : if ED[e] ∈ bi, then lenl

bi
[e] = durE

e , else lenl
bi

[e] = 0,∑
e∈l len

l
bi

[e] ≤ 270.
(9)

Time-Slot Preference. Some time-slots are more preferred than others, as dis-
cussed in Requirement S5. Therefore, each time-slot p has an associated penalty
coefficient αp. We calculate the penalty caused by scheduling exams into less
preferred time-slots p as the total number of students sitting an exam during p
multiplied by αp, as shown in Constraint 10.

obj5 =
∑

p∈P

(L[p] + LSPR[p] + LSHR[p] + LLAB [p]) × αp (10)

Let Fs denote a value representing the size of an exam provided by the
institution that determines if an exam is considered large or not; exams with
sizes larger than or equal to Fs are said to be large. Similarly, let pσ denote
the time-slot after which exams are considered as being scheduled late. For each
exam e, pl[e] denotes if a penalty is incurred by scheduling of exam e. We capture
Requirement S6 using Constraint 11. The value of obj6 represents the overall
penalty incurred by the violation of this requirement.

∀e ∈ E with sizeE
e ≥ Fs : if EP [e] − pσ > 0, then pl[e] = 1, else pl[e] = 0.

obj6 =
∑

e∈ E with sizeE
e ≥Fs

pl[e].

(11)

Objective Function. The objective is to minimise the number of students that are
affected by the soft constraint violations. The overall objective function is defined
as a weighted sum of all the aggregated penalties obj2, obj3, obj4, obj5, obj6 multi-
plied by their respective coefficients cp2, cp3, cp4, cp5, cp6. Constraint 12 expresses
the objective of Phase 1 model.

obj2 =
∑

a∈E
VS2[a], obj3 =

∑

a∈E
VS3[a], obj4 =

∑

a∈E
VS4[a].

minimise obj = cp2 × obj2 + cp3 × obj3 + cp4 × obj4 + cp5 × obj5 + cp6 × obj6.
(12)
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3.2 Phase 2: Room Allocation

In Phase 2, the aim is to find a room for each exam by respecting the room-
related requirements. We further decompose the model at this stage by days and
find a room for each exam for each day. The problem we encounter at this stage
is a version of the bin-packing problem, where the items can be fragmented (or
split). In the literature, this problem is known as Bin Packing with Fragmentable
Items (BPFI) and is NP-hard [21]. The objective in the BPFI problem is to either
minimise the number of fragments or to minimise the number of bins required.
In our case, we have both of these as objectives (see Requirements S1 and S7).
The literature contains some approximation algorithms as well as MIP mod-
els for the problem [10,11,19]. Additionally, UCC has a hard requirement that
mixed-duration exams cannot be timetabled in the same venue (see Require-
ment H5). This constraint makes the problem even more constrained, as not all
the items can be placed in all bins. This version of the problem has previously
been identified as Fragmentable Group and Item Bin Packing with Compatibil-
ity Preferences [2]. Although these bin-packing variants have been identified and
tackled before, there are no global constraints available that express them.

– For each exam e in E, constant EPe ∈ P denotes the time-slot in which exam
e is held, and constant EDe ∈ D denotes the day in which e is held. These
are provided as input to the model by the Phase 1 solution.

– An integer value Rex in R denotes the unique identifier of Rex room.
– For each p in P in any room r, depending on the special needs tag of

the room, one of the following integer variables: RL[p][r], RLSP R [p][r],
RLSHR [p][r], or RLLAB [p][r] is defined to denote the total number of stu-
dents with the given tag sitting an exam in room r during time-slot p. Note
that, the domain of these variables is {0, ..., capR

r }.
– For each p ∈ P and for each room r for main groups in R, set variable D[p][r]

denotes the different duration types of exams to be held in r during p. Note
that, D[p][r] ∈ P({90, 180}).

– For each room r and e ∈ E, one of the following integer variables is defined
depending on the tag of the room: W [r][e],WSP R [r][e],WSHR [r][e], or
WLAB [r][e] to denote the total number of students with the given tag sit-
ting e in r. The domains are defined as W [r][e] ∈ {0, ..., min(capR

r , sizeN
e )},

WSHR[r][e] ∈ {0, ..., min(capR
r , sizeSHR

e )}, WSPR[r][e] ∈ {0, 1}, and
WLAB [r][e] ∈ {0, ..., min(capR

r , sizeLAB
e )}. Search branches on these vari-

ables.
– For each e ∈ E, set variables RS[e], RSSHR [e], and RSLAB [e] denote

the set of rooms used for examinations of the main, SHR, and LAB groups
for exam e, where RS[e] ∈ P(R), RSSHR[e] ∈ P(RSHR), and RSLAB[e] ∈
P(RLAB).

– Sub-objectives obj1,obj2,obj3 are used to denote the total number of exam
splits for main, SHR, and LAB groups, respectively. Additionally, the sub-
objective obj4 denotes the total number of main rooms used during the
examination process. The overall objective obj is a weighted-sum of the sub-
objectives.
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We model bin packing with fragmentable items using a straight-forward
approach under the name bin packing fi(X, IW , L, C) using Constraint 13 and
Constraint 14. Variable X corresponds to the weight of each item in each avail-
able bin given item set I and bin set B. Additionally, IW denotes the weight of
each item, L denotes the load of each bin, and C denotes the capacity of each
bin. Constraint 13 ensures the weight of each item in each bin respects the capac-
ity of the bin. Additionally, Constraint 14 ensures all the weight of each item is
packed. Note that, bin packing fi can be improved by using better models or
heuristic approaches [7,11].

∀b ∈ B :
∑

i∈I

X[b][i] = L[b] and L[b] ≤ C[b]. (13)

∀i ∈ I :
∑

b∈B

X[b][i] = IW [i]. (14)

Recall that we decompose this phase further by separately assigning exams
in each day to rooms. Thus, the remaining constraints in this section are run
independently for each day using the set of exams given on that day. We denote
by d, the day for which the problem is being solved and by p ∈ d the three
time-slots that belong to d.

Constraint 15 ensures each student in each exam is assigned a room by
respecting Requirements H3, H5, and H9. For each period, let Wp be a list
of decision variables that correspond to a list of W [r][e] variables for exams
e with EPe = p in rooms r ∈ R. Similarly, let WSPR

p , WSHR
p , and WLAB

p

denote decision variables WSPR[r][e],WSHR[r][e], and WLAB [r][e], for each
exam e with EPe = p in room r with the respective tag. We denote by
CN , CSPR, CSHR, CLAB the list of capacities of rooms with the respective tag,
where N corresponds to the main group. Constraint 15 is repeated for each time-
slot p in the given day d.

∀p ∈ d : bin packing fi(Wp, sizeN , RL,CN ).
∀p ∈ d : bin packing fi(WSPR

p , sizeSPR, RLSPR, CSPR).
∀p ∈ d : bin packing fi(WSHR

p , sizeSHR, RLSHR, CSHR).
∀p ∈ d : bin packing fi(WLAB

p , sizeLAB , RLLAB , CLAB).

(15)

No Mixed Durations. We implement item-bin compatibility using Constraint 16.
If multiple exams are held in the same room during the same time-slot, their
duration must be the same (see Requirement H5). In order to achieve this,
Constraint 16 uses D[p][r] that keeps track of the different durations of exams
being held in room r at time-slot p.

∀p ∈ d,∀r ∈ R,∀e ∈ E with EPe = p : r ∈ RS[e] → durE
e ∈ D[p][r].

∀p ∈ d,∀r ∈ R,∀e ∈ E with EPe = p : |D[p][r]| ≤ 1.
(16)
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Room Loads and Different Campus Rex. In order to implement the remote cam-
pus requirements, i.e. Rex, and to find the number of rooms in use, we keep track
of the set of rooms RS[e] in which each exam e is held. If there are a number of
students at exam e in room r, then r must be included in the set of rooms of e
as detailed in Constraint 17.

∀e ∈ E,∀r ∈ R with EDe = d : W [r][e] > 0 ↔ r ∈ RS[e].
∀e ∈ E,∀r ∈ RSHR with EDe = d : WSHR[r][e] > 0 ↔ r ∈ RSSHR[e].
∀e ∈ E,∀r ∈ RLAB with EDe = d : WLAB [r][e] > 0 ↔ r ∈ RSLAB[e].

(17)

Shachnai et al. describe a primitive solution to a BPFI as a feasible packing
such that each bin contains at most two fragmented items, and each item is
fragmented at most once [35]. They also show that there always exists an optimal
solution for BPFI, that is primitive. Constraint 18 ensures each exam is split at
most once.

∀e ∈ E : RS[e] ≤ 2 and RSSHR[e] ≤ 2 and RSLAB[e] ≤ 2. (18)

Constraint 19 ensures for any two conflicting exams that are to be held on the
same day, either both are held in Rex or none of them (see Requirement H11).
Additionally, Constraint 20 implements the second Rex constraint, that states if
an exam is held in Rex, then it is not split across other rooms (see Requirement
H4).

∀a = [ei, ej ] ∈ E with EDei
= EDej

= d : Rex ∈ RS[ei] ↔ Rex ∈ RS[ej ] (19)
∀e ∈ E : Rex ∈ RS[e] → |RS[e]| = 1 (20)

Objective Function. The sub-objectives in this model are to minimise the exam
splits for main, SHR, and LAB groups (obj1, obj2, obj3, resp.), and to also min-
imise the total number of main rooms in use (obj4). Constraint 21 formulates
these objectives. The objective function uses coefficients cr1, cr2, cr3, and cr4 as
the weight of each sub-objective.

obj1 =
∑

e∈E with EPe=p

|RS[e]|, obj2 =
∑

e∈E with EPe=p

|RSSHR[e]|,

obj3 =
∑

e∈E with EPe=p

|RSLAB[e]|, obj4 =
∑

p∈d

|
⋃

e∈E with EPe=p

RS[e]|.

minimise obj = cr1 × obj1 + cr2 × obj2 + cr3 × obj3 + cr4 × obj4.

(21)

3.3 Discussion of the Decomposition Approach

One of the main drawbacks of decomposed models is that obtaining the optimal
solution or any solution, in general, is not always guaranteed. The main challenge
for our CP model is that a solution produced by the Phase 1 model may lead to
infeasibility in Phase 2. We illustrate a scenario below to exemplify this for the
reader.
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An Infeasibility Scenario. Suppose that there are four exams e1, e2, e3, and e4 to
be held during the same time-slot, where each exam has three students enrolled
with no special needs. There are only three rooms r1, r2, and r3 with equal
capacities c1 = c2 = c3 = 4. Let exam e4 be 180-min long and the rest be 90-
min. Also let room r1 denote the Rex room. Although this solution is a feasible
solution for Phase 1, it is infeasible for the Phase 2 model. An illustration of two
alternative exam-room allocation scenarios is given in Fig. 1.

Fig. 1. Two different infeasibility scenarios where the allocation of the exams in the
rooms causes the violation of Requirements H4 and H5.

Both of these cases results in infeasibility for the Phase 2 model due to
the violation of Requirement H4 and H5, where an exam to be held in Rex is
split, and also there are mixed-duration exams in at least one room. A similar,
alternative infeasibility scenario occurs when all the exams are 90-min long, but
the time-slot load is filled to the capacity. In this case, one of the exams must
be split to Rex, violating Requirement H4.

There are different strategies to tackle this problem. One approach is to
develop a Benders decomposition of the problem. However, this approach is
challenging as Phase 2 is a hard problem in itself, but imposes an interesting
research direction. An alternative approach is to relax some of the hard con-
straints in the Phase 2 model. As discussed above, when the load of a time-slot
is large, it becomes more difficult to find a solution for Phase 2 due to the hard
“no mixed duration” requirement (see Requirement H5) and Rex requirements
(see Requirements H4 and H11). Hence, if the Phase 1 solution has a large load
for some time-slots, then the “no mixed duration” constraint (see Constraint 16)
and/or Rex constraints (see Constraints 19 and 20) may be relaxed and their
penalties can be calculated and added to the objective for minimisation.

Alternatively, we can keep the load of each period at an ‘acceptable level’,
where this level is defined with respect to the dataset in use. If the time-slot
loads are kept as small as possible, then some rooms can be left unused. A basic
solution that emanates from this observation is to keep the load of each time-
slot to a value that avoids the use of Rex room, and also accommodate some
empty-seats to help with the “no mixed duration” requirement. Hence, we add
a sub-objective to minimise the maximum excess load for time-slots, where the
excess load is calculated over the main groups as the difference between the load
and the mean value of seats required for each period. It can then be possible
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to find schedules without relaxing any of the hard constraints. Note that, by
minimising the maximum excess load, the model can leave some rooms empty.
Therefore, this sub-objective also helps with minimising the total number of used
rooms in Phase 2. Recall that in Phase 1, for each time-slot p, L[p] denotes the
load of p. Minimising the excess load can be achieved by adding Constraint 22
to the Phase 1 model, and also adding sub-objective obj1 to obj by using a
coefficient cp1.

mean =
∑

r∈R

capR
r /|P |, and obj1 = max(L) − mean. (22)

4 Empirical Results

We used the Choco 4.10.2 constraint solver to perform our experiments [30]. We
used a library of graph theory data structures and algorithms called JGraphT
for the creation of conflict graph, and for finding all maximal cliques [24]. All
experiments were performed on a Dell i7-8700 machine with 3.20 GHz processors
under Linux.

The model we developed was given 60-min in total to produce a solution,
spending 45 min on the assignment of examinations to time-slots, and the
remaining 15 min on the examination-room assignment where each day is limited
to produce a solution in 1.5 min. Note that, none of the solutions we report in
this section was proven to be optimal by the solver. Therefore, it may be possible
to obtain better solutions, i.e. solutions with lower objective values, if more time
is allowed for the models or some filtering, symmetry breaking, and redundant
constraints, are added to the model.

We tested the Phase 1 model using four different built-in search strategies
selected by observation and considering the nature of the problem: activity-
based search (sact), dominated weighted degree (swdeg ), assigning the first non-
instantiated variable to its lower bound (silb), and assigning the non-instantiated
variable of smallest domain size to its lower bound (smdlb) [5,25]. In addition to
each search strategy, we used a large-neighbourhood search based on randomly
creating neighbours using a restart strategy based on fails. The search also makes
use of a last conflict heuristic and geometrical restarts. All search strategies used
are available in the Choco library.

In the UCC data, the mean of total seats required per time-slot is reasonably
low: it is approximately 1341 for main, 9 for SPR, 28 for LAB, and 54 for
SHR groups. The total number of available seats for the main groups per time-
slot is 1900, and there are 31 seats for SPR, 57 for LAB students, 47 for SHR
students, where 3 seats from each room are left empty for ad-hoc students (see
Requirement H12). It is important to note that the model with the specific venue
for SHR students is not enough and renders the model infeasible. Therefore, we
manually add an additional venue for SHR students.

In Table 1, we present the performance of the four search strategies men-
tioned above on the Phase 1 model. The coefficients for the objectives are used
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as follows: cp1 = 25, cp2 = 3, cp3 = 40, cp4 = 10, cp5 = 2, and cp6 = 60.
We use Fs = 100 to decide if an exam is large or not. In UCC, afternoon
time-slots in Days 7 and 8, and also all time-slots on Days 9 and 10, are less
preferred to earlier ones. It is preferred to not schedule any examinations during
the last time-slot of Days 9 and 10. So, we penalise the preference of time-slots
as: α20 = α23 = α24 = α25 = α27 = α28 = 1, and α26 = α29 = 3. We use
large coefficients to penalise the sub-objectives obj1 and obj3 in Phase 1 for an
increased chance of avoiding the infeasibility scenario discussed in Sect. 3.3. The
penalty values were selected based on the observation that reflects the require-
ments and priorities of the institution. Although the importance of obj3 is less
than obj2 in the given requirements, penalising obj3 is essential for providing
a better resolution between the phases for the problem. Additionally, one can
observe that if obj1 has a larger value, then the time-slot preferences (obj5) are
violated less. The CP model for Phase 1 contains 527,831 variables and 367,303
constraints in total.

Table 1. Performance comparison of different search strategies for Phase 1 model on
UCC dataset.

sact swdeg silb smdlb

Best-solution objective (obj − b) 60,203 64,254 60,888 62,514

Load balancing penalty (obj1) 292 135 218 145

Maximum 1 exam every 2 days penalty (obj2) 7,897 9,079 7,294 8,587

Maximum 1 exam per day penalty (obj3) 290 297 325 283

Back-to-back exams penalty (obj4) 152 178 252 139

Time-slot preference penalty (obj5) 6,756 8,611 7,788 8,649

Front load penalty (obj6) 43 46 41 52

Best-solution time (timeb in sec) 1,308.4 1,335.4 2,313.7 1,158.3

Ratio: feasible/total solutions (cntfeas/cntsol) 5/5 11/11 5/5 10/10

First-solution objective (objf) 64,997 71,024 61,994 69,978

First-solution time (timef in sec) 7 10 8.8 8.8

We observe from Table 1 that the silb strategy has a good starting point but
sact is able to find a better solution in the end. Recall that we branch on EP
variables that allocate exams to time-slots starting from the largest exam to
the smallest one. Thus, assigning the first non-instantiated variable to its lowest
bound corresponds to scheduling a large exam to an earlier time-slot. Therefore,
we observe a clear advantage for silb in obj6, that corresponds to the front load
penalty. In each case, the solver can find an initial solution for the Phase 1 model
within 10 s . Also note that in this table we report how many feasible solutions
there are (cntfeas) among all solutions found by each strategy (cntsol).

We measure feasibility by running the Phase 2 algorithm for each solution
found in Phase 1. We immediately stop the search when an initial solution is
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found by the Phase 2 model. The time required by this feasibility check using
the siub strategy in Phase 2 for a solution obtained from Phase 1 took on the
average 1.2 s, including building the model and search, with the worst time being
12.2 s; details are discussed below. We allow this feasibility check to run for a
maximum of 1.5 min per day. If no solutions are found within the given time
limit or if the model is proven as infeasible, we say that the Phase 1 solution is
infeasible, and increment cntfeas. In our experiments, all the solutions found in
Phase 1 were feasible. For comparison, we evaluated the original UCC timetable
for Phase 1 by ignoring obj1 as it is not an original constraint given by the insti-
tution, which minimises the excess load. When we evaluated the corresponding
obj2, obj3, obj4, obj5, and obj6 values with the coefficients mentioned above for
Phase 1, the original timetable is found to have an objective value obj = 117, 342.
This value is nearly twice worse than any of the initial solutions found by CP in
less than 10 s.

Our Phase 2 model per day has on the average 10,592 variables and 5,139
constraints. We allow Phase 2 to run for 15 min in general, which results in each
day reporting a solution in 1.5 min. For a search strategy comparison for Phase
2, we use the best solution found by Phase 1 model, i.e. the one with the lowest
obj value, and use it as input for the Phase 2 model. We again test four different
search strategies on this model: activity based search (sact), dominated weighted
degree (swdeg ), assigning the first non-instantiated variable to its upper bound
(siub), and assigning the non-instantiated variable of smallest domain size to
its upper bound (smdub). Note that, we do not use the strategies that assign
a variable to its lower bound, but we use the assignment to upper bound in
Phase 2. Considering that we branch on the decision variables that denote the
number of students sitting an exam in each room, an upper bound strategy
assigns the maximum possible number of students into the next available room
in a Next-Fit manner. A split of the main groups are heavily penalised in UCC,
so we use the following coefficients for the penalisation of sub-objective values
in Phase 2: cr1 = 4, cr2 = cr3 = cr4 = 1. The search strategy sact was unable to
find a solution to 1/10 days, swdeg to 6/10 days, and smdub to 8/10 days, within
the given time-limit. The strategy siub has a clear advantage over the other
strategies as it finds a very quick solution to each day by assigning as many
students as possible from the same group into the first available room. The
aggregated solution found by siub has obj1 = 8, obj2 = 0, obj3 = 0, obj4 = 156,
and all the hard constraints are satisfied.

Table 2 summarises the improvements over the UCC’s original schedule by the
final schedule found by our model. In this table, M represents a solution found
by our CP model using the combination of sact for Phase 1 and siub for Phase
2. Note that, if desired, using different penalty values for the soft constraints,
it is possible to adjust the model further to obtain improvement on a specific
value. The model we propose effectively reduces the violation of soft requirements
related to student preferences. In model M, the average preparation time for
students between their consecutive exams is increased. Additionally, it reduces
the total number of rooms in use, which helps the institution lower costs, and
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Table 2. A comparison of the expert-generate schedule at UCC with our proposed
schedule (M).

Number of ... UCC M
Students that sit more than one exam in
the same time-slot

7 0

Conflicting exam pairs and held during
the same time-slot

5 0

<Main, SPR, SHR, LAB> rooms used
in total

<197, 269, 107, 64> <165,270,50,27>

Time-slots used during the whole
examination process

28 28

Average number of time-slots a student
has between two exams

6.02 6.46

Students that sit more than 270-min exam
in any 2-day block

34 0

Large exams scheduled after the fifth day 42 43

Students that sit an exam during the less
preferred time-slots

8,253 6,756

Splits of <Main, SHR, LAB> groups per
exam

<29, 88, 34> <8, 0, 0>

Exams that are held in different campuses 1 0

Students that sit exams on the same day
in different campuses

0 0

Cases where the room capacity is exceeded 4 0

Main rooms in which mixed-duration
exams are held

1 0

Violation of Requirement S2: at most one exam every two days

Affected conflicting exam pairs 1,090 943

Affected students (may include one
student more than once)

13,056 7,897

Affected students (a student is counted
only once)

6,811 4,955

Violation of Requirement S3: at most one exam every day

Affected conflicting exam pairs 196 104

Affected students (may include one
student more than once)

939 290

Affected students (a student is counted
only once)

872 284

Violation of Requirement S4: no back-to-back exams

Affected conflicting exam pairs 228 85

Affected students (may include one
student more than once)

1,856 152

Affected students (a student is counted
only once)

1,687 148
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also reduces invigilator resource requirements. The exam splits are significantly
reduced. It is important to note that, in the evaluation phase of the proposed
solution, the expert in UCC expressed that the reason to a large number of exam
splits in UCC may be due to accommodating the ad-hoc students. However, UCC
data does not let us identify these students.

A final remark is that we also implemented a preliminary version of this
two-phase model on a black-box local-search solver, namely LocalSolver [1]. We
observed that LocalSolver is producing quick solutions when compared to our
CP model if the model is mono-objective. However, when the objective is rep-
resented as a weighted sum as in our case, LocalSolver does not have a clear
advantage over the CP model. Therefore, considering that both our phases are
multi-objective, we did not implement the final version on LocalSolver. It will be
an interesting direction to implement this model on different solvers and present
a performance comparison.

5 Conclusion and Future Work

In this work, we provide a model for the examination timetabling problem at
University College Cork (UCC). Currently, examination scheduling in UCC is
done manually by expert staff but it takes weeks. The proposed automated model
is shown to improve the current timetable in terms of fairness, satisfying hard
requirements, and the allocation of resources. We use the Constraint Program-
ming framework to model our two-phase approach, mainly based on bin-packing
constraints. The proposed timetable has been evaluated by the administrative
staff, and integration work is in progress.

An advantage of the proposed model is its adaptability to real-world situ-
ations, such as the crisis caused by the COVID-19 pandemic. The pandemic-
related constraints include mandatory exam splits due to social distancing and
the capacity of venues being reduced. It is possible to tailor this model for the
needs of an institute and find the number of rooms required to be able to hold
physical exams. The performance of the proposed model can be improved fur-
ther by using more sophisticated filtering, and symmetry-breaking techniques.
We plan to develop heuristic approaches and compare their performance with the
proposed CP model. Considering the combinatorial and difficult nature of bin-
packing with fragmentable items, it is interesting to focus on developing global
constraints with efficient filtering techniques that reduce the search space.

The proposed framework is not only applicable to UCC, but by adjusting
the constraints for local institutional preferences, it should be straightforward
to adapt to other institutions.
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Abstract. The multi-agent collective construction problem tasks agents
to construct any given three-dimensional structure on a grid by reposi-
tioning blocks. Agents are required to also use the blocks to build ramps
in order to access the higher levels necessary to construct the building,
and then remove the ramps upon completion of the building. This paper
presents a mixed integer linear programming model and a constraint pro-
gramming model of the problem, either of which can exactly optimize the
problem, as previous efforts have only considered heuristic approaches.
The two models are evaluated on several small instances with a large
number of agents. The plans clearly show the swarm behavior of the
agents. The mixed integer linear programming model is able to find opti-
mal solutions faster than the constraint programming model and even
some existing incomplete methods due to its highly-exploitable network
flow substructures.

Keywords: Classical planning · Multi-agent planning · Multi-agent
path finding · Blocksworld · Swarm robotics

1 Introduction

The multi-agent collective construction (MACC) problem tasks a set of co-
operative robots in a blocksworld with the construction of a given three-
dimensional structure. The structure is built from blocks, which must be carried
and rearranged by the robots. The problem aims to determine minimum-cost
paths for the robots to perform this task while avoiding collisions.

The problem is best explained by example. Figure 1 illustrates a solution to
a toy instance. Blocks are shown in gray. Two robots are shown in black and
yellow. In timesteps 1 to 9, the black robot brings three blocks into the world
and then exits. Outside the grid, robots are assumed to operate infinitely fast;
i.e., an infinite number of actions can be performed in one timestep outside the
grid. (Alternatively, the black robot can be assumed to be different robots in
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Fig. 1. A solution to a toy MACC instance.
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practice.) In timesteps 1 to 4, the yellow robot enters the world with a block and
delivers it at coordinate (3, 3). In timesteps 5 to 10, the yellow robot rearranges
the blocks previously brought into the world by the black robot. It then proceeds
to exit the world in timesteps 11 to 13. In timesteps 10 to 12, the black robot
brings in another block for delivery. In timestep 14, the black robot removes the
ramp that it previously delivered in timestep 8 and used in timestep 11 to access
the top level of the structure. The black robot then exits in timestep 15, leaving
the structure fully assembled.

MACC is relevant to many applications, such as robotics [8] and open pit
mining [6]. The problem is relatively simple to understand, yet poses many inter-
esting questions for combinatorial optimization. In particular, questions about
symmetries and dominance rules are highly non-trivial. The main contributions
of this paper are a mixed integer linear programming (MILP) model and a
constraint programming (CP) model of the problem. Using either of these two
models, this paper is the first one to exactly optimize the problem, as all previ-
ous approaches are heuristics, which find high-quality solutions without proof of
optimality. Experimental results show that the MILP model substantially out-
performs the CP model because of its network flow substructures, which are
easily exploited by MILP solvers. The remainder of the paper discusses these
results in detail.

2 Problem Definition

Consider a planning horizon of T ∈ Z+ timesteps, and let T = {0, . . . , T − 1}
be the set of timesteps. The problem is stated on a three-dimensional grid that
is divided into cells. Let the grid be X ∈ Z+ cells wide, Y ∈ Z+ cells deep
and Z ∈ Z+ cells high. Let X = {0, . . . , X − 1}, Y = {0, . . . , Y − 1} and
Z = {0, . . . , Z − 1} be the sets of coordinates in the three dimensions. Define
C = X × Y × Z as the set of all cells. Then, every cell (x, y, z) ∈ C is a triple
of coordinates in the grid. Define the border cells B = {(x, 0, 0) : x ∈ X} ∪
{(x, Y − 1, 0) : x ∈ X} ∪ {(0, y, 0) : y ∈ Y} ∪ {(X − 1, y, 0) : y ∈ Y} as the
perimeter cells on the ground level. Define the positions P = X × Y as the
projection of the cells onto the first two dimensions. That is, the positions lie
on the two-dimensional grid corresponding to the top-down view of the three-
dimensional grid. Define the neighbors of a position (x, y) ∈ P as the set of
positions N(x,y) = {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} ∩ P.

Consider a problem with A ∈ Z+ identical robots. A robot is of the size of a
cell. Each robot can carry up to one block at any given time. Similar to robots,
a block is the size of a cell. Robots start and finish outside the grid. A robot can
enter and exit the world at any border cell, with or without carrying a block.
(An infinite reservoir of blocks lies beyond the grid.) During every timestep that
a robot is on the grid, it must take one of the following four actions:

– If the robot is carrying a block, it can deliver the block to a neighboring
position of the same height as its current cell, raising the height at the delivery
position by one. (See timesteps 1 and 2 in Fig. 1.)
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– If the robot is not carrying a block, it can pick up a block in a neighboring
position at the same height as the robot, decreasing the height at the removal
position by one. (See timesteps 13 and 14 in Fig. 1.)

– The robot can move from its current cell to a cell in a neighboring position
provided that the difference in height of both cells is within one level; i.e.,
robots can climb up or down at most one block.

– The robot can wait at its current cell.

Blocks are stationary unless moved by a robot. Blocks can be stacked on any
position except the border positions, which are reserved for entry and exit. Up
to Z − 1 blocks can be stacked in any one position. In any position, a block can
only be placed on the ground level or on top of the top-most block. Only the
top-most block can be removed.

Borrowing terminology from multi-agent path finding [10], robots must avoid
vertex collisions and edge collisions. A vertex collision occurs when two or more
robots attempt to occupy, pick up from or deliver to a position. An edge collision
occurs when two or more robots attempt to cross through each other to swap
positions. Robots can enter and exit the grid as many or as few times as necessary.
If a robot exits the grid, it must spend at least one timestep outside the grid
(e.g., to pick up another block) before returning.

The aim of the problem is to find paths for the robots to construct a given
three-dimensional structure by collectively rearranging blocks. By the end of the
planning horizon, all robots must have exited the world, leaving the completed
structure behind. The input structure is given as a desired height z̄(x,y) ∈ Z for
every position (x, y) ∈ P. That is, every block must be supported from below.
Structures cannot be hollow like a cave.

In many related problems, such as multi-agent path finding and vehicle rout-
ing, two common cost/objective functions are makespan and sum-of-costs. Min-
imizing makespan is equivalent to compressing the time horizon so that the
structure is completed as soon as possible at the expense of more actions. Mini-
mizing sum-of-costs minimizes the total number of actions taken by the robots
regardless of the time taken.

Since all robots are identical, the sum-of-costs is minimized by deploying
one robot to build the structure. Since there is at most one robot in the world
at any time, collisions never occur. At the cost of a higher makespan, using
fewer robots always dominates using more robots for the sum-of-costs objective.
On the contrary, solely using the makespan objective is problematic because
unnecessary robots can aimlessly wander the world, incurring penalties in the
sum-of-costs objective but having no impact on the makespan objective (besides
possibly colliding with other robots and extending the makespan). Therefore,
this paper argues for a two-tier lexicographic objective that first minimizes the
makespan and then minimizes the sum-of-costs. This objective finds solutions
that can construct a structure in the least amount of time and, with second
priority, the fewest number of actions.
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3 Background and Related Work

Teams of smaller robots are often more effective than a few larger robots. Smaller
robots are usually cheaper, easier to program and easier to deploy. Despite their
possibly limited sensing and computational capabilities, teams of smaller shape-
shifting/self-reconfiguring robots are more fault tolerant and provide more par-
allelism than a few larger robots. A good example of the effectiveness of teams
of smaller robots is in the domain of collective construction [2,3,7,8].

Inspired by termites building mounds, the Harvard TERMES project inves-
tigated how teams of robots can cooperate to build user-specified three-
dimensional structures much larger than themselves [8]. The TERMES hard-
ware consists of small autonomous robots and a reservoir of passive “building
blocks”, simply referred to as “blocks”. The robots are of roughly the same size
as the blocks. Yet, they can manipulate these blocks to build tall structures by
stacking the blocks on top of each other and building ramps to scale greater
heights. The three basic operations of a TERMES robot are: (1) climbing up or
down blocks one block-height at a time; (2) navigating with proper localization
on a partially-built structure without falling down; and (3) lifting, carrying and
putting down a block to attach it to or detach it from a partially-built structure.
MACC approximately models the TERMES robots.

A collective construction problem in the TERMES domain is to build a user-
specified three-dimensional structure, assuming that the reservoir is unlimited
and that the initial world is empty of blocks, i.e., all blocks are initially in the
reservoir. A decentralized reactive algorithm for constructing any given structure
is presented in [8]. While this algorithm succeeds in building the structure, it
does not treat MACC as a rigorous combinatorial optimization problem.

A rigorous formulation of the TERMES collective construction problem as a
combinatorial optimization problem is provided in [5]. The formulation exploits
the fact that the three basic operations of the TERMES robots are almost always
successful. The high reliability of these operations provides a nice abstraction
for centralized planning algorithms, allowing for the assumption that the robots
are ideal. Under these idealistic assumptions, the paper presents an algorithm
that achieves a small number of pickup and drop-off operations. The algorithm
solves the single-robot construction problem using dynamic programming carried
out on a tree spanning the cells of a workspace matrix that represent physical
locations on a grid frame of reference. The use of dynamic programming exploits
common substructures and significantly reduces the number of operations on
blocks. Their algorithm is polynomial-time and performs well in practice but does
not guarantee optimality. In fact, the paper does not characterize the complexity
of the problem.

This algorithm has been extended to the case of multiple robots in [1]. Here,
the idea is to use different robots for different branches of the tree with the intu-
ition that they can largely operate in independent regions. However, a drawback
of this approach is that the regions of the tree close to its root quickly become a
bottleneck and not much parallelism is achieved. Higher parallelism is achieved
in [9]. Inspired by recent advances in single-agent reinforcement learning, this
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approach extends the single-agent asynchronous advantage actor-critic (A3C)
algorithm to enable multiple agents to learn a homogeneous, distributed policy,
where agents work together toward a common goal without explicitly interacting.
It relies on centralized policy and critic learning, but decentralized policy execu-
tion, in a fully-observable system. Neither of the two algorithms is guaranteed
to generate optimal solutions.

Finally, since blocksworld domains are well studied in the area of automated
planning and scheduling, the International Planning Competition (IPC)1 now
includes the collective construction problem in the TERMES domain as a bench-
mark problem because of its interesting properties [4].

4 The Mixed Integer Linear Programming Model

The MILP model is based on network flow. Network flow problems generalize
shortest path problems. Using network flow, the MILP model treats all robots
as one flow through a time-expanded graph that is further complicated by the
states necessary to track whether a robot is carrying a block from one timestep
to the next.

Let K = {M,P,D} be the types of actions, where M indicates that a robot
is moving from one cell to another or waiting at the same cell, P indicates that
a robot is picking up a block, and D indicates that a robot is delivering a block.

Define an action as a nine-tuple i = (t, x, y, z, c, a, x′, y′, z′), whose elements
are given as follows:

– t ∈ T is the timestep of the action.
– x ∈ X ∪ {S}, y ∈ Y ∪ {S} and z ∈ Z ∪ {S} are the coordinates of the robot

taking the action, where S is a special symbol indicating that the robot is at
a start location off the grid and will move into a border cell.

– c ∈ {0, 1} indicates whether the robot is currently carrying a block.
– a ∈ K denotes the action type.
– x′ ∈ X ∪ {E}, y′ ∈ Y ∪ {E} and z′ ∈ Z ∪ {E} are the coordinates of the cell

where the action occurred, where E is a special symbol indicating that the
robot is moving from a border cell to an end location off the grid.

For instance, the action (5, 1, 2, 3, 0,M, 1, 3, 3) represents a robot standing in
cell (1, 2, 3) at timestep 5 moving to (1, 3, 3) while not carrying a block, and
the action (5, 1, 2, 3, 1,D, 1, 3, 3) represents a robot in cell (1, 2, 3) at timestep 5
delivering a block it is carrying to cell (1, 3, 3).

Not every possible (t, x, y, z, c, a, x′, y′, z′) in the Cartesian product is a valid
action. For example, (3, 0, 0, 0, 0,M, 5, 5, 5) indicates a robot teleporting from
cell (0, 0, 0) at timestep 3 to cell (5, 5, 5). Define the set of valid actions R =
R1 ∪ . . . ∪ R6 made up of six subsets of different actions:

• Robots can enter the world at a border cell: R1 = {(t,S,S,S, c,M, x′, y′, z′) :
t ∈ {0, . . . , T − 4} ∧ c ∈ {0, 1} ∧ (x′, y′, z′) ∈ B}.

1 https://ipc2018.bitbucket.io.

https://ipc2018.bitbucket.io
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• Robots can move to a neighboring cell at the same level, one level above or one
level below: R2 = {(t, x, y, z, c,M, x′, y′, z′) : t ∈ {1, . . . , T − 3} ∧ (x, y, z) ∈
C ∧ c ∈ {0, 1} ∧ (x′, y′) ∈ N(x,y) ∧ z′ ∈ Z ∧ |z′ − z| ≤ 1}.

• Robots can wait at the same cell: R3 = {(t, x, y, z, c,M, x, y, z) : t ∈ {1, . . . ,
T − 3} ∧ (x, y, z) ∈ C ∧ c ∈ {0, 1}}.

• Robots can exit the world at a border cell: R4 = {(t, x, y, z, c,M,E,E,E) :
t ∈ {2, . . . , T − 2} ∧ (x, y, z) ∈ B ∧ c ∈ {0, 1}}.

• While not carrying a block, robots can pick up a block from a neighboring cell
at the same level: R5 = {(t, x, y, z, 0,P, x′, y′, z) : t ∈ {1, . . . , T − 3} ∧ (x, y) ∈
P ∧ z ∈ {0, . . . , Z − 2} ∧ (x′, y′) ∈ N(x,y)}.

• While carrying a block, robots can deliver the block to a neighboring cell at
the same level: R6 = {(t, x, y, z, 1,D, x′, y′, z) : t ∈ {1, . . . , T − 3} ∧ (x, y) ∈
P ∧ z ∈ {0, . . . , Z − 2} ∧ (x′, y′) ∈ N(x,y)}.

The timesteps in R1, . . . ,R6 are chosen carefully since, e.g., all robots must be
off the world by timestep T − 1, they must be moving from a border cell off the
world by timestep T − 2, hence T − 3 is the latest that a block can be delivered.

Every position (x, y) ∈ P is modeled as a shortest path from height 0 to
the desired height z̄(x,y) ∈ Z at the final timestep T − 1. Similar to R, define
H = {(t, x, y, z, z′) : t ∈ {0, . . . , T − 2} ∧ (x, y, z) ∈ C ∧ z′ ∈ Z ∧ |z′ − z| ≤ 1} to
represent the actions of growing or shrinking the height of a position. An action
(t, x, y, z, z′) ∈ H indicates that position (x, y) currently has height z at timestep
t and height z′ at timestep t + 1.

In this model, the problem can be thought of in terms of two groups of
interacting agents: (1) pillars that need to grow or shrink to their target heights
in the least amount of time (pillars might need to grow higher than their target
height), and (2) robots that assist the pillars by picking up and delivering blocks
around the world. For pillars to grow upward, they need robots to stack blocks
at their positions. For robots to place blocks on a pillar, a neighboring pillar
needs to be of a similar height. Hence, in some sense, the problem involves a
complicated interaction between two sets of agents, both of which co-operate to
achieve their goals.

The model captures the actions of all robots in one network flow and the
actions of each pillar in a shortest path (a special case of network flow). These two
substructures are coupled by interdependency constraints. In the absence of the
interdependencies, the model separates into a number of independent network
flows. Hence, the idea behind the MILP model is for the solver to first resolve
the interdependencies to simplify the problem, and then the problem becomes
much easier since pure network flow problems can be solved in polynomial time
by linear programming [11]. Of course, resolving the interdependencies remains
a major challenge.

The MILP model is written using non-standard wildcard notation. Let U
be a set containing tuples (u1, u2, . . . , un). For constants u1, u2, . . . , un, we use
the notation Uu1,u2,...,un

as a shorthand for the set {(u′
1, u

′
2, . . . , u

′
n) ∈ U : u′

1 =
u1 ∧u′

2 = u2 ∧ . . .∧u′
n = un)}, which is equal to the singleton {(u1, u2, . . . , un)}

if the element exists and equal to the empty set ∅ otherwise. Let ∗ denote a
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wildcard symbol for matching any value in a dimension of the tuples. For example,
U∗,u2,...,un

is shorthand for the set {(u′
1, u

′
2, . . . , u

′
n) ∈ U : u′

2 = u2 ∧ . . . ∧ u′
n =

un}, and Uu1,u2,∗,...,∗ represents the set {(u′
1, u

′
2, u

′
3, . . . , u

′
n) ∈ U : u′

1 = u1∧u′
2 =

u2}. This wildcard notation is used to pick subsets of R and H.
Figure 2 shows the model. For every robot action i ∈ R, define a binary

decision variable ri ∈ {0, 1} to indicate whether the action occurred. Similarly,
define a binary decision variable hi ∈ {0, 1} for every height action i ∈ H.

Objective Function (1) minimizes the sum-of-costs objective, i.e., the total
number of cells occupied by robots throughout the planning horizon. The
makespan is minimized external to the model by sequentially increasing T , as
described later.

Constraints (2) to (6) define a path for each position. Constraint (2) prevents
blocks from being placed at the border positions because robots must enter
and exit the world on the ground level. Constraint (3) starts the world devoid
of blocks. This constraint states that all cells have height 0 in the first two
timesteps because the earliest a robot can appear in the world is in timestep
1; hence blocks cannot be placed in the world until timestep 2. Constraint (4)
enforces the completion of the structure. Robots must have exited the world by
timestep T − 1. So they must be at a border cell exiting before timestep T − 2.
Therefore, the structure must be built before the last two timesteps. Constraint
(5) flows the height of each position from one timestep to the next. Constraint
(6) enforces one value of height for every position in each timestep.

Constraints (7) to (11) govern the actions of the robots. Constraint (7) flows
a robot not carrying a block in and out of a cell. The first summation accounts
for a robot moving without a block from any cell at timestep t into cell (x, y, z)
at timestep t + 1. The second summation counts whether a robot standing at
(x, y, z) has just deposited a block nearby. After taking any of these actions,
the robot will be at cell (x, y, z) at timestep t + 1 without a block. It then
has to either move to another cell (the third summation) or pick up a nearby
block (the fourth summation). Constraint (8) is a similar constraint for robots
carrying a block. This constraint states that, if a robot carrying a block is in
cell (x, y, z) at timestep t + 1 (either by moving into the cell with a block or
by picking up a block nearby), then it must afterward move while continuing to
carry the block or deliver the block. Constraints (7) and (8) implicitly require
robots to start and end outside the grid. Constraint (9) prevents vertex collisions.
It permits at most one robot to be at position (x, y) or to pick up from or deliver
a block to position (x, y) at any timestep. Constraint (10) is the edge collision
constraint, which prevents robots from exchanging positions. Constraint (11)
limits the number of robots. By also including robots at the dummy start cell
(S,S,S), this constraint also requires robots that have left the world to spend
at least one timestep outside the world (e.g., to pick up another block) before
returning.

Constraints (12) to (14) couple the robots and the pillars. Without these
three constraints, the problem separates into two independent parts. Constraint
(12) states that, if a robot is at cell (x, y, z), then the height of the pillar at
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min
i=(t,x,y,z,c,a,x′,y′,z′)∈R:

(x,y,z) �=(S,S,S)

ri (1)

subject to

ht,x,y,z,z = 1 ∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ B, (2)

h0,x,y,0,0 = 1 ∀(x, y) ∈ P, (3)

hT−2,x,y,z̄(x,y),z̄(x,y) = 1 ∀(x, y) ∈ P, (4)
∑

i∈ t,x,y,∗,z

hi =
∑

i∈ t+1,x,y,z,∗

hi ∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ C, (5)

∑

i∈ t,x,y,∗,∗

hi = 1 ∀t ∈ {0, . . . , T − 2}, (x, y) ∈ P, (6)

∑

i∈Rt,∗,∗,∗,0,M,x,y,z

ri +
∑

i∈Rt,x,y,z,1,D,∗,∗,∗

ri =
∑

i∈Rt+1,x,y,z,0,M,∗,∗,∗

ri +
∑

i∈Rt+1,x,y,z,0,P,∗,∗,∗

ri

∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ C, (7)
∑

i∈Rt,∗,∗,∗,1,M,x,y,z

ri +
∑

i∈Rt,x,y,z,0,P,∗,∗,∗

ri =
∑

i∈Rt+1,x,y,z,1,M,∗,∗,∗

ri +
∑

i∈Rt+1,x,y,z,1,D,∗,∗,∗

ri

∀t ∈ {0, . . . , T − 3}, (x, y, z) ∈ C, (8)
∑

i∈Rt,x,y,∗,∗,∗,∗,∗,∗

ri +
∑

i∈Rt,∗,∗,∗,∗,P,x,y,∗

ri +
∑

i∈Rt,∗,∗,∗,∗,D,x,y,∗

ri ≤ 1

∀t ∈ {1, . . . , T − 2}, (x, y) ∈ P, (9)
∑

i∈Rt,x,y,∗,∗,M,x′,y′,∗

ri +
∑

i∈Rt,x′,y′,∗,∗,M,x,y,∗

ri ≤ 1

∀t ∈ {1, . . . , T − 2}, (x, y) ∈ P, (x′, y′) ∈ N(x,y), (10)
∑

i∈Rt,∗,∗,∗,∗,∗,∗,∗,∗

ri ≤ A ∀t ∈ , (11)

∑

i∈ t,x,y,z,∗

hi ≥
∑

i∈Rt,x,y,z,∗,∗,∗,∗,∗

ri ∀t ∈ {0, . . . , T − 2}, (x, y, z) ∈ C, (12)

ht,x,y,z+1,z =
∑

i∈Rt,∗,∗,∗,0,P,x,y,z

ri

∀t ∈ {0, . . . , T − 2}, (x, y) ∈ P, z ∈ {0, . . . , Z − 2}, (13)

ht,x,y,z,z+1 =
∑

i∈Rt,∗,∗,∗,1,D,x,y,z

ri

∀t ∈ {0, . . . , T − 2}, (x, y) ∈ P, z ∈ {0, . . . , Z − 2}, (14)

hi ∈ {0, 1} ∀i ∈ , (15)

ri 0, 1 i . (16)

Fig. 2. The MILP model.
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position (x, y) must be z. Constraints (13) and (14) respectively equate pickup
and delivery actions to a decrease and increase in the height of a pillar.

Constraints (15) and (16) specify the domains of the variables.

5 The Constraint Programming Model

Standard CP models of routing problems are based on a sequence of actions
performed by each robot. This modeling indexes every robot individually and,
hence, introduces robot symmetry. This section presents a CP model that forgoes
the sequence-based modeling and, instead, adopts a network flow structure to
eliminate robot symmetry. Compared to the MILP model, the CP model uses
a simpler network that omits the vertical dimension, actions and block-carrying
state. It models these aspects using logical and Element constraints, which
better exploit the strengths of CP.

Assign every position p = (x, y) ∈ P an identifier ip = Y ·x+y that maps the
two-dimensional positions to a one-dimensional index. Let I = {0, . . . , X ·Y −1}
denote the set of position identifiers. Let z̄i ∈ Z be the height of the desired
structure at position i ∈ I.

Define the border positions as B = {i(x,0) : x ∈ X} ∪ {i(x,Y −1) : x ∈ X} ∪
{i(0,y) : y ∈ Y} ∪ {i(X−1,y) : y ∈ Y}, and the interior positions as B = {i ∈ I :
i 	∈ B}. Define two dummy positions −1 and −2 off the grid and group them in
O = {−1,−2}. Let E = I ∪ O denote every position (on and off the grid).

For any position i = i(x,y), let Ni = {i(x−1,y), i(x+1,y), i(x,y−1), i(x,y+1)} ∩ I
be its neighbors. Define a set of neighbors that includes the off-grid positions as

N E
i =

{
Ni i ∈ B,
Ni ∪ O i ∈ B.

Using N E
i , robots are able to move off the grid from a border position.

Let K = {M,B,U} be the types of actions, where M indicates that a robot is
moving from one position to another or waiting at the same position, B indicates
that a robot is picking up or delivering a block, and U indicates that a position
is unoccupied by a robot.

Let rt,i ∈ K be a decision variable representing the action taken by the robot
in position i ∈ E at timestep t ∈ T . Define nt,i ∈ E as a variable denoting the
next position of the robot in position i ∈ E at timestep t ∈ T . Define bt,i ∈ I as
the position of the pick-up or delivery by the robot in position i ∈ I at timestep
t ∈ T . Define ct,i ∈ {0, 1} as a variable that indicates whether the robot in
position i ∈ E at timestep t ∈ T is carrying a block. Let pt,i, dt,i ∈ {0, 1}
be variables that, respectively, indicate whether the robot in position i ∈ I at
timestep t ∈ {0, . . . , T − 2} is picking up or delivering a block. Let ht,i ∈ Z
be a variable that stores the height at position i ∈ E in timestep t ∈ T . The
meaning of the variables for any position i ∈ I is clear. The variables are also
defined for i ∈ O to ensure that the problem is satisfiable by giving the Element
constraints an end-point; these variables do not carry much meaning.
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The CP model is shown in Figs. 3 and 4. Objective Function (17) minimizes
the number of occupied positions at all timesteps. The Element global con-
straint is used in Constraints (30), (32), (35), (39) and (41) to (44).

Constraint (18) fixes the height of all off-grid positions. Constraint (19) dis-
allows blocks to be delivered to the border positions. Constraint (20) states that
the world is devoid of blocks in the first two timesteps. Constraint (21) requires
the building to be completed before the last two timesteps. Constraint (22) allows
the height at any position to change by at most one level.

Constraints (23) to (26) fix the robot variables at the off-grid positions. Con-
straints (27) and (28) disallow robots on the grid in the first and last timesteps.
Constraint (29) requires robots to stay at the same position when picking up or
delivering a block. Constraint (30) maintains the block-carrying states of robots
when moving. Constraint (31) changes the block-carrying states of robots after
picking up or delivering blocks.

Constraints (32) and (33) are the flow constraints. Constraint (32) states
that every position is either unoccupied or the robot in the position must take
an action in the next timestep. Constraint (33) states that an interior position is
unoccupied or a robot reached it from a nearby position in the previous timestep.
Constraint (34) prevents vertex collisions by disallowing more than one robot
from being in a position, picking up a block from the position or delivering a
block to the position at timestep t + 1. Constraint (35) prevents edge collisions.
Constraint (36) limits the number of robots on the grid during each timestep.
This constraint also requires robots to spend at least one timestep outside the
grid, as discussed in Sect. 2.

Constraints (37) and (38) compute whether a robot is picking up or delivering
a block. If a robot moves, Constraint (39) requires the height of its next position
to be within one level of the height of its current position. If a robot waits
at the same position, Constraint (40) states that the height must remain the
same. Constraint (41) states that the height of the block being picked up must
be one level higher than the pillar at the position of the robot (i.e., the block
is at the same level as the robot). Constraint (42) decreases the height at the
position of a block after a pick up. Constraints (43) and (44) are the equivalent
constraints for deliveries. Constraint (45) counts the changes to the height at
a position. Constraints (46) and (47) are redundant constraints, which improve
the filtering.

Constraints (48) to (54) specify the domains of the variables. Constraint (50)
requires robots to move to a neighboring position, the same position or off the
grid. Constraint (51) states that blocks must be picked-up from or delivered to
a neighboring position.

6 Experimental Results

The experiments compare the run-time of the two models. The MILP model is
solved using Gurobi 9.0.2, a state-of-the-art mathematical programming solver
that regularly outperforms its competitors in standard benchmarks. The CP
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min
t∈ i∈I

(rt,i � )71()U=

subject to

ht,i = 0 ∀t ∈ , i ∈ O, (18)

ht,i = 0 ∀t ∈ , i ∈ B, (19)

ht,i = 0 ∀t ∈ {0, 1}, i ∈ I, (20)

ht,i = z̄i ∀t ∈ {T − 2, T − 1}, i ∈ I, (21)

ht,i − 1 ≤ ht+1,i ≤ ht,i + 1 ∀t ∈ {0, . . . , T − 2}, i ∈ I, (22)

rt,i = M ∀t ∈ , i ∈ O, (23)

nt,i = i ∀t ∈ , i ∈ O, (24)

ct,−1 = 1 ∀t ∈ , (25)

ct,−2 = 0 ∀t ∈ , (26)

r0,i = U ∀i ∈ I, (27)

rT−1,i = U ∀i ∈ I, (28)

(rt,i = B) (nt,i = i) ∀t ∈ , i ∈ I, (29)

(rt,i = M) (ct+1,nt,i = ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (30)

(rt,i = B) (ct+1,i = ¬ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (31)

(rt,i = U) ∨ (rt+1,nt,i �= U) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (32)

(rt+1,i = U) ∨
∨

j∈Ni∪{i}
(rt,j �= U ∧ nt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ B, (33)

∑

j∈Ni∪{i}
(rt,j = M ∧ nt,j = i) + (rt,i = B) +

∑

j∈Ni

(rt+1,j = B ∧ bt+1,j = i) ≤ 1

∀t ∈ {1, . . . , T − 2}, i ∈ I, (34)

(rt,i = M ∧ nt,i �= i ∧ rt,nt,i = M) (nt,nt,i �= i) ∀t ∈ {1, . . . , T − 2}, i ∈ I, (35)
∑

i∈I
(rt,i �= U) +

∑

i∈B
(rt−1,i = M ∧ nt−1,i < 0) ≤ A ∀t ∈ {1, . . . , T − 1}, (36)

pt,i (rt,i = B ∧ ct+1,i ∧ ¬ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (37)

dt,i (rt,i = B ∧ ¬ct+1,i ∧ ct,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (38)

(rt,i = M) (ht,i − 1 ≤ ht+1,nt,i ≤ ht,i + 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (39)

(rt,i = M ∧ nt,i = i) (ht+1,i = ht,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (40)

pt,i (ht,bt,i = ht,i + 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (41)

pt,i (ht+1,bt,i = ht,bt,i − 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (42)

dt,i (ht,bt,i = ht,i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (43)

dt,i (ht+1,bt,i = ht,bt,i + 1) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (44)

ht+1,i = ht,i −
j i

(pt,j ∧ bt,j = i) +
j i

(dt,j ∧ bt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (45)

Fig. 3. The CP model. Continued in Fig. 4.
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ht+1,i = ht,i − 1
j∈Ni

(pt,j ∧ bt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (46)

ht+1,i = ht,i + 1
∨

j∈Ni

(dt,j ∧ bt,j = i) ∀t ∈ {0, . . . , T − 2}, i ∈ I, (47)

ht,i ∈ Z ∀t ∈ , i ∈ E , (48)

rt,i ∈ K ∀t ∈ , i ∈ E , (49)

nt,i ∈ N E
i ∪ {i} ∀t ∈ , i ∈ E , (50)

bt,i ∈ Ni ∀t ∈ , i ∈ I, (51)

ct,i ∈ {0, 1} ∀t ∈ , i ∈ E , (52)

pt,i ∈ {0, 1} ∀t ∈ , i ∈ I, (53)

dt,i 0, 1 t , i . (54)

Fig. 4. The CP model. Continued from Fig. 3.

model is solved using OR-Tools 7.6, an open-source CP solver that has won
many of the MiniZinc Challenges in recent times. The two solvers are run for
up to seven days in parallel mode with 20 threads on an Intel Xeon E5-2660 v3
CPU 2.60 GHz with 64 GB of memory.

Even though traditional finite-domain CP solvers are most effective with
a hand-tailored variable and value selection heuristic (i.e., a branching rule),
nogood learning solvers like OR-Tools perform best when using their preferred
search strategies, as evidenced in the MiniZinc Challenge, where OR-Tools per-
forms better in the free search category. Therefore, we do not specify a variable
and value selection heuristic.

The two models minimize the number actions, i.e., the sum-of-costs. To lexico-
graphically minimize makespan as well, the two models are run with sequentially
increasing T . That is, the experiments begin with T = 4, which is the smallest
possible value, and progressively increase T until the problem becomes satisfi-
able (i.e., the solver finds a feasible solution). Then, the solver proceeds to find
an optimal solution. Upon completion, the solution is guaranteed to have the
lowest possible makespan and the lowest number of actions for that makespan.

The six structures from [9] are used for evaluation. They are shown in Fig. 5.
Up to 50 robots are permitted Table 1 shows the results for the six instances. For
both models, the table gives the time to prove optimality, the optimal makespan,
the best available sum-of-costs and its lower bound, and the number of robots
required to execute the plan. (Unused robots never enter the world.)

The MILP model solves all six instances exactly within six days. Instances 1,
2 and 6 are trivial for the MILP model to solve, while the run-times of the other
three instances span a large range. The CP model solves Instance 2 exactly but
is substantially slower than the MILP model. For the remaining five instances,
it finds feasible solutions with the optimal makespan.

Figure 6 plots the twelve timesteps for executing the optimal plan to the first
instance. The large number of robots swarming into the world makes it difficult to
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Instance 1 Instance 2 Instance 3

Instance 4 Instance 5 Instance 6

Fig. 5. The structures to construct in the six instances.

Table 1. Best available solution to the six instances.

Model Instance Run-time Makespan Sum-of-costs Sum-of-costs LB Robots

MILP 1 29 s 11 176 176 34

2 3 s 11 128 128 28

3 1.2 h 13 344 344 44

4 5.5 h 17 429 429 42

5 5.7 d 17 368 368 37

6 183 s 15 234 234 27

CP 1 >7 d 11 178 107 30

2 1.2 h 11 128 128 28

3 >7 d 13 354 164 44

4 >7 d 17 452 189 50

5 >7 d 17 395 39 41

6 >7 d 15 245 154 28

analyze any emergent macro-level behavior. Nonetheless, minor bucket-brigade
behavior is already demonstrated in the toy example from Fig. 1.

The state-of-the-art reinforcement learning method [9] produced solutions
taking up to 2,000 timesteps (for many fewer robots). The two optimization
models found feasible solutions to all instances with a makespan of less than
twenty timesteps, indicating that these small structures are simple to construct
as they do not rely on long chains of interdependent blocks.
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Fig. 6. The twelve timesteps in the optimal plan to Instance 1.

7 Conclusions and Future Work

The MACC problem is a relatively new problem that is starting to gain atten-
tion in the multi-agent planning community. The problem tasks a group of
co-operating robots to construct a three-dimensional structure by rearranging
blocks in a blocksworld. Robots are required to build ramps to access the upper
levels of the structure, and then remove the ramps after assembling the structure.

This paper models the problem using MILP and unexpectedly reveals the
two interacting network-flow substructures hidden in the problem. A CP model
of the problem is also developed but is slower than the MILP model because
it lacks easily exploitable structure. This preliminary study shows that small
instances of complex path-finding problems with an extremely large state space
can be solved exactly today, as previous solution methods were all heuristics,
which aim to find high-quality but not provably optimal solutions.

Scaling the MILP model to long time horizons remains a major challenge.
Early experiments show that using more robots shortens the makespan, and
hence, makes the model smaller and easier. Surprisingly, it is the number of
timesteps that makes the problem difficult, rather than the number of robots.
Buildings taller than five blocks require long ramps for accessing the higher levels.
These ramps take many timesteps to build, resulting in a makespan much longer
and a model much larger than what is possible for exact optimization. For these
instances, the only viable methods are the existing heuristics.

Early experiments show that the CP model presented in Sect. 5 and solved
using OR-Tools is fastest among eleven models solved using both OR-Tools
and Chuffed. One interesting finding is that sequence-based models (often
using the Regular global constraint) are faster in Chuffed but slower in OR-
Tools. Whereas, network flow models (e.g., the model in Sect. 5) are faster in
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OR-Tools, which has a linear relaxation propagator. Future studies should inves-
tigate whether CP-like sequencing models can obtain competitive performance.

As suggested by a reviewer, MaxSAT models can also be considered since the
problem mainly contains Boolean variables and clauses. The difficulty would be
encoding the cardinality constraints, but how to do this is well-known.

Acknowledgments. The research at the University of Southern California was sup-
ported by the National Science Foundation (NSF) under grant numbers 1724392,
1409987, 1817189, 1837779, and 1935712.
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Abstract. We introduce the Confidence constraint, a chance con-
straint that ensures, with probability γ, that a set of variables are no
smaller than random variables for which the probability distribution is
given. This constraint is useful in stochastic optimization to ensure that
a solution is robust to external random events. It allows to control the
trade-off between optimizing the objective function and ensuring the sat-
isfiability of the solution under random parameters. We present a filtering
algorithm for this constraint with explanations. We apply the constraint
to a case study, an industrial scheduling problem where tasks have ran-
dom processing times due to possible breakdowns during their execution.
We evaluate our solutions with simulations and show that this new con-
straint allows robust solutions in decent computation time.

Keywords: Stochastic optimization · Chance constraints · Constraint
programming

1 Introduction

Decisions in an organization are taken at different levels: strategic, tactical, oper-
ational, and execution. In some situations, it is important that decisions taken at
the operation level take into account what could happen at the execution level.
For instance, one can schedule tasks while taking into account that breakdowns
might occur during the execution and that the schedule might not be followed
as expected. Stochastic optimization allows taking decisions at one level while
coping with random events at the next level. One way to achieve this goal is
by using chance constraints in the optimization model to guarantee that the
solution holds beyond a given threshold probability.

We introduce a new chance constraint called Confidence that forces vari-
ables to take sufficiently large values so that random variables, following a known
distribution, are unlikely to be greater. Let X1, . . . , Xn be decision variables, let
D1, . . . , Dn be statistical distributions, and let γ be the confidence threshold (a
constant parameter). Each distribution Di must have a well-defined cumulative
distribution function cdfi. The Confidence constraint is defined as follows.

Confidence([X1, . . . , Xn], [cdf1, . . . , cdf2], γ) ⇐⇒
n∏

i=1

cdfi(Xi) ≥ γ (1)
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In other words, let Yi be an independent random variable following a distribution
Di. The chance that at least one random variable Yi takes a value greater than
Xi must be less than γ.

Such a constraint is particularly useful in stochastic scheduling where tasks
can execute for a longer time than expected. In order to let sufficient time for the
tasks to execute in a schedule, one can assign processing times to the tasks that
are sufficiently long γ percent of the time. We will show that such an approach
has many advantages and is particularly well suited for constraint programming.

The rest of the paper is divided as follows. Section 2 presents background
information about stochastic optimization. Section 3 introduces the Confi-
dence constraint and its filtering algorithm. Section 4 presents a case study, an
industrial scheduling problem that led to (and financed) this research. Section 5
presents our simulator that will be used in our experiments in Sect. 6. We present
and analyze the results in Sect. 6.3. We conclude in Sect. 7.

2 Background

Stochastic problems are optimization problems for which part of the input is
given with random variables. One aims at a solution of good quality over all
possible values that these random variables can take. Usually, one wants to
optimize the expected objective value and/or to ensure feasibility occurs with a
given probability.

Stochastic linear programs are linear programs min{cT x | Ax ≤ b, x ≥ 0} for
which some parameters in c, A, or b are replaced by random variables. These
linear problems are particularly well studied [10]. They can, for instance, encode
scheduling problems where processing times are subject to random delays [4].

There are several approaches to stochastic optimization. One important app-
roach is called scenario-based optimization. It consists, in one way or another, in
achieving deterministic optimization on sample data called scenarios. A scenario
is a possible outcome of stochastic events. The number of possible scenarios grows
exponentially with the number of stochastic variables. Chance constraints [20]
can achieve scenario-based optimization by constraining the solution to satisfy a
scenario with a given probability. The concept emerged in stochastic linear pro-
gramming, but is not intrinsically linear and can be applied to any constraint
satisfaction problem. The formulae described in [20] inspired the ones stated
in Sect. 3. However, as the they sum probabilities over possible scenarios, some
formulae might take too much time to compute for problems with hundreds of
stochastic variables.

In constraint programming, Walsh [18] proposes an extension of a constraint
satisfaction problem by modeling decision problems with uncertainty. In this
extension, stochastic variables based on probabilistic distributions coexist with
common constraint programming decision variables. The solver computes a pol-
icy, i.e. a solution for each possible outcome of the stochastic variables. While
this suits the needs for many problems, for problems with hundreds of random
variables, one cannot state (not to mention computing) a complete policy.
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The modeling language MiniZinc [12,17] is also adapted to stochastic opti-
mization [13] keeping the modeling process independent from the solving tech-
nique. It requires to encode a sample of scenarios in a vector. As the number
of random variables grows, the cardinality of the sample scenarios set become
insignificant compared to the number of possibilities and the quality of the solu-
tions decays.

Stochastic problems is one way to obtain solutions robust to change. However,
there exist other robust optimization approaches that do not rely on probabil-
ities. For instance, super solutions are solutions that adapt themselves in case
of a change [9]. Such solutions are, however, hard to compute and are often
restricted to small instances. The FlexC constraint [6,7] can model cumulative
scheduling problems where tasks have two processing times: a normal processing
time and a delayed one. The constraint ensures that if any subset of k tasks is
delayed, the cumulative resource is not overloaded. However, the constraint does
not support delays of variable duration.

The outreach of chance constraints goes far beyond scheduling problems.
Rossi et al. [14] present an algorithm designed to compute an optimal policy for
inventory levels. Based on current demand, chance constraints are used in such
a way that one can predict more accurate future demand. While we do not aim
at solving the same problem, this is the closest chance constraint algorithm we
could find in constraint programming to what we propose.

3 The Confidence Constraint

3.1 Description

The Confidence constraint defined in (1) has for scope a vector of integer
variables [X1, . . . , Xn] and has for parameters a vector of random distributions
[D1, . . . , Dn]. A collection of independent random variables Y1, . . . , Yn follow-
ing these distributions i.e. the random variable Yi follows the distribution Di.
Each distribution Di is fully described by its cumulative distribution function
cdfi(v) = P [Yi ≤ v] that computes the probability that the random variable Yi

takes a value smaller than or equal to a value v. We also consider its inverse
function called the quantile function Qi(p) = min{v | P [Yi ≤ v] ≥ p} that
computes the smallest value v for which variable Yi takes a value no greater
than v with probability p. The distributions can be common distributions (e.g.
Poisson, Uniform, ...) or can be custom much like the one shown in Sect. 4. The
distributions can be different for every variable. Finally, the constraint takes a
parameter γ that is a confidence threshold, a probability between 0 and 1. Note
that even if this constraint handles probabilities, it constrains integer variables
and is therefore compatible with solvers that only handle this type of variable.
Moreover, if the solver does not handle floating point parameters, it is possible
to express γ in percents and to give it an integer value.

The constraint is satisfied when, with probability at least γ, all random vari-
ables Yi take a value smaller than or equal to their corresponding threshold Xi.
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Since the random variables Yi are independent, the constraint is satisfied when

P [
n∧

i=1

Yi ≤ Xi] ≥ γ. (2)

Since the random variables are independent, we obtain

n∏

i=1

P [Yi ≤ Xi] ≥ γ. (3)

For numerical stability reasons, we use this form

n∑

i=1

ln(P [Yi ≤ Xi]) ≥ ln(γ). (4)

The Confidence constraint is useful in problems where unknown events
might arise. In a scheduling problem, it is common to have tasks that take
longer to execute than expected. One usually plans more time than necessary
for these tasks in a schedule. Let Xi be the processing time of task i and Di be
a distribution on the observed processing times in the past. The Confidence
constraint allows planning sufficient times for the execution of the tasks in say,
γ = 95% of the time. This confidence threshold allows making schedules that
can be executed without modification 95% of the time without over estimating
the duration of the tasks.

In a production problem where we want to produce sufficient goods to satisfy
an unknown demand, we let Xi be the amount of good i that is produced and Yi

be the amount that needs to be produced to fulfill the demand. We want Xi ≥ Yi

which is equivalent to −Xi ≤ −Yi. The Confidence constraint can restrict the
quantities −Xi to be smaller than the random variable −Yi with probability γ.

3.2 Filtering Algorithm

Algorithm 1 is the filtering algorithm directly derived from applying interval
arithmetic on inequality (4). Line 1 computes α, the log of the highest proba-
bility that can be reached on the left-hand side of the inequality. It is computed
from the random variables’ cumulative distribution functions. If this probably
is too low, line 2 triggers a failure. Otherwise, the lower bound of each vari-
able domain is tested for consistency. The test on line 3 is equivalent to testing∑

j �=i ln(P [Yj ≤ max(dom(Xj))]) + ln(P [Yi ≤ min(dom(Xi))]) < ln(γ). If the
test is positive, then min(dom(Xi)) does not have a support and should be fil-
tered out from the domain. In order to evaluate what is the smallest value in
dom(Xi) with a support, we use the quantile function on line 4. We search for
the smallest value v ∈ dom(Xi) such that β + ln(P [Yi ≤ v]) ≥ ln(γ) which
is equivalent to P [Yi ≤ v] ≥ γe−β . This is directly provided by the quantile
function Qi(γe−β).
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The algorithm accepts any distribution for which the functions cdfi and Qi

can be computed. Such functions for common distributions are already imple-
mented in libraries like Boost [15]. This includes Pareto, Gaussian, Poisson,
Laplace, Uniform, etc. It is also possible to create custom distributions.

Algorithm 1: Confidence
Filtering([dom(X1), . . . ,dom(Xn)], [D1, . . . , Dn], γ)

Let Yi be a random variable following distribution Di for i ∈ {1, . . . , n};
1 α ← ∑n

i=1 ln(cdfi(max(dom(Xi))));
2 if α < ln(γ) then

Fail with explanation
∧n

i=1[[Xi ≤ max(dom(Xi))]] =⇒ False;

for i ∈ {1, . . . , n} do
β ← α − ln(cdfi(max(dom(Xi))));

3 if β + ln(cdfi(min(dom(Xi)))) < ln(γ) then
4 v ← Qi(γe−β);

Filter Xi with explanation∧
j �=i[[Xj ≤ max(dom(Xj))]] =⇒ [[Xi ≥ v]];

From the arithmetic of intervals, the algorithm enforces bounds consis-
tency on the Confidence constraint, but also domain consistency. Indeed, the
algorithm tests on line 3 the assignment [max(dom(X1)), . . . ,max(dom(Xi−1)),
min(dom(Xi)),max(dom(Xi+1)), . . . ,max(dom(Xn))]. If this assignment satis-
fies the Confidence constraint, so does [max(dom(X1)), . . . ,max(dom(Xi−1)),
v,max(dom(Xi+1)), . . . ,max(dom(Xn))] for any value v ∈ dom(Xi). Hence, all
values in dom(Xi) are domain consistent. Otherwise, the value min(dom(Xi))
is filtered out from the domain of Xi and the quantile function guarantees that
the new lower bound on the domain satisfies the constraint.

The running time complexity is dominated by the number of calls to the
cumulative distribution functions and the quantile functions. In the worst case,
the algorithm performs 3n calls to the cumulative distribution functions and at
most n calls to the quantile functions. This leads to a running time complexity
of O(n).

4 Case Study

4.1 The Deterministic Version

We have an industrial partner in the textile industry whose needs motivate
the theoretical contribution and whose data allow to empirically evaluate this
contribution on an industrial problem.

The textile manufacturer has to schedule a set of tasks I on looms L. The
tasks represent textile pieces to weave or setups to prepare a loom for the next
textile. A piece of textile i has a style zi which is a number that encodes the
width of the textile, the type of thread, the weaving pattern, etc. A task i is
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pre-assigned to loom li ∈ L in order to simplify the problem. In order to process
the task, this loom needs to be set up with configuration ci. Each task i ∈ I
has a due date di and a priority ri. The higher the priority, the more urgent the
task is. In the deterministic version of the problem, every piece of textile i has
a predefined weaving duration pi.

Looms are disjunctive resources [3] that can only weave one piece of textile
at the time or being subject to one set up at the time. A loom l ∈ L becomes
available at time al. Prior to this time point, the loom completes tasks that
were started and that cannot be changed. A loom l is initially in configuration
cinitl and upon a major setup operation of duration pmajor

l , its new configuration
becomes cfinall . There is only one possible major setup per loom. A loom l can
only execute a task i if it is assigned to that loom (li = l). It executes the
task before its major setup if ci = cinitl or after if ci = cfinall . A major setup is
performed by a worker from the set W . Hence, at most |W | major setups can
be performed simultaneously.

A minor setup takes place between two consecutive weaving tasks on a loom,
but does not change the configuration of the loom. There are up to 3 types
of employees p ∈ P interacting with a loom during a minor setup. The order
is always as follows: weavers, beam tiers, and mechanics. Therefore, a minor
setup is decomposed into an ordered sequence of 3 tasks, one associated for
each profession. The minor setup duration is sequence-dependent in the sense
that the duration ti,j,p for the profession p is a function of the task i before
the setup and the task j after. Employees are cumulative resources. Since there
are qp employees of profession p ∈ P , up to qp minor setup tasks associated to
profession p can be simultaneously executed across the looms.

In the deterministic version of the problem, the unknowns are the starting
time Si of each task i ∈ I, the starting time Sminor

i,p of the minor setup succeeding
a task i ∈ I for each profession p ∈ P , and the starting time Smajor

l of the major
setup of loom l ∈ L. The objective function is the weighted tardiness where the
weights are the task priorities. We use this metric since the tight deadlines make
it unreasonable to search for a schedule without tardiness.

The constraint model is similar to the one of a resource-constrained project
scheduling problem (RCPSP) [2]. In a RCPSP, there are tasks to schedule and
cumulative resources. Our problem differs from the RCPSP in the sense that
minor setups have sequence-dependent processing times.

Figure 1 presents the constraint model of the deterministic problem as pub-
lished in [1]. The variable Fl encodes the first task on loom l. The order of the
tasks is encoded in an array of variables N such that for any piece of textile i,
Ni is the next piece of textile to weave. The dummy task σl acts as a sentinel to
encode the last task to execute on loom l. The task following the last task on a
loom is the first task on the next loom (see constraints (11) and (12)). The vec-
tor N forms a circuit visiting all the tasks hence Constraint (13). We model the
disjunctive resources using less than or equal to constraints. Two Cumulative
constraints model the different setup types (minor and major).
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Fig. 1. Model equations directly taken from our previous paper [1]

4.2 The Stochastic Version

The solver acts as a black box and returns a solution that satisfies the con-
straints. The resulting schedule is valid, yet this solution does not consider the
probabilities of different stochastic events. Since a loom weaves many threads,
each job has a high chance of having multiple breakdowns. Each task is subject
to two types of breakdowns with different probabilities and repair time. A warp
thread has a high chance of breaking, but is quick to repair and the repair pro-
cess is often automated. However, a weft thread rarely breaks, but when it does,
an employee gets involved. Since both types of breakdowns are observable on a
day-to-day basis, we must be able to consider them in a single distribution. In
our case, the breakdowns follow Poisson distributions. We suppose the indepen-
dence of both types of breakdowns (warp thread and weft thread). Since the sum
of two independent random Poisson variables is a random Poisson variable [8],
we can sum the λ-parameters of both breakdown distributions. Therefore, the
duration of the breakdowns in our problem is a random variable that follows the
sum of two Poisson distributions, which is equivalent to a single Poisson distri-
bution. Depending on the task i ∈ I and the loom l ∈ L, the weft thread has an
average number of breakdowns βweft

i,l between 0 to 10 times and when it breaks, it
takes 10 min to repair. The warp thread has an average number of breakdowns
βwarp

i,l between 0 and 40 times and it takes 2 or 4 min to repair. The average
numbers of breakdowns βweft

i,l and βwarp
i,l are proportional to the duration of task

i on loom l. The λ-parameter of the Poisson distribution for the delay caused
by the breakdowns is therefore 10 · βweft

i,l + 2 · βwarp
i,l or 10 · βweft

i,l + 4 · βwarp
i,l . Our

case study is about solving the stochastic version of this problem when weaving
tasks might take longer to execute than expected.
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A Solution with Fixed Processing Times: One way to solve the problem could
be to artificially increase the duration of the weaving tasks by a given percent-
age. This prevents the unplanned events from starving the resource pool avail-
able for setups which causes ripple effects. The drawback of this technique hap-
pens when we overestimate the duration and the number of delays. The delays
must be chosen in a smart and intuitive manner. Giving the solver a choice of
where to take risks can lead to a better solution. This is where our constraint
comes in.

A Solution with Flexible Processing Times: As a second solution, we rather mod-
ify the constraint model with an additional variable Pi to represent the duration
of a weaving task, including breakdowns, and a variable Bi that includes only
the breakdowns. The task duration Pi cannot be shorter than the deterministic
version of the problem, but could be longer if we plan time for breakdowns. We
therefore insert this constraint.

Pi = pi + Bi (17)

We impose a Confidence constraint on the duration of the breakdowns to
ensure that we plan for sufficiently long breakdowns with probability γ.

Confidence([Bi | i ∈ I], [cdfi | i ∈ I], γ) (18)

The Confidence constraint can guarantee that a breakdown does not alter the
subsequent tasks with probability γ. That is, if the breakdown is shorter than
what is computed by the solver, all tasks can still start at the expected time. If
the breakdown is longer than what was planned, it might cause a ripple effect and
delay the execution of the future tasks, but this only happens with probability
1 − γ. Therefore, a valid solution to our problem is a solution that causes no
disturbances, γ % of the time. The rest of the new model with variable processing
time is similar to [11]. The constraints 6 and 8 are modified by replacing pi with
Pi.

5 Simulation

The simulation model is used to evaluate the quality of the solutions. This implies
measuring robustness by emulating scenarios and how well the solutions cope
with stochastic events such as breakdowns. The simulator produces an in-depth
three-dimensional depiction of the work environment. It considers the number
of employees, their positions, the time each employee takes to move between
looms, the number of looms, etc. By using a simulator, we can compare different
solutions without trying them in practice. Since the company might be reluctant
to directly apply the results to their schedules, this also acts as a way to alleviate
doubts. The simulator was designed to test scenarios and to answer questions
that are much beyond the scope of this paper and even beyond scheduling in
general. It can be used to see the effect of strategic decisions on textile production
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and the effect of modifying the number of resources on the performance of the
plant.

For our purpose, the simulation model receives as input the same data as
our optimization model (configuration of the looms, availability of the resources,
duration of the tasks) and the output of the optimization (the starting time of the
tasks). One point that is worth mentioning is that the optimization model uses,
for each weaving task, a distinct distribution for the duration of the breakdowns.
However, the simulator averages out these distributions per loom and uses the
same distribution for all weaving tasks on a given loom.

6 Experiments

6.1 Methodology

Three different methods were compared. First, in the Deterministic model,
we ignore the stochastic events. The Deterministic model consists of using
the model from Fig. 1 without any change. In the Fixed model, we artificially
increase the tasks’ processing times by the sum of the average breakdown dura-
tion multiplied by the average number of breakdowns. This corresponds to the
first solution presented in Sect. 4.2. Finally, the Confidence method is the
model that uses our chance constraint with γ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, . . .,
0.8, 0.9, 0.95, 0.99}. The processing time of a task becomes a variable equal to
the sum of the deterministic processing time (a constant) and the duration of
breakdowns (another variable). These breakdown duration variables are subject
to the Confidence constraint using the Poisson distributions. This corresponds
to the second solution presented in Sect. 4.2.

The CP model was written in the MiniZinc 2.4.2 language [12]. We use the
solver Chuffed [5] with the free search parameter [16]. The simulation is mod-
eled using the academic version of SIMIO [19]. We ran the experiments on a
computer with the configuration: Ubuntu 19.10, 64 GB ram, Processor Intel(R)
Core(TM) i7-6700K CPU @ 4.00 GHz, 4 Cores, 8 Logical Processors. All opti-
mization processes were given a timeout of 30 min and 10 h.

To compare the quality of the schedules provided by the different methods,
we use the mean simulated weighted tardiness. Let Es

i be the ending time of
task i in simulation s. The mean simulated weighted tardiness T̄ is calculated
as follows:

T̄ =
1
n

n∑

s=1

∑

i∈I
ri max(0, Es

i − di) (19)

The inner sum computes the weighted tardiness of a simulation s while the outer
sum averages over n simulations. We use n = 100 simulations. A simulation is
a randomly generated scenario based on probabilities, i.e. that the duration of
the breakdowns are randomly drawn according to the Poisson distributions we
established.
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During the simulation of a schedule, tasks can be delayed by breakdowns
that were not planned by the solver. The task on a loom can only start after
its predecessor, on the same loom, is completed. An idle technician always start
working on a setup when the loom gets ready. If s/he has the choice between
setting up two looms, the priority is given to the setup that was planned earlier
in the original schedule. A loom that completes a task earlier than expected must
wait before starting the next task as we suppose that the material for this next
task is not necessarily ready before its planned start time. Indeed, when a task
is planned, it instructs people on the floor to prepare the material in order for
the task to start on time. This preparation is not part of the optimization since
it adds too much complexity to the decision process. The resources in charge
of preparing the material are voluntary omitted from the problem definition.
However, if, during the execution of the plan, we inform at the last minute that
a task can start earlier, we cannot assume that the preparation will be ready. In
other words, the tasks are subject to precedence constraints with tasks that are
external to the problem.

6.2 Instances

To compare the methods, we had access to four datasets. In these datasets,
there are 5 workers for minor setups, 1 for major setups, and a total of 81 looms
available. The scheduling horizon is 14,400 min which is roughly two weeks of
work time. Table 1 shows the characteristics of each instance, including the
number of pieces of textiles to weave. It also reports the resource usage rate
r = 1

H|L|
∑

i pi where H is the scheduling horizon, |L| is the number of looms
and pi is the processing time (without breakdowns) of task i. We also report the
usage rate when processing times are augmented with the expected breakdown
duration. These breakdowns approximately add 4% to the resource usage in the
last three datasets.

Dataset 1 consists of a reduced dataset where pieces of textiles with a due
date of 0 (these tasks are already late) and some others with due dates larger
than the horizon are removed. This leads to an easier dataset to solve for which
optimal solutions are obtained within 30 minutes of computation time with every
method.

Datasets 2, 3, and 4 are not modified, but cannot be optimally solved even
after 10 hours. These datasets are more realistic with respect to what is usually
observed in the industry where one has to work with suboptimal solutions. Those
are directly extracted from our industrial partner’s database.

In every instance, there is |W | = 1 mechanic available for major setups, 2
mechanics, 5 weavers, and 3 beam tiers available at all time for minor setups.



Confidence Constraint 769

Table 1. Dataset descriptions

Dataset 1 2 3 4

Textile pieces 448 602 480 525

Resource usage (%)

without / with average breakdowns
47.23/51.37 48.06/52.33 52.94/57.79 48.07/48.30

6.3 Results

In Figs. 2, 4, 6, and 8, we present the results of our models with different methods
on the x-axis. The Confidence method was tested with different confidence
thresholds γ. The y-axis is the weighted tardiness. There are two colors of dots
and lines. Red presents the prediction value. The prediction is essentially the
objective value of the solution returned by the solver, i.e. the weighted tardiness
if the plan executes as expected by the Confidence constraint. Blue shows
the mean simulated weighted tardiness of the 100 runs with its 95% confidence
interval.

Figure 2 shows the results for the reduced dataset solvable to optimality.
Notice that the red curve is non-decreasing, since an optimal schedule that sat-
isfies the Confidence constraint with threshold γ is a feasible, but potentially
suboptimal, schedule for a smaller threshold. For this instance, which is rather
trivial to solve since few tasks were competing for the resources, the best strat-
egy was to plan no extra time for the breakouts. In case of a breakout, the
next tasks are simply postponed until the delayed task is completed. At this
time, the resource is always available to perform the setup to execute the next
task and no further delay is caused. This strategy is achieved by the Deter-
ministic method and the Confidence constraint with γ = 0.01. However, the
Confidence predicted value is closer to reality. At the opposite, for γ = 0.99,
the weighted tardiness is at its highest since the duration of nearly all tasks
is set to the longest possible duration. Notice how the Fixed method offers a
performance similar to the Confidence method with γ = 0.5.

For the datasets 2, 3, and 4, we clearly see on Figs. 3, 4, 5, 6, 7 and 8 that
the solver does not produce optimal solutions even within 10 h. Indeed, the red
curve is non-monotonic. Moreover, results of the dataset 2 with γ95% are not
reported as no solution was obtained within 10 h. This happens with even lower
confidence thresholds when using a timeout of 30 min. However, notice that the
simulation follows the predictions of the model for the higher values of γ. The
gap between the objective value obtained by the solver (red) and the simulation
(blue) decreases by increasing γ. In every case, the best solution, as evaluated
by the simulator (blue), comes from the Confidence method. In Dataset 4, the
best solution is obtained at γ = 20%. The Confidence model trades objective
value for robustness. The Confidence model outperforms the Fixed model in
both objective value and robustness. We can also notice that choosing a bad γ
value can make or break the quality of a solution. The solutions for γ = 1% and
γ = 95% are worse than the Deterministic model solution.

With the confidence intervals, we notice that the mean is usually quite precise
with 100 runs of the simulation model. The lengthy events are rarer, therefore,
increasing the number of simulations decreases the variability. Yet, using a higher
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Fig. 2. Dataset with 448 textile pieces to weave (Color figure online)
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Fig. 3. Dataset with 602 textile pieces
to weave. 30 min timeout. (Color figure
online)
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Fig. 4. Dataset with 602 textile pieces
to weave. 10 h timeout. (Color figure
online)

value of γ also reduces the variability. With Confidence the prediction expects
more tardiness, but the guarantee of not causing ripple effects makes it so the
mean simulated weighted tardiness is better.

The Deterministic method has no stochastic optimization involved and
completely ignores potential breakdowns. We would have thought that during
the simulation, this method would most likely lag behind the planned schedule
and finally execute a non-optimize schedule. However, it seems that in a context
where resources are not scarce (dataset 1), repairing the plan as it executes is
not a bad way to proceed. This pattern gradually vanishes with bigger instances.
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Fig. 5. Dataset with 480 textile pieces
to weave. 30 min timeout. (Color figure
online)
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Fig. 6. Dataset with 480 textile pieces
to weave. 10 h timeout. (Color figure
online)
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Fig. 7. Dataset with 525 textile pieces
to weave. 30 min timeout. (Color figure
online)
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Fig. 8. Dataset with 525 textile pieces
to weave. 10 h timeout. (Color figure
online)

On the harder datasets (datasets 2, 3, and 4), the objective value adopts
a wavy form. Our main hypothesis is that varying γ does not only affect the
objective value, it also affects the difficulty to solve the problem. So decreasing
γ would normally decrease the objective value, but in some situations, the search
heuristic gets trapped and the solver returns a worse solution once the timeout
is reached. This is especially apparent with a timeout of 30 min.

The harder datasets (2, 3, and 4) have tighter schedules. A ripple effect
from a breakdown can produce increasingly more lateness. We assume that the
usefulness of the Confidence scales with the risk of the ripple effect. In Figs. 4,
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6, and 8, the curves are respectively centered around γ = 50%, 5%, 20%. The red
curve seems to show that γ = 100% cannot be achieved. This can be explained
by the difficulty of satisfying the higher percent of a Poisson cdf function and
the tendency of probability products to tend towards 0.

When we compare the different solutions graphs with the Table 1, we can
notice the following. The more resource usage there is, the harder it is to solve
the problem with a higher γ value. The instances also get harder as the number of
tasks increases. While we don’t include computation times, we noticed that in the
dataset 1, the computation times were similar (less than a second of difference)
to the deterministic model until 99% where it spiked. The computation times
for the other datasets where inconclusive since no optimal solution was found.

The Fixed method often overestimates the breakdown times needed to create
robustness and produces schedules where tasks are planned to be executed late.
The Fixed method is more rigid compared to Confidence because it cannot
allow to choose where the risk should be taken in order to minimize the weighted
tardiness. More often than not, the Fixed approach gives results similar to
the Confidence method with γ = 0.5, but slightly worse. In a context where
resources are abundant, it would be interesting to compute the processing times
by using a value shorted than the average breakdown time.

The Confidence method shows that the weighted tardiness computed by
the solver is a good indicator of the weighted tardiness obtained in the simula-
tion. It would be interesting to push further the evaluation with instances, not
necessarily industrial, for which we can control the scarcity of the resources. A
search heuristic adapted to stochastic optimization could also help with this type
of problem and reduce the computation times.

7 Conclusion

We presented the Confidence constraint, a new global chance constraint that
provides robust solutions in stochastic contexts. We presented a linear time fil-
tering algorithm with explanations. We compared the Confidence constraint
to a Deterministic and Fixed approach and determined that the new global
chance constraint offers good prediction about the weighted tardiness obtained
in the simulation. It is planned that our industrial partner sets the γ-parameter
according to how much risk they are willing to take and readjusts it every week.
The deterministic method is implemented and being deployed by our indus-
trial partner, while the stochastic optimization is still under evaluation. More
stochastic events need to be taken into account such as the arrival of new orders.
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Abstract. Cryptographic problems can often be reduced to solving
Boolean polynomial systems, whose equivalent logical formulas can be
treated using SAT solvers. Given the algebraic nature of the problem,
the use of the logical XOR operator is common in SAT-based cryptanal-
ysis. Recent works have focused on advanced techniques for handling
parity (XOR) constraints, such as the Gaussian Elimination technique.
First, we propose an original XOR-reasoning SAT solver, named WDSat
(Weil Descent SAT solving), dedicated to a specific cryptographic prob-
lem. Secondly, we show that in some cases Gaussian Elimination on SAT
instances does not work as well as Gaussian Elimination on algebraic sys-
tems. We demonstrate how this oversight is fixed in our solver, which is
adapted to read instances in algebraic normal form (ANF). Finally, we
propose a novel preprocessing technique based on the Minimal Vertex
Cover Problem in graph theory. This preprocessing technique is, within
the framework of multivariate Boolean polynomial systems, used as a
DLL branching selection rule that leads to quick linearization of the
underlying algebraic system. Our benchmarks use a model obtained from
cryptographic instances for which a significant speedup is achieved using
the findings in this paper. We further explain how our preprocessing tech-
nique can be used as an assessment of the security of a cryptographic
system.

1 Introduction

Cryptanalysis is the study of methods to decrypt a ciphertext without any knowl-
edge of the secret key. Academic research in cryptanalysis is focused on deciding
whether a cryptosystem is secure enough to be used in the real world. In addi-
tion, a good understanding of the complexity of a cryptographic attack allows
us to determine the secret key length, making sure that no cryptanalytic effort
can find the key in a feasible amount of time. Recommendations for minimum
key length requirements given by various academic and governmental organiza-
tions [4] are based on the complexity of known attacks.

In recent years, constraint programming (CP) techniques have been used in
the cryptanalysis of both public and secret key cryptosystems. A first example
in the field of differential cryptanalysis is given by the work of Gerault et al. [16–
18] who showed how to use CP for solving the optimal related-key differential
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 774–790, 2020.
https://doi.org/10.1007/978-3-030-58475-7_45
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characteristic problem. Using the CP model presented in their work, all optimal
related-key differential characteristics for AES-128, AES-192 and AES-256 can
be computed in a few hours [17]. We also note the work of Lui et al. [20,21], in
which a CP model is used to aid the Tolerant Algebraic Side-Channel Analysis,
which is a combination of algebraic and side-channel analysis.

In a second line of research, Boolean satisfiability (SAT) solvers have found
use in algebraic cryptanalysis. Algebraic cryptanalysis denotes any technique
which reduces a cryptographic attack to the problem of solving a multivariate
Boolean polynomial system. A common approach for solving these systems is to
use Gröbner basis algorithms [12], exhaustive search [6] or hybrid methods [2].
These methods have been compared against SAT solving techniques for attacks
on various symmetric cryptosystems such as Bivium, Trivium, Grain. Recent
work has also focused on combining algebraic and SAT solving techniques [7]. In
public-key cryptography, SAT solvers have been considered for attacking binary
elliptic curve cryptosystems using the index calculus attack [14]. In this paper,
we tackle this last-mentioned application.

We propose a built-from-scratch SAT solver dedicated to solving an impor-
tant step of the index calculus attack. The solver, named WDSat, is adapted for
XOR-reasoning and reads formulas in ANF form. In addition, we show certain
limitations of the Gaussian Elimination (GE) technique in XOR-enabled SAT
solvers by pointing out a canceling property that is present in algebraic reso-
lution methods but is overseen in current SAT-based GE implementations. We
refer to this canceling property as the XG-ext method and we show how it is
implemented in our solver. In implementations, the XG-ext method comes at a
high computational cost and is thus useful only for benchmarks where it reduces
significantly the number of conflicts. Finally, we introduce a graph theory-based
preprocessing technique, specifically designed for multivariate Boolean polyno-
mial systems, that allows us to further accelerate the resolution of our bench-
marks. This preprocessing technique is designed to allow a rapid linearization
of the underlying algebraic system and should be used coupled with the XG-ext
method. In fact, when the XG-ext method is not applied, the positive outcome
of the preprocessing technique cannot be guaranteed. To confirm, we perform
experiments using CryptoMiniSat [27] coupled with our preprocessing technique
and show that this combination yields slower running times than CryptoMin-
iSat alone. Experimental results in Sect. 6 show that the solver presented in this
paper outperforms all existing solving approaches for the introduced problem.
These approaches include Gröbner basis techniques [12] and state-of-the-art SAT
solvers: MiniSat [11], Glucose [1], MapleLCMDistChronoBT [23], CaDiCaL [3]
and CryptoMiniSat [27].

2 Background

Index Calculus. In cryptanalysis, the index calculus algorithm is a well-known
method for attacking factoring and elliptic curve discrete logarithms, two compu-
tational problems which are at the heart of most used public-key cryptosystems.
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When performing this attack for elliptic curve discrete logarithms, a crucial step
is the point decomposition phase. As proposed by Gaudry [15] and Diem [10]
independently, a point on the elliptic curve can be decomposed into m other
points by solving Semaev’s (m+1)-th summation polynomial [25], that we denote
by Sm+1. For elliptic curves defined over binary fields, the second and the third
summation polynomials are defined as follows:

S2(X1,X2) = X1 + X2, (1)

S3(X1,X2,X3) = X2
1X

2
2 + X2

1X
2
3 + X1X2X3 + X2

2X
2
3 + 1.

For m > 3, the m-th summation polynomial is computed by using the following
recursive formula:

Sm(X1, . . . , Xm) = (2)
ResX(Sm−k(X1, . . . , Xm−k−1,X), Sk+2(Xm−k, . . . , Xm,X)),

where ResX denotes the resultant of two polynomials with respect to the X vari-
able and 1 ≤ k ≤ m−3. The zeros of this polynomial will give the x-coordinates
of points on the elliptic curve as elements in F2n . From an implementation point
of view, these will be represented as n-bit vectors. In index calculus attacks,
the common approach is to decompose a random point given by an n-bit vec-
tor x-coordinate into m points whose x-coordinates write as l-bit vectors, with
l ∼ n

m (see for instance [13,24]). With this choice of parameters, the problem
of decomposing a random point by finding the zeros of Sm+1 can be reduced to
solving a system of n Boolean polynomials with ml variables.

We recall that a multivariate Boolean polynomial system is a system of poly-
nomials in several variables and whose coefficients are in F2 (see for instance [19]).
The following example shows a Boolean polynomial system of three equations
in the variables {x1,x2,x3}:

x1 + x2 · x3 = 0
x1 · x2 + x2 + x3 = 0
x1 + x1 · x2 · x3 + x2 · x3 = 0.

In the literature, the modelisation process allowing to obtain a Boolean poly-
nomial system from a polynomial with coefficients in F2n (here the summation
polynomial) is called a Weil Restriction [15] or Weil Descent [24]. The polyno-
mial systems obtained in this way serve as our starting point for deriving SAT
instances.1

XOR-Enabled SAT Solvers. A Boolean polynomial system can be rewritten
as a conjunction of logical formulas in algebraic normal form (ANF) as follows:
multiplication in F2 (·) becomes the logical AND operation (∧) and addition in
F2 (+) becomes the logical XOR (⊕). The elements 0 and 1 in F2 correspond to
1 Our C code for generating these instances is publicly available [28].
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⊥ and �, respectively. Consequently, solving a multivariate Boolean polynomial
system is equivalent to solving a conjunction of logical formulas in ANF form.
To date, few SAT solvers are adapted to tackle formulas in ANF. A common
approach is to transform the ANF form in a CNF-XOR form, which is a conjunc-
tion of CNF and XOR clauses. In order to do this, every conjunction of two or
more literals x1∧x2∧ . . .∧xk has to be replaced by an additional and equivalent
variable x′ such that x′ ⇔ x1 ∧ x2 ∧ . . . ∧ xk. This equivalence can be rewritten
in CNF using a three-step transformation. First, the equivalence is decomposed
into two implications:

(x′ ⇒ x1 ∧ x2 ∧ . . . ∧ xk) ∧
(x1 ∧ x2 ∧ . . . ∧ xk ⇒ x′).

Then, the material implication rule is applied:

(¬x′ ∨ (x1 ∧ x2 ∧ . . . ∧ xk)) ∧
(¬(x1 ∧ x2 ∧ . . . ∧ xk) ∨ x′).

Finally, using distribution on the first, and De Morgan’s law on the second
constraint, we obtain the following CNF formula:

(¬x′ ∨ x1) ∧
(¬x′ ∨ x2) ∧ (3)
. . .

(¬x′ ∨ xk) ∧
(¬x1 ∨ ¬x2 ∨ . . . ∨ ¬xk ∨ x′).

When we substitute all occurrences of conjunctions in an XOR clause by an
additional variable, we obtain a formula in CNF-XOR form. This is the form
used in the CryptoMiniSat solver [27], which is an extension of the MiniSat
solver [11] specifically designed to work on cryptographic problems.

Example 1. Let us consider the Boolean polynomial system:

x1 + x2 · x3 + x5 + x6 + 1 = 0 (4)
x3 + x5 + x6 = 0.

One additional variable x′ needs to be introduced to substitute the monomial x2 ·
x3. The corresponding CNF-XOR form for this Boolean system is a conjunction
of the following clauses:

x′ ∨ ¬x2 ∨ ¬x3

¬x′ ∨ x2

¬x′ ∨ x3 (5)
x1 ⊕ x′ ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕ �.
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Finally, one could, of course, consider generic solvers (i.e. MiniSat [11], Glu-
cose [1]) for solving cryptographic problems, but this approach needs to further
transform the CNF-XOR model to a CNF one. Transforming an XOR-clause
with k literals in CNF representation is a well-known process that gives 2k−1

OR-clauses of k literals.

Notation. For simplicity, in the remainder of this paper we will omit the mul-
tiplication operator · whenever its use in monomials is implicit. Moreover, due
to equivalence between a Boolean polynomial and an ANF form, these will be
used interchangeably.

3 The WDSat Solver

Our WDSat solver is based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [8], which is a state-of-the-art complete SAT solving technique. The
solver is designed to treat ANF formulae derived from the Weil Descent mod-
elisation of cryptographic attacks, hence its name: WDSat. The code for the
WDSat solver is written in C and is publicly available [29].

WDSat implements three reasoning modules. These include the module for
reasoning on the CNF part of the formula and the so-called XORSET and XOR-
GAUSS (XG) modules designed for reasoning on XOR constraints. The CNF
module is designed to perform classic unit propagation on OR-clauses. The
XORSET module performs the operation equivalent to unit propagation, but
adapted for XOR-clauses. Practically, this consists in checking the parity of the
current interpretation and propagating the unassigned literal. Finally, the XG
module is designed to perform GE on the XOR constraints dynamically. We also
implement an XG extension, described in Sect. 4. The following is a detailed
explanation of this module.

XOR clauses are normalized and represented as equivalence classes. Recall
that an XOR-clause is said to be in normal form if it contains only positive
literals and does not contain more than one occurrence of each literal. Since
we consider that all variables in a clause belong to the same equivalence class
(EC), we choose one literal from the EC to be the representative. An XOR-clause
(x1 ⊕ x2 ⊕ ... ⊕ xn) ⇔ � rewrites as

x1 ⇔ (x2 ⊕ x3 ⊕ ... ⊕ xn ⊕ �). (6)

Finally, we replace all occurrences of a representative of an XOR clause with the
right side of the equivalence. Applying this transformation, we obtain a simplified
system having the following property: a representative of an EC will never be
present in another EC.

Let R be the set of representatives and C be the set of clauses. R and C hold
the right-hand side and the left-hand side of all equations of type (6) respectively.
We denote by Cx the clause in C that is equivalent to x. In other words, Cx is
the right-hand side of the EC that has x as representative. Finally, we denote by
var(Cx) the set of literals (plus a �/⊥ constant) in the clause Cx and C[x1/x2]
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denotes the following substitution of clauses: for all Ci ∈ C containing x1, Ci ←
Ci ⊕ x1 ⊕ x2, i.e. x1 is replaced by x2 in Ci. When we replace a literal x1 by a
clause Cx2 , we adopt a similar notation: C[x1/Cx2 ].

Thus, assigning a literal x1 to � leads to using one of the rules in Table 1,
depending on whether x1 belongs to R or not. In both cases, propagation occurs
when: ∃ xi �= x1 s.t. var(Cxi

) = �/⊥. Conflict occurs when one constraint leads
to the propagation of xi to � and another constraint leads to the propagation
of xi to ⊥.

Table 1 presents inference rules for performing GE in the XG module of
WDSat. Applying these rules allows us to maintain the property of the system
which states that a representative of an EC will never be present in another EC.
For clarity of the notation, the first column of this table contains the premises,
the second one contains the conclusion and the third one is an update on the set
R which has to be performed when the inference rule is used.

Table 1. Gaussian elimination inference rules.

Premises Conclusions on C Updates on R

x1, C
C[x1/�] N/A

x1�∈ R

x1, C
Cx2 ← Cx1 ⊕ x2 ⊕ � R ← R \ {x1}

x1 ∈ R R ← R ∪ {x2}
x2 ∈ var(Cx1) C[x2/Cx2 ]

We denote by k the number of variables in a XOR-CNF formula. At the
implementation level, XOR-clauses are represented as (k + 1)-bit vectors: a bit
for every variable and one for a �, ⊥ constant. Clauses are stored in an array
indexed by the representatives. This representation allows us to perform GE
only by XOR-ing bit-vectors and flipping the clause constant. For a compact
representation of the (k+1)-bit vector we used an array of �(k+1)/64� integers.

Example 2. Let k = 7 and let us consider x2 ⇔ �⊕x1 ⊕x3 ⊕x5. Then we have
that var(Cx2) = {�, x1, x3, x5} and the bit-vector representing this clause is
11010100, where the �, ⊥ constant takes the zero position. Assigning x1 to � is
equivalent to introducing the constraint x1 ⊕ �. We apply the first rule, simply
by XOR-ing this bit-vector with a mask of the form 11000000. The resulting
vector is 00010100, which corresponds to var(Cx2) = {⊥, x3, x5}.

Our DPLL-based solver assigns a truth value to each variable in a formula
F , recursively building a binary search tree. After each assignment, either the
formula is simplified and other truth values are inferred or a conflict occurs. In
the case of a conflict, the last assignment has to be undone for each module
via a backtracking procedure. In Algorithm1, we detail the assign function of
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WDSat, which is at the core of the DPLL algorithm. This function synchronises
all three modules in the following manner. First, the truth value is assigned in
the CNF module and truth values of other variables are propagated. Next, the
truth value of the initial variable, as well as the propagated ones are assigned in
the XORSET module. If the XOR-adapted unit propagation discovers new truth
values, they are assigned in the CNF module, going back to step one. We go back
and forth with this process until the two modules are synchronized and there are
no more propagations left. Finally, the list of all inferred literals is transferred
to the XG module. If the XG module finds new XOR-implied literals, the list
is sent to the CNF module and the process is restarted. If a conflict occurs
in any of the reasoning modules, the assign function fails and a backtracking
procedure is launched. We briefly detail the other functions used in the pseudo-
code. There is a set in function for each module which takes as input a list of
literals and a propositional formula F and sets all literals in this list to � in the
corresponding modules. Through this assignment, the function also infers truth
values of other literals, according to the specific rules in different modules. For
instance, the set in function for the XG module (set in XG) implements the
rules in Table 1, performing a GE on the system. Finally, the last assigned
function in each module returns the list of literals that were assigned during the
last call to the respective set in function.

Algorithm 1. Function assign(F , x) : Assigning a truth value to a literal x in
a formula F , simplifying F and inferring truth values for other literals.
Input: The propositional formula F , a literal x
Output: ⊥ if a conflict is reached, � and a simplified F otherwise

1: to set ← {x}.
2: to set in XG ← {x}.
3: while to set �= ∅ do
4: while to set �= ∅ do
5: if set in CNF(to set, F ) → ⊥ then
6: return (⊥, – ).
7: end if
8: to set ← last assigned in CNF().
9: to set in XG ← to set.

10: if set in XORSET(to set, F )→ ⊥ then
11: return (⊥, – ).
12: end if
13: to set ← last assigned in XORSET().
14: to set in XG ← to set ∪ to set in XG.
15: end while
16: if set in XG(to set in XG, F )→ ⊥ then
17: return (⊥, – ).
18: end if
19: to set ← last assigned XG().
20: end while
21: return (�, F ).
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4 The XG-ext Method

In this section, we show how we extend our XG module. First, we present the
motivation for this work by giving an example of a case where GE in SAT
solvers has certain limitations compared to Algebraic GE. Secondly, we propose
a solution to overcome these limitations and we implement it in our solver to
develop the XORGAUSS-ext method (XG-ext in short). To introduce new rules
for this method, we use the same notation as in Sect. 3.

Gaussian elimination on a Boolean polynomial system consists in performing
elementary operations on equations with the goal of reducing the number of
equations as well as the number of terms in each equation. We cancel out terms
by adding (XOR-ing) one equation to another. GE can be performed on instances
in CNF-XOR form in the same way that it is performed on Boolean polynomial
systems presented in algebraic writing. However, we detected a case where a
possible cancellation of terms is overseen due to the CNF-XOR form.

Example 3. We will reuse the Boolean polynomial system in Example 1 to
demonstrate a case where a cancellation of a term is missed by a XOR-enabled
SAT solver. Let us consider that in Equation (4), we try to assign the value of
1 to x2. As the monomial x2x3 will be equal to 1 only if both terms x2 and x3

are equal to 1, we get the following result:

x1 + x3 + x5 + x6 + 1 = 0
x3 + x5 + x6 = 0.

After XORing the two equations, we infer that x1 = 1.
However, when we assign x2 to � in the corresponding CNF-XOR clause in
Equation (5), as per unit propagation rules, we get the following result:

x′ ∨ ¬x3

¬x′ ∨ x3

x1 ⊕ x′ ⊕ x5 ⊕ x6

x3 ⊕ x5 ⊕ x6 ⊕ �.

When we XOR the second clause to the first one we can not infer that x1 is �
at this point.

Note that (x′∨¬x3)∧(¬x′∨x3) rewrites as x′ ⇔ x3, but if the solver does not
syntactically search for this type of occurrences regularly, x′ will not be replaced
by x3. Moreover, this type of search adds an additional computational cost to
the resolution.

Omissions as the one detailed in Example 3 can occur every time a variable
is set to �. As a result, we define the following rule with the goal to improve the
performance of XOR-enabled SAT solvers:

x′ x1 ⇔ (x′ ∧ x2)
x1 ⇔ x2 . (7)
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This rule can be generalised for the resolution of higher-degree Boolean poly-
nomial systems:

x′ x1 ⇔ (x′ ∧ x2 ∧ . . . ∧ xd)
x1 ⇔ (x2 ∧ . . . ∧ xd) . (8)

Even though these rules are standard in Boolean logic, they are presently not
implemented in XOR-enabled SAT solvers. Note that when a solver takes as
input an instance in CNF-XOR form, the second premise is lost or has to be
inferred by syntactic search. To have knowledge of the second premise, the solver
needs to read the instance in ANF. To this purpose, we defined a new ANF input
format for SAT solvers.

Table 2. Inference rules for the substitution of x1 by x2.

Premises Conclusions on C Updates on R

C, x1 ⇔ x2 C[x1/x2] N/A

x1�∈ R

x2�∈ R

C, x1 ⇔ x2 Cx2 ← Cx1 R ← R \ {x1}
x1 ∈ R

x2�∈ R C[x2/Cx2 ] R ← R ∪ {x2}
x2�∈ var(Cx1)

C, x1 ⇔ x2 Cx3 ← Cx1 ⊕ x2 ⊕ x3 R ← R \ {x1}
x1 ∈ R

x2�∈ R

x2 ∈ var(Cx1) C[x3/Cx3 ] R ← R ∪ {x3}
x3 ∈ var(Cx1)

C, x1 ⇔ x2 C[x1/Cx2 ] N/A

x1�∈ R

x2 ∈ R

x1�∈ var(Cx2)

C, x1 ⇔ x2 Cx3 ← Cx2 ⊕ x1 ⊕ x3 R ← R \ {x2}
x1�∈ R

x2 ∈ R

x1 ∈ var(Cx2) C[x1/x2, x3/Cx3 ] R ← R ∪ {x3}
x3 ∈ var(Cx2)

C, x1 ⇔ x2 Cx3 ← Cx1 ⊕ Cx2 ⊕ x3 R ← R \ {x1, x2}
x1 ∈ R

x2 ∈ R

x3 ∈ var(Cx1 ⊕ Cx2) C[x3/Cx3 ] R ← R ∪ {x3}
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This extension of the XG module is implemented as part of the set in XG
function used in the assign algorithm. The following is a detailed explanation
of how the rule in Equation (7) is applied in our implementation. Recall that the
XG module has the following property: a representative of an EC will never be
present in another EC. This property will be maintained in the XG-ext method
as well. Using the conclusion in Equation (7), we derive in Table 2 six inference
rules that allow us to perform the substitution of a variable x1 by a variable
x2 while maintaining the unicity-of-representatives property. Applying one of
the inference rules in Table 2 can result in conflict or it can propagate a newly
discovered truth value. Note that var(Cx1 ⊕ Cx2) is given by the symmetric
difference (var(Cx1) ∪ var(Cx2)) \ (var(Cx2) ∩ var(Cx1)).

5 Our Preprocessing Technique

Let us reconsider the DPLL-based algorithm. It is well known that the number of
conflicts needed to prove the inconsistency is correlated to the order in which the
variables are assigned. Among the state-of-the-art branching rules you can find
two categories according to the type of heuristics. The first are based on Maxi-
mum number of Occurrences in the Minimum clauses Size (MOMs) whereas the
second adopt the Variable State Independent Decaying Sum (VSIDS) branching
heuristic.

In this work, we were interested in developing a criterion for defining the order
of variables on CNF-XOR instances derived from Boolean polynomial systems.
We set the goal to choose branching variables that will lead as fast as possible to
a linear polynomial system, which can be solved using GE in polynomial time.
In terms of SAT solving, choosing this order for branching will cancel out all
clauses in the CNF part of the formula as a result of unit propagation. When
only the XOR part of the CNF-XOR formula is left, the solver performs GE on
the remaining XOR constraints in polynomial time.

After setting this goal, choosing which variable to assign next according to the
number of their occurrences in the system is no longer an optimal technique. We
explain this idea on an example. For simplicity, we only use the Boolean algebra
terminology in this section. However, the methods described are applicable to
both SAT solving and algebraic techniques based on the process of recursively
making assumptions on the truth values of variables in the system (as with the
DPLL algorithm).

Example 4. Consider the following Boolean polynomial system:

x1 + x2x3 + x4 + x4x5 = 0 (9)
x1 + x2x3 = 0
x1 + x3x5 + x6 = 0
x1 + x2x5x6 + x6 = 0
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In this example, the variable with the highest number of occurrences is x1.
However, x1 does not occur in any monomial of degree > 1. Thus, assigning first
x1 does not contribute to the linearization of the system and we need to find a
more suitable criterion.

The solution we propose is inspired by graph theory. Particularly, we identi-
fied a parallel between the problem of defining the order in which the variables
are assigned and the Minimal Vertex Cover Problem (MVC).

In graph theory, a vertex cover is a subset of vertices such that for every edge
(vi, vj) of the graph, either vi or vj is in the vertex cover. Given an undirected
graph, the Minimum Vertex Cover Problem is a classic optimization problem of
finding a vertex cover of minimal size.

An undirected graph is derived from a Boolean polynomial system as follows.

• Each variable xi from the system becomes a vertex vi in the graph G.
• An edge (vi, vj) is in G if and only if (in the corresponding Boolean system)

there exists a monomial of degree n ≥ 2 which contains both xi and xj .

When we use this representation of a Boolean polynomial system as a graph,
a vertex cover defines a subset of variables whose assignment will result in a
linear Boolean polynomial system in the remaining non-assigned variables. Con-
sequently, finding the MVC of the graph is equivalent to finding the minimal
subset of variables one has to assign to obtain a linear system.

Fig. 1. Graph derived from Example 4

Figure 1 shows the graph derived from Example 4. The MVC of this graph is
{v2, v5}. As a result, when all variables in the subset {x2,x5} are assigned, the
remaining polynomial system is linear. We give here the system derived after
the assignment x2 = 1 and x5 = 1.
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x1 + x3 = 0
x1 + x3 + x6 = 0
x1 = 0.

For all other possible assignments of x2 and x5, we obtain similar linear systems.
Defining the order of branching variables will serve as a preprocessing tech-

nique that consists in (i) deriving a graph from a Boolean polynomial system
and (ii) finding the MVC of the resulting graph. During the solving process,
variables corresponding to vertices in the MVC are assigned first. Even though
the MVC problem is NP-complete, its execution for graphs derived from cryp-
tographic models always finishes in negligible running time due to the small
number of variables. Our solver does not use any other MOMs or VSIDS-based
heuristic during the solving process, as the order of the branching variables is
predetermined by the MVC preprocessing technique.

When variables are assigned in the order defined by this preprocessing tech-
nique, the worst-case time complexity of a DPLL-based algorithm drops from
O(2k) to O(2k

′
), where k′ is the number of vertices in the MVC set. Note that

the MVC of a complete graph is equal to the number of its vertices. Conse-
quently, when the corresponding graph of a Boolean polynomial system is a
complete graph, solving the system using this preprocessing technique is as hard
as solving the system without it.

Finding the MVC corresponding to a Boolean polynomial system can also be
used as an assessment of the security of the underlying cryptosystem. Indeed,
an exhaustive search on a subset of variables, which are the variables in the
MVC, results in linear systems that can be solved in polynomial time. This
straightforward approach yields an upper bound on the complexity of solving
the system at hand. In short, to assess the security of a cryptographic system,
assuming that this is based on solving the Boolean polynomial system first, one
computes the MVC of this system and deduces that O(2k

′
) is a bound on the

complexity of the attack.

6 Experimental Results

To support our claims, we experimented with benchmarks derived from two
variants of the index calculus attack on the discrete logarithm problem over
binary elliptic curves. As explained in Sect. 2, a SAT solver can be used for solv-
ing Semaev’s summation polynomials in the point decomposition phase. Our
model is derived from the Boolean multivariate polynomial system given by the
m + 1-th summation polynomial, with m ≥ 2. This model has previously been
examined in [14]. We compare the WDSat solver presented in this paper to the
following approaches: the best currently available implementation of Gröbner
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basis (F4 [12] in MAGMA [5]), the solvers MiniSat, [11], Glucose [1], MapleL-
CMDistChronoBT [23], CaDiCaL [3] and CryptoMiniSat [27] with enabled GE.2

Note that MapleLCMDistChronoBT and CaDiCaL are the winners in the main
track of the latest SAT competition [22] in 2018. All tests were performed on a
2.40GHz Intel Xeon E5-2640 processor and are an average of 100 runs.

For SAT models derived from cryptographic problems, the preprocessing
technique is executed only once, since all instances presenting a specific crypto-
graphic problem are equivalent except for the constant in the XOR constraints.
Even though the MVC problem is NP-complete, its execution for graphs derived
from our models always finished in negligible running time, due to the small
number of nodes.

We conducted experiments using both the third and the fourth polynomials.
Results on solving the third summation polynomial (m = 2) are shown in Table 4.
The parameters used to obtain these benchmarks are n = 41 and l = 20. As a
result, we obtained a Boolean polynomial system of 41 equations in 40 variables
(see Sect. 2). We show running-time averages on satisfiable and unsatisfiable
instances separately, as these values differ between the two cases.

As different variants of our solver can yield better results for different bench-
marks, we compared all variants to decide on the optimal one. We also tested
the solver with and without our preprocessing technique (denoted by mvc in the
tables). The results in Table 3 show that WDSat yields optimal results for these
benchmarks when the XG-ext method is used coupled with the preprocessing
technique. This outcome is not surprising when we examine the MVC obtained
by the preprocessing technique. The number of variables in the system is k = 40,
but the number of vertices in the MVC is 20. This means that by using the opti-
mization techniques described in this paper, the worst-case time complexity of
the examined models drops from 2k to 2

k
2 . This is the case for every instance

derived from the third summation polynomial.

Table 3. Comparing different versions of WDSat for solving the third summation
polynomial.

WDSat+ SAT UNSAT

Runtime (s) #Conflicts Runtime (s) #Conflicts

XG 6028.4 200957178 11743.2 354094821

XG+mvc 639.6 21865963 2973.0 94489361

XG-ext 375.9 4911099 870.1 10789518

XG-ext+mvc 4.2 27684 13.5 86152

By analyzing the average running time and the average number of conflicts in
Table 4, we see that the chosen variant of the WDSat solver outperforms all other
approaches for solving instances derived from the third summation polynomial.
2 Enabling GE in CryptoMiniSat yielded better performance for these benchmarks.
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Current versions of CryptoMiniSat do not allow choosing the order of the
branching variables as its authors claim that this technique almost always results
in slower running times. To verify this claim, we modified the source code of
CryptoMiniSat in order to test our preprocessing technique coupled with this
solver (see line CryptoMiniSat+mvc in Table 4). We set a timeout of 10 min and
only 9 out of 100 unsatisfiable and 54 out of 100 satisfiable instances were solved.
This confirms that the MVC preprocessing technique is strongly linked to our
XG-ext method. Indeed, when the XG-ext method is not used, one can not guar-
antee that when all variables from the MVC are assigned the system becomes
linear. This is confirmed also by looking at the number of conflicts for the Cryp-
toMiniSat+mvc approach, which is greater than 2

k
2 even for benchmarks that

were solved before the timeout. Recall that k
2 is the size of the MVC. On the

other hand CryptoMiniSat without the preprocessing technique succeeds in solv-
ing these instances after less than 2

k
2 conflicts. We conclude that the searching

technique in CryptoMiniSat used to decide on the next branching variable is
optimal for this solver.

The solvers which are not XOR-enabled did not solve any of the 200 satisfi-
able and unsatisfiable instances before the 10-min timeout. This is not surprising
as instances derived from the third summation polynomial are solved a lot faster
when a GE technique is used.

Table 4. Comparing different approaches for solving the third summation polynomial.

Solving approach SAT UNSAT

Runtime (s) #Conflicts Runtime (s) #Conflicts

Gröbner 16.8 N/A 18.7 N/A

MiniSat >600 >600

Glucose >600 >600

MapleLCMDistChronoBT >600 >600

CaDiCaL >600 >600

CryptoMiniSat 29.0 226668 84.3 627539

CryptoMiniSat+mvc 237.4 1263601 >600

WDSat+XG-ext+mvc 4.2 27684 13.5 86152

Experimental results in Table 5 are performed using benchmarks derived from
the fourth summation polynomial. We obtain our model using a symmetrization
technique proposed by Gaudry [15]. According to our parameter choice, the
initial polynomial system contains 52 equations in 51 variables. However, only
18 out of the 51 variables are ‘crucial’. The other 33 variables are introduced
as a result of Gaudry’s symmetrization technique. Our experiments show that
performing GE on these instances does not result in faster running times. On
the contrary, running times are significantly slower when the XG module of the
WDSat solver is enabled. Running times become even slower with the XG-ext
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method. We attribute this fallout to the particularly small improvement in the
number of conflicts, compared to the significant computational cost of performing
the GE technique. Indeed, the graph corresponding to the model for the fourth
summation polynomial is complete and thus the size of the MVC is equivalent
to the number of variables in the formula. This leads us to believe there is no
optimal choice for the order of branching variables and the system generally
does not become linear until the second-to-last branching. We conclude that
for solving these instances WDSat without GE is the optimal variant, since it
outperforms both the Gröbner basis method and current state-of-the-art solvers.

To sum up, when WDSat is used for the index calculus attack, our recom-
mendation is to enable the XG-ext option for instances obtained from the third
summation polynomial and to completely disable the XG module for instances
from the fourth polynomial. For ANF instances arising from other cryptographic
problems, it would be best to solve smaller instances of the problem and analyse
the number of conflicts. If the number of conflicts is only slightly better when
the XG module is enabled, then disabling the XG module is likely to yield faster
running times for higher scale instances of that problem.

Table 5. Comparing different approaches for solving the fourth summation polynomial.

Solving approach SAT UNSAT

Runtime (s) #Conflicts Runtime (s) #Conflicts

Gröbner 229.3 N/A 229.4 N/A

MiniSat 239.7 1840190 517.0 3433304

Glucose 189.2 1527158 274.8 2056575

MapleLCMDistChronoBT 655.1 4035131 918.7 5378945

CaDiCaL 43.6 254194 141.3 629869

CryptoMiniSat 331.8 1791188 707.9 3416526

WDSat 0.6 48438 3.8 255698

WDSat+XG 19.0 85282 49.8 252949

Our solver is dedicated to problems arising from a Weil descent. However,
we tested it on Trivium [9] instances as they are extensively used in the SAT
literature. We created instances using a modelization similar to the one in Grain
of Salt [26], a tool for deriving instances for keystream generators comprised of
Nonlinear-Feedback Shift Registers (NLFSR). Our experience is that Crypto-
MiniSat yields faster running times than all of the WDSat variants for Trivium
instances. WDSat does not implement any of the optimizations for Trivium such
as dependent variable removal, sub-problem detection, etc. as there are no such
occurrences in systems arising from a Weil descent.
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7 Conclusion

In this paper, we revisited XOR-enabled SAT solvers and their use in crypt-
analysis. We proposed a novel SAT solver, named WDSat, dedicated to solv-
ing instances derived from the index calculus attack on binary elliptic curves.
We conducted experiments comparing WDSat to the algebraic Gröbner basis
resolution method, as well as to five state-of-the-art SAT solvers. Our solver
outperforms all existing resolution approaches for this specific problem.
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Abstract. Modern software deployment process produces software that
is uniform, and hence vulnerable to large-scale code-reuse attacks. Com-
piler-based diversification improves the resilience and security of software
systems by automatically generating different assembly code versions of
a given program. Existing techniques are efficient but do not have a pre-
cise control over the quality of the generated code variants.

This paper introduces Diversity by Construction (DivCon), a
constraint-based compiler approach to software diversification. Unlike
previous approaches, DivCon allows users to control and adjust the con-
flicting goals of diversity and code quality. A key enabler is the use
of Large Neighborhood Search (LNS) to generate highly diverse assem-
bly code efficiently. Experiments using two popular compiler benchmark
suites confirm that there is a trade-off between quality of each assem-
bly code version and diversity of the entire pool of versions. Our results
show that DivCon allows users to trade between these two properties by
generating diverse assembly code for a range of quality bounds. In par-
ticular, the experiments show that DivCon is able to mitigate code-reuse
attacks effectively while delivering near-optimal code (<10% optimality
gap).

For constraint programming researchers and practitioners, this paper
demonstrates that LNS is a valuable technique for finding diverse solu-
tions. For security researchers and software engineers, DivCon extends
the scope of compiler-based diversification to performance-critical and
resource-constrained applications.

Keywords: Compiler-based software diversification · Code-reuse
attacks · Constraint programming · Embedded systems

1 Introduction

Good software development practices, such as code reuse [19], continuous deploy-
ment, and automatic updates contribute to the emergence of software monocul-
tures [3]. While such monocultures facilitate software distribution, bug reporting,
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and software authentication, they also introduce serious risks related to the wide
spreading of attacks against all users that run identical software.

Software diversification is a method to mitigate the problems caused by uni-
formity. Similarly to biodiversity, software diversification improves the resilience
and security of a software system [2] by introducing diversity in it. Software
diversification can be applied in different phases of the software development
cycle, i.e. during implementation, compilation, loading, execution, and more [20].
This paper is concerned with compiler-based diversification, which automatically
generates different assembly code versions from a single source program.

Modern compilers do not merely aim to generate correct code, but also code
that is of high quality. Existing compiler-based diversification techniques are
efficient and effective at diversifying assembly code [20] but do not have a precise
control over its quality and may produce unsatisfactory results. These techniques
(discussed in Sect. 5) are either based on randomizing heuristics or in high-level
superoptimization methods that do not capture accurately the quality of the
generated code.

This paper introduces Diversity by Construction (DivCon), a compiler-based
diversification approach that allows users to control and adjust the conflicting
goals of quality of each code version and diversity among all versions. DivCon
uses a Constraint Programming (CP)-based compiler backend to generate multi-
ple solutions corresponding to functionally equivalent program variants accord-
ing to an accurate code quality model. The backend models the input program,
the hardware architecture, and the compiler transformations as a constraint
problem, whose solution corresponds to assembly code for the input program.

The use of CP makes it possible to 1) control the quality of the generated
solutions by constraining the objective function, 2) introduce application-specific
constraints that restrict the diversified solutions, and 3) apply sophisticated
search procedures that are particularly suitable for diversification. In particular,
DivCon uses Large Neighborhood Search (LNS) [29], a popular metaheuristic in
multiple application domains, to generate highly diverse solutions efficiently.

Our experiments compiling 17 functions from two popular compiler bench-
mark suites to the MIPS32 architecture confirm that there is a trade-off between
code quality and diversity, and demonstrate that DivCon allows users to navigate
this conflict by generating diverse assembly code for a range of quality bounds.
In particular, the experiments show that DivCon is able to mitigate code-reuse
attacks effectively while guaranteeing a code quality of 10% within optimality.

For constraint programming researchers and practitioners, this paper demon-
strates that LNS is a valuable technique for finding diverse solutions. For security
researchers and software engineers, DivCon extends the scope of compiler-based
diversification to performance-critical and resource-constrained applications, and
provides a solid step towards secure-by-construction software.

Contributions. To summarize, this paper:

– proposes a CP-based technique for compiler-based, quality-aware software
diversification (Sect. 3);
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1 0x9d001408 : . . .
2 0x9d00140c : lw $s2 , 4( $sp )
3 0x9d001410 : lw $s4 , 0( $sp )
4 0x9d001414 : j r $t9
5 0x9d001418 : addiu $sp , $sp , 16

(a) Original gadget.

1 0x9d001408 : lw $s2 , 4( $sp )
2 0x9d00140c : nop
3 0x9d001410 : lw $s4 , 0( $sp )
4 0x9d001414 : j r $t9
5 0x9d001418 : addiu $sp , $sp , 16

(b) Diversified gadget.

Fig. 1. Example gadget diversification in MIPS32 assembly code

– shows that LNS is a promising technique for generating highly diverse solu-
tions efficiently (Sect. 4.3);

– quantifies the trade-off between code quality and diversity (Sect. 4.4); and
– demonstrates that DivCon mitigates code-reuse attacks effectively while pre-

serving high code quality (Sect. 4.5).

2 Background

This section describes code-reuse attacks (Sect. 2.1), diversification approaches
in CP (Sect. 2.2), and combinatorial compiler backends (Sect. 2.3).

2.1 Code-Reuse Attacks

Code-reuse attacks take advantage of memory vulnerabilities, such as buffer
overflows, to reuse program code for malicious purposes. More specifically, code-
reuse attacks insert data into the program memory to affect the control flow of
the program and execute code that is valid but unintended.

Jump-Oriented Programming (JOP)1 is a code-reuse attack [4,7] that com-
bines different code snippets from the original program code to form a Turing
complete language for attackers. These code snippets terminate with a branch
instruction. The building blocks of a JOP attack are gadgets: meta-instructions
that consist of one or multiple code snippets with specific semantics. Figure 1a
shows a JOP gadget found by the ROPgadget tool [27] in a MIPS32 binary.
Assuming that the attacker controls the stack, lines 2 and 3 load attacker data
in registers $s2 and $s4, respectively. Then, line 4 jumps to the address of reg-
ister $t9. The last instruction (line 5) is placed in a delay slot and hence it is
executed before the jump [31]. The semantics of this gadget depends on the
attack payload and might be to load a value to register $s2 or $s4. Then, the
program jumps to the next gadget that resides at the stack address of $t9.

Statically designed JOP attacks use the absolute binary addresses for
installing the attack payload. Hence, a simple change in the instruction sched-
ule of the program as in Fig. 1b prevents a JOP attack designed for Fig. 1a.
An attacker that designs an attack based on the binary of the original program
assumes the presence of a gadget (Fig. 1a) at position 0x9d00140c. However, in

1 This paper focuses on JOP due to the characteristics of MIPS32, but could be gener-
alized to other code-reuse attacks such as Return-Oriented Programming (ROP) [28].
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the diversified version, address 0x9d00140c does not start with the initial lw
instruction of Fig. 1a, and by the end of the execution of the gadget, register
$s2 does not contain the attacker data. In this way, diversification can break the
semantics of the gadget and mitigate an attack against the diversified code.

2.2 Diversity in Constraint Programming

While typical CP applications aim to discover either some solution or the optimal
solution, some applications require finding diverse solutions for various purposes.

Hebrard et al. [13] introduce the MaxDiversekSet problem, which consists
in finding the most diverse set of k solutions, and propose an exact and an
incremental algorithm for solving it. The exact algorithm does not scale to a
large number of solutions [16,32]. The incremental algorithm selects solutions
iteratively by solving a distance maximization problem.

Automatic Generation of Architectural Tests (ATGP) is an application of
CP that requires generating many diverse solutions. Van Hentenryck et al. [32]
model ATGP as a MaxDiversekSet problem and solve it using the incremental
algorithm of Hebrard et. al. Due to the large number of diverse solutions required
(50–100), Van Hentenryck et al. replace the maximization step with local search.

In software diversity, solution quality is of paramount importance. In gen-
eral, earlier CP approaches to diversity are concerned with satisfiability only.
An exception is the approach of Petit et al. [26]. This approach modifies the
objective function for assessing both solution quality and solution diversity, but
does not scale to the large number of solutions required by software diversity.
Ingmar et al. [16] propose a generic framework for modeling diversity in CP. For
tackling the quality-diversity trade-off, they propose constraining the objective
function with the optimal (or best known) cost o. DivCon applies this approach
by allowing solutions p% worse than o, where p is configurable.

2.3 Compiler Optimization as a Combinatorial Problem

A Constraint Satisfaction Problem (CSP) is a problem specification P =
〈V,U,C〉, where V are the problem variables, U is the domain of the variables,
and C the constraints among the variables. A Constraint Optimization Problem
(COP), P = 〈V,U,C,O〉, consists of a CSP and an objective function O. The
goal of a COP is to find a solution that optimizes O.

Compilers are programs that generate low-level assembly code, typically opti-
mized for speed or size, from higher-level source code. A compilation process can
be modeled as a COP by letting V be the decisions taken during the transla-
tion, C be the constraints imposed by the program semantics and the hardware
resources, and O be the cost of the generated code.

Compiler backends generate low-level assembly code from an Intermediate
Representation (IR), a program representation that is independent of both the
source and the target language. Figure 2 shows the high-level view of a com-
binatorial compiler backend. A combinatorial compiler backend takes as input
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factorial.c

Compiler
Frontend

optimal

Combinatorial Compiler Backend
factorial.o

101001010
100111101
100110001
100100110
100011100
100010011

source
code IR

optimal solution

optimal

Fig. 2. High-level view of a combinatorial compiler backend

the IR of a program, generates and solves a COP, and outputs the optimized
low-level assembly code described by the solution to the COP.

This paper assumes that programs at the IR level are represented by their
Control-Flow Graph (CFG). A CFG is a representation of the possible execution
paths of a program, where each node corresponds to a basic block and edges
correspond to intra-block jumps. A basic block, in its turn, is a set of abstract
instructions (hereafter just instructions) with no branches besides the end of the
block. Each instruction is associated with a set of operands characterizing its
input and output data. Typical decision variables V of a combinatorial compiler
backend are the issue cycle ci ∈ N0 of each instruction i, the processor instruction
mi ∈ N0 that implements each instruction i, and the processor register ro ∈ N0

assigned to each operand o.
DivCon aims at mitigating code-reuse attacks. Therefore, DivCon consid-

ers the order of the instructions in the final binary, which directly affects the
feasibility of code-reuse attacks (see Figs. 1a and 1b). For this reason, the diver-
sification model uses the issue cycle sequence of instructions, c = {c0, c1, ..., cn},
to characterize the diversity among different solutions.

Figure 3a shows an implementation of the factorial function in C where each
basic block is highlighted. Figure 3b shows the IR of the program. The exam-
ple IR contains 10 instructions in three basic blocks: bb.0, bb.1, and bb.2. bb.0
corresponds to initializations, where $a0 holds the function argument n and t1
corresponds to variable f. bb.1 computes the factorial in a loop by accumulating
the result in t1. bb.2 stores the result to $v0 and returns. Some instructions in
the example are interdependent, which leads to serialization of the instruction
schedule. For example, beq (6) consumes data (t3) defined by slti (4) and hence
needs to be scheduled later. Instruction dependencies limit the amount of pos-
sible assembly code versions and can restrict diversity significantly, as seen in
Sect. 4.3. Finally, Fig. 3c shows the arrangement of the issue cycle variables in
the constraint model used by the combinatorial compiler backend.

3 DivCon

This section introduces DivCon, a software diversification method that uses a
combinatorial compiler backend to generate program variants. Figure 4 shows a
high-level view of the diversification process. DivCon uses 1) the optimal solution
to start the search for diversification and 2) the cost of the optimal solution to
restrict the variants within a maximum gap from the optimal. Subsequently,
DivCon generates a number of solutions to the CSP that correspond to diverse
program variants.
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int f a c t o r i a l ( int n) {
int f ;
f = 1 ;

while (n > 0) {
f ∗= n−−;

}
return f ;

}
(a) C code

0 : t1 ← $a0
1 : t2 ← 1
2 : b l e z t1, bb . 2

3 : t2 ← mul t2, t1
4 : t3 ← s l t i t1, 2
5 : t1 ← addi t1, −1
6 : beq t3, %0, bb . 1
7 : b bb . 2

8 : $v0 ← t2
9 : j r $ra

bb.0

bb.1

bb.2

(b) IR

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

bb.0

bb.1

bb.2

(c) Issue cycles

Fig. 3. Factorial function example
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Fig. 4. High-level view of DivCon

The rest of this section describes the diversification approach of DivCon.
Section 3.1 formulates the diversification problem in terms of the constraint
model of a combinatorial compiler backend, Sect. 3.2 defines the distance mea-
sures, and finally, Sect. 3.3 describes the search strategy for generating program
variants.

3.1 Problem Description

Let P = 〈V,U,C〉 be the compiler backend CSP for the program under com-
pilation, O be the objective function, and o be the cost of the optimal or best
known solution to the COP, 〈V,U,C,O〉. Let δ be a function that measures the
distance between two solutions of P (two such functions are defined in Sect. 3.2).
Let h ∈ N be the minimum pairwise distance and p ∈ R≥0 be the maximum
optimality gap specified by the user. Our problem is to find a subset of the solu-
tions to the CSP, S ⊆ sol(P ), such that ∀s1, s2 ∈ S . s1 �= s2 =⇒ δ(s1, s2) ≥ h
and ∀s ∈ S .O(s) ≤ (1 + p) · o.

To solve the above problem, DivCon employs the incremental algorithm listed
in Algorithm 1. Starting with the optimal solution yopt, the algorithm adds the
distance constraint for yopt and the optimality constraint with o = yopt(O) (line
2). Notation δ(y) is used instead of δ(y, s) | ∀s ∈ sol(〈V,U,C ′〉) for readability.
While the termination condition is not fulfilled (line 3), the algorithm uses LNS
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as described in Sect. 3.3 to find the next solution y (line 4), adds the next solution
to the solution set S (line 5), and updates the distance constraints based on the
latest solution (line 6). When the termination condition is satisfied, the algorithm
returns the set of solutions S corresponding to diversified assembly code variants.

Algorithm 1: Incremental algorithm for generating diverse solutions

1 S ← {yopt } , y ← yopt ,
2 C′ ← C ∪ {δ(yopt) ≥ h , O(V ) ≤ (1 + p) · o}
3 while not term cond ( ) // e . g . | S | > k ∨ t im e l im i t ( )
4 y ← solveLNS ( relax ( y ) , 〈V, U, C′〉)
5 S ← S ∪ {y}
6 C′ ← C′ ∪ {δ(y) ≥ h}

Figure 5 shows two MIPS32 variants of the factorial example (Fig. 3), which
correspond to two solutions of DivCon. The variants differ in two aspects: first,
the beqz instruction is issued one cycle later in Fig. 5b than in Fig. 5a, and
second, the temporary variable t3 (see Fig. 3) is assigned to different MIPS32
registers ($t0 and $t1).

3.2 Distance Measures

This section defines two alternative distance measures: Hamming Distance (HD)
and Levenshtein Distance (LD). Both distances operate on the schedule of the
instructions, i.e. the order in which the instructions are issued in the CPU.

Hamming Distance (HD). HD is the Hamming distance [12] between the issue
cycle variables of two solutions. Given two solutions s, s′ ∈ sol(P ):

δHD(s, s′) =
n∑

i=0

(s(ci) �= s′(ci)), (1)

where n is the maximum number of instructions.
Consider Fig. 1b, a diversified version of the gadget in Fig. 1a. The only

instruction that differs from Fig. 1a is the instruction at line 1 that is issued

1 bb . 0 : b l e z $a0 , bb . 2
2 addiu $v0 , $zero , 1
3 bb . 1 : mul $v0 , $v0 , $a0
4 s l t i $t0 , $a0 , 2
5 beqz $t0 , bb . 1
6 addi $a0 , $a0 , −1
7 bb . 2 : j r $ra
8 nop

(a) Variant 1.

1 bb . 0 : b l e z $a0 , bb . 2
2 addiu $v0 , $zero , 1
3 bb . 1 : mul $v0 , $v0 , $a0
4 s l t i $t1 , $a0 , 2
5 nop
6 beqz $t1 , bb . 1
7 addi $a0 , $a0 , −1
8 bb . 2 : j r $ra
9 nop

(b) Variant 2.

Fig. 5. Two MIPS32 variants of the factorial example in Fig. 3
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one cycle before. The two examples have a HD of one, which in this case is
enough for breaking the functionality of the original gadget (see Sect. 2.1).

Levenshtein Distance (LD). LD (or edit distance) measures the minimum num-
ber of edits, i.e. insertions, deletions, and replacements, that are necessary for
transforming one instruction schedule to another. Compared to HD, which con-
siders only replacements, LD also considers insertions and deletions. To under-
stand this effect, consider Fig. 5. The two gadgets differ only by one nop operation
but HD gives a distance of three, whereas LD gives one, which is more accurate.
LD takes ordered vectors as input, and thus requires an ordered representation
(as opposed to a detailed schedule) of the instructions. Therefore, LD uses vector
c−1 = channel(c), a sequence of instructions ordered by their issue cycle. Given
two solutions s, s′ ∈ sol(P ):

δLD(s, s′) = levenshtein distance(s(c−1), s′(c−1)), (2)

where levenshtein distance is the Wagner–Fischer algorithm [33] with time
complexity O(nm), where n and m are the lengths of the two sequences.

3.3 Search

Unlike previous CP approaches to diversity, DivCon employs Large Neighbor-
hood Search (LNS) for diversification. LNS is a metaheuristic that defines a
neighborhood, in which search looks for better solutions, or, in our case, dif-
ferent solutions. The definition of the neighborhood is through a destroy and
a repair function. The destroy function unassigns a subset of the variables in
a given solution and the repair function finds a new solution by assigning new
values to the destroyed variables.

In DivCon, the algorithm starts with the optimal solution of the combi-
natorial compiler backend. Subsequently, it destroys a part of the variables and
continues with the model’s branching strategy to find the next solution, applying
a restart after a given number of failures. LNS uses the concept of neighborhood,
i.e. the variables that LNS may destroy at every restart. To improve diversity, the
neighborhood for DivCon consists of all decision variables, i.e. the issue cycles
c, the instruction implementations m, and the registers r. Furthermore, LNS
depends on a branching strategy to guide the repair search. To improve security
and allow LNS to select diverse paths after every restart, DivCon employs a
random variable-value selection branching strategy as described in Table 1b.

4 Evaluation

The evaluation of DivCon addresses four main questions:

– RQ1. What is the scalability of the distance measures in generating multiple
program variants? Here, we evaluate which of the distance measures is the
most appropriate for software diversification.



Constraint-Based Software Diversification Against Code-Reuse Attacks 799

– RQ2. How effective and how scalable is LNS for code diversification? Here,
we investigate LNS as an alternative approach to diversity in CP.

– RQ3. How does code quality relate to code diversity and what are the involved
trade-offs?

– RQ4. How effective is DivCon at mitigating code-reuse attacks? This question
is the main application of CP-based diversification in this work.

4.1 Experimental Setup

Implementation. DivCon is implemented as an extension of Unison [6], and
is available at https://github.com/romits800/divcon. Unison implements two
backend transformations: instruction scheduling and register allocation. DivCon
employs Unison’s solver portfolio that includes Gecode v6.2 [11] and Chuffed
v0.10.3 [8] to find optimal solutions, and Gecode v6.2 only for diversification.
The LLVM compiler [21] is used as a front-end and IR-level optimizer.

Benchmark Functions and Platform. The evaluation uses 17 functions sampled
randomly from MediaBench [22] and SPEC CPU2006 [30], two benchmark suites
widely employed in embedded and general-purpose compiler research. The size
of the functions is limited to between 10 and 30 instructions (with a median of 20
instructions) to keep the evaluation of all methods and distance measures feasible
regardless of their computational cost. Table 2 lists the ID, application, name,
basic blocks (b), and instructions (i) of each sampled function. The functions are
compiled to MIPS32 assembly code. MIPS32 is a popular architecture within
embedded systems and the security-critical Internet of Things [1].

Host Platform. All experiments run on an Intel R©CoreTMi9-9920X processor at
3.50 GHz with 64 GB of RAM running Debian GNU/Linux 10 (buster). Each of
the experiments runs for 20 random seeds. The results show the mean value and
the standard deviation from these experiments. The available virtual memory
for each of the executions is 10 GB. The experiments for different random seeds
run in parallel (5 seeds at a time), with two unique cores available for every seed
for overheating reasons. DivCon runs as a sequential program.

Table 1. Original and Random branching strategies

(a) Original branching strategy.

Variable Var. Selection Value Selection

ci in order min. val first

mi in order min. val first

ro in order randomly

(b) Random branching strategy.

Variable Var. Selection Value Selection

ci randomly randomly

mi randomly randomly

ro randomly randomly

https://github.com/romits800/divcon
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Table 2. Benchmark functions

ID App Function name b i

b1 sphinx3 ptmr init 1 10

b2 gcc ceil log2 1 14

b3 mesa glIndexd 1 14

b4 h264ref symbol2uvlc 1 15

b5 gobmk autohelperowl defen.. 1 23

b6 mesa glVertex2i 1 23

b7 hmmer AllocFancyAli 1 25

b8 gobmk autohelperowl vital.. 1 27

b9 gobmk autohelperpat1088 1 29

b10 gobmk autohelperowl attac.. 1 30

b11 gobmk get last player 3 13

b12 h264ref UpdateRandomAccess 3 16

b13 gcc xexit 3 17

b14 gcc unsigned condition 3 24

b15 sphinx3 glist tail 4 10

b16 gcc get frame alias set 5 20

b17 gcc parms set 5 25

Table 3. Scalability of δHD, δLD

ID δHD δLD

t(s) Num t(s) Num

b1 0.1± 0.2 26 131.2± 131.4 26

b2 1.0± 0.1 200 – 68

b3 1.1± 0.1 200 – 58

b4 0.7± 0.0 200 – 73

b5 2.3± 0.3 200 – 38

b6 2.5± 0.2 200 – 35

b7 2.0± 0.3 200 – 37

b8 3.8± 0.8 200 – 35

b9 4.0± 0.6 200 – 28

b10 4.5± 0.7 200 – 27

b11 1.3± 0.1 200 – 56

b12 1.1± 0.2 200 – 47

b13 0.8± 0.1 200 – 91

b14 1.8± 0.3 200 – 27

b15 1.7± 0.2 200 – 60

b16 2.7± 0.4 200 – 31

b17 1.6± 0.2 200 – 35

Algorithm Configuration. The experiments focus on speed optimization and aim
to generate 200 variants within a timeout. Parameter h in Algorithm 1 is set to
one because even small distance between variants is able to break gadgets (see
Fig. 1). LNS uses restart-based search with a limit of 500 failures, and a relax
rate of 70%. The relax rate is the probability that LNS destroys a variable at
every restart, which affects the distance between two subsequent solutions. A
higher relax rate increases diversity but requires more solving effort. We have
found experimentally that 70% is an adequate balance between the two. All
experiments are available at https://github.com/romits800/divcon experiments.

4.2 RQ1. Scalability of the Distance Measures

The ability to generate a large number of variants is paramount for soft-
ware diversification. This section compares the distance measures introduced
in Sect. 3.2 with regards to scalability.

Table 3 presents the results of the distance evaluation, where a time limit
of 10 min and optimality gap of p = 10% are used. For each distance measure
(δHD and δLD) the table shows the diversification time t, in seconds (or “–” if
the algorithm is not able to generate 200 variants) and the number of generated
variants num within the time limit.

The results show that for δHD, DivCon is able to generate 200 variants for all
benchmarks except b1, which has exactly 26 variants. The diversification time

https://github.com/romits800/divcon_experiments
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for δHD is less than 5 s for all benchmarks. Distance δLD, on the other hand,
is not able to generate 200 variants for any of the benchmarks within the time
limit. This poor scalability of δLD is due to the quadratic complexity of its
implementation [33], whereas HD can be implemented linearly. Consequently,
the rest of the evaluation uses δHD.

4.3 RQ2. Scalability and Diversification Effectiveness of LNS

This section evaluates the diversification effectiveness and scalability of LNS
compared to incremental MaxDiversekSet (where the first solution is found
randomly and the maximization step uses the branching strategy from Table 1a)
and Random Search (RS) (which uses the branching strategy from Table 1b).

To measure the diversification effectiveness of these methods, the evaluation
uses the relative pairwise distance of the solutions. Given a set of solutions
S and a distance measure δ, the pairwise distance d of the variants in S is
d(δ, S) =

∑|S|
i=0

∑|S|
j>i δ(si, sj) /

(|S|
2

)
. The larger this distance, the more diverse

the solutions are, and thus, diversification is more effective. Table 4 shows the
pairwise distance d and diversification time t for each benchmark and method,
where the experiment uses a time limit of 30 min and optimality gap of p = 10%.
The best values of d (larger) and t (lower) are marked in bold for the completed
experiments, whereas incomplete experiments are highlighted in italic and their
number of variants in parenthesis.

Table 4. Distance and scalability of LNS with RS and MaxDiversekSet

ID MaxDiversekSet RS LNS (0.7)

d t(s) d t(s) d t(s)

b1 4.1 ± 0.0 0.2± 0.0 (26) 4.1± 0.0 0.0± 0.0 (26) 4.1± 0.0 0.1± 0.2 (26)

b2 10.8± 0.0 761.8± 10.1 6.4± 0.2 0.6± 0.1 8.6± 0.6 1.0± 0.1

b3 14.6± 0.0 – (21) 5.8± 0.1 0.6± 0.1 10.8± 0.8 1.0± 0.1

b4 14.4± 0.0 – (19) 4.3± 0.1 0.2± 0.0 12.1± 0.3 0.6± 0.0

b5 22.0± 0.0 – (2) 4.3± 0.3 0.5± 0.0 16.1± 1.1 2.2± 0.3

b6 22.9± 0.4 – (2) 5.3± 0.0 1.0± 0.1 16.4± 0.6 2.4± 0.2

b7 24.9± 0.1 – (6) 4.5± 0.2 0.4± 0.0 18.1± 1.2 1.9± 0.3

b8 24.8± 0.4 – (2) 6.5± 0.2 3.5± 0.5 17.2± 0.9 3.8± 0.8

b9 26.0± 0.0 – (2) 4.2± 0.3 0.4± 0.0 19.8± 0.7 3.9± 0.6

b10 28.0± 0.0 – (2) 6.0± 0.0 5.3± 1.0 20.1± 1.1 4.5± 0.7

b11 13.8± 0.0 356.9± 8.2 5.3± 0.1 0.2± 0.0 10.1± 1.0 1.2± 0.1

b12 21.5± 0.1 – (5) 6.4± 0.9 0.2± 0.0 14.9± 1.0 1.0± 0.2

b13 17.4± 0.0 – (122) 6.7± 0.0 0.9± 0.1 12.0± 0.9 0.7± 0.1

b14 30.1± 0.0 – (20) 7.5± 0.2 0.2± 0.0 24.9± 0.7 1.8± 0.3

b15 – – 2.6± 0.3 0.1± 0.0 20.2± 0.5 1.6± 0.2

b16 – – 5.6± 0.4 0.3± 0.0 21.3± 0.8 2.6± 0.4

b17 – – 2.9± 0.1 – (91) 28.1± 1.5 1.6± 0.2
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The scalability results (t(s)) show that RS and LNS are scalable (generate the
maximum 200 variants for almost all benchmarks), whereas MaxDiversekSet
scales poorly (cannot generate 200 variants for any benchmark but b2 and b11 ).
Both b2 and b11 have a small search space (few, highly interdependent instruc-
tions), which leads to restricted diversity but facilitates solving. For b1, all
instructions are interdependent on each other, which forces a linear schedule
and results in only 26 possible variants (given p = 10%). On the other end,
MaxDiversekSet is not able to find any variants for b15, b16, and b17. These
benchmarks have many basic blocks resulting in a more complex objective func-
tion. For the largest benchmark (b17 ), only LNS is able to scale up to 200 solu-
tions. LNS is generally slower than RS, but for both LNS and RS all benchmarks
have a diversification time less than six seconds.

The diversity results (d) show that LNS is more effective at diversifying than
RS. The improvement of LNS over RS ranges from 35% (for b2 ) to 675% (for
b15 ). In the two cases where MaxDiversekSet terminates (benchmarks b2 and
b11 ), it generates the most diverse code, as can be expected.

In summary, LNS offers an attractive balance between scalability and diver-
sification effectiveness: it is close in scalability to, and sometimes improves, the
overly fastest method (RS), but it is significantly and consistently more effective
at diversifying code.

4.4 RQ3. Trade-Off Between Code Quality and Diversity

A key advantage of using a CP-based compiler approach for software diversity is
the ability to control the quality of the generated solutions. This ability enables
control over the relation between the quality of each individual solution and the
diversity of the entire pool of solutions. Insisting in optimality limits the num-
ber of possible diversified variants and their pairwise distance, whereas relaxing
optimality allows higher diversity.

Table 5 shows the pairwise distance d (defined in Sect. 4.3), and the number of
generated variants num, for all benchmarks and different values of the optimality
gap p ∈{0%, 5%, 10%, 20%}. LNS is used with a time limit of 10 min. The best
values of d are marked in bold.
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Table 5. Solution diversity for different optimality gap values

ID 0% 5% 10% 20%

d Num d Num d Num d Num

b1 – – – – 4.1± 0.0 26 6.5± 0.1 200

b2 3.5± 0.0 9 6.7 ± 0.4 200 8.6 ± 0.6 200 10.0± 0.8 200

b3 7.0 ± 0.1 200 9.4 ± 0.5 200 10.8 ± 0.8 200 14.8± 1.0 200

b4 7.8 ± 0.2 200 10.1 ± 0.3 200 12.1 ± 0.3 200 14.0± 0.2 200

b5 8.4 ± 0.1 200 11.9 ± 0.7 200 16.1 ± 1.1 200 19.7± 0.6 200

b6 10.8 ± 0.1 200 14.7 ± 0.4 200 16.4 ± 0.6 200 20.9± 0.8 200

b7 11.3 ± 0.3 200 13.8 ± 0.7 200 18.1 ± 1.2 200 22.8± 1.1 200

b8 11.0 ± 0.1 200 13.6 ± 0.6 200 17.2 ± 0.9 200 22.4± 1.1 200

b9 12.7 ± 0.1 200 17.7 ± 0.8 200 19.8 ± 0.7 200 24.4± 0.6 200

b10 13.7 ± 0.1 200 18.1 ± 0.9 200 20.1 ± 1.1 200 26.3± 0.6 200

b11 2.0± 0.0 4 6.6 ± 0.1 200 10.1 ± 1.0 200 14.2± 0.9 200

b12 3.8± 0.0 10 10.3 ± 1.2 200 14.9 ± 1.0 200 19.8± 1.0 200

b13 2.1± 1.3 4 10.1 ± 0.9 200 12.0 ± 0.9 200 15.7± 1.2 200

b14 3.6± 0.0 24 21.0 ± 0.6 200 24.9 ± 0.7 200 29.0± 0.5 200

b15 2.4± 0.0 8 15.6 ± 0.6 200 20.2 ± 0.5 200 23.5± 1.4 200

b16 4.1± 0.0 44 15.1 ± 1.1 200 21.3 ± 0.8 200 30.7± 0.9 200

b17 7.5 ± 0.2 200 20.3 ± 1.4 200 28.1 ± 1.5 200 38.4± 0.9 200

The first interesting observation is that even with no degradation of quality
(p = 0%), DivCon is able to generate a large number of variants for a sig-
nificant fraction of the benchmarks. These include functions with a relatively
large solution space, typically with a few large basic blocks where instructions
are relatively independent of each other (b3–b10 and b17 ). On the other hand,
benchmarks with small basic blocks and many instruction dependencies (b1, b2,
and b11–b16 ) provide fewer options for diversification, which results in a limited
number of optimal variants.

Second, we observe that as soon as we slightly relax the constraint over
optimality (p = 5%), diversity radiates and DivCon generates 200 variants for all
benchmarks except b1. Then, the more we increase the optimality gap, the larger
the diversification space grows and the distance between the variants increases.
Table 5 illustrates one of the key contributions of DivCon: the ability to explore
the trade-off between optimal solutions and highly diverse solutions.

In summary, depending on the characteristics of the compiled code, it is
possible to generate a large number of variants without sacrificing optimality,
and the code quality can be adjusted to further improve diversity if required by
the targeted application.
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4.5 RQ4. Code-Reuse Mitigation Effectiveness

Software Diversity has various applications in security, including mitigating code-
reuse attacks. To measure the level of mitigation that DivCon achieves, we assess
the gadget survival rate srate(si, sj) between two variants si, sj ∈ S, where
S is the set of generated variants. This metric determines how many of the
gadgets of variant si appear at the same position on the other variant sj , that
is srate(si, sj) = |gad(si) − gad(sj)| / |gad(si)|, where gad(si) are the gadgets
in solution si. The procedure for computing srate(si, sj) is as follows: 1) run
ROPgadget [27] to find the set of gadgets gad(si) in solution si, and 2) for every
g ∈ gad(si), check whether there exists a gadget identical to g at the same
address of sj . This comparison is syntactic after removing all nop instructions.

This section compares the srate for all permutations of pairs in S, for all
benchmarks, and for different values of the optimality gap using a time limit of
10 min. Low srate corresponds to higher mitigation effectiveness because code-
reuse attacks based on gadgets in one variant have lower chances of locating the
same gadgets in the other variants (see Fig. 1).

Table 6 summarizes the gadget survival distribution for all benchmarks and
different values of the optimality gap (0%, 5%, 10%, and 20%). Due to its skew-
ness, the distribution of srate is represented as a histogram with four buckets
(0%, (0%, 10%], (10%, 40%], and (40%, 100%]) rather than summarized using
common statistical measures. Here the best is a srate(si, sj) of 0%, which means
that sj does not contain any gadgets that exist in si, whereas a srate(si, sj) in
range (40%, 100%] means that sj shares more than 40% of the gadgets of si.
The values in bold correspond to the mode(s) of the histogram.

First, we notice that DivCon can generate some pairs of variants that share
no gadget, even without relaxing the constraint of optimality (p = 0%). This
indicates that the pareto front of optimal code naturally includes software diver-
sity that is good for security. Second, the results show that this effectiveness can
be further increased by relaxing the constraint on code quality, with diminish-
ing returns beyond p = 10%. For p = 0%, there are 10 benchmarks dominated
by a 0% survival rate, whereas there are 7 benchmarks dominated by a weak
10%–40%-survival rate. The latter are still considered vulnerable to code-reuse
attacks. However, increasing the optimality gap to just p = 5% makes 0% sur-
vival rate the dominating bucket for all benchmarks, and further increasing the
gap to 10% and 20% increases significantly the number of pairs where no single
gadget is shared. For example, at p = 10% the rate of pairs that do not share
any gadgets ranges from 63% (b14 ) to 99% (b12 ).

Related approaches (discussed in Sect. 5) report the average srate across
all pairs for different benchmark sets. Pappas et al.’s zero-cost approach [25]
achieves an average srate between 74%–83% without code degradation, compa-
rable to DivCon’s 41%–99% at p = 0%. Homescu et al.’s statistical approach [15]
reports an average srate between 82%–100% with a code degradation of less than
5%, comparable to DivCon’s 83%–100% at p = 5%. Both approaches report
results on larger code bases that exhibit more opportunities for diversification.
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Table 6. Gadget survival rate for different optimality gap values

ID 0% 5% 10% 20%

=0 ≤10 ≤40 ≤100 Num =0 ≤10 ≤40 ≤100 Num =0 ≤10 ≤40 ≤100 Num =0 ≤10 ≤40 ≤100 Num

b1 – – – – – – – – – – 84 3 3 10 26 94 4 2 1 200

b2 – – 69 31 9 60 12 23 4 200 76 11 12 1 200 81 9 10 – 200

b3 66 15 18 1 200 71 14 15 1 200 73 13 13 1 200 77 14 9 – 200

b4 94 6 – – 200 96 4 – – 200 96 4 – – 200 98 2 – – 200

b5 90 1 9 – 200 93 2 5 – 200 95 2 3 – 200 95 3 2 – 200

b6 88 5 7 1 200 89 5 6 – 200 90 4 6 – 200 91 4 5 – 200

b7 48 1 48 3 200 74 5 21 1 200 83 6 11 – 200 89 6 5 – 200

b8 46 – 51 3 200 57 4 36 2 200 74 3 21 1 200 81 4 14 1 200

b9 42 – 56 2 200 66 9 24 1 200 73 8 18 – 200 83 7 9 – 200

b10 47 – 50 3 200 65 2 30 2 200 73 4 22 1 200 82 5 13 1 200

b11 38 – 61 1 4 66 3 31 – 200 68 9 23 – 200 83 7 10 – 200

b12 94 – 5 1 10 99 1 – – 200 99−− – – 200 99 1 – – 200

b13 43 9 34 14 4 69 20 11 – 194 69 21 10 – 200 71 19 10 – 200

b14 – – 78 22 24 60 23 17 – 200 63 22 15 – 200 70 19 11 – 200

b15 41 53 5 – 8 97 2 1 – 200 98 1 1 – 200 98 1 1 – 200

b16 64 28 6 – 44 76 21 2 – 200 82 17 1 – 200 90 9 1 – 200

b17 33 66 1 – 200 61 39 – – 200 75 25 – – 200 87 13 – – 200

We expect that DivCon would achieve higher overall survival rates on these code
bases compared to the benchmarks used in this paper.

5 Related Work

There are many approaches to software diversification against cyberattacks.
The majority apply randomized transformations at different stages of the soft-
ware development, while a few exceptions use search-based techniques [20]. This
section focuses on quality-aware software diversification approaches.

Superdiversifier [17] is a search-based approach for software diversification
against cyberattacks. Given an initial instruction sequence, the algorithm gen-
erates a random combination of the available instructions and performs a ver-
ification test to quickly reject non equivalent instruction sequences. For each
non-rejected sequence, the algorithm checks semantic equivalence between the
original and the generated instruction sequences using a SAT solver. Superdi-
versifier affects the code execution time and size by controlling the length of the
generated sequence. Along the same lines, Lundquist et al. [23,24] use program
synthesis for generating program variants against cyberattacks, but no results
are available yet. In comparison, DivCon uses a combinatorial compiler back-
end that measures the code quality using a more accurate cost model that also
considers other aspects, such as execution frequencies.

Most diversification approaches use randomized transformations to gen-
erate multiple program variants [20]. Unlike DivCon, the majority of these
approaches do not control the quality of the generated variants during diver-
sification but rather evaluate it afterwards [5,9,10,14,18,34]. However, there are
a few approaches that control the code quality during randomization.
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Some compiler-based diversification approaches restrict the set of program
transformations to control the quality of the generated code [9,25]. For exam-
ple, Pappas et al. [25] perform software diversification at the binary level and
apply three zero-cost transformations: register randomization, instruction sched-
ule randomization, and function shuffling. In contrast, DivCon’s combinatorial
approach allows it to control the aggressiveness and potential cost of its trans-
formations: a cost overhead limit of 0% forces DivCon to apply only zero-cost
transformations; a larger limit allows DivCon to apply more aggressive transfor-
mations, potentially leading to higher diversity.

Homescu et al. [15] perform only garbage (nop) insertion, and use a profile-
guided approach to reduce the overhead. To do this, they control the nop inser-
tion probability based on the execution frequency of different code sections.
In contrast, DivCon’s cost model captures different execution frequencies, which
allows it to perform more aggressive transformations in non-critical code sections.

6 Conclusion and Future Work

This paper introduces DivCon, a CP approach to compiler-based, quality-aware
software diversification against code-reuse attacks. Our experiments show that
LNS is a promising technique for a CP-based exploration of the space of diverse
program, with a fine-grained control on the trade-off between code quality and
diversity. In particular, we show that the set of optimal solutions naturally con-
tains a set of diverse solutions, which increases significantly when relaxing the
constraint of optimality. Our experiments demonstrate that the diverse solutions
generated by DivCon are effective to mitigate code-reuse attacks.

Future work includes investigating different distance measures to further
reduce the gadget survival rate, improving the overall scalability of DivCon in
the face of larger programs and larger values of parameter k, and examining the
effectiveness of DivCon against an actual code-reuse exploit.
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Abstract. Integrating machine learning with automated reasoning is
one of the major goals of modern AI systems. In this paper, we pro-
pose a non-fully-differentiable architecture that is able to extract prefer-
ences from data and push it into (weighted) Constraint Networks (aka
Cost Function Networks or CFN) by learning cost functions. Our app-
roach combines a (scalable) convex optimization approach with empiri-
cal hyper-parameter tuning to learn cost functions from a list of high-
quality solutions. The proposed architecture has the ability to learn from
noisy solutions and its output is just a CFN model. This model can
be analyzed, empirically hardened, completed with side-constraints, and
directly fed to a Weighted Constraint Satisfaction Problem solver.

To explore the performances and range of applicability of this architec-
ture, we compare it with two recent neural-net friendly learning systems
designed to “learn to reason” on the Sudoku problem and also show how
it can be used to learn and integrate preferences into an existing CP
model, in the context of Configuration systems.

Keywords: Graphical Models · Cost Function Networks · Learning ·
Constraint Programming

1 Introduction

Constraint Satisfaction and Constraint Programming define a powerful frame-
work for modeling and solving decision problems. It is often considered as one of
the closest approaches computer science has made to the Holy Grail of program-
ming: “the user states the problem, the computer solves it.” [16]. The problem
may however be difficult to state, not only because of the rich CP language,
but because several of the aspects of the real problem may be inaccessible to
the modeler, leading to approximate formulations, providing only partially sat-
isfactory solutions. In this paper, we show how preferences and constraints can
be extracted from historical solutions so that they can be directly represented
inside a (weighted) constraint satisfaction problem.

In this paper, we are interested in learning a criterion and its domain of
definition as a set of cost functions and constraints, starting from a set of good-
quality solutions that could require a perceptive layer for acquisition. The learned
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 811–827, 2020.
https://doi.org/10.1007/978-3-030-58475-7_47
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preferences and constraints are represented as a Cost Function Network (CFN).
This learned CFN can then be completed by user-defined constraints or criteria
before feeding a Weighted Constraint Satisfaction Problem (WCSP) solver. Such
a workflow is very useful when the aim is to produce a new solution that resides
in a large family of known designs [34] (providing data), that must satisfy both
known general requirements and new specific properties.

Our main contribution is to leverage the capacity of CFN solvers to optimize
Graphical Models (GMs), a family of models that covers Constraint Networks,
Clausal Propositional Logic, and their weighted variants as well as probabilistic
Markov Random Fields and Bayesian Nets models [10]. Starting from historical
solutions, we use a recent convex optimization approach to estimate a CFN model
of the data that gives a lower cost to the training set. We notice that a maximum
regularized approximate log-likelihood loss [30] does tackle this objective. We use
a scalable algorithm that learns the scopes and cost tables of cost functions. This
CFN can then be optionally enriched by user cost functions or constraints and
solved by a WCSP solver for various inputs. The resulting architecture combines
ML and CP components in a way that, in our knowledge, has never been tested
to learn preferences (and constraints).

Our approach compares with recent differentiable “learning to reason” archi-
tectures such as Recurrent Relational Nets (RRN [29]) or SAT-Net [37] in terms
of input, output, and prior information (assumptions). These approaches define
fully differentiable layers that can learn pairwise “message passing” functions
(RRN) or a low-rank convex relaxation of Max-SAT, using continuous descent
algorithms as their optimization component. Such layers are easy to inter-operate
with Deep learning differentiable architectures. These two approaches have been
benchmarked on Sudoku resolution. We, therefore, compare our approach to
the RRN and SAT-net approaches, including in situations where Sudoku grids
are only available as hand-written grid images. We observe that our ML+CP
approach offers better accuracy and requires fewer samples. These results show
that neither differentiability nor even continuity are needed to work on a model
combined with a deep learning perceptual front-end [29].

Finally, we show this approach can be used to learn preferences on an exist-
ing car configuration benchmark [13,14] where past configurations are available
together with known manufacturing constraints. In this case, we observe that
the learned preferences help to predict satisfactory configurations. The corre-
sponding code will be made accessible from the toulbar2 distribution (https://
github.com/toulbar2/toulbar2, under an MIT license).

2 Background

Our approach is based on Graphical Models [10], a family of mathematical mod-
els that have been used in several areas of computer science, artificial intelligence,
physics, and statistics. The main idea of Graphical Models is to describe a func-
tion of many variables as the combination of several simple functions. “Simple”
here means that there is a concise description of the function in a chosen language

https://github.com/toulbar2/toulbar2
https://github.com/toulbar2/toulbar2
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of functions. Graphical Models have been used to describe Boolean or numeri-
cal functions depending on continuous (as in Gaussian Graphical Models [8]) or
discrete variables (as in Constraint Networks [32] or propositional logic).

– On the logical side, Constraint networks define a global truth value function
as the logical conjunction of small functions described by tables (Boolean
tensors), possibly extended with so-called global constraints in Constraint
Programming [32].

– Similarly, discrete Markov Random Fields describe a probability distribution
as the normalization of the product of small nonnegative functions described
as tables (nonnegative real tensors), possibly extended with higher-order func-
tions (similar to global cost functions [1]).

In the rest of the paper, we use capitals X,Y,Z, . . . to denote variables. The
domain of a variable will be denoted as DX for variable X. The actual elements
of these domains, values, will be denoted as a, b, c, g, r, t, 1 . . . and an unknown
value as u, v, w, x, y, z . . . Sequence of variables or unknown values will be denoted
in bold, respectively as X,Y ,Z, . . . and u,v,w,x,y,z . . .. The Cartesian prod-
uct of the domains of a sequence of variables X will be denoted as ΠX . An
element of ΠX is a tuple or assignment uX of the variables in X. Finally, the
projection of the tuple uX on Y ⊆ X is the sequence of values of Y in uX

and is denoted as uX [Y ]. For a given sequence of numbers x = (x1, . . . , xn),
its soft-max is log(

∑
xi∈x exp(xi)) and its soft-min − log(

∑
xi∈x exp(−xi)). Soft-

max provides a usual smooth approximation to the maximum function (as does
soft-min for the minimum).

We rely on two closely related types of Graphical Models. Cost Function
Networks are an extension of Constraint Networks where constraints (Boolean
functions that can be satisfied or not), are replaced by bounded integer functions
that are summed together to describe a joint bounded numerical function.

Definition 1 (Cost Function Networks (CFN)). A CFN C = 〈V ,C, k〉 is
defined by:

– a sequence of n variables V , each with a domain of cardinality at most d.
– a set C of e cost functions.
– each cost function cS ∈ C is a function from DS → Z̄k, the set of all integers

less than or equal to a given k ∈ Z̄ = Z ∪ {∞}.

The CFN 〈V ,C, k〉 defines a joint function CM(v) =
k⊕

cS ∈Φ

cS (v[S]) where a ⊕

b = min(a + b, k), the bounded addition.

Computing the minimum cost assignment of a CFN is the Weighted Constraint
Satisfaction Problem (WCSP). Thanks to the upper bound k, CFNs are very
flexible. For k = 1, CFNs are Constraint Networks. Finite values of k capture
situations in which an upper bound is known (e.g., the maximum cost that can
be spent in a design).

Cost Function Networks are tightly linked to a family of stochastic Graphical
Models known as Markov Random Fields:
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Definition 2 (Markov Random Field (MRF)). An MRF M = 〈V , Φ〉 is
defined by:

– a sequence of n variables V , each with a domain of cardinality at most d.
– a set Φ of e functions (or factors).
– each function ϕS ∈ Φ is a function from ΠS → R

+. S is called the scope of
the function and |S| its arity.

The MRF 〈V , Φ〉 defines a joint function ΦM(v) =
∏

ϕS ∈Φ

ϕS (v[S]) and a proba-

bility distribution defined as PM(V ) ∝ ΦM(V ).

Computing the probability PM(·) requires to compute a normalization constant,
denoted as ZM, a #-P complete problem. For a given MRF M, finding an
assignment v that maximizes the probability PM(v) can however be directly
solved by optimizing the joint function ΦM(·), without knowing ZM and is
decision NP-complete.

The connection between CFNs and MRFs is simple: in a CFN with no upper
bound (k = ∞), ⊕ is just the usual addition. In this case, CFNs are isomorphic
to Markov Random Fields through a exp(−x) transform and its inverse − log(x)
transform, up to some adjustable fixed precision. These operations map addition
into product (and vice-versa1). For a given MRF M, we denote by M� its
corresponding CFN, obtained by applying a − log(·) transform to all functions.

In CSPs, CFNs, and MRFs, a usual choice is to represent functions by
tables/tensors. When domains are Boolean, the language of (weighted) clauses
can also be used. We restrict ourselves here to pairwise tensors where each func-
tion is determined by an O(d2) table of costs (or parameters). Then a pairwise
graphical model becomes fully defined by the contents of its O(n(n−1)

2 ) cost
tables (if no function exists between a given pair of variables, it can be repre-
sented as a cost function with constant cost). Extensions to larger arities and
global cost functions are not considered here and define nontrivial extensions for
the future.

3 Learning CFN from Data

In many decision problems, a fraction of the description of the real problem is
impossible to model because this information is missing or is too complex to
represent. In the extreme, one may want to directly learn a complete CFN from
data (a special case of which is Max-SAT [23]).

Definition 3 (Learning CFN). Given a set of variables X, and examples E
sampled i.i.d. from an unknown joint distribution of high-quality solutions, find
a CFN C that can be solved to produce high-quality solutions.

1 This log representation is often using in MRFs and the co-domain of factors is called
“energy”.
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Thanks to their isomorphism with Markov Random Fields, CFN can actually
be learned in this setting using a probabilistic criterion. Several approaches exist
to estimate the set of functions of an MRF from an i.i.d sample but a good fit
with the definition above is offered by maximum log-likelihood approaches that
learn a model M that maximizes the probability of the observed sample. Indeed,
the likelihood of sample E of i.i.d. assignments under a given MRF M is the
product of the probabilities of all v ∈ E. Its logarithm is:

L(M,E) =
∑

v∈E log(P (v))
=

∑
v∈E log(ΦM(v)) − log(ZM)

=
∑

v∈E (−CM�(v)) − log(
∑

v∈ΠV exp(−CM�(v)))

Maximizing the log-likelihood, therefore, identifies weights in all possible
pairwise tensors that simultaneously minimize the average cost of the observed
high-quality solutions and maximize the soft-min of the costs of all possible
assignments, a criterion which fits our optimization objective above very well,
independently of its probabilistic interpretation. For a Graphical Model of n
variables and maximum domain size d, there are O(n2d2) weights to optimize.

3.1 Regularized Approximate Log-Likelihood GM Estimation

In practice computing the partition function ZM is #P-hard. Existing algo-
rithms, therefore, optimize a simplified form of the likelihood which either relies
on local normalization constants (pseudo-likelihood [4]) or a concave upper-
bound of the log-partition function [30]. Maximum likelihood estimators benefit
from attractive asymptotic properties, being statistically consistent (the model
learned converges to true values as the sample size tends to infinity) [17,30]. On
small samples, however, these approaches may overfit and the log-likelihood is
regularized by including the norm of the parameters learned as a penalty. Typ-
ical norms include the L2 norm (the Euclidian norm), the L1 norm (or Lasso
penalty, the sum of the absolute values of all parameters learned), or the L1/L2

norm (or Group Lasso, that evaluates each function using the L2 norm and
combines them using the L1 norm). Given an i.i.d sample E of assignments, the
regularized log-likelihood of an MRF M is defined as:

R(M,E) = L(M,E) − λ · ||Φ||

where ||Φ|| denotes the norm of all the parameters used in the tensors in Φ and λ
is a positive number that needs to be fixed. The Lasso norms (L1 or L1/L2) bias
the criteria to favor functions that take a zero value. This has several positive
effects: a function with a table full of zeros does not contribute to the value
of the joint function and can be removed, allowing to estimate parameters and
scopes simultaneously. Our experiments also show that Lasso regularization can
effectively cancel the unavoidable sampling noise present in the finite learning
set that otherwise leads to the estimation of a Graphical Model that contains a
fraction of random cost functions that are very hard to optimize exactly.
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To solve this problem, we rely on a recently proposed scalable (in O(n3d3)
for pairwise tensors) regularized maximum log-likelihood estimation algorithm,
PE MRF [30], that exploits the ADMM (Alternating Direction Multiplier
Method) algorithm for optimization [9]. The algorithm has been designed to
learn a GM from a set of solution samples but is actually immediately capable
of learning using probabilistic input which will prove very useful in the most
intense interaction with deep learning systems later. This algorithm can also
learn mixed graphical models with both discrete and continuous variables which
can be convenient if the learning set includes not only decision variables but
also contextual continuous observations that will also be available when solving
(even if we don’t explore this capacity further in this paper). This regularized
approximate log-likelihood approach using the L1/L2 norm has been shown to
be “sparsistent”: as the size of the learning set tends to infinity, the probability
of finding the exact graph structure tends to 1 [30], a reassuring asymptotic
result, even if our target is to learn a solver, not to estimate a graph structure.

Although the ADMM algorithm is a black-box optimization algorithm, it is
useful to understand how it works. ADMM is well-suited to optimize convex
functions that are sums of terms. Using a Dual Decomposition principle, every
optimization variable cij(a, b) (the cost of the pair (a, b) in the function ci,j(·, ·) of
the GM to learn) is duplicated into a copy c′

ij(a, b) and the two parameters linked
by an equality constraint. At each iteration, the log-likelihood is incrementally
optimized on the c variables while the regularization penalty is incrementally
optimized on the c′ variables. The satisfaction of the equality constraints is
delegated to an Augmented Lagrangian approach that penalizes the violation of
constraints [9]. As the algorithm iterates, it constantly provides two estimates
of the parameters, each defining a CFN. Upon convergence, the two copies are
almost but not strictly identical. In practice, it is preferable to use the c′ copies
which optimize for regularization and contain exact zero. This is crucial for exact
WCSP solvers that otherwise spend a gigantic optimization effort optimizing tiny
costs often reflecting uninformative sampling noise.

3.2 Setting the Regularization Parameter

The determination of a suitable value of λ is essential for proper prediction.
Existing approaches to tune this parameter in Machine Learning focus in recov-
ering the unknown graph structure (which cannot be achieved using pseudo-
likelihood in the presence of infinite costs [36]).

However, recovering the true graph is not our target and, similar to what
has been observed in the “Smart ‘Predict and Optimize’” framework [11], we
observed that taking into account the exact prediction objective does help. We,
therefore, use en empirical risk (or error) minimization (ERM) approach. This
approach is central in the recent HASSLE Partial Weighted Max-SAT algo-
rithm [23] which also proves that Max-p-SAT and CFN models are Probably
Approximately Correct(ly) (PAC [35]) learnable by ERM. Using a solution s
extracted from a validation set of high-quality solutions (ideally distinct from
the training set used for PE MRF), we assign a fraction of all variables in the
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learned CFN model with their value in s and ask a WCSP solver to optimize the
remaining variables. The solution obtained can be correct (or close to s according
to an application-specific distance that can default to the Hamming distance)
or not. We use a value of λ that minimizes the fraction of non-satisfactory
assignments.

Optimizing λ in this way requires the repeated resolution of a decision NP-
complete problem on the validation set. This is a serious issue even on small prob-
lems because the problems learned with very low values of λ usually define dense
CFNs with functions that overfit the learning set and capture the sampling noise
in the learned cost functions. These random problems are extremely hard to solve
in practice. While the use of polynomial-time approximations defined by (linear
or convex) relaxations has been used with success in related approaches [26],
two different approaches can be used to mitigate this complexity. First, we can
assign a larger fraction of each solution s in the validation set before solving it.
This reduces complexity exponentially. Each solution s in the validation set can
be used with several partial assignments in order to cover all scopes. Second,
we can relax the requirement for an optimal solution using either a bounded
optimization effort (as captured by CPU-time or numbers of backtracks), or
by requiring an approximate guarantee (using e.g. a weighted criterion [31]), to
avoid spending time on the optimization of very noisy over-fitted problems.

3.3 Cost Function Hardening

If needed, and if the training set is reliable (with deterministic 0/1 probabilities
on observed values), a similar empirical approach can be used to harden cost
functions into constraints. For every non zero cost in the CFN learned, one can
simply test if the corresponding combination is observed in any of the training
samples. If not, its cost is set to k (the maximum forbidden cost). This may lead
to a learned problem that removes more solutions than it should (assuming the
true problem is known) but will never make the learned problem inconsistent.
In essence, this process is similar to the empirical/experimental method used to
learn the general laws of Physics, which slowly evolve as data accumulates.

3.4 Related Approaches

Constraint Acquisition [7] learns Constraint Networks from exact positive or
negative answers to (partial) membership queries [2]. We instead primarily try
to learn a criterion that is not known to be a Boolean feasibility, using a fixed
set of high-quality assignments (mostly because good – working – solutions are
more often conserved than bad ones, as does Nature for proteins). We also allow
these solutions to be only accessible through an imperfect perceptive layer.

Hassle [23] is a recent algorithm for learning Partial Weighted Max-p-SAT
(PWMSAT) problems from contextual positive and negative examples using
empirical risk minimization. The learned Max-p-SAT examples can then be fed
to any PWMSAT solver, possibly with additional hard and soft constraints, as
in our case. The main strength of Hassle is its ERM formulation that can
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decide, for every possible p-clause, which one needs to be hard, weighted, or
removed to make every sample optimal in the model. This MIP grows however
very quickly with the sample size and p. The MILP approximation proposed is
tested on problems that include at most 20 variables and 91 clauses. A direct
encoding of the Sudoku problems would require 729 propositional variables and
several thousand clauses (with 9-clauses). It relies on an NP-hard formulation of
learning (which is costly but should be beneficial on small samples).

The “Smart ‘Predict then Optimize’” (SPO [11,26]) framework has several
connections with our approach. Like the surrogate loss of SPO, the convex loss
we use (the opposite of penalized log-likelihood and its nonprobabilistic interpre-
tation), is statistically consistent but is best suited for Graphical Models. The
empirical adjustment of λ using an empirical approach that relies on the final
discrete optimization method instead of pure ML criteria, such as Akaike infor-
mation content (AIC) or Bayesian Information Content (BIC), similarly adapts
learning to the final target of actually solving the learned problem.

Recurrent Relational Neural Nets have been recently proposed as a “learn-
ing to reason” approach [29]. As in our case, they start from positive examples
to later produce solutions. The RRN approach makes little assumptions on the
pairwise functions to learn but directly exploits the graph structure of the prob-
lem that needs to be solved. On these edges, it learns pairwise “message passing”
functions which are applied recurrently using an LSTM neural net [33]. These
functions are then applied repeatedly in the prediction phase, similar to what is
done in Loopy Belief Propagation (and Arc Consistency). The resulting Neural
Net is restricted to solving the problem it has been trained on and will not accept
later side-constraints, something which is often desirable in practice.

SAT-net [37] is a Neural-net friendly approach using low-rank convex
optimization to both optimize the parameters of a variant of Goemans and
Williamson Max-2-SAT convex relaxation [18] and find good solutions using the
associated randomized rounding approach. There is a likely similarity between
the G&W relaxation (that SAT-net exploits) and the convex relaxations in
PE MRF (that we exploit), but in our case, this relaxation is used only for
learning and is optimized by ADMM instead of coordinate descent. More impor-
tantly, we rely on a non-differentiable exact WCSP solver for prediction instead
of the convex relaxation again. The WCSP solver provides adjustable optimiza-
tion guarantees while the convex relaxation power is fixed. Furthermore, it is
able to satisfy later added side-constraints, something which is impossible by
solving G&W convex relaxation (but which would be feasible using a Max-SAT
solver, something that has never been tested in our knowledge2).

Probabilistic Soft Logic [3] is a related ML system which, as SAT-Net,
exploits a convex relaxation for learning parameters and solving Graphical Mod-
els (using ADMM instead of coordinate descent). While it benefits from a high-
level modeling language with first-order-like syntax, it has the same intrinsic

2 The weights learned in the convex relaxation are floating-point numbers. A precise
integer approximation generates large integer costs which are usually not the sweet
spot of the most efficient, core-based, Max-SAT solvers [28].
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limitation as SAT-Net: the convex relaxation has a fixed inference power and
cannot provide guarantees that additional logical constraints will be satisfied.

4 Learning to Solve the Sudoku

Neural Nets and differentiable approaches (such as RRN and SAT-Net) are now
able to “learn to reason” from examples, providing the capacity to heuristically
solve decision problems with little assumptions and from various inputs, includ-
ing images. The Sudoku problem has been used as an exemplar of reasoning and
we decided to apply our learning and reason architecture to the Sudoku prob-
lem, in an experimental setting that is comparable to those used by differentiable
approaches in terms of assumptions and biases, also including situations where
examples on which to learn require a perceptive layer.

The n × n Sudoku problem is defined over a
grid of n2 × n2 cells that each contain a number
between 1 and n2. This grid is subdivided in n2

sub-grids of size n × n. A solved Sudoku grid
is such that the numbers in every row, column
and n × n sub-grids are all different. Initially, a
fraction of all cells is fixed to known values (or
hints) and the NP-complete problem [38] is to
find a completion of the hints that satisfies the
constraints. The puzzle is usually played with
n = 3. A typical grid, with handwritten hints
from the MNIST dataset [24], is represented on
the right. As all correct Sudoku puzzle grids, it has only one correct completion (a
unique solution). It is known that a minimum of 17 hints is necessary to restrict
the number of completions to just one [27]. Such minimal Sudoku problems
define challenging puzzles for human beings. As the number of hints increases,
the instances become easier and can be solved using simple logical inference rules.
Hard or easy for humans, 3 × 3 instances can be solved easily by CP solvers, on
any standard hardware.

We instead assume that we don’t know much about the Sudoku, not even
that it has logical rules. We instead consider that the completed grids capture
the preferences of users and try to learn a CFN that captures these preferences
and compare this with RRN and SAT-Net. It’s not easy to compare language
biases: RRN is informed with pairwise scopes, SAT-Net uses Max-SAT and we
use pairwise finite costs CFNs. Max-SAT and pairwise numerical functions are
both capable of representing the set of Sudoku solutions as optimal solutions.
SAT-Net has, however, the attractive capacity of using latent variables.

SAT-Net relies on a dataset of 9,000 training + 1,000 test (hint, solution)
pairs extracted from a popular Sudoku web site, with an a average of 36.2 hints
per grid, defining easy problems. RRN relies on 180,000 training + 18,000 vali-
dation and 18,000 test pairs organized each in 18 sets of instances with hardness
varying from 17 to 34 hints. We, therefore, used a variable fraction of the RRN
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training set for training and 1,024 validation samples for hyper-parameters tun-
ing. For testing, we used all 18 × 1, 000 RRN test samples as well as the SAT-
nets test set for comparison. An Intel XeonE5-2687Wv4 3.00 GHz server was
used for all experiments. The absolute and relative convergence of ADMM in
PE MRF were both set to 10−3 and an L1-norm used. We used toulbar2 1.0.1
Python interface, representing floating-point numbers with 6 decimals and with
the number of backtracks limited to 50,000. The Python-implemented PE MRF
code used 72 s on average for one CFN estimation (with a maximum of 252 s on
the largest 180,000 training set).

The empirical approach was used to fix the regularization hyper-parameter λ.
We used toulbar2 to minimize the solution cost (in the backtracks limit) and
kept the value of λ that successively minimizes the fraction of incorrect grids,
incorrect cells, and toulbar2 CPU-time. The optimization of λ (in a 10−2 to
102 range explored on a logarithmic scale) took 95 min on average on one core
(this could be trivially reduced with more cores). SAT-Net requires 172 min to
train on a GTX 1080 Ti GPU on its training set [37]. We retrained RRNs on
their training data on a GTX 2080 Ti GPU (with a batch size of 64): each epoch
required 9 h to run (hundreds of epochs are used by the authors [29]).

Using 180,000 + 18,000 training and validation samples, RRNs are able to
correctly solve 96.7% problems of the hardest 17 hints problems using 64
“message passing” steps (after which it plateaus). Using 9,000 + 1,024 train-
ing and validation samples, our approach solves 100% of the same hard 17 hints
problems.

Using just 9,000 samples, SAT-net is able to solve 98.3% of its test set (of easy
problems). To solve 100% of this test set, 7,000 + 1.024 training and validation
samples suffice for our architecture (on these problems, 994/1000 instances are
solved backtrack-free, by preprocessing, the remaining problems requiring a total
of 24 backtracks). Note however that the learned solver is able to solve only
58.2% of the hardest 17 hints problems. Clearly, problem hardness has to be
taken in to account when comparing learned solvers. Figure 1 shows the fraction
of correctly solved grids (left) as the sample size increases (performances beyond
13,000 samples are not shown and remain maximal).

Fig. 1. Fraction of correctly solved problems (left, dotted lines correspond to a 200,000
backtracks limit), number of learned functions, and per-instance prediction CPU-times
(right) for increasing sample sizes and problem hardness.
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The corresponding prediction CPU-times are given in Fig. 1 (right). When
training sets are small, the learned CFN models are dense. With 1,000 training
samples, more than 1,700 functions are used while the original pairwise Sudoku
formulation contains 810 functions. Because of this graph density (and their
noisy contents), optimization is more difficult with small training sample sizes.
As the training set size increases, the number of functions converges to 810 and
resolution becomes easy: an optimal solution can be found and proved in sub-
second time (with 9,000 samples, less than 0.3 s are needed on average for the
hardest 17 hints Sudokus, and just 3 ms for 34 hints problems). RRN’s prediction
time on a GTX 2080 Ti GPU was around 2 s for 64 steps. To see if more WCSP
solving power could help improve these results, we moved the backtrack limit to
200,000 backtracks. This lead to minor improvements in precision as the dotted
lines in Fig. 1 show above, with essentially no progress in terms of accuracy
on easy problems: a better loss function and a stronger learning optimization
method would be needed here to make progress.

We observed that when the training set size reaches 13,000 samples, the
learned CFNs become exact (the set of optimal solutions may be exact before
this): they contain 810 cost functions with the exact expected scopes (involving
pairs of variables inside a row, column or sub-grid only, although no grid layout
information is available to PE MRF) and contents (a “soft difference” function).
So, it is guaranteed that, once domains are reduced by observed hints, a preferred
(optimal) solution will be a perfect Sudoku solution. Empirical hardening (Sub-
sect. 3.3) of such a CFN, therefore, recovers the original pairwise formulation of
the problem.

4.1 Learning and Predicting from Sudoku Images

One of the advantages of differentiable layers that “learn how to reason” is their
capacity to integrate inside deep learning architectures. As an example, SAT-
net [37] has been trained using hints provided as images with handwritten digits
(an example of which appeared in a previous page). Each cell in this image can be
decoded by LeNet [24], a convolutional neural net trained on the MNIST dataset
with 99.2% precision. The predictions of LeNet are then fed into the SAT-Net
layer for learning and prediction. As the authors of SAT-Net observe, the 99.2%
precision of LeNet gives an upper bound on the maximum prediction precision:
since the SAT-Net data-set has, on average, 36.2 hints per sample, there will be
error(s) in the hints in 25.3% of cases, leading to a maximum accuracy of 74.7%.

We also used LeNet and transformed its confidence scores in a marginal unary
cost function using soft-max, as is usual with neural net outputs. When a digit
appears in a Sudoku image, this unary cost function is added to the learned
model instead of assigning a value. This happens both during validation and
testing. With hints provided as images during training, SAT-Net solves 63.2% of
its test set using the same 9,000 samples. Using just 8,000 + 1,024 training and
validation samples, our hybrid architecture is able to solve 78.1% of all these
test problems. This violates the crude “theoretical” bound of 74.7% because
the confidence scores of LeNet allow an optimal CFN assignment to correct the
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errors of LeNet when its maximum confidence is low. On the hardest 17 hints
instances, 81.2% of correct solutions are obtained: the lower number of hints
gives fewer opportunities for failures to LeNet and this has a stronger effect than
the increased hardness. With the more radical hardening procedure of Sect. 3.3,
90.5% of the hardest 17 hints problems are solved from 8,000 samples (99.1% of
34 hints problems). As sample size increases, these numbers never reach 100%:
correct Sudoku answers that include small permutations compatible with LeNet
mistakes are still occasionally produced.

Going beyond SAT-Net, we used a more realistic setting where both hints
and solutions are provided as images: for training, we exploited the fact that
PE MRF accepts as input expectations of sufficient statistics which can be pro-
duced from the marginal unary cost functions above using a exp(−x) trans-
form. These marginal probabilities are used directly for computing expected
numbers of values and pairs (the product of the two marginal probabilities
P (a) × P (b) being used for pairs (a, b)). During validations, solutions being
available as images only, it becomes impossible to directly compare a predicted
solution with the true (unknown) solution. We, therefore, apply LeNet to each
cell of the solution image and use the value of the soft-max output of LeNet on
the predicted digit as a score. A high score represents an unlikely digit for LeNet
and we, therefore, select a λ that produces the most likely solutions i.e., which
minimizes the sum of all such scores. The same handwritten digit shapes being
used in the hints and solution images, the probability that a (hint,solution) sam-
ple is correctly decoded by LeNet drops to 52%, independently of the number of
hints. Using 8,000 + 1,024 training and validation samples, and a 200,00 back-
tracks limit, our hybrid architecture is able to solve 76.3% of all SAT-Net test
problems. On the hardest 17 hints instances, however, performance decreased to
61.8%. Obviously, hardening is of no use here.

5 Learning Car Configuration Preferences

In this experiment, we illustrate the versatility of our approach by learning user
preferences combined with logical information on a real configuration problem
provided by Renault, a French car manufacturing company. A car configuration
problem is defined by a set of variables, one for each type of option (engine,
color, etc.). Domain values are possible options for each variable. Constraints
describe manufacturing compatibilities between options3.

There are three datasets available, small, medium, and big, each one given
in two files: a 1-year sales history of car configurations and a set of manu-
facturing constraints. The sales history products may or may not satisfy the
constraints. We consider here only valid products. medium is a small urban
car defining a toy example with 148 variables and 44 decision variables in the
sales history,4 mostly Boolean domains with a maximum size of 20 values, 173

3 See https://www.irit.fr/∼Helene.Fargier/BR4CP/benches.html.
4 We removed the first variable corresponding to the date of each sale product.

https://www.irit.fr/~Helene.Fargier/BR4CP/benches.html
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constraints defined as tables with a maximum arity of 10, and 8,252 configu-
rations consistent with the constraints in the history. big is a utility van with
extensive product variability. It has 268 variables (87 decision variables in the
sales history), 324 values at most per domain, 332 constraints with a maxi-
mum arity of 12, and 8,337 consistent configurations. We discarded the small
instance as its sales history contains only 710 valid configurations. We counted
278, 744 (resp. 24, 566, 537, 954, 855, 758, 069, 760 ≈ 274) feasible configurations
for medium (resp. big) in 0.1 (resp. 1.8) s on a 3.3 GHz laptop.5. We used a 10-
fold cross-validation. The valid sales history was split into 10 folds so that all the
identical car configurations were contained in the same fold. 9 folds were used
as training set for learning user preferences and the last fold was used as test set
for predicting user choices. This protocol was repeated 10 times.

We learn the user preferences based on the training set using PE MRF with
either L1 or L1/L2 norm and a λ parameter tuned using the StARS [25] algo-
rithm among a logarithmic grid of 100 spaced values between 10−5 and 103. We
used the default value 0.05 for the threshold parameter β in StARS and used
subsamples of size 10

√
n, where n is the size of the training set, as advised in

[25]. Mean λ selected value was 34.6 (resp. 0.21) for medium (resp. big) using L1

norm. The resulting learned CFN on decision variables had 312.9 (resp. 127.2)
binary functions and 44 (resp. 87) unary functions.

Then, we test the learned CFN model combined with the manufacturing con-
straints6 on the test set, using the protocol described in [13]. This protocol simu-
lates an on-line configuration session with a user. For each test configuration C,
we select a random variable ordering. Then, we predict the most-probable value
for the next variable in the sequence, using the choices made by the user before
in the sequence, the learned preferences, and the manufacturing constraints. 10
random variable orderings were considered for each test configuration. Instead of
finding the most-probable value by discrete integration over the remaining vari-
ables (a marginal MAP inference task), we identified the most-probable valid
configuration for all the variables compatible with the previous user choices and
the constraints (a pure optimization Maximum A Posteriori – MAP – approxi-
mation of marginal MAP).7 We compare the predicted value for the next variable
with the one chosen in C in order to compute a precision score.

We compared our method against a naive Bayesian network approach (called
Naive Bayes) and an oracle method, as described in [12,14]. The structure of
Naive Bayes is a tree rooted at the next variable with all the previously cho-
sen variables as its sons. It makes the (unrealistic) assumption that all the leaf

5 Solution counting was done by Backtracking with Tree Decomposition algorithm [15]
using min-fill heuristic implemented in toulbar2 v1.0.1 with options -ub=1 -a -O=-
3 -B=1 -hbfs: -nopre Reported tree-width was 10 for medium and 12 for big instance.

6 We ensure our CFN and the XCSP2.1 XML file for the constraints use the same
variable domains with the same increasing value ordering.

7 We used toulbar2 v1.0.1 with a limit of 50,000 backtracks and no preprocessing.
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Fig. 2. Precision for the next query variable given the number of hints (on previously
randomly-selected query variables).

variables are independent knowing the root variable. The most probable value
v for the next variable V given the assigned values u of U is easy to com-
pute, P (v|u) ∝ P (v)

∏
X∈U P (u[X]|v), based on precomputed priors P (V ) and

conditional probability tables P (U |V ) for all pairs of variables U, V . The ora-
cle method computes the posterior probability distribution of the next variable
knowing the test dataset and the previous user choices. It uses the probability
distribution estimated from this set and recommends, given the assigned values
u, the most probable value in the subset of products, in the test set, that respects
u. More precisely, for any value v in the domain of the next variable to predict,
it estimates P (v|u) as #(uv)/#(u). So, the oracle method is maximally fitted
to the test set and its success rate is generally not attainable without having
access to the test set (which is, obviously, not the case in practice). Its precision
is not 100% since there is an intrinsic variability in the users [12].

The results for the different methods are given in Fig. 2, showing the average
precision score and standard-deviation for varying number of hints. We report
only results on the L1 (L1/L2 gave the same precision scores). It took less than
1min. for medium (resp. 2min. for big) to learn preferences and collect all the

36,124 (resp. 73,428) precision scores for a single fold of cross-validation.8 The
maximum number of backtracks was less than 1, 000, much less than its limit.

The average precision was 93.41% (resp. 94.41% for big) compared to 92.08%
(resp. 92.31%) for Naive Bayes and 97.10% (resp. 97.35%) for the oracle, showing
the practical interest of our approach on real recommendation datasets, provid-
ing high precision values in a reasonable amount of time. However, when the
number of hints is small, Naive Bayes performed slightly better (for big) than
our approach, possibly due to the MAP approximation.

Moreover, we investigated the impact of removing either the preferences,
partially by just removing learned binary functions and keeping learned unary

8 We implemented an incremental version of the toulbar2 solving procedure using
its Python interface in order to load the problem and preprocess it only once.
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terms (L1 without learned binaries curve in Fig. 2) or removing all learned func-
tions (Only constraints), or removing the manufacturing constraints (L1 without
constraints). All these removals had a negative impact, showing the interest
of combining preferences and logical knowledge. Other approaches have been
developed to take into account constraints in recommendation systems, such
as constraint propagation [5,6] or compilation techniques [19]. However, they
remain separated from the model of preferences, whereas our approach exploits
two CFNs (learned and mandatory constraint networks) on the same decision
variables. We leave a full comparison of the MAP approximation with exact or
approximate inference for predicting the next variable value as future work.

6 Conclusion

In this paper, we show that a hybrid architecture combining differentiable and
nondifferentiable technologies from Graphical Model learning (ADMM convex
optimization embodied in the PE MRF algorithm) and solving (using an anytime
Weighted CSP solver with adjustable guarantees) can provide excellent empirical
performances, often outperforming recent neural net friendly approaches, with
comparable biases. Purely differentiable approaches have the nice property to be
directly usable inside more complex deep Learning architectures, often allowing
a streamlined learning and predict architecture. By accepting numerical input
in its learning component and integer costs in its prediction component, our
architecture has the capacity of exploiting neural nets output at the very minor
cost of a less streamlined but perfectly workable learning and solving process.

Instead of relying on a polytime bounded inference power, like those offered
by, e.g., message-passing or convex relaxations, it offers more powerful infer-
ence, associated to higher computational costs that can however be easily con-
trolled either in terms of maximum computational effort or bounded guaran-
tees. Because they provide strong polynomial-time continuous approximations
of discrete models such as Max-2SAT, convex relaxations have been repeatedly
used as an ideal articulation point between learning and solving discrete/logical
models. If the Unique Game Conjecture [21,22] holds, the most promising path
for improvement seems to go beyond P and convex relaxations and use NP-
complete formulations for solving and learning. This makes powerful anytime
NP-hard numerical MIP, WCSP, and PW-MaxSAT solvers of prime interest to
make progress in this quest.

As an amusing yet puzzling coincidence, we observe that our hybrid approach
is consistent with the dichotomy between the Systems 1 and 2 described in
“Thinking Fast and Slow” for human cognitive limitations [20]. Beyond this
coincidence; a more practical advantage of our hybrid approach is that it offers
a decipherable output, that can be scrutinized to extract logical rules if they
empirically reliably predict solutions but also directly used to enhance existing
models that may contain mandatory constraints, as is often the case in design
problems.



826 C. Brouard et al.

Acknowledgments. We thank the GenoToul (Toulouse, France) Bioinformatics and
IFB Core (Evry, France) platforms for their computational support. We also thank
the reviewers for their critics: the paper did improve, we think. This work has been
supported by the French ANR through grants ANR-16-CE40-0028 and ANR-19-PIA3-
0004.

References

1. Allouche, D., et al.: Tractability-preserving transformations of global cost func-
tions. Artif. Intell. 238, 166–189 (2016)

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
3. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields

and probabilistic soft logic. J. Mach. Learn. Res. 18(1), 3846–3912 (2017)
4. Besag, J.: Efficiency of pseudolikelihood estimation for simple gaussian fields.

Biometrika 64, 616–618 (1977)
5. Bessiere, C., Fargier, H., Lecoutre, C.: Global inverse consistency for interactive

constraint satisfaction. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 159–174.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 15

6. Bessiere, C., Fargier, H., Lecoutre, C.: Computing and restoring global inverse
consistency in interactive constraint satisfaction. Artif. Intell. 241, 153–169 (2016)

7. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif.
Intell. 244, 315–342 (2017)

8. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, New York (2007). http://www.worldcat.org/oclc/71008143

9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends R© Mach. Learn. 3(1), 1–22 (2011)

10. Cooper, M., de Givry, S., Schiex, T.: Graphical models: queries, complexity, algo-
rithms. Leibniz Int. Proc. Inform. 154, 1–4 (2020)

11. Elmachtoub, A.N., Grigas, P.: Smart predict, then optimize. arXiv preprint
arXiv:1710.08005 (2017)

12. Fargier, H., Gimenez, P., Mengin, J.: Recommendation for product configuration:
an experimental evaluation. In: 18th International Configuration Workshop at CP-
16, Toulouse, France (2016)

13. Fargier, H., Gimenez, P., Mengin, J.: Learning lexicographic preference trees from
positive examples. In: Proceedings of AAAI-18, pp. 2959–2966. New Orleans,
Louisiana (2018)

14. Fargier, H., Gimenez, P.F., Mengin, J.: Experimental evaluation of three value
recommendation methods in interactive configuration. J. Univ. Comput. Sci. 26(3),
318–342 (2020)

15. Favier, A., de Givry, S., Jégou, P.: Exploiting problem structure for solution count-
ing. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 335–343. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-04244-7 27

16. Freuder, E.C.: Progress towards the holy grail. Constraints 23(2), 158–171 (2018)
17. Geman, S., Graffigne, C.: Markov random field image models and their applications

to computer vision. In: Proceedings of the International Congress of Mathemati-
cians, Berkeley, CA, vol. 1, p. 2 (1986)

18. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
(JACM) 42(6), 1115–1145 (1995)

https://doi.org/10.1007/978-3-642-40627-0_15
http://www.worldcat.org/oclc/71008143
http://arxiv.org/abs/1710.08005
https://doi.org/10.1007/978-3-642-04244-7_27


Pushing Data into CP Models 827

19. Hadžic, T., Wasowski, A., Andersen, H.R.: Techniques for efficient interactive con-
figuration of distribution networks. In: Proceedings of IJCAI 2007, Hyderabad,
India, pp. 100–105 (2007)

20. Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)
21. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the

Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 767–775
(2002)

22. Klarreich, E.: Approximately Hard: The Unique Games Conjecture. Simons Foun-
dation, New York (2011)

23. Kumar, M., Kolb, S., Teso, S., De Raedt, L.: Learning MAX-SAT from contextual
examples for combinatorial optimisation. In: Proceedings of AAAI 2020, NYC,
USA (2020)

24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

25. Liu, H., Roeder, K., Wasserman, L.: Stability approach to regularization selection
(StARS) for high dimensional graphical models. In: Proceedings of Advances in
Neural Information Processing Systems (NIPS 2010), vol. 24, pp. 1432–1440 (2010)
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Abstract. Testing algorithms across a wide range of problem instances
is crucial to ensure the validity of any claim about one algorithm’s supe-
riority over another. However, when it comes to inference algorithms
for probabilistic logic programs, experimental evaluations are limited to
only a few programs. Existing methods to generate random logic pro-
grams are limited to propositional programs and often impose stringent
syntactic restrictions. We present a novel approach to generating random
logic programs and random probabilistic logic programs using constraint
programming, introducing a new constraint to control the independence
structure of the underlying probability distribution. We also provide a
combinatorial argument for the correctness of the model, show how the
model scales with parameter values, and use the model to compare prob-
abilistic inference algorithms across a range of synthetic problems. Our
model allows inference algorithm developers to evaluate and compare the
algorithms across a wide range of instances, providing a detailed picture
of their (comparative) strengths and weaknesses.

Keywords: Constraint programming · Probabilistic logic
programming · Statistical relational learning

1 Introduction

Unifying logic and probability is a long-standing challenge in artificial intelli-
gence [24], and, in that regard, statistical relational learning (SRL) has devel-
oped into an exciting area that mixes machine learning and symbolic (logical
and relational) structures. In particular, probabilistic logic programs—including
languages such as PRISM [25], ICL [22], and ProbLog [11]—are promising
frameworks for codifying complex SRL models. With the enhanced structure,
however, inference becomes more challenging. At the moment, we have no pre-
cise way of evaluating and comparing inference algorithms. Incidentally, if one
were to survey the literature, one often finds that an inference algorithm is only
tested on a small number (1–4) of data sets [5,16,28], originating from areas such
as social networks, citation patterns, and biological data. But how confident can
we be that an algorithm works well if it is only tested on a few problems?
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About thirty years ago, SAT solving technology was dealing with a similar
lack of clarity [26]. This changed with the study of generating random SAT
instances against different input parameters (e.g., clause length and the total
number of variables) to better understand the behaviour of algorithms and their
ability to solve random synthetic problems. Unfortunately, when it comes to
generating random logic programs, all approaches so far focused exclusively on
propositional programs [1,2,30,32], often with severely limiting conditions such
as two-literal clauses [20,21] or clauses of the form a ← ¬b [31].

In this work (Sects. 3, 4 and 5), we introduce a constraint-based representa-
tion for logic programs based on simple parameters that describe the program’s
size, what predicates and constants it uses, etc. This representation takes the
form of a constraint satisfaction problem (CSP), i.e., a set of discrete variables
and restrictions on what values they can take. Every solution to this problem (as
output by a constraint solver) directly translates into a logic program. One can
either output all (sufficiently small) programs that satisfy the given conditions
or use random value-ordering heuristics and restarts to generate random pro-
grams. For sampling from a uniform distribution, the CSP can be transformed
into a belief network [12]. In fact, the same model can generate both probabilistic
programs in the syntax of ProbLog [11] and non-probabilistic Prolog pro-
grams. To the best of our knowledge, this is the first work that (a) addresses the
problem of generating random logic programs in its full generality (i.e., includ-
ing first-order clauses with variables), and (b) compares and evaluates inference
algorithms for probabilistic logic programs on more than a handful of instances.

A major advantage of a constraint-based approach is the ability to add addi-
tional constraints as needed, and to do that efficiently (compared to generate-
and-test approaches). As an example of this, in Sect. 7 we develop a custom con-
straint that, given two predicates P and Q, ensures that any ground atom with
predicate P is independent of any ground atom with predicate Q. In this way,
we can easily regulate the independence structure of the underlying probability
distribution. In Sect. 6 we also present a combinatorial argument for correct-
ness that counts the number of programs that the model produces for various
parameter values. We end the paper with two experimental results in Sect. 8: one
investigating how the constraint model scales when tasked with producing more
complex programs, and one showing how the model can be used to evaluate and
compare probabilistic inference algorithms.

Overall, our main contributions are concerned with logic programming-based
languages and frameworks, which capture a major fragment of SRL [9]. However,
since probabilistic logic programming languages are closely related to other areas
of machine learning, including (imperative) probabilistic programming [10], our
results can lay the foundations for exploring broader questions on generating
models and testing algorithms in machine learning.

2 Preliminaries

The basic primitives of logic programs are constants, (logic) variables, and pred-
icates with their arities. A term is either a variable or a constant, and an atom
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is a predicate of arity n applied to n terms. A formula is any well-formed expres-
sion that connects atoms using conjunction ∧, disjunction ∨, and negation ¬.
A clause is a pair of a head (which is an atom) and a body (which is a for-
mula1). A (logic) program is a set of clauses, and a ProbLog program is a set
of clause-probability pairs [14].

In the world of CSPs, we also have (constraint) variables, each with a domain,
whose values are restricted using constraints. All constraint variables in the
model are integer or set variables, however, if an integer refers to a logical con-
struct (e.g., a logical variable or a constant), we will make no distinction between
the two. We say that a constraint variable is (fully) determined if its domain (at
the time) has exactly one value. We let � denote the absent/disabled value of an
optional variable [19]. We write a[b] ∈ c to mean that a is an array of variables
of length b such that each element of a has domain c. Similarly, we write c : a[b]
to denote an array a of length b such that each element of a has type c. Finally,
we assume that all arrays start with index zero.

Parameters of the Model. We begin by defining sets and lists of the primitives
used in constructing logic programs: a list of predicates P, a list of their corre-
sponding arities A (so |A| = |P|), a set of variables V, and a set of constants
C. Either V or C can be empty, but we assume that |C| + |V| > 0. Similarly,
the model supports zero-arity predicates but requires at least one predicate to
have non-zero arity. For notational convenience, we also set MA = max A. Next,
we need a measure of how complex a body of a clause can be. As we represent
each body by a tree (see Sect. 4), we set MN ≥ 1 to be the maximum num-
ber of nodes in the tree representation of any clause. We also set MC to be
the maximum number of clauses in a program. We must have that MC ≥ |P|
because we require each predicate to have at least one clause that defines it. The
model supports enforcing predicate independence (see Sect. 7), so a set of inde-
pendent pairs of predicates is another parameter. Since this model can generate
probabilistic as well as non-probabilistic programs, each clause is paired with
a probability which is randomly selected from a given list—our last parameter.
For generating non-probabilistic programs, one can set this list to [1]. Finally,
we define T = {¬,∧,∨,�} as the set of tokens that (together with atoms) form
a clause. All decision variables of the model can now be divided into 2 × MC
separate groups, treating the body and the head of each clause separately. We
say that the variables are contained in two arrays: Body : bodies[MC] and
Head : heads[MC].

3 Heads of Clauses

We define the head of a clause as a predicate ∈ P ∪ {�} and
arguments[MA] ∈ C ∪ V ∪ {�}. Here, we use � to denote either a disabled
1 Our model supports arbitrarily complex bodies of clauses (e.g., ¬P(X) ∨ (Q(X) ∧
P(X))) because ProbLog does too. However, one can easily restrict our represen-
tation of a body to a single conjunction of literals (e.g., Q(X) ∧ ¬P(X))) by adding
a couple of additional constraints.
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clause that we choose not to use or disabled arguments if the arity of the
predicate is less than MA. The reason why we need a separate value for the
latter (i.e., why it is not enough to fix disabled arguments to a single already-
existing value) will become clear in Sect. 5. This predicate variable has a corre-
sponding arity that depends on the predicate. We can define arity ∈ [0,MA]
as the arity of the predicate if predicate ∈ P and zero otherwise using the
table constraint [17]. This constraint uses a set of pairs of the form (p, a), where p
ranges over all possible values of the predicate, and a is either the arity of pred-
icate p or zero. Having defined arity, we can now fix the superfluous arguments.

Constraint 1. For i = 0, . . . ,MA − 1, arguments[i] = � ⇐⇒ i ≥ arity.

We also add a constraint that each predicate should get at least one clause.

Constraint 2. Let P = {h.predicate | h ∈ heads} be a multiset. Then

nValues(P ) =

{
|P| if count(�, P ) = 0
|P| + 1 otherwise,

where nValues(P ) counts the number of unique values in P , and count(�, P )
counts how many times � appears in P .

Finally, we want to disable duplicate clauses but with one exception: there may
be more than one disabled clause, i.e., a clause with head predicate = �.
Assuming a lexicographic order over entire clauses such that � > P for all
P ∈ P and the head predicate is the ‘first digit’ of this representation, the
following constraint disables duplicates as well as orders the clauses.

Constraint 3. For i = 1, . . . ,MC − 1, if heads[i].predicate �= �, then

(heads[i − 1], bodies[i − 1]) < (heads[i], bodies[i]).

4 Bodies of Clauses

As was briefly mentioned before, the body of a clause is represented by a tree.
It has two parts. First, there is the structure[MN] ∈ [0,MN − 1] array that
encodes the structure of the tree using the following two rules: structure[i] = i
means that the ith node is a root, and structure[i] = j (for j �= i) means that
the ith node’s parent is node j. The second part is the array Node : values[MN]
such that values[i] holds the value of the ith node, i.e., a representation of the
atom or logical operator.

We can use the tree constraint [13] to forbid cycles in the structure array
and simultaneously define numTrees ∈ {1, . . . ,MN } to count the number of
trees. We will view the tree rooted at the zeroth node as the main tree and
restrict all other trees to single nodes. For this to work, we need to make sure
that the zeroth node is indeed a root, i.e., fix structure[0] = 0. For convenience,
we also define numNodes ∈ {1, . . . ,MN } to count the number of nodes in the
main tree. We define it as numNodes = MN − numTrees + 1.
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Example 1. Let MN = 8. Then ¬P(X) ∨ (Q(X) ∧ P(X)) can be encoded as:

structure = [0, 0, 0, 1, 2, 2, 6, 7], numNodes = 6,
values = [∨,¬,∧,P(X),Q(X),P(X),�,�], numTrees = 3.

Here, � is the value we use for the remaining one-node trees. The ele-
ments of the values array are nodes. A node has a name ∈ T ∪ P and
arguments[MA] ∈ V ∪ C ∪ {�}. The node’s arity can then be defined in the
same way as in Sect. 3. Furthermore, we can use Constraint 1 to again disable
the extra arguments.

Example 2. Let MA = 2, X ∈ V, and let P be a predicate with arity 1. Then the
node representing atom P(X) has: name = P, arguments = [X,�], arity = 1.

We need to constrain the forest represented by the structure array together
with its values to eliminate symmetries and adhere to our desired format. First,
we can recognise that the order of the elements in the structure array does not
matter, i.e., the structure is only defined by how the elements link to each other,
so we can add a constraint for sorting the structure array. Next, since we
already have a variable that counts the number of nodes in the main tree, we
can fix the structure and the values of the remaining trees to some constant
values.

Constraint 4. For i = 1, . . . ,MN − 1, if i < numNodes, then

structure[i] = i, and values[i].name = �,

else structure[i] < i.

The second part of this constraint states that every node in the main tree except
the zeroth node cannot be a root and must have its parent located to the left
of itself. Next, we classify all nodes into three classes: predicate (or empty)
nodes, negation nodes, and conjunction/disjunction nodes based on the number
of children (zero, one, and two, respectively).

Constraint 5. For i = 0, . . . ,MN − 1, let Ci be the number of times i appears
in the structure array with index greater than i. Then

Ci = 0 ⇐⇒ values[i].name ∈ P ∪ {�},
Ci = 1 ⇐⇒ values[i].name = ¬,
Ci > 1 ⇐⇒ values[i].name ∈ {∧,∨}.

The value � serves a twofold purpose: it is used as the fixed value for nodes
outside the main tree, and, when located at the zeroth node, it can represent a
clause with an empty body. Thus, we can say that only root nodes can have �
as the value.

Constraint 6. For i = 0, . . . ,MN − 1,

structure[i] �= i =⇒ values[i].name �= �.
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Finally, we add a way to disable a clause by setting its head predicate to �.

Constraint 7. For i = 0, . . . ,MC − 1, if heads[i].predicate = �, then

bodies[i].numNodes = 1, and bodies[i].values[0].name = �.

5 Variable Symmetry Breaking

Ideally, we want to avoid generating programs that are equivalent in the sense
that they produce the same answers to all queries. Even more importantly, we
want to avoid generating multiple internal representations that ultimately result
in the same program. This is the purpose of symmetry-breaking constraints,
another important benefit of which is that the constraint solving task becomes
easier [29]. Given any clause, we can permute the variables in that clause without
changing the meaning of the clause or the entire program. Thus, we want to
fix the order of variables. Informally, we can say that variable X goes before
variable Y if the first occurrence of X in either the head or the body of the
clause is before the first occurrence of Y . Note that the constraints described in
this section only make sense if |V| > 1 and that all definitions and constraints
here are on a per-clause basis.

Definition 1. Let N = MA × (MN + 1), and let terms[N ] ∈ C ∪ V ∪ {�}
be a flattened array of all arguments in a particular clause. Then we can use
a channeling constraint to define occ[|C| + |V| + 1] as an array of subsets of
{0, . . . , N − 1} such that for all i = 0, . . . , N − 1, and t ∈ C ∪ V ∪ {�},

i ∈ occ[t] ⇐⇒ terms[i] = t.

Next, we introduce an array that holds the first occurrence of each variable.

Definition 2. Let intros[|V|] ∈ {0, . . . , N} be such that for v ∈ V,

intros[v] =

{
1 + min occ[v] if occ[v] �= ∅
0 otherwise.

Here, a value of zero means that the variable does not occur in the clause (this
choice is motivated by subsequent constraints). As a consequence, all other
indices are shifted by one. Having set this up, we can now eliminate variable
symmetries simply by sorting intros. In other words, we constrain the model
so that the variable listed first (in whatever order V is presented in) has to occur
first in our representation of a clause.

Example 3. Let C = ∅, V = {X,Y,Z}, MA = 2, MN = 3, and consider the
clause sibling(X,Y ) ← parent(X,Z) ∧ parent(Y,Z). Then

terms = [X,Y,�,�,X, Z, Y, Z],
occ = [{0, 4}, {1, 6}, {5, 7}, {2, 3}],

intros = [0, 1, 5],

where the �’s correspond to the conjunction node.
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We end the section with several redundant constraints that make the CSP
easier to solve. First, we can state that the positions occupied by different terms
must be different.

Constraint 8. For u �= v ∈ C ∪ V ∪ {�}, occ[u] ∩ occ[v] = ∅.

The reason why we use zero to represent an unused variable is so that we could
now use the ‘all different except zero’ constraint for the intros array. We can
also add another link between intros and occ that essentially says that the
smallest element of a set is an element of the set.

Constraint 9. For v ∈ V, intros[v] �= 0 ⇐⇒ intros[v] − 1 ∈ occ[v].

Finally, we define an auxiliary set variable to act as a set of possible values
that intros can take. Let potentials ⊆ {0, . . . , N} be such that for v ∈ V,
intros[v] ∈ potentials. Using this new variable, we can add a constraint say-
ing that non-predicate nodes in the tree representation of a clause cannot have
variables as arguments.

Constraint 10. For i = 0, . . . ,MN − 1, let

S = {MA × (i + 1) + j + 1 | j = 0, . . . ,MA − 1}.

If values[i].name �∈ P, then potentials ∩ S = ∅.

6 Counting Programs

To demonstrate the correctness of the model, this section derives combinato-
rial expressions for counting the number of programs with up to MC clauses
and up to MN nodes per clause, and arbitrary P, A, V, and C. Being able to
establish two ways to generate the same sequence of numbers (i.e., numbers of
programs with certain properties and parameters) allows us to gain confidence
that the constraint model accurately matches our intentions. For this section,
we introduce the term total arity of a body of a clause to refer to the sum total
of arities of all predicates in the body.

We will first consider clauses with gaps, i.e., without taking variables and
constants into account. Let T (n, a) denote the number of possible clause bodies
with n nodes and total arity a. Then T (1, a) is the number of predicates in P
with arity a, and the following recursive definition can be applied for n > 1:

T (n, a) = T (n − 1, a) + 2
∑

c1+···+ck=n−1,
2≤k≤ a

minA ,
ci≥1 for all i

∑
d1+···+dk=a,

di≥minA for all i

k∏
i=1

T (ci, di).

The first term here represents negation, i.e., negating a formula consumes one
node but otherwise leaves the task unchanged. If the first operation is not a
negation, then it must be either conjunction or disjunction (hence the coefficient
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‘2’). In the first sum, k represents the number of children of the root node, and
each ci is the number of nodes dedicated to child i. Thus, the first sum iterates
over all possible ways to partition the remaining n − 1 nodes. Similarly, the
second sum considers every possible way to partition the total arity a across the
k children nodes. We can then count the number of possible clause bodies with
total arity a (and any number of nodes) as

C(a) =

{
1 if a = 0∑MN

n=1 T (n, a) otherwise.

The number of ways to select n terms is

P (n) = |C|n +
∑

1≤k≤|V|,
0=s0<s1<···<sk<sk+1=n+1

k∏
i=0

(|C| + i)si+1−si−1.

The first term is the number of ways to select n constants. The parameter k is the
number of variables used in the clause, and s1, . . . , sk mark the first occurrence
of each variable. For each gap between any two introductions (or before the first
introduction, or after the last introduction), we have si+1 − si − 1 spaces to be
filled with any of the |C| constants or any of the i already-introduced variables.

Let us order the elements of P, and let ai be the arity of the ith predicate.
The number of programs is then:

∑
∑|P|

i=1 hi=n,
|P|≤n≤MC,
hi≥1 for all i

|P|∏
i=1

(∑MA×MN
a=0 C(a)P (a + ai)

hi

)
, (1)

Here, we sum over all ways to distribute |P| ≤ n ≤ MC clauses among |P|
predicates so that each predicate gets at least one clause. For each predicate,
we can then count the number of ways to select its clauses out of all possible
clauses. The number of possible clauses can be computed by considering each
possible arity a, and multiplying the number of ‘unfinished’ clauses C(a) by the
number of ways to select the required a + ai terms in the body and the head of
the clause. Finally, we compare the numbers produced by (1) with the numbers
of programs generated by our model in 1032 different scenarios, thus showing
that the combinatorial description developed in this section matches the model’s
behaviour.

7 Stratification and Independence

Stratification is a condition necessary for probabilistic logic programs [18] and
often enforced on logic programs [4] that helps to ensure a unique answer to every
query. This is achieved by restricting the use of negation so that any program
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P can be partitioned into a sequence of programs P =
⊔n

i=1 Pi such that, for
all i, the negative literals in Pi can only refer to predicates defined in Pj for
j ≤ i [4].

Independence, on the other hand, is defined on a pair of predicates (say,
P,Q ∈ P) and can be interpreted in two ways. First, if P and Q are independent,
then any ground atom of P is independent of any ground atom of Q in the
underlying probability distribution of the probabilistic program. Second, the
part of the program needed to fully define P is disjoint from the part of the
program needed to define Q.

These two seemingly disparate concepts can be defined using the same build-
ing block, i.e., a predicate dependency graph. Let P be a probabilistic logic pro-
gram with its set of predicates P. Its (predicate) dependency graph is a directed
graph GP with elements of P as nodes and an edge between P,Q ∈ P if there
is a clause in P with Q as the head and P mentioned in the body. We say that
the edge is negative if there exists a clause with Q as the head and at least one
instance of P at the body such that the path from the root to the P node in
the tree representation of the clause passes through at least one negation node;
otherwise, it is positive. We say that P (or GP ) has a negative cycle if GP has
a cycle with at least one negative edge. A program P is stratified if GP has
no negative cycles.2 Thus a simple entailment algorithm for stratification can be
constructed by selecting all clauses, all predicates of which are fully determined,
and looking for negative cycles in the dependency graph constructed based on
those clauses using an algorithm such as Bellman-Ford.

For any predicate P ∈ P, the set of dependencies of P is the smallest set DP

such that P ∈ DP, and, for every Q ∈ DP, all direct predecessors of Q in GP are
in DP. Two predicates P and Q are independent if DP ∩ DQ = ∅.

Example 4. Consider the following (fragment of a) program:

sibling(X,Y ) ← parent(X,Z) ∧ parent(Y,Z),
father(X,Y ) ← parent(X,Y ) ∧ ¬mother(X,Y ). (2)

Its predicate dependency graph is in Fig. 1. Because of the negation in (2), the
edge from mother to father is negative, while the other two edges are positive.
The dependencies of each predicate are:

Dparent = {parent}, Dsibling = {sibling, parent},
Dmother = {mother}, Dfather = {father,mother, parent}.

Hence, we have two pairs of independent predicates, i.e., mother is independent
of parent and sibling.

Since the definition of independence relies on the dependency graph, we can
represent this graph as an adjacency matrix constructed as part of the model. Let

2 This definition is an extension of a well-known result for logic programs [3] to prob-
abilistic logic programs with arbitrary complex clause bodies.
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parent

mother

sibling

father

+

+

−

Fig. 1. The predicate dependency graph of
the program from Example 4. Positive edges
are labelled with ‘+’, and negative edges
with ‘−’.

Table 1. Types of (potential) dependen-
cies of a predicate P based on the number
of undetermined edges on the path from
the dependency to P

Edges Name Notation

0 Determined Δ(p)

1 Almost determined Γ(p, s, t)

> 1 Undetermined Υ(p)

Algorithm 1: Entailment for independence
Data: predicates p1, p2
D ← {(d1, d2) ∈ deps(p1, 1) × deps(p2, 1) | d1.predicate = d2.predicate};
if D = ∅ then return true;
if ∃(Δ ,Δ ) ∈ D then return false else return undefined;

A be a |P| × |P| binary matrix defined element-wise by stating that A[i][j] = 0
if and only if, for all k = 0, . . . ,MC − 1, either heads[k].predicate �= j or
i �∈ {a.name | a ∈ bodies[k].values}.

Given a partially-solved model with its predicate dependency graph, let us
pick an arbitrary path from Q to P (for some P,Q ∈ P) that consists of deter-
mined edges that are denoted by 1 in A and potential/undetermined edges that
are denoted by {0, 1}. Each such path characterises a (potential) dependency Q
for P. We classify all such dependencies into three classes depending on the num-
ber of undetermined edges on the path. These classes are outlined in Table 1,
where p represents the dependency predicate Q, and, in the case of Γ , (s, t) ∈ P2

is the one undetermined edge on the path. For a dependency d—regardless of
its exact type—we will refer to its predicate p as d.predicate. In describing the
algorithms, we will use ‘ ’ to replace any of p, s, t in situations where the name
is unimportant.

Each entailment algorithm returns one out of three values: true if the con-
straint is guaranteed to hold, false if the constraint is violated, and undefined
if whether the constraint will be satisfied or not depends on the future decisions
made by the solver. Algorithm 1 outlines a simple entailment algorithm for the
independence of two predicates p1 and p2. First, we separately calculate all
dependencies of p1 and p2 and look at the set D of dependencies that p1 and
p2 have in common. If there are none, then the predicates are clearly indepen-
dent. If they have a dependency in common that is already fully determined
(Δ) for both predicates, then they cannot be independent. Otherwise, we return
undefined.

Propagation algorithms have two goals: causing a contradiction (failing) in
situations where the corresponding entailment algorithm would return false,
and eliminating values from domains of variables that are guaranteed to cause
a contradiction. Algorithm 2 does the former on Line 2. Furthermore, for any
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Algorithm 2: Propagation for independence
Data: predicates p1, p2; adjacency matrix A

1 for (d1, d2) ∈ deps(p1, 0) × deps(p2, 0) s.t. d1.predicate = d2.predicate do
2 if d1 is Δ( ) and d2 is Δ( ) then fail();
3 if {d1, d2} = {Δ( ),Γ( , s, t)} then A[s][t].removeValue(1);

Algorithm 3: Dependencies of a predicate
Data: adjacency matrix A
Function deps(p, allDeps):

D ← {Δ(p)};
while true do

D′ ← ∅;
for d ∈ D and q ∈ P do

edge ← A[q][d.predicate] = {1};
if edge and d is Δ( ) then D′ ← D′ ∪ {Δ(q)};
else if edge and d is Γ( , s, t) then D′ ← D′ ∪ {Γ(q, s, t)};
else if |A[q][d.predicate]| > 1 and d is Δ(r) then

D′ ← D′ ∪ {Γ(q, q, r)};
else if |A[q][d.predicate]| > 1 and allDeps then D′ ← D′ ∪ {Υ(q)};

if D′ = D then return D else D ← D′;

dependency shared between predicates p1 and p2, if it is determined (Δ) for one
predicate and almost determined (Γ) for another, then the edge that prevents
the Γ from becoming a Δ cannot exist—Line 3 handles this possibility.

The function deps in Algorithm 3 calculates Dp for any predicate p. It has
two versions: deps(p, 1) returns all dependencies, while deps(p, 0) returns only
determined and almost-determined dependencies. It starts by establishing the
predicate p itself as a dependency and continues to add dependencies of depen-
dencies until the set D stabilises. For each dependency d ∈ D, we look at the
in-links of d in the predicate dependency graph. If the edge from some predicate
q to d.predicate is fully determined and d is determined, then q is another deter-
mined dependency of p. If the edge is determined but d is almost determined,
then q is an almost-determined dependency. The same outcome applies if d is
fully determined but the edge is undetermined. Finally, if we are interested in
collecting all dependencies regardless of their status, then q is a dependency of
p as long as the edge from q to d.predicate is possible. Note that if there are
multiple paths in the dependency graph from q to p, Algorithm 3 could include
q once for each possible type (Δ, Υ, and Γ), but Algorithms 1 and 2 would still
work as intended.
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⎛
⎜⎜⎝

⎞
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father 0 0 0 0
mother 1 0 0 0
parent 1 { 0, 1 } {0, 1} {0, 1}
sibling 0 0 0 0

(a) The adjacency matrix of the graph.
The boxed value is the decision variable
that will be propagated by Algorithm 2.

parent

mother

sibling

father

(b) A drawing of the graph. Dashed edges
are undetermined—they may or may not
exist.

Fig. 2. The predicate dependency graph of Example 5

Example 5. Consider this partially determined (fragment of a) program:

�(X,Y ) ← parent(X,Z) ∧ parent(Y,Z),
father(X,Y ) ← parent(X,Y ) ∧ ¬mother(X,Y ),

where � indicates an unknown predicate with domain

D� = {father,mother, parent, sibling}.

The predicate dependency graph is pictured in Fig. 2. Suppose we have a con-
straint that mother and parent must be independent. The lists of potential depen-
dencies for both predicates are:

Dmother = {Δ(mother),Γ(parent, parent,mother)},
Dparent = {Δ(parent)}.

An entailment check at this stage would produce undefined, but propagation
replaces the boxed value in Fig. 2a with zero, eliminating the potential edge from
parent to mother. This also eliminates mother from D�, and this is enough to
make Algorithm 1 return true.

8 Experimental Results

We now present the results of two experiments: in Sect. 8.1 we examine the scal-
ability of our constraint model with respect to its parameters and in Sect. 8.2
we demonstrate how the model can be used to compare inference algorithms
and describe their behaviour across a wide range of programs. The experiments
were run on a system with Intel Core i5-8250U processor and 8 GB of RAM.
The constraint model was implemented in Java 8 with Choco 4.10.2 [23]. All
inference algorithms are implemented in ProbLog 2.1.0.39 and were run using
Python 3.8.2 with PySDD 0.2.10 and PyEDA 0.28.0. For both sets of experi-
ments, we generate programs without negative cycles and use a 60 s timeout.
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8.1 Empirical Performance of the Model

Along with constraints, variables, and their domains, two more design decisions
are needed to complete the model: heuristics and restarts. By trial and error,
the variable ordering heuristic was devised to eliminate sources of thrashing, i.e.,
situations where a contradiction is being ‘fixed’ by making changes that have
no hope of fixing the contradiction. Thus, we partition all decision variables
into an ordered list of groups and require the values of all variables from one
group to be determined before moving to the next group. Within each group,
we use the ‘fail first’ variable ordering heuristic. The first group consists of all
head predicates. Afterwards, we handle all remaining decision variables from the
first clause before proceeding to the next. The decision variables within each
clause are divided into (a) the structure array, (b) body predicates, (c) head
arguments, (d) (if |V| > 1) the intros array, (c) body arguments. For instance,
in the clause from Example 3, all visible parts of the clause would be decided in
this order:

1

sibling(
3

X,
3

Y ) ←
2

parent(
4

X,
4

Z)
2
∧

2
parent(

4

Y ,
4

Z).

We also employ a geometric restart policy, restarting after 10, 10 × 1.1, 10 ×
1.12, . . . contradictions.3 We ran 399 360 experiments, investigating the model’s
efficiency and gaining insight into what parameter values make the CSP harder.
For |P|, |V|, |C|, MN , and MC − |P| (i.e., the number of clauses in addition
to the mandatory |P| clauses), we assign all combinations of 1, 2, 4, 8. MA is
assigned to values 1–4. For each |P|, we also iterate over all possible numbers of
independent pairs of predicates, ranging from 0 up to

(|P|
2

)
. For each combination

of the above-mentioned parameters, we pick ten random ways to assign arities
to predicates (such that MA occurs at least once) and ten random combinations
of independent pairs.

The majority (97.7%) of runs finished in under 1 s, while four instances timed
out: all with |P| = MC − |P| = MN = 8 and the remaining parameters all
different. This suggests that—regardless of parameter values—most of the time
a solution can be identified instantaneously while occasionally a series of wrong
decisions can lead the solver into a part of the search space with no solutions.

In Fig. 3, we plot how the mean number of nodes in the binary search tree
grows as a function of each parameter (the plot for the median is very similar).
The growth of each curve suggests how the model scales with higher values of
the parameter. From this plot, it is clear that MN is the limiting factor. This
is because some tree structures can be impossible to fill with predicates without
creating either a negative cycle or a forbidden dependency, and such trees become
more common as the number of nodes increases. Likewise, a higher number of
predicates complicates the situation as well.

3 Restarts help overcome early mistakes in the search process but can be disabled if
one wants to find all solutions, in which case search is complete regardless of the
variable ordering heuristic.
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Fig. 4. Inference time for different val-
ues of MA and proportions of proba-
bilistic facts that are probabilistic. The
total number of facts is fixed at 105.

8.2 Experimental Comparison of Inference Algorithms

For this experiment, we consider clauses of two types: rules are clauses such that
the head atom has at least one variable, and facts are clauses with empty bodies
and no variables. We use our constraint model to generate the rules according to
the following parameter values: |P|, |V|,MN ∈ {2, 4, 8}, MA ∈ {1, 2, 3}, MC =
|P|, C = ∅. These values are (approximately) representative of many standard
benchmarking instances which often have 2–8 predicates of arity one or two, 0–8
rules, and a larger database of facts [14]. Just like before, we explore all possible
numbers of independent predicate pairs. We also add a constraint that forbids
empty bodies. For both rules and facts, probabilities are uniformly sampled
from {0.1, 0.2, . . . , 0.9}. Furthermore, all rules are probabilistic, while we vary
the proportion of probabilistic facts among 25%, 50%, and 75%. For generating
facts, we consider |C| ∈ {100, 200, 400} and vary the number of facts among
103, 104, and 105 but with one exception: the number of facts is not allowed to
exceed 75% of all possible facts with the given values of P, A, and C. Facts are
generated using a simple procedure that randomly selects a predicate, combines
it with the right number of constants, and checks whether the generated atom is
already included or not. We randomly select configurations from the description
above and generate ten programs with a complete restart of the constraint solver
before the generation of each program, including choosing different arities and
independent pairs. Finally, we set the query of each program to a random fact not
explicitly included in the program and consider six natively supported algorithms
and knowledge compilation techniques: binary decision diagrams (BDDs) [6],
negation normal form (NNF), deterministic decomposable NNF (d-DNNF) [8],
K-Best [11], and two encodings based on sentential decision diagrams [7], one
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Fig. 5. Mean inference time for a range of ProbLog inference algorithms as a function
of the total number of facts in the program and the proportion of independent pairs of
predicates. For the second plot, the number of facts is fixed at 105.

of which encodes the entire program (SDDX), while the other one encodes only
the part of the program relevant to the query (SDD).4

Out of 11310 generated problem instances, about 35% were discarded because
one or more algorithms were not able to ground the instance unambiguously.
The first observation (pictured in Fig. 5) is that the algorithms are remarkably
similar, i.e., the differences in performance are small and consistent across all
parameter values (including parameters not shown in the figure). Unsurprisingly,
the most important predictor of inference time is the number of facts. However,
after fixing the number of facts to a constant value, we can still observe that
inference becomes harder with higher arity predicates as well as when facts are
mostly probabilistic (see Fig. 4). Finally, according to Fig. 5, the independence
structure of a program does not affect inference time, i.e., state-of-the-art infer-
ence algorithms—although they are supposed to [15]—do not exploit situations
where separate parts of a program can be handled independently.

9 Conclusion

We described a constraint model for generating both logic programs and proba-
bilistic logic programs. The model avoids unnecessary symmetries, is reasonably
efficient and supports additional constraints such as predicate independence.
Our experimental results provide the first comparison of inference algorithms
for probabilistic logic programming languages that generalises over programs,
i.e., is not restricted to just a few programs and data sets. While the results did
not reveal any significant differences among the algorithms, they did reveal a
shared weakness, i.e., the inability to ignore the part of a program that is easily
seen to be irrelevant to the given query.

Nonetheless, we would like to outline two directions for future work. First,
the experimental evaluation in Sect. 8.1 revealed scalability issues, particularly
4 Forward SDDs (FSDDs) and forward BDDs (FBDDs) [27,28] are omitted because

the former uses too much memory and the implementation of the latter seems to be
broken at the time of writing.
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concerning the length/complexity of clauses. However, this particular issue is
likely to resolve itself if the format of a clause is restricted to a conjunction of
literals. Second, random instance generation typically focuses on either realistic
instances or sampling from a simple and well-defined probability distribution.
Our approach can be used to achieve the former, but it is an open question how
it could accommodate the latter.

Acknowledgments. Paulius was supported by the EPSRC Centre for Doctoral Train-
ing in Robotics and Autonomous Systems, funded by the UK Engineering and Physical
Sciences Research Council (grant EP/S023208/1). Vaishak was supported by a Royal
Society University Research Fellowship.
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Abstract. One of the challenges of deploying machine learning (ML)
systems is fairness. Datasets often include sensitive features, which ML
algorithms may unwittingly use to create models that exhibit unfairness.
Past work on fairness offers no formal guarantees in their results. This
paper proposes to exploit formal reasoning methods to tackle fairness.
Starting from an intuitive criterion for fairness of an ML model, the
paper formalises it, and shows how fairness can be represented as a deci-
sion problem, given some logic representation of an ML model. The same
criterion can also be applied to assessing bias in training data. Moreover,
we propose a reasonable set of axiomatic properties which no other def-
inition of dataset bias can satisfy. The paper also investigates the rela-
tionship between fairness and explainability, and shows that approaches
for computing explanations can serve to assess fairness of particular pre-
dictions. Finally, the paper proposes SAT-based approaches for learning
fair ML models, even when the training data exhibits bias, and reports
experimental trials.

1 Introduction

Given the forecast widespread use of ML-enabled systems, in settings that can
have a significant impact in the lives and safety of human beings, a range of con-
cerns need to be addressed. Robustness of ML models against adversarial exam-
ples is one such concern [22,37,43,44,50,55,60,61]. Explaining the predictions
of ML models represents another concern. A related concern is to learn (or syn-
thesize) interpretable ML models [5,9,30,35,36,41,51,56,65,66]. One additional
concern is to ensure that ML-enabled systems are fair [4,15,48]. The importance
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of addressing fairness cannot be overstated, as demonstrated by recent exist-
ing troublesome evidence [6,19] that already deployed ML-enabled systems can
exhibit very significant bias. Furthermore, recently recommended guidelines at
the EU level highlight the importance of fairness [23].

We find many definitions of fairness in the literature[7,54,64]. In [64], the
authors classify these definitions into three categories: statistical measures,
similarity-based measures, and causal reasoning. Statistical measures, such as
those presented in [7,14,16,20,33,46], can hardly be studied from a formal angle
due to their nature. Similarity-based measures [20,27,48], on the other hand, are
data independent definitions that are well suited for formal investigations. Last,
causal reasoning measures [45,48,53] are based on the so-called causal graphs
(i.e. graphs capturing relationships between the different features) and are essen-
tially used to synthesise ML models. We focus in this paper on similarity-based
measures because they offer an excellent framework for formal analysis compared
to the other two.

Addressing fairness can be performed at three different levels: data process-
ing, synthesis, and verification. Current work on the three levels is, to a large
extent, heuristic in nature [1,2,4,11,25,26,28,34,48,59,64], offering no formal
guarantees in their analyses. This paper proposes a first step towards endow-
ing the analysis (i.e. data processing and verification) and the synthesis of fair
ML models with a rigorous footing. We study one concrete criterion of fair-
ness, and propose a rigorous test to assess whether or not an ML model is fair
against that criterion. Moreover, the paper shows how the proposed test can be
adapted to devise a simple (polynomial-time) algorithm to assess existing bias
in datasets, even if datasets are inconsistent. More importantly, in the case of
biased datasets, the paper investigates how to adapt exact methods for learning
interpretable (logic-based) ML models to synthesize fair ML models.

The paper is organized as follows. Section 2 summarizes the definitions and
notation used throughout the paper. Section 3 focuses on a criterion of fairness,
and develops tests for assessing whether an ML model is fair, whether a dataset
exhibits bias, and whether a particular prediction is fair. Section 4 investigates
how fair logic-based models can be synthesized with possibly biased datasets.
Section 5 provides a theoretical justification for adopting the fairness criterion
used throughout the paper. Finally, Sect. 6 presents preliminary experimental
results and Sect. 7 concludes the paper.

2 Preliminaries

SAT/SMT-Related Topics. The paper uses definitions standard in Boolean
Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) [10]. These
include conjunctive and disjunctive normal forms (resp. CNF and DNF), prime
implicants and implicates.

Classification Problems. This section adapts the definitions used in earlier
work [9,41,49]. We consider a set of features F = {F1, . . . , FK}, where each
feature Fi takes values from some domain Di. The space of all assignments to
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features defined by F = ΠK
i=1Di is referred to as feature space [32]. Throughout

the paper, all domains in the examples and experiments will be binary, i.e. Di =
{0, 1}, but the results will be derived assuming arbitrary (discrete) domains1.
Since all features are binary, a literal on a feature Fr will be represented as Fr

or as ¬Fr.
To learn a classifier, one starts from given training data (also referred to

as examples) T = {e1, . . . , eM}. Each example has an associated class taken
from a set of classes C. The paper focuses mostly on binary classification, i.e.
C = {c0, c1}. (We will associate c0 with 0 and c1 with 1, for simplicity.) Thus, T is
partitioned into T + and T −, denoting the examples classified as positive (c1 = 1)
and as negative (c0 = 0), respectively. Each example eq ∈ T is represented as
a pair 〈zq, cq〉, where zq ∈ F denotes the literals associated with the example
and cq ∈ {0, 1} is the class to which the example belongs. We have cq = 1 if
eq ∈ T + and cq = 0 if eq ∈ T −. The training data T is consistent if 〈zq, 0〉 ∈
T ∧ 〈zq′ , 1〉 ∈ T =⇒ zq �= zq′ , and inconsistent otherwise. A literal lr on a
feature Fr, lr ∈ {Fr,¬Fr}, discriminates an example eq if zq[r] = ¬lr, i.e. the
feature takes the value opposite to the value in the example. We assume that all
features are specified for all examples; the work can be generalized for situations
where the value of some features for some examples is left unspecified.

An ML model M is represented as a function ϕ : F → C. With a slight abuse
of notation, a consistent training data will also be viewed as a partial function
ϕT : F → C. In a general setting, where the training data can be inconsistent,
we represent the possible values of training data in each point of feature space
by a relation T ⊆ F × C.

Unless otherwise stated, we focus on accurate ML models, indicating that
100% of the training data examples are classified correctly. A non-accurate ML
model may misclassify some examples of training data (e.g. this is the case for
inconsistent data).

Examples of ML Models. The paper focuses almost exclusively on logic-based
ML models, namely decision sets (DSs) and trees (DTs).

Definition 1 (Decision set). A DNF formula φ over the literals⋃
Fr∈F{Fr,¬Fr} is a decision set for a training set T if the function that maps

z ∈ F to c1 if z is a model of φ and to c0 otherwise is equal to ϕT on T .

Definition 2 (Decision tree). A decision tree for a training set T is a decision
set φ =

∨
i ti such that there exists a rooted tree with edges labelled with literals

of φ and such that for every term ti of φ there is a path from the root to a leaf
whose set of labels consists of exactly the literals in ti.

Fairness. Following standard notation [48], throughout this paper we will
assume that F is partitioned into a set of protected features P = {FI+1, . . . , FK}

1 Real-value features can be discretized. Moreover, to focus on binary features, the
fairly standard one-hot-encoding [58] is assumed for handling non-binary categorical
features.
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Ex. Sunny Windy Classes Exams Gender Hike?
e1 1 0 0 0 1 1
e2 0 1 0 0 0 0
e3 1 1 1 0 0 0
e4 0 1 0 1 0 0
e5 1 1 0 0 1 1

(a) Dataset

Gender

0

0

1

1

(b) Unfair decision tree

Sunny

0

0

Classes

0

1

1

0

1

(c) Fair decision tree

Fig. 1. Running example

and a set of non-protected features N = {F1, . . . , FI}, with |N | = I and
|P| = K − I. Thus, following the notation used earlier, we define N = ΠI

i=1Di

and P = ΠK
i=I+1Di, and so F = N × P. Moreover, z ∈ F is split into x ∈ N and

y ∈ P. The protected features are those with respect to which we intuitively want
ML models not to be sensitive2. Throughout the paper, we will use the notation
ϕ(x,y) as a replacement for ϕ(x · y) where z = x · y denotes the concatenation
of vectors. Moreover, when referring to specific points in feature space (or the
space of non-protected or protected features), the notation used will be t ∈ F,
u ∈ N, and v ∈ P (resp. instead of z, x and y). Finally, we use the notation T

to denote the set {ti | 〈ti, ci〉 ∈ T } ⊆ F.

Running Example. We use a simple example to illustrate the main points.
Minor modifications to the original example will be also considered later in the
paper.

Example 1. We consider the example of Fig. 1, where the protected feature set
is P = {Gender}. The purpose of the example is to decide the circumstances
that cause students to enjoy a hike, and we would rather have a classifier that
is gender-balanced, if possible. (For the purposes of the example, it is irrelevant
whether the values of 0 and 1 of feature Gender correspond to male and female
or vice-versa.) By running an off-the-shelf heuristic algorithm for constructing a
decision tree, one obtains a single branching node with feature Gender. Figure 1b
shows the heuristic decision tree obtained with well-known ML packages ( scikit-
learn [58] and Orange [18] gave the same result).

Nevertheless, the evident unfairness of the obtained decision tree results solely
from the algorithms used for constructing heuristic decision trees. Indeed, as
shown in later sections, careful analysis of the training data reveals that there
is no evidence in the data that justifies that feature Gender should play such a
role in deciding the circumstances under which male/female students enjoy hikes.
Figure 1c shows an example of a fair decision tree for this example corresponding
to the single-term DNF Sunny ∧¬Classes.

2 For a number of reasons, datasets can contain such protected features, but their
removal may be undesirable, for example, because this may induce inconsistencies
in datasets.
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3 Assessing Fairness

We consider in this section an ML classification scenario, with training data T
where the set of features F is partitioned into a set of protected features P and a
set of non-protected features N , and some (interpretable) ML model M trained
on T

3.1 Fairness Criterion

A number of definitions of fairness have been proposed in recent years [48,64].
This paper considers fairness through unawareness (FTU), which was originally
proposed as follows:

Criterion 1 (Fairness Through Unawareness (FTU) [31,48]). An algorithm is
fair if the protected features P are not explicitly used in the decision-making
process.

The operational definition above suggests a syntactic test to decide whether
FTU holds. This section proposes instead a semantic characterization of fairness,
that respects the syntactic definition of FTU. Besides FTU, a number of addi-
tional definitions of fairness are studied in [48,64] and in related work. Moreover,
a possible criticism of FTU is that P may not represent all features capturing
discriminatory information [48]. Nevertheless, FTU exhibits a number of advan-
tages over other criteria, and Sect. 5 provides a theoretical justification for using
FTU as a definition of fairness.

Definition 3 (Criterion for FTU). Given an ML model M computing some
(classification) function ϕ : F → C, we say that M is fair if:

∀(x ∈ N) ∀(y1,y2 ∈ P). [ϕ(x,y1) = ϕ(x,y2)] (1)

Next, we investigate how this criterion can be used to analyze both ML
models and datasets. Note that this criterion can be seen as a hard version of
the causal discrimination measure presented in [27].

3.2 Assessing Model Fairness and Dataset Bias

Checking Model Fairness. As shown later in the paper, it will be convenient
to assess instead the negation of the FTU criterion.

Remark 1. An ML model M respects Definition 3, i.e. (1) holds, iff the following
is false:

∃(x ∈ N) ∃(y1,y2 ∈ P). [ϕ(x,y1) �= ϕ(x,y2)] (2)

Clearly, we can now use (2) to assess whether an ML model M is fair or not,
by searching for satisfying assignments for (2), and this can be achieved with a
satisfiability test, given a suitable logic representation of the ML model M. From
a practical perspective, we can refine the previous result as follows.
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Remark 2. To test condition (2) we only need to test pairs y1,y2 which differ
on a single feature. This is because if (2) holds for some x,y1,y2 then it must
hold for some x,yr,yr+1 (r ∈ {0, . . . , K − 1}) where yr is equal to y1 on the
first K−r features of P and equal to y2 on the other features of P. Analyzing
each feature separately reduces the search space that needs to be considered.

Checking Bias in Consistent Datasets. By exploiting Remark 1
or Remark 2, we can devise a test to assess whether a dataset exhibits unfairness
(in which case we say that the dataset is biased). We consider first the case
when the dataset is consistent, and use the insights to consider the more general
case of inconsistent datasets. For a consistent dataset, the following condition
captures FTU in the dataset.

Definition 4 (Consistent dataset bias under FTU). A consistent dataset
T is biased if the following holds:

∃(x ∈ N)∃(y1,y2 ∈ P).[(x,y1), (x,y2) ∈ T ∧ (ϕT (x,y1) �= ϕT (x,y2))] (3)

Intuitively, a dataset is biased if the protected features serve to distinguish
between two different predictions when the non-protected features take the same
values. Although (3) is harder to read than (2), it is actually simple to develop
a polynomial time procedure for assessing whether a dataset is FTU-biased.
However, we develop instead a polynomial (indeed, linear) time algorithm for
the more general case of inconsistent data, which is also applicable in the case
of consistent data.

Checking Bias in Inconsistent Datasets. Even if the training data is incon-
sistent, one can devise a test to assess whether a dataset exhibits bias. As moti-
vated in Sect. 2, in the presence of inconsistent data, we model the expected
input-output behavior (given the dataset) as a relation. In the case of an incon-
sistent dataset, the following condition captures FTU in the dataset.

Definition 5 (Inconsistent dataset bias under FTU). An inconsistent
dataset T is biased if the following holds:

∃(x ∈ N) ∃(y1,y2 ∈ P) ∃(c1, c2 ∈ C).[y1 �= y2 ∧ c1 �= c2 ∧
(x,y1), (x,y2) ∈ T ∧ T(x,y1, c1) ∧ T(x,y2, c2)] (4)

There is an alternative definition that considers the dataset to be fair if for
each x ∈ N, y1,y2 ∈ P, the sets of classes c ∈ C for which T(x,y1, c) or T(x,y2, c)
hold are identical. We ruled out this alternative definition for reasons described
in Sect. 5.

There is a fairly simple linear-(amortized)-time algorithm that can be used
both with consistent and with inconsistent data, as shown in Algorithm1. Cor-
rectness of the algorithm follows from the fact that condition (4) is actually
logically equivalent to

∃(x ∈ N)∃(y1,y2,y′
1,y

′
2 ∈ P) ∃(c1, c2, c′

1, c
′
2 ∈ C).[y1 �= y2 ∧ c1 �= c2 ∧

(x,y1), (x,y2), (x,y′
1), (x,y′

2) ∈ T ∧
T(x,y1, c

′
1) ∧ T(x,y2, c

′
2) ∧ T(x,y′

1, c1) ∧ T(x,y′
2, c2)] (5)
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Algorithm 1: Checking dataset bias
Input: T , N , P
Output: Biased / Unbiased

1 begin
2 foreach 〈(xi,yi), ci〉 ∈ T do
3 CSet[xi] ← ∅
4 YSet[xi] ← ∅
5 foreach 〈(xi,yi), ci〉 ∈ T do
6 CSet[xi] ← CSet[xi] ∪ {ci} ;
7 YSet[xi] ← YSet[xi] ∪ {yi}
8 foreach 〈(xi,yi), ci〉 ∈ T do
9 if |CSet[xi]| > 1 ∧ |YSet[xi]| > 1 then

10 return Biased
11 return Unbiased
12 end

Table 1. Extension of the dataset of our running example

Ex. Sunny Windy Classes Exams Gender Hike?

e1 1 0 0 0 1 1
e6 1 0 0 0 0 0
e7 1 0 0 0 1 0
e8 1 0 0 0 0 1

The implication (4) ⇒ (5) is immediate. To see the implication (5) ⇒ (4),
suppose that T(x,y1, c

′
1)∧T(x,y2, c

′
2)∧T(x,y′

1, c1)∧T(x,y′
2, c2) where y1 �= y2,

c1 �= c2, but that (4) does not hold. We can deduce that c′
1 = c′

2 and y′
1 = y′

2 and
(y1 = y′

1 ∨ c′
1 = c1), (y1 = y′

2 ∨ c′
1 = c2), (y2 = y′

1 ∨ c′
2 = c1), (y2 = y′

2 ∨ c′
2 = c2)

for which it can easily be verified that there is no solution.
In Algorithm 1 each vector x on the non-protected features is used for index-

ing both sets CSet, YSet using hashtables. By inspection, the amortized running
time is linear (since operations on a hash table have constant amortized com-
plexity [17]).

Example 2. Running the proposed algorithm on the dataset of Example 1 with
protected feature set Y = {Gender} confirms that the dataset is unbiased. How-
ever, if the same dataset is extended with the rows in Table 1 (where e1 is added
for convenience), then the algorithm reports, as expected, that the dataset is no
longer unbiased. Clearly, with x1 = (1, 0, 0, 0) = x6 = x7 = x8, there are now
two different predictions and the dataset is inconsistent. Moreover, there are two
reasons for the dataset to be deemed biased: e1 and e6 are one reason, and e7
and e8 are the other. It should also be noted that e1 and e7 do not represent a
possible reason to declare bias in the dataset.

One way to tackle fairness is to discard the protected features. The following
simple result will be used later in the paper.
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Proposition 1. Consider a consistent dataset T , and let the dataset T ′ be
obtained by discarding the protected features P of T . Hence, T ′ may have
examples with duplicated sets of feature values. T is unbiased iff there are no
inconsistencies in T ′.

3.3 Local Fairness via Explanations

In this section we consider local notions of fairness. An individual is probably
more interested in the fairness of a particular decision concerning themselves
than in the global fairness of the model. We use the notion of explanation to
define local fairness. It turns out that there are two possible definitions of local
fairness based on explanations.

To be concrete, consider the problem of an unemployed woman who has been
refused a loan and who wants to know if this is because she is a woman. Suppose
the bank has learned the following simple model: refuse a loan if the client is
unemployed or if they are a woman. This model is clearly unfair with respect
to gender, but in this particular case the bank can claim that they would have
refused the loan even if the client had been a man. On the other hand, the client
can point out there are two explanations for the refusal: the first explanation is
that she is unemployed (since all unemployed are refused a loan) and the second
explanation is that she is a woman (since all women are refused a loan), and
hence the decision should be considered unfair.

There is recent work investigating similar themes [3] which shows that expla-
nations can be used to fake fairness, but the authors study statistical measures
of fairness.

Following [39,62], given an ML model M computing some function ϕ, an
explanation of some prediction ϕ(z) = c is a prime implicant of the mapping
ϕ : z → c, where c is considered fixed (i.e. a subset-minimal subset of the literals
of z which still entails the prediction c). This notion of explanation allows us to
define fairness of a particular decision/prediction of a model M.

In the following we view a z ∈ F as a set of literals, one per feature.

Definition 6 (Fair explanation). An explanation e of a prediction ϕ(z) = c
is a subset of z which is minimal under subset inclusion such that ∀z′ ∈ F, if
e ⊆ z′ then ϕ(z′) = c. If z = (x,y) with x ∈ N, y ∈ P, we say that e is fair if
e ∩ y = ∅ (i.e. e uses no protected literals).

Definition 7 (Universal/existential Fairness). A prediction ϕ(z) = c is
universally fair if all of its explanations are fair. It is existentially fair if at least
one of its explanations is fair.

It turns out that there is a close connection between FTU and universal
fairness.

Proposition 2. Let ϕ be the function computed by a ML model M. M is fair
according the FTU criterion (1) iff all predictions ϕ(z) = c (z ∈ F) are universally
fair.
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Proof. It suffices to prove that M is unfair according to criterion (2) iff there
exists an unfair explanation of some prediction.

Suppose that M is unfair because ϕ(x,y1) = c �= ϕ(x,y2). All predictions
have at least one explanation, so let e be an explanation of ϕ(x,y1) = c. Thus,
by Definition 6, ∀z′ ∈ F, if e ⊆ z′ then ϕ(z′) = c. Since ϕ(x,y2) �= c, this implies
that e ∩ y1 �= ∅ and hence e is an unfair explanation.

Suppose that the prediction ϕ(z) = c (where z = (x,y)) has an unfair
explanation e. Let e′ = e \ y. Since e is unfair, e ∩ y �= ∅ and so e′ is a proper
subset of e. By subset minimality of the explanation e, e′ cannot be a valid
explanation of ϕ(z) = c, and so ∃z′ ∈ F such that e′ ⊆ z′ and ϕ(z′) �= c. Let
feat(e) denote the features which occur in e and z′[feat(e)] the subset of z′ on
these features. Now, let z′′ = e ∪ (z′ \ z′[feat(e)]). Since e is an explanation of
ϕ(z) = c and e ⊆ z′′, we must have ϕ(z′′) = ϕ(z) = c. But then z′′ and z′ differ
only on the features of e ∩ y (i.e. on protected features) but ϕ(z′′) = c �= ϕ(z′),
so M is unfair according to criterion (2). ��

Using our rigourous definition of explanation and our two notions of fairness
of a prediction, we consider two concrete questions, given a prediction ϕ(z) = c:

1. Are all explanations fair (i.e. do not include any feature from the set of
protected features)? This problem will be referred to as universal fairness
checking (UFC).

2. Does there exist a fair explanation (i.e. that does not include any protected
feature)? This problem will be referred to as existential fairness checking
(EFC).

These two problems correspond to our two different notions of fairness of a
prediction (existential and universal). They clearly differ semantically, but it
would appear that they also differ in terms of the computational complexity to
answer them.

Proposition 3. For polytime-computable ϕ, EFC ∈ co-NP and UFC ∈ ΠP
2 .

Proof. To see EFC ∈ co-NP, observe that a prediction ϕ(x,y) = c has a fair
explanation iff the non-protected features x entail the predicted class c. Thus
the non-existence of a fair explanation is equivalent to the existence of y′ ∈ P

such that ϕ(x,y′) �= c.
To see UFC ∈ ΠP

2 , observe that all explanations of a prediction ϕ(z) =
c (where z = (x,y)) are fair iff for all putative explanations e ⊆ z of this
prediction, either e does not entail the predicted class c or e \ y does entail c.
This is logically equivalent to

∀(e ⊆ z) ∀(z′′ ⊇ e \ y) ∃(z′ ⊇ e). [(ϕ(z′) �= c) ∨ (ϕ(z′′) = c)]

which clearly places UFC in ΠP
2 . ��

Whether UFC is complete for ΠP
2 is an open problem. We conjecture that

it is, since there is no obvious polynomial-time verifiable certificate. It is worth
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noting that, by Proposition 2 the problem of testing whether all predictions are
universally fair is in co-NP, since the counter-example certificate is simply the
values of x,y1,y2 satisfying criterion (2). This is somewhat counter-intuitive in
that testing the universal fairness of all predictions may be easier than testing
the universal fairness of one prediction.

3.4 Relation of Fairness to Robustness and Adversarial Examples

Informally speaking, robustness is the property that two almost identical inputs
(i.e. points in feature space F) should be labelled equally. We give a general
formal definition for robustness, then we show that fairness can be seen as a
particular case. This may enable previous work on robustness to be adapted
for fairness. We discuss this particular point by presenting the relationship with
adversarial examples.

Let P(F) be the power set of F. Let f be a neighbourhood function: that is,
f : F → P(F). We say that an ML model M with corresponding function ϕ is
robust w.r.t. a neighbourhood function f if ∀z ∈ F, ∀z′ ∈ f(z), ϕ(z) = ϕ(z′).
Consider the example of adversarial robustness [57]. The neighbourhood function
related to adversarial robustness can be defined as far(z) = {z′ | d(z, z′) ≤ ε}
where d : F × F → R

+ is a distance metric and ε > 0. Adversarial robustness
can then be defined as the property that ∀z ∈ F, ∀z′ ∈ far(z), ϕ(z) = ϕ(z′).

Fairness can be viewed a particular case of robustness. Note that defining
fairness using distance (thus neighbourhood) functions is used in the so-called
“fairness through awareness” measure [20,64]. We can consider the neighbour-
hood function f∗ : F → P (F) such that f∗(x.y) = {x.y′ | y′ ∈ P}. That is, the
neighbourhood of an input z is the set of inputs that have the same unprotected
features. The robustness property using the f∗ neighbourhood function is iden-
tical to the fairness criterion (1): two inputs that have the same unprotected
features should be labelled equally.

Using this observation, we can relate work on robustness and fairness. For
example, if one can construct an adversarial example (or counterexample) that
uses changes to protected features, then the model is deemed unfair.

4 Learning Fair ML Models

Section 3 showed how to assess whether datasets or models could be checked for
a specific fairness criterion. The purpose of this section is to investigate ways
of synthesizing ML models when a dataset is unbiased, and when it is biased.
Whereas the case of unbiased datasets requires simple changes to existing ML
model synthesis approaches, the case of biased datasets requires more substantial
changes. As argued earlier, the paper focuses on logic-based ML models, namely
decision sets, decision trees and decision lists. Moreover, the dataset is assumed
to be consistent, for simplicity. The modifications to the case of inconsistent
datasets are also briefly discussed.
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4.1 Unbiased Datasets

This section shows how to synthesize ML models from unbiased datasets. Two
different settings can be envisioned, namely heuristic and optimal approaches.

Heuristic Approaches. Starting from an unbiased consistent dataset, we can
use an off-the-shelf ML tool to learn a fair ML model. A simple solution is to
discard the protected features, since we know from Proposition 1 that inconsis-
tencies will not be introduced. The resulting ML model will not depend on the
protected features, and so the model is fair. There are no restrictions on which
ML model to consider.

Optimal Approaches. Exact approaches for synthesizing DS’s, DT’s and DL’s
have been studied since the 90s, with a peak of recent interest due to the con-
cerns of interpretability and explainability [42]. These approaches offer formal
guarantees, for example in terms of model size and accuracy. As with heuristic
approaches, a simple solution to synthesize fair ML models is to ensure that
protected variables are not allowed to be used when constructing the ML model.
We first briefly recall a formal method for computing minimal size decision sets,
proposed in [41], namely the so-called MinDS3 model, then we show how it
can be modified to synthesize fair DS’s. Notice that similar procedures could be
employed with any other logic-based ML models.

The choice of this model is motivated by simplicity, and others could be
considered as well. Most methods learn a set of disjunctive normal form (DNF)
formulas, one for each class. MinDS3 learns one DNF for one class, and uses the
examples from training data for the other class as the DNF for that class [41].
Given K features and M examples, we consider the synthesis of N rules associ-
ated with class c1, where each rule is a term (conjunction) of up to K literals.
The variables of the model are the following:

– sjr: whether for rule j, the feature Fr is skipped.
– ljr: the literal on feature Fr for rule j, in the case the feature is not skipped.
– d0jr: whether rule j discriminates feature Fr on value 0 (in the sense that Fr

occurs as a positive literal in term j).
– d1jr: whether rule j discriminates feature Fr on value 1 (¬Fr occurs in term

j).
– crjq: whether rule j covers eq ∈ T + (i.e. eq satisfies term j).

The constraints associated with the SAT encoding are the following:

1. Each term (rule) must have at least one literal:
(

K∨

r=1
¬sjr

)

j ∈ {1, . . . , N} (6)

2. One must be able to account for which literals are discriminated by which
rules:

d0jr ↔ ¬sjr ∧ ljr j ∈ {1, . . . , N} ∧ r ∈ {1, . . . , K}
d1jr ↔ ¬sjr ∧ ¬ljr j ∈ {1, . . . , N} ∧ r ∈ {1, . . . , K}

(7)
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3. Each negative example eq ∈ T − must be discriminated by each of the N rules
(eq satisfies no rule). Recall that zq[r] denote the value of feature Fr for eq.
Then, we have:

(
K∨

r=1
d
zq [r]
jr

)

j ∈ {1, . . . , N} ∧ eq ∈ T − (8)

4. Each positive example eq ∈ T + must be covered by (i.e. satisfy) some rule.
– First, define whether a rule covers some specific positive example:

crjq ↔
(

K∧

r=1
¬d

zq [r]
jr

)

j ∈ {1, . . . , N} ∧ eq ∈ T + (9)

– Second, each eq ∈ T + must be covered by some rule.
(

N∨

j=1

crjq

)

eq ∈ T + (10)

To ensure that the DS respect the FTU rule, we add the constraints (sjr),
j = 1, . . . , N , for each Fr ∈ P, denoting that a literal of feature Fr should not
be used in rule j. This way, the synthesized DS will not include literals on the
protected features.

4.2 Biased Datasets

If a dataset is biased, then a completely accurate ML model must exhibit unfair-
ness.

Proposition 4. For a consistent dataset T , if (4) holds, i.e. the dataset is
biased, then any ML model that is accurate must exhibit FTU unfairness.

Proof. If (4) holds, then there exist in T a point (x,y1) with some prediction c1
and a point (x,y2) with some prediction c2. Thus, if some ML model is accurate,
criterion (2) must be false. ��

Proposition 4 indicates that if a dataset is biased then accuracy implies loss
of fairness and fairness implies loss of accuracy. This section investigates how
logic-based models can be synthesized such that fairness is ensured. Due to
Proposition 4, the price to pay is that the model is no longer 100% accurate3.
Furthermore, this section also illustrates how accuracy can be traded off with
the size of the ML model representation.

Maximum Accuracy. The first problem we study is: find a DS that is fair
and has maximum accuracy. As we show next, there is a simple algorithm for

3 It should be noted that, in ML settings, logic-based models that are not 100% accu-
rate are expected to be less sensitive to overfitting. Thus, the fact that some accuracy
is lost is not necessarily a drawback [8].
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obtaining a DS that maximizes accuracy on training data. For each u ∈ N having
v1,v2 ∈ P such that ϕ(u,v1) �= ϕ(u,v2), consider the set of examples, denoted
by Conflictu, where the values of the non-protected features are those in tuple
u. Consider the least frequent class among examples in Conflictu. (For ties,
pick one class randomly.) Redefine the training data by removing the examples
in Conflictu that are associated to the least frequent class. Now, use the model
proposed in Sect. 4 to learn a DS, that discards the protected features.

Proposition 5. The algorithm above yields a fair decision set with maximum
accuracy.

Proof. The learned DS is fair by construction. Moreover, the lack of accuracy
is solely due to protected features being relevant for constructing an accurate
decision set. For each set of common non-protected features, the most frequently-
occurring prediction is chosen. Hence, accuracy cannot be improved if the model
is to be fair. ��

4.3 Non-accurate Interpretable Models

In practice, 100% accurate models are often unwieldy. So an interesting problem
is how to synthesize a fair DS, that respects some accuracy target, while placing
some bound on the size of the ML model. The solution we propose is when values
x of the non-protected features have multiple predictions (due to the protected
features y) to allow freedom of the prediction to be picked (instead of imposing
a majority vote) provided it is a function of only x. This ensures fairness of the
learnt model according to (1), but this flexibility can be used for reducing the
number of rules (or the number of literals in rules) while ensuring that some
target accuracy metric is met.

We now study how to synthesize interpretable models that are not 100%
accurate. It should be noted that earlier work often makes a number of assump-
tions regarding trading off accuracy with representation size [5,30,36,51]; ours
makes none.

We consider the encoding proposed in Sect. 4 for computing a smallest deci-
sion set. Recall that to ensure fairness, we add the constraints (sjr), j = 1, . . . , N ,
for each Fr ∈ P, so that protected features Fr are not be used in any rule j. A
model corresponding to a solution of this SAT instance covers all positive exam-
ples and discriminates all negative examples. To adapt this model, i.e. (6) to
(10), so that it is not necessarily accurate, one can allow each negative example
in the training data not to be discriminated. For eq ∈ T −, let ndjq denote that
eq is not discriminated by rule j, and let ndq denote that eq is not discriminated
(by any rule). Then, we update the model as follows:

ndjq ↔
(

K∧

r=1
¬d

zq [r]
jr

)

j ∈ {1, . . . , N} ∧ eq ∈ T −

ndq →
(∨N

j=1 ndjq

)
eq ∈ T −

(11)
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(Equivalence for the second constraint is not needed.) If the target accuracy is
0 ≤ τ ≤ 1, then the constraint on accuracy becomes:

∑

eq∈T −
ndq ≤ �τ × |T −|� (12)

If the model includes DNF’s for other classes, then (12) must be extended accord-
ingly, both the sum and the right-hand side (e.g. τ × (|T −| + |T +|)).

These proposed changes to the model introduced in Sect. 4 (and taken
from [41]) enables learning a decision set that is no longer 100% accurate, and
so one can trade off accuracy for representation size while ensuring fairness.

5 Theoretical Study of Criteria for Dataset Bias

This section provides a theoretical justification for considering FTU in Sect. 3.
We consider the axioms which a criterion for deciding dataset bias should satisfy.
A criterion for bias is a boolean function f on datasets T ∈ P(F × C) such that
f(T ) = 1 if T is biased. First, any such criterion should be independent of
the coding of features and classes: replacing a boolean feature Fi by ¬Fi or
interchanging the positive and negative classes should not alter dataset bias.
Similarly for merging or splitting features, provided this concerns just protected
features or just unprotected features: for example, whether we use two boolean
features or a single feature with values in {0, 1, 2, 3} should not have any effect on
deciding dataset bias. Formally, coding-independence is invariant under bijective
renaming of feature-values or class-names and merging of any pair of features
which are either both protected or both non-protected.

A criterion f for bias should always return 0 if all data are identical on the
protected features. We call this the lack of arbitrariness condition (if ∃y0 s.t.
∀〈(x,y), c〉 ∈ T , y = y0, then f(T ) = 0). For example, we cannot decide that
there is racial bias if all data only concern people of the same race.

Another desirable property of a bias criterion is monotonicity : a dataset
should not become less biased by eliminating unprotected features (if T ′ is
obtained from T by discarding some unprotected features, then f(T ′) ≥ f(T )).
For example, if salary and age are unprotected features, and race is a protected
feature, then keeping the same classification but ignoring age should not make
the dataset less biased, since we are ignoring information which could legiti-
mately be used to classify the data.

We choose a purely logical approach to learning as opposed to a statistical
approach. In many applications, and for various possible reasons, the sample
distribution may not reflect the true distribution on which the learned model is
to be used. For example, the sample data could have been specifically selected
by a teacher to cover extreme cases rather than being a random sample. In this
logical context, we also impose the following simplicity condition: bias can be
proved by exhibiting just two different decisions (if f(T ) = 1, then ∃T ′ ⊆ T
containing just 2 examples with f(T ′) = 1). Simplicity is a restrictive condition
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which is only justified in the context of explainable AI: other notions of fairness
are possible if we relax this simplicity condition [64].

We say that a dataset is class-uniform if it classifies all data into the same
class and that it is protected-uniform if all data are identical on the protected
features. A criterion f for bias is discerning if it categorizes as unbiased at least
one dataset which is neither class-uniform nor protected-uniform and categorizes
as biased at least one dataset.

It turns out that the FTU (as given by (4)) is the only possible criterion for
bias that satisfies all the above conditions.

Proposition 6. The only discerning criterion for data set bias which satisfies
the coding-independence, lack of arbitrariness, monotonicity and simplicity con-
ditions is the FTU.

Proof. By coding independence, we can merge all non-protected features in N
and all protected features in P, so that we effectively have only two features
(with possibly large domains). Coding-independence means that applying any
permutation to values does not change bias. This implies that the only opera-
tion we can use on features or classes is equality (or inequality). The simplicity
condition implies that we can detect bias from two examples (x1,y1), (x2,y2)
which belong to different classes. Since the criterion for bias is not arbitrary,
we know that it cannot impose y1 = y2. A criterion which was a function only
of x1,x2 would violate the monotonicity condition, since eliminating all unpro-
tected features would then leave us with a trivial bias criterion. We therefore
have to impose the condition y1 �= y2 in the test for bias.

Suppose now that the criterion decides bias by testing just y1 �= y2. Since the
criterion is discerning, it must categorize as unbiased some dataset T which is
neither class-uniform nor protected-uniform. Since T is not protected-uniform,
there are data (u1,v1), (u2,v2) in T such that v1 �= v2. Since T is categorized
as unbiased, both (u1,v1), (u2,v2) must belong to the same class in T . Now,
since T is not class-uniform, there is (u3,v3) which belongs to another class in
T . But, since v3 cannot be equal both to v1 and v2, the criterion for bias decides
that T is biased, which is a contradiction.

We therefore have to impose y1 �= y2 together with a condition on x1,x2

in the criterion for bias. If we also impose x1 �= x2, then this would not satisfy
monotonicity (since eliminating all unprotected features could render the dataset
unbiased). The only remaining case is to impose the condition x1 = x2 together
with y1 �= y2. This criterion for bias corresponds exactly to the FTU (as given
by (4)). ��

Another desirable property of a dataset bias criterion is that bias is invariant
under the addition of irrelevant (i.e. not used by the model) unprotected features,
such as shoe-size when deciding to grant a loan. This appears to be a reason-
able condition. However, the following proposition shows that it is impossible
to satisfy this irrelevant-features condition together with all conditions stated
above.
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Proposition 7. There is no discerning criterion for dataset bias which satis-
fies the coding-independence, lack of arbitrariness, monotonicity, simplicity and
irrelevant-features conditions.

Proof. By Proposition 6 FTU is the only possible candidate criterion for bias
satisfying all these conditions. Consider a dataset which is categorized as biased
by the FTU. However, by adding sufficient irrelevant features we can ensure that
all data are distinct on the unprotected features and hence the FTU would con-
sider the extended dataset to be unbiased, thus contradicting invariance under
addition of irrelevant features. ��

For example, when a bank decides whether to grant a loan to one of its clients
it has information stored such as their bank account number. If this number is
considered as an unprotected feature, any model will satisfy the FTU criterion
(we are assuming there are no two clients with the same account number). The
automatic detection of irrelevant features is an interesting problem for future
research.

6 Preliminary Experimental Results

This section assesses empirically the proposed ideas on a selection of well-known
datasets. The aim of the experiments is to (1) illustrate that datasets can be
practically checked for bias using Algorithm 1, (2) show that ML models can be
tested for fairness using condition (2), and (3) make an attempt to synthesize
fair decision sets [41,49] as discussed in Sect. 4.

Experimental Setup. For the experiments, several Python scripts were imple-
mented, instrumenting SAT and SMT oracle calls. Whenever needed, Min-
iSat 2.2 [21] was used as a SAT oracle while Z3 [52] was employed as an SMT
solver. The solvers were accessed through the well-known Python APIs, namely
PySAT [38] and PySMT [29].

The experiments were performed on a Macbook Pro with an Intel
Core i7 2.6 GHz CPU and 16 GB of memory and focused on a few publicly
available datasets studied in the context of algorithmic fairness. These include
Compas, Adult, German, and Ricci. The datasets are binarized using the stan-
dard one-hot encoding method [58]. Their sizes is detailed in Fig. 2a. Compas is
a popular dataset known [6] for exhibiting racial bias of the COMPAS algorithm
used for scoring a criminal defendant’s likelihood of reoffending; the dataset
includes a few protected features, namely, race-related parameters African Amer-
ican, Asian, Hispanic, Native American, and Other but also Female. Adult [47] is
originally taken from the Census bureau and targets predicting whether or not a
given adult person earns more than $50K a year depending on various features,
among which the protected ones are Race and Sex. German credit data (e.g.
see [24]), given a list of people’s features, classifies them as good or bad credit
risks; the protected features are Sex and Age. The Ricci dataset [26] comes from
the case of Ricci vs. DeStefano [63], “a case before the U.S. Supreme Court in
which the question at issue was an exam given to determine if firefighters would
receive a promotion”; the protected feature is Race.
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6.1 Assessing Dataset Bias

The first part of the experimental assessment aims at checking whether the afore-
mentioned datasets exhibit bias with respect to the corresponding protected fea-
tures. Note that although the Compas and German datasets are inconsistent,
they can still be tested for bias (see Sect. 3). Running Algorithm1 reports that
(1) Compas and Adult are biased with respect to all the protected features while
(2) German and Ricci do not exhibit bias with respect to any protected feature.
Point (1) indicates that there is no way to train an ML model of maximum
accuracy whilst being fair with respect to the protected features. In particular,
this confirms the famous bias-related issues of the Compas algorithm. Moreover,
the results for the Ricci dataset should be highlighted. Since this dataset is unbi-
ased, one is guaranteed that a fair ML model can be synthesized. (This should
be contrasted with the unfair heuristic models studied in earlier work [26]).

6.2 Assessing Model Fairness

Here we focus on testing fairness of boosted tree models trained with the
XGBoost algorithm [13] for the considered datasets. To perform an exhaustive
experiment assessing accuracy of the target models and to be able to draw con-
clusions, we followed the standard paradigm of 10-fold cross-validation. As such,
each dataset is randomly divided into 10 equally sized chunks of examples and
the experiment is done 10 times (one per chunk), each time dealing with 90%
target dataset, i.e. with 1 of the 10 chunks discarded. This way every dataset is
tested for fairness of the respective model wrt. each protected feature 10 times.
Overall, this results in 60 fairness tests for Compas, 20 for Adult, 20 for German,
and 10 for Ricci – the total number of tests to perform is 110. (Recall that each
test is made as an SMT oracle call dealing with formula (2).)

Each XGBoost model trained for this experiment contains 50 trees per class
with each tree having depth 3 (this suffices to get a reasonable classification
accuracy). Boosted trees are encoded into SMT by applying a simple encoding
proposed in [40].

The minimum, maximum, and average running time per test for each of the
datasets is shown in Fig. 2b. Observe that testing fairness is not computation-
ally expensive and can be done for medium-sized boosted trees. Also note that
fairness tests are on average more time consuming for the German dataset.

Regarding the fairness of the trained ML models, the tests reported that
only 2 (out of 10) models trained for the Compas dataset are fair wrt. protected
feature Other. All the other models trained for all datasets are unfair with
respect to every protected feature. This should not come as a surprise given that
these models were trained with no knowledge about the protected features, which
is usually the case in practice. Since the fairness check (2) is model agnostic, this
result confirms the power and applicability of the proposed ideas in practical
situations when fairness of ML models is a concern.
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Adult Compas German Ricci

orig. features 12 11 21 5
binary features 65 46 1073 235

examples 14113 6172 1000 118

(a) Size of the considered datasets.

Adult Compas German Ricci

min. (s) 0.31 0.24 2.50 0.33
avg. (s) 12.22 0.56 87.08 0.36
max. (s) 63.77 3.37 1062.32 0.43

(b) Running Time for Checking Model Fairness.

Fig. 2. Size of the Datasets (left) & Time for Assessing (XGBoost) Model Fairness
(right)

6.3 Synthesizing Fair Decision Sets

This section aims at synthesizing fair decision sets for the case of biased dataset
Compas and unbiased dataset Ricci, based on the approach of [41] (results for
Adult and German are not reported here because synthesis of DS models for
these datasets seems too challenging). While for the former dataset (Compas)
one can drop the protected features from the dataset and then trade off accuracy
with DS size, for the unbiased Ricci dataset it suffices to modify the DS model,
as described in Sect. 4.

Furthermore, since Ricci is unbiased wrt. the protected feature Race, we
can achieve 100% accuracy with the resulting DS model (similarly with decision
trees/lists). In fact, a perfectly accurate decision set for Ricci computed by the
modified MinDS3 model [41] has only two rules, i.e. one rule per class. The
downside here is that each rule is quite long, s.t. the decision set has 68 literals
in total. This is in clear contrast to the interpretability purpose of decision sets.
However, by trading off accuracy with the DS size, one can get the following
non-overlapping MinDS1 model [41] with 97.5% accuracy and having only 4
rules and 7 literals in total, which is easy to interpret:

IF Position �= Leutenant ∧ Oral ≤ 63.75 THEN Class = 0
IF Combine ≤ 69.372 THEN Class = 0

IF Position = Leutenant ∧ Combine > 69.372 THEN Class = 1
IF Oral > 63.75 ∧ Combine > 69.372 THEN Class = 1

Since Compas is biased wrt. the protected features, training a fair ML model
for this dataset can be done by sacrificing the model’s accuracy. Concretely,
the maximum feasible accuracy for this dataset is 69.73%. Although DS models
achieving this accuracy for Compas can be trained, they are too large to inter-
pret (each has at least a few hundred literals). Thus, one may want to sacrifice
accuracy further and get a more interpretable (i.e. smaller) DS model instead.
For instance, the following non-overlapping MinDS1 model has 66.32% accuracy
and it is fair with respect to all the protected features:

IF Number of Priors > 17.5 ∧ ¬score factor THEN Two yr Recidivism
IF Number of Priors > 17.5 ∧ Age Above FourtyFive ∧ Misdemeanor THEN Two yr Recidivism
IF Number of Priors ≤ 17.5 THEN ¬Two yr Recidivism
IF score factor ∧ ¬Age Above FourtyFive THEN ¬Two yr Recidivism
IF score factor ∧ ¬Misdemeanor THEN ¬Two yr Recidivism



864 A. Ignatiev et al.

7 Conclusions and Research Directions

We studied the fairness of ML models, by considering the criterion FTU [31,48],
but proposing instead a semantic definition. We also proposed theoretical jus-
tifications for the use of FTU. Moreover, we developed criteria for assessing
fairness in ML models and bias in datasets, and related fairness with explana-
tions and robustness. Finally, we investigated approaches for synthesizing fair
ML models. Future work will address limitations of the current work, namely
assessing non-protected features exhibiting discriminatory information and/or
taking statistical measures into account [12,67].
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34. Holstein, K., Vaughan, J.W., Daumé III, H., Dud́ık, M., Wallach, H.M.: Improving
fairness in machine learning systems: what do industry practitioners need? In: CHI,
p. 600 (2019)

35. Hu, H., Siala, M., Hebrard, E., Huguet, M.J.: Learning optimal decision trees with
MaxSAT and its integration in AdaBoost. In: IJCAI, pp. 1170–1176 (2020)

36. Hu, X., Rudin, C., Seltzer, M.: Optimal sparse decision trees. In: NeurIPS, pp.
7265–7273 (2019)

http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-68167-2_19
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
http://arxiv.org/abs/1609.07236
http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning
http://papers.nips.cc/paper/6374-equality-of-opportunity-in-supervised-learning


866 A. Ignatiev et al.

37. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
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Abstract. Neural networks have become popular methods for tackling
various machine learning tasks and are increasingly applied in safety-
critical systems. This necessitates verified statements about their behav-
ior and properties. One of these properties is the equivalence of two
neural networks, which is important, e.g., when neural networks shall be
reduced to smaller ones that fit space and memory constraints of embed-
ded or mobile systems.

In this paper, we present the encoding of feed-forward neural networks
with ReLU activation functions and define novel and relaxed equiva-
lence properties that extend previously proposed notions of equivalence.
We define ε- and top-k -equivalence and employ it in conjunction with
restricting the input space by hierarchical clustering. Networks and prop-
erties are encoded as mixed integer linear programs (MILP). We evaluate
our approach using two existing reduction methods on a neural network
for handwritten digit recognition.

1 Introduction

The popularity of neural networks (NNs) for solving machine learning tasks has
strongly increased with the availability of high performance computers and large
data sets produced by today’s society. Nowadays, NNs are considered state of the
art solutions for many machine learning tasks, including machine translation [2],
image processing [19] or playing games like Go and chess [23]. The complex struc-
ture of layers and weights, however, renders them incomprehensible to humans.
While this does not have serious consequences when it comes to playing games,
it can have a severe impact when neural networks are applied to safety-critical
systems like self-driving cars [3]. Validation and verification procedures are thus
needed to provide safety guarantees.

The verification of NNs is a relatively young field. Among the first papers
published is the work by Pulina and Tacchella [22], where the authors checked
bounds on the output of multilayer perceptrons. Most current publications (e.g.,
[10,16,26]) focus on proving the adversarial robustness of NNs, meaning that
a network assigns the label of a known reference input-point to all points in a
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 868–884, 2020.
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small region around it. To prove this property, the NNs are often encoded as
constraint systems solved with SAT, SMT or MILP solvers. Over the last years,
the size of NNs used in practical applications grew rapidly, and today’s net-
works often require huge amounts of memory space. Their execution causes high
energy consumption, rendering them impractical for use on mobile or embedded
devices. As a consequence, methods have been developed to reduce the size of
NNs [14,27]. The question then arises whether the reduced NN is suitable as a
replacement for the original one, in the sense that it behaves “sufficiently equiv-
alent” on relevant inputs. Narodytska et al. [21] consider two feed-forward NNs
equivalent if, for all valid1 inputs of the input domain, the NNs produce the
same output labels. They are able to prove this property for the specialized class
of binarized NNs, which allows them to produce a SAT formula representing the
equivalence of two NNs. Kumar et al. [20] denote this equivalence property by
local equivalence over a domain, and use the term equivalence for NNs that give
the same output for all inputs. Based on these notions they collapse layers of a
given NN while guaranteeing the equivalence to the original NN.

Unfortunately, exact equivalence is hard to fulfill for two NNs, even if they
have the same structure and have been generated using the same training data,
due to the stochastic nature of the training process. In this paper, we study
feed-forward NNs with the ReLU activation function, which is the most used
activation function in modern NNs [11]. We present a new relaxed equivalence
property for NNs and show, how it—along with existing equivalence properties—
can be encoded in MILP. Additionally, we show an encoding for the verification
of equivalence, as well as maximizing the size of equivalent regions, when the
input domain is restricted to radii around a point in input space. We evaluate our
approach using the constraint solver Gurobi [13] and a NN trained on the Optical
Recognition of Handwritten Digits dataset [7]. The evaluation of our approach
marks the first time, that NN compression methods have been examined by
verification methods with respect to generating equivalent NNs.

2 Foundations

We give short introductions into NNs and MILP. Afterwards, we present the
encoding of NNs into MILP formulae.

Neural Networks. NNs consist of a number of interconnected units, sometimes
called neurons. One single neuron j computes its output yj as a function of
input values x0, ..., xn according to yj = σ(

∑n
i=0 wijxi) , where σ is called the

activation function and x0 is commonly set to 1, such that w0j encodes the bias
of the neuron. The weights wij can be learned from training data. To enable the
NN to capture non-linear functions, the activation function also has to be non-
linear. While there are many choices like the tanh or sigmoid function, we focus
on the rectified linear unit : ReLU(x) = max(0, x), which is the most commonly

1 Validity just ascertains that inputs are suitably bounded, e.g. to a range of [0, 255]
for greyscale pixels.
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used activation function in modern NNs [11]. A NN is formed by connecting
neurons via directed links, such that the outputs yk of previous neurons serve
as inputs xi of the current neuron. In this paper, we focus on feed-forward NNs,
where the graph formed by these connections is acyclic. The neurons in these
NNs can be organized in layers, such that each neuron only uses outputs of
the neurons in the layer directly preceding it as its inputs. The first layer—
called input layer—is just a place holder for the inputs to be fed into the NN,
the subsequent layers are called hidden layers, while the last layer—the output
layer—holds the function value computed by the NN. In a regression setting, the
output value represents the NN’s estimate of the respective latent function value
for the given input. For a classification task, however, the output yi of neuron i
represents the probability of the NN’s input belonging to class i. To ensure that
the resulting distribution over the outputs is normalized, each output neuron i
uses the softmax activation function

softmax(x)i =
exi

∑
j exj

.

Mixed Integer Linear Programs. A MILP problem is an optimization prob-
lem for a linear objective function under additional linear constraints. Some
variables are constrained to be integers, while others range over R.

Definition 1. A mixed integer linear programming problem consists of

1. a linear objective function f(x1, ..., xk) =
∑k

i=1 cixi over decision variables
xi that is to be minimized or maximized,

2. a set of linear constraints
∑k

i=1 aijxi �� bj , �� ∈ {≤,=,≥}, where aij and bj
are constants,

3. and an integrality constraint xi ∈ Z for some variables.

Solving MILPs is in general NP-hard. Algorithms for solving them include branch
and bound, cutting planes, or methods based on relaxations.

2.1 Encoding of Neural Networks as MILP

To argue over properties of NNs, we encode them in MILP utilizing the big-M
encoding presented in [5]. Our encoding is equal under transformation to the
ReLU-encodings of [9].

For a NN to be encoded, we first have to encode a single neuron. A
neuron j applies a non-linear activation function σ to a linear combination
sj =

∑n
i=0 wijxi of its inputs x0, ..., xn. Given fixed weights wij , this equa-

tion can be directly encoded in a mixed integer linear program. The non-linear
ReLU activation function yj = max(0, sj) can be encoded using given bounds
m ≤ sj ≤ M , which can be calculated knowing the bounds for the inputs xi

and weights wij of the NN. The ReLU function can be encoded using a new
zero-one variable δ ∈ {0, 1}, with δ = 0 representing the case (sj ≤ 0 ∧ yj = 0)
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and δ = 1 representing (sj ≥ 0 ∧ yj = sj). The ReLU function is then encoded
by the following set of linear inequalities:

yj ≥ 0 sj ≥ m(1 − δ)
yj ≥ sj yj − sj ≤ −m(1 − δ)
sj ≤ Mδ yj ≤ Mδ .

Given tight bounds m ≤ sj ≤ M , the encoding can be further simplified [5]. If
M ≤ 0, we can directly encode the ReLU function as yj = 0, and if m > 0,
we encode the output of the activation function as yj = sj . These reductions in
complexity are particularly valuable as they do not use any integer variables, on
whom we might have to branch when solving the resultant mixed integer linear
program. Therefore, we employ the approach of [5] to generate tighter bounds by
means of interval arithmetic and also solve for bounds on intermediate variables
by maximizing or minimizing their values using smaller mixed integer linear
programs only covering a low number of layers of the NN at a time.

Based on the encoding of a single neuron, we can encode a whole NN.
Each input of the NN is represented by a variable xi with associated bounds
li ≤ xi ≤ ui. These li and ui can be set according to physical limitations or
might be obtained from the respective training dataset and can be used for the
calculation of subsequent bounds in the encoding. The neurons in the first layer
are then encoded according to the previous description. The same procedure is
applied to the neurons of the next layers with the outputs yi of the neurons of
the previous layer taking the role of the inputs above, until the output layer is
reached. In classification NNs, the neurons in the output layer use the softmax
activation function. Due to its exponential functions, an exact encoding in MILP
is impossible. However, since the softmax function is monotonic, we are able to
reason about the order of the outputs by encoding the linear combination of the
input values for the neurons of the output layer in a classification NN.

3 Equivalence Properties

Let R be a reference and T a test NN computing functions fR, fT : Rm → R
n.

We further assume that the inputs to these NNs come from the same domain X
and that the i-th component of the output vector of fR(x) and fT (x) has the
same meaning in the encoding of the output neurons. Proving exact equivalence
of the test NN T and the reference NN R would then mean to ascertain that

∀x ∈ X : fR(x) = fT (x) . (1)

However, the training procedure of NNs is highly non-deterministic and training
could be on different datasets, thus leading to differences in the learned weights,
even if the NNs share the same number of layers and neurons. It is therefore
unlikely for two NNs to fulfill the exact equivalence property stated above. Hence,
we need to relax it to obtain a more practical notion of equivalence. In general,
this can either be achieved by (1) relaxing the exact equality of the function
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values in Eq. 1 through a less strict relation �, or (2) restricting the domain
of the inputs to the NNs to smaller subsets, for which equality is more likely.
The first approach is described below, while we discuss the input restriction in
Sect. 4.

3.1 Relaxed Equivalence Properties

The definition of exact equivalence in Eq. 1 can be written as a difference: ∀x ∈
X : fR(x) − fT (x) = 0. An easy relaxation would be to consider two functions
equivalent, if their difference is at least close to zero within some threshold.

Definition 2 (ε-Equivalence). We consider R and T to be ε-equivalent with
respect to a norm ‖·‖, if ‖fR(x) − fT (x)‖ ≤ ε for all x ∈ X.

While this is a valid relaxation in the context of regression NNs, the functions
fR and fT compute class probability distributions when it comes to classification
problems. In most of these cases, one is not interested in the full class probability
distribution, but only in the classification result—the class assigned the highest
probability by the NN. In that case, we can obtain a relaxed equivalence property
by comparing only the classification results.

Definition 3 (One-Hot Equivalence) . We call R and T one-hot equivalent,
if fR(x) = r and fT (x) = t satisfy arg maxiri = arg maxiti for all x ∈ X.

The name stems from the representation of the true label for each input
in the training data as a one-hot vector for classification NNs. We note that
this definition is closely related to the property of adversarial robustness [26],
however we compare the classification results of two NNs instead of comparing
the classification result of one NN with the ground-truth.

The notion of one-hot equivalence can be relaxed even further when we con-
sider not only the most likely class, which is the classification result, but instead
take the k most likely classes into account (the definition is motivated by a
similar idea in [5]).

Definition 4 (Top-k Equivalence). A test NN T is equivalent to a reference
NN R, if fR(x) = r and fT (x) = t satisfy

arg maxiri = j =⇒ pos(tj , t) ≤ k ,

where pos(wj ,w) returns i, if wj is the i-th largest value in vector w, and rj is
the unique maximum component of vector r.

Informally, a testing NN T is top-k equivalent to a reference NN R, if the
classification result of R is amongst the top k largest results of T . This can be
interpreted in a way, such that the NN, even if it differs from the classification
result of the original NN, at least only makes sensible errors. One-hot equivalence
can also be seen as a special case of top-k-equivalence for k = 1.

Note that, while exact equality and one-hot-equality are equivalence relations
in the mathematical sense, neither ε-equivalence, nor top-k-equivalence for k > 1
meet that criterion, as both are not transitive and the latter additionally is not
symmetric.
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3.2 Encoding of Equivalence Properties in MILP

In the context of adversarial robustness, properties are often encoded as MILP
problems [4,18], a formalism we also employ for our equivalence properties.
Searching for an input that maximizes the violation of these equivalence con-
straints has the advantage that we get information about the extent to which
the corresponding NNs are not equivalent. With an encoding as a satisfiability
problem, we would only get a single and possibly very small violation. In general,
we encode equivalence of two NNs R and T as the following mixed integer linear
program

max d (2)
s.t. r = encR(i) (3)

t = encT (i) (4)
d = f(r, t) (5)

where Eqs. 3 and 4 encode a reference NN R and the testing NN T on the
common inputs i as described in Sect. 2.1, yielding the respective outputs of
the NNs r and t. As we are dealing with MILP, some of these variables are real
numbers, while others are restricted to be integers. Below we are going to discuss
the encoding of the function f , which calculates the scalar violation score d for
a given equivalence property, for top-k and then for ε-equivalence.

Top-k-Equivalence. We can encode the violation score of the top-k-equivalence
R � T (or T is equivalent to R) as a simple difference

d = t̂k − tj , (6)

where arg maxiri = j. The variable t̂k denotes the k-th largest component of t. If
d = t̂k−tj ≤ 0, then we have t̂k ≤ tj , meaning that the output of T corresponding
to the classification result of R is larger or equal to the k-th largest output of T .
Therefore tj would be amongst the k largest outputs of T and thus satisfy top-
k-equivalence. The main difficulty in encoding top-k-equivalence lies in encoding
the sorting of the outputs of the NNs according to their activation value. We
can encode the calculation of the descendingly sorted vector x̂ = Πx of a NN’s
output values x by using a permutation matrix Π = (πij)ni,j=1 similar to [17]
and then adding the necessary ordering constraints (Constraint 10):

x̂i =
∑

j

πijxj ∀i ≤ n (7)

∑

i

πij = 1 ∀j ≤ n (8)

∑

j

πij = 1 ∀i ≤ n (9)

x̂i ≥ x̂i+1 ∀i ≤ n − 1 (10)
πij ∈ {0, 1} ∀i, j ≤ n , (11)
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where the Constraints 8 and 9 together with the binary constraint on the πij ,
ensuring that each column and each row only contain one 1 and only 0 elsewhere,
are sufficient to characterize Π as a permutation matrix. While multiplications
of two variables are in general non-linear, we can utilize that the πij are binary
variables, to encode the products πijxj in the above formulation. Binary multipli-
cations δx = y, where δ ∈ {0, 1}, can be linearized by encoding the implications
δ = 0 → y = 0 and δ = 1 → y = x as linear inequalities.

Using the above information, we can retrieve sorted vectors r̂, t̂ ∈ R
n of the

outputs of two NNs. To find the component of tj of t that corresponds to the
largest component of r, one can apply the permutation matrix to calculate r̂
to t and extract its first component. However, we don’t need to generate two
full permutation matrices. Realizing that we are only interested in the largest
value of r and the k largest values of t, it is sufficient to encode the first row
of the permutation matrix for r and the first k rows of the permutation matrix
for t, thus reducing the number of binary variables. When multiple outputs
ri of NN R share the highest activation value, valid permutations could be
obtained, such that in one of them component rj and in the other rj′ is the top
component in r̂. Assume that we compare a reference NN R to a testing NN T ,
that assigns the highest activation only to tj , when given the same input as R.
Then, we would use this input as a counterexample to their equivalence, since we
maximize the violation of the equivalence property and the solver would chose
the permutation of R’s outputs, that assigned rj′ as the top component. The
classification results of R and T however could still be the same. Therefore, we
require R to have a unique highest output activation. Since we are not allowed
to use strict inequalities in MILP, we use an ε > 0 to ensure a unique greatest
output activation. We then arrive at the final encoding of top-k-equivalence.
First, we obtain R’s unique top output r̂1:

r̂1 =
∑

i
ρiri (12)

r̂1 ≥ ri ∀i ≤ n (13)
ρi = 0 → r̂1 ≥ ri + ε ∀i ≤ n (14)

∑

i
ρi = 1 and ρi ∈ {0, 1} ∀i ≤ n , (15)

where ρ = (ρ1, ..., ρn)T is used just as the first row of a permutation matrix.
Then, we can solve for T ’s activation tr for the component of R’s largest output,
by applying ρ to the output of T .

tr =
∑

i
ρiti (16)

The k greatest outputs of T are computed as follows:

t̂i =
∑

j
πijtj ∀i ≤ k t̂i ≥ t̂i+1 ∀i ≤ k − 1

zj =
∑

i
πij ≤ 1 ∀j ≤ n zj = 0 → tj ≤ t̂k ∀j ≤ n

∑

j
πij = 1 ∀i ≤ k πij ∈ {0, 1}∀i ≤ k, j ≤ n ,
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where the (πij)
(k,n)
i,j=(1,1) form the first k rows of the permutation matrix for T ’s

outputs and zi indicates, whether ti is amongst T ’s k largest outputs. Finally,
we can compute the violation of the top-k-equivalence property as the difference

d = t̂k − tr , (17)

which is then maximised to find the counterexample resulting in the largest
possible violation of the equivalence property.

Interval Arithmetic. We assume that lower and upper bounds are given for
the input variables and use existing interval extensions for the sum and multi-
plication to generate bounds on the linear combinations of inputs. The ReLU
function is then applied to these bounds to generate bounds on the output of the
neuron. This process is repeated throughout the network. Naively applying this
kind of interval arithmetic to the equations defining r̂1, tr and the t̂i respectively
would produce large overestimates. In Eq. 12 for example, the upper bound on
r̂1 would be the sum instead of the maximum of the upper bounds of the ri
(only one entry is equal to 1 in a row of the permutation matrix). Therefore, we
use context groups to compute tighter bounds for these variables. Assume, we
are choosing a variable x from a set X = {x1, ..., xn}, where xi ∈ [li, ui]. Let l̂
and û denote the vectors containing the lower, respectively upper bounds sorted
in decreasing order. If we choose x to be the k-th largest variable out of X, we
can combine x in a top-k-group and assign tighter lower and upper bounds for
x according to: x ∈ [l̂k, ûk].

ε-Equivalence. We encode ε-equivalence and exact equivalence as maximizing

d = ‖r − t‖. (18)

The equivalence property is satisfied, if max d ≤ ε for ε-equivalence. The value of
ε has be chosen according to the dataset. The “optimal” value can be determined
by incrementally looking at counterexamples for the equivalence and deciding
if, from the user-perspective, the outputs are equivalent. For exact equivalence
ε = 0 is required. In order to use Eq. (18) in MILP, we need to encode the
non-linear ‖·‖ operator. We restricted ourselves to the Manhattan ‖·‖1 and the
Chebyshev norm ‖·‖∞ defined as

Manhattan: ‖x‖1 =
∑

i
|xi|, Chebyshev: ‖x‖∞ = max

i
|xi| , (19)

because they are piecewise linear functions and can thus be encoded in MILP.
Just as we have done earlier, y = |x| can also be expressed as cases x ≤

0 ∧ y = −x and x ≥ 0 ∧ y = x, that can be encoded as linear inequalities by
introducing a binary variable. If the bounds lx ≤ x ≤ ux indicate, that the
domain of x contains only positive (lx ≥ 0) or only negative (ux ≤ 0) values, we
can just set y = x or y = −x, respectively.

In case of the Manhattan norm, we just sum over the absolute values of
the components. The maximum operator used in the Chebyshev norm can be
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represented in the same way, as we have done to obtain the output with the
highest activation for a NN in Eqs. (12)–(15) in the previous section.

However a unique largest value is not required in this case, so Eq. (14) is
not needed in this encoding. We can also use the top-k-group we introduced in
Sect. refsssec:ia above with a value of k = 1 to allow for the calculation of tighter
bounds on the result of this maximum operator.

4 Input Restriction

As mentioned in Sect. 3, exact equivalence can also be relaxed by restricting the
input domain, for which the equivalence property has to hold. In practice, it
is especially useful to restrict the input domain to values, that are covered by
the training dataset of the respective NNs. Differences in the output of NNs in
the neighborhood of their training samples are far more meaningful than differ-
ences in regions, where they would not have been applied anyway. Furthermore,
restricting the input values allows for the calculation of tighter bounds.

Below, we give a quick overview of the hierarchical clustering approach of [12],
we used for restricting the input space to regions within a radius around cluster-
centers of training data. Subsequently, we show MILP encodings for proving
equivalence of two NNs for the restricted input regions. We also show, how this
process can be modified for maximizing the radius around a point, such that the
violation of a chosen equivalence property is smaller than a specified threshold.

4.1 Hierarchical Clustering

The hierarchical clustering method of [12] starts by clustering a set of labelled
data-points {(xi, yi)}ni=1, with k distinct labels into k clusters. If a cluster con-
tains input points of different labels, the method is recursively applied to that
cluster, until all clusters only contain inputs of a common label. Every clus-
ter is then characterized by its cluster center and its radius, which denotes the
maximum distance from the cluster center to its input points. The underlying
assumption for this clustering is, that all points, not just the training data-points,
in a dense cluster should be assigned the same label. As points close to a cluster
boundary might lie on a real decision boundary between two classes, [12] set the
radius rc of a cluster to the average distance of the input-points to the cluster
center. Note, that the above assumption only holds for clusters of high density
n/rc, where n is the number of training data-points in the respective cluster.

4.2 Encoding of Clusters

As each cluster is characterized by its center c and radius rc, one can place a
norm restriction ‖i − c‖ ≤ rc on the vector of inputs i, to reduce the domain
of the verification procedure to only inputs from that cluster. Thus, we can
encode the input restriction by extending the encoding of NN equivalence given
in Sect. 3.2 through adding the norm restriction to Eqs. (3)–(5).
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Again, we restrict ourselves to encoding the Manhattan and Chebyshev
norms (Eq. 19). The encoding of the Chebyshev norm for input restriction is
less complicated than its encoding needed for ε-equivalence, as we do not need
to actually calculate the value of the norm, but just ensure, that all input values
are within a set distance of the cluster center. Which leads to a box constraint
on the input variables i. Therefore the lower and upper bounds lj and uj of
variable ij can be updated to l′j = max(cj − rc, lj) and u′

j = min(cj + rc, uj)
respectively. The Manhattan norm ‖·‖1 however has to be encoded just as in
Sect. 3.2. Nonetheless, we can use the fact that ‖x‖1 ≥ ‖x‖∞ ∀x , to achieve
faster tightening of the variable bounds by adding the bounds calculated in the
encoding of the Chebyshev norm.

4.3 Searching for a Maximal Radius

In order to find the largest radius around a center c in input-space, where NNs
R and T are equivalent, it is not possible to just use the equivalence encoding
adding the presented norm and set rc to be maximized. Since the solver finds
an assignment to the input variables i, such that the objective, in that case
the radius, is maximized, the NNs are still equivalent and ‖i − c‖ ≤ rc. In that
situation the solver could choose i = c. Therefore, the equivalence constraint
would be met, if the NNs are equivalent on the center, and the maximum of the
radius would be arbitrarily large. Hence, we search for the smallest radius rv,
for which a counterexample to the equivalence of T and R can be found. This
optimization problem is similar to the one proposed in [25] for finding adversarial
examples for a single NN close to training inputs, which they approximately solve
using gradient based methods. Our MILP formulation reads:

min rv (20)
s.t. r = encR(i) (21)

t = encT (i) (22)
f(r, t) ≥ εv (23)
‖i − c‖ ≤ rv . (24)

Note that we used a small threshold value of εv > 0 for the violation.
If r∗ is the optimal solution for the above minimization problem, the two NNs

are not equivalent for radii r′ ≥ r∗, as the solver could generate a counterexample
for r∗. But we cannot guarantee that the NNs are equivalent for r′ < r∗ because
of the use of the threshold value. For small values of εv, the NNs are likely to
be equivalent for radii r′ ≤ r∗ − εr for small εr. This can then be verified using
the methods for fixed radii described in Sect. 4.2. If verification tasks for fixed
radii have been carried out beforehand, the largest (smallest) radius, for which
the NNs were (not) equivalent can be used as a lower (upper) bound on rv in
the radius-minimization problem.
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5 Application: Neural Network Compression

The huge number of parameters in modern NNs lead to large amounts of mem-
ory – AlexNet [19], for example uses 200 MB of disk space. Hence, it is desirable
to reduce the number of parameters of a NN, without compromising its perfor-
mance on the task it is designed to solve. Our approach for verifying equivalence
properties of NNs in combination with the presented input restrictions could be
used to verify the equivalence, or at least quantify the similarity, of the original
NN and the smaller NN, which is the result of the reduction in parameters. This
reduction is usually done by pruning unimportant weights - setting their value
to zero - essentially removing insignificant connections between neurons. In the
context of magnitude based pruning, weights of small absolute value are consid-
ered negligible [24]. The NN may be retrained after pruning, to correct for the
missing connections [24]. During this step and the following iterations of pruning
and retraining, the weights of the pruned connections are fixed at zero. Another
way to reduce the number of parameters, applicable only to classification tasks,
is to directly train a smaller NN on the outputs of a well performing large NN,
which is called student-teacher training [1,15].

6 Evaluation

We have implemented our approach in Python 3 and are able to automatically
generate MILP encodings together with input restrictions. Our program is able
to read in NNs exported by Keras [6] and uses version 8.1.1 of Gurobi [13] to solve
the generated instances. We used this implementation to analyze the equivalence
between compressed and original NNs, as well as between compressed NNs.

Neural Networks. Our original NN consists of an input layer, hidden layers
of 32 and 16 ReLU units and an output layer of size 10 (denoted: 32-16-10). It
was trained using the Optical Recognition of Handwritten Digits Dataset [7].

The dataset consists of 8 × 8 pixel labeled images of handwritten digits, giving
us 64 input variables, whose values are in the closed interval [0, 16], which can be
used as naive bounds on the input variables. We implemented bounds tightening
and interval arithmetic to increase scalability, yet the applicability for larger
networks as well as further optimizations or combinations with approximated
approaches are part of future work.

Reduced size NNs were obtained by pruning and retraining the original NN
in 10% increments. Additionally, NNs with less ReLU units were learned using
student-teacher training. All NNs were trained using the Keras machine learning
framework [6]. The achieved accuracy values on the training and testing datasets
are shown in Fig. 1 for the pruned NNs, as well as for different structures of
student NNs. After the training process, we removed the softmax activation
function in the output layer of the NNs to allow for their encoding in MILP.

Experiments. Verification tasks for top-k-equivalence were conducted with and
without input restricted around the cluster centers shown in Fig. 2. These clus-
ters were the five most dense clusters obtained by hierarchical clustering, when
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Fig. 1. Accuracy values for original NN, low magnitude weight pruning NNs (left) NNs
trained by student-teacher training (right).

applied to the Optical Recognition of Handwritten Digits dataset using Manhat-
tan distance. Each cluster contains between 66 and 91 training images.

Experiments were conducted for k ∈ {1, 2, 3} without input restriction and
for fixed radii, while the experiments for searching maximal equivalence radii
were conducted for k ∈ {1, 2}. Due to space limitations, we present the experi-
mental results for searching maximal radii. The tool and instructions how to pro-
duce the results can be found under https://github.com/phK3/NNEquivalence.

cluster (a) cluster (b) cluster (c) cluster (d) cluster (e)

Fig. 2. The cluster-centers of the five most dense clusters obtained from hierarchical
clustering of the Optical Recognition of Handwritten Digits dataset.

Before the problem encoding was passed to Gurobi, bounds tightening was
performed using interval arithmetic and optimization of two-layer subproblems
for each linear combination of ReLU inputs. Each subproblem solution-process
was stopped after a maximum of 20 s. All experiments were conducted on a
computer with an Intel Core i5-3317U 1.70 GHz processor, which has 2 physical
and 4 logical cores, and 8 GB of RAM running an x64 version of Windows 10.

6.1 Equivalent Neural Networks

We want to verify the equivalence of compressed NNs, by calculating the maximal
equivalence radii for the chosen input clusters. Figure 3 shows the development
of maximal radii for top-1 equivalence for both compression methods. The indi-
vidual radius depends on training data and is reflected by the total number for
the maximal radius for all reduction methods.

https://github.com/phK3/NNEquivalence
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Fig. 3. Maximal equivalence radii for top-1-equivalence to the full NN for weight pruned
NNs (left) and student-teacher trained NNs (right)

When pruning a larger percentage of parameters, the equivalence radius fluc-
tuates around a constant level for each cluster up until the 50% reduced NN. If
too many parameters were set to zero, the pruned NNs are no longer equivalent
to the original NN and the equivalence radius deteriorates, as can be seen for
the 80% and 90% pruned NNs. For the 60% and 70% pruned NNs however, one
notices, that the equivalence radii for clusters b, d drop as expected. Radii for
the clusters a, c and e, on the other hand, either stay on the same level or even
increase. An explanation for the observed behavior could be, that about 50% of
the original NN’s parameters are sufficient to capture the underlying knowledge
in the data for the tested clusters. If more parameters are pruned, the reduced
NNs focus on the obviously classifiable clusters to still achieve a low training
error. When the NNs are pruned even further, their capacity is clearly too low.

Examining the student-teacher trained NNs, we notice, that the equivalence
radii not only depend on the number of ReLU nodes, but also the structure of
the NNs. While the 12-12-12-10 student has more ReLU units than the 30-10
student and the same number as all other student NNs, it exhibits sometimes
significantly smaller equivalence radii on all clusters. Among the student NNs, it
also exhibited the lowest accuracy on the training and testing datasets, indicating
that 12 neurons per layer are not best suited for this classification task. The 18-
18-10 student and the 36-10 student show however, that good accuracy and large
equivalence radii can be obtained for this number of ReLU nodes.

Comparing the different compression algorithms for top-1-equivalence, we
notice, that most student NNs achieve similar radii as the up to 50% pruned
NNs on clusters a, b, c and d and radii as large as that of the 70% pruned NN on
cluster e. For the 12-12-12-10 student on clusters b and c and additionally the 30-
10 student on cluster b, significantly smaller radii indicate a lack of capacity for
the student NNs, although this effect is less severe than for the 70%, respectively
80% pruned NNs.

Figure 4 represents the same data for the top-2 equivalence. The verification
of top-2 equivalence is harder, thus our approach only returns upper (dotted
lines) and lower (normal lines) for the given timeout. In general, the maximal
equivalence radii are, as expected, larger then for the top-1 equivalence. This
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indicates that the NNs still assign large probabilities to the correct classification
result for the cluster regions. It is also possible to observe, that for example the
12-12-12-10 student network does not lag as far behind the other student NNs as
before, indicating, that it at least captured a rough understanding of the data.

Fig. 4. Maximal equivalence radii for top-2-equivalence to the full NN for weight pruned
NNs (left) and student-teacher trained NNs (right)

6.2 Remarks

The runtime of the verification procedure depends on the complexity of the MILP
encoding, where the number of integer variables seemed to have the largest effect.
For our experiments runtime fluctuated between a minute and 30 min for top-1
equivalence. For top-2 equivalence, we set a timeout of 3 h. Verification of equiv-
alence for student-teacher trained NNs with fewer ReLU nodes was in most cases
faster, than for the pruned NNs, as fewer integer variables had to be introduced.
Only considering pruned NNs, sparser NNs proved to be verified faster than their
less sparse counterparts. Overall, verification of equivalence for small fixed radii
is faster, than for larger radii, as tighter bounds for all variables in the encoding
can be obtained via bounds tightening. For very large radii, however, some NNs
seem to be obviously not equivalent and large counterexamples are quickly found
by the solver. In the extreme case without input restrictions, counterexamples
to equivalence were all found within a minute.

The presented approach is able to search for a maximal radius for which
NNs are equivalent and returns an input at the edge of the radius for which
the networks are not. We denote this input as a counterexample, which can be
analyzed by a potential user. He then has to decide, whether the counterexample
should be classified as an valid input. If it is valid, the maximal radius is too
small and the NNs are not equivalent, otherwise the NNs are equivalent w.r.t. the
cluster. Three kinds of counterexample are shown in Fig. 5. The leftmost picture
shows an input picture for unrestricted input. This kind of counterexample is
negligible in practice and should not be seen as valid input. It demonstrates
the necessity for input restrictions when verifying NNs. The counterexample in
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the middle shows a picture of a (in our opinion) zero which is misclassified by
the 20% pruned NN. Such a result could indicate that the pruned NN does not
fit the wanted equivalence criterion. The left picture on the other hand, shows
a digit that is misclassified by the original NN, which could indicate that the
original NN should be retrained with the given counterexample.

full NN: 5
50% pruned NN: 6

full NN: 0
20% pruned NN: 6

full NN: 5
50% pruned NN: 0

Fig. 5. Counterexamples to one hot equivalence: Without input restriction (left), input
within a 13.6 (middle) and 27.2 (right) radius in Manhattan norm around the center
of cluster (a).

7 Conclusion

With top-k-equivalence, we presented a novel relaxed equivalence property for
NNs and showed, how it, as well as pre-existing notions of equivalence can be
encoded in MILP for NNs using the ReLU activation function. Despite the relax-
ation, NNs rarely meet these equivalence properties, when the whole input space
is considered, as their training only encourages them to agree on areas close to
training data. Therefore we used the restriction of inputs to regions around clus-
ters of training data, as proposed in [12]. We then developed MILP formulations,
of equivalence for inputs within a fixed radius around obtained cluster-centers,
as well as maximizing that radius, such that the NNs are still equivalent. Exper-
iments with a NN trained on the Optical Recognition of Handwritten Digits
Dataset [7] and its downsized counterparts obtained by student-teacher training
or weight pruning showed the validity of our approach. As compression algo-
rithms for NNs are typically only evaluated empirically by measuring the per-
formance of the resultant NNs on a test dataset, this marks the first verification
based examination of such methods. The notion of verified equivalence in a given
cluster radius can be used to give guarantees for smaller networks. Furthermore,
it can be utilized for finding meaningful counterexamples for the pruned and
original network which can than be used for further training.

Our approach could also be applied, when numerous verification tasks have
to be carried out for a large NN. In this case, a smaller NN could be obtained
by compression algorithms. We could then prove its equivalence to the large NN
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within the input space of interest and subsequently perform the initial verifica-
tion tasks on the smaller NN, requiring less computation time. For this scenario
further improvements in scalability are needed. A first step could be using ded-
icated solvers for piecewise linear NNs like Reluplex [18] or the assistance of
approximate methods [8].
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networks. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification, pp.
3–29. Springer International Publishing, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 1

17. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://doi.org/10.1007/978-3-319-68167-2_18
https://keras.io
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/s10601-018-9285-6
http://www.deeplearningbook.org
https://www.gurobi.com/
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1


884 M. Kleine Büning et al.
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Abstract. Graph Neural Network (GNN) has shown great power on
many practical tasks in the past few years. It is also considered to be a
potential technique in bridging the gap between machine learning and
symbolic reasoning. Experimental investigations have also shown that
some NP-Hard constraint satisfaction problems can be well learned
by the GNN models. In this paper, a GNN-based classification model
to learn the satisfiability of pseudo-Boolean (PB) problem is proposed.
After constructing the bipartite graph representation, a two-phase mes-
sage passing process is executed. Experiments on 0–1 knapsack and
weighted independent set problems show that the model can effectively
learn the features related to the problem distribution and satisfiabil-
ity. As a result, competitive prediction accuracy has been achieved with
some generalization to larger-scale problems. The studies indicate that
GNN has great potential in solving constraint satisfaction problems with
numerical coefficients.

Keywords: Pseudo-Boolean Problem · Graph Neural Network ·
Constraint satisfaction problem · Deep learning.

1 Introduction

Machine learning, especially deep learning, has shown great power over the
past few years. Deep learning systems have dramatically improved the state-
of-the-art standards of many tasks across domains, such as computer vision,
natural language processing, speech recognition and drug discovery [15]. The
tremendous success of deep learning has also inspired us to apply learning-based
approaches to solve constraint satisfiability problems (CSPs). There is an inter-
esting prospect that the end-to-end neural network models may have the ability
to capture the specific structures of the problem from a certain distribution,
c© Springer Nature Switzerland AG 2020
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so that some effective implicit heuristics may be learned automatically. Some
previous works have implemented different (deep) neural network architectures
to represent such problems and try to learn full-stack solvers [23,26]. Thanks
to the latest progress in graph representation learning, it is promising to apply
graph neural networks to solve CSPs, because many of them have topology
characteristics, which can be naturally represented as graphs. There have been
recent efforts trying to set up end-to-end GNN models to solve the Boolean
Satisfiability Problem (SAT), one of the most fundamental problems of com-
puter science [22], and the Traveling Salesman Problem (TSP), an important
NP-Hard problem [20]. Experiments suggest that the GNN-based models can
effectively learn the structural features of these problems, thereby obtain pretty
high accuracy in predicting the satisfiability. Although such models are not yet
comparable with the traditional search-based solvers, it may also be useful to
combine them with traditional approaches to improve the solving performance.
For instance, the GNN-based classifier for the SAT problem NeuroSAT has been
further explored and observed to have some ability in finding unsatisfiable cores,
which has been used to improve the efficiency of modern SAT solvers such as
Glucose and Z3 [21]. We believe that, the GNN-based models also have great
potential in improving the efficiency of solving CSPs with numerical constraints.

As a natural and efficient mathematical programming model, pseudo-Boolean
(PB) problem, which is also known as 0–1 integer programming, has received
much attention in a large number of real-world applications for a long time.
Nowadays, techniques related to PB problem are crucial in many fields, such as
networked data mining, planning, scheduling, transportation, management and
engineering [8,11]. However, research in complexity theory indicates even solving
the satisfiability of PB constraints is an NP-complete problem [12], which means
it is hard to find sufficiently effective algorithms on various distributions. The
mainstream approaches for PB problem benefit from the development of both
Boolean Satisfiability (SAT) and Integer Programming solving techniques [6,25].
It can be found that fundamentally they are based on the backtracking search
frameworks, and largely rely on the heuristic strategies designed by experts in
specific domains. It is highly probable that PB solving techniques would also
benefit from heuristics learned automatically. For the aforementioned reasons,
PB problem provides an important setting for investigating the capability of
GNN in extracting features of numerical constraints.

In this paper, we investigate the question that whether an end-to-end GNN
model can be trained to solve the satisfiability of pseudo-Boolean problem as a
classification task. Other than the previous works, our setting is more univer-
sally applicable, because various NP-Hard CSPs can be easily formulated as PB
constraints. At first, we adopt some normalization rules to transform different
kinds of constraints into normalized form in order to build a weighted bipar-
tite graph, which can be accepted as the input of GNN. The constructed model
is basically a concrete implementation of the Message Passing Neural Network
[9]. The revised message passing process is applied to update the node embed-
ding vectors involving edge weights iteratively. Finally, the classification result
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is produced after a readout phase. Experiments on two well-known NP-Hard
CSPs, 0–1 knapsack and weighted independent set, demonstrate that our model
can well converge on different PB problems under some certain distributions,
and predict the satisfiability with high accuracy. The trained model can also be
extended to predict the problem instances of larger size than those appeared in
training set, which indicates that it has some generalization capability. We can
summarize our contribution in the following two points:

– We propose a GNN-based model to solve the decision pseudo-Boolean prob-
lem. To the best of our knowledge, it is the first end-to-end GNN model for
predicting the satisfiability of a general representation of CSPs with numeri-
cal constraints. It has been experimentally confirmed to achieve high accuracy
on different benchmarks.

– Compared with another GNN model NeuroSAT that intends to solve the
SAT problem, our model can be seen as a generalization of it. This is because
our model not only achieves the same performance on the SAT problem, but
also has ability to solve more general PB problems.

The remainder of this paper proceeds by the following parts. Section 2 sum-
marizes some related work. The problem definition and model architecture are
introduced in Sect. 3. The data generation method and training configuration are
detailed in Sect. 4, with some analysis about the experimental results. Finally,
conclusion and future work are discussed in Sect. 5.

2 Related Work

Although the mainstream algorithms for constraint satisfaction and combina-
torial optimization problems are based on reasoning and searching algorithms
from symbolism, there have always been attempts trying to solve these prob-
lems through machine learning techniques. A class of research is aiming to learn
effective heuristics under the backtracking search framework and has achieved
progress such as [3,14,17]. Here, we concentrate on another route: building end-
to-end neural network models which directly learn CSP solvers. The earliest
research work can be traced back to the Hopfield network [10], which has made
progress in solving TSP. It is guaranteed to converge to a local minimum, but the
computational power is quite limited. Recently, a series of efforts have attempted
to train deep learning models with different representations. [26] proposes CSP-
cNN, a convolutional neural network model, to solve binary CSPs in matrix
form. However, the majority of CSPs are non-binary. [23] introduces a sequence-
to-sequence neural network called Ptr-Net. [4,18] further review and extend the
model. However, the structural information of CSPs may be partially lost when
represented as sequential input. Structure2vec [13] adds graph embedding tech-
nique to the model, while it is still a sequential model which can only output
greedy-like solutions. In summary, it is necessary to find more powerful repre-
sentation models to solve various CSPs.
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Fig. 1. The model for solving decision pseudo-Boolean problem based on graph neu-
ral network. The pipeline is as follows: (a) A set of constraints is given as input in
which all variables can be assigned True or False, then (b) some normalization rules are
applied to transform the constraints into normalized form, which is done by equivalent
transformation and removing tautologies. From the normalized constraints we can (c)
construct a weighted bipartite graph to represent the topological relationship between
variables and constraints. Each node in the graph is represented as an embedding vec-
tor, which is updated iteratively through (d) the message passing mechanism. Finally,
the model (e) outputs prediction about the satisfiability.

Graph neural network has been considered as a promising deep learning tech-
nique operating on graphs. Because of its powerful characterization capability
for non-Euclidean structure data, the GNN models have made ground-breaking
performance on many difficult tasks such as text classification, relation extrac-
tion, object detection, semantic segmentation and knowledge graph mining in
recent years [27]. We believe graph is a suitable representation for CSPs. A
basic fact is that many of the famous NP-Hard problems are directly defined
on graphs such as TSP, Maximum Clique and Minimum Vertex Cover. There
have been some works trying to set up GNN-based models to solve SAT [1,22],
[2,5], Graph Coloring Problem [16] and TSP [20]. Our model is distinct from
the previous works in many ways. First, PB problem has the capability to con-
veniently formulate a larger number of CSPs compared with SAT, GCP and
TSP. Although SAT is also a well-known meta-problem, it is not intuitive to
translate the problem with numerical constraints into conjunction normal form.
Second, PB constraints involve integer coefficients and constant items, while
TSP has only one kind of numerical information (edge weights) that needs to be
processed. Third, [20] introduces edge embeddings to represent the information
about edge weights, which may lead to larger parameter space. Actually it takes
around 2,000 epochs to converge on the dataset of graphs while n ∼ U(20, 40)
as reported. However, the edge weights are considered in the updating process
of node embeddings in our model, therefore the required parameter space and
training epochs are relatively reduced.

3 Model Architecture

In this section, we first give a brief introduction to the pseudo-Boolean problem.
Next, components of the model are illustrated in detail, including the graph
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construction, the message passing and the readout phase. The whole pipeline of
the model is illustrated in Fig. 1.

3.1 Pseudo-Boolean Problem

Pseudo-Boolean problem is one of the most fundamental problems in mathe-
matical programming. Generally, a PB problem should contain a set of pseudo-
Boolean constraints. According to whether there is an objective function to opti-
mize, it may vary slightly in definition, which can be divided into the decision
problem and the optimization problem. In this paper, we focus on the decision
version, in which all the variables are restricted to True or False, and all the con-
straints must be satisfied, with no optimization target given. Here is the formal
definition: Given m constraints C1, C2, . . . , Cm in the form of Ci:

∑n
j=1 cijxj ≥ bi

where cij , bi ∈ Z, decide if a set of assignment to xi ∈ {0, 1} (1 ≤ i ≤ n) exists
so that all the constraints are satisfied.

The decision PB problem is worthy of investigation for many reasons. Firstly,
the bounded integer variables in linear programming can always be expressed as
a combination of 0–1 variables by [24]. Moreover, the decision problem can be
extended to the optimization version through simple binary search. In terms of
complexity, actually it has been proven to be a famous NP-Complete problem.

3.2 Graph Construction

There have been a series of works trying to apply GNN models to solve con-
straint satisfaction and combinatorial optimization problems. A critical step is
to set up appropriate graph structures for them. [22] characterizes SAT formulas
through undirected bipartite graphs, where each literal and clause corresponds
to a node and each affiliation relation between literal and clause corresponds
to an edge. This kind of representation is quite intuitive and reasonable with
at least two justifications. First, it holds the invariance of problem in permuta-
tion and negation through graph isomorphism. Second, it imitates the order of
reasoning in traditional solving techniques through the message passing process.

For PB problem, we would like to propose a bipartite graph structure which
is similar to the previous work. However, the problem structure of PB is quite
different from that of SAT in many ways. For instance, the coefficients of PB
constraint are arbitrary integers, which cannot be represented in unweighted
bipartite graph like NeuroSAT does. Besides, non-zero constant terms bi may
exist in PB problem. A question is how to deal with these constant terms in
graph construction. Considering the differences above, we propose a two-stage
graph construction method.

Constraint Normalization. Given a set of PB constraints, where each con-
straint Ci:

∑n
j=1 cijxj ≥ bi where cij , bi ∈ Z, the goal is to transform them into

a canonical expression. To achieve this, for a constraint Ci we first replace cijxi

with cij(1 − xi) when cij < 0, and move the constant item to the right side.
We denote the resulting constraint C ′′

i :
∑n

j=1 |cij |lxj
≥ b′

i, where lxj
∈ {xj , xj}.
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Later we check if the constant item b′
i > 0, otherwise the constraint can be

removed without changing the satisfiability. Finally we divide both sides of the
constraint by b′

i. After the process, all constraints are in normalized form

C ′
i :

n∑

j=1

c′
ij lxj

≥ 1 (1)

where c′
ij ∈ R

+ and lxj
∈ {xj , xj}.

Graph Generation. After the normalization stage above, every constraint Ci

(1 ≤ i ≤ m) in a PB problem is turned into normalized form C ′
i or removed

from the problem. For each variable xj (1 ≤ j ≤ n), we set up a pair of nodes
to represent xj and xj respectively, so we have a total of 2n nodes for variables.
Then we set up m nodes for constraints. Suppose a constraint C ′

i contains lxj

with the coefficient c′
ij , an edge connecting the nodes for C ′

i and lxj
is set up if

c′
ij ≥ 0 with the weight of c′

ij .

3.3 Message Passing

Now a PB problem has been represented as a weighted bipartite graph. The
next step is to construct a learning model. We consider the Message Passing
Neural Network (MPNN) [9] as the framework. Recently, MPNN has shown its
effectiveness in solving some famous combinatorial problems, such as SAT [22]
and TSP [20]. In this paper, we propose an MPNN-based model which is fit for
PB problem. The forward pass of the model has two phases, a message passing
phase and a readout phase.

Message Passing Phase. In the beginning, we parameterize each node in
the graph randomly as a d-dimensional vector Einit ∼ U(0, 1) which represents
the hidden state. We note the initial hidden states of variables and constraints
as V (0) and C(0) respectively. Let M be the adjacency matrix of the bipartite
graph defined in the graph generation paragraph above. S is a transformed
representation of the relevant nodes which aims to keep the consistency of node
embeddings representing the same variable. In this phase, the message passing
process runs for T time steps and the hidden states are updated iteratively
according to:

C(t+1), C
(t+1)
h = Cu(MVmsg(V (t)), C(t)

h )

V (t+1), V
(t+1)
h = Vu(M�Cmsg(C(t)), V (t)

h , S(t))
(2)

In the above rules, Cmsg and Vmsg are two message functions implemented
with multilayer perceptrons (MLP). Besides, Cu and Vu are two updating func-
tions implemented with LSTM networks, where all C

(t)
h and V

(t)
h are the hidden

cell states of LSTM.

Readout Phase. After T iterations of message passing, we apply a readout
function Vvote : Rd → R

1 (implemented with MLP) to compute the score that
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every variable node votes for the satisfiability of the problem instance. Then we
average all the scores to obtain the final result:

ŷ = mean(Vvote(V (T ))) (3)

The model is trained to minimize the sigmoid binary cross-entropy loss
between ŷ and the real satisfiability of the problem instance φ(P ) ∈ {0, 1}.

4 Experimental Evaluation

In order to evaluate the performance of our GNN-based model on PB problem,
we prepare two different problems for the experiments: 0–1 knapsack problem
(0–1KP) and weighted independent set problem (WIS). The above two problems
have exceedingly different structures when expressed as PB formulas, whether in
terms of the number or the average length of constraints. We generate random
datasets for these problems, and train the model on them respectively.

4.1 Data Generation

There are three steps for generating the datasets:

Step 1. Original instances are randomly created following some certain distri-
butions. The number of items in 0–1KP and the number of nodes in WIS are
denoted as n. For each problem we uniformly generate several subsets as train-
ing sets, each of which contains 100 K instances, with different range of n. Then
two datasets are generated in the same way as validation and testing sets, each
of which has 10 K instances. Therefore the size ratio of training, validation and
testing set is 10:1:1.
Step 2. Because the generated instances are all optimization problems, for each
instance we first call CPLEX to obtain its optimal solution φ, and then randomly
choose an integer offset δ from [−R/10, R/10] (R is an integer representing the
range of coefficients, and we set R = 100 in all experiments). Finally, let φ+δ be
a bound (i.e. the constant V in 0–1KP and W in WIS) to completely transform
the original instance into a decision problem. It is easy to find that satisfiable
and unsatisfiable instances should account for about half of each.
Step 3. The instances are formulated as PB constraints, normalized and turned
into graphs through the rules described in Sect. 3. After that the datasets can
be fed into the neural network as input for training.

0–1 Knapsack Problem. The 0–1 knapsack problem (KP) is well-known in
combinatorial optimization field with a very simple structure: Given a group of
items, each with a weight wi and a value vi. There is also a backpack with a
total weight limit C. The goal is to choose some items to put into the backpack,
so that the sum of their values is maximized, and the sum of their weights is not
exceeding the given limit of the knapsack. It is proved that the decision prob-
lem of 0–1KP is NP-Complete, so there is no known polynomial-time solving
algorithm. It can be naturally represented by the following PB formulas:
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n∑

i=1

wixi ≤ C

n∑

i=1

vixi ≥ V

(4)

The constant V represents a bound of the optimal objective. Variable xi ∈
{0, 1} indicates if an item is put into the backpack.

There have been some research works on generating difficult benchmarks of
0–1KP. Pisinger [19] proposes some randomly generated instances with multi-
ple distributions to demonstrate that the existing heuristics can not find good
solutions on all kinds of instances. The four kinds of distributions are named as:

– Uncorrelated: wi and vi are randomly chosen in [1, R].
– Weakly correlated: wi is randomly chosen in [1, R], and vi in [wi −R/10, wi +

R/10] such that vi ≥ 1.
– Strongly correlated: wi is randomly chosen in [1, R], and vi = wi + R/10.
– Subset sum: wi is randomly chosen in [1, R], and vi = wi.

We generate the datasets of 0–1KP under the above distributions with equal
probability. As for the capacity of knapsack C, it is also randomly selected in
range [1,

∑n
i=1 wi] independently in each instance, in order to ensure sufficient

data diversity.

Weighted Independent Set Problem. Given an undirected graph with a
weight for each node, an independent set is defined as a set of nodes where
any two of them are not connected with an edge. Then the maximum weighted
independent set (MWIS) requires the total weights of the selected nodes to be
maximized. We can model the decision problem of MWIS as PB formulas:

n∑

i=1

wixi ≥ W

xi + xj ≤ 1, ∀(i, j) ∈ E

(5)

The constant W is a bound of the optimal objective, and the variables xi ∈
{0, 1} indicates whether each node is selected into the independent set.

To generate the dataset, random graph instances are sampled from the
Erdős–Rényi model G(n, p) [7]. The model contains two parameters: the num-
ber of nodes n, and the existence probability p of an edge between every pair of
nodes. We set p = 0.5 while generating the dataset, which corresponds to the
case where all possible graphs on n nodes are chosen with equal probability.

4.2 Implementation and Training

In order to examine the model’s capability to predict the satisfiability of PB prob-
lem, we implement the model in Python, and several experiments are designed to
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train the model and evaluate its performance on different datasets for different
purposes. All the experiments are running on a personal computer with Intel
Core i7-8700 CPU (3.20 GHz) and NVIDIA GeForce RTX 2080Ti GPU.

For reproducibility, we would like to give the setting of hyper-parameters as
follows. In our configuration, The dimension of node embedding vectors d = 128,
and the time step of message passing T is set to 5 for 0–1KP and 50 for WIS.
Our model learns from the training sets in batches, with each batch containing
12 K nodes. The learning rate is set to 2 × 10−5.

4.3 Experimental Results

Classification Accuracy. As previously noted, the most direct and important
target of the model is to classify the satisfiability of PB problems. So we examine
it as the first step. There are 7 groups of experiments in total with different set-
tings. For 0–1KP, we set up 3 groups of experiments with different sizes, where
n is uniformly distributed in range [3, 10], [11, 40] and [41, 100] respectively. For
WIS, we set up 4 groups of experiments with different sizes, where n is uniformly
distributed in range [3, 10], [11, 20], [21, 30] and [31, 40] respectively. The reason
for lacking of the results in n > 40 is that for each instance the number of con-
straints is proportional to n2, so the graph is too hard to be fully trained in
no more than 1,000 epochs. The complete experimental configuration and clas-
sification accuracy on the validation and testing sets are shown in Table 1. The
first part is the description of datasets, which includes the number of variables,
the average number and length of constraints. The constraint length means the
number of variables with coefficients other than 0 in a constraint. The number of
epochs required for training to convergence is different from each other, and we
list the actual spent epochs. Finally, the classification accuracy on the validation
and testing sets are shown respectively.

Table 1. The experimental configuration and the classification accuracy results for
training our model on different PB problems and scales.

Problem
#Variables PB Cons.

Epochs
Accuracy

Train Valid Test #Cons. Length Valid Test

0–1KP
[3,10] 10 10 2.0 6.5 400 86.6% 86.1%
[11,40] 40 40 2.0 25.5 400 87.3% 88.2%
[41,100] 100 100 2.0 70.5 600 79.3% 79.5%

WIS

[3,10] 10 10 11.3 2.4 400 97.7% 97.9%
[11,20] 20 20 59.3 2.2 400 92.1% 93.3%
[21,30] 30 30 159.2 2.1 400 89.5% 88.9%
[31,40] 40 40 309.3 2.1 600 86.0% 85.8%

The experimental results show that our model can effectively accomplish the
classification task on unknown problems with similar distributions. In each group



894 M. Liu et al.

of n ≤ 40, the model can converge and obtain more than 85% accuracy both
on the validation set and the testing set. When n is expanded to 100 items in
0–1KP, the accuracy is still up to 79%. From the results, our model is believed to
have learned some features related to the satisfiability of problems. Furthermore,
it is worth noting that the generated PB instances under these problems have
very different distributions, whether in terms of the average number or length of
constraints. Therefore, it indicates that the model has wide availability to work
on different PB problems without changing the structure. This confirms one of
the main advantage of our model: general modeling capability.

Comparison with Other Approaches. As far as we know, the proposed
model is the first end-to-end GNN model to solve the satisfiability of PB prob-
lem. However, because of the close relationship between PB and SAT, we are
interested in the comparison between our model (denoted as PB-GNN ) and
NeuroSAT, a GNN-based model that predicts the satisfiability of SAT formu-
las. We train these two models on the same problems respectively, each for 200
epochs. To transform PB constraints into SAT clauses of equal satisfiability,
we call Minisat+1, a high-performance PB solver that achieves excellent ranks
in the PB competition2. The accuracy results on the validation sets are shown
in Table 2. Due to the inevitable introduction of new variables and clauses in
the transformation process, the effect of NeuroSAT is limited by the growth of
problem scales. For 0–1KP, the training accuracy on NeuroSAT with the trans-
formed SAT formulas is significantly lower than that of the original problems on
PB-GNN. And for WIS, when training on the original problems where n ≥ 10,
it is almost impossible to converge within 200 epochs. Besides, the accuracy
results of NeuroSAT when n = 40 are not available, because each epoch takes
more than 2 h, which makes the overall training time unacceptable. The results
indicate that PB-GNN has achieved better performance on general PB prob-
lems with numerical constraints. It is worth mentioning that when dealing with
SAT instances, we can easily transform SAT clauses into PB constraints. For
example, a clause l1 ∨ l2 ∨ · · · ∨ lk is equivalent to the constraint

∑k
i=1 li ≥ 1. In

this case, the message passing process of PB-GNN is almost the same as that
of NeuroSAT. To confirm this, we train the two models for 200 epochs on two
datasets SR(3, 10) and SR(10, 40) respectively as defined in [22]. It can be found
that the accuracy of PB-GNN and NeuroSAT is very close, which means the
performance of our model is also comparable with the state-of-the-art model on
SAT instances.

Another point of concern is the time spent for solving. The average time
costs taken by PB-GNN and CPLEX to solve per instance from the testing
sets are counted. Table 2 demonstrates the results in milliseconds. It can be seen
that compared with the classic CSP solver CPLEX, our model only takes less
than 10% of time to return the prediction of satisfiability. In addition to the
lower computational amount of the model, another reason is that the problem
instances can be input in batches, and the solving process is accelerated with
1 http://minisat.se/MiniSat+.html.
2 http://www.cril.univ-artois.fr/PB16/.

http://minisat.se/MiniSat+.html
http://www.cril.univ-artois.fr/PB16/
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parallelization. This is not to suggest that our model beats the classic solver in
time. After all CPLEX is able to work without any pre-training. As a matter
of fact, the results inspire us a promising scenario of the model when a large
number of similar instances need to be solved with high frequency.

Table 2. Comparison of the classification accuracy and the average solving time
between our model (PB-GNN ) and other approaches.

Problem
PB-GNN NeuroSAT CPLEX

#V ar. #Cons. Acc. T ime #V ar. #Clau. Acc. T ime

0–1KP

5 2.0 89.7% 0.0462 35.4 137.6 74.0% 9.1191
10 2.0 87.7% 0.0637 87.8 438.7 69.5% 10.7869
15 2.0 86.1% 0.0785 142.4 774.7 62.8% 12.1947
20 2.0 86.5% 0.0843 192.7 1084.5 63.7% 13.7513
40 2.0 85.2% 0.1252 418.1 2502.8 — 29.9405

WIS

5 6.0 99.0% 0.2747 26.7 108.4 66.3% 15.1882
10 23.5 96.4% 0.6946 65.5 345.1 51.0% 15.4741
15 53.5 95.7% 1.3177 101.0 585.4 51.1% 17.2223
20 95.9 92.5% 1.9140 136.3 836.2 51.4% 19.7416
40 390.9 82.1% 5.0624 275.9 1958.4 — 49.6992

SR
[3,10] 46.8 95.8% 0.6619 [3,10] 46.8 95.5% 11.3243
[11,40] 151.3 84.3% 2.4096 [11,40] 151.3 85.0% 15.7829

Generalization to Larger Scales. We are also interested in whether the
model trained on smaller-scale data can work on larger-scale data. We exam-
ine two models, one has been trained for 400 epochs on 0–1KP and the other
for 600 epochs on WIS, both of which are on the datasets where n ∈ [11, 40].
For each model, we set up 15 groups of data with n ∈ [10, 80] in steps
of 5. Within each group, 5 testing sets are generated with different offset
δ = {±1,±2,±5,±8,±10} as described in Sect. 4.1. The other configuration
of data generation is the same as that of validation sets. Such testing data can
show more clearly the learning effect and generalization ability of our model on
the instances of varying complexity.

Figure 2 shows the change in accuracy when testing our model on the above
datasets. On one hand, it is easy to find that the generalization ability is related
to the problem structure. For 0–1KP, since the structures of different scales
are similar, the accuracy can be maintained relatively well even if the problem
instances become larger. But for WIS, a larger-scale instance leads to a more
complicated graph. The accuracy drops rapidly outside the training set, because
the features learned in low dimensions are more likely to lose effectiveness. On
the other hand, the model also achieves different accuracy on the instances gen-
erated under different offsets. When δ = ±10, the accuracy greater than 80%
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Fig. 2. The change in accuracy of the model when predicting the satisfiability of larger-
scale instances than those appeared in the training sets.

can be kept to n = 65 for 0–1KP and n = 50 for WIS. However, the model
fails to learn effective features even on the training sets when δ = ±1 on both
problems. Eventually, when the number of variables continuously increases, the
accuracy is reduced to about 50%, which means it almost becomes a purely
random model. To conclude, the experimental results indicate that the general-
ization performance of the model is affected by both the structure and difficulty
of the problem.

5 Conclusion and Future Work

In this paper, we investigate whether a deep learning model based on GNN can
solve a general class of CSPs with numerical constraints: the Pseudo-Boolean
problem. More specially, the target is to correctly classify whether a decision PB
problem is satisfiable. We present an extensible architecture that accepts a set
of PB constraints with different lengths and forms as input. First, a weighted
bipartite graph representation is established on the normalized constraints. After
that, an iterative message passing process is executed. Finally, the satisfiability is
calculated and returned through a readout phase. Experiments on two represen-
tative PB problems, 0–1 knapsack and weighted independent set, show that our
model PB-GNN can successfully learn some features related to the structure
of specific problem within 600 epochs, and achieves high-quality classification
results on different distributions. Our model is shown to have several advantages
over the previous works. In the aspect of network structure, it integrates the
edge weights into the updating function of node embeddings, so that the param-
eter space is relatively small, making our model easier to converge. Regarding
the accuracy of prediction, PB-GNN outperforms NeuroSAT, a foundational
model in this field, on PB benchmarks with numerical coefficients, and is still
comparable with it when applied to SAT instances.

We hope the model can provide a basis for a series of future works on learn-
ing to solve different CSPs with numerical constraints. There are also several
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perspectives for further work. On one hand, it needs to be acknowledged that
the scale of learnable benchmarks by the current model is relatively small, and
it should be improved to learn larger-scale instances, even those benchmarks
that are difficult for the state-of-the-art solvers. On the other hand, we will try
to decode the assignment of variables from the trained model, so that it can
be called a real “solver”. There are reasons to believe that the development of
graph representation learning will help the model to obtain more accurate fea-
tures related to the problem structures, thereby reducing the heavy manual work
of designing specific heuristic algorithms.
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Abstract. In this paper, we present a machine learning based splitting
heuristic for divide-and-conquer parallel Boolean SAT solvers. Splitting
heuristics, whether they are look-ahead or look-back, are designed using
proxy metrics, which when optimized, approximate the true metric of
minimizing solver runtime on sub-formulas resulting from a split. The
rationale for such metrics is that they have been empirically shown to
be excellent proxies for runtime of solvers, in addition to being cheap to
compute in an online fashion. However, the design of traditional splitting
methods are often ad-hoc and do not leverage the copious amounts of
data that solvers generate.

To address the above-mentioned issues, we propose a machine learn-
ing based splitting heuristic that leverages the features of input formulas
and data generated during the run of a divide-and-conquer (DC) parallel
solver. More precisely, we reformulate the splitting problem as a ranking
problem and develop two machine learning models for pairwise ranking
and computing the minimum ranked variable. Our model can compare
variables according to their splitting quality, which is based on a set of
features extracted from structural properties of the input formula, as
well as dynamic probing statistics, collected during the solver’s run. We
derive the true labels through offline collection of runtimes of a paral-
lel DC solver on sample formulas and variables within them. At each
splitting point, we generate a predicted ranking (pairwise or minimum
rank) of candidate variables and split the formula on the top variable.
We implemented our heuristic in the Painless parallel SAT framework
and evaluated our solver on a set of cryptographic instances encoding the
SHA-1 preimage as well as SAT competition 2018 and 2019 benchmarks.
We solve significantly more instances compared to the baseline Painless
solver and outperform top divide-and-conquer solvers from recent SAT
competitions, such as Treengeling. Furthermore, we are much faster than
these top solvers on cryptographic benchmarks.

1 Introduction

Boolean satisfiability (SAT) solvers are powerful general purpose search tools
that have had a revolutionary impact on many different domains, such as soft-
ware engineering [9], AI [37], and cryptography [30,32]. They get their power
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 899–916, 2020.
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from proof-construction components like clause learning [29] and heuristics
aimed at optimally sequencing, selecting, and initializing proof rules such as
branching [22,31] and restarts [3].

The availability of many-core machines has led to a considerable effort in
parallel SAT solver research in recent years [5]. Broadly speaking, researchers
have developed two parallel SAT solver strategies, namely, portfolio and divide-
and-conquer (DC) solvers. A portfolio SAT solver consists of a set of sequential
worker solvers, each implementing a different collection of heuristics, and all of
them attempting to solve the same instance running on different cores of a many-
core machine. The key principle behind a portfolio solver is that of the diversity
of heuristics, i.e., by leveraging a diverse set of heuristics to solve an instance
may be more efficient than just using a single heuristic given the well-known fact
that different classes of formulas are often best solved by distinct methods [11].
On the other hand, DC solvers partition the search space of the input formula
and solve each sub-formula using a separate sequential worker solver. Each sub-
formula is a restriction of the input formula with a set of assumptions [41]. In
both the portfolio and DC settings, the sequential worker solvers may share
clauses to exchange useful information they learn about their respective search
spaces.

In the context of DC solvers, a splitting heuristic is a method aimed at
choosing the “next variable” to add to the current list of assumptions (also
known as guiding paths [41]). A bit more formally, one can define a splitting
heuristic as a function that takes as input features of a given formula φ and/or
statistics of a DC solver’s state and outputs a variable to split on. Splitting
heuristics are typically dynamic, i.e., they re-rank variables at regular intervals
throughout the run of a DC solver.

The process of splitting itself can be described as follows: for a given input for-
mula φ, say that a variable v is chosen for splitting. The solver generates φ[v = F ]
(resp. φ[v = T ]) by setting v to False (resp. True) and appropriately simplifying
the resultant sub-formulas using Boolean constraint propagation (BCP). These
two sub-formulas are then solved in parallel. Each of these sub-formulas can be
further split into smaller sub-formulas recursively. Many heuristics for splitting
have been studied in the literature [1,2,17,35].

Splitting heuristics can be broadly categorized as look-ahead and look-back.
Look-ahead heuristics choose some subset of variables in the input formula,
analyze the impact of splitting on these variables, and rank them based on some
measure that correlates well with minimizing runtime1 of the solver on the sub-
formulas thus obtained. By contrast, look-back heuristics compute statistics on
“how well a variable participated in the search exploration in the past” (e.g.,
in clause learning, propagation, etc.), rank them appropriately, and split on the
highest-ranked variable. Examples of look-back heuristics include splitters based
on VSIDS activity [2], number of flips [21], and propagation-rate [35].

While considerable work has been done on splitting heuristics, almost
all previous approaches share the following characteristics: they compute

1 Runtime of a solver here refers to the wallclock time of solving a formula.
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some features of the input formula and/or statistics over the solver state at
appropriate intervals during the solver’s run, and then use these as input to a
“hand-coded” function (a splitting heuristic designed by the solver designer),
that in turn computes a metric correlated with solver runtime to pick the “best”
variable to split. By metric we mean a quantity that can be used to rank variables
of the input formula such that splitting on the highest-ranked variable ideally
corresponds to minimizing solver runtime. We argue that the design of splitting
heuristics can be dramatically improved by leveraging a data-driven machine
learning (ML) approach, especially for families of formulas (e.g., cryptographic
instances) where it can be hard for human designers to come up with effective
“hand-coded” splitting heuristic.

In this paper, we propose two ML-based methods, namely pairwise ranking,
and min-rank. The pairwise ranking model takes as input features of a given
formula φ, aspects of solver state, as well as features of a pair of variables v
and u, and ranks them in descending order based on some splitting metric. This
ML-based “comparator” is in turn used by our DC solver to rank variables for
splitting at regular intervals during its run. The min-rank model, takes as input
features of a given formula φ, aspects of solver state, and features of a variable v,
and outputs whether the variable v has the minimum rank among all variables
of the input formula (i.e is it the best variable to split?). Both of these models
are binary classifiers implemented using random forest.

We implemented our heuristics in the Painless parallel solver framework [20]
(we refer to our solver as MaplePainless-DC), and compared it with top parallel
SAT solvers from recent SAT competitions. We find that our ML-based method
out-performs the best DC solvers on both SAT 2018/2019 competition as well
as cryptographic instances2.

Contributions. In greater detail, our main contributions are as follows:

1. MaplePainless-DC: A DC Solver based on ML-based Splitters. We
present MaplePainless-DC, an ML-based splitting DC parallel SAT solver.
To the best of our knowledge, MaplePainless-DC is the first parallel solver
with an ML-based splitting heuristic. Briefly, our splitting heuristics are ML
models, trained offline on both static formula/variable features (e.g., variable
occurrence in binary clauses) as well as “dynamic” features based on aspects
of the solver’s state at runtime (e.g., number of times a variable has been
assigned, activities). We propose and implement two different models, namely,
pairwise ranking and min-rank, described above. At runtime, the trained ML-
model is invoked by MaplePainless-DC on a vector of static and dynamic
variable features at appropriate intervals, which in turn outputs a ranking of
the variables in the input formula. The splitting heuristic then chooses the
top-ranked variable, splits the formula by assigning that variable both True
and False values, and gives the resultant sub-formulas to worker solvers to
solve (See Sect. 3).

2 We only compare our MaplePainless-DC solver against the state-of-the-art DC
solvers because it is well-known that the most notable portfolio solvers often out-
perform the DC solvers on application benchmarks.
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2. Evaluation on Cryptographic Instances. We evaluated our splitting
heuristics on a cryptographic benchmark of 60 instances encoding preim-
age attack on round-reduced SHA-1 function (inversion of 60 random hash
targets). We used top sequential solvers in solving cryptographic instances as
backend solvers (MapleSAT and Glucose). We outperform the baseline solver
(Painless-DC with the same backends and flip as splitting heuristics) in an
apple-to-apple comparison, solving an additional instance from the hardest
subset of instances and 30% faster on average on solved instances. We also
solve 19 more instances (over a benchmark of 60) and are significantly faster
relative to one of the top DC solvers, Treengeling (See Sect. 5.2).

3. Evaluation on SAT Application Instances from SAT 2018 com-
petition and SAT 2019 race. We evaluated our splitting heuristics on
main track benchmarks of SAT competition 2018 and SAT race 2019 (total
800 instances) against the baseline solver (Painless-DC with flip as splitting
heuristic) in an apple-to-apple comparison, as well as against Treengeling.
On the combined SAT 2018 and SAT 2019 benchmarks, we outperform both
these solvers in terms of the number of solved instances and PAR-2 score3.
Furthermore, MaplePainless-DC solves satisfiable instances much better than
all other solvers (18 more than both the baseline and Treengeling solvers
overall application instances), when using the pairwise ranking model (See
Sect. 5.1).

2 Background

In this section, we list relevant definitions and notations. We refer the reader
to [7] for details on CDCL SAT solvers. By the term “split” or “splitting” a
formula φ over variable v we refer to the process of generating two sub-formulas
φ1 = φ ∧ ¬v and φ2 = φ ∧ v, which are assumed to be simplified via unit or
Boolean constraint propagation.

DC solvers take as input a Boolean formula and split it into many smaller
sub-formulas, solve them using sequential worker solvers, and combine the results
(SAT if at least one sub-formula is SAT, UNSAT if all of them are UNSAT). The
architecture is usually of a master-slave type, where the slaves are sequential
solvers and the master node maintains the splittings in the form of a search
tree. Each node of the tree is a variable and branches correspond to setting
that variable to True or False. Each “root to leaf” path represents a set of
assumptions, also known as guiding path or cube. The phrase “solving a cube”
refers to solving the original formula constrained with the given cube.

The notation tS(φ) refers to the time to solve a Boolean formula φ with a
sequential worker CDCL SAT solver S (We drop the subscript if it is clear from
context). We denote the reduced formula after setting v to False (respectively
to True) with φ[v = F ] (respectively, φ[v = T ]). By reducing a formula we mean

3 PAR-k is the Penalized Average Runtime, counting each timeout as k times the
wallclock timeout.
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simplification via unit propagation (i.e., removal of satisfied clauses from the
formula, falsified literals from clauses).

The term performance metric, with respect to a given solver S, refers to a
function pm : φ × v → R, over a formula φ and a variable v ∈ vars(φ), that
characterizes the “quality” of splitting φ over v. Minimizing this metric ideally
should correlate with minimizing solver runtime.

More precisely, the general goal of designing a splitting heuristic is twofold:
first, to come up with a metric that correlates with minimizing solver runtime,
and second to design a function to compute said metric. Researchers have pro-
posed a variety of performance metrics in the context of splitting heuristics.
Below are definitions of three such performance metrics and the intuition behind
each of them. In previous work, researchers have found that these metrics are
good proxies for minimizing runtime in the context of splitting in DC solvers.
Further, to state the obvious, it is ideal to split on a variable that minimizes
these metrics over all variables of an input formula. Let φ1 = φ[v = F ] and
φ2 = φ[v = T ], be the sub-formulas after splitting φ over v.

– pm1(φ, v) = max{t(φ1), t(φ2)}: This metric aims to capture the runtime of a
DC solver executed in parallel over the sub-formulas φ1 and φ2.

– pm2(φ, v) = t(φ1) + t(φ2): This function gives higher priority to splitting
variables that make the problem easier even in a single core setting.

– pm3(φ, v) = −(t(φ) − t(φ1)) · (t(φ) − t(φ2)): The idea behind this metric is
to measure runtime “progress” in each branch (by comparing the runtime of
sub-formulas with the original formula) and also aims to balance the hardness
of the two branches.

Random Forest Classification. We refer the reader to the paper by Liaw
et al. on random forests [26]. Briefly, the random forest is an ensemble learning
method, that constructs a set of decision trees at training time and outputs
the class that appears most often at the output of decision trees. Decision trees
are a popular method for various machine learning tasks. However, trees that
grow very deep tend to learn highly irregular patterns: they overfit their training
sets, i.e. have a low bias, but very high variance. Random forests are a way of
averaging multiple deep decision trees, trained on different parts of the same
training set, with the goal of reducing the variance.

3 Machine Learning Models for Splitting

In this section we discuss a formulation of the splitting problem, define a quality
measure for splitting, and study how we can train ML models that approximate
the best splitting variable.

3.1 The Splitting Problem

Given a Boolean formula φ, a sequential solver S, and performance metric pm,
the splitting problem is to determine a variable v in φ such that the time
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required to solve each of φ[v = T ] and φ[v = F ] by S is minimal over all
variables in φ with respect to the given performance metric pm, i.e. to find
argminv∈vars(φ){pm(φ, v)}.

Modeling the exact behavior of a DC solver as it solves the sub-formulas in
parallel and splits them on demand, is a challenging task. Below we define a
metric that we believe is a more accurate measure of the optimal choice of a
splitting variable, compared to the heuristic metrics mentioned in Sect. 2.

Let φ1 = φ[v = F ] and φ2 = φ[v = T ] be sub-formulas of splitting φ over v,
and let t1 = tS(φ1) and t2 = tS(φ2) be runtimes of solving them by sequential
solver S. The total time taken to solve the formula φ in this setting depends on
the status and runtimes of the sub-formulas. If φ is UNSAT, the solver needs to
prove both of the sub-formulas UNSAT. Hence the total time to solve such an
instance is the maximum of the solver runtimes over the two sub-formulas. If on
the other hand the formula φ is SAT, at least one of the sub-formulas must be
SAT. If both sub-formulas are SAT, the total time is the minimum of the two,
otherwise, only the SAT sub-formula matters. The total time of solving φ after
splitting over variable v can be represented as follows:

Ttotal(φ, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(t1, t2), φ1 : UNSAT, φ2 : UNSAT

t2, φ1 : UNSAT, φ2 : SAT

t1, φ1 : SAT, φ2 : UNSAT

min(t1, t2), φ1 : SAT, φ2 : SAT

We use this total runtime as our performance metric: pm(φ, v) = Ttotal(φ, v).
In other words the target of our splitting heuristic is: given formula φ, find a
variable v = argminv∈vars(φ){Ttotal(φ, v)}.

3.2 Handling Timeouts

In practice, sub-formulas obtained after splitting on a variable can be hard for
SAT solvers, and thus they may timeout for those cases. Let the status of a
timed out (sub-)formula be labeled as “UNKNOWN”. For a pair of variables u
and v in formula φ, we collect the runtime and status of solving sub-formulas
u1 = φ[u = F ], u2 = φ[u = T ], v1 = φ[v = F ] and v2 = φ[v = T ]. If the status
of all four of these sub-formulas is UNKNOWN, we cannot derive the truth
label (we do not know which of these two variables is better for splitting). In
all other cases (mix of having SAT/UNSAT and UNKNOWN), we have enough
information to be able to compare u and v.

3.3 Learning to Rank

Generally, performance metrics can be used to generate a total order over the
splitting variables (the higher ranked variables have a higher performance met-
ric). Thus we can see the splitting problem as picking the minimum element
from a ranked list. A common way of implementing splitting heuristics is to
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rank the variables by directly deriving the performance metric of each variable
and selecting the minimum element. However, this is not the only way one can
rank the elements. There are three main approaches in the ML literature for
learning a model to rank a list of elements [28]:

– Pointwise: Learning a numerical or ordinal score for each data point, which
are in turn sorted according to their ordinal score. The problem here translates
to training a regression model.

– Pairwise: In this approach, ranking is done via learning a model that acts
as a comparator, which takes as input two data points and outputs a total
order over them.

– Listwise: These algorithms try to directly minimize a ranking evaluation
metric (e.g. τ -score or Mean Average-Precision) that compares a predicted
ranking against a true ranking.

Almost all previous branching and splitting heuristics use pointwise ranking.
For example, VSIDS branching heuristics [31] maintains a score for each variable,
which represents how much that variable participated in clause learning recently.
Then the variable with the highest activity is picked. Ultimately, the goal is to
minimize the runtime and one might learn a function that directly approximates
the desired runtime based ranking. However, approximating the runtime distri-
bution of the CDCL SAT solver is very hard in general, as the interplay of the
many heuristics in CDCL solvers makes it hard to predict how the search pro-
gresses. Heuristic designers hope that their variable ranking strongly correlates
with a ranking where high ranking variables generate easier sub-formulas. In
other words, their variable ranking using the proxy metric strongly correlates
with runtime-based ranking. In the case of splitting or branching heuristics, we
do not care about the actual runtime of sub-formulas and only want to know
which variable corresponds to the lowest runtime. In other words, we want a
way of comparing runtimes and not exactly deriving the runtime values. As
mentioned above, we are looking for a minimum element in an array, sorted
based on a metric. We approach this task of finding the minimum using two dif-
ferent methods. First, we build a pairwise ranking model that learns to compare
two elements (two variables in our case), and second, we use a modified version
of ordinal ranking, that we call min-rank, where we build a classifier that deter-
mines whether a given variable sits at the rank 1. We used binary classification
for building both of these models. In the pairwise ranking, we use the model
as a less-than operator and find the minimum in a linear scan. In min-rank, we
check all of the variables against the model and pick the variable that the model
declares as the minimum.

The first model is represented by a binary classifier PW (PairWise) that
takes as input features of a formula φ and features of two variables vi and vj

within φ, and answers the question of “is vi better than vj for splitting φ?”
(according to our splitting performance metric described in Sect. 3.1).

PW (φ, vi, vj) =

{
1, pm(φ, vi) < pm(φ, vj)
0, otherwise

(1)
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This type of predicate learning was also used in one of the SATZilla ver-
sions [40] (known as pairwise voting), to rank a list of algorithms on a given
instance.

For the second model, we used the idea of reduction by Lin et al. [27] for
implementing ordinal ranking using binary classification. In their work, the role
of a binary classifier given an element and an integer rank k is to determine
whether the element is within the top k elements or not. Splitting heuristics
look for the top variable in a ranked list, thus we are only interested in the k = 1
case. We define a binary classifier MR (Min-Rank) that takes as input a variable
v, and answers the question “is v the best variable for splitting φ?”.

MR(φ, vi) =

{
1, ∀j �= i : pm(φ, vi) < pm(φ, vj)
0, otherwise

(2)

3.4 Features for Training the Models

The data points that we used to train the model have the following format:

PW : (〈formulafeatures(φ), varfeatures(vi), varfeatures(vj)〉, {0, 1})
MR : (〈formulafeatures(φ), varfeatures(v)〉, {0, 1}) (3)

where the last element corresponds to the appropriate classifier (PW (φ, vi, vj)
or MR(φ, v)). For the formula features, we started from the features proposed
by SATZilla in SAT competition 2012 [40]. Compared to the model that has
been used in SATZilla, we will query our model at each splitting point. The fea-
ture computation time can quickly become a big part of the total runtime, and
dominate the gain from picking a better splitting variable. On the other hand,
each of the features could have an important role in making the model represen-
tative of the target distribution. To address this problem we performed a feature
selection on our initial set of features (both formula and variable features). We
first removed the very heavy features like LP-based (linear programming) fea-
tures. We used the random forest for training our models. We then extracted
the relative importance of each feature after training, which corresponds to the
frequency of the appearance of those features in the ensemble of decision trees.
We created a sorted list of features based on their relative importance (f) and
performed a forward feature selection [10]. More specifically, starting with an
empty list F , we passed through f and added the features to F , if they reduced
the cross-validation error when training on F . We then performed a backward
pass on F , to remove heavy-to-compute features (having normalized cost of at
least 100 ms), that do not contribute much to the accuracy of the model (having
feature importance in the 25th percentile). We also took into account the prod-
uct features (features from the multiplication of pairs of other features) to add
non-linearity to the model. The final variable and formula features are listed
in Table 1, consisting of structural metrics and metrics from a limited search.
The features are listed in order of their importance extracted from the trained
random forest.
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Table 1. Variable (var features(v)) and formula features (formula features(φ)), sorted
based on their importance extracted from the trained models.

Feature name Description

numAssigned #times v got a value through branching/propagation

numFlip #times the implied value of v is different than its cached value [1]

numLearnt #times v appeared in a conflict clause

numInTernary #times v appears in a clause of size 3

numInBinary #times v appears in a clause of size 2

LRBProduct product of LRB [22] activities of v and ¬v literals

propRate average #propagation over #decision [35]

activity VSIDS activity [31]

numPropagations number of unit propagations in the limited search

conflictRate ratio of #conflict clauses over #decisions

totalReward sum of LRB reward of all of the variables

numBinary number of clauses of size 2 in φ

numTernary number of clauses of size 3 in φ

avgVarDegree average variable node degree in the Variable-Clause graph

avgClauseDegree average clause node degree in the Variable-Clause graph

3.5 Training Data

We used the MapleCOMSPS solver [23] for collection of solver runtime, as well as
formula and variable features. For generating our training data set, we picked 210
instances from the collection of application/crafted benchmarks of SAT competi-
tion 2016 [14] and 2017 [15]. To be more precise, 87 instances from the application
benchmark of 2016, 21 instances from the crafted benchmark of 2016, and 102
instances from the main benchmark of 2017. The selection criteria were based on
having instances from different types of problems (not problems of the same kind
with different sizes) and having a wide range of hardness to make a representa-
tive training set. We did not use any instance that was deemed too hard (timed
out) or too easy (was solved under 5 s) by our sequential solver. To match the
test environment, we first ran the pre-processing stage of MapleCOMSPS and
simplified the formulas. Then we computed all of the structural formula features
offline and for the search probing features we ran MapleCOMSPS up to 10,000
conflicts and collected the necessary statistics from the solver. For computing the
true labels, we randomly selected 50 variables in each instance and split the for-
mula on each of them and solved the sub-formulas with MapleCOMSPS up to a
5000 s timeout, recording the runtime and status (SAT, UNSAT, UNKNOWN).

3.6 Analysis of the Learned Models

For training the model, we used random forest classifier. We can achieve an aver-
age precision of 83% and an average recall of 83% and an accuracy of 80.7%. The
candidate variable list can be ordered using the learned predicate. For finding
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Fig. 1. Percentage of instances where the predicted best variable is within the actual
top-k variables for k between 1 and 10.

the best variable, we only need to find the “min” of the list, which can be done
in linear time. Although, when using a noisy comparator, the error caused by
the inaccurate comparison, might accumulate over multiple comparisons. There
are more robust sorting algorithms in the presence of noisy comparators (e.g.
counting method [38]), but the running time complexity is quadratic in the num-
ber of elements, which is not feasible for large formulas. To check how well our
predicate is performing, we ranked the variables in the instances in our training
set, where we have the true labels.

When sorting the variables using the pairwise ranking, out of 210 instances,
in 120 instances the best variable in the predicted ranking matched the actual
best variable (57.1% of the time). In 18 cases the best actual variable was the
second best predicted variable. The worst prediction happened in an instance
with 2200 variables, where the best actual variable appeared in the 30th position
in the predicted list. The total error (e.g. τ score) of comparing the predicted
ranking and the best actual ranking could be poor, however, we can see some
general ordering over the variables (variables that are much better choices appear
closer to the front of the list). Figure 1 shows the percentage of instances (out of
210), where the predicted best variable (the output of the model for splitting), is
within the actual top-k variables. We observed that the best predicted variable
is one of the actual top 10 variables in 197 out of 210 instances (93.8%). This
shows that top variables in our predicted ranking have a considerable overlap
with the top variables in the actual ranking.

4 Implementation

Our implementation of MaplePainless-DC is built on top of the Painless solver
framework [20]. Painless is a state-of-the-art framework that allows developers
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to implement many different kinds of parallel SAT solvers for many-core envi-
ronments. The main configurable components of Painless are: parallel strategies
such as DC or portfolio, clause sharing, and management policies, and diverse
sequential engines. The implementation of our machine learning based splitting
heuristic relies on the use of the DC strategy in Painless [21]. We use an instru-
mented version of the MapleCOMSPS [23] solver as workers in MaplePainless-
DC. The instrumentation collects formula/variable statistics and chooses split-
ting variables.

4.1 Implementation of Splitting in Painless-DC

Painless-DC splits a formula at regular intervals throughout its run. At a high-
level, the master node maintains a queue of idle cores to assign jobs to. Initially,
the master node chooses a variable to split and assigns the resultant sub-formulas
to two cores. If the queue of idle cores is non-empty, the master node chooses a
sub-formula from one of the busy cores and splits it into two sub-formulas, one
of which is assigned to the busy core and the other to one of the idle ones. This
process is repeated until the queue of idle cores is empty. If during the solver’s
run a core becomes idle and is added to the idle queue (e.g., if it has established
UNSAT for its input sub-formula), the above-mentioned process is invoked until
the idle queue becomes empty again. This form of load-balancing ensures that
worker nodes are not allowed to idle for too long.

4.2 Feature Computation for Machine Learning in MapleCOMSPS

When it is time to split a formula, Painless’ master node asks the sequential
worker solver whose sub-formula is being split for variables to split on. The
worker solver computes formula and variable features (e.g. number of times a
variable is assigned, either decided or propagated) on the sub-formula to be split.
The description of the variable features is listed in Table 1.

We used scikit-learn python package [36] for training the model and extracted
the parameters and embedded them in a C implementation of random forest
classifier. We later call this classifier from MapleCOMSPS for performing pre-
dictions. Given a list of candidate variables, pairwise classifier PW is used as
a comparator (less-than) operator to find and return the minimum item in a
linear scan. Min-rank classifier MR is invoked for all variables in the list and
the first variable predicted to be the minimum is returned. The worst case time
complexity of both of the models is O(TC ·n), where n is the number of variables
and TC is the time complexity of querying each of the classifiers.

5 Experimental Results

5.1 Evaluation over SAT 2018 and 2019 Competition Instances

Experimental Setup. For evaluation we used the main track benchmark of
the SAT competition 2018 [13] and SAT race 2019 [12], which in total have
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Table 2. Performance comparison of our solvers vs state-of-the-art DC parallel SAT
solvers. Number of solved instances is out of 791 (after removing repeated instances
from the original 800). SAT column shows the number of satisfiable instances solved
(resp. UNSAT). The best result in each column is shown in bold.

Cores Solver Solved SAT UNSAT Avg. runtime (s) PAR-2 (hr)

8 Treengeling 501 292 209 719.399 905.672

Painless-flip 474 291 183 437.632 938.177

MaplePainless-DC-MinRank 497 299 198 484.340 883.532

MaplePainless-DC-Pairwise 501 309 192 435.610 866.178

16 Treengeling 518 308 210 677.216 855.777

MaplePainless-DC-Pairwise 520 317 203 334.991 801.165

800 instances, consisting of industrial instances coming from a diverse set of
applications and crafted instances encoding combinatorial problems. Within our
sample of instances from 2016/2017 (used for training), a scrambled version (a
shuffling of clauses and variable IDs) of 9 instances appear in the 2018/2019
benchmarks as well (used for testing). To have a fair evaluation, we removed
these 9 instances from the testing benchmark. Timeout for each instance was set
at 5000 s wallclock time (the same as in SAT competitions). All jobs were run
on Intel Xeon CPUs (3 GHz and 64 GB RAM). As a sanity check, we performed
a controlled apple-to-apple study comparing Painless with ML-based splitting
heuristic against the same setup with random splitting heuristic. We note that
Painless with ML-based splitting easily outperforms the version with random
splitting.

Solvers Description. We compared our solver against the top divide-and-
conquer parallel solvers, Treengeling [6] version bcj and Painless-DC [21] with
its best performing setting (node switch strategy: clone, clause sharing: all-
to-all, and splitting heuristic: flip), which we will refer to as Treengeling
and Painless-flip, respectively. We refer to our implementations using
the PW classifier for pairwise ranking as MaplePainless-DC-Pairwise and
MaplePainless-DC-MinRank refers to solver with binary classification of mini-
mum rank (MR classifier). Our parallel solvers and Painless-flip use Maple-
COMSPS [23] as the backend sequential solver. We changed MapleCOMSPS to
always use LRB as branching heuristics. Each solver was assigned 8 cores.

Results. To perform an apple-to-apple comparison and measure the effective-
ness of our splitting heuristics, we reused all of the configurations and compo-
nents of Painless-flip and only replaced the splitting heuristics, which was
straightforward, thanks to the modular design of Painless. Table 2 lists the num-
ber of solved instances, average runtime among solved instances, and the PAR-2
metric. In the SAT competition, PAR-2 is measured in seconds, but for better
readability, we report it in hours. As the table shows, both ML based heuristics,
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(a) SAT 2018/2019 benchmark (b) Hard cryptographic benchmark

Fig. 2. Cactus plot for performance comparison of our parallel SAT solvers against
baseline and state-of-the-art on main track benchmarks of SAT competition and hard
cryptographic benchmark (using 8 cores).

improve significantly upon the baseline in the application benchmark of 2018
and 2019. Additionally, MaplePainless-DC-Pairwise solves the same number
of instances as Treengeling, but has the lowest PAR-2 score among all. Figure 2a
shows the cactus plot of these solvers over this benchmark.

5.2 Evaluation over Cryptographic Instances

Experimental Setup. We used a set of hard cryptographic instances encoding
preimage attack on round-reduced SHA-1 hash function. More precisely, the
instances encode inversion of 21, 22, and 23 rounds SHA-1, with 20 random
targets for each rounds version [34]. All jobs were run on Intel Xeon CPUs at
3 GHz and 64 GB of RAM with 12 h wallclock timeout.

Solvers Description. We compared our MaplePainless-DC-Pairwise solver
against the baseline (Painless-flip) and Treengeling. All solvers were run
with 8 cores. For the backend solvers in this experiment, we used Glucose [4]
and MapleSAT [22] (4 of each). Glucose solvers used Glucose’s default restart
policy. MapleSAT solvers were set to use the MABR restart policy [33]. To have
an apple-to-apple comparison with baseline, we used the same backend solver
configuration for baseline and our solvers.

Results. Figure 2b shows the performance of the considered DC solvers on
our hard cryptographic benchmark. Instances with 21 rounds are easy for all
solvers. 22 rounds instances are much harder than 21 rounds instances and as
can be seen, Treengeling solves very few of these instances. Although both
MaplePainless-DC-Pairwise and Painless-flip solve all of these instances.
The hardness ramps up very quickly at 23 rounds instances, where Treengeling
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does not solve any of the instances and Painless-flip solves 2 of them.
MaplePainless-DC-Pairwise solves 3 instances in this subset of instances, and
with 30% lower runtime.

5.3 Scaling Experiments

Our main set of experiments were executed on 8 CPU cores. To study how our
splitting heuristic scales with larger number of cores, we took Treengeling and
MaplePainless-DC-Pairwise, that performed better among the four solvers
on SAT 2018 and 2019 benchmarks, and compared them on these benchmarks
on 16 core machines. Table 2 shows that our MaplePainless-DC-Pairwise
solver can solve 2 more instances than Treengeling (as opposed to solving
the same number of instances as observed in the 8 core setting). Further,
MaplePainless-DC-Pairwise with 16 cores solves 19 more instances compared
to the same version with 8 cores, and 11 of these instances were unsatisfiable.

5.4 Computational Overhead of ML Models

The timing results presented in this section are end-to-end (i.e., the computa-
tional overhead of running the ML models are included in the solver runtimes
presented). The majority of the variable features are dynamic and their counters
are updated whenever there is a related action performed during the search, thus
their complexity is amortized over the run of the solver. The structural formula
features are computed at the start of the search, which are all linearly propor-
tional to the size of formula, and later are updated incrementally as the formula
is reduced via splitting. Setting up the feature values and querying the models
roughly takes 6% of the total runtime of the solver on average for the SAT 2018
and 2019 benchmarks.

5.5 Summary of Results

We first note that MaplePainless-DC significantly outperforms both baseline as
well as the state-of-the-art Treengeling solvers on cryptographic (60 instances)
and SAT 2018/2019 competition benchmarks (800 instances) both in terms of
number of solved instances as well as PAR-2 scores. Further, we see an improve-
ment in performance of our solver MaplePainless-DC as we increase the number
of machine cores from 8 to 16 (see Table 2).

Both of the ML-based heuristics are very successful on satisfiable instances,
where MaplePainless-DC-Pairwise solves 17 more satisfiable instances rel-
ative to Treengeling and 18 relative to Painless-flip (although solving
fewer unsatisfiable instances than Treengeling). On cryptographic bench-
mark, MaplePainless-DC-Pairwise solves 43 out of 60 instances, outper-
forming other solvers. From the hardest instances (23 rounds SHA-1) in
this benchmark, Treengeling can not solve any of the instances, whereas
MaplePainless-DC-Pairwise solves three of them (see Table 2 and Fig. 2).
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6 Related Work

Cube-and-conquer [16] solvers (such as Treengeling [6]) use a look-ahead pro-
cedure to determine the best splitting variable. In contrast to look-ahead tech-
niques, some solvers use look-back methods that dynamically analyze the search
performed by the solver, as well as formula statistics, to identify the best candi-
date at the “current” splitting point. For example, Ampharos [2] picks the vari-
able with the highest VSIDS activity and MapleAmpharos [35] uses propagation-
rate (average propagation of a variable divided by the number of decisions).
Audemard et al. [1], use the number of times a variable’s saved phase is flipped
through propagation. This has been shown to be effective in divide-and-conquer
settings [21]. We can categorize our work as a look-back heuristic as all of the
features are extracted from previous limited runs of a sequential solver.

ML has been used to rank and pick the best variable in sequential SAT
solvers. Liang et al. used a reinforcement learning formulation to find the most
rewarding variable according to the learning-rate metric for branching [22]. In
another work, they train a logistic regression model that ranks variables based
on the probability of causing a conflict in the next step [25]. In contrast to
these methods that use a pointwise ranking of the variables, we are employing a
pairwise ranking. The pairwise ranking has been used in other constraint solver
contexts as well. Xu et al. used pairwise voting in the context of algorithm selec-
tion, to rank SAT solvers based on their performance on a single formula [40].
Khalil et al. used deep reinforcement learning for learning heuristics in optimiza-
tion algorithms over graphs of up to 1000 nodes [18], however, there is a scaling
challenge when applying their work on industrial SAT instances which can have
millions of variables.

7 Conclusions

We presented two ML based look-back splitting heuristics for DC solvers in this
paper, namely, pairwise ranking PW and min rank MR methods. These methods
significantly outperform the baseline Painless and state-of-the-art Treengeling
solvers on both industrial and cryptographic benchmarks.

One of the key insights that underpins our solver heuristic design is the obser-
vation that solvers are compositions of two kinds of methods, namely, logical rea-
soning routines (e.g., conflict clause learning or BCP), and heuristics aimed at
optimally selecting, sequencing, or initializing logical reasoning rules. We show
that our methods outperform hand-tuned heuristics in the best DC solver to-
date, namely, Treengeling, on a large industrial benchmark as well as challenge
problems obtained from cryptographic applications. This gives us greater confi-
dence in our philosophy that design of solver heuristics can effectively leverage
ML methods, especially given the fact that solvers are data-rich environments.
Further, future solver design is likely to move away from ad-hoc heuristic design
and more towards feature engineering and appropriate choice of ML methods,
as has already been witnessed for many solver heuristics [8,19,22,24,25,39].



914 S. Nejati et al.

References

1. Audemard, G., Hoessen, B., Jabbour, S., Piette, C.: An effective distributed D&C
approach for the satisfiability problem. In: Proceedings of the 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), pp. 183–187. IEEE (2014)

2. Audemard, G., Lagniez, J.-M., Szczepanski, N., Tabary, S.: An adaptive parallel
SAT solver. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 30–48. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 3

3. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Milano, M. (ed.) CP 2012. LNCS, pp. 118–126. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7 11

4. Audemard, G., Simon, L.: Glucose and syrup: nine years in the SAT competitions.
In: Proceedings of SAT Competition, pp. 24–25 (2018)

5. Balyo, T., Sinz, C.: Parallel satisfiability. In: Hamadi, Y., Sais, L. (eds.) Handbook
of Parallel Constraint Reasoning, pp. 3–29. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-63516-3 1

6. Biere, A.: CaDiCal, Lingeling, Plingeling, Treengeling and YalSat entering the SAT
competition 2017. In: Proceedings of SAT Competition, pp. 14–15 (2017)

7. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press, Amsterdam (2009)

8. Bouraoui, Z., et al.: From shallow to deep interactions between knowledge repre-
sentation, reasoning and machine learning (Kay R. Amel group). arXiv preprint
arXiv:1912.06612 (2019)

9. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(2),
10 (2008)

10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

11. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisf.
Boolean Model. Comput. 6, 245–262 (2008)

12. Heule, M., Järvisalo, M., Suda, M.: SAT race benchmarks (2016). http://
satcompetition.org/sr2019benchmarks.zip

13. Heule, M., Järvisalo, M., Suda, M.: SAT competition benchmarks (2018). http://
sat2018.forsyte.tuwien.ac.at/benchmarks/
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Abstract. We study planning problems where the transition function is
described by a learned binarized neural network (BNN). Theoretically, we
show that feasible planning with a learned BNN model is NP -complete,
and present two new constraint programming models of this task as
a mathematical optimization problem. Experimentally, we run solvers
for constraint programming, weighted partial maximum satisfiability,
0–1 integer programming, and pseudo-Boolean optimization, and observe
that the pseudo-Boolean solver outperforms previous approaches by one
to two orders of magnitude. We also investigate symmetry handling for
planning problems with learned BNNs over long horizons. While the
results here are less clear-cut, we see that exploiting symmetries can
sometimes reduce the running time of the pseudo-Boolean solver by up to
three orders of magnitude.

Keywords: Automated planning · Binarized neural networks ·
Mathematical optimization · Pseudo-Boolean optimization · Cutting
planes reasoning · Symmetry

1 Introduction

Automated planning is the reasoning side of acting in Artificial Intelligence [23].
Planning automates the selection and ordering of actions to reach desired states
of the world. An automated planning problem represents the real-world dynamics
using a model of the world, which can either be manually encoded [7,13,14,20,
24], or learned from data [1,2,12,29]. In this paper, we focus on the latter.

Automated planning with deep neural network (DNN) learned state tran-
sition models is a two stage data-driven framework for learning and solving
planning problems with unknown state transition models [28]. The first stage of
the framework learns the unknown state transition model from data as a DNN.
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The second stage of the framework plans optimally with respect to the learned
DNN model by solving an equivalent mathematical optimization problem (e.g.,
a mixed-integer programming (MIP) model [28], a 0–1 integer programming
(IP) model [25,26], or a weighted partial maximum satisfiability (WP-MaxSAT)
model [25,26]). In this paper, we focus on the theoretical, mathematical mod-
elling and the experimental aspects of the second stage of the data-driven frame-
work where the learned DNN is a binarized neural network (BNN) [16].

We study the complexity of feasible automated planning with learned BNN
transition models under the common assumption that the learned BNN is fully
connected, and show that this problem is NP -complete. In terms of mathematical
modelling, we propose two new constraint programming (CP) models that are
motivated by the work on learning BNNs with CP [33]. We then conduct two
sets of experiments for the previous and our new mathematical optimization
models for the learned automated problem. In our first set of experiments, we
focus on solving the existing learned automated problem instances using off-
the-shelf solvers for WP-MaxSAT [6], MIP [17], pseudo-Boolean optimization
(PBO) [10] and CP [17]. Our results show that the PBO solver RoundingSat [10]
outperforms the existing baselines by one to two orders of magnitude. In our
second set of experiments, we focus on the challenging task of solving learned
automated planning problems over long planning horizons. Here, we study and
test the effect of specialized symmetric reasoning over different time steps of the
learned planning problem. Our preliminary results demonstrate that exploiting
this symmetry can significantly reduce the overall runtime of the underlying
solver (i.e., RoundingSat) by upto three orders of magnitude. Overall, with this
paper we make both theoretical and practical contributions to the field of data-
driven automated planning with learned BNN transition models.

In the next section we formally define the planning problem using binarized
neural network (BNN) transitions functions. In Sect. 3 we define a 0–1 integer
programming (IP) model that will solve the planning problem given a learned
BNN. In Sect. 4 we show that the feasibility problem is NP -complete. In Sect. 5
we give two constraint programming models for the solving the planning prob-
lem. In Sect. 6 we discuss a particular symmetry property of the model, and
discuss how to take advantage of it. In Sect. 7 we give experimental results.
Finally, in Sect. 8 we conclude and discuss future work.

2 Planning with Learned BNN Transition Models

We begin by presenting the definition of the learned automated planning problem
and the BNN architecture used for learning the transition model from data.

2.1 Problem Definition

A fixed-horizon learned deterministic automated planning problem [25,28] is a
tuple Π̃ = 〈S,A,C, T̃ , V,G,R,H〉, where S = {s1, . . . , sn} and A = {a1, . . . , am}
are sets of state and action variables for positive integers n,m with domains
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Ds1 , . . . , Dsn
and Da1 , . . . , Dam

respectively, C : Ds1 × · · · × Dsn
× Da1 × · · · ×

Dam
→ {true, false} is the global function, T̃ : Ds1 × · · · × Dsn

× Da1 × · · · ×
Dam

→ Ds1 × · · · × Dsn
denotes the learned state transition function, and R :

Ds1 × · · · × Dsn
× Da1 × · · · × Dam

→ R is the reward function. Further, V
is a tuple of constants 〈V1, . . . , Vn〉 ∈ Ds1 × · · · × Dsn

that denotes the initial
values of all state variables, G : Ds1 × · · · × Dsn

→ {true, false} is the goal state
function, and H ∈ Z

+ is the planning horizon.
A solution to (i.e., a plan for) Π̃ is a tuple of values Āt = 〈āt

1, . . . , ā
t
m〉 ∈

Da1 ×· · ·×Dam
for all action variables A over time steps t ∈ {1, . . . , H} such that

T̃ (〈s̄t
1, . . . , s̄

t
n, āt

1, . . . , ā
t
m〉) = 〈s̄t+1

1 , . . . , s̄t+1
n 〉 and C(〈s̄t

1, . . . , s̄
t
n, āt

1, . . . , ā
t
m〉) =

true for time steps t ∈ {1, . . . , H}, Vi = s̄1i for all si ∈ S and
G(〈s̄H+1

1 , . . . , s̄H+1
n 〉) = true. An optimal solution to Π̃ is a solution such that

the total reward
∑H

t=1 R(〈s̄t+1
1 , . . . , s̄t+1

n , āt
1, . . . , ā

t
m〉) is maximized.

It is assumed that the functions C,G,R and T̃ are known, that C,G can be
equivalently represented by a finite set of linear constraints, that R is a linear
expression and that T̃ is a learned binarized neural network [16]. Next, we give
an example planning problem where these assumptions are demonstrated.

Example 1. A simple instance of a learned automated planning problem Π̃ is as
follows.

– The set of state variables is defined as S = {s1} where s1 ∈ {0, 1}.
– The set of action variables is defined as A = {a1} where a1 ∈ {0, 1}.
– The global function C is defined as C(〈s1, a1〉) = true when s1 + a1 ≤ 1.
– The value of the state variable s1 is V1 = 0 at time step t = 1.
– The goal state function G is defined as G(〈s1〉) = true if and only if s1 = 1.
– The reward function R is defined as R(〈s1, a1〉) = −a1.
– The learned state transition function T̃ is in the form of a BNN, which will

be described below.
– A planning horizon of H = 4.

A plan (assuming the BNN described later in Fig. 1) is ā1
1 = 1, ā2

1 = 1, ā3
1 = 1,

ā4
1 = 0 with corresponding states s̄11 = 0, s̄21 = 0, s̄31 = 0, s̄41 = 0, s̄51 = 1. The

total reward for the plan is −3. ��

2.2 Binarized Neural Networks

Binarized neural networks (BNNs) are neural networks with binary weights
and activation functions [16]. As a result, BNNs can learn memory-efficient
models by replacing most arithmetic operations with bit-wise operations. The
fully-connected BNN that defines the learned state transition function T̃ , given
L layers with layer width Wl in layer l ∈ {1, . . . , L}, and a set of neurons
J(l) = {u1,l, . . . , uWl,l}, is stacked in the following order.
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Fig. 1. Learned BNN with two layers L = 2 for the problem in Example 1. In this
example learned BNN, the input layer J(1) has neurons u1,1 and u2,1 representing s1
and a1, respectively. The node n2,1 represents batch normalization for neuron u2,1.
Given the parameter values w1,1,l = 1, w2,1,l = −1, μ1,2 = 0, σ2

1,2 = 2, ε1,2 = 2,
γ1,2 = 3 and βj,l = 1, the input x1,2 to neuron u1,2 is calculated according to the
formula specified in Sect. 2.2.

Input Layer. The first layer consists of neurons ui,1 ∈ J(1) that represent the
domain of the learned state transition function T̃ . We will assume that the
domains of action and state variables are binary, and let neurons u1,1, . . . , un,1 ∈
J(1) represent the state variables S and neurons un+1,1, . . . , un+m,1 ∈ J(1) rep-
resent the action variables A. During the training of the BNN, binary values 0
and 1 of action and state variables are represented by −1 and 1, respectively.

Batch Normalization Layers. For layers l ∈ {2, . . . , L}, Batch Normaliza-
tion [18] transforms the weighted sum of outputs at layer l − 1 in 	j,l =∑

i∈J(l−1) wi,j,lyi,l−1 to inputs xj,l of neurons uj,l ∈ J(l) using the formula

xj,l = �j,l−μj,l√
σ2
j,l+εj,l

γj,l + βj,l, where yi,l−1 denotes the output of neuron ui,l−1 ∈
J(l − 1), and the parameters are the weight wi,j,l, input mean μj,l, input vari-
ance σ2

j,l, numerical stability constant εj,l, input scaling γj,l, and input bias βj,l,
all computed at training time.

Activation Layers. Given input xj,l, the deterministic activation function yj,l

computes the output of neuron uj,l ∈ J(l) at layer l ∈ {2, . . . , L}, which is 1 if
xj,l ≥ 0 and −1 otherwise. The last activation layer consists of neurons ui,L ∈
J(L) that represent the codomain of the learned state transition function T̃ . We
assume neurons u1,L, . . . , un,L ∈ J(L) represent the state variables S.

The proposed BNN architecture is trained to learn the function T̃ from data
that consists of measurements on the domain and codomain of the unknown state
transition function T : Ds1 × · · · × Dsn

× Da1 × · · · × Dam
→ Ds1 × · · · × Dsn

.
An example learned BNN for the problem of Example 1 is visualized in Fig. 1.
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Fig. 2. The visualization of bias computation B(1, 2) for neuron u1,2 ∈ J(2) in the
example learned BNN presented in Fig. 1.

3 0–1 Integer Programming Model for the Learned
Planning Problem

In this section, we present the 0–1 integer programming (IP) model from [25,26]
previously used to solve learned automated planning problems. A 0–1 IP model
can be solved optimally by a mixed-integer programming (MIP) solver (as was
previously investigated [25,26]). Equivalently, this can be viewed as a pseudo-
Boolean optimization (PBO) model to be solved using a PBO solver, since all
the variables are 0–1 or equivalently Boolean.

Decision Variables. The 0–1 IP model uses the following decision variables:

– Xi,t encodes whether action ai ∈ A is executed at time step t ∈ {1, . . . , H}
or not.

– Yi,t encodes whether we are in state si ∈ S at time step t ∈ {1, . . . , H + 1}
or not.

– Zi,l,t encodes whether neuron ui,l ∈ J(l) in layer l ∈ {1, . . . , L} is activated
at time step t ∈ {1, . . . , H} or not.

Parameters. The 0–1 IP model uses the following parameters:

– w̄i,j,l is the value of the learned BNN weight between neurons ui,l−1 ∈ J(l−1)
and uj,l ∈ J(l) in layer l ∈ {2, . . . , L}.

– B(j, l) is the bias of neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}. Given the values
of normalization parameters μ̄j,l, σ̄2

j,l, ε̄j,l, γ̄j,l and β̄j,l, the bias is computed

as B(j, l) =
⌈

β̄j,l

√
σ̄2
j,l+ε̄j,l

γ̄j,l
− μ̄j,l

⌉

. The visualization of the calculation of the

bias B(j, l) is presented in Fig. 2.
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Constraints. The 0–1 IP model has the following constraints:

Yi,1 = Vi ∀si∈S (1)
G(〈Y1,H+1, . . . , Yn,H+1〉) = true (2)
C(〈Y1,t, . . . , Yn,t,X1,t, . . . , Xm,t〉) = true ∀t∈{1,...,H} (3)
Yi,t = Zi,1,t ∀si∈S,t∈{1,...,H} (4)
Xi,t = Zi+n,1,t ∀ai∈A,t∈{1,...,H} (5)
Yi,t+1 = Zi,L,t ∀si∈S,t∈{1,...,H} (6)
(
B(j, l) − |J(l−1)|)(1−Zj,l,t

) ≤ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (7)
(
B(j, l)+|J(l−1)|+1

)
Zj,l,t − 1 ≥ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (8)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}
at time step t ∈ {1, . . . , H} is equal to

∑
ui,l−1∈J(l−1) w̄i,j,l(2·Zi,l−1,t−1)+B(j, l).

In the above model, constraints (1) set the initial value of every state variable.
Constraints (2)–(3) enforce the global constraints (i.e., constraints represent-
ing C) and the goal constraints (i.e., constraints representing G). Constraints
(4)–(6) map the input and output layers of the learned BNN to the correspond-
ing state and action variables. Finally, constraints (7)–(8) model the activation
of each neuron in the learned BNN, where the decision variable Zj,l,t ∈ {0, 1}
represents the output of neuron uj,l ∈ J(l) at time step t ∈ {1, . . . , H} using the
expression (2 · Zj,l,t − 1) ∈ {−1, 1}.

Objective Function. The 0–1 IP model has the objective function

max
H∑

t=1

R(〈Y1,t+1, . . . , Yn,t+1,X1,t, . . . , Xm,t〉), (9)

which maximizes the total reward accumulated over time steps t ∈ {1, . . . , H}.

Example 2. The 0–1 IP (or the equivalent PBO) model that is presented in this
section can be solved to find an optimal plan to the instance that is described
in Example 1. The optimal plan is āt

1 = 0 for all time steps t ∈ {1, 2, 3, 4}, and
the total reward for the optimal plan is 0. ��

4 Theoretical Results

In this section, we establish the NP -completeness of finding feasible solutions to
learned planning problems.

Theorem 1. Finding a feasible solution to a learned planning problem Π̃ with
a fully-connected batch normalized learned BNN T̃ is an NP-complete problem.

Proof. We begin by showing that Π̃ is in NP. Given the values Āt of action
variables A for all time steps t ∈ {1, . . . , H} and the initial values Vi of state
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Fig. 3. Visualization of the NP-hardness proof by a reduction from a 3-CNF for-
mula φ =

∧q
j=1 cj to the learned planning problem Π̃. In the first layer, two neurons

u2i,1, u2i+1,1 ∈ J(1) together represent the Boolean variable zi from the formula φ.
When variable zi does not appear in clause ck, the weights w̄2i,k,2, w̄2i+1,k,2 are set
so the input to neuron uk,2 ∈ J(2) is cancelled out (i.e., case (a) of step (7)). In the
remaining cases, the weights w̄2i,j,2, w̄2i+1,j,2 are set to ensure the input to neuron
uj,2 ∈ J(2) is positive if and only if the respective literal that appears in clause cj
evaluates to true (e.g., case (c) of step (7) is visualized).

variables si ∈ S, the learned BNN T̃ can predict the values S̄t = 〈s̄t
1, . . . , s̄

t
n〉 ∈

Ds1 × · · · × Dsn
of all state variables S for all time steps t ∈ {2, . . . , H + 1} in

linear time in the size of the BNN and the value of the planning horizon H.
We proceed by showing that Π̃ is in NP -hard by a reduction from 3-SAT.

Let φ be a 3-CNF formula such that φ =
∧q

j=1 cj for some positive integer q.
Further let z1, . . . , zr denote the (Boolean) variables that appear in the formula φ
for some positive integer r. As visualized in Fig. 3, we define the learned planning
problem Π̃ to represent any 3-CNF formula φ as follows:

1. Planning horizon H = 1.
2. State variable S = {s1}.
3. Action variables A = {a1, . . . , a2r}.
4. The global function C is true if and only if a2i−1 = a2i for all i ∈ {1, . . . , r}.
5. Neurons J(1) = {u1,1, . . . , u1+2r,1} in the first layer.
6. Neurons J(2) = {u1,2, . . . , uq,2} in the second layer. Each neuron ui,2 ∈ J(2)

is normalized so that B(i, 2) = 3.
7. Set the learned weights between neurons u2i,1, u2i+1,1 ∈ J(1)\u1,1 and uj,2 ∈

J(2) according to the following rules. (a) If zi does not appear in clause cj ,
set w̄2i,j,2 = 1, w̄2i+1,j,2 = −1, (b) else if the negation of zi appears in clause
cj (i.e., ¬zi), set w̄2i,j,2 = w̄2i+1,j,2 = −1, (c) else, set w̄2i,j,2 = w̄2i+1,j,2 = 1.

8. Neuron J(3) = {u1,3} in the third layer. Neuron u1,3 is normalized such
that B(1, 3) = −q.

9. Set the learned weights w̄i,1,3 = 1 between ui,2 ∈ J(2) and u1,3 ∈ J(3).
10. The goal state function G is defined as G(〈1〉) = true and G(〈0〉) = false.
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In the reduction presented above, step (1) sets the value of the planning
horizon H to 1. Step (2) defines a single state variable s1 to represent whether
the formula φ is satisfied (i.e., s1 = 1) or not (i.e., s1 = 0). Step (3) defines
action variables a1, . . . , a2r to represent the Boolean variables z1, . . . , zr in the
formula φ. Step (4) ensures that the pairs of action variables a2i−1, a2i that
represent the same Boolean variable zi take the same value. Step (5) defines
the neurons in the first layer (i.e., l = 1) of the BNN. Step (6) defines the
neurons in the second layer (i.e., l = 2) of the BNN. Each neuron ui,2 ∈ J(2)
represents a clause ci in the formula φ, and the input of each neuron ui,2 is
normalized so that B(i, 2) = 3. Step (7) defines the weights between the first
and the second layers so that the output of neurons u2i,1, u2i+1,1 ∈ J(1) only
affects the input of the neurons uj,2 ∈ J(2) in the second layer if and only if the
Boolean variable zi appears in clause cj . When this is not the case, the output
of neurons u2i,1, u2i+1,1 are cancelled out due to the different values of their
weights, so that w̄2i,j,2 + w̄2i+1,j,2 = 0. Steps (6) and (7) together ensure that for
any values of V1 and w̄1,j,2, neuron uj,2 ∈ J(2) is activated if and only if at least
one literal in clause cj evaluates to true.1 Step (8) defines the single neuron in
the third layer (i.e., l = 3) of the BNN. Neuron u1,3 ∈ J(3) predicts the value of
state variable s1. Step (9) defines the weights between the second and the third
layers so that the neuron u1,3 ∈ J(3) activates if and only if all clauses in the
formula φ are satisfied. Finally, step (10) ensures that the values of the actions
constitute a solution to the learned planning problem Π̃ if and only if all clauses
are satisfied. ��

5 Constraint Programming Models for the Learned
Planning Problem

In this section, we present two new constraint programming (CP) models to solve
the learned automated planning problem Π̃. The models make use of reification
rather than restricting themselves to linear constraints. This allows a more direct
expression of the BNN constraints.

5.1 Constraint Programming Model 1

Decision Variables and Parameters. The CP model 1 uses the same set of deci-
sion variables and parameters as the 0–1 IP model previously described in Sect. 3.

1 Each neuron uj,2 that represents clause cj receives seven non-zero inputs (i.e., one
from state and six from action variables). The bias B(j, 2) is set so that the activation
condition holds when at least one literal in clause cj evaluates to true. For example,
the constraint −2 + w̄1,j,2V1+B(j, 2) ≥ 0 represents the case when exactly one literal
in clause cj evaluates to true where the terms −2 and w̄1,j,2V1 represent the inputs
from the six action variables and the single state variable, respectively. Similarly, the
constraint −6 + w̄1,j,2V1 + B(j, 2) < 0 represents the case when all literals in clause
cj evaluate to false and the activation condition does not hold.



Theoretical and Experimental Results for Planning with Learned BNNs 925

Constraints. The CP model 1 has the following constraints:

Constraints (1)−(6)
(In(j, l, t) ≥ 0) = Zj,l,t ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (10)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}
at time step t ∈ {1, . . . , H} is equal to

∑
ui,l−1∈J(l−1) w̄i,j,l(2·Zi,l−1,t−1)+B(j, l).

In the above model, constraint (10) models the activation of each neuron in the
learned BNN by replacing constraints (7)–(8).

Objective Function. The CP model 1 uses the same objective function as the
0–1 IP model previously described in Sect. 3.

5.2 Constraint Programming Model 2

Decision Variables. The CP model 2 uses the Xi,t and Yi,t decision variables
previously described in Sect. 3.

Parameters. The CP model 2 uses the same set of parameters as the 0–1 IP
model previously described in Sect. 3.

Constraints. The CP model 2 has the following constraints:

Constraints (1)−(6)
(In(j, l, t) ≥ 0) = Expr j,l,t ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H} (11)

where the input expression In(j, l, t) for neuron uj,l ∈ J(l) in layer l ∈ {2, . . . , L}
at time step t ∈ {1, . . . , H} is equal to

∑
ui,l−1∈J(l−1) w̄i,j,l(2 · Expr i,l−1,t − 1) +

B(j, l), and output expression Expr j,l,t represents the binary output of neuron
uj,l ∈ J(l) in layer l ∈ {2, . . . , L} at time step t ∈ {1, . . . , H}. In the above
model, constraint (11) models the activation of each neuron in the learned BNN
by replacing the decision variable Zj,l,t in constraint (10) with the expression
Expr j,l,t The difference between an integer variable and an expression is that
during solving the solver does not store the domain (current set of possible
values) for an expression. Expressions allow more scope for the presolve of CP
Optimizer [17] to rewrite the constraints to a more suitable form, and allow the
use of more specific propagation scheduling.

Objective Function. The CP model 2 uses the same objective function as the
0–1 IP model that is previously described in Sect. 3.

6 Model Symmetry

Examining the 0–1 IP (or equivalently the PBO) model, one can see the bulk
of the model involves copies of the learned BNN constraints over all time steps.
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These constraints model the activation of each neuron (i.e., constraints (4)–(8))
and constrain the input of the BNN (i.e., constraint (3)). The remainder of the
model is constraints on the initial and goal states (i.e., constraints (1)–(2)). So
if we ignore the initial and goal state constraints, the model is symmetric over
the time steps. Note that this symmetry property is not a global one: the model
is not symmetric as a whole. Rather, this local symmetry arises because subsets
of constraints are isomorphic to each other. Because of this particular form
of symmetry, the classic approach of adding symmetry breaking predicates [5]
would not be sound, as this requires global symmetry.

Instead, we exploit this symmetry by deriving symmetric nogoods on-the-
fly. If a nogood is derived purely from constraints (3)–(8), and if a sufficiently
small subset of time steps was involved in its derivation, then we can shift the
time steps of this nogood over the planning horizon, learning a valid symmetric
nogood. To track which constraints a nogood is derived from, we use the SAT
technique of marker literals lifted to PBO. Each constraint is extended with
some marker literal, which, if true, enforces the constraint, and if false, trivially
satisfies it. During the search, these marker literals are a priori assumed true, so
we are solving essentially the same problem, but the nogood learning mechanism
of the PBO solver ensures the marker literal of a constraint appears in a nogood
if that constraint was required in the derivation of the nogood.

By introducing marker literals Lt for all time steps t ∈ {1, . . . , H} for con-
straints (3)–(8) and an extra “asymmetric” marker literal L∗ for constraint (2)
and the constraints originating from bounding the objective function, and then
treating all initial state constraints as markers, we can track if only constraints
(3)–(8) were involved in the derivation of a nogood, and if so, for which time
steps. When we find that the constraints involved in creating a nogood only refer
to constraints from time steps l to u, then we know that symmetric copies of
these nogoods are also valid for time steps l + Δ to u + Δ for all −l < Δ < 0,
0 < Δ ≤ H − u. Our approach to exploiting symmetry is similar to the ones
proposed for bounded model checking in SAT [30,31].

Example 3. Marker literals are used to “turn on” the constraints and they are
set to true throughout the search. For example constraint (8) becomes

Lt → (B(j, l) + J(l − 1) + 1)Zj,l,t − 1 ≥ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H}

or equivalently, the binary linear constraint

M(1−Lt)+(B(j, l)+J(l−1)+1)Zj,l,t−1 ≥ In(j, l, t) ∀uj,l∈J(l),l∈{2,...,L},t∈{1,...,H}

with M chosen large enough so that the constraint trivially holds if Lt = 0. ��
We consider two ways of symmetric nogood derivation:

– All: whenever we discover a nogood that is a consequence of constraints from
time steps l to u, we add a suitably renamed copy of the nogood to the
variables for time steps l + Δ to u + Δ for all −l < Δ < 0, 0 < Δ ≤ H − u,
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Fig. 4. Cumulative number of problems solved by IP (blue), WP-MaxSAT (red), CP1
(green), CP2 (black) and PBO (orange) models over 27 instances of the problem Π̃
within the time limit. (Color figure online)

– Propagate: we consider each possible Δ above, but only add the renamed
nogood if it will immediately propagate or fail, similar to a SAT symmetric
clause learning heuristic [8].

Finally, we denote Base as the version of RoundingSat that does not add the
symmetric nogoods.

Example 4. Consider the problem in Example 1. Assume we generate a nogood
X1,1 ∨ Y1,1 ∨ ¬X1,2, which is a consequence only of constraints for the BNNs for
time steps 1 and 2. The actual generated nogood is then ¬L1∨¬L2∨X1,1∨Y1,1∨
¬X1,2 which illustrates that it depends only on the constraints in time steps 1
and 2. We can then add a symmetric copy ¬L2 ∨ ¬L3 ∨ X1,2 ∨ Y1,2 ∨ ¬X1,3 for
time steps 2 and 3, as well as ¬L3 ∨ ¬L4 ∨ X1,3 ∨ Y1,3 ∨ ¬X1,4 for steps 3 and 4.
These new constraints must be correct, since the BNN constraints for time steps
t ∈ {1, 2, 3, 4} are all symmetric. The marker literals are added so that later
nogoods making use of these nogoods also track which time steps were involved
in their generation. Using All we add both these nogoods, using Propagate we
only add those that are unit or false in the current state of the solver. ��

7 Experimental Results

In this section, we present results on two sets of computational experiments.
In the first set of experiments, we compare different approaches to solving the
learned planning problem Π̃ with mathematical optimization models. In the
second set of experiments, we present preliminary results on the effect of deriving
symmetric nogoods when solving Π̃ over long horizons H.

7.1 Experiments 1

We first experimentally test the runtime efficiency of solving the learned planning
problem Π̃ with mathematical optimization models using off-the-shelf solvers.
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Fig. 5. Pairwise runtime comparison between WP-MaxSAT, CP1 and CP2 models over
27 instances of problem Π̃ within the time limit.

All the existing benchmark instances of the learned planning problem Π̃ (i.e., 27
in total) were used [26]. We ran the experiments on a MacBookPro with 2.8 GHz
Intel Core i7 16GB memory, with one hour total time limit per instance. We used
the MIP solver CPLEX 12.10 [17] to optimize the 0–1 IP model, MaxHS [6]
with underlying CPLEX 12.10 linear programming solver to optimize the WP-
MaxSAT model [26], and CP Optimizer 12.10 [17] to optimize the CP Model 1
(CP1) and the CP Model 2 (CP2). Finally, we optimized a pseudo-Boolean
optimization (PBO) model, which simply replaces all binary variables in the 0–1
IP model with Boolean variables, using RoundingSat [10].

In Fig. 4, we visualize the cumulative number of problems solved by all five
models, namely: IP (blue), WP-MaxSAT (red), CP1 (green), CP2 (black) and
PBO (orange), over 27 instances of the learned planning problem Π̃ within one
hour time limit. Figure 4 clearly highlights the experimental efficiency of solving
the PBO model. We find that using the PBO model with RoundingSat solves all
existing benchmarks under 1000 s. In contrast, we observe that the 0–1 IP model
performs poorly, with only 19 instances out of 27 solved within the one hour time
limit. The remaining three models, WP-MaxSAT, CP1 and CP2, demonstrate
relatively comparable runtime performance, which we explore in more detail
next.

In Figs. 5a, 5b and 5c, we present scatter plots comparing the WP-MaxSAT,
CP1 and CP2 models. In each figure, each dot (red) represents an instance of
the learned planning problem Π̃ and each axis represents a model (i.e., WP-
MaxSAT, CP1 or CP2). If a dot falls below the diagonal line (blue), it means
the corresponding instance is solved faster by the model represented by the y-axis
than the one represented by the x-axis. In Fig. 5a, we compare the two CP models
CP1 and CP2. A detailed inspection of Fig. 5a shows a comparable runtime
performance on the instances that take less than 1000 s to solve (i.e., most dots
fall closely to the diagonal line). In the remaining two instances that are solved by
CP2 under 1000 s, CP1 runs out of the one hour time limit. These results suggest
that using expressions instead of decision variables to model the neurons of the
learned BNN allows the CP solver to solve harder instances (i.e., instances that
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PBO vs. WP-MaxSAT PBO vs. CP1 PBO vs. CP2

Fig. 6. Pairwise runtime comparison between PBO, and WP-MaxSAT, CP1 and CP2
models over 27 instances of problem Π̃ within the time limit.

take more than 1000 s to solve) more efficiently. In Figs. 5b and 5c, we compare
CP1 and CP2 against the WP-MaxSAT model, respectively. Both figures show
a similar trend on runtime performance; the CP models close instances that
take less than 1000 s to solve by one to two orders of magnitude faster than the
WP-MaxSAT model, and the WP-MaxSAT model performs comparably to the
CP models on the harder instances. Overall, we find that WP-MaxSAT solves
one more and one less instances compared to CP1 and CP2 within the one hour
time limit, respectively. These results suggest that the WP-MaxSAT model pays
a heavy price for the large size of its compilation when the instances take less
than 1000 s to solve, and only benefits from its SAT-based encoding for harder
instances.

Next, we compare the runtime performance of WP-MaxSAT, CP1 and CP2
against the best performing model (i.e., PBO) in more detail in Figs. 6a, 6b and
6c. These plots show that the PBO model significantly outperforms the WP-
MaxSAT, CP1 and CP2 models across all instances. Specifically, Fig. 6a shows
that the PBO model is better than the previous state-of-the-art WP-MaxSAT
model across all instances by one to two orders of magnitude in terms of runtime
performance. Similarly, Figs. 6b and 6c show that the PBO model outperforms
both CP models across all instances, except in one and two instances, respec-
tively, by an order of magnitude.

It is interesting that the 0–1 IP model works so poorly for the MIP solver,
while the equivalent PBO model is solved efficiently using a PBO solver. It seems
that the linear relaxations used by the MIP solver are too weak to generate useful
information, and it ends up having to fix activation variables in order to reason
meaningfully. In contrast, it appears that the PBO solver is able to determine
some useful information from the neuron constraints without necessarily fixing
the activation variables—probably since it uses integer-based cutting planes rea-
soning [4] rather than continuous linear programming reasoning for the linear
expressions—and the nogood learning helps it avoid repeated work.
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Fig. 7. Cumulative number of problems solved for Base (blue), Propagate (red) and
All (black) models over 21 instances of the problem Π̃ within the time limit. (Color
figure online)

Base vs. Propagate Base vs. All Propagate vs. All

Fig. 8. Pairwise runtime comparison between Base, Propagate and All models over 21
instances of problem Π̃ within the time limit.

7.2 Experiments 2

We next evaluate the effect of symmetric nogood derivation on solving the
learned planning problem Π̃ over long horizons H. For these experiments, we
generated instances by incrementing the value of the planning horizon H in the
benchmark instances in Sect. 7.1, and used the same hardware and time limit
settings. We modified the best performing solver RoundingSat [10] to include
symmetry reasoning as discussed in Sect. 6.

In Fig. 7, we visualize the cumulative number of problems solved for all three
versions of RoundingSat, namely Base (blue), Propagate (red), and All (black),
over 21 instances of the learned planning problem Π̃ over long horizons H within
one hour time limit. Figure 7 demonstrates that symmetric nogood derivation can
improve the efficiency of solving the underlying PBO model. We find that Prop-
agate solves the most instances within the time limit. A more detailed inspection
of the results further suggests that between the remaining two version of Round-
ingSat, All solves more instances faster compared to Base.
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Next, in Figs. 8a, 8b and 8c, we explore the pairwise runtime comparisons of
the three versions of RoundingSat in more detail. In Figs. 8a and 8b, we com-
pare Propagate and All against Base, respectively. It is clear from these scatter
plots that Propagate and All outperform Base in terms of runtime performance.
Specifically, in Fig. 8b, we find that All outperforms Base by up to three orders
of magnitude in terms of runtime performance. Finally, in Fig. 8c, we compare
the two versions of RoundingSat that are enhanced with symmetric nogood
derivation. A detailed inspection of Fig. 8c reveals that All is slightly faster than
Propagate in general.

8 Related Work, Conclusions and Future Work

In this paper, we studied the important problem of automated planning with
learned BNNs, and made four important contributions. First, we showed that
the feasibility problem is NP -complete. Unlike the proof presented for the task
of verifying learned BNNs [3], our proof does not rely on setting weights to zero
(i.e., sparsification). Instead, our proof achieves the same expressivity for fully
connected BNN architectures, without adding additional layers or increasing
the width of the layers, by representing each input with two copies of action
variables. Second, we introduced two new CP models for the problem. Third, we
presented detailed computational results for solving the existing instances of the
problem. Lastly, we studied the effect of deriving symmetric nogoods on solving
new instances of the problem with long horizons.

It appears that BNN models provide a perfect class of problems for pseudo-
Boolean solvers, since each neuron is modelled by pseudo-Boolean constraints,
but the continuous relaxation is too weak for MIP solvers to take advantage of,
while propagation-based approaches suffer since they are unable to reason about
linear expressions directly. PBO solvers directly reason about integer (0–1) linear
expressions, making them very strong on this class of problems.

Our results have the potential to improve other important tasks with learned
BNNs (and other DNNs), such as automated planning in real-valued action and
state spaces [27,35,36], decision making in discrete action and state spaces [21],
goal recognition [11], training [33], verification [9,15,19,22], robustness evalua-
tion [32] and defenses to adversarial attacks [34], which rely on efficiently solv-
ing similar problems that we solve in this paper. The derivation of symmetric
nogoods is a promising avenue for future work, in particular, if a sufficient num-
ber of symmetric nogoods can be generated. Relating the number of derived
symmetric nogoods to the wall-clock speed-up of the solver or the reduction of
the search tree might shed further light on the efficacy of this approach.
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Abstract. Interactive constraint acquisition is a special case of query-
directed learning, also known as “exact” learning. It is used to assist
non-expert users in modeling a constraint problem automatically by post-
ing examples to the user that have to be classified as solutions or non-
solutions. One significant issue that has not been addressed in the litera-
ture of constraint acquisition is the possible presence of uncertainty in the
answers of the users. We address this by introducing Limited Membership
Queries, where the user has the option of replying “I don’t know”, cor-
responding to “omissions” in exact learning. We present two algorithms
for handling omissions. The first one deals with omissions that are inde-
pendent events, while the second assumes that omissions are related to
gaps in the user’s knowledge. We present theoretical results about both
methods and we evaluate them on benchmark problems. Importantly,
our second algorithm can not only learn (a part of) the target network,
but also the constraints that cause the user’s uncertainty.

1 Introduction

A major bottleneck in the use of Constraint Programming (CP) is modeling.
Expressing a combinatorial problem as a constraint network requires consider-
able expertise in the field. Hence, one of the major challenges in CP research
is that of efficiently obtaining a good model of a real problem without relying
on expert human modellers [14–16]. Constraint acquisition can assist non-expert
users in modeling a constraint problem automatically. It has started to attract
a lot of attention as constraint acquisition systems can learn the model of a con-
straint problem using a set of examples that are posted as queries to a human
user or to a software system [6–8,19,20].

Active or interactive constraint acquisition systems interact with the user
while learning the constraint network. This is a special case of query-directed
learning, also known as “exact learning” [10,11]. State-of-the-art constraint
acquisition algorithms like QuAcq [5], MQuAcq [20] and MQuAcq-2 [19] use
the version space learning method [18], extended for learning constraint net-
works. In such systems, the basic query is to ask the user to classify an example
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as a solution or not solution. This “yes/no” type of question is called member-
ship query [1], and this is the type of query that has received the most attention
in active constraint acquisition.

One significant issue that has not been addressed in the literature is the
presence of uncertainty, or even errors, in the answers of the user. The constraint
acquisition algorithms that have been proposed are guaranteed to perform well
and learn the target constraint network under the assumption that queries are
always answered with certainty and correctly. However, this is not a realistic
assumption as questions posted by the algorithm can be too difficult for humans
to always answer reliably. Thus, it may happen that the user is uncertain about
her/his answers or even gives erroneous answers. In this paper we deal with
the case where the user is uncertain about her/his answers, leaving the case of
erroneous answers for future work.

In the context of exact learning, uncertainty is typically captured through
“omissions” in the replies of the users. The omissions can be persistent or not. In
this work, we focus on persistent omissions. Such omissions have been studied for
several classes of concepts [2,3,13,17]. Two main models of omissions in answers
to membership queries have been introduced:

1. Learning from Randomly Fallible Teachers (RFT) [2,3]: The omissions are
assumed to be independent, as “independent coin flips the first time each
query is made” [3].

2. Learning from a Consistently Ignorant Teacher (CIT) [13]: In this model it is
assumed that the omissions are related to a gap in the user’s knowledge. Thus,
the omissions are not only persistent but also they are consistent with the
rest of the answers of the user. This means that if the answers to some queries
imply a particular answer to another query, the latter cannot be answered
with an omission.

Concerning RFT, Angluin et al. [3] presented an algorithm that can learn
the target concept using equivalence and incomplete membership queries. In the
exact learning model defined by [2] the learning system can learn exactly a target
concept using equivalence and membership queries with at most some number
l of errors or omissions in the answers of the user to the membership queries.
This model introduced the limited membership queries (LMQ) and the malicious
membership queries. A LMQ may be answered either by precisely classifying
the example, or with the special answer “I don’t know” that corresponds to an
omission. In a malicious membership query, the classification by the user may be
wrong. The examples answered with “I don’t know” are allowed to be classified
arbitrarily by the final hypothesis of a learning algorithm. The above models
have been extended to other classes of concepts [9]. Focusing on learning from a
CIT, Frazier et al. [13] introduced learning algorithms for several concept classes
like k-term DNF formulas, decision trees etc.

In this work we address the problem of uncertainty in user answers in the
context of constraint acquisition, for the first time. We focus on persistent omis-
sions inspired by both the RFT and CIT models. We are specifically interested
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in the important case where there exist relations about the entities (variables)
of the problem that the user is uncertain about. As a result, the user may find
it difficult to classify some examples with absolute certainty. To address this, we
introduce LMQs in constraint acquisition and propose two methods to handle
“I don’t know” replies by extending the state-of-the-art algorithm MQuAcq-2.

The first method is a baseline one that simply ignores omissions, assuming
that nothing can be learned from them. The reasoning behind this is inspired
by the RFT model, where the omissions are assumed to be independent.

The second method, which is our main contribution, is related to the CIT
learning model and is based on the assumption that through the interaction
between the learner and the user it may be possible to identify and exploit
the gap in the user’s knowledge, i.e. the “uncertain” constraints. For instance,
the user may not be certain if a large example is a solution or not because of
uncertainty about a relation between some variables. However, if a part of the
example that does not include these “problematic” variables is posted to the user,
then she/he may be able to classify it with certainty. Our method exploits the
idea of posting partial examples that are built by dividing an example that was
classified as an omission, to seek the parts of the example that cause the confusion
to the user, and hence, to learn the “uncertain” constraints. As we demonstrate,
this method does not only learn such constraints, but using knowledge inferred
while seeking them, it also significantly cuts down the number of queries and
the cpu time required for convergence.

We prove the correctness of our main method and give complexity results for
both methods. We also present experimental results that evaluate our methods
in the context of both RFT and CIT learning.

The rest of the paper is organized as follows. Section 2 gives background on
interactive constraint acquisition. Section 3 focuses on the proposed methods.
Experiments are presented in Sect. 4. Section 5 concludes the paper.

2 Background

The vocabulary (X,D) is a finite set of n variables X = {x1, ..., xn} and a domain
D = {D(x1), ...,D(xn)}, where D(xi) ⊂ Z is the finite set of values for xi. The
vocabulary is the common knowledge shared by the user and the constraint
acquisition system. A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X
is the scope of the constraint and rel(c) is the relation between the variables in
var(c). rel(c) specifies which of their assignments are allowed. |var(c)| is called
the arity of the constraint. A constraint network is a set C of constraints on the
vocabulary (X,D). A constraint network that contains at most one constraint
for each subset of variables (i.e., for each scope) is called a normalized constraint
network. Following the literature, we will assume that the constraint network is
normalized. Besides the vocabulary, the learner has a language Γ consisting of
bounded arity constraints.

An example eY is an assignment on a set of variables Y ⊆ X. eY violates
a constraint c iff var(c) ⊆ Y and the projection evar(c) of eY on the variables
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in the scope var(c) of the constraint is not in rel(c). A complete assignment eX
that is accepted by all the constraints in C is a solution to the problem. sol(C)
is the set of solutions of C. An assignment eY is called a partial solution iff it is
accepted by all the constraints in C with a scope S ⊆ Y . Observe that a partial
solution is not necessarily part of a complete solution.

Using terminology from machine learning, concept learning can be defined
as learning a Boolean function from examples. A concept is a Boolean function
over DX that assigns to each example e ∈ DX a value in {0, 1}, or in other
words, classifies it as negative or positive. The target concept fT is a concept
that assigns 1 to e if e is a solution to the problem and 0 otherwise. In con-
straint acquisition, the target concept, also called target constraint network, is
any constraint network CT such that sol(CT ) = {e ∈ DX | fT (e) = 1}. The
constraint bias B is a set of constraints on the vocabulary (X,D), built using
the constraint language Γ . The bias is the set of all possible constraints from
which the system can learn the target constraint network. κB(eY ) represents the
set of constraints in B that reject eY .

In exact learning, the question asking the user to determine if an example
eX is a solution to the problem that the user has in mind is called a member-
ship query ASK(e). In the following we will use the terms example and query
interchangeably. The answer to a membership query is positive if fT (e) = 1 and
negative if fT (e) = 0. A partial query ASK(eY ), with Y ⊆ X, asks the user to
determine if eY , which is an assignment in DY , is a partial solution or not. We
assume that all queries are answered correctly or with an omission by the user.

In partial queries the assumption is that the user considers only the assigned
variables in the query posted. So, if the relation between the variables is insuffi-
ciently clear because some variable assignments are missing, then this does not
affect the user’s answer. Classifying a partial example as positive does not mean
that it is necessarily part of a complete solution.

For instance, assume that we have a constraint c ∈ B∧c ∈ CT with var(C) =
{x1, x2, x3, x4}. An example violating this constraint that includes assignments
to all four variables will be classified by the user as negative. However, if the
system asks the user to classify an example ex1,x2,x3 , which does not include
an assignment to x4, the above constraint is not taken into account. So, if no
other constraint from the target network is violated in this example, it will be
classified as positive.

The acquisition process has converged on the learned network CL ⊆ B iff CL

agrees with E and for every other network C ⊆ B that agrees with E, we have
sol(C) = sol(CL).

3 Omissions in Constraint Acquisition

State-of-the-art constraint acquisition algorithms are based on version space
learning. Initially, the given language Γ is used to construct the bias B. Then
the system iteratively posts membership queries to the user in order to learn the
constraints of the target network. Each example posted as a query must satisfy



Omissions in Constraint Acquisition 939

CL, i.e. the network that has already been learned so far, and violate at least
one constraint from B. A query that satisfies these criteria is informative, as
whatever the user’s answer is, the version space’s size will shrink. In case of a
positive answer, each constraint c ∈ B that violates the posted example can be
removed from B (i.e. all the constraint networks containing c are removed from
the version space). In case of a negative answer, one or more of the violated
constraints are certainly in CT . So, the system will search to find the scope of
one, some, or all of them, depending on the algorithm used.

This is done through a function called FindScope in QuAcq, and its enhanced
variant FindScope-2 [20] used by MQuAcq and MQuAcq-2. Once a scope has
been located, the function FindC [5] is used to learn the specific constraint (i.e.
its relation). FindScope-2, upon which we build, finds the scope of a violated con-
straint of the target network by successively removing entire blocks of variables
from the query, and posting the resulting partial query to the user.

The above reasoning assumes that all the answers of the user are correct
and also does not allow for uncertainty (omissions) in the answers. However,
both of these assumptions are not realistic as humans make mistakes and are
not always certain of their answers. In this paper we deal with the problem of
uncertainty. We introduce the use of Limited Membership Queries (LMQ) to
constraint acquisition, and propose methods to handle them. A LMQ may be
answered by the user either by classifying the example as a solution (“yes”) or not
(“no”) of the problem, or with a third option, namely an “I don’t know” answer.
In this paper we are mainly interested in cases where the user is uncertain about
the existence or non-existence of a relation between some entities (i.e. variables)
of the problem, and the type of the relation if one exists.

In general, there are some questions that arise when an “I don’t know” answer
is encountered: First of all, is it possible to learn something from this query? And
if we believe that it is possible, what can we learn and how can we learn it?

We argue that in case we have consistent answers, it is possible to learn from
an omission. We define as the omission network COM the set of “uncertain”
constraints that the user does not know if they should be included in the target
network or not, i.e. the gap in the knowledge of the user. This set may contain
constraints both from CT and from B\CT . Thus, if we iteratively split the initial
query into partial ones then by posting these partial queries to the user we may
be able to isolate one or more scopes that cause the uncertainty.

Considering these, we propose and compare two different methods for han-
dling omissions in constraint acquisition:

1. Queries answered as “I don’t know” are simply ignored, under the assumption
that we cannot discover anything through such queries. So, after an omission,
we can save the query to avoid posting it again, and move on to generate
a new one. This method is inspired by the RFT learning model, where it is
assumed that the reason of the omission cannot be learned.

2. The second method assumes that each omission is caused by relations between
the variables that the user is uncertain about, and that the relevant sets of
variables can be identified. When the user answers with an omission, the
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system commences a search for the “confusing” constraints using a reasoning
similar to the search for violating constraint that algorithms like QuAcq and
its variants apply at negative examples. This method corresponds to the CIT
of concept learning, where it is assumed that the reason of the omission is a
gap in the knowledge of the user about the problem.

We now describe and analyze the proposed methods for dealing with omis-
sions. Both extend MQuAcq-2 [19], but they can be used in conjunction with
any constraint acquisition algorithm.

3.1 Ignoring Omissions

This is a simple method, called MQuAcq-2-OM1, where any query eY answered
as “I don’t know” is ignored by the system, under the assumption that we
cannot discover anything through such a query. Thus, after an omission, the
example posted as a query is stored, to avoid posting it again, and then a new
example is generated. Note that the following scenario is possible: The user may
answer negatively to a query, and as a result the algorithm will search for one
or more violated constraints following a similar process to MQuAcq-2 (and also
QuAcq/MQuAcq). However, as partial queries are posted to the user during this
process, some of these partial queries may be answered by an omission because
the user may be certain that the initial query is not a solution, but may not be
certain that some part of the query violates any constraint or not. Such partial
queries are also stored and then bypassed.

Algorithm 1 depicts MQuAcq-2-OM1. The system repeatedly generates an
example e satisfying CL and rejecting at least one constraint from B (line 4).
If it has not converged, it tries to acquire multiple constraints of CT violating
e. At first it posts the example to the user (line 8). If the answer of the user is
positive, the set κB(eY ′) of all the constraints from B that reject eY ′ is removed
from the bias (line 9). In case the answer is negative, it tries to learn a constraint
by using the functions FindScope-2 and FindC (lines 14–17).

In case of an omission, the example, which may be a complete or a partial
one, is added to the set E′ (line 11) and then the algorithm stops trying to
learn any more constraints of CT in this example (line 12). The set E′ stores
all the examples that lead to an omission, in order to avoid generating the
same assignments in future queries, as shown at line 4. FindScope-2 has been
modified to apply the same reasoning when searching in partial queries. We omit
the pseudocode of this modified version of FindScope-2 for space reasons. In case
FindScope-2 has added any partial example eY ′′ to E′, then the algorithm breaks
the loop again (lines 18–19), stopping the search for more violated constraints
of the target network in this specific partial query. If no omissions have occured,
the algorithm removes the entire scope of the acquired constraint at line 20,
trying to learn multiple non-overlapping constraints. This iterative process ends
when the example eY ′ does not contain any violated constraint from the bias
(line 21), or if an omission has occured at some point. In these cases, the system



Omissions in Constraint Acquisition 941

Algorithm 1. MQuAcq-2-OM1
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL : a constraint network
1: CL ← ∅;
2: E′ ← ∅;
3: while true do
4: Generate eY in DY accepted by CL and rejected by B, with eY �= e′

Y | e′
Y2 ∈

E′ ∧ Y ⊆ Y2 ;
5: if e = nil then return ”CL converged”;

6: Y ′ ← Y ;
7: do
8: answer ←ASK(eY ′);
9: if answer = “yes” then B ← B \ κB(eY ′);

10: else if answer = “I don’t know” then
11: E′ ← E′ ∪ eY ′ ;
12: break;
13: else
14: Scope ← FindScope-2(eY ′ , ∅, Y ′, false);
15: c ← FindC(eY ′ , Scope);
16: CL ← CL ∪ {c}
17: B ← B \ {c ∈ B | var(c) = Scope};
18: if ∃ Y ′′ ⊂ Y ′ | eY ′′ ∈ E′ then
19: break;

20: Y ′ ← Y ′ \ Scope;

21: while κB(eY ′) �= ∅

cannot learn more violated constraints from this example, so it generates a new
example at line 4 and starts over.

We now analyze the complexity of MQuAcq2-OM1 in terms of the number
of queries required. We assume that l is the maximum number of omissions.

Proposition 1. Given a bias B built from a language Γ , with bounded arity
constraints, a target network CT and a number of omissions l, MQuAcq-2-OM1
uses O(|CT | · (log |X| + Γ ) + |B| + l) number of queries to converge.

Proof. MQuAcq-2 needs O(|CT | · (log |X| + Γ ) + |B|) queries in order to find
the CT and converge when we do not have omissions [19]. As our handling of
omission guaranties that no query will be posted more than once, the maximum
number of omissions is l. Also, the omissions do not affect the maximum number
of queries needed to learn the constraints from CT and to converge. As a result,
MQuAcq-2-OM1 uses O(|CT | · (log |X| + Γ ) + |B| + l) number of queries to
converge. ��

As the number l of omissions can be equal to the maximum number of exam-
ples that can be generated in the worst case, i.e. l ≤ |D||X|, the above complexity,
as well as the space complexity of the algorithm, is exponential, which of course
is a major drawback. However, under the assumption that omissions are random
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independent events, meaning that there are no “uncertain constraints”, then the
algorithm will converge once B is empty, as does MQuAcq-2.

On the other hand, in case the omissions are related to a gap in the user’s
knowledge (i.e. to “uncertain” constraints), their number can be exponential.
This is because the “uncertain” constraints are not learned, and therefore the
system cannot distinguish them from “normal” constraints. Consider the case
where CT has been learned (hence CL is equivalent to CT ) and the constraints
from B \ (CT ∪ COM ) have already been removed from B. Now the system
will repeatedly try to build examples that satisfy CL and violate at least one
constraint from COM in line 4. Each such example will be answered with an
omission because the user cannot tell if the violation of a constraint from COM

makes the example a non-solution or not. As the number of examples that satisfy
CL and violate at least one constraint from COM is exponential, and all of these
examples have to be generated in the worst case in order for the algorithm to
terminate, the number of omissions is exponential.

3.2 Exploiting Omissions

We now present our main method for handling omissions, which is called
MQuAcq-2-OM2, and is based on the assumption that each omission is due
to uncertainty from the user’s part about one or more relations between the
variables, i.e. due to a gap in knowledge. In contrast to the first method, instead
of discarding omissions, we now try to derive useful information from them.

The main idea is to iteratively divide an example that was answered by an
omission into partial ones, in a way similar to how negative answers are handled,
until a set of variables (a scope) that causes uncertainty to the user is discovered.
Then the constraints corresponding to this scope can be learned and removed
from B to avoid generating subsequent queries that contain the same “source of
uncertainty”. Another potential gain is that during this process we may come
across partial queries that are answered positively, meaning that the constraints
that violate them can also be removed from B.

We introduce a new set, CLOM
, which stores all the “uncertain” constraints

that are removed from B via an omission. We also modify the query handling
process to locate scopes causing omissions and avoid violating the constraints
that confuse the user in future queries, through the use of CLOM

. As we now
explain, each of the three possible answers by the user to a query over an example
e requires different handling.

– After a positive answer: The constraints from B that reject the example
posted are removed, as in all constraint acquisition algorithms.

– After an omission: In this case a partial example of e can lead either to an
omission, if the variables that confuse the user are still in the partial example,
or to a positive answer, in case one or more of the variables in the scope of
the omission are removed. So, we can find the scope of the omission with
a procedure similar to the one used in FindScope-2, exploiting the positive
answers in order to locate the variables of the scope.
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Algorithm 2. MQuAcq-2-OM2
Input: B, X, D (B: the bias, X: the set of variables, D: the set of domains)
Output: CL, CLOM : constraint networks
1: CL ← ∅;
2: CLOM ← ∅;
3: while true do
4: Generate eY in DY accepted by CL and CLOM while rejected by B;
5: if e = nil then return ”CL converged”;

6: Y ′ ← Y ;
7: do
8: answer ← ASK(eY ′);
9: if answer = “yes” then B ← B \ κB(eY ′);

10: else if answer = “I don’t know” then
11: OMS ← FindScope-OM(eY ′ , ∅, Y ′, false);
12: CLOM ← CLOM ∪ FindC(eY ′ , OMS));
13: B ← B \ {c ∈ B | var(c) = OMS};
14: Y ′ ← Y ′ \ OMS;
15: else
16: Scope ← FindScope-NO(eY ′ , ∅, Y ′, false);
17: c ← FindC(eY ′ , Scope);
18: CL ← CL ∪ {c}
19: B ← B \ {c ∈ B | var(c) = Scope};
20: Y ′ ← Y ′ \ Scope;
21: if κCLOM

(eY ′) �= ∅ then

22: Y ′ ← Y ′ \ {var(c) | c ∈ κCLOM
(eY ′)};

23: while κB(eY ′) �= ∅

– After a negative answer: In such a case a partial example of e can be answered
in any possible way. If one or more of the variables in the scope of the violated
constraint(s) are removed, we can have a positive answer or an omission if a
constraint that confuses the user is violated. In addition, the answer can still
be “no”, if all the variables of the constraint of CT that is violated are still
in the partial example. Hence, after a negative answer we must search for a
violated constraint but we may also find the scope of an omission.

Based on these, we introduce two functions for finding the scope of a violated
constraint (FindScope-NO) and the scope of an omission (FindScope-OM) so as
to handle all the possible query answers.

MQuAcq-2-OM2 is depicted by Algorithm 2. The system generates an exam-
ple accepted by the learned network and CLOM

, while violating at least one
constraint from B (line 4). We want the example to satisfy CLOM

to avoid vio-
lating any constraint that will lead to an omission. Queries answered as “I don’t
know” are handled at lines 11–14 by calling FindScope-OM. This function finds
the scope responsible for the omission, as we explain below, and stores it in OMS
(line 11). Then, it finds the specific “uncertain” constraint (i.e. the relation) and
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Algorithm 3. FindScope-OM
Input: e, R, Y , ask query (e: the example, R,Y : sets of variables, ask query: boolean)
Output: Scope : a set of variables, the scope of an omission
1: function FindScope-OM(e, R, Y , ask query)
2: if ask query ∧ |κB(eR)| > 0 then
3: if rej �= |κB(eR)| then
4: if ASK(eR) = “I don’t know” then
5: rej ← |κB(eR)|;
6: return ∅;
7: else B ← B \ κB(eR);

8: else return ∅;

9: if |Y | = 1 then return Y ;

10: split Y into < Y1, Y2 > such that |Y1| = �|Y |/2�;
11: S1 ← FindScope-OM(e, R ∪ Y1, Y2, true);
12: S2 ← FindScope-OM(e, R ∪ S1, Y1, (S1 �= ∅));
13: return S1 ∪ S2;

removes it from B, adding it to CLOM
(lines 12–13). Finally, the scope found is

removed from Y ′ (line 14), so that MQuAcq-2-OM2 can continue searching.
Queries answered negatively are handled by calling FindScope-NO at line 16.

As explained below, this function not only finds the scope of a violated constraint
but sometimes it can also find the scope of an omission. Thus, if such a scope is
found (line 21), the algorithm removes the scope from Y ′ at line 22.

We now focus on the new functions, FindScope-OM and FindScope-NO. Both
use the reasoning of FindScope-2, i.e. successively removing approximately half
of the variables and posting a partial query. If after such a removal, the answer
of the user changed then we know that the removed block contains at least one
variable from the scope of a constraint we seek (a constraint from CT or COM ).

FindScope-OM (Algorithm 3) is similar to FindScope-2. It takes as parame-
ters a (partial) example eY that has led to an omission, two sets of variables R
and Y , initialized to the empty set and to Y respectively, and a Boolean variable
ask query. An invariant in any recursive call is that the example e violates at
least one constraint from COM , whose scope is a subset of R∪Y . The number of
violated constraints from B is stored in rej, to avoid posting redundant queries
to the user in any recursive call.

If FindScope-OM is called with ask query = true and eR violates at least
one constraint from B (line 2) but not the same number of constraints as the
previous query posted (line 3), it posts eR as a query to the user (line 4). In
case of an omission it returns the empty set (line 6), in order to remove some
variables from R in the previous call. If the answer is “yes”, it removes all the
constraints from the bias that reject eR and continues. Thus, it reaches line 9
only in the case where eR does not violate any constraint from COM . Because
we know that e violates at least one constraint whose scope is a subset of R∪Y ,
in case Y is a singleton it is returned (line 9). The set Y is split in two balanced
parts (line 10) and the algorithm searches recursively, in sets of variables built
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Algorithm 4. FindScope-NO
Input: e, R, Y , ask query (e: the example, R,Y : sets of variables, ask query: boolean)
Output: Scope : a set of variables, the scope of a constraint in CT

1: function FindScope-NO(e, R, Y , ask query)
2: if ask query ∧ |κB(eR)| > 0 then
3: if rej �= |κB(eR)| then
4: answer ← ASK(eR);
5: if answer = “yes” then B ← B \ κB(eR);
6: else if answer = “I don’t know” then
7: if κCLOM

(eR) = ∅ then
8: OMS ← FindScope-OM(eR, ∅, R, false);
9: CLOM ← CLOM ∪ FindC(eR, OMS));

10: B ← B \ {c ∈ B | var(c) = OMS};

11: else
12: rej ← |κB(eR)|;
13: return ∅;

14: else return ∅;

15: if |Y | = 1 then return Y ;

16: split Y into < Y1, Y2 > such that |Y1| = �|Y |/2�;
17: S1 ← FindScope-NO(e, R ∪ Y1, Y2, true);
18: S2 ← FindScope-NO(e, R ∪ S1, Y1, (S1 �= ∅));
19: return S1 ∪ S2;

using R and these parts, for the scope of a violated constraint of COM , in a
logarithmic number of steps (lines 11–13).

FindScope-NO (Algorithm 4) handles the case of a negative answer by the
user. It operates in a slightly different way than FindScope-OM because after the
removal of some variables, the answer of the user may change from “no” either
to “yes” or to “I don’t know” (see Lemma 3 below). This is because after the
removal of one or more variables of the violated constraint, the user may now be
confused by another constraint in the partial example formed, not being sure if
the partial example is positive or not. In such a case, we continue the search in
two directions. First, FindScope-OM is called in order to locate the scope of the
omission and store it in OMS (line 8) and then find the “uncertain” constraint,
which is then removed from B and added to CLOM

(line 9), as in lines 11–13 of
MQuAcq-2-OM2. Also the function FindScope-NO continues the search for the
scope of the violated constraint of CT .

Now, let us illustrate the behaviour of our proposed approach.

Example 1. Assume that the vocabulary (X,D) given to the system is X =
{x1, ..., x8} and D = {D(x1), ...,D(x8)} with D(xi) = {1, ..., 8}, the target net-
work CT is the set {
=34, 
=56}, COM = {
=34} and B = {
=ij | 1 <= i < 8 ∧ i <
j <= 8}. Also, assume that the example generated at line 4 of MQuAcq-2-OM2
is e = {1, 4, 2, 2, 3, 3, 5, 6}.

The system will post e as a query at line 8 of MQuAcq-2-OM2. The answer
will be “no” as it violates constraint 
=56. Thus, FindScope-NO is called to find
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Table 1. Behavior of MQuAcq-2-OM2 in Example 1

Recursive calls of FindScope-NO

call R Y eR ASK return

0 ∅ x1, x2, x3, x4, x5, x6, x7, x8 – – {x5, x6}
1 x1, x2, x3, x4 x5, x6, x7, x8 {1, 4, 2, 2, −, −, −, −} “I don’t know” {x5, x6}
Go to FindScope-OM

0 ∅ x1, x2, x3, x4 – – {x3, x4}
1 x1, x2 x3, x4 {1, 4, −, −, −, −, −} “yes” {x3, x4}
1.1 x1, x2, x3 x4 {1, 4, −, −, −, −, −} “yes” {x4}
1.2 x1, x2, x4 x3 {1, 4, −, −, −, −, −} “yes” {x3}
back to FindScope-NO

1.1 x1, x2, x3, x4, x5, x6 x7, x8 {1, 4, 2, 2, 3, 3, −, −} “no” ∅
1.2 x1, x2, x3, x4 x5, x6 – – {x5, x6}
1.2.1 x1, x2, x3, x4, x5 x6 {1, 4, 2, 2, 3, −, −} “yes” {x6}
1.2.2 x1, x2, x3, x4, x6 x5 {1, 4, 2, 2, −, 3, −} “yes” {x5}

the scope of a violated constraint. Table 1 shows the trace of its recursive calls.
A dash (-) in columns eR and ASK means that no query is posted to the user,
due to one of the conditions at lines 2 and 3 (e.g., at call 0 of FindScope-NO, as
ask query = false and R = ∅, the condition at line 2 does not hold). Recall that
queries are only on the variables in R.

When half of the variables are removed from the query at recursive call 1 of
FindScope-NO, the answer of the user changes to “I don’t know”. So, FindScope-
OM is called to find the cause of uncertainty (line 8 of FindScope-NO). Its trace
of recursive calls is also shown in Table 1. After 4 queries it finds the scope of
the omission constraint and returns it (back at the 0 call), so FindC is called
at line 9 of FindScope-NO. FindScope-NO then continues searching to find the
violated constraint from CT \COM that is responsible for the negative answer in
the first place. It will be found after 3 queries and returned (back at the 0 call
of FindScope-NO).

Analysis of MQuAcq2-OM2: We now prove the correctness of MQuAcq-2-
OM2. That is, we prove that the constraints it adds to CL and CLOM

belong
indeed there, and it converges having learned all the constraints of CT and of
COM that it possibly can. We first give three lemmas showing that for each
possible answer to a query ASK(eY ), the possible answers we can have in partial
queries of the form ASK(eY ′), with Y ′ ⊂ Y , are the ones informally described
previously for the CIT model. Then we give a proposition regarding the sound-
ness of FindScope-OM and FindScope-NO. Proofs of Lemmas are ommitted for
space reasons.

Lemma 1. If ASK(eY ) = “yes” then for any Y ′ ⊂ Y it holds that ASK(eY ′)
= “yes”.

Lemma 2. If ASK(eY ) = “I don’t know” then for any Y ′ ⊂ Y we can have
ASK(eY ′) = “I don’t know” or ASK(eY ′) = “yes”.
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Lemma 3. If ASK(eY ) = “no” then a partial query in Y ′ ⊂ Y , ASK(eY ′) can
return any of the possible answers.

Proposition 2. If FindScope-OM (resp. FindScope-NO) is given an example
eY and returns a scope S then there exists a violated constraint c ∈ COM (resp.
c ∈ CT \ COM ) with scope(c) = S.

Proof. An invariant of FindScope-OM is that the example e violates at least one
constraint from COM , whose scope is a subset of R ∪ Y (i.e. ASK(R ∪ Y ) = “I
don’t know”). Also, it reaches line 9 only in the case that ASK(eR) = “yes”.
Thus, by Lemma 1, for Y ′ ⊂ Y it holds that ASK(eY ′) = “yes”, i.e. eR does not
violate any constraint from COM . Also, FindScope-OM returns variables only at
line 9, in case Y is a singleton. As a result, for any xi ∈ S we know that ASK(S)
= “I don’t know” and ASK(S \ xi) = “yes”. Hence, S is definitely a scope of a
constraint from COM . ��
Theorem 1. Given a bias B built from a language Γ with bounded arity con-
straints, a target network CT representable by B, and an omission network COM ,
MQuAcq-2-OM2 is correct.

Proof. Soundness. MQuAcq-2-OM2 learns constraints and adds them to CLOM

or CL only by using the function FindC in a scope found by FindScope-OM
or FindScope-NO respectively. By Proposition 2, when FindScope-OM returns a
scope S, then there exists a violated constraint c ∈ COM with scope(c) = S and
when FindScope-NO returns a scope S, then there exists a violated constraint
c ∈ CT \ COM with scope(c) = S. Also, FindC has been proved to be correct
for normalized target networks [7]. Hence, MQuAcq-2OM2 is sound, as for every
constraint c added to CL it holds that c ∈ CT \ COM and for every constraint c
added to CLOM

it holds that c ∈ COM .

Completeness. An example generated at line 4 of MQuAcq-2-OM2 must violate
at least one constraint from B. Given such an example eY , MQuAcq-2-OM2
will find at least one constraint from CT (lines 16–20) or COM (lines 11–14),
if one exists, and then remove it from B (lines 13, 19). It finds the scope of
a constraint of CT \ COM using FindScope-NO and of COM using FindScope-
OM. After a scope has been located, it had been proved that FindC will find a
constraint in the given scope if one exists [7]. The same applies to constraints
of COM , as the procedure is exactly the same, because when ASK(eY ) = “I
don’t know” then for any Y ′ ⊂ Y we can have ASK(eY ′) = “I don’t know” or
ASK(eY ′) = “yes” (Lemma 2). If no constraint can be learned by an example
(i.e. κCT

(eY ) = κCOM
(eY ) = ∅), it will remove all the violated constraints from

B (line 9). Thus, the size of B will decrease after each query. The algorithm
terminates only when no example can be generated at line 4. In this case, the
system has converged as CL agrees with E and for every other network C ⊆ B
that agrees with E and, we have sol(C) = sol(CL). Hence, the system learned



948 D. C. Tsouros et al.

any constraint in CT \ COM that could be learned. As no constraint from B can
be violated, the same applies for COM . Hence, MQuAcq-2-OM2 is complete. ��
Proposition 3. Given a bias B built from a language Γ , with bounded arity
constraints, a target network CT and an omission network COM , MQuAcq-2-
OM2 uses O(|CT | · (log |X| + |Γ |) + |B| + l) number of queries to converge, with
l <= |COM | · (log |X| + |Γ |).
Proof. (sketch). MQuAcq-2-OM2 will learn |CT \ COM | constraints and will
find |COM | omission constraints. The constraints from CT \ COM are learned
using the functions FindScope-NO and FindC while the constraints of |COM |
are found using the functions FindScope-OM and FindC. Both FindScope-NO
and FindScope-OM need a maximum number of |S| · log |Y | = O(log |X|) queries
in order to find a scope S in an example eY , as they use a process very sim-
ilar to FindScope [5]. FindC needs at most |Γ | queries to learn a constraint.
Also, assuming that each positive query removes only one constraint from |B|
it will need to ask a total number of |B| − |CT \ COM | − |COM | = O(|B|)
queries to prune B and reach convergence. Thus, the total number of queries in
O(|CT | · (log |X| + |Γ |) + |B| + l) , with l <= |COM | · (log |X| + |Γ |). The above
result in O((|CT | + |COM |) · (log |X| + |Γ |) + |B|). ��

4 Experimental Evaluation

We ran experiments both in the RFT and the CIT models. In the former, as the
omissions are not related to missing knowledge, we evaluated only MQuAcq-2-
OM1. In the latter we compared our methods to each other. We used MQuAcq-2
without omissions as a reference point. Experiments were run on an Intel(R)
Core(TM) i7-8700 CPU @ 3.20 GHz with 16 GB of RAM. In more detail:

– We used the maxB heuristic for query generation [20]. maxB generates exam-
ples violating as many constraints as possible from B. The best example
found within 1 s is returned, even if not proved optimal. If none is found, we
continue and return the first suitable (partial) example found. The variable
involved in the most constraints in B is chosen during search. Values are
chosen randomly.

– In the RFT model, a query is answered by an omission with 20% probability.
– In the CIT model, we used a cutoff for MQuAcq-2-OM1, as the number

of omissions can be exponential (it did not complete within 10 h). So we
only present results for MQuAcq-2-OM1 in CIT with a cutoff, which was
imposed as follows: the system stops at line 3 when the number of omission
#omissions is more than the 30% of the total number of queries #queries.

– To compare the algorithms on the same scenario, all our experiments concern
the extreme case where CL is initially empty, This results in a number of
queries that may seem too large for human users. But in real applications,
background knowledge can used by giving a frame of basic constraints or by
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using other methods, e.g. ModelSeeker [4], to extract some constraints from
known solutions. Then, our algorithms can be used to finalize the model.

– We measure the size of the learned network CL, the size of the learned omis-
sion network CLOM

, the total number of queries #queries, the total number of
omission answers #omissions and the total cpu time T . We present results of
MQuAcq-2 without analyze&Learn, MQuAcq-2-OM1 and MQuAcq-2-OM2.
Each algorithm was run 5 times and the means are presented.

We used the following benchmarks in our study:

Zebra. It consists of 25 variables with domains of maximum size 5. The target
network CT contains five cliques of 10 
= constraints each and 11 additional con-
straints. The bias was initialized with 1200 binary constraints from the language
Γ = {=, 
=, >,<, xi −xj = 1, |xi −xj | = 1}. COM contains the constraints of CT

not belonging to a clique, and 5 randomly chosen constraints from B.

Murder. It has 20 variables with domains of size 5. CT contains 4 cliques of

= constraints and 12 additional constraints. The bias was initialized with 760
constraints from the language Γ = {=, 
=, >,<}. COM contains the constraints
of CT not belonging to a clique, and 10 randomly chosen constraints from B.

Random. We generated a random target network with 50 variables, domains of
size 10, and 122 
= constraints. The bias was initialized with 19,800 constraints,
using the language Γ = {=, 
=, >,<}. COM was created randomly, containing 15
constraints with only 1 belonging to CT .

Radio Link Frequency Assignment Problem (RLFAP). We use a simpli-
fied version of the communication problem from [12], with 50 variables having
domains of size 40. CT contains 125 distance constraints. The bias was built
using a language of 2 distance constraints ({|xi − xj | > y, |xi − xj | = y}) with
5 different possible values for y. This led to a language of 10 different distance
constraints. In total, B contains 12,250 constraints. COM was created randomly,
containing 15 constraints in total with 5 belonging to CT .

Results from the RFT model presented in Table 2 (see rows for MQuAcq-2-
OM1RFT ), confirm our complexity analysis. When omissions are random events,
the queries posted by MQuAcq-2-OM1 do not increase a lot compared to
MQuAcq-2 without omissions. We can see that the increase is related to the
number of variables of the problem. On the other hand, cpu times increase sig-
nificantly. This is because most of the (few) additional queries are generated
queries and not partial ones (because the system generates a new query when
an omission occurs). As query generation is the most time-consuming process of
the algorithm, this affects the run times considerably.



950 D. C. Tsouros et al.

Table 2. Results from the RFT and CIT models.

Benchmark Algorithm |CL| |CLOM | #q #om T

Zebra MQuAcq-2 61 0 494 0 9.28

MQuAcq-2-OM1RFT 60 0 624 115 48.09

MQuAcq-2-OM1CIT 49 0 534 135 33.07

MQuAcq-2-OM2 48 12 480 73 8.37

Murder MQuAcq-2 52 0 384 0 12.70

MQuAcq-2-OM1RFT 52 0 484 101 51.18

MQuAcq-2-OM1CIT 40 0 411 124 48.87

MQuAcq-2-OM2 39 17 397 78 11.81

Random122 MQuAcq-2 122 0 1031 0 37.48

MQuAcq-2-OM1RFT 122 0 1464 294 139.22

MQuAcq-2-OM1CIT 121 0 1583 475 404.01

MQuAcq-2-OM2 121 15 1095 68 37.99

RLFAP MQuAcq2 125 0 1157 0 241.10

MQuAcq2-OM1RFT 125 0 1391 309 459.71

MQuAcq2-OM1CIT 28 0 401 121 28.13

MQuAcq2-OM2 119 15 1273 115 602.40

Focusing on the CIT model, where the omissions are related to a gap in the
user’s knowledge (i.e., the “uncertain” constraints of COM ), the results (Table 2)
demonstrate that both MQuAcq-2-OM1 with a cutoff (denoted MQuAcq-2-
OM1CIT ) and MQuAcq-2-OM2 achieve a quite good performance in most of
the problems. The exception for MQuAcq-2-OM1 is RLFAP where it learns only
23% of CT \ COM , because the cutoff condition is activated too early. On the
other hand, MQuAcq-2-OM2 gives very good overall results, with the increase in
number of queries being only up to 6.2% compared to MQuAcq-2 without omis-
sions. In addition, the omission answers in MQuAcq-2-OM2 are quite fewer than
in MQuAcq-2-OM1 (up to 86% in Random). Also, we observe that in Zebra and
Murder the number of queries is very close to that of MQuAcq-2. This happens
because most of the “uncertain” constraints are in CT .

5 Conclusions

One significant issue that has not been addressed in constraint acquisition is the
possible presence of uncertainty in the answers of the users. We address this for
the first time by introducing Limited Membership Queries in constraint acqui-
sition. We propose two algorithms for handling omissions that correspond to
the two models of omissions in concept learning. The first method assumes that
omissions are independent events and nothing can be learned from them, while
the second assumes that they are related to gaps in the user’s knowledge, and
can be exploited. Theoretical and experimental results show that both methods
perform well when used in their corresponding omission models.
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Abstract. As machine learning is increasingly used to help make deci-
sions, there is a demand for these decisions to be explainable. Arguably,
the most explainable machine learning models use decision rules. This
paper focuses on decision sets, a type of model with unordered rules,
which explains each prediction with a single rule. In order to be easy
for humans to understand, these rules must be concise. Earlier work on
generating optimal decision sets first minimizes the number of rules, and
then minimizes the number of literals, but the resulting rules can often
be very large. Here we consider a better measure, namely the total size of
the decision set in terms of literals. So we are not driven to a small set of
rules which require a large number of literals. We provide the first app-
roach to determine minimum-size decision sets that achieve minimum
empirical risk and then investigate sparse alternatives where we trade
accuracy for size. By finding optimal solutions we show we can build
decision set classifiers that are almost as accurate as the best heuristic
methods, but far more concise, and hence more explainable.

1 Introduction

The world has been changed by recent rapid advances in machine learning.
Decision tasks that seemed well beyond the capabilities of artificial intelli-
gence have now become commonly solved using machine learning [32,35,41].
But this has come at some cost. Most machine learning algorithms are opaque,
unable to explain why decisions were made. Worse, they can be biased by
their training data, and behave poorly when exposed to data outside that
which they were trained on. Hence the rising interest in explainable artificial
intelligence (XAI) [4,14,16,18,22,23,26,29,30,36–38,42,43,48,49,52], including
research programs [3,24] and legislation [17,21].

In this paper we will focus on classification problems, where the input is
a set of instances with features and, as a label, a class to predict. For these
problems, some of the most explainable forms of machine learning formalism are
decisions sets [11,12,15,20,31,34,39]. A decision set is a set of decision rules,
each with conditions C and decision X, such that if an instance satisfies C,
then its class is predicted to be X. An advantage of decision sets over the more
popular decision trees and decision lists is that each rule may be understood
c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 952–970, 2020.
https://doi.org/10.1007/978-3-030-58475-7_55
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independently, making this formalism one of the easiest to explain. Indeed, in
order to explain a particular decision on instance D, we can just refer to a single
decision rule C ⇒ X s.t. D satisfies C.

For decision sets to be clear and explainable to a human, individual rules
should be concise. Previous work has examined building decision sets which
involve the fewest possible rules, and then minimizes the number of literals in
the rules [31]; or building a CNF classifer that fixes the number of rules, and
then minimizes the number of literals [20,39] to explain the positive instances of
the class. This work also suffers from the limitation that the rules only predict
class 1, and the model predicts class 0 if no rule applies. Unfortunately, in order
to explain a class 0 instance, we need to use (the negation of) all rules, making
the explanations not succinct.

In this work we argue the number of rules is the wrong measure of explain-
ability, since, for example, 3 rules each involving 100 conditions are most likely
less comprehensible than, say, 5 rules each involving 20 conditions. Indeed, since
the explanation of a single instance is just a single decision rule, the number of
rules is nowhere near as important as the size of the individual rules. So previous
work on building minimum-size decision sets has not used the best measure of
size for explainability.

In this work we examine directly constructing decision sets of the smallest
total size, where the size of a rule with conditions C is |C| + 1 (the additional
1 is for the class descriptor X). This leads to smaller decision sets (in terms of
literals) which seem far more appealing for explaining decisions.

It turns out that this definition of size leads to SAT models that are exper-
imentally harder to solve, but the resulting decision sets can be significantly
smaller. However, for sparse decision sets, where we are allowed to consider a
smaller rule set if it does not make too many errors in the classification, this new
measure is no more difficult to compute than the traditional rule count measure,
and gives finer granularity decisions on sparseness.

The contributions of this paper are

– The first approach to building optimal decision sets in terms of the total
number of literals required to define the entire set,

– Alternate SAT and MaxSAT models to tackle this problem, and sparse vari-
ations which allow an accuracy versus size trade-off,

– Detailed experimental results showing the applicability of this approach,
which demonstrate that our best approach can generate optimal sparse deci-
sion sets quickly with accuracy comparable to the best heuristic methods, but
much smaller.

The paper is organized as follows. Section 2 introduces the notation and defi-
nitions used throughout the paper. Related work is outlined in Sect. 3. Section 4
describes the novel SAT- and MaxSAT-based encodings for the inference of deci-
sion sets. Experimental results are analyzed in Sect. 5. Finally, Sect. 6 concludes
the paper.
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2 Preliminaries

Satisfiability and Maximum Satisfiability. We assume standard definitions
for propositional satisfiability (SAT) and maximum satisfiability (MaxSAT) solv-
ing [9]. A propositional formula is said to be in conjunctive normal form (CNF)
if it is a conjunction of clauses. A clause is a disjunction of literals. A literal
is either a Boolean variable or its negation. Whenever convenient, clauses are
treated as sets of literals. Moreover, the term clausal will be used to denote
formulas represented as sets of sets of literals, i.e. in CNF. A truth assignment
maps each variable to {0, 1}. Given a truth assignment, a clause is satisfied if at
least one of its literals is assigned value 1; otherwise, it is falsified. A formula is
satisfied if all of its clauses are satisfied; otherwise, it is falsified. If there exists
no assignment that satisfies a CNF formula F , then F is unsatisfiable.

In the context of unsatisfiable formulas, the maximum satisfiability
(MaxSAT) problem is to find a truth assignment that maximizes the number
of satisfied clauses. A number of variants of MaxSAT exist [9, Chapter 19].
Hereinafter, we will be mostly interested in Partial Weighted MaxSAT, which
can be formulated as follows. The formula can be represented as a conjunction
of hard clauses (which must be satisfied) and soft clauses (which represent a
preference to satisfy those clauses) each with a weight. Whenever convenient,
a soft clause c with weight w will be denoted by (c, w). The Partial MaxSAT
problem consists in finding an assignment that satisfies all the hard clauses and
maximizes the total weight of satisfied soft clauses.

Classification Problems and Decision Sets. We follow the notation used
in earlier work [8,31,34,44]. Consider a set of features F = {f1, . . . , fK}. All
the features are assumed to be binary (non-binary and numeric features can be
mapped to binary features using standard techniques [46]). Hence, a literal on
a feature fr can be represented as fr (or ¬fr, resp.), denoting that feature fr

takes value 1 (value 0, resp.). The complete space of feature values (or feature
space [25]) is U �

∏K
r=1{fr,¬fr}.

A standard classification scenario is assumed, in which one is given training
data E = {e1, . . . , eM}. Each data instance (or example) ei ∈ E is a 2-tuple
(πi, ci) where πi ∈ U is a set of feature values and c ∈ C is a class (This work
focuses on binary classification problems, i.e. C = {0, 1} but the proposed ideas
are easily extendable to the case of multiple classes.). An example ei can be
seen as associating a set of feature values πi with a class ci ∈ C. Moreover, we
assume without loss of generality in our context that dataset E partially defines
a Boolean function φ : U → C, i.e. there are no two examples ei and ej in E
associating the same set of feature values with the opposite classes (Any two
such examples can be removed from a dataset, incurring an error of 1.).

The objective of classification in machine learning is to devise a function φ̂
that matches the actual function φ on the training data E and generalizes suitably
well on unseen test data [19,25,40,47]. In many settings (including sparse deci-
sion sets), function φ̂ is not required to match φ on the complete set of examples
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E and instead an accuracy measure is considered; this imposes a requirement
that φ̂ should be a relation defined on U ×C. Furthermore, in classification prob-
lems one conventionally has to deal with an optimization problem, to optimize
either with respect to the complexity of φ̂, or with respect to the accuracy of the
learnt function (to make it match the actual function φ on a maximum number
of examples), or both.

This paper focuses on learning representations of φ̂ corresponding to decision
sets (DS). A decision set is an unordered set of rules. For each example e ∈ E ,
a rule of the form π ⇒ c, c ∈ C is interpreted as if the feature values of e agree
with π then the rule predicts that e has class c. Note that as the rules in decision
sets are unordered, it is often the case that some rules may overlap, i.e. multiple
rules may agree with an example e ∈ E .

Example 1. Consider the following set of 8 items (shown as columns)

Item No. 1 2 3 4 5 6 7 8

Fe
at

ur
es L 1 1 0 1 0 1 0 0

C 0 0 0 1 0 1 1 0
E 1 0 1 0 0 1 1 1
S 0 1 0 0 1 1 0 1

Class H 0 0 1 0 1 0 0 1

A valid decision set for this data for the class H is

L ⇒ ¬H

¬L ∧ ¬C ⇒ H

C ⇒ ¬H

The size of this decision set is 7 (one for each literal on the left hand and right
hand side, or alternatively, one for each literal on the left hand side and one
for each rule). Note how rules can overlap, both the first and third rule classify
items 4 and 6. ��

3 Related Work

Interpretable decision sets are a rule-based predictive model that can be traced
at least to [11,12]. To the best of our knowledge, the first logic-based approach
to the problem of decision set inference was proposed in [33]. Concretely, this
work proposed a SAT model for synthesizing a formula in disjunctive normal
form that matches a given set of training samples, which is then tackled by the
interior point approach. Later, [34] considered decision sets as a more explainable
alternative to decision trees [10] and decision lists [50]. The method of [34] yields
a set of rules and heuristically minimizes a linear combination of criteria such
as the number of rules, the maximum size of a rule, the overlap of the rules, and
error.
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The closest related work that produces decision sets as defined in [11] is by
Ignatiev et al. [31]. Here the authors construct an iterative SAT model to learn
minimal, in terms of number of rules, perfect decision sets, that is where the
decision set agrees perfectly with the training data (which is assumed to be con-
sistent). Afterwards, they lexicographically minimize the total number of literals
used in the decision set. As will be shown later, they generate larger decision sets
than our model, which minimizes the total size of the target decision set. Their
approach is more scalable for solving the perfect decision set problem, since the
optimization measure in use, i.e. the number of rules, is more coarse-grained.
The SAT-based approach of [31] was also shown to extensively outperform the
heuristic approach of [34].

In [39], the authors define a MaxSAT model for binary classification, where
the number of rules is fixed, and the size of the model is measured as the total
number of literals across all clauses. Rather than build a perfect binary classifier,
they consider a model that minimizes a linear combination of size and Hamming
loss, to control the trade-off between accuracy and intrepretability. The scala-
bility of this approach is improved in [20], where rules are learned iteratively
on partitions of the training set. Note that they do not create a decision set
as defined in [11,31,34], but rather a single formula that defines the positive
instances. The negative instances are specified by default as the instances not
captured by the positive formula. This limits their approach to binary classifi-
cation, and also makes the representation smaller. For example, on the data of
Example 1 (and assuming the target number of rules was 1) they would produce
the decision set comprising a single rule ¬L∧¬C. It also means the explainabil-
ity is reduced for negative instances, since we need to use the (negation of the)
entire formula to explain their classification.

Integer Programming (IP) has also been used to create optimal rule-based
models which only have positive rules. In [15], the authors propose an IP model
for binary classification, where an example is classified as positive if and only
if it satisfies at least one clause of the model. The objective function of the IP
minimizes a variation on the Hamming loss, which is the number of incorrectly
classified positive examples, plus, for each incorrectly classified negative example,
the number of clauses incorrectly classifying it. The complexity of the model is
controlled by a bound on the size of each clause, defined as in this paper. Since
the IP model has one binary variable for each possible clause, the authors use
column generation [6]. Even so, as the pricing problem can be too expensive, it
is solved heuristically for large data sets.

4 Encoding

This section describes two SAT-based approaches to the problem of computing
decision sets of minimum total size, defined as the total number of literals used
in the model. It is useful to recall that the number of training examples is M ,
while the number of features is K. Hereinafter, it is convenient to treat a class
label as an additional feature having index K +1. We first introduce models that
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define perfect decision sets that agree perfectly with the training data, and then
extend these to define sparse decision sets that can trade off size of decision set
with classification accuracy on the training set.

4.1 Iterative SAT Model

We first design a SAT model which determines whether there exists a decision set
of given size N . To find the minimum N , we then iteratively call this SAT model
while incrementing N , until it is satisfied. For every value of N , the problem of
determining if a model of size N exists is encoded into SAT as shown below.
The idea of the encoding is that we list the rules in one after the other across
the N nodes, associating a literal to each node. The end of a rule (a leaf node)
is denoted by a literal associated to the class. We track which examples of the
dataset are valid at each node (i.e., they match all the previous literals for this
rule), and check that examples that reach the end of a rule match the correct
class. The encoding uses a number of Boolean variables described below:

– sjr: node j is a literal on feature fr ∈ F ∪ C;
– tj : truth value of the literal for node j;
– vij : example ei ∈ E is valid at node j;

The model is as follows:

– A node uses only one feature (or the class feature):

∀j∈[N ]

K+1∑

r=1

sjr = 1 (1)

– The last node is a leaf:
sNc (2)

– All examples are valid at the first node:

∀i∈[M ] vi1 (3)

– An example ei is valid at node j + 1 iff j is a leaf node, or ei is valid at node
j and ei and node j agree on the value of the feature sjr selected for that
node:

∀i∈[M ]∀j∈[N−1] vij+1 ↔ sjc ∨ (vij ∧
∨

r∈[K]

(sjr ∧ (tj = πi[r]))) (4)

– If example ei is valid at a leaf node j, they should agree on the class feature:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij) → (tj = ci) (5)

– For every example there should be at least one leaf literal where it is valid:

∀i∈[M ]

∨

j∈[N ]

(sjc ∧ vij) (6)
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The model shown above represents a non-clausal Boolean formula, which
can be classified with the use of auxiliary variables [54]. Also note that any
of the known cardinality encodings can be used to represent constraint (1) [9,
Chapter 2] (also see [1,5,7,53]). Finally, the size (in terms of the number of
literals) of the proposed SAT encoding is O(N × M × K), which results from
constraint (4).

Example 2. Consider a solution for 7 nodes for the data of Example 1. The rep-
resentation of the rules, as a sequence of nodes is shown below:

1 2 3 4 5 6 7

�������	L �� 
������¬H 
������¬L �� 
������¬C �� �������	H �������	C �� 
������¬H

The interesting (true) decisions for each node are given in the following table

1 2 3 4 5 6 7

sjr s1L s2H s3L s4C s5H s6C s7H

tj 1 0 0 0 1 1 0

vij v11 v12 v13 v34 v35 v16 v47
... v22

... v54 v55
... v67

v81 v42 v83 v74 v85 v86 v77
v62 v84

Note how at the end of each rule, the selected variable is the class H. Note
that at the start and after each leaf node all examples are valid, and each fea-
ture literal reduces the valid set for the next node. In each leaf node j the
valid examples are of the correct class determined by the truth value tj of that
node. ��

The iterative SAT model tries to find a decision set of size N . If this fails, it
tries to find a decision set of size N + 1. This process continues until it finds a
decision set of minimal size, or a time limit is reached. The reader may wonder
why we do not use binary search instead. The difficulty with this is that the
computation grows (potentially) exponentially with size N , so guessing a large
N can mean the whole problem fails to solve.

Example 3. Consider the dataset shown in Example 1. We initially try to find a
decision set of size 1, which fails, then of size 2, etc. until we reach size 7 where
we determine the decision set: ¬L ∧ ¬C ⇒ H, L ⇒ ¬H, C ⇒ ¬H of size 7 by
finding the model shown in Example 2. ��

4.2 MaxSAT Model

Rather than using the described iterative SAT-based procedure, which iterates
over varying size N of the target decision set, we can allocate a predefined
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number of nodes, which serves as an upper bound on the optimal solution, and
formulate a MaxSAT problem minimizing the number of nodes used. Let us add
a flag variable uj for every available node. Variable uj is true whenever the node
j is unused and false otherwise. Consider the following constraints:

1. A node either decides a feature or is unused:

∀j∈[N ] uj +
∑

r∈[K+1]

sjr = 1 (7)

2. If a node j is unused then so are all the following nodes

∀j∈[N−1] uj → uj+1 (8)

3. The last used node is a leaf

∀j∈[N−1] uj+1 → uj ∨ sjc (9)
uN ∨ sNc (10)

The constraints above together with constraints (3), (4), (5), and (6) comprise
the hard part of the MaxSAT formula, i.e. every clause of it must be satisfied.
As for the optimization criterion, we maximize

∑
j∈[N ] uj , which can be trivially

represented as a list of unit soft clauses of the form (uj , 1).
The model is still used iteratively in the worst case. We guess an upper bound

N on the size of the decision set. We use the model to search for a decision set
of size less than or equal to N . If this fails we increase N by some number (say
10) and retry, until the time limit is reached.

Example 4. Revisiting the solution shown in Example 1 when N is set to 9 we
find the solution illustrated in Example 2 extended so that the last two nodes
are unused: u8 = u9 = true. The last used node 7 is clearly a leaf. Note that
validity (vij) and truth value (tj) variables are irrelevant to unused nodes j. ��

4.3 Separated Models and Multi-classification

A convenient feature of minimal decision sets is the following. The union of a
minimal decision set that correctly classifies the positive instances (and doesn’t
misclassify any negative instances as positive) and a minimal decision set that
correctly classifies the negative instances (and doesn’t misclassify any positive
instances as negative) is a minimal decision set for the entire problem.

We can construct a separate SAT model for the positive rules and negative
rules by simply restricting constraint (6) to only apply to examples in [M ] of
the appropriate class.

Clearly, the “separated models” are not much smaller than the complete
model described in Sect. 4.1; each separated model still includes constraint (4)
for each example leading to the size O(N×M×K). The advantage arises because
the minimal size required for each half is smaller.
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Example 5. Consider the data set shown in Example 1. We can iteratively con-
struct decision rules for the positive instances: ¬L ∧ ¬C ⇒ H of size 3, and the
negative instances: L ⇒ ¬H,C ⇒ ¬H of size 4. This is faster than solving the
problems together, iterating from size 1 to size 7 to eventually find the same
solution. ��

The same applies for multi-classification rules, where we need to decide on |C|
different classes. Assuming the class feature has been binarised into |C| different
class binary variables, we can modify our constraints to build a model Mc for
each separate class c ∈ C as follows:

– We restrict constraint (6) to the examples i in the class c, e.g.

∀i∈[M ],ci=c

∨

j∈[N ]

(sjc ∧ vij) (11)

– We restrict leaf nodes to only consider true examples of the class

∀j∈[N ] sjc → tj (12)

This modification is correct for both the iterative SAT and the MaxSAT models.

4.4 MaxSAT Model for Sparse Decision Sets

We can extend the MaxSAT model rather than to find minimal perfect deci-
sion sets to look for sparse decisions sets that are accurate for most of the
instances. We minimize the objective of number of misclassifications (including
non-classifications, where no decision rule gives information about the item) plus
the size of the decision set in terms of nodes multiplied by a discount factor Λ
which records that Λ fewer misclassifications are worth the addition of one node
to the decision set. Typically we define Λ = �λM where λ is the regularized
cost of nodes in terms of misclassifications.

We introduce variable mi to represent that example i ∈ [M ] is misclassified.
The model is as follows:

– If example ei is valid at a leaf node j then they agree on the class feature or
the item is misclassified:

∀i∈[M ]∀j∈[N ] (sjc ∧ vij) → (tj = ci ∨ mi) (13)

– For every example there should be at least one leaf literal where it is valid or
the item is misclassified (actually non-classified):

∀i∈[M ] mi ∨
∨

j∈[N ]

(sjc ∧ vij) (14)
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together with all the MaxSAT constraints from Sect. 4.2 except constraints (5)
and (6). The objective function is

∑

i∈[M ]

mi +
∑

j∈[N ]

Λ(1 − uj) + NΛ

represented as soft clauses (¬mi, 1), i ∈ [M ], and (uj , Λ), j ∈ [N ].
Note that the choice of regularized cost λ is crucial. As λ gets higher values,

the focus of the problem shifts more to “sparsification” of the target decision
set, instead of its accuracy. In other words, by selecting higher values of λ (and
hence of Λ as well), a user opts for simple decision sets, thus, sacrificing their
quality in terms of accuracy. If the value of λ is too high, the result decision set
may be empty as this will impose a high preference of the user to dispose of all
literals in the decision set.

4.5 Separated Sparse Decision Sets

We can modify the definition of misclassifications in order to support a separated
solution. Suppose that an example ei ∈ E is of class ci ∈ C then we count the
number of misclassifications of that example as follows:

– If example ei is not classified as class ci that counts as one misclassification.
– If example ei is classified as class cj ∈ C, cj �= ci, then this counts as one

misclassification per class.

With this definition we can compute the optimal decisions sets per class inde-
pendently and join them together afterwards. The model for each class c ∈ C is
identical to that of Sect. 4.4 with the following change: we include constraint (12)
and modify constraint (14) to

– For every example in the class c there should be at least one leaf literal where
it is valid or the example is misclassified (actually non-classified):

∀i∈[M ],ci=c mi ∨
∨

j∈[N ]

(sjc ∧ vij) (15)

Note that there is still an mi variable for every example in every class. For
examples of class c this counts as if they were not correctly classified as class c,
while for examples not in class c it counts as if they were incorrectly classified
as class c.

5 Experimental Results

This section aims at assessing the proposed SAT-based approaches for computing
optimal decision sets from the perspective of both scalability and test accuracy
for a number of well-known datasets.
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Experimental Setup. The experiments were performed on the StarExec clus-
ter1. Each process was run on an Intel Xeon E5-2609 2.40 GHz processor with
128 GByte of memory, in CentOS 7.7. The memory limit for each individual
process was set to 16 GByte. The time limit used was set to 1800 s for each
individual process to run.

Implementation and Other Competitors. Based on the publicly available
implementation of MinDS [31,51], all the proposed models were implemented
in a prototype as a Python script instrumenting calls to the Glucose 3 SAT
solver [2,27]. The implementation targets the models proposed in the paper,
namely, (1) the iterative SAT model studied in Sect. 4.1 and (2) its MaxSAT
variant (see Sect. 4.2) targeting minimal perfect decision set but also (3) the
MaxSAT model for computing sparse decision sets as described in Sect. 4.4. All
models target independent computation of each class2, as discussed in Sect. 4.3
and Sect. 4.5. As a result, the iterative SAT model and its MaxSAT variant in
the following are referred to as opt and mopt. Also, to illustrate the advantage
of separated models over the model aggregating all classes, an aggregated SAT
model was tested, which is referred to as opt∪. Finally, several variants of the
MaxSAT model targeting sparse decision sets called sp[λi] were tested with three
values of regularized cost: λ1 = 0.005, λ2 = 0.05, and λ3 = 0.5. One of the con-
sidered competitors were MinDS2 and MinDS�

2 [31], which in the following are
referred to as mds2 and mds�

2, respectively. While the former tool minimizes the
number of rules, the latter does lexicographic optimization, i.e. it minimizes the
number of rules first and then the total number of literals. Additionally, MinDS
was modified to produce sparse decision sets, similarly to what is described in
Sect. 4.4. This extension also makes use of MaxSAT to optimize the sparse objec-
tive rather than SAT, which was originally used. In the following comparison,
the corresponding implementation is named mds2[ρi], with regularization cost
ρ1 = 0.05, ρ2 = 0.1, and ρ3 = 0.5. Note that ρi �= λi, i ∈ [3] since the measures
used by the two models are different. One targets rules and the other – literals.
In order to, more or less, fairly compare the scalability of the new model sp and
of the sparse variant of mds�

2, we considered a few configurations of sp[ρi] with
ρi = λi

K , where K is the number of features in a dataset, where we consider a
rule equivalent to K literals. To tackle the MaxSAT models, the RC2-B MaxSAT
solver was used [28].

A number of state-of-the-art algorithms were additionally considered includ-
ing the heuristic methods CN2 [11,12], and RIPPER [13], as well as MaxSAT-
based IMLI [20] (which is a direct successor of MLIC [39]). The implementation
of CN2 was taken from Orange [45] while a publicly available implementation of
RIPPER [56] was used. It should be noted that given a training dataset, IMLI
and RIPPER compute only one class. To improve the accuracy reported by both
of these competitors, we used a default rule that selects a class (1) different from

1 https://www.starexec.org/.
2 The prototype adapts all the developed models to the case of multiple classes, which

is motivated by the practical importance of non-binary classification.

https://www.starexec.org/
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Fig. 1. Scalability of all competitors on the complete set of instances and the quality
of solutions i terms of decision set size.

the computed one and (2) represented by the majority of data instances in the
training data. The default rule is applied only if none of the computed rules
can be applied. Finally, IMLI takes a constant value k of rules in the clausal
representation of target class to compute. We varied k from 1 to 16. The best
results (both in terms of performance and test accuracy) were shown by the con-
figuration targeting the smallest possible number of rules, i.e. k = 1; the worst
results were demonstrated for k = 16. Thus, only these extreme values of k were
used below represented by imli1 and imli16, respectively.

Datasets and Methodology. Experimental evaluation was performed on a
subset of datasets selected from publicly available sources. These include datasets
from UCI Machine Learning Repository [55] and Penn Machine Learning Bench-
marks. Note that all the considered datasets were previously studied in [20,31].
The number of selected datasets is 71. Ordinal features in all datasets were
quantized so that the domain of each feature gets to 2, 3, or 4. This resulted
in 3 families of benchmarks, each of size 71. Whenever necessary, quantization
was followed by one-hot encoding [46]. In the datasets used, the number of data
instances varied from 14 to 67557 while the number of features after quantization
varied from 3 to 384.

Finally, we applied the approach of 5-fold cross validation, i.e. each dataset
was randomly split into 5 chunks of instances; each of these chunks served as
test data while the remaining 4 chunks were used to train the classifiers. This
way, every dataset (out of 71) resulted in 5 individual pairs of training and
test datasets represented by 80% and 20% of data instances. Therefore, each
quantized family of datasets led to 355 pairs of training and test datasets. Hence,
the total number of benchmark datasets considered is 1065. Every competitor in
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Fig. 2. Accuracy of the considered approaches.

the experiment was run to compute a decision set for each of the 1065 training
datasets, which was then tested for accuracy on the corresponding test data.

It is important to mention that the accuracy for all the tools was tested by an
external script in a unified way. Concretely, (1) if a rule “covers” a data instance
of a wrong class, the instance is deemed misclassified (even if there is another rule
of the right class covering this data instance); (2) if none of the rules of a given
class covers a data instance of that class, the instance is deemed misclassified.
Afterwards, assuming the total number of misclassified instances is denoted by
E while the total number of instances is M , the accuracy is computed as a value
M−E

M × 100%.

Testing Scalability. Figure 1a shows the performance of the considered com-
petitors on the complete set of benchmark instances. As one can observe, ripper
outperforms all the other tools and is able to train a classifier for 1048 of the
considered datasets given the 1800 s time limit. The proposed MaxSAT models
for sparse decision sets sp[λ3] and mds�

2[ρ3] (which are the configurations with
the largest constant parameters) come second and third with 1024 and 1000
instances solved, respectively. The fourth place is taken by cn2, which can suc-
cessfully deal with 975 datasets. The best configuration of imli, i.e. imli1, finishes
with 802 instances solved while the worst configuration imli16 copes with only
620 datasets. Finally, the worst results are demonstrated by the approaches that
target perfectly accurate decision sets opt, mopt, and opt∪ but also by the sparse
approaches with low regularized cost sp[ρ1] and sp[ρ2]. For instance, opt∪ solves
only 196 instances. This should not come as surprise since the problem these
tools target is computationally harder than what the other approaches solve.
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Fig. 3. Comparison of sp[λ3] and ripper.

Testing Accuracy. Having said that, perfectly accurate decision sets once
computed have the highest possible accuracy. This is confirmed by Fig. 2b, which
depicts the accuracy obtained by all the tools for the datasets solved by all the
tools. Indeed, as one can observe, the virtual perfect tool, which acts for all
the approaches targeting perfectly accurate decision sets, i.e. opt, mopt, opt∪,
mds2, and mds�

2, beats the other tools in terms of test accuracy. Their average
test accuracy on these datasets is 85.89%3. In contrast, the worst accuracy is
demonstrated by cn2 (43.73%). Also, the average accuracy of ripper, sp[λ3],
mds�

2[ρ3], imli1, imli16 is 80.50%, 67.42%, 61.71%, 76.06%, 77.42%, respectively.
The picture changes drastically if we compare test accuracy on the com-

plete set of benchmark datasets. This information is shown in Fig. 2a. Here, if
a tool does not solve an instance, its accuracy for the dataset is assumed to be
0%. Observe that the best accuracy is achieved by ripper (68.13% on average)
followed by the sparse decision sets computed by sp[λ3] and mds�

2[ρ3] (60.91%
and 61.23%, respectively). The average accuracy achieved by imli1 and imli16 is
50.66% and 28.26% while the average accuracy of cn2 is 47.49%.

Testing Interpretability (Size). From the perspective of interpretability, the
smaller a decision set is the easier it is for a human decision maker to compre-
hend. This holds for the number of rules in a decision set but also (and more
importantly) for the total number of literals used. Figure 1b depicts a cactus
plots illustrating the size of solutions in terms of the number of literals obtained
by each of the considered competitors. A clear winner here is sp[λ3]. As can be

3 This average value is the highest possible accuracy that can be achieved on these
datasets whatever machine learning model is considered.
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Fig. 4. Comparison of sp[λ3] and imli1.

observed, for more than 400 datasets, decision sets of sp[λ3] consist of only one
literal4. Another bunch of almost 400 datasets are represented by sp[λ3] with 3
literals. Getting these small decision sets is a striking achievement in light of the
overall high accuracy reached by sp[λ3]. The average size of solutions obtained
by sp[λ3] is 4.18. Note that imli1 gets close to this with 5.57 literals per dataset
on average although it always compute only one rule. In clear contrast with this,
the average solution size of ripper is 35.14 while the average solution of imli16
has 46.29 literals. Finally, the result of cn2 is 598.05 literals.

It is not surprising that perfectly accurate decision sets, i.e. those computed
by opt, opt∪, mopt, as well as mds2 and mds�

2, in general tend to be larger. It is
also worth mentioning that mds�

2[ρ3] obtains sparse decision sets of size 14.52 on
average while the original (non-sparse) version gets 40.70 literals per solution.

A Few More Details. Figure 3 and Fig. 4 detail a comparison of sp[λ3] with
ripper and imli1, respectively. All these plots are obtained for the datasets solv-
able by each pair of competitors. Concretely, as can be seen in Fig. 4a and Fig. 4b,
the size and accuracy of sp[λ3] and imli1 are comparable. However, as imli1 com-
putes solutions representing only one class and it is significantly outperformed
by sp[λ3], the latter approach is deemed a better alternative. Furthermore and
although the best performance overall is demonstrated by ripper, its accuracy
is comparable with the accuracy of sp[λ3] (see Fig. 3b) but the size of solutions
produced by ripper can be several orders of magnitude larger than the size of
solutions of its rival, as one can observe in Fig. 3a.

4 In a unit-size decision set, the literal is meant to assign a constant class. This can
be seen as applying a default rule.
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Finally, a crucial observation to make is that since both RIPPER and IMLI
compute a representation for one class only, they cannot provide a user with a
succinct explanation for the instances of other (non-computed) classes. Indeed,
an explanation in that case includes the negation of the complete decision set.
This is in clear contrast with our work, which provides a user with a succinct
representation of every class of the dataset.

6 Conclusion

We have introduced the first approach to build decision sets by directly min-
imizing the total number of literals required to describe them. The approach
can build perfect decision sets that match the training data exactly, or sparse
decision sets that trade off accuracy on training data for size. Experiments show
that sparse decision sets can be preferred to perfectly accurate decision sets.
This is caused by (1) their high accuracy overall and (2) the fact that they are
much easier to compute. Second, it is not surprising that the regularization cost
significantly affects the efficiency of sparse decision sets – the smaller the cost is,
the harder it is compute the decision set and the more accurate the result deci-
sion set is. This fact represents a reasonable trade-off that can be considered in
practice. Note that points 1 and 2 hold for the models proposed in this paper but
also for the sparse variants of prior work targeting minimization of the number
of rules [31]. Third, although heuristic methods like RIPPER may scale really
well and produce accurate decision sets, their solutions tend to be much larger
than sparse decision sets, which makes them harder to interpret. All in all, the
proposed approach to sparse decision sets embodies a viable alternative to the
state of the art represented by prior logic-based solutions [20,31,39] as well as
by efficient heuristic methods [11–13].

There are number of interesting directions to extend this work. There is con-
siderable symmetry in the models we propose, and while we tried adding sym-
metry breaking constraints to improve the models, what we tried did not make
a significant difference. This deserves further exploration. Another interesting
direction for future work is to consider other measures of interpretability, for
example the (possibly weighted) average length of a decision rule, where we are
not concerned about the total size of the decision set, but rather its succinctness
in describing any particular instance.
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