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Abstract. We present a new method that views object detection as a
direct set prediction problem. Our approach streamlines the detection
pipeline, effectively removing the need for many hand-designed com-
ponents like a non-maximum suppression procedure or anchor gener-
ation that explicitly encode our prior knowledge about the task. The
main ingredients of the new framework, called DEtection TRansformer
or DETR, are a set-based global loss that forces unique predictions
via bipartite matching, and a transformer encoder-decoder architecture.
Given a fixed small set of learned object queries, DETR reasons about
the relations of the objects and the global image context to directly out-
put the final set of predictions in parallel. The new model is conceptually
simple and does not require a specialized library, unlike many other mod-
ern detectors. DETR demonstrates accuracy and run-time performance
on par with the well-established and highly-optimized Faster R-CNN
baseline on the challenging COCO object detection dataset. Moreover,
DETR can be easily generalized to produce panoptic segmentation in a
unified manner. We show that it significantly outperforms competitive
baselines. Training code and pretrained models are available at https://
github.com/facebookresearch/detr.

1 Introduction

The goal of object detection is to predict a set of bounding boxes and category
labels for each object of interest. Modern detectors address this set prediction
task in an indirect way, by defining surrogate regression and classification prob-
lems on a large set of proposals [5,36], anchors [22], or window centers [45,52].
Their performances are significantly influenced by postprocessing steps to col-
lapse near-duplicate predictions, by the design of the anchor sets and by the
heuristics that assign target boxes to anchors [51]. To simplify these pipelines,
we propose a direct set prediction approach to bypass the surrogate tasks. This
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Fig. 1. DETR directly predicts (in parallel) the final set of detections by combining
a common CNN with a transformer architecture. During training, bipartite matching
uniquely assigns predictions with ground truth boxes. Prediction with no match should
yield a “no object” (∅) class prediction.

end-to-end philosophy has led to significant advances in complex structured pre-
diction tasks such as machine translation or speech recognition, but not yet in
object detection: previous attempts [4,15,38,42] either add other forms of prior
knowledge, or have not proven to be competitive with strong baselines on chal-
lenging benchmarks. This paper aims to bridge this gap.

We streamline the training pipeline by viewing object detection as a direct set
prediction problem. We adopt an encoder-decoder architecture based on trans-
formers [46], a popular architecture for sequence prediction. The self-attention
mechanisms of transformers, which explicitly model all pairwise interactions
between elements in a sequence, make these architectures particularly suitable
for specific constraints of set prediction such as removing duplicate predictions.

Our DEtection TRansformer (DETR, see Fig. 1) predicts all objects at
once, and is trained end-to-end with a set loss function which performs bipar-
tite matching between predicted and ground-truth objects. DETR simplifies
the detection pipeline by dropping multiple hand-designed components that
encode prior knowledge, like spatial anchors or non-maximal suppression. Unlike
most existing detection methods, DETR doesn’t require any customized layers,
and thus can be reproduced easily in any framework that contains standard
ResNet [14] and Transformer [46] classes.

Compared to most previous work on direct set prediction, the main features of
DETR are the conjunction of the bipartite matching loss and transformers with
(non-autoregressive) parallel decoding [7,9,11,28]. In contrast, previous work
focused on autoregressive decoding with RNNs [29,35,40–42]. Our matching loss
function uniquely assigns a prediction to a ground truth object, and is invariant
to a permutation of predicted objects, so we can emit them in parallel.

We evaluate DETR on one of the most popular object detection datasets,
COCO [23], against a very competitive Faster R-CNN baseline [36]. Faster R-
CNN has undergone many design iterations and its performance was greatly
improved since the original publication. Our experiments show that our new
model achieves comparable performances. More precisely, DETR demonstrates
significantly better performance on large objects, a result likely enabled by the
non-local computations of the transformer. It obtains, however, lower perfor-
mances on small objects. We expect that future work will improve this aspect
in the same way the development of FPN [21] did for Faster R-CNN.
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Training settings for DETR differ from standard object detectors in mul-
tiple ways. The new model requires extra-long training schedule and benefits
from auxiliary decoding losses in the transformer. We thoroughly explore what
components are crucial for the demonstrated performance.

The design ethos of DETR easily extend to more complex tasks. In our
experiments, we show that a simple segmentation head trained on top of a pre-
trained DETR outperfoms competitive baselines on Panoptic Segmentation [18],
a challenging pixel-level recognition task that has recently gained popularity.

2 Related Work

Our work build on prior work in several domains: bipartite matching losses for
set prediction, encoder-decoder architectures based on the transformer, parallel
decoding, and object detection methods.

2.1 Set Prediction

There is no canonical deep learning model to directly predict sets. The basic set
prediction task is multilabel classification (see e.g., [32,39] for references in the
context of computer vision) for which the baseline approach, one-vs-rest, does
not apply to problems such as detection where there is an underlying structure
between elements (i.e., near-identical boxes). The first difficulty in these tasks
is to avoid near-duplicates. Most current detectors use postprocessings such as
non-maximal suppression to address this issue, but direct set prediction are
postprocessing-free. They need global inference schemes that model interactions
between all predicted elements to avoid redundancy. For constant-size set pre-
diction, dense fully connected networks [8] are sufficient but costly. A general
approach is to use auto-regressive sequence models such as recurrent neural net-
works [47]. In all cases, the loss function should be invariant by a permutation
of the predictions. The usual solution is to design a loss based on the Hungarian
algorithm [19], to find a bipartite matching between ground-truth and prediction.
This enforces permutation-invariance, and guarantees that each target element
has a unique match. We follow the bipartite matching loss approach. In contrast
to most prior work however, we step away from autoregressive models and use
transformers with parallel decoding, which we describe below.

2.2 Transformers and Parallel Decoding

Transformers were introduced by Vaswani et al. [46] as a new attention-based
building block for machine translation. Attention mechanisms [2] are neural net-
work layers that aggregate information from the entire input sequence. Trans-
formers introduced self-attention layers, which, similarly to Non-Local Neural
Networks [48], scan through each element of a sequence and update it by aggre-
gating information from the whole sequence. One of the main advantages of
attention-based models is their global computations and perfect memory, which
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makes them more suitable than RNNs on long sequences. Transformers are now
replacing RNNs in many problems in natural language processing, speech pro-
cessing and computer vision [7,26,30,33,44].

Transformers were first used in auto-regressive models, following early
sequence-to-sequence models [43], generating output tokens one by one. How-
ever, the prohibitive inference cost (proportional to output length, and hard to
batch) lead to the development of parallel sequence generation, in the domains
of audio [28], machine translation [9,11], word representation learning [7], and
more recently speech recognition [6]. We also combine transformers and parallel
decoding for their suitable trade-off between computational cost and the ability
to perform the global computations required for set prediction.

2.3 Object Detection

Most modern object detection methods make predictions relative to some ini-
tial guesses. Two-stage detectors [5,36] predict boxes w.r.t. proposals, whereas
single-stage methods make predictions w.r.t. anchors [22] or a grid of possible
object centers [45,52]. Recent work [51] demonstrate that the final performance
of these systems heavily depends on the exact way these initial guesses are set.
In our model we are able to remove this hand-crafted process and streamline the
detection process by directly predicting the set of detections with absolute box
prediction w.r.t. the input image rather than an anchor.

Set-Based Loss. Several object detectors [8,24,34] used the bipartite matching
loss. However, in these early deep learning models, the relation between different
prediction was modeled with convolutional or fully-connected layers only and a
hand-designed NMS post-processing can improve their performance. More recent
detectors [22,36,52] use non-unique assignment rules between ground truth and
predictions together with an NMS.

Learnable NMS methods [4,15] and relation networks [16] explicitly model
relations between different predictions with attention. Using direct set losses,
they do not require any post-processing steps. However, these methods employ
additional hand-crafted context features like proposal box coordinates to model
relations between detections efficiently, while we look for solutions that reduce
the prior knowledge encoded in the model.

Recurrent Detectors. Closest to our approach are end-to-end set predictions
for object detection [42] and instance segmentation [29,35,40,41]. Similarly to us,
they use bipartite-matching losses with encoder-decoder architectures based on
CNN activations to directly produce a set of bounding boxes. These approaches,
however, were only evaluated on small datasets and not against modern baselines.
In particular, they are based on autoregressive models (more precisely RNNs),
so they do not leverage the recent transformers with parallel decoding.

3 The DETR Model

Two ingredients are essential for direct set predictions in detection: (1) a set
prediction loss that forces unique matching between predicted and ground truth
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boxes; (2) an architecture that predicts (in a single pass) a set of objects and
models their relation. We describe our architecture in detail in Fig. 2.

3.1 Object Detection Set Prediction Loss

DETR infers a fixed-size set of N predictions, in a single pass through the
decoder, where N is set to be significantly larger than the typical number of
objects in an image. One of the main difficulties of training is to score predicted
objects (class, position, size) with respect to the ground truth. Our loss produces
an optimal bipartite matching between predicted and ground truth objects, and
then optimize object-specific (bounding box) losses.

Let us denote by y the ground truth set of objects, and ŷ = {ŷi}N
i=1 the

set of N predictions. Assuming N is larger than the number of objects in the
image, we consider y also as a set of size N padded with ∅ (no object). To find
a bipartite matching between these two sets we search for a permutation of N
elements σ ∈ SN with the lowest cost:

σ̂ = arg min
σ∈SN

N∑

i

Lmatch(yi, ŷσ(i)), (1)

where Lmatch(yi, ŷσ(i)) is a pair-wise matching cost between ground truth yi and
a prediction with index σ(i). This optimal assignment is computed efficiently
with the Hungarian algorithm, following prior work (e.g. [42]).

The matching cost takes into account both the class prediction and the sim-
ilarity of predicted and ground truth boxes. Each element i of the ground truth
set can be seen as a yi = (ci, bi) where ci is the target class label (which
may be ∅) and bi ∈ [0, 1]4 is a vector that defines ground truth box cen-
ter coordinates and its height and width relative to the image size. For the
prediction with index σ(i) we define probability of class ci as p̂σ(i)(ci) and
the predicted box as b̂σ(i). With these notations we define Lmatch(yi, ŷσ(i)) as
−1{ci �=∅}p̂σ(i)(ci) + 1{ci �=∅}Lbox(bi, b̂σ(i)).

This procedure of finding the matching plays the same role as the heuristic
assignment rules used to match proposal [36] or anchors [21] to ground truth
objects in modern detectors. The main difference is that we need to find one-to-
one matching for direct set prediction without duplicates.

The second step is to compute the loss function, the Hungarian loss for all
pairs matched in the previous step. We define the loss similarly to the losses of
common object detectors, i.e. a linear combination of a negative log-likelihood
for class prediction and a box loss Lbox(·, ·) defined later:

LHungarian(y, ŷ) =
N∑

i=1

[
− log p̂σ̂(i)(ci) + 1{ci �=∅}Lbox(bi, b̂σ̂(i))

]
, (2)

where σ̂ is the optimal assignment computed in the first step (1). In practice, we
down-weight the log-probability term when ci = ∅ by a factor 10 to account for
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Fig. 2. DETR uses a conventional CNN backbone to learn a 2D representation of
an input image. The model flattens it and supplements it with a positional encoding
before passing it into a transformer encoder. A transformer decoder then takes as input
a small fixed number of learned positional embeddings, which we call object queries,
and additionally attends to the encoder output. We pass each output embedding of
the decoder to a shared feed forward network (FFN) that predicts either a detection
(class and bounding box) or a “no object” class.

class imbalance. This is analogous to how Faster R-CNN training procedure bal-
ances positive/negative proposals by subsampling [36]. Notice that the matching
cost between an object and ∅ doesn’t depend on the prediction, which means
that in that case the cost is a constant. In the matching cost we use probabil-
ities p̂σ̂(i)(ci) instead of log-probabilities. This makes the class prediction term
commensurable to Lbox(·, ·), and we observed better empirical performances.

Bounding Box Loss. The second part of the matching cost and the Hungarian
loss is Lbox(·) that scores the bounding boxes. Unlike many detectors that do box
predictions as a Δ w.r.t. some initial guesses, we make box predictions directly.
While such approach simplify the implementation it poses an issue with relative
scaling of the loss. The most commonly-used �1 loss will have different scales for
small and large boxes even if their relative errors are similar. To mitigate this
issue we use a linear combination of the �1 loss and the generalized IoU loss [37]
Liou(·, ·) that is scale-invariant. Overall, our box loss is Lbox(bi, b̂σ(i)) defined as
λiouLiou(bi, b̂σ(i)) + λL1||bi − b̂σ(i)||1 where λiou, λL1 ∈ R are hyperparameters.
These two losses are normalized by the number of objects inside the batch.

3.2 DETR Architecture

The overall DETR architecture is surprisingly simple and depicted in Fig. 2. It
contains three main components, which we describe below: a CNN backbone to
extract a compact feature representation, an encoder-decoder transformer, and
a simple feed forward network (FFN) that makes the final detection prediction.

Unlike many modern detectors, DETR can be implemented in any deep learn-
ing framework that provides a common CNN backbone and a transformer archi-
tecture implementation with just a few hundred lines. Inference code for DETR
can be implemented in less than 50 lines in PyTorch [31]. We hope that the sim-
plicity of our method will attract new researchers to the detection community.
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Backbone. Starting from the initial image ximg ∈ R
3×H0×W0 (with 3 color

channels1), a conventional CNN backbone generates a lower-resolution activation
map f ∈ R

C×H×W . Typical values we use are C = 2048 and H,W = H0
32 , W0

32 .

Transformer Encoder. First, a 1x1 convolution reduces the channel dimension
of the high-level activation map f from C to a smaller dimension d. creating a
new feature map z0 ∈ R

d×H×W . The encoder expects a sequence as input, hence
we collapse the spatial dimensions of z0 into one dimension, resulting in a d×HW
feature map. Each encoder layer has a standard architecture and consists of a
multi-head self-attention module and a feed forward network (FFN). Since the
transformer architecture is permutation-invariant, we supplement it with fixed
positional encodings [3,30] that are added to the input of each attention layer. We
defer to the supplementary material the detailed definition of the architecture,
which follows the one described in [46].

Transformer Decoder. The decoder follows the standard architecture of the
transformer, transforming N embeddings of size d using multi-headed self- and
encoder-decoder attention mechanisms. The difference with the original trans-
former is that our model decodes the N objects in parallel at each decoder
layer, while Vaswani et al. [46] use an autoregressive model that predicts the
output sequence one element at a time. We refer the reader unfamiliar with the
concepts to the supplementary material. Since the decoder is also permutation-
invariant, the N input embeddings must be different to produce different results.
These input embeddings are learnt positional encodings that we refer to as object
queries, and similarly to the encoder, we add them to the input of each atten-
tion layer. The N object queries are transformed into an output embedding by
the decoder. They are then independently decoded into box coordinates and
class labels by a feed forward network (described in the next subsection), result-
ing N final predictions. Using self- and encoder-decoder attention over these
embeddings, the model globally reasons about all objects together using pair-
wise relations between them, while being able to use the whole image as context.

Prediction Feed-Forward Networks (FFNs). The final prediction is com-
puted by a 3-layer perceptron with ReLU activation function and hidden dimen-
sion d, and a linear projection layer. The FFN predicts the normalized center
coordinates, height and width of the box w.r.t. the input image, and the linear
layer predicts the class label using a softmax function. Since we predict a fixed-
size set of N bounding boxes, where N is usually much larger than the actual
number of objects of interest in an image, an additional special class label ∅

is used to represent that no object is detected within a slot. This class plays a
similar role to the “background” class in standard object detection approaches.

Auxiliary Decoding Losses. We found helpful to use auxiliary losses [1] in the
decoder during training, especially to help the model output the correct number
of objects of each class. The output of each decoder layer is normalized with

1 The input images are batched together, applying 0-padding adequately to ensure
they all have the same dimensions (H0,W0) as the largest image of the batch.
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a shared layer-norm then fed to the shared prediction heads (classification and
box prediction). We then apply the Hungarian loss as usual for supervision.

4 Experiments

We show that DETR achieves competitive results compared to Faster R-
CNN [36] and RetinaNet [22] in quantitative evaluation on COCO. Then, we
provide a detailed ablation study of the architecture and loss, with insights and
qualitative results. Finally, to show that DETR is a versatile model, we present
results on panoptic segmentation, training only a small extension on a fixed
DETR model.

Dataset. We perform experiments on COCO 2017 detection and panoptic seg-
mentation datasets [17,23], containing 118k training images and 5k validation
images. Each image is annotated with bounding boxes and panoptic segmenta-
tion. There are 7 instances per image on average, up to 63 instances in a single
image in training set, ranging from small to large on the same images. If not
specified, we report AP as bbox AP, the integral metric over multiple thresholds.
For comparison with other models we report validation AP at the last training
epoch, and in ablations we report the median over the last 10 epochs.

Technical Details. We train DETR with AdamW [25] setting the initial trans-
former’s learning rate to 10−4, the backbone’s to 10−5, and weight decay to 10−4.
All transformer weights are initialized with Xavier init [10], and the backbone
is with ImageNet-pretrained ResNet model [14] from torchvision with frozen
batchnorm layers. We report results with two different backbones: a ResNet-
50 and a ResNet-101. The corresponding models are called respectively DETR
and DETR-R101. Following [20], we also increase the feature resolution by
adding a dilation to the last stage of the backbone and removing a stride from
the first convolution of this stage. The corresponding models are called respec-
tively DETR-DC5 and DETR-DC5-R101 (dilated C5 stage). This modification
increases the resolution by a factor of two, thus improving performance for small
objects, at the cost of a 16x higher cost in the self-attentions of the encoder,
leading to an overall 2x increase in computational cost. A full comparison of
FLOPs of these models, Faster R-CNN and RetinaNet is given in Table 1.

We use scale augmentation, resizing the input images such that the shortest
side is at least 480 and at most 800 pixels while the longest at most 1333 [49].
To help learning global relationships through the self-attention of the encoder,
we also apply random crop augmentations during training, improving the per-
formance by approximately 1 AP. Specifically, a train image is cropped with
probability 0.5 to a random rectangular patch which is then resized again to
800–1333. The transformer is trained with default dropout of 0.1. At inference
time, some slots predict empty class. To optimize for AP, we override the predic-
tion of these slots with the second highest scoring class, using the corresponding
confidence. This improves AP by 2 points compared to filtering out empty slots.
Other training hyperparameters can be found in Appendix. For our ablation
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Table 1. Comparison with RetinaNet and Faster R-CNN with a ResNet-50 and
ResNet-101 backbones on the COCO validation set. The top section shows results for
models in Detectron2 [49], the middle section shows results for models with GIoU [37],
random crops train-time augmentation, and the long 9x training schedule. DETR mod-
els achieve comparable results to heavily tuned Faster R-CNN baselines, having lower
APS but greatly improved APL. We use torchscript models to measure FLOPS and
FPS. Results without R101 in the name correspond to ResNet-50.

Model GFLOPS/FPS #params AP AP50 AP75 APS APM APL

RetinaNet 205/18 38M 38.7 58.0 41.5 23.3 42.3 50.3

Faster RCNN-DC5 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5

Faster RCNN-FPN 180/26 42M 40.2 61.0 43.8 24.2 43.5 52.0

Faster RCNN-R101-FPN 246/20 60M 42.0 62.5 45.9 25.2 45.6 54.6

RetinaNet+ 205/18 38M 41.1 60.4 43.7 25.6 44.8 53.6

Faster RCNN-DC5+ 320/16 166M 41.1 61.4 44.3 22.9 45.9 55.0

Faster RCNN-FPN+ 180/26 42M 42.0 62.1 45.5 26.6 45.4 53.4

Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0

DETR 86/28 41M 42.0 62.4 44.2 20.5 45.8 61.1

DETR-DC5 187/12 41M 43.3 63.1 45.9 22.5 47.3 61.1

DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8

DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

experiments we use training schedule of 300 epochs with a learning rate drop by
a factor of 10 after 200 epochs, where a single epoch is a pass over all training
images once. Training the baseline model for 300 epochs on 16 V100 GPUs takes
3 d, with 4 images per GPU (hence a total batch size of 64). For the longer sched-
ule used to compare with Faster R-CNN we train for 500 epochs with learning
rate drop after 400 epochs, which improves AP by 1.5 points.

4.1 Comparison with Faster R-CNN and RetinaNet

Transformers are typically trained with Adam or Adagrad optimizers with very
long training schedules and dropout, and this is true for DETR as well. Faster
R-CNN, however, is trained with SGD with minimal data augmentation and
we are not aware of successful applications of Adam or dropout. Despite these
differences we attempt to make our baselines stronger. To align it with DETR,
we add generalized IoU [37] to the box loss, the same random crop augmentation
and long training known to improve results [12]. Results are presented in Table 1.
In the top section we show results from Detectron2 Model Zoo [49] for models
trained with the 3x schedule. In the middle section we show results (with a
“+”) for the same models but trained with the 9x schedule (109 epochs) and
the described enhancements, which in total adds 1–2 AP. In the last section of
Table 1 we show the results for multiple DETR models. To be comparable in the
number of parameters we choose a model with 6 transformer and 6 decoder layers
of width 256 with 8 attention heads. Like Faster R-CNN with FPN this model
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Fig. 3. Encoder self-attention for a set of reference points. The encoder is able to
separate individual instances. Prediction made with baseline DETR on a validation
image.

has 41.3M parameters, out of which 23.5M are in ResNet-50, and 17.8M are in
the transformer. Even though both Faster R-CNN and DETR are still likely
to further improve with longer training, we can conclude that DETR can be
competitive with Faster R-CNN with the same number of parameters, achieving
42 AP on the COCO val subset. The way DETR achieves this is by improving
APL (+7.8), however note that the model is still lagging behind in APS (-5.5).
DETR-DC5 with the same number of parameters and similar FLOP count has
higher AP, but is still significantly behind in APS too. Results on ResNet-101
backbone are comparable as well.

4.2 Ablations

Attention mechanisms in the transformer decoder are the key components which
model relations between feature representations of different detections. In our
ablation analysis, we explore how other components of our architecture and loss
influence the final performance. For the study we choose ResNet-50-based DETR
model with 6 encoder, 6 decoder layers and width 256. The model has 41.3M
parameters, achieves 40.6 and 42.0 AP on short and long schedules respectively,
and runs at 28 FPS, similarly to Faster R-CNN-FPN with the same backbone.

Number of Encoder Layers. We evaluate the importance of global image-
level self-attention by changing the number of encoder layers. Without encoder
layers, overall AP drops by 3.9 points, with a more significant drop of 6.0 AP on
large objects. We hypothesize that, by using global scene reasoning, the encoder
is important for disentangling objects. See results in appendix. In Fig. 3, we
visualize the attention maps of the last encoder layer of a trained model, focusing
on a few points in the image. The encoder seems to separate instances already,
which likely simplifies object extraction and localization for the decoder.

Number of Decoder Layers. We apply auxiliary losses after each decoding
layer (see Sect. 3.2), hence, the prediction FFNs are trained by design to predict
objects out of the outputs of every decoder layer. We analyze the importance
of each decoder layer by evaluating the objects that would be predicted at each
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Fig. 4. AP and AP50 performance after
each decoder layer in a long schedule
baseline model. DETR does not need
NMS by design, which is validated by
this figure. NMS lowers AP in the final
layers, removing TP predictions, but
improves it in the first layers, where
DETR does not have the capability to
remove double predictions.

Fig. 5. Out of distribution generaliza-
tion for rare classes. Even though no
image in the training set has more than
13 giraffes, DETR has no difficulty gen-
eralizing to 24 and more instances.

stage of the decoding (Fig. 4). Both AP and AP50 improve after every layer,
totalling into a very significant +8.2/9.5 AP improvement between the first and
the last layer. With its set-based loss, DETR does not need NMS by design. To
verify this we run a standard NMS procedure with default parameters [49] for
the outputs after each decoder. NMS improves performance for the predictions
from the first decoder. This can be explained by the fact that a single decoding
layer of the transformer is not able to compute any cross-correlations between
the output elements, and thus it is prone to making multiple predictions for the
same object. In the second and subsequent layers, the self-attention mechanism
over the activations allows the model to inhibit duplicate predictions. We observe
that the improvement brought by NMS diminishes as depth increases. It hurts
AP in the last layers, as it incorrectly removes true positive predictions.

Similarly to visualizing encoder attention, we visualize decoder attentions in
Fig. 6, coloring attention maps for each predicted object in different colors. We
observe that decoder attention is fairly local, meaning that it mostly attends to
object extremities such as heads or legs. We hypothesise that after the encoder
has separated instances via global attention, the decoder only needs to attend
to the extremities to extract the class and object boundaries.

Importance of FFN. FFN inside tranformers can be seen as 1 × 1 convo-
lutional layers, making encoder similar to attention augmented convolutional
networks [3]. We attempt to remove it completely leaving only attention in the
transformer layers. By reducing the number of network parameters from 41.3M
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Fig. 6. Visualizing decoder attention for every predicted object (images from COCO
val set). Predictions are made with DETR-DC5 model. Decoder typically attends to
object extremities, such as legs and heads.

to 28.7M, leaving only 10.8M in the transformer, performance drops by 2.3 AP,
we thus conclude that FFN are important for achieving good results.

Importance of Positional Encodings. There are two kinds of positional
encodings in our model: spatial positional encodings and output positional
encodings (object queries). We experiment with various combinations of fixed
and learned encodings, see results in appendix. Output positional encodings are
required and cannot be removed, so we experiment with either passing them
once at decoder input or adding to queries at every decoder attention layer. In
the first experiment we completely remove spatial positional encodings and pass
output positional encodings at input and, interestingly, the model still achieves
more than 32 AP, losing 7.8 AP to the baseline. Then, we pass fixed sine spatial
positional encodings and the output encodings at input once, as in the original
transformer [46], and find that this leads to 1.4 AP drop compared to passing
the positional encodings directly in attention. Learned spatial encodings passed
to the attentions give similar results. Surprisingly, we find that not passing any
spatial encodings in the encoder only leads to a minor AP drop of 1.3 AP. When
we pass the encodings to the attentions, they are shared across all layers, and
the output encodings (object queries) are always learned.

Given these ablations, we conclude that transformer components: the global
self-attention in encoder, FFN, multiple decoder layers, and positional encodings,
all significantly contribute to the final object detection performance.

Generalization to Unseen Numbers of Instances. Some classes in COCO
are not well represented with many instances of the same class in the same
image. For example, there is no image with more than 13 giraffes in the training
set. We create a synthetic image2 to verify the generalization ability of DETR
(see Fig. 5). Our model is able to find all 24 giraffes on the image which is
clearly out of distribution. This experiment confirms that there is no strong
class-specialization in each object query.

2 Base picture credit: https://www.piqsels.com/en/public-domain-photo-jzlwu.
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Fig. 7. Illustration of the panoptic head. A binary mask is generated in parallel for
each detected object, then the masks are merged using pixel-wise argmax.

4.3 DETR for Panoptic Segmentation

Panoptic segmentation [18] has recently attracted a lot of attention from the
computer vision community. Similarly to the extension of Faster R-CNN [36] to
Mask R-CNN [13], DETR can be naturally extended by adding a mask head on
top of the decoder outputs. In this section we demonstrate that such a head can
be used to produce panoptic segmentation [18] by treating stuff and thing classes
in a unified way. We perform our experiments on the panoptic annotations of the
COCO dataset that has 53 stuff categories in addition to 80 things categories.

We train DETR to predict boxes around both stuff and things classes on
COCO, using the same recipe. Predicting boxes is required for the training to
be possible, since the Hungarian matching is computed using distances between
boxes. We also add a mask head which predicts a binary mask for each of the
predicted boxes, see Fig. 7. It takes as input the output of transformer decoder for
each object and computes multi-head (with M heads) attention scores of this
embedding over the output of the encoder, generating M attention heatmaps
per object in a small resolution. To make the final prediction and increase the
resolution, an FPN-like architecture is used. We refer to the supplement for more
details. The final resolution of the masks has stride 4 and each mask is supervised
independently using the DICE/F-1 loss [27] and Focal loss [22].

The mask head can be trained either jointly, or in a two steps process, where
we train DETR for boxes only, then freeze all the weights and train only the mask
head for 25 epochs. Experimentally, these two approaches give similar results, we
report results using the latter method since it is less computationally intensive.

To predict the final panoptic segmentation we simply use an argmax over
the mask scores at each pixel, and assign the corresponding categories to the
resulting masks. This procedure guarantees that the final masks have no overlaps
and thus DETR does not require a heuristic [18] to align different masks.

Training Details. We train DETR, DETR-DC5 and DETR-R101 models fol-
lowing the recipe for bounding box detection to predict boxes around stuff and
things classes in COCO dataset. The new mask head is trained for 25 epochs
(see supplementary for details). During inference we first filter out the detection
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Table 2. Comparison with the state-of-the-art methods UPSNet [50] and Panoptic
FPN [17] on the COCO val dataset We retrained PanopticFPN with the same data-
augmentation as DETR, on a 18x schedule for fair comparison. UPSNet uses the 1x

schedule, UPSNet-M is the version with multiscale test-time augmentations.

Model Backbone PQ SQ RQ PQth SQth RQth PQst SQst RQst AP

PanopticFPN++ R50 42.4 79.3 51.6 49.2 82.4 58.8 32.3 74.8 40.6 37.7

UPSnet R50 42.5 78.0 52.5 48.6 79.4 59.6 33.4 75.9 41.7 34.3

UPSnet-M R50 43.0 79.1 52.8 48.9 79.7 59.7 34.1 78.2 42.3 34.3

PanopticFPN++ R101 44.1 79.5 53.3 51.0 83.2 60.6 33.6 74.0 42.1 39.7

DETR R50 43.4 79.3 53.8 48.2 79.8 59.5 36.3 78.5 45.3 31.1

DETR-DC5 R50 44.6 79.8 55.0 49.4 80.5 60.6 37.3 78.7 46.5 31.9

DETR R101 45.1 79.9 55.5 50.5 80.9 61.7 37.0 78.5 46.0 33.0

DETR-DC5 R101 45.6 80.0 56.1 50.9 80.9 62.2 37.5 78.6 46.8 33.1

Fig. 8. Qualitative results for panoptic segmentation generated by DETR-R101. DETR
produces aligned mask predictions in a unified manner for things and stuff.

with a confidence below 85%, then compute the per-pixel argmax to determine
in which mask each pixel belongs. We then collapse different mask predictions
of the same stuff category in one, and filter the empty ones (less than 4 pixels).

Main Results. Qualitative results are shown in Fig. 8. In Table 2 we compare
our unified panoptic segmenation approach with several established methods
that treat things and stuff differently. We report the Panoptic Quality (PQ) and
the break-down on things (PQth) and stuff (PQst). We also report the mask
AP (computed on the things classes), before any panoptic post-treatment (in
our case, before taking the pixel-wise argmax). We show that DETR outper-
forms published results on COCO-val 2017, as well as our strong PanopticFPN
baseline (trained with same data-augmentation as DETR, for fair comparison).
The result break-down shows that DETR is especially dominant on stuff classes,
and we hypothesize that the global reasoning allowed by the encoder attention
is the key element to this result. For things class, despite a severe deficit of
up to 8 mAP compared to the baselines on the mask AP computation, DETR
obtains competitive PQth. We also evaluated our method on the test set of the
COCO dataset, and obtained 46 PQ. We hope that our approach will inspire the
exploration of fully unified models for panoptic segmentation in future work.
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5 Conclusion

We presented DETR, a new design for object detection systems based on trans-
formers and bipartite matching loss for direct set prediction. The approach
achieves comparable results to an optimized Faster R-CNN baseline on the chal-
lenging COCO dataset. DETR is straightforward to implement and has a flexible
architecture that is easily extensible to panoptic segmentation, with competitive
results. In addition, it achieves significantly better performance on large objects,
likely due to the processing of global information performed by the self-attention.

This new design for detectors also comes with new challenges, in particular
regarding training, optimization and performances on small objects. Current
detectors required several years of improvements to cope with similar issues,
and we expect future work to successfully address them for DETR.
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neural networks for semantic instance segmentation. arXiv:1712.00617 (2017)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1905.03072
http://arxiv.org/abs/1711.10433
http://arxiv.org/abs/1511.06449
http://arxiv.org/abs/1904.05709
http://arxiv.org/abs/1805.00613
https://doi.org/10.1007/978-3-319-46466-4_19
http://arxiv.org/abs/1712.00617


End-to-End Object Detection with Transformers 229

42. Stewart, R.J., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded
scenes. In: CVPR (2015)

43. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NeurIPS (2014)

44. Synnaeve, G., et al.: End-to-end ASR: from supervised to semi-supervised learning
with modern architectures. arXiv:1911.08460 (2019)

45. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object
detection. In: ICCV (2019)

46. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
47. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets.

In: ICLR (2016)
48. Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. In: CVPR

(2018)
49. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://

github.com/facebookresearch/detectron2
50. Xiong, Y., et al.: Upsnet: a unified panoptic segmentation network. In: CVPR

(2019)
51. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based

and anchor-free detection via adaptive training sample selection. arXiv:1912.02424
(2019)
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