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Abstract. We address the challenging task of anticipating human-
object interaction in first person videos. Most existing methods either
ignore how the camera wearer interacts with objects, or simply consid-
ers body motion as a separate modality. In contrast, we observe that
the intentional hand movement reveals critical information about the
future activity. Motivated by this observation, we adopt intentional hand
movement as a feature representation, and propose a novel deep net-
work that jointly models and predicts the egocentric hand motion, inter-
action hotspots and future action. Specifically, we consider the future
hand motion as the motor attention, and model this attention using
probabilistic variables in our deep model. The predicted motor atten-
tion is further used to select the discriminative spatial-temporal visual
features for predicting actions and interaction hotspots. We present
extensive experiments demonstrating the benefit of the proposed joint
model. Importantly, our model produces new state-of-the-art results for
action anticipation on both EGTEA Gaze+ and the EPIC-Kitchens
datasets. Our project page is available at https://aptx4869lm.github.
io/ForecastingHOI/.

Keywords: First Person Vision · Action anticipation · Motor
attention

1 Introduction

The human ability of “looking into the near future” remains a key challenge for
computer vision. Consider the example in Fig. 1, given a video shortly before
the start of an action, we can easily predict what will happen next, e.g., the
person will take the canister of salt. Even without seeing any future frames, we
can vividly imagine how the person will perform the action, e.g., the trajectory
of the hand when reaching for the canister or the location on the canister that
will be grasped.
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Fig. 1. What is the most likely future interaction? Our model takes advantage of the
connection between motor attention and visual perception. In addition to future action
label, our model also predicts the interaction hotspots on the last observable frame and
hand trajectory (in the order of yellow, green, cyan, and magenta) between the last
observable time step to action starting point. Visualizations of hand trajectory are
projected to the last observable frame (best viewed in color). (Color figure online)

There is convincing evidence that our remarkable ability to forecast other
individuals’ actions depends critically upon our perception and interpretation
of their body motion. The investigation of this anticipatory mechanism dates
back to 19th century, when William James argued that future expectations are
intrinsically related to purposive body movements [25]. Additional evidence for
a link between perceiving and performing actions was provided by the discovery
of mirror neurons [8,20]. The observation of others’ actions activates our motor
cortex, the same brain regions that are in charge of the planning and control of
intentional body motion. This activation can happen even before the onset of the
action and is highly correlated with the anticipation accuracy [1]. A compelling
explanation from [45] suggests that motor attention, i.e., the active prediction of
meaningful future body movements, serves as a key representation for anticipa-
tion. A goal of this work is to develop a computational model for motor attention
that can enable more accurate action prediction.

Despite these relevant findings in cognitive neuroscience, the role of inten-
tional body motion in action anticipation is largely ignored by the existing liter-
ature [11,13,15,16,27,28,38,56]. In this work, we focus on the problem of fore-
casting human-object interactions in First Person Vision (FPV). Interactions
consist of a single verb and one or more nouns, with “take bowl” as an example.
FPV videos capture complex hand movements during a rich set of interactions,
thus providing a powerful vehicle for studying the connection between motor
attention and future representation. Several previous works have investigated
the problems of FPV activity anticipation [13,15] and body movement predic-
tion [2,12,19,57]. We believe we are the first to utilize a motor attention model
for FPV action anticipation.

To this end, we propose a novel deep model that predicts “motor attention”—
the future trajectory of the hands, as an anticipatory representation of actions.
Based on motor attention, our model further localizes the future contact region
of the interaction, i.e., interaction hotspots [39] and recognizes the type of
future interactions. Importantly, we characterize motor attention and interac-
tion hotspots as probabilistic variables modeled by stochastic units in a deep
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network. These units naturally deal with the uncertainty of future hand motion
and contact region during interaction, and produce attention maps that highlight
discriminative spatial-temporal features for action anticipation.

During inference, our model takes video clips shortly before the interaction
as inputs, and jointly predicts motor attention, interaction hotspots, and action
labels. During training, our model assumes that these outputs are available as
supervisory signals. To evaluate our model, we report results on two major FPV
benchmarks: EGTEA Gaze+ and EPIC-Kitchens. Our approach outperforms
prior state-of-the-art methods by a significant margin. In addition, we conduct
extensive ablation studies to verify the design of our model and evaluate our
model for motor attention prediction and interaction hotspots estimation. Our
model demonstrates strong results for both tasks. We believe our model provides
a solid step towards the challenge of FPV visual anticipation.

2 Related Works

There has recently been substantial interest in learning to forecast future events
in videos. The most relevant works to ours are those investigations on FPV
action anticipation. Our work is also related to previous studies on third person
action anticipation, other visual prediction tasks, and visual affordance.

FPV Action Anticipation. Action anticipation aims at predicting an action
before it happens. We refer the readers to a recent survey [30] for a distinction
between action recognition and anticipation. FPV action recognition has been
studied extensively [10,32,34,36,41,42,46,63], while fewer works have targeted
egocentric action anticipation. Shen et al. [49] investigated how different ego-
centric modalities affect the action anticipation performance. Soran et al. [52]
adopted Hidden Markov Model to compute the transition probability among
sequences of actions. A similar idea was explored in [38]. Furnari et al. [13] con-
sidered the task of predicting the next-active objects. Their recent work [15]
proposed to factorize the anticipation model into a “Rolling” LSTM that sum-
marizes the past activity and an “Unrolling” LSTM that makes hypotheses of
the future activity. Ke et al. [28] proposed a time-conditioned skip connection
operation to extract relevant information for action anticipation. In contrast to
our proposed method, these prior works did not exploit the connection between
human motor attention and visual perception, and did not explicitly model the
contact region during human-object interaction.

Third Person Action Anticipation. Several previous efforts seek to address
the task of action anticipation in third person vision. Kris et al. [29] combined
semantic scene labeling with a Markov decision process to forecast the behav-
ior and trajectory of a subject. Vondrick et al. [56] proposed to predict the
future video representation from large scale unlabeled video data. Gao et al. [16]
proposed a Reinforced Encoder-Decoder network to create a summary represen-
tation of past frames and produce a hypothesis of future action. Kataoka et al.
[27] introduced a subtle motion descriptor to identify the difference between an
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on-going action and a transitional action, and thereby facilitate future antici-
pation. Our work shares the same goal of future forecasting, but we focus on
leveraging abundant visual cues from egocentric videos for action anticipation.

Other Prediction Tasks. Anticipation has been studied under other vision
tasks. In particular, human body motion prediction has been extensively stud-
ied [12,19,40,55,57,58], including recent work in the setting of FPV. Rhinehart
et al. [44] proposed an online learning algorithm to forecast the first-person
trajectory. Park et al. [51] proposed a deep network to infer possible human
trajectories from egocentric stereo images. Wei et al. [61] utilized a probabilistic
model to infer 3D human attention and intention. Tagi et al. [62] addressed a
novel task of predicting the future locations of an observed subject in egocen-
tric videos. Ryoo et al. [47] proposed a novel method to summarize pre-activity
observations for robot-centric activity prediction. However, none of these previ-
ous work considered modeling body movement for action anticipation.

Visual Affordance. The problem of predicting visual affordances has attracted
growing interest in computer vision. Affordance can be helpful for scene under-
standing [7,18,59], human-object interaction recognition [53], and action anal-
ysis [31,43]. Several recent works have focused on estimating visual affordances
that are grounded on human object interaction. Chen et al. [5] proposed to esti-
mate likely object interaction regions by learning the connection between subject
and object. Fang et al. [9] proposed to estimate interaction regions by learning
from demonstration videos. However, none of these previous works considered
future prediction. More recently, Tushar et al. [39] introduced an unsupervised
learning method that uses the backward attention map to approximate the inter-
action hotspots grounded on a future action. However, their method did not
model the presence of objects and thus can not be used to anticipate human-
object interactions. However, we compare to their results for interaction hotspot
estimation in our experiments.

3 Method

We consider the setting of action anticipation from [6]. Denote an input video
segment as x : [τa − Δτo, τa]. x starts at τa − Δτo and ends at τa with duration
Δτo > 0 as the “observation time”. Our goal is to predict the label y of an
immediate future interaction starting at τs = τa +Δτa, where Δτa > 0 is a fixed
interval known as the “anticipation time.” Moreover, we seek to estimate future
hand trajectories M within [τa, τs] (projected back to the last observable frame
at τa), and to localize interaction hotspots A at τa (the last observable frame).
Figure 1 illustrates our setting.

To summarize, our model seeks to anticipate the future action y by jointly
predicting the future hand trajectory M and interaction hotspots A at the last
observable frame. Predicting the future is fundamentally ambiguous, since the
observation of future interaction only represents one of the many possibilities
characterized by an underlying distribution. Our key idea is thus to model motor
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Fig. 2. Overview of our model. A 3D convolutional network φ(x) is used as our back-
bone network, with features from its ith convolution block as φi(x) (a). A motor atten-
tion module (b) makes use of stochastic units to generate sampled future hand tra-
jectories M̃ used to guide interaction hotspots estimation in module (c). Module (c)
further generates sampled interaction hotspots Ã with a similar stochastic units as in
module (b). Both M̃ and Ã are used to guide action anticipation in anticipation mod-
ule (d). During testing, our model takes only video clips as inputs, and predicts motor
attention, interaction hotspots, and action labels. Note that ⊗ represents element-wise
multiplication for weighted pooling.

attention and interaction hotspots as probabilistic variables in order to account
for their uncertainty. We present an overview of our model in Fig. 2.

Specifically, we make use of a 3D backbone network φ(x) for video repre-
sentation learning. Following the approach in [21,50], we utilize 5 convolutional
blocks, and denote the features from the ith convolution block as φi(x). Based on
φ(x), our motor attention module (b) predicts future hand trajectories as motor
attention M and uses stochastic units to sample from M. The sampled motor
attention M̃ is an indicator of important spatial-temporal features for interac-
tion hotspot estimation. Our interaction hotspot module (c) further produces
an interaction hotspot distribution A and its sample Ã. Finally, our anticipation
module (d) makes use of both M̃ and Ã to aggregate network features, and
predicts the future interaction y.

3.1 Joint Modeling of Human-Object Interaction

Formally, we consider motor attention M and interaction hotspots A as proba-
bilistic variables, and model the conditional probability of the future action label
y given the input video x as a latent variable model, where

p(y|x) =

∫
M

∫
A

p(y|A, M, x)p(A|M, x)p(M|x) dA dM, (1)

p(M|x) first estimates motor attention from video input x. M is further used
to estimate interaction hotspots A (p(A|M, x)). Given x, M and A, the action
label y is determined by p(y|A,M, x). Our model thus consists of three main
components.
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Motor Attention Module tackles p(M|x). Given the network features φ2(x),
our model uses a function FM to predict motor attention M. M is represented
as a 3D tensor of size Tm × Hm × Wm. Moreover, M is normalized within each
temporal slice, i.e.,

∑
w,h M(t, w, h) = 1.

Interaction Hotspots Module targets at p(A|M, x). Our model uses a func-
tion FA to estimate the interaction hotspots A based on the network feature
φ3(x) and sampled motor attention M̃. A is represented as a 2D attention map
of size Ha × Wa. A further normalization constrained that

∑
w,h A(w, h) = 1.

Anticipation Module makes use of the predicted motor attention and inter-
action hotspots for action anticipation. Specifically, sampled motor attention
M̃ and sampled interaction hotspots Ã are used to aggregate feature φ5(x) via
weighted pooling. An action anticipation function FP further maps the aggre-
gated features to future action label y.

3.2 Motor Attention Module

Motor Attention Generation. The motor attention prediction function FM

is composed of a linear function with parameter WM on top of network fea-
tures φ2(x). The linear function is realized by a 3D convolution and a soft-
max function is used to normalized the attention map. This is given by ψ =
softmax(WT

Mφ2(x)), where the output ψ is a 3D tensor of size Tm ×Hm ×Wm.
We further model p(M|x) by normalizing ψ within each temporal slice:

Mm,n,t =
ψm,n,t∑
m,n ψm,n,t

, (2)

where ψm,n,t is the value at location (m,n) and time step t in the 3D tensor of
ψ. And M can be considered as the expectation of p(M|x).

Stochastic Modeling. Modeling motor attention in the context of forecast-
ing human-object interaction requires a mechanism for addressing the stochastic
nature of motor attention in developing the joint model. Here, we propose to use
stochastic units to model the uncertainty. The key idea is to sample from the
motor attention distribution. We follow the Gumbel-Softmax and reparameteri-
zation trick introduced in [26,37] to design a differentiable sampling mechanism:

M̃m,n,t ∼ exp((log ψm,n,t + Gm,n,t)/θ)∑
m,n exp((log ψm,n,t + Gm,n,t)/θ)

, (3)

where G is a Gumbel Distribution used to sample from discrete distribution. This
Gumbel-Softmax trick produces a “soft” sampling step that allows the direct
back-propagation of gradients to ψ. θ is the temperature parameter that controls
the “sharpness” of the distribution. We set θ = 2 for all of our experiments.
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3.3 Interaction Hotspots Module

The predicted motor attention M is further used to guide interaction hotspots
estimation p(A|x) by considering the conditional probability

p(A|x) =

∫
M

p(A|M, x)p(M|x)dM. (4)

In practice, p(A|x) is estimated using sampled motor attention M̃ based on
p(A|M̃, x) and p(M̃|x). For each sample M̃, p(A|M̃, x) is defined by the inter-
action hotspots estimation function FA. FA takes the input of a motor attention
map M̃ and φ3(x), and has the form of a linear 2D convolution parameterzied
by WA followed by a softmax function.

p(A|M̃, x) = softmax
(
WT

A (M̃ ⊗ φ3(x))
)

, (5)

where ⊗ is the Hadamard product (element-wise multiplication). The result
p(A|M, x) is a 2D map of size Ha × Wa. Intuitively, M̃ presents a spatial-
temporal saliency map to highlight feature representation φ3(x). FA thus nor-
malizes (using softmax) the output of a linear model on the selected features
M̃ ⊗ φ3(x), and is a convex function. Finally, a similar sampling mechanism as
in Eq. 3 can be used to sample Ã from p(A|x).

3.4 Anticipation Module

We now present the last piece of our model—the action anticipation module. The
action anticipation function p(y|A,M, x) = FP (A,M, x) is defined as a function
of the sampled motor attention map (3D) M̃, sampled interaction heatmap (2D)
Ã and the network feature φ5(x). This is given by

p(y|Ã, M̃, x) = softmax
(
WT

P Σ
(
M̃ ⊗ φ5(x)

)
+ WT

P Σ
(
Ã � φ5(x)

))
, (6)

where ⊗ is again the Hadamard product. Σ is the global average pooling oper-
ation that pools a vector representation from a 2D or 3D feature map. � is to
use a 2D map (Ã) to conduct Hadamard product to the last temporal slice of a
3D tensor φ5(x). This is because the interaction hotspots Ã is only defined on
the last observable frame. WP is a linear function that maps the features into
prediction logits. FP is a combination of linear operations followed by a softmax
function, and thus remains a convex function.

3.5 Training and Inference

Training our proposed joint model is challenging, as p(M|x) and p(A|M, x) are
intractable. Fortunately, variational inference comes to the rescue.

Prior Distribution. During training, we assume that reference distributions
of future hand position Q(M|x) and interaction hotspots Q(A|x) are known in
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prior. These distributions can be derived from manual annotation of 2D finger-
tips and interaction hotspots, as we will describe in Sect. 4.1. A 2D isotropic
Gaussian is further applied to the annotated 2D points, leading to the distribu-
tions of Q(M|x) and Q(A|x). If annotations are not available, we adopt uniform
distributions for both Q(M|x) and Q(A|x).

Variational Learning. Our proposed model seeks to jointly predict motor
attention M, interaction hotspots A, and the action label y. Therefore, we inject
the posterior p(A,M|x) into p(y|x). We further assume p(A,M|x) can be fac-
torized into p(A|x) and p(M|x) (see supplementary materials for details). Our
model thereby optimizes the resulting latent variable model by maximizing the
Evidence Lower Bound (ELBO), given by1

log p(y|x) ≥Ep(A,M|x)[log p(y|A, M, x)] − log(p(A, M|x))]

=
∑
A,M

log p(y|A, M, x) − KL[p(A|x)||Q(A|x)] − KL[p(M|x)||Q(M|x)].

(7)

Therefore, the loss function L is given by

L = −
∑
A,M

log p(y|A, M, x) + KL[p(A|x)||Q(A|x)] + KL[p(M|x)||Q(M|x)]. (8)

The first term in the loss function is the cross entropy loss for action anticipa-
tion. The last two terms use KL-Divergence to align the predicted distributions
of motor attention p(M|x) and interaction hotspots p(A|x) to their reference
distributions (Q(M|x) and Q(A|x)). To make the training practical, we draw
a single sample for each input within a mini-batch similar to [26,37]. Multiple
samples of the same input will be drawn at different iterations.

Approximate Inference. At inference time, our model could have drawn many
samples of motor attention M̃ and interaction hotspots Ã for the anticipation.
However, the sampling and averaging is computationally expensive. We choose
to feed deterministic M and A into Eq. 5 and Eq. 6 at inference time. Note that
FA and FP are convex, since they are composed of linear mapping function and
softmax function. By Jensen’s inequality, we have

E[FA(M̃, x)] ≥ FA(E[M̃], x) = FA(M, x), (9)

E[FP (Ã, M̃, x)] ≥ FP (E[Ã], E[M̃], x) = FP (A, M, x) (10)

Therefore, such approximation provides a valid lower bound of E[FP (Ã,M̃, x)]
and E[FA(M̃, x)], and serves as a shortcut to avoid sampling during testing.

3.6 Network Architecture

We consider two different backbone networks for our model, including lightweight
I3D-Res50 network [4,60] pre-trained on Kinetics and heavy CSN-152 [54] net-
work pre-trained on IG-65M [17]. We use I3D-Res50 for our ablation study on
1 See supplementary material for the derivation.
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EGTEA and EPIC-Kitchens, and report results using CSN-152 backbone when
competing on the EPIC-Kitchens dataset. Both networks have five convolutional
blocks. The motor attention module, the interaction hotspots module and the
recognition module are attached to the 2nd, the 3rd and the 5th block, respec-
tively. We use 3D max pooling to match the size of attention map to the size of
the feature map in Eq. 5 and Eq. 6. For training, our model takes an input of 32
frames (every other frame from a 64-frame chunk) with a resolution of 224×224.
For inference, our model samples 30 clips from a video (3 along width of frame
and 10 in time). Each clip has 32 frames with a resolution of 256 × 256. We
average the scores of all sampled clips for video level prediction. Other imple-
mentation details will be discussed in the experiments.

4 Experiments

We now present our experiments and results. We briefly introduce our implemen-
tation details and describe the datasets and annotations. Moreover, we present
our results on EPIC-Kitchens action anticipation challenge, followed by ablation
studies that further evaluate our model on interaction hotspot estimation and
motor attention prediction. Finally, we provide a discussion of our method.

Implementation Details. Our model is trained using SGD with momentum
0.9 and batch size 64 on 4 GPUs. The initial learning rate is 2.5e−4 with cosine
decay. We set weight decay to 1e−4 and enable batch norm [24]. We downsample
all frames to 320 × 256 (24 fps) for EGTEA, and 512 × 288 (30 fps) for EPIC-
Kitchens. We apply several data augmentation techniques, including random
flipping, rotation, cropping and color jittering to avoid overfitting.

4.1 Datasets and Annotations

Datasets. We make use of two FPV datasets: EGTEA Gaze+ [32,33] and
Epic-Kitchens [6]. EGTEA comes with 10, 321 action instances from 19/53/106
verb/noun/action classes. We report results on the first split of the dataset.
EPIC-Kitchens contains 39, 596 instances from 125 verbs and 352 nouns. We fol-
low [15] to split the public training set into training and validation sets with 2513
action classes. We conduct ablation studies on this train/val split, and present
the action anticipation results on the testing sets. We set the anticipation time
as 0.5 s for EGTEA and 1 s [6] for EPIC-Kitchens.

Annotations. Our model requires supervisory signals of interaction hotspots
and hand trajectories during training. We provide extra annotations for both
EGTEA and EPIC-Kitchens datasets. These annotations will be made pub-
licly available. Specifically, we manually annotated interaction hotspots as 2D
points on the last observable frames for all instances on EGTEA and a sub-
set of instances on EPIC-Kitchens. This is because many noun labels in Epic-
Kitchens have very few instances, hence we focus on interaction hotspots of
action instances that include many-shot nouns [6] in the training set.
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Moreover, we explore different approaches to generate the pseudo ground
truth of future hand trajectories. On EGTEA, we trained a hand segmenta-
tion model ([35] using hand masks from the dataset). The motor attention was
approximated by segmenting hands at every frame and tracking the fingertip
closest to an active object. To mitigate ego-motion, we used optical flow and
RANSAC to compute a homography transform, and project the motor attention
to the last observable frame. As EPIC-Kitchens does not provide hand masks,
we instead annotated the fingertip closest to an interaction hotspots on the last
observable frame. A linear interpolation of 2D motion between the fingertip and
the interaction hotspots was used to approximate the motor attention.

4.2 FPV Action Anticipation on EPIC-Kitchens

We highlight our results for FPV action anticipation on EPIC-Kitchens dataset.

Table 1. Action anticipation results on Epic-Kitchens. Ours+Obj model outperforms
state-of-the-art by a notable margin. See discussions of Ours+Obj in Sect. 4.2.

Method Top1/Top5 accuracy

Verb Noun Action

s1 2SCNN [6] 29.76/76.03 15.15/38.65 4.32/15.21

TSN [6] 31.81/76.56 16.22/42.15 6.00/18.21

TSN+MCE [14] 27.92/73.59 16.09/39.32 10.76/25.28

Trans R(2+1)D [38] 30.74/76.21 16.47/42.72 9.74/25.44

RULSTM [15] 33.04/79.55 22.78/50.95 14.39/33.73

Ours 34.99/77.05 20.86/46.45 14.04/31.29

Ours+Obj 36.25/79.15 23.83/51.98 15.42/34.29

s2 2SCNN [6] 25.23/68.66 9.97/27.38 2.29/9.35

TSN [6] 25.30/68.32 10.41/29.50 2.39/9.63

TSN+MCE [14] 21.27/63.66 9.90/25.50 5.57/25.28

Trans R(2+1)D [38] 28.37/69.96 12.43/32.20 7.24/19.29

RULSTM [15] 27.01/69.55 15.19/34.38 8.16/21.20

Ours 28.27/70.67 14.07/34.35 8.64/22.91

Ours+Obj 29.87/71.77 16.80/38.96 9.94/23.69

Experiment Setup. To compete for EPIC-Kitchens anticipation challenge, we
used the backbone network CSN152. We trained our model on the public training
set and report results using top-1/5 accuracy as in [6].

Results. Table 1 compares our results to latest methods on EPIC-Kitchens.
Our model outperforms strong baselines (TSN and 2SCNN) reported in [6]
by a large margin. Compared to previous best results from RULSTM [15],



714 M. Liu et al.

our model archives +2%/−1.9%/−0.3% for verb/noun/action on seen set, and
+1.3%/−1.1%/+0.6% on unseen set of EPIC-Kitchens. Our results are better
for verb, worse for noun and comparable or better for actions. Notably, RULSTM
requires object boxes & optical flow for training and object features & optical
flow for testing. In contrast, our method uses hand trajectories and interaction
hotspots for training and needs only RGB frames for testing.

To further improve the performance, we fuse the object stream from RUL-
STM with our model (Ours+Obj). Compared to RULSTM, Ours+Obj has
a performance gain of +3.2%/+2.9% for verb, +1.1%/+1.6% for noun, and
+1.0%/+1.8% for action (seen/unseen). It is worthy pointing out that RUL-
STM benefits from an extra flow network, while ours+Obj model takes addi-
tional supervisory signals of hands and hotspots. Note that our performance
boost does not simply come from those extra annotations. In a subsequent abla-
tion study, we have shown that simply training with these extra annotations has
minor improvement, when used without our proposed probabilistic deep model.

We note that it is not possible to make a direct apples-to-apples comparison
between our model and RULSTM [15], as the two models used vastly different
training signals. We refer readers to the supplementary materials for a detailed
experiment setup comparison. In terms of performance, our model is comparable
to RULSTM without using any side information for inference. When using addi-
tional object stream during inference as in RULSTM, our model outperforms
RULSTM by a relative improvement of 7%/22% on seen/unseen set. More

Table 2. Ablation study for action anticipation. We compare our model with backbone
I3D network, and further analyze the role of motor attention prediction, interaction
hotspots estimation, and stochastic units in joint modelling. See discussions in Sect. 4.3.

Method EGTEA Epic-Kitchens

Top1 accuracy/Mean Cls accuracy Top1 accuracy/Top5 accuracy

Verb Noun Action Verb Noun Action

I3D-Res50 48.01/31.25 42.11/30.01 34.82/23.20 30.06/76.86 16.07/41.67 9.60/24.29

JointDet 48.58/32.21 43.95/31.26 35.69/23.59 30.16/76.86 16.25/41.71 9.76/24.40

Hotspots Only 47.95/31.94 44.02/32.53 35.50/23.82 30.21/75.93 16.57/42.28 9.66/24.33

Motor Only 49.35/32.34 45.69/33.93 36.49/25.13 30.63/76.69 17.28/42.56 10.21/25.32

Ours 48.96/32.48 45.50/32.73 36.60/25.30 30.65/76.53 17.40/42.60 10.38/25.48

Table 3. Ablation study for interaction hotspots estimation. Jointly modeling motor
attention with stochastic units can greatly benefit the performance of interaction
hotspots estimation. (↑/↓ indicates higher/lower is better) See discussions in Sect. 4.3.

Method EGTEA Epic-Kitchens

Prec ↑ Recall ↑ F1 ↑ KLD ↓ Prec ↑ Recall ↑ F1 ↑ KLD ↓
I3DHeatmap 12.82 37.53 19.11 2.66 17.20 77.39 28.15 3.07

JointDet 16.11 41.82 23.26 1.84 17.32 85.79 28.83 2.21

Ours 17.43 48.81 25.69 1.62 17.86 86.59 29.60 1.99
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importantly, our model also provides the additional capabilities of predicting
future hand trajectories and estimating interaction hotspots.

4.3 Ablation Study

We present ablation studies of our model. We introduce our experiment setup,
evaluate each component of our model, and then contrast our method to a series
of baselines on motor attention prediction and interaction hotspot estimation

Experiment Setup. For all of our ablation studies, we adopt the lightweight
I3D-Res50 [60] as backbone network to reduce computational cost. Our model
is evaluated for action anticipation, motor attention prediction and interaction
hotspots estimation across EGTEA (using split1) and EPIC-Kitchens (using the
train/val split from [15]). Specifically, we consider the following metrics.

– Action Anticipation. We report Top1/Mean Class accuracy on EGTEA as
in [34] and Top1/Top5 accuracy as on EPIC-Kitchens following [15].

– Interaction Hotspots Estimation. We report F1 score as in [32] and KL-
Divergence (KLD) as in [39] using a downsampled heatmap (32x) at the last
observable frame.

– Motor Attention Prediction. We report the average and final displace-
ment errors between the most confident location on a predicted attention map
and the ground-truth hand points, similar to previous work on trajectory pre-
diction [3]. Note that the motor attention maps is downsampled by a factor
of 32/8 in space/time. Hence, we report displacement errors normalized in
spatial and temporal dimension.

Benefits of Joint Modeling. As a starting point, we compare our model with
a backbone I3D-Res50 model. We present the results of action anticipation in
Table 2. In comparison to I3D-Res50, our model improves noun and action pre-
diction by +3.4%/1.8% on EGTEA and +1.3%/0.8% on EPIC-Kitchens. More-
over, we show that our model improves the performance of interaction hotspots
estimation. We consider the baseline I3D model that only estimates interaction
region with interaction hotspots module as I3DHeatmap. As shown in Table 3,
our model improves the F1 score by 6.6%/1.5% on EGTEA/EPIC-Kitchens.

Stochastic Modeling vs. Deterministic Modeling. We further evaluate the
benefits of probabilistic modeling of motor attention and interaction hotspots.
To this end, we compare our model with a deterministic joint model (Joint-
Det). JointDet has the same architecture as our model, except for the stochas-
tic units. As shown in Table 2, JointDet slightly improve the I3D baseline for
action anticipation (+0.87% on EGTEA and +0.16% on EPIC-Kitchens), yet
lags behind our probabilistic model. Specifically, our model outperforms JointDet
by 0.91% and 0.62% on EGTEA and EPIC-Kitchens. Moreover, in comparison
to JointDet, our model has better performance for interaction hotspots esti-
mation (+2.4%/+0.8% in F1 scores on EGTEA/EPIC-Kitchens). These results
suggest that simply training with extra annotations might fail to capture the
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uncertainty of visual anticipation. In contrast, our design choice of probabilistic
modeling can effectively deal with those uncertainty, therefore helps to improve
the performance of joint modeling.

Motor Attention vs. Interaction Hotspots. Furthermore, we evaluate the
contributions of motor attention and interaction hotspots for FPV action antic-
ipation. We consider two baseline models in Table 3: I3D model equipped with
only motor attention module (Motor Only), and I3D model equipped with only
interaction hotspots module (Hotspots Only). Both models underperform the
full model across the two datasets, yet the gap between Motor Only and the full
model is smaller. These results suggest that both components contribute to the
performance boost of action anticipation, yet the modeling of motor attention
weights more than the modeling of interaction hotspots.

Interaction Hotspots Estimation. We present additional results on interac-
tion hotspots estimation. We compare our results to the following baselines.

– Center Prior represents a Gaussian Distribution at the center of the image.
– Grad-Cam uses the same I3D backbone network as our model, and produces

a saliency map via Grad-Cam [48].
– EgoGaze considers possible gaze position as salient region of a given image.

This model is trained on eye fixation annotation from EGTEA-Gaze+ [23].
The assumption is that the person is likely to look at the interaction hotspots.

– DSS Saliency predicts salient region during human object interaction. This
model is trained on pixel-level saliency annotation from [22].

– EgoHotspots is the latest work [39] for estimating interaction hotspots.

Our results are shown in Table 4. Our model outperforms the best baselines
(EgoGaze and EgoHotspots) by 5.4% on EGTEA and 3.6% on EPIC-Kitchens
in F1 scores. These results suggest that our proposed joint model can effec-
tively identify future interaction region. Another observation is that our model
performs better on EPIC-Kitchens than EGTEA. This is probably due to the
larger number of available training samples.

Table 4. Interaction hotspots estimation results on EGTEA and EPIC-Kitchens. Our
model outperforms a set of strong baselines. (↑/↓ indicates higher/lower is better)

Method EGTEA Epic-Kitchens

Prec↑ Recall↑ F1↑ KLD↓ Prec↑ Recall↑ F1↑ KLD↓
Center prior 10.87 17.65 13.45 10.64 11.66 16.97 13.82 10.27

Grad-Cam [48] 9.98 22.13 13.76 8.73 10.85 20.01 14.07 8.06

DSS [22] 9.02 39.49 14.69 6.12 12.03 33.75 17.74 5.21

EgoGaze [23] 15.02 31.34 20.31 3.20 11.30 27.65 16.05 3.37

EgoHotspots [39] 16.51 24.07 19.59 3.36 22.26 31.37 26.04 2.84

Ours 17.43 48.81 25.69 1.62 17.86 86.5 29.6 1.99
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Table 5. Motor attention prediction results on EGTEA. Our model compares
favourably to strong baselines. (↑/↓ indicates higher/lower is better)

Method Avg. Disp. Error ↓ Final Disp. Error ↓
Kalman filter 0.32 0.48

GPR 0.29 0.37

LSTM 0.22 0.35

Ours 0.23 0.36

Motor Attention Prediction. We report our results on motor attention pre-
diction. We consider the following baselines and only report results on EGTEA,
as the future hand position on EPIC-Kitchens is not accurate (see Sect. 4.1).

– Kalman Filter describes the hand trajectory prediction problem with state-
space model, and assumes linear acceleration during update step.

– Gaussian Process Regression (GPR) iteratively predicts the future hand
position using Gaussian Process Regression.

– LSTM adopts a vanilla LSTM network for trajectory forecasting. We use the
implementation from [3].

The results are presented in Table 5. Our model outperforms Kalman filter
and GPR, yet is slightly worse than LSTM model (+0.01 in both errors). Note
that all baseline methods need the coordinate of the first observed hand for
prediction. This simplifies trajectory prediction into a less challenging regression
problem. In contrast, our model does not need hand coordinates for inference.
A model that relies on the observation of hand positions will encounter failure
cases when the hand has not been observed, while our model is still capable of
“imagining” the possible hand trajectory. See “Operate Microwave” and “Wash
Coffee Cup” in Fig. 3 for example results from our model.

Pred: Operate Stove   GT: Operate Stove Pred: Take Onion     GT: Close Fridge DrawerPred: Take Bowl   GT: Move around BowlPred: Operate Microwave  GT: Operate Microwave

Pred: Put Plate   GT: Put PlatePred: Wash Coffee Cup   GT: Wash Coffee Cup Pred: Take Cup   GT: Close Door Pred: Take Jar   GT: Put Coffee Maker

Fig. 3. Visualization of motor attention (left image), interaction hotspots (right image),
and action labels (captions above the images) on sample frames from EGTEA (first
row) and EPIC-Kitchens (second row). Both successful (green label) and failure cases
(red label) are shown. Future hands position are predicted at every 8 frames and plotted
on the last observable frame with the order of yellow, green, cyan, and magenta. (Color
figure online)
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Visualization of Motor Attention and Interaction Hotspots. Finally, we
visualize the predicted motor attention, interaction hotspots, and action labels
from our model in Fig. 3. The predicted motor attention almost always attends to
the predicted objects and corresponding interaction hotspots. Hence, our model
can address challenging cases where next-active objects are ambiguous. Take the
first example of “Operate Stove” in Fig. 3. Our model successfully predicted the
future objects and estimated the interaction hotspots as the stove control knob.

4.4 Remarks and Discussion

We must also point out that our method has certain limitations, which point
to exciting future research directions. For example, our model requires addi-
tional annotations for training, which might bring scalability issues when analyz-
ing other datasets. These dense annotations can indeed be approximated using
sparsely annotated frames as discussed in Sect. 4.1. We speculate that more
advanced hand tracking and object segmentation models can be explored to gen-
erating the pseudo ground truth of motor attention and interaction hotspots.
Moreover, our model shares a similar conundrum faced by previous work on
anticipation. Our model is likely to fail when future active objects are not
observed. See “Close Fridge Drawer” and “Put Coffee Maker” in Fig. 3. We
conjecture that these cases requires incorporating logical reasoning into learning
based methods—an active research topic in our community.

5 Conclusions

We presented the first deep model that jointly predicts motor attention, inter-
action hotspots, and future action labels in FPV. Importantly, we demonstrated
that motor attention plays an important role in forecasting human-object inter-
actions. Another key insight is that characterizing motor attention and interac-
tion hotspots as probabilistic variables can account for the stochastic pattern of
human intentional movement. We believe that our model provides a solid step
towards the challenging problem of visual anticipation.
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