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Abstract. In this work, we study the theoretical properties, from the
perspective of learning theory, of three-way clustering and related for-
malisms, such as rough clustering or interval-valued clustering. In par-
ticular, we generalize to this setting recent axiomatic characterization
results that have been discussed for classical hard clustering. After
proposing an axiom system for three-way clustering, which we argue
is a compatible weakening of the traditional hard clustering one, we
provide a constructive proof of an existence theorem, that is, we show
an algorithm which satisfies the proposed axioms. We also propose an
axiomatic characterization of the three-way k-means algorithm family
and draw comparisons between the two approaches.
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1 Introduction

Clustering, that is the unsupervised task of grouping objects into groups by
account of their similarity [30], is a popular and important task in data analysis
and related fields. Several clustering approaches have been proposed, such as
hierarchical and partitive [24], density-based [16] or subspace-based [27], and
have been successfully applied to different domains [9].

Compared to other areas in Machine Learning, however, the study of the
formal properties of clustering, from a learning theory perspective [26], have
been lacking, convergence or soundness results for specific algorithms aside [25].

In the recent years, starting from the seminal work of Kleinberg [10], there
has been an increasing interest toward the study of the learnability of clustering,
focusing on formal characterizations based on an axiomatic perspective: that is,
studying systems of axioms that clustering methods should satisfy and then
prove either impossibility theorems or characterization results.

A major limitation of these works consists in the fact that they apply only
to hard clustering methods, that is methods in which each object is definitely
assigned to one and only cluster. Today, however, many soft clustering [23]
approaches have been developed and shown to be effective in practical appli-
cations: probabilistic clustering methods [17], fuzzy clustering [3], possibilistic
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clustering [12], credal clustering [8], three-way clustering [32] and related for-
malisms [13,31]. Contrary to traditional hard clustering approaches, soft clus-
tering methods allow clusters to overlap or, either, the relation of containment
of objects into cluster to be only partially or imprecisely defined.

In this article, we start to address this gap by extending the available results
to soft clustering, in particular we will study a formal characterization of three-
way clustering and related approaches (e.g. rough clustering, interval clustering).
Specifically, in Sect. 2, we present the necessary background about three-way
clustering and the learning theory of clustering; in Sect. 3, we present the main
content of the paper by generalizing the learning theory of hard clustering to
three-way clustering; finally, in Sect. 4, we discuss the proposed approach and
describe some possible future work.

2 Background

2.1 Formal Theory of Clustering

Let X be a set of objects and d : X × X �→ R be a distance function, i.e. a
function s.t.:

d(x, y) ≥ 0 ∧ d(x, y) = 0 iff x = y (1)
d(x, y) = d(y, x) (2)

Remark. We notice that, formally, a distance d should also satisfy the triangle
inequality ∀x, y, z ∈ X d(x, y) ≤ d(x, z) + d(z, y). Functions not satisfying the
triangle inequality are more usually denoted as semi-distances. However, since
[10], in the literature on formal clustering theory it is customary to not make
such a distinction.

Let DX be the collection of all distance functions over X and Π(X) be the
collection of partitions over X. A partition π is trivial if π = antidiscr(X) = {X}
or π = discr(X) = {{x} : x ∈ X} and denote as Π̂(X) the collection of non-
trivial partitions.

Definition 1. A clustering algorithm is a computable function c : DX �→ Π(X).

Given d, then c(d) = π = {π1, ..., πn} where each πi is a cluster. We denote
the case in which two objects x, y belong to the same cluster πi as x ∼π y
The formal study of clustering algorithms, after Kleinberg [10], starts from the
definition of characterization axioms:

Axiom 1 (Scale Invariance). A clustering algorithm c is scale invariant if,
for any d ∈ DX and α > 0, c(d) = c(α · d).

Axiom 2 (Richness). A clustering algorithm c is rich if Range(c) = Π(X):
that is, for each π ∈ Π(X), ∃d ∈ DX s.t. c(d) = π.
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Axiom 3 (Consistency). Let d, d′ ∈ DX and π ∈ Π(X). Then, d’ is a π-
transformation of d if

∀x ∼π y.d′(x, y) ≤ d(x, y) (3)
∀x �∼π y.d′(x, y) ≥ d(x, y) (4)

A clustering algorithm c is consistent if, given d s.t. c(d) = π, for any d′ π(X)-
transformation of d it holds that c(d′) = c(d).

The following impossibility theorem represents a seminal result in the formal
learning theory of clustering:

Theorem 1 ([10]). If |X| ≥ 2 then no clustering algorithm satisfies Axioms 1,
2, 3.

Corollary 1 ([10]). For each pair of Axioms among 1, 2, 3 there exists a
clustering algorithm that satisfies it.

Remark. We note that the axioms, and the proofs of Theorems 1 and Corol-
lary 1, allow one to arbitrarily choose the distance function, irrespective of the
nature and topological structures of the instances in X. While this assumption
may seem overly general, it is to note that in the definitions the instances of X
are completely abstract, and the topological space is entirely determined by the
function d. In this respect, letting d vary arbitrarily may be seen as requiring
that, no matter the nature of the distance function chosen for the given applica-
tion, a clustering should respect some properties w.r.t. the chosen distance. This
is in analogy with the distribution-independence assumption in the definition of
PAC learnability for supervised learning theory [26].

It is to note that these results can be interpreted similarly to the No
Free Lunch theorem for supervised learning: that is, there is no clustering
algorithm that (under the requirement of allowing to return every possible
clustering) satisfies two intuitively appealing criteria. Indeed, Zadeh et al.
[35] have shown that the most problematic constraint is due to the Rich-
ness axiom and proposed an alternative formalization based on the concept of
k-clustering algorithms (i.e. clustering algorithms which require an additional
input k ∈ N

+) and the k-Richness axiom:

Axiom. 2’ (k-Richness). A k-clustering algorithm ck : DX �→ Πk(X) is k-rich
if ∀k,Range(ck) = Πk(X), where Πk(X) is the collection of k-partitions on X.

The authors also showed that, considering k-Richness in place of Richness,
provides a consistent set of axioms:

Theorem 2 ([35]). There exists a k-clustering algorithm that satisfies Axioms
1, 2’, 3.

Lastly, we recall the work of Ben-David et al. [2] on clustering quality mea-
sures (CQM), i.e. functions q : Π(X)×DX �→ R, which showed that the following
set of axioms represents a consistent formalization of these measures:
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Axiom 1q (Scale Invariance). A CQM q is scale invariant if ∀α > 0, π ∈
Π(X), q(π, d) = q(π, α · d).

Axiom 2q (Richness). A CQM q is rich if ∀π ∈ Π̂(X) exists d ∈ DX s.t.
π = argmaxπ′∈Π̂(X) {q(π′, d)}.

Axiom 3q (Consistency). A CQM q is consistent if given d ∈ Dx, π ∈ Π(x),
for any π(X)-transformation d′ of d it holds that q(π, d′) ≥ q(π, d).

Theorem 3 ([2]). There exists a CQM that satisfies Axioms 1q, 2q, 3q.

We can note that, even though Axioms 1q through 3q are defined for clus-
tering quality measures, they also implicitly define a clustering algorithm by
c(d; q) = argmaxπ′∈Π̂(X) {q(π′, d)}

2.2 Three-Way Clustering and Related Formalisms

An orthopair on a universe X is defined as O = 〈P,N〉, where P ∩ N = ∅. From
P and N a third set, can be defined as Bnd = X \ (P ∪ N). In the setting
of clustering an orthopair can be understood as an uncertain or imprecisely
known cluster: the objects in P are those that surely belong to the cluster (P =
Positive), those in N are the ones that surely do not belong to the cluster (N
= negative), and the objects in Bnd are those that may possibly belong to the
cluster (Bnd = Boundary). In the setting of three-way clustering P is also called
the Core region of the cluster, and Bnd as the Fringe region. In the following,
we will denote a cluster as the orthopair Oi = (Corei, F ringei).

Different clustering frameworks have been proposed based on the idea of
employing orthopairs as a representation of clusters, namely rough clustering
[15], interval-set clustering [31], three-way clustering [32] and shadowed set clus-
tering [18]. In these frameworks, a variety of different clustering algorithms have
been proposed: rough k-means [15,19,21] and variations based on evolution-
ary computing [14] or the principle of indifference [22] for the optimal selection
of the thresholds that define the Core and Fringe regions, three-way c-means
[28,36], different three-way clustering algorithms that automatically determine
the appropriate thresholds or number of clusters such as gravitational search-
based three-way clustering [33], variance-based three-way clustering [1], three-
way clustering based on mathematical morphology [29] or density-based [34] and
hierarchical [5] three-way clustering, and many others.

In the context of this paper we will not consider specific three-way clustering
algorithms, as we will be primarily interested in the general formalism behind
these clustering frameworks that we now recall. As highlighted previously dif-
ferent frameworks have been proposed, based on similar but different axiom
requirements: rough clustering, interval-set clustering, three-way clustering.

A rough clustering is defined as a collection of O = {O1, ..., On} of orthopairs
satisfying:

(R1) ∀i �= j, Corei ∩ Corej = Corei ∩ Fringej = Corej ∩ Fringei = ∅
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(R2) ∀x ∈ X, �i s.t. x ∈ Corei → ∃i �= j s.t. x ∈ Fringei, F ringej .

On the other hand, both interval-set clustering and three-way clustering are
defined as collections O = {O1, ..., On} of orthopairs s.t.:

(T1) ∀i, Corei �= ∅
(T2)

⋃
i(Corei ∪ Fringei) = X

(T3) ∀i �= j, Corei ∩ Corej = Corei ∩ Fringej = Corej ∩ Fringei = ∅
Finally, shadowed set clustering [18] adopts a framework which is instead based
on fuzzy clustering, where the degree of membership of an object x ∈ X to a
cluster C ∈ π is given by a membership function C : X �→ [0, 1]. Compared
with standard fuzzy clustering, in shadowed set clustering the membership func-
tion for each cluster C are then discretized into three regions, which are then
equivalent to the three regions in three-way clustering (i.e., CoreC , F ringeC and
ExtC = (CoreC ∪ FringeC)c) [20].

Thus, while the different clustering frameworks are based on the same math-
ematical representation (i.e., orthopairs), there are some differences: rough clus-
tering allows the core regions to be empty (in this case, the object is required
to belong to at least two fringe regions); interval–set (and three–way) clustering
require the core regions to be non–empty and allows objects to be in only one
fringe region.

Recently, the notion of an orthopartition [4] has been proposed as a unified
representation for clustering based on orthopairs. Formally, an orthopartition is
defined as a collection O of orthopairs s.t.:

(O1) ∀i �= j Corei ∩ Corej = Corei ∩ Fringej = Corej ∩ Fringei = ∅
(O2)

⋃
i(Corei ∪ Fringei) = X

(O3) ∀x ∈ U (∃i s.t. x ∈ Fringei) → (∃j �= i s.t. x ∈ Fringej)

It can easily be seen that the axioms for orthopartitions more closely follow
the ones for rough clustering (Axiom O3 does not hold for three-way clustering).
However, in [4], it has been shown that every three-way clustering can easily be
transformed in an orthopartition by isolating in an ad-hoc cluster the elements
not satisfying (O3). As all the different representations can be transformed into
each other, in the following, we will thus refer generally to three-way clustering
as a general term for clustering based on orthopairs.

Since a three-way clustering represents an incomplete or uncertain state of
knowledge about a clustering (i.e. about which specific clusters do the objects
belong), we can also represent a three-way clustering as a collection of consistent
clusterings, that is given a three-way clustering O:

Σ(O) = {π ∈ Π(X) : π is consistent with O} (5)

where π is consistent with O iff ∀Oi ∈ O,∃πj ∈ π s.t. πj ⊆ Corei ∪ Fringei.
We notice that, in general, a collection of clusterings C does not necessarily

represents the collection of consistent clusterings for any given three-way clus-
tering O. However, it can also be easily seen that each collection of clusterings
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C can be extended to a collection of consistent clusterings (for a given three-way
clustering O). Thus, when we refer to a collection of clusterings, we will implicitly
refer to its extension that we denote as tw(Σ), where Σ is a collection of clus-
terings. The vacuous three-way clustering is defined as Ov s.t. Σ(Ov) = Π(X).
Let O be a three-way clustering, we denote by Core(O) ⊂ X the collection of
objects in the core regions of the clusters of O.

If we denote as O(X) the set of three-way clusterings over X, then a three-way
clustering algorithm is a computable function ctw : DX �→ O(X).

3 Formal Theory of Three-Way Clustering

Our aim is to study the learnability properties and formal characterization of
three-way clustering. One aspect that should be considered, in this respect, is
the increased flexibility derived from adopting the three-way formalism, which
is due not only to the increased model complexity, but also to the fact that it
allows to conceive weakenings of the axioms proposed for hard clustering, as long
as they retain compatibility with the standard case. In particular, since as pre-
viously argued, the Richness axiom represents the most problematic constraint,
we will study possible weakenings of it which are meaningful in the three-way
clustering setting. This, however, should be done with care, e.g.. the following
naive consistent weakening of the Richness axiom:

⋃

O∈Range(ctw)

Σ(O) = Π(X)

would clearly be too permissive, as it would admit always returning the vacuous
three-way clustering as output. Similarly, requiring that Range(ctw) = O(X)
would be too strong a requirement: as a consequence of Theorem 1 it would
result in an unsatisfiable constraint.

The following axiom, which is intermediate in strength between Axiom 2 and
Axiom 2q (as shown previously, any clustering quality measure implicitly defines
a clustering algorithm), represents a weakening of the Richness axiom which is
coherent with the three-way clustering setting:

Axiom 2tw (Almost Richness). A three-way clustering algorithm ctw is
almost rich if ⋃

O∈Range(ctw)

Σ(O) = Π(X) (6)

and

∀π ∈ Π̂(X),∃d ∈ DX s.t. ctw(d) = π (7)

First, we notice that, obviously, when restricted to hard clustering algorithms
Almost Richness reduces to Richness.

Proposition 1. If c is a clustering algorithm, then it satisfies Axiom 2 iff it
satisfies Axiom 2tw.
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Proof. For a clustering algorithm c its output c(d) is always a single partition
π. Thus, Σ({π}) = π and thus, if c is almost rich it is also rich. Equation (7)
becomes redundant in this particular case. The converse (richness implies almost
richness) is evident.

Second, we note that in Axiom 2tw, we restrict the range to Π̂(X) rather than
Π(X), in analogy with Axiom 2q; in this sense, as stated above, the proposed
Axiom is intermediate in strength between Axioms 2 and 2q.

On the other hand, as regards Axioms 1 and 3, we simply require that they
hold for each possible three-way clustering O (thus, we do not weaken these two
axioms).

In order to prove that Axiom 2tw, together with Axioms 1 and 3, characterizes
three-way clustering, we first introduce the notion of a CQM s.t. the resulting
cq
tw is almost rich.

For a pair of clusters πi, πj let s(πi) = 1
2|πi|

∑
x�=y∈πi

d(x, y) be the mean dis-
tance of the elements inside cluster πi and d(πi, πj) = 1

|πi||πj |
∑

x∈πi

∑
y∈πj

d(x, y)

the mean distance between elements belonging to two different clusters πi, πj .
Given a partition π and a distance d, we define a CQM qtw : Π(X) ×
DX �→ R

2 as
qtw(π, d) = 〈qintra, qinter〉 (8)

where

qintra(π, d) =
1
|π|

∑

πi∈π

s(πi) − minx�=y∈Xd(x, y) (9)

qinter(π, d) =
1

|π|2
∑

πi �=πj∈π

d(πi, πj) − minx�=y∈Xd(x, y) (10)

Remark. We notice that, strictly speaking, the introduced quality measure qtw

is not a CQM, as a CQM is defined as a function q : Π(X) × DX �→ R while
qtw : Π(X) × DX �→ R

2.

Definition 2. Given two clustering π1, π2 and a distance function, we say that
qtw(π1, d) < qtw(π2, d) if both:

qintra(π1, d) ≥ qintra(π2, d) (11)

qinter(π1, d) ≤ qinter(π2, d) (12)

and at least one of the two is strict. Then, we say that π1 <q π2 if qtw(π1, d) <
qtw(π2, d).

The idea is that if π1 <q π2 then instances in π1 have greater intra-cluster
distance and smaller inter-cluster distance.

The following result shows that, indeed, the three Axioms provide a charac-
terization for three-way clustering.



A Formal Learning Theory for Three-Way Clustering 135

Algorithm 1. Three-way Clustering based on qtw

Require: d distance function
Σ = ∅
for π ∈ Π(X) do

check := �
for π′ �= π ∈ Π(X) do

if π′ >q π then
check := ⊥
break

end if
end for
if check then

Σ.append(π)
end if

end for
Return tw(Σ)

Theorem 4. There exists a three-way clustering algorithm that satisfies Axioms
1, 2tw and 3.

Proof. The Theorem can be proven based on the previously defined CQM qtw.
Indeed, from qtw, we can define a three-way clustering algorithm cq

tw as shown
in Algorithm 1. It can be verified that, ∀d ∈ DX , cq

tw(d) = {π ∈ Π(X) : �π′ ∈
Π(X), π′ >q π}. It is easily shown that cq

tw satisfies Scale-Invariance and Con-
sistency (when restricted to pairs of objects x, y in the core regions of tw(Σ),
where Σ is the result of cq

tw). We thus show only the proof for Almost Richness.
Let π be a given non-trivial clustering and let d be the distance function

defined ∀x, y as

d(x, y) =

{
ε if x ∼π y

α if x �∼π y

with α � ε. Then, qtw(π, d) = 〈0, α − ε〉 and evidently, for any other π′,
qtw(π′, d) < qtw(π, d) (hence, π′ <q π). This satisfies the second condition of
the Axiom.

As regards the first condition, let d be s.t. ∀x, y, d(x, y) = ε. Then, for any
π ∈ Π(X) qtw(π, d) = 〈0, 0〉. The condition, and hence the result, follows. ��

The proof of Theorem 4 is constructive and directly provides a three-way
clustering algorithm satisfying Axioms 1, 2tw, 3. Further, evidently Π̂(X) ⊂
Range(cq

tw) ⊂ O(X) but future work should study how to provide a more precise
specification of the range of cq

tw.
As a limitation of this result, it is easy to observe that an exact implementa-

tion of this algorithm is not practical from a time complexity perspective: indeed,
as the algorithm requires to compute the value of q for all possible clusterings its
complexity is evidently exponential in |X|. A possible solution to this problem
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would be to define heuristic or randomized algorithms for implementing approx-
imation of the cq

tw three-way clustering algorithm (possibly, with proven quality
bounds).

A different approach, instead, consists in studying other, more efficient three-
way clustering algorithms and providing their axiomatic characterization, in
order to understand their flexibility when compared with cq

tw. We will provide
such a characterization for the three-way k-means algorithm [28,36] (and related
ones, such as rough k-means [15,21]). In order to prove this result, we will focus
on a simplified single-step version of the algorithm, as defined in Algorithm 2.

Algorithm 2. Single-Step Three-way K-Means
Require: d distance function
Require: x1, ..., xk ∈ X cluster centroids
Require: δ, Δ ∈ [0, 1] parameters

Let d̂(x, y) := d(x,y)
maxa,b∈Xd(a,b)

for x ∈ X do
I := {i : d̂(x, xi) ≤ Δ}
for i ∈ I do

if (|I| = 1) ∧ (d̂(x, xi) ≤ δ) then
x ∈ Corei

else
x ∈ Fringei

end if
end for

end for

Evidently, Algorithm 2 is Scale-Invariant (as it only uses the normalized
distance) but it can easily be shown that is neither Consistent, nor Almost Rich,
but it is k-Rich.

Example 1. For Consistency, consider a distance function d, let a, b ∈ X
s.t. d(a, b) = maxx,y∈Xd(x, y) and suppose that the result of Algorithm 2,
denoted as O, assigns a, b to two different clusters. Further, let d′ s.t. ∀x, y ∈
X \ {a, b}d′(x, y) = d(x, y), while d(a, b) � d′(a, b). Then, evidently, d’ is a O-
transformation of d, but Consistency is violated. For Almost Richness, it easily
follows from the fact the result of Algorithm 2 contains exactly k clusters.

We can characterize this Algorithm (and similar algorithms such as three-
way k-means [28] or rough k-means [13]) via the following two Axioms (together
with Scale-Invariance):

Axiom 2twk (Three-way k-Richness). A three-way k-clustering algorithm
ck
tw : DX �→ Ok(X) is k-rich if ∀k,Range(ck

tw) = Ok(X) where Ok(X) = {O ∈
O(X) : |O| = k}.

That is, a three-way clustering algorithm is k-rich if as possible outputs (by
changing the distance function) we can obtain all the orthopartions made exactly
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of k orthopairs. This requirement is a natural generalization of k-Richness to the
setting of three-way clustering.

Axiom 3twk ((δ,Δ)-Consistency). Let d, d′ ∈ DX and δ < Δ ∈ [0, 1]. Then,
d′ is a (δ,Δ)-transformation of d if:

sign(
d(x, y)

maxa,bd(a, b)
− δ) = sign(

d′(x, y)
maxa,bd′(a, b)

− δ) (13)

sign(
d(x, y)

maxa,bd(a, b)
− Δ) = sign(

d′(x, y)
maxa,bd′(a, b)

− Δ) (14)

A three-way clustering algorithm ctw is (δ,Δ)-consistent if, given d s.t. ctw(d) =
O, for any d′ (δ,Δ)-transformation of d it holds that ctw(d′) = O.

So, (δ,Δ)-consistency means that small changes in the distance function do not
alter the clustering result. The notion of (δ,Δ)-consistency can be seen as a
restricted form of Consistency, determined by two thresholds that are used to
describe three different regions (a natural requirement in the setting of three-
way clustering): the objects whose normalized distance is lower than δ; those
for which the normalized distance is between Δ and δ; and those for which the
normalized distance is greater than Δ).

Theorem 5. Algorithm 2 satisfies Axioms 1, 2twk, 3twk.

Proof. Evidently, Algorithm 2 is Scale-Invariant. Further, by construction, it is
also (δ,Δ)-consistent w.r.t. its input parameters δ,Δ. Thus, we only need to
show that it is Three-way k-Rich.

Let O ∈ Ok(X) be the target three-way clustering and δ < Δ the input
parameters. For each cluster Oi ∈ O select one element xi ∈ Oi. Then, for each
x, if x ∈ Corei set d(x, xi) < δ and if x ∈ Fringei set δ < d(x, xi) < Δ. For any
two x, y s.t. they belong to different clusters set d(x, y) = 1. Then the output of
Algorithm 2 in this case is exactly O.

We can thus compare the two algorithms, cq
tw and Three-way K-Means,

through their characterization. Indeed, we can observe that the two algorithms
can be seen as offering a trade-off between representational flexibility and com-
putational efficiency. Indeed, cq

tw is more flexible (as it does not require to set,
a-priori, the number of clusters k) and satisfies a stricter notion of consistency.
Thus, its result is more well-behaved w.r.t. coherent modifications to the dis-
tance function. However, it has exponential complexity in the size of X, as it
requires an enumeration of all π ∈ Π(X). On the other hand, having fixed
both k, the number of clusters, and the cluster centroids (i.e., x1, ..., xk in Algo-
rithm 2), the complexity of Three-way K-Means is linear in |X|. However, the
Three-way K-Means family of algorithms satisfies a weaker form of consistency
(i.e., (δ,Δ)-consistency) and, further, requires to set both the number of clusters
(which in practice is selected heuristically using criteria such as the Silhouette or
cross-validation [11]) and the cluster centroids: this usually involves an iterative
approach which, however, only guarantees convergence to a local optimum (as,
even for traditional k-Means, the problem of finding the optimal k-clustering is
NP-hard [6]).
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4 Conclusion

In this article, we set out the foundations for the study of the theoretical prop-
erties of three-way clustering and related formalisms, from the perspective of
computational learning theory. We provided an axiomatic characterization of
three-way clustering and proved that, contrary to the case of traditional clus-
tering, these requirements are consistent, i.e., there exists a three-way clustering
algorithm satisfying them, which however has exponential time complexity. We
then studied an axiomatic characterization of the popular Three-way k-Means
family of clustering algorithm, showing that it provides a trade-off, favoring bet-
ter time complexity against reduced flexibility. Our results represent a first step
towards a formal study of three-way clustering and, as such, we think that the
following open problems may be important to understand the formal properties
of this increasingly popular clustering framework:

– What is the exact characterization of Range(cq
tw)? As we previously argued,

it can easily be shown that Π̂(X) � Range(cq
tw) � O(X), but it is not clear

which proper three-way clusterings can be represented by cq
tw;

– Is there a three-way clustering algorithm satisfying the following generalized
Almost Richness axiom (together with Consistency and Scale-Invariance):

∀O ∈ Ô(X)∃d ∈ DX s.t ctw(d) = O (15)

where Ô(X) is the set of non-trivial three-way clusterings? Otherwise, what
is the greatest subset of O(X) which admits a consistent and scale-invariant
three-way clustering algorithm?

– While the time complexity of cq
tw is exponential in |X|, can we find an approx-

imation or randomization scheme for cq
tw with provable error bounds?

– What is the learning-theoretic axiomatic characterization of other three-
way clustering algorithms, such as three-way density-based clustering [34]
or rough-set hierarchical clustering [5]?

More generally, and observing that rough k-means can be seen as a particular
case of both evidential clustering [7] and possibilistic clustering [12], we can think
to extend the learning-theoretic axiomatic characterization to these other soft
clustering approaches.
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W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 398–405. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-10646-0 48

32. Yu, H.: A framework of three-way cluster analysis. In: Polkowski, L., Yao, Y.,
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