l‘)

Check for
updates

1

Surgery simulation technology using virtual reality has become a useful and prac-
tical tool for learning specific operations like lung tumor removal [33], aneurysm
clipping [2] and many others [20]. As with all virtual environments, an important
aim for these simulations is to create a world in which the user can feel immersion
and presence as much as possible. This sensation may come from how the world
is perceived by the user’s senses, such as vision, hearing and touch, and from
how the world reacts to the user’s actions. The research presented in this paper

Dynamic Cutting of a Meshless Model
for Interactive Surgery Simulation

Vincent Magnoux® and Benoit Ozell™=)

Polytechnique Montréal, Montréal, Canada
benoit.ozell@polymtl.ca

Abstract. Virtual reality has become a viable tool for training surgeons
for specific operations. In order to be useful, such a simulation need to
be as realistic as possible so that a user can believe what they experience
and act upon the virtual objects. We focus on simulating surgical oper-
ations that require cutting virtual organs. They offer a particular set of
challenges with respect to simulation stability, performance, robustness
and immersion.

We propose to use a fully continuous movement representation and
collision detection scheme between cutting tool and other simulated
objects to improve the robustness of the simulation and avoid break-
ing immersion with errors in topology changes. We also describe a new
way to attach the surface of a simulated object to its underlying physi-
cal model, consistently while it is being cut. This feature helps maintain
immersion by keeping the visual aspect of the object coherent with its
physical behavior and by allowing correct transmission of actions from
the user on the object.

Our tests show that the proposed tool movement representation prop-
erly generates continuous cuts in simulated models, even as they move
and deform. It also allows cutting when a moving model comes into
contact with a motionless tool, and to model a curved or deforming tool
without additional effort. Our surface mapping method results in a visual
model that closely follows the movement and deformation of the physical
model after it has been cut.

Keywords: Surgery simulation - Virtual reality - Cutting simulation -
Physically-based simulation + Meshless methods

Introduction

© Springer Nature Switzerland AG 2020
L. T. De Paolis and P. Bourdot (Eds.): AVR 2020, LNCS 12243, pp. 114-130, 2020.
https://doi.org/10.1007/978-3-030-58468-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58468-9_9&domain=pdf
http://orcid.org/0000-0002-5543-6536
http://orcid.org/0000-0002-7157-7726
https://doi.org/10.1007/978-3-030-58468-9_9

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 115

focuses on the latter aspect, more specifically on how virtual objects like organs
are modified through cutting actions from the user during a surgical operation.

There has been a lot of progress in cutting simulation, both on the physical
and the visual aspects, yet there remain open challenges to improve the realism of
this interaction. Our goals are to develop a tool representation that increases the
robustness of the simulation during a cutting action and to maintain coherence
between the visual surface and the underlying physical model at the same time.
Together, these objectives will improve simulation interactivity by providing a
more accurate representation of hand movement, avoiding breaks in immersion
in a straightforward way and ensuring a realistic reaction of soft tissue to user
action.

On the one hand, we improve the robustness by ensuring that any part of a
simulated object traversed by a cutting tool will indeed be cut. This means that
no geometric element will be missed due to the discrete nature of the simulation
or to the movement and deformation of either the object or cutting tool.

On the other hand, we preserve coherence between the visual and physical
models by elaborating a set of criteria that determine how the surface mesh
moves with the physical model and how it can transmit forces to it.

1.1 Background and Related Work

Soft body simulations that allow cutting may be classified according to the
physical simulation method, which may either be mesh-based or meshless. A
thorough review of the various cutting methods may be found in [35]. Mesh-
based cutting involves removing and recreating elements along the tool trajec-
tory [5,6,11,12,28,34], while meshless methods rely on updating the connection
or visibility between the particles that form the physical object [13,17,25,26,31].
For both simulation categories, cutting requires modeling the trajectory of the
tool as well as finding the intersection of the tool with the object along that
trajectory. At the lowest level, this intersection is often computed as the contact
between edges or between triangles and points of either model.

Tool Representation. Most simulations represent the cutting part of the tool
as a one-dimensional edge composed either of a single segment [9,21,23] or mul-
tiple ones [6,32]. The area between the position of the cutting edge during the
previous frame and its position during the current frame is considered the swept
area [32]. It may be approximated by a plane [9,21,23] or be triangulated to
obtain a more closely fitting cutting surface [10,13,15,24,31].

One major drawback of this approximation is that it does not capture well the
movement of the cutting edge when it does not lie in the same plane between
two frames. This may cause some contact detection to be missed, eventually
resulting in erroneous modifications in the modeled object surface. [21] propose
to use a continuous representation of the cutting edge, which partially offsets
this problem by providing a more realistic approximation of the edge movement.
However, it still fails to take into account the movement and deformation of the
object being cut.

116 V. Magnoux and B. Ozell

There are however approaches that go in a different direction. A single point
with an orientation may be used to represent the tool [4,30]. Together, the
position and orientation of the point define a plane which can be used to compute
level sets at every frame, which in turn determine where different material points
are with respect to the tool. In other cases, some represent the tool with a
volume and check for an instantaneous (discrete) intersection between the tool
volume and the object volume [1,28]. In a similar way, [11] uses as a cutting
surface the intersection of the tool volume with the object, represented with
voxels — resulting in an approximate cut. Finally, rather than using a well-defined
geometric shape, the tool volume may simply be sampled with a set of points [26].

Surface Mapping. In general, simulations may either use an implicit or explicit
surface representation to draw an object on the screen. However, implicit rep-
resentations usually require a lot of computing power and are thus not well
suited for an interactive simulation [16,22]. Some manage to perform volume-
and point-based rendering in real time on parts of a model using surface splat-
ting [17,37] or, more recently, ray casting on the entire object [30].

Explicit surface representations must be somehow attached, or mapped, to
the physical object model so that they can properly move according to the results
of the physical simulation and continue to transmit interaction forces.

For mesh-based physical models, the trivial case consists in using the bound-
ary faces of volume elements to display the surface [5]. However, the resolution
of the surface is thus directly tied to that of the physical model. A separate rep-
resentation allows to display the object in much greater detail than it is possible
to physically simulate it.

With mesh-based physical models, this mapping between the surface mesh
and physical object is done by selecting to which volume element a surface
vertex belongs and computing its barycentric or trilinear coordinates within
that element [6,11,12,14,28,29,34]. When the element is displaced or deformed,
the new vertex position is computed using the mapping coordinates in the new
element configuration.

With meshless models, the mapping is done by selecting a set of appropriate
particles and computing a set of weights for each of them relative to the vertex.
Instead of weights calculated through barycentric or trilinear coordinates — since
there is no geometrically set element — a moving least squares (MLS) scheme is
often used [13,15,17,26,31,36]. Other weighted mappings are also possible, based
on how the displacement field is sampled in the physical simulation [8,18,25].

1.2 Contributions
This paper describes the following contributions:

— A fully continuous cutting interaction between a tool and a surface that
includes detecting the cut primitives and modifying the surface mesh in con-
sequence. Both the tool and the object may be deforming during that inter-
action.

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 117

— A small set of criteria that allow mapping the surface on its underlying volume
model to maintain visual coherence.

Section 2 describes the details of these contributions, while Sect.3 demon-
strates their utility through a set of examples.

2 Method

2.1 Tool Representation and Collision Detection

For the purpose of cutting, the interacting part of the tool is represented by a
series of points joined by straight line segments, collectively called the cutting
edge. The only interaction on which we will focus in this paper is for cutting,
without exchanging forces between the tool and other simulated objects. The
cutting edge is considered ideal, in the sense that it has no volume, cuts as soon
as it comes in contact with a simulated object and does not generate any force on
it. In addition to the cutting tool, the term edge will refer to the primitives used
for detecting intersections. For the surface, they are the lines between surface
vertices that form triangles and for the underlying physical object, they are the
links between integration points and particles that form its topology.

The object itself is deformed and cut using the method described in [3]
and [19]. For the purpose of topology modifications, the object is entirely com-
posed of edges, as defined above. Cutting only occurs when edges are intersected,
not when a point enters a triangle on the surface. Furthermore, we only mention
cutting the object’s surface, but everything discussed in this section applies in
an identical way to cutting the edges that define its volume.

As the tool is displaced from one frame to the next, each of its edges form a
skew quadrilateral with the four points being the two ends of the edge at the first
frame and the two ends at the second frame, as shown in Fig. 1. The set of 3-
dimensional quads form the surface swept by the blade during the frame. When
detecting collisions, the deformed object’s surface is similarly only considered as
a set of edges that move through space between animation frames. The detection
is made between each pair of edges that belong to the separate objects, according
to the continuous collision algorithm described in [27].

We assume each point of the blade moves in a straight line during a frame.
This approximation remains accurate as long as the displacement between frames
is relatively short, which is the case when animating the simulation at a rate of
60 frames per second, leaving less than 17 ms per frame.

This operation is more complex than with an explicitly-triangulated swept
surface since it requires continuous edge-edge collision tests rather than just a
series of discrete triangle-edge tests. However, there are several situations where
it provides a correct solution, in contrast to a discrete detection scheme.

118 V. Magnoux and B. Ozell

Tool edge

\

Fig. 1. The area swept by the cutting tool is only described in terms of the position of
its edge at the previous frame (to) and its position at the current frame (¢1).

Situation 1. The continuous method allows for a completely gap-less detection
of cut edges, which is especially useful when both objects are moving between
frames. For example, an edge from the deformed object could move across an
entire swept area quadrilateral during a frame time, leaving it undetected when
using a discrete scheme. Figure 2 illustrates such a situation in two dimensions.
The cutting tool is displayed as a wedge in this diagram, but only the tip has
any physical presence in a 2D setting. Its movement traces a line — rather than
a swept area in 3D — which can be used for detecting intersections with surface
triangles.

Object ’

>

»
Tool

Missed
edge

Fig. 2. Example of Situation 1, in 2D, where a collision detection scheme that is con-
tinuous only with the tool movement would fail to detect a certain triangle edge. The
large arrows indicate the direction of movement of the tool and object. The red line
between tool positions represents the space swept by it between frames (Color figure
online).

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 119

Situation 2. That method also avoids detecting cuts in places where a surface
edge enters the swept area after the blade has passed, as in Fig. 3. In that case,
the tip of the cutting tool was always outside the object, but the line that
connects the current position to the previous one still intersects some edges in
the object at its current position.

, Should not
Object = be cut

Tool /

Fig. 3. Example of Situation 2, where the line spanned by the tip of the cutting tool
intersects two of the objects edges at the end of the frame, even though the tool was
outside the object at every point in time between the two frames. The large arrows
indicate the direction of movement of the tool and object. The red line between tool
positions represents the space swept by it between frames (Color figure online).

Situation 3. Another case where this description is essential is when the blade is
not moving but the deforming object is, whether under gravity or elastic forces.
In such a case, the blade does not sweep any area, but the object must still be
cut, as shown in Fig. 4.

Object ’%

TooI

Fig. 4. Example of Situation 3, where a simulated object moves downward onto a
motionless cutting tool. The tool’s edge does not sweep any area, but must still be able
to cut the object.

When the tool is moving, the continuous method also provides a slightly
more accurate approximation of the swept area as well as a more accurate point
of contact, both in space and in time, since it is not flattened by using triangles.

Since the tool may also cut while not moving, we must take particular care
with defining some quantities. For example, we might want to know on which

120 V. Magnoux and B. Ozell

side of the cutting edge lie each pair of vertices. In our method, the new normal
on the surface is entirely determined by the position of each intersection — the
trajectory of the cutting tool relative to the object. This avoids relying on the
normal of a swept surface that does not exist when the tool is motionless.

One point worth mentioning is that with the movement representation
described above, the cutting tool itself can be deformed during the simulation
without the need to handle that case differently.

2.2 Surface Mapping and Remapping

To ensure that the surface remain coherent with the movement of the physical
simulated object and thus provide a proper interface with other virtual objects
and with the user, we establish a set of constraints that determine how each
surface vertex moves with the physical object model. These criteria are tailored
to the deformation and cutting method of [19], where the particles are embedded
in a regular background integration grid; however, they can be applied almost
directly to any method that maps a triangulated surface on a set of particles.

Since the displacement of a material point inside the object is determined
by interpolating the displacement of neighboring particles using shape functions
computed with an MLS scheme, a natural solution is to use the same scheme for
surface vertices. The set of particles that determine the position of a point will
be called the mapping of that point in the remainder of this paper.

The main challenge with this method consists in choosing the right particles
on which to map a vertex. This choice does not simply depends on the distance
between the vertex and particles, because we need to take into account the
initial topology of the object as well as the cuts introduced with the tool. We
may however choose that criterion as a starting point for the set of constraints,
since it is how it would be done for a convex object that does not contain any
cut.

It should be mentioned that when determining where to map a given vertex,
only the rest configuration of the object is considered. While intersections are
detected in the current (deformed) configuration, their location in the object
at rest can be determined in a straightforward way: since they always occur on
edges, between two points, they can be fully described by a proportion along the
vector connecting the two points. For simplicity, we consider that proportion to
always be the same, whether in the rest or deformed configuration.

To avoid mapping a vertex to particles that belong to physically separate
parts of the object — while still being geometrically close — we first decide to
select particles that are in the neighborhood of a single integration point. This
guarantees that they will all move in a locally coherent way. The mapping prob-
lem is thus reduced to finding a single most suitable integration point for each
vertex of the surface mesh. This approach is sound also because the integration
elements are more closely related to the geometry of the object — they distribute
its volume and mass to the particles. They are all at least partially inside the
object, whereas particles may lie slightly outside the surface of the object as
described in [3].

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 121

When the object contains a cut, or simply a concave portion, the integration
point nearest to a certain vertex may actually be in another part of the object
(see Fig.5). To avoid any such wrong mapping, we add as a criterion that the
integration point on which a vertex is mapped must lie below the plane defined
by the vertex and its normal.

Fig. 5. [llustration in 2D of a situation where the nearest integration point to a certain
vertex would not be the best mapping. Integration points are displayed as red crosses
and vertices as blue circles, with dotted lines indicating the nearest integration point.
Vertex A has integration point 1 as its closest, which lies across another surface bound-
ary. We would rather choose an integration point that is not separated by another part
of the surface, such as point 2, connected to the thicker green line (Color figure online).

There are however many cases where the plane test by itself is not sufficient
to determine the right mapping point. For example, in Fig. 6, when the cutting
tool passes between a certain vertex and the integration point on which it is
mapped, using only the criteria mentioned earlier, we would try to map the
vertex to the same integration point. We therefore associate with the vertex
an additional plane below which the mapped integration point must also be,
whenever a new cut is introduced into the object near that vertex.

The final criterion we need to define allows to take all introduced cuts into
account — rather than just the most recent one — without specifying an arbitrarily
large number of cutting planes. For each vertex, we only choose as potential
mapping targets integration points which are connected to a set of particles
similar to that of neighboring vertices. In other words, we need to consider not
just the integration point, but the set of particles on which vertices are mapped.
For an integration point to be considered valid, it has to have at least one particle
in common with every vertex that form a triangle with the unmapped vertex.
This also ensures that vertices that are close to each other will be mapped to
integration points that are also close to each other, keeping the displacement of
the surface locally coherent.

122 V. Magnoux and B. Ozell

Fig. 6. Illustration of the need for an additional constraint plane when finding a good
mapping. Left: A cutting tool approaches from the left, below vertex A. Middle: The
introduced cut has caused vertices A and B to lose their previous mapping. Their
initial normal is indicated. Using only that normal would cause them to be mapped on
the integration point 1, from which they were just unmapped. Right: The introduced
cutting plane causes vertices A and B to be mapped to point 2.

In summary, when choosing a new integration point to which a vertex will
be mapped, that point must be

— connected to some of the same particles on which neighboring vertices are
already mapped;

— below the plane tangent to the surface at that vertex;

— below an additional plane defined when a cut was introduced.

From the integration points that match all these criteria, the one closest to the
vertex under consideration is chosen.

2.3 Dynamic Simulation

Whenever a part of the object is intersected by the cutting tool, all affected
vertices must find a new mapping. We define in the next paragraphs which
surface vertices to remap after an interaction with the cutting tool.

When a surface edge is cut, two vertices are added: they must be mapped. The
endpoints of the (now cut) edge must be remapped, and receive an additional
plane corresponding to the surface normal of the cut (see Fig.6, right). There
is also the case where the blade intersects the segment between a vertex and
the integration point on which it is mapped. In that case, the vertex has to be
remapped and be associated with an additional plane. That new plane passes
through the cut point and has the vertex-integration point line as a normal, as
if that line were just another surface edge.

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 123

Adjustments to the mapping also need to be made when the underlying
physical model is cut. A modified connectivity between particles and integration
points changes the eligibility of affected integration points in certain cases, so
any vertex that is mapped to these points needs to be remapped. For example,
two integration points that share a certain particle may become separated and
no longer be considered as neighbors, affecting how nearby vertices must be
mapped.

When the mapping of a vertex changes, its position at the next frame may
change slightly, even if the object is not moving. Using a fully continuous collision
detection scheme prevents any missed surface edge.

Animation Loop. The order in which the main steps of the simulation are
carried out is important to obtain a consistent interaction between the dynamic
tool and the object. An animation step in our current implementation consists
of four operations:

1. Process user input. This only consists in moving the cutting tool to its new
position, as determined by a haptic device, for example.

2. Detect collisions. These collisions are currently only for cutting.

3. Perform topology changes, based on the intersections detected in the previous
step. This results in updated data structures describing the object — physical
model, surface and mapping between the two.

4. Solve the dynamic system. This system incorporates internal elastic forces,
gravity and external forces. This step also updates the surface vertex and
integration point positions according to the new particle positions given by
the system solution, as described in [3,19].

In such a scenario, input by the user is considered to occur during the dis-
placement of surface positions, even if it is only processed after. Any movement
from the user that happens during the animation step will have an effect based
on the next surface and object position.

3 Results

The applicability of our method is demonstrated through an implementation
using the SOFA framework [7]. We show examples of various situations described
in the previous section where it is useful, both on simple geometries and on organ
models. The proper functioning of the surface mapping criteria is apparent is
some of these scenes, but is most visible in the accompanying video.

The most obvious advantage of having a fully continuous collision detection
scheme, is that we can still properly detect tool-object intersections when the
blade is static and the object is moving. This can occur for example under
the action of gravity or elastic forces. This capability contrasts with the usual
method where only the cutting edge is considered to be moving from one frame
to the next. Figure 7 shows three different frames of a simulation where a circular

124 V. Magnoux and B. Ozell

cylinder is falling on a simple straight cutting edge. Even if the edge does not
sweep any area, the object can still be cut. This example also shows how the
surface position remains consistent with the position of the object. Surface vertex
positions are entirely dependent on the position of the underlying physical model,
not shown in this picture.

Fig. 7. A circular cylinder is moving downward and being cut by a horizontal edge that
remains in the same place. The surface of the cylinder (including the newly-generated
part) properly follows the movement of the underlying physical model.

As a comparison, Fig.8 shows a similar scene, this time where the circular
cylinder is static and the cutting edge is moving upward. One can see that
the resulting cut surface is very similar to that of Fig. 7. The surface generation
method remains identical; the only difference is the sequence and speed at which
triangle edges are intersected.

AL

[N e NN VAV A VAVAVA Yz | VX
VANE o R S A VAT VAV
S Avave %‘a%iﬁ““i?)‘hﬂ
e | kR

N SN &

e AN YA

7 —

Fig. 8. A horizontal cutting edge moves upward in an fixed circular cylinder and cuts it.

Another major advantage of the fully continuous motion modeling is that the
cutting edge will never miss a triangle edge because of their movement between
frames — barring any numerical error. This can occur in many situations, espe-
cially when the blade movement is almost parallel to a surface edge, or when
it undergoes a twisting motion relative to the surface. Figure9 displays such a
situation, where a curved blade is rotating while advancing and cuts a surface
edge that is almost parallel to its local motion.

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 125

|

Fig. 9. Cutting edge (in black) that is curved and that twists as it moves forward.

In a surgery simulation, most simulated objects are more complex than those
shown so far. Our proposed tool representation and surface mapping methodol-
ogy are not affected by the complexity of the model being cut, in theory. The
difficulty lies mostly in how to manage the cuts that are detected. Once the
surface and physical model are cut, the mapping can proceed as with any other
model. Figure 10 presents a brain hemisphere being cut by a slightly curved
blade. This model has many grooves and folds that the blade enters and leaves
simultaneously or at different times. This gives rise to situations where the cut-
ting edge traverses several separate parts of the model in a given frame. Our
method handles these multiple fronts merging and splitting as the blade moves
forward the same way as it does a single front.

Figure 11 shows that a single object may be cut multiple times with the same
tool. In the first image, the cut surface appears to be slightly curved, because the
scene was animated during the cutting operation and the liver was slowly tilting

\

Fig.10. Cutting a more complex model that may appear in a surgical simulation
scenario. The cutting tool is able to deal with the numerous folds present in a human
brain.

126 V. Magnoux and B. Ozell

down as the blade went through it. Figure 11 also shows that the displacement
of the surface remains consistent with the cuts introduced by the tool.

Figure 12 offers a more detailed perspective on how surface vertices are
mapped on the underlying physical model. On the cut surface, it shows that
each mapped vertex is linked to an integration point on its own side of the cut.
That point is generally the closest that fits all mapping criteria, taking the new
cut into account.

Limitations. The correctness of mapping a surface based on the criteria
described in Sect.2 depends greatly on the relative size of the surface mesh

<

Z

Fig. 11. Illustration of a series of cuts in the same object. A slight curve is noticeable
in the first cut and is caused by the movement of the liver under the effect of gravity
while the cut was performed.

Fig.12. A view of the liver cut scenario that displays the integration points (red
crosses) and highlights to which point each vertex is mapped (blue lines). Each vertex
is properly mapped to a point on its own side of the cut (Color figure online).

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 127

and that of the physical model on which it is mapped. The surface mesh must
be at least as dense as the integration point grid. Otherwise, it will not be possi-
ble to find a point near a vertex that is somewhat close to every triangle formed
by that vertex.

A related issue is that of the smallest possible cut in a model. While it is
possible to create and display a surface with an arbitrary level of detail, it is not
possible to cut these details away from the rest of the simulated object if there
are not enough integration elements under them. If a sufficiently small part of
the surface is separated from the rest of the object, it will not be possible to
map it to the underlying physical model. With the scheme used for this research
for distributing particles and integration points, the thinnest part of an object
that can be fully separated from the rest and still be properly mapped is about
the width of two integration elements.

4 Conclusion and Future Work

We have described and demonstrated the use of a dynamic tool representation
that allows to interactively cut a deforming object in a variety of situations: with
a static, moving or deforming tool on a static, moving or deforming surface. We
have also described a method to successfully map the cut surface of the object
on its underlying cut physical model, itself based on a set of particles and a
background mesh.

Together, these two methods lead to a more robust and coherent simulation,
improving the immersion and interactivity of the virtual environment in a sur-
gical setting. This work forms a component that will become part of an existing
simulation system.

That system displays a surgical scene on a 3D screen, offering sufficient
visual immersion for accomplishing tasks on the relatively small work area of
the surgery site. It is also equipped with a haptic device that provides a virtual
surgical tool as the single means through which the user can interact with the
scene. Using that system will enable us to make our method available for testing
by surgeons and will be the subject of future research.

Acknowlegement. This work is funded by the Natural Sciences and Engineering
Research Council (NSERC) under grant 501444-16, in collaboration with OSSimTech.

References

1. Agus, M., Giachetti, A., Gobbetti, E., Zanetti, G., Zorcolo, A.: Real-time hap-
tic and visual simulation of bone dissection. Presence: Teleoper. Virtual Environ.
12(1), 110-122 (2003). https://doi.org/10.1162/105474603763835378

2. Alaraj, A., et al.: Virtual reality cerebral aneurysm clipping simulation with
real-time haptic feedback. Neurosurgery, 1 (2015). https://doi.org/10.1227 /NEU.
0000000000000583

https://doi.org/10.1162/105474603763835378
https://doi.org/10.1227/NEU.0000000000000583
https://doi.org/10.1227/NEU.0000000000000583

128

10.

11.

12.

13.

14.

15.

16.

17.

V. Magnoux and B. Ozell

Brunet, J.N., Magnoux, V., Ozell, B., Cotin, S.: Corotated meshless implicit
dynamics for deformable bodies. In: International Conferences in Central Europe
on Computer Graphics, Visualization and Computer Vision, pp. 91-100. Pilsen,
Czech Republic, May 2019. https://doi.org/10.24132/CSRN.2019.2901.1.11
Cheng, Q., Liu, P.X., Lai, P., Xu, S., Zou, Y.: A novel haptic interactive approach
to simulation of surgery cutting based on mesh and meshless models. J. Healthcare
Eng. 2018, 1-16 (2018). https://doi.org/10.1155/2018/9204949

Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting,
deformations, and force feedback for surgery training and simulation. Vis. Comput.
16(8), 437-452 (2000). https://doi.org/10.1007/PL00007215

Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for sim-
ulating cuts in deformable objects. IEEE Trans. Visual. Comput. Graph. 17(11),
1663-1675 (2011). https://doi.org/10.1109/TVCG.2010.268

Faure, F., et al.: Sofa: a multi-model framework for interactive physical simulation.
In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283—
321. Springer, Heidelberg (2012). https://doi.org/10.1007/8415_2012_125

Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparse meshless models of com-
plex deformable solids. In: ACM SIGGRAPH 2011 Papers. pp. 73:1-73:10. SIG-
GRAPH 2011, ACM, New York, NY, USA (2011). https://doi.org/10.1145/
1964921.1964968

Gutiérrez, L.F., Ramos, F.: XFEM framework for cutting soft tissue including
topological changes in a surgery simulation. In: Proceedings of the International
Conference on Computer Graphics Theory and Applications, pp. 275-283. Angers,
France, January 2010. https://doi.org/10.5220,/0002836402750283

Holgate, N., Joldes, G.R., Miller, K.: Efficient visibility criterion for discontinuities
discretised by triangular surface meshes. Eng. Anal. Boundary Elements 58, 1-6
(2015). https://doi.org/10.1016/j.enganabound.2015.02.014

Jerdbkova, L., Bousquet, G., Barbier, S., Faure, F., Allard, J.: Volumetric modeling
and interactive cutting of deformable bodies. Progress Biophys. Molecular Biol.
103(2-3), 217-224 (2010). https://doi.org/10.1016/j.pbiomolbio.2010.09.012

Jia, S.-Y., Pan, Z.-K., Wang, G.-D., Zhang, W.-Z., Yu, X.-K.: Stable real-time
surgical cutting simulation of deformable objects embedded with arbitrary trian-
gular meshes. J. Comput. Sci. Technol. 32(6), 1198-1213 (2017). https://doi.org/
10.1007/s11390-017-1794-7

Jung, H., Lee, D.Y.: Real-time cutting simulation of meshless deformable object
using dynamic bounding volume hierarchy. Comput. Animat. Virt. Worlds 23(5),
489-501 (2012). https://doi.org/10.1002/cav.1485

Kim, Y., et al.: Deformable mesh simulation for virtual laparoscopic cholecys-
tectomy training. Vis. Comput. 31(4), 485-495 (2014). https://doi.org/10.1007/
s00371-014-0944-3

Li, S., Zhao, Q., Wang, S., Hao, A., Qin, H.: Interactive deformation and cut-
ting simulation directly using patient-specific volumetric images. Comput. Animat.
Virt. Worlds 25(2), 155-169 (2014). https://doi.org/10.1002/cav.1543

Li, Y., et al.: Surface embedding narrow volume reconstruction from unorganized
points. Comput. Vis. Image Understand. 121, 100-107 (2014). https://doi.org/10.
1016/j.cviu.2014.02.002

Luo, J., Xu, S., Jiang, S.: A novel hybrid rendering approach to soft tissue cutting
in surgical simulation. In: 2015 8th International Conference on Biomedical Engi-
neering and Informatics (BMEI), pp. 270-274, October 2015. https://doi.org/10.
1109/BMEI.2015.7401514

https://doi.org/10.24132/CSRN.2019.2901.1.11
https://doi.org/10.1155/2018/9204949
https://doi.org/10.1007/PL00007215
https://doi.org/10.1109/TVCG.2010.268
https://doi.org/10.1007/8415_2012_125
https://doi.org/10.1145/1964921.1964968
https://doi.org/10.1145/1964921.1964968
https://doi.org/10.5220/0002836402750283
https://doi.org/10.1016/j.enganabound.2015.02.014
https://doi.org/10.1016/j.pbiomolbio.2010.09.012
https://doi.org/10.1007/s11390-017-1794-z
https://doi.org/10.1007/s11390-017-1794-z
https://doi.org/10.1002/cav.1485
https://doi.org/10.1007/s00371-014-0944-3
https://doi.org/10.1007/s00371-014-0944-3
https://doi.org/10.1002/cav.1543
https://doi.org/10.1016/j.cviu.2014.02.002
https://doi.org/10.1016/j.cviu.2014.02.002
https://doi.org/10.1109/BMEI.2015.7401514
https://doi.org/10.1109/BMEI.2015.7401514

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Dynamic Cutting of a Meshless Model for Interactive Surgery Simulation 129

Luo, R., Xu, W., Wang, H., Zhou, K., Yang, Y.: Physics-based quadratic deforma-
tion using elastic weighting. IEEE Trans. Visual. Comput. Graph. 24(12), 3188-
3199 (2018). https://doi.org/10.1109/TVCG.2017.2783335

Magnoux, V., Ozell, B.: Real-time visual and physical cutting of a meshless model
deformed on a background grid. Comput. Animat. Virt. Worlds, €1929 (2014).
https://doi.org/10.1002/cav.1929

Malukhin, K., Ehmann, K.: Mathematical modeling and virtual reality simulation
of surgical tool interactions with soft tissue: a review and prospective. J. Eng. Sci.
Med. Diagnost. Therapy 1(2), 020802 (2018). https://doi.org/10.1115/1.4039417
Mor, A.B., Kanade, T.: Modifying soft tissue models: progressive cutting with
minimal new element creation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.)
Medical Image Computing and Computer-Assisted Intervention - MICCAI 2000,
pp. 598-607. Lecture Notes in Computer Science, Springer, Heidelberg (Oct 2000).
https://doi.org/10.1007/978-3-540-40899-4_61

Miiller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based
animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM
SIGGRAPH /Eurographics Symposium on Computer Animation, pp. 141-151.
SCA 2004, Eurographics Association, Aire-la-Ville, Switzerland (2004). https://
doi.org/10.1145/1028523.1028542

Nakao, M., Minato, K., Kume, N.; Mori, S.i., Tomita, S.: Vertex-preserving cutting
of elastic objects. In: 2008 IEEE Virtual Reality Conference, pp. 277-278, March
2008. https://doi.org/10.1109/VR.2008.4480799

Nienhuys, H.-W.: Cutting in deformable objects. Utrecht University Repository
(2003). http://dspace.library.uu.nl/handle/1874/882

Pan, J., Yan, S., Qin, H., Hao, A.: Real-time dissection of organs via hybrid cou-
pling of geometric metaballs and physics-centric mesh-free method. Vis. Comput.
34(1), 105-116 (2016). https://doi.org/10.1007/s00371-016-1317-x

Peng, Y., Li, Q., Yan, Y., Wang, Q.: Real-time deformation and cutting simulation
of cornea using point based method. Multimedia Tools Appl. 78(2), 2251-2268
(2018). https://doi.org/10.1007/s11042-018-6343-4

Provot, X.: Collision and self-collision handling in cloth model dedicated to design
garments. In: Thalmann, D., van de Panne, M. (eds.) Computer Animation and
Simulation 1997. pp. 177-189. Eurographics, Springer, Vienna (1997). https://doi.
org/10.1007/978-3-7091-6874-5_13

Qian, K., Jiang, T., Wang, M., Yang, X., Zhang, J.: Energized soft tissue dissection
in surgery simulation. Comput. Animat. Virt. Worlds 27(3-4), 280-289 (2016).
https://doi.org/10.1002/cav.1691

Seiler, M., Steinemann, D., Spillmann, J., Harders, M.: Robust interactive cutting
based on an adaptive octree simulation mesh. The Visual Computer 27(6-8), 519
529 (2011). https://doi.org/10.1007/s00371-011-0561-3

Shi, W., Liu, P.X., Zheng, M.: Cutting procedures with improved visual effects
and haptic interaction for surgical simulation systems. Comput. Methods Prog.
Biomed. 184, 105270 (2020). https://doi.org/10.1016/j.cmpb.2019.105270

Si, W., Lu, J., Liao, X., Wang, Q.: Towards interactive progressive cutting
of deformable bodies via phyxel-associated surface mesh approach for virtual
surgery. IEEE Access 6, 32286-32299 (2018). https://doi.org/10.1109/ACCESS.
2018.2845901

Steinemann, D., Otaduy, M.A., Gross, M.: Splitting meshless deforming objects
with explicit surface tracking. Graph. Models 71(6), 209-220 (2009). https://doi.
org/10.1016/j.gmod.2008.12.004

https://doi.org/10.1109/TVCG.2017.2783335
https://doi.org/10.1002/cav.1929
https://doi.org/10.1115/1.4039417
https://doi.org/10.1007/978-3-540-40899-4_61
https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1109/VR.2008.4480799
http://dspace.library.uu.nl/handle/1874/882
https://doi.org/10.1007/s00371-016-1317-x
https://doi.org/10.1007/s11042-018-6343-4
https://doi.org/10.1007/978-3-7091-6874-5_13
https://doi.org/10.1007/978-3-7091-6874-5_13
https://doi.org/10.1002/cav.1691
https://doi.org/10.1007/s00371-011-0561-3
https://doi.org/10.1016/j.cmpb.2019.105270
https://doi.org/10.1109/ACCESS.2018.2845901
https://doi.org/10.1109/ACCESS.2018.2845901
https://doi.org/10.1016/j.gmod.2008.12.004
https://doi.org/10.1016/j.gmod.2008.12.004

130

33.

34.

35.

36.

37.

V. Magnoux and B. Ozell

Tai, Y., et al.: Development of haptic-enabled virtual reality simulator for video-
assisted thoracoscopic right upper lobectomy. In: 2018 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pp. 3010-3015. IEEE, Miyazaki,
Japan, October 2018. https://doi.org/10.1109/SMC.2018.00511

Wu, J., Westermann, R., Dick, C.: Real-time haptic cutting of high-resolution
soft tissues. In: Studies in Health Technology and Informatics (Proceedings of the
Medicine Meets Virtual Reality 2014) vol. 196, pp. 469-475 (2014). https://doi.
org/10.3233/978-1-61499-375-9-469

Wu, J., Westermann, R., Dick, C.: A survey of physically based simulation of cuts
in deformable bodies. In: Computer Graphics Forum, vol. 34, pp. 161-187. Wiley
Online Library (2015). http://onlinelibrary.wiley.com/doi/10.1111/cgf.12528 /full
Zerbato, D., Fiorini, P.: A unified representation to interact with simulated
deformable objects in virtual environments. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2710-2717, May 2016. https://doi.
org/10.1109/ICRA.2016.7487432

Zou, Y., Liu, P.X., Wu, D., Yang, X., Xu, S.: Point primitives based virtual surgery
system. IEEE Access 7, 46306-46316 (2019). https://doi.org/10.1109/ACCESS.
2019.2909061

https://doi.org/10.1109/SMC.2018.00511
https://doi.org/10.3233/978-1-61499-375-9-469
https://doi.org/10.3233/978-1-61499-375-9-469
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12528/full
https://doi.org/10.1109/ICRA.2016.7487432
https://doi.org/10.1109/ICRA.2016.7487432
https://doi.org/10.1109/ACCESS.2019.2909061
https://doi.org/10.1109/ACCESS.2019.2909061

	Dynamic Cutting of a Meshless Model pgfor Interactive Surgery Simulation
	1 Introduction
	1.1 Background and Related Work
	1.2 Contributions

	2 Method
	2.1 Tool Representation and Collision Detection
	2.2 Surface Mapping and Remapping
	2.3 Dynamic Simulation

	3 Results
	4 Conclusion and Future Work
	References

