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Abstract. Learning ranking models is a difficult task, in which data
may be scarce and cautious predictions desirable. To address such
issues, we explore the extension of the popular parametric probabilistic
Plackett–Luce model, often used to model rankings, to the imprecise set-
ting where estimated parameters are set-valued. In particular, we study
how to achieve cautious or conservative inference with it, and illustrate
their application on label ranking problems, a specific supervised learning
task.
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1 Introduction

Learning and estimating probabilistic models over rankings of objects has
received attention for a long time: earlier works can be traced back at least
to the 1920s [21]. Recently, this problem has known a revival, in particular due
to the rising interest of machine learning in the issue [12]. Popular approaches
range from associating a random utility to each object to be ranked, from which
a distribution on rankings is derived [3], to directly defining a parametric distri-
bution over the set of rankings [19].

Multiple reasons motivate making cautious inferences of ranking models. The
information at hand may be scarce—this is typically the case in the cold-start
problem of a recommender system, or partial—for instance because partial rank-
ings are observed (e.g., pairwise comparisons, top-k items). In addition, since
inferring a ranking model is difficult and therefore prone to uncertainty, it may
be useful to output partial rankings as predictions, thus abstaining to predict
when information is unreliable.

Imprecise probability theory is a mathematical framework where partial esti-
mates are formalized in the form of sets of probability distributions. Therefore,
it is well suited to making cautious inferences and address the aforementioned
problems; yet, to our knowledge, it has not yet been applied to ranking models.
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In this paper, we use the imprecise probabilistic framework to infer a impre-
cise Plackett–Luce model, which is a specific parametric model over rankings,
from data. We present the model in Sect. 2. We address its inference in Sect. 3,
showing that for this specific parametric model, efficient methods can be devel-
oped to make cautious inferences based on sets of parameters. Section 4 will
then present a direct application to label ranking, where we will use relative
likelihoods [5] to proceed with imprecise model estimation.

2 Imprecise Plackett–Luce Models

In this paper, we consider the problem of estimating a probabilistic ranking
model over a set of objects or labels Λ = {λ1, . . . , λn}. This model defines prob-
abilities over total orders on the labels—that is, complete, transitive, and asym-
metric relations � on Λ. Any complete order � over the labels can be identified
with its induced permutation or label ranking τ, that is the unique permutation
of Λ such that

λτ(1) � λτ(2) � · · · � λτ(n).

We will use the terms “order on the labels”, “ranking” and “permutation” inter-
changeably. We denote by L(Λ) all n! permutations on Λ, and denote a generic
permutation by τ.

We focus on the particular probability model P : 2L(Λ)
→ [0, 1] known as the

Plackett–Luce (PL) model [6,13]. It is parametrised by n parameters or strengths
v1, . . . , vn in R>0 := {x ∈ R : x > 0}.1 The strength vector v = (v1, . . . , vn)
completely specifies the PL model. For any such vector, an arbitrary ranking τ
in L is assigned probability

Pv(τ) :=
n∏

k=1

vτ(k)∑n
�=k vτ(�)

=
vτ(1)

vτ(1) + · · · + vτ(n)
·

vτ(2)

vτ(2) + · · · + vτ(n)
· · ·

vτ(n−1)

vτ(n−1) + vτ(n)
. (1)

Clearly, the parameters v1, . . . , vn are defined up to a common positive multi-
plicative constant, so it is customary to assume that

∑n
k=1 vk = 1. Therefore, the

parameter v = (v1, . . . , vn) can be regarded as an element of the interior of the
n-simplex Σ := {(x1, . . . , xn) ∈ R

n
≥0 :

∑n
k=1 xk = 1}, denoted int(Σ).

This model has the following nice interpretation: the larger a weight vi is,
the more preferred is the label λi. The probability that λi is ranked first is

∑

τ∈L(Λ)

τ(1)=λi

Pv(τ) = vi;

conditioning on λi being the first label, the probability that λj is ranked second
(i.e. first among the remaining labels) is equal to vj/

∑n
k=1,k�i vk . This reasoning

can be repeated for each of the labels in a ranking. As a consequence, given a

1 We also define the set of non-negative real numbers as R
≥0 := {x ∈ R : x ≥ 0}.
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PL model defined by v, finding the “best” (most probable) ranking amounts to
finding the permutation τ�v which ranks the strengths in decreasing order:

τ�v ∈ arg max
τ∈L(Λ)

Pv(τ
′

) ⇔ vτ(1) ≥ vτ(2) ≥ vτ(3) · · · ≥ vτ(n−1) ≥ vτ(n). (2)

We obtain an imprecise Plackett–Luce (IPL) model by letting the strengths
vary over a subset Θ of int(Σ).2 Based on this subset of admissible strengths, we
can compute the lower and upper probabilities of a ranking τ as

PΘ(τ) := inf
v∈Θ

Pv(τ) and PΘ(τ) := sup
v∈Θ

Pv(τ) for all τ in L(Λ).

The above notion of “best” ranking becomes ambiguous for an IPL model, since
two vectors v � u ∈ Θmight be associated with different “best” rankings τ�v � τ

�
u .

Therefore, we consider two common ways to extend (2). The first one,
(Walley–Sen) maximality [22,23], considers that τ1 dominates τ2 (noted τ1 �M

τ2) if it is more probable for any v ∈ Θ:

τ1 �M τ2 ⇔ (∀v ∈ Θ), Pv(τ1) > Pv(τ2). (3)

The set MΘ of maximal rankings is composed of all such undominated rankings:

MΘ := {τ ∈ L(Λ) : �τ′ s.t. τ′ �M τ}. (4)

We may have |MΘ | > 1 when Θ is imprecise.
The second one is E-admissibility [18]. A ranking τ is E-admissible if it is

the “best”, according to Eq. (2), for some v ∈ Θ. The set EΘ of all E-admissible
rankings is then

EΘ :=
⋃

v∈Θ

arg max
τ∈L(Λ)

Pv(τ) =
{
τ : (∃v ∈ Θ) s. t. (∀τ′ ∈ L(Λ)), Pv(τ) ≥ Pv(τ

′

)

}
. (5)

By comparing Eqs. (4) and (5), we immediately find that EΘ ⊆ MΘ.

3 Learning an Imprecise Plackett–Luce Model

We introduce here two methods for inferring an IPL model. The first one
(Sect. 3.1), which does not make further assumptions about Θ, provides an outer
approximation of the set of all maximal rankings. The second one (Sect. 3.2)
computes the set of E-admissible rankings via an exact and efficient algorithm,
provided that the set of strengths Θ has the form of probability intervals.

2 Taking int(Σ) rather than Σ assures that all probabilities are positive and that Eq. (1)
is well-defined.
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3.1 General Case

Section 2 shows that the “best” ranking is found using Eq. (2). In the case of
an IPL model, making robust and imprecise predictions requires to compare
all possible ranks in a pairwise way, the complexity of which is n!—and thus
generally infeasible in practice. However, checking maximality can be simplified.
Notice that the numerator in Eq. (1) does not depend on τ (product terms can
be arranged in any order). Hence, when comparing two permutations τ and τ′

using Eq. (3), only denominators matter: indeed, τ � τ′ iff for all v ∈ Θ,

Pv(τ)

Pv(τ′)
=

vτ′(1) + · · · + vτ′(n)

vτ(1) + · · · + vτ(n)
·

vτ′(2) + · · · + vτ′(n)

vτ(2) + · · · + vτ(n)
· · ·

vτ′(n−1) + vτ′(n)

vτ(n−1) + vτ(n)
> 1. (6)

Assume for a moment that strengths are precisely known, and that τ and τ′

only differ by a swapping of two elements: τ(k) = τ′(k) for all k ∈ {1, . . . ,m}\{i, j}
where i � j, and τ( j) = τ′(i), τ(i) = τ′( j). Assume, without loss of generality, that
i < j. Then, the product terms in Eq. (6) only differ in the ratios involving rank
j but not rank i; using furthermore τ(i) = τ′( j), we get

Pv(τ)

Pv(τ′)
=

n∏

k=1
k�{i+1,..., j }

∑n
�=k vτ′(�)∑n
�=k vτ(�)︸�������︷︷�������︸

=1

·

j∏

k=i+1

∑n
�=k vτ′(�)∑n
�=k vτ(�)

=

j∏

k=i+1

vτ(i) +
∑n

�=k,��j vτ′(�)

vτ(j) +
∑n

�=k,��j vτ(�)
.

In this last ratio, we introduce now for any k in {i+1, . . . , j} the sums of strengths
Ck :=

∑n
�=k,��j vτ(�) =

∑n
�=k,��j vτ′(�): these terms being positive, it follows that

τ � τ′ ⇔

Pv(τ)

Pv(τ′)
> 1 ⇔ (∀v ∈ Θ), vτ(i) > vτ(j).

In the case of imprecisely known strengths, the latter inequality will hold
whenever the following (sufficient, but not necessary) condition is met:

vτ(i) := inf
v∈Θ

vτ(i) > vτ(j) := sup
v∈Θ

vτ(j).

Now comes a crucial insight. Assume a ranking τ which prefers λ� to λk whereas
vk > v� , for some k � �: then, we can find a “better” ranking τ′ (i.e., which
dominates τ according to Eq. (3)) by swapping labels λ� and λk . In other terms,
as soon as vk ≥ v� , all maximally admissible rankings satisfy λk � λ� .

It follows that given an IPL model with strengths Θ ⊆ int(Σ), we can deduce
a partial ordering on objects from the pairwise comparisons of strength bounds:
more particularly, we will infer that λk � λ� whenever vk ≥ v� . This partial
ordering can be obtained easily; it may contain solutions that are not optimal
under the maximality criterion, but it is guaranteed to contain all maximal
solutions.
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3.2 Interval-Valued Case

We assume here that strengths are interval-valued: vk ∈ [vk, vk] ⊆ ]0, 1[; that is,
the set Θ of possible strengths (called credal set hereafter) is defined by:

Θ = (

n
�

k=1

[vk, vk]) ∩ Σ. (7)

Note that we assume vk > 0 for each label λk : each object has a strictly positive
lower probability of being ranked first. It follows that vk < 1, and thus Θ ⊆ int(Σ).
Such interval-valued strengths fall within the category of probability intervals on
singletons [1, Sect. 4.4], and are coherent (nonempty and convex) iff [10]:

(∀k ∈ {1, . . . , n}),
(
vk +

n∑

i=1
i�k

vi ≥ 1 and vk +

n∑

i=1
i�k

vi ≤ 1
)
. (8)

From now on, we will assume this condition to hold, and thus that Θ is coherent.
We are interested in computing the set of E-admissible rankings, i.e. rankings

τ such that there exists v ∈ Θ for which τ maximises Pv (see Sect. 2). Our
approach relies on two propositions, the proofs of which will be omitted due to
the lack of place.

Checking E-admissibility. We provide here an efficient way of checking
whether a ranking τ is E-admissible. According to Eq. (2), it will be the case
iff v is decreasingly ordered wrt to τ, i.e. vτ(1) ≥ vτ(2) ≥ vτ(3) ≥ . . .

Proposition 1. Consider any interval-valued parametrisation of an IPL model
such as defined by Eq. (7), and any ranking τ in L(Λ). Then, τ is E-admissible
(i.e., τ ∈ EΘ) iff there exists an index k ∈ {1, . . . , n} such that

1 −

k−1∑

�=1

min
1≤ j≤�

vτ(j) −

n∑

�=k+1

max
�≤ j≤n

vτ(j) ∈ [ max
k≤ j≤n

vτ(j), min
1≤ j≤k

vτ(j)] (9)

and
vτ(�) ≤ min{vτ(1), . . . , vτ(�)} for all � in {1, . . . , k − 1},

vτ(�) ≥ max{vτ(�), . . . , vτ(n)} for all � in {k + 1, . . . , n}.
(10)

Checking E-admissibility via Proposition 1 has a polynomial complexity in
the number n of labels. Indeed, we need to check n different values of k: for each
one, Eq. (9) requires to calculate a sum of n−1 terms, and Eq. (10) to check n−1
inequalities, which yields a complexity of 2n(n − 1).
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Computing the Set of E-admissible Rankings. Although Eq. (9) opens
the way to finding the set of E-admissible rankings, there are n! many candidate
rankings: checking all of them is intractable.

We propose to address this issue by considering a search tree, in which a node
is associated with a specific sequence of labels. Each subsequent node adds a new
element to this sequence: a leaf is reached when the sequence corresponds to a
complete ranking. By navigating the tree top-down, we may progressively check
whether a sequence corresponds to the beginning of an E-admissible ranking.
Should it not, all completions of the sequence can be ignored.

This requires a way of checking whether a sequence κ = (k1, k2, . . . , km),
by essence incomplete, may be completed into an E-admissible ranking—i.e.,
whether we can find τ ∈ EΘ such that τ(1) = k1, τ(2) = k2, . . . , τ(m) = km. Propo-
sition 2 provides a set of necessary and sufficient conditions to this end.

Proposition 2. Consider any coherent parametrisation of an IPL model such
as defined by Eq. (7), and a sequence of distinct labels κ = (k1, . . . , km) of length
m ≤ n − 1. Then, there exists an E-admissible ranking beginning with this initial
sequence iff the following equations are satisfied for every j in {1, . . . ,m}:

j∑

�=1

min{vk1, . . . , vk� } +
n∑

i=1
i�{k1,...,k j }

min{vk1, . . . , vk j , vi} ≥ 1; (Aj)

vk j ≥ max{vi : i ∈ {1, . . . , n} \ κj}; (Bj)

j−1∑

t=0

max{vi : i ∈ {1, . . . , n} \ κt } +
n∑

i=1
i�{k1,...,k j }

vi ≤ 1; (Cj)

here, κj ( j = 0, . . . ,m) is the sub-sequence of the j first labels in κ (by convention,
κ0 is empty), and {1, . . . , n} \ κj is the set of labels not appearing in κj .

In the special case of m = 1, which is typically the case at depth one in the
search tree, Eqs. (Aj), (Bj) and (Cj) reduce to:

n∑

i=1

min{vk1, vi} ≥ 1; (A1)

vk1 ≥ max{vi : i ∈ {1, . . . , n}}; (B1)

max{vi : i ∈ {1, . . . , n}} +
n∑

i=1
i�k1

vi ≤ 1. (C1)

Note that under the coherence requirement (8), Eq. (C1) is a direct consequence
of Eq. (B1), but it is not the case for Eq. (Cj) when j ≥ 2.
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Fig. 1. Probability intervals for Example 1

Fig. 2. Search tree for n = 4

Example 1. Consider an IPL model that is defined by strength intervals [v1, v1] =
[

3
/8, 5/8], [v2, v2] = [

1
/12, 1/12], [v3, v3] = [

1
/30, 1/5] and [v4, v4] = [

1
/8, 3/8], displayed

in Fig. 1 (the coherence of which can be checked using Eq. (8)).
Consider the tree in Fig. 2, which will help navigate the set of possible rank-

ings with n = 4 labels. The left-most node at depth m = 1 corresponds to the
sequence (λ1); its left-most child (left-most node at depth m = 2) to the sequence
(λ1, λ2). We can see that this sequence has been ruled out as a possible initial
segment for an E-admissible ranking: no further completion (i.e., neither of the
two rankings (λ1, λ2, λ3, λ4) and (λ1, λ2, λ4, λ3)) will be checked.

The sequence (λ1, λ3, λ2) has been ruled out as well; however, the sequence
(λ1, λ3, λ4) has been considered as valid, and can be straightforwardly completed
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into a valid E-admissible ranking (since only one possible label remains). Even-
tually, all E-admissible rankings τ = (τ(1), τ(2), τ(3), τ(4)) corresponding to the
IPL model are

{(1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2), (4, 1, 3, 2)}.

A possible strength vector for which τ = (1, 3, 4, 2) dominates all others is
given by v = (

5
/8, 1/12, 1/6, 1/8): it can easily be checked that v ∈ Θ and that vτ(1) =

5
/8 ≥ vτ(2) = 1

/6 ≥ vτ(3) = 1
/8 ≥ vτ(4) = 1

/12, i.e. τ is E-admissible according to
Eq. (2). We provide below possible strength vectors for each of the E-admissible
rankings associated with the IPL model considered:

Admissible strength vector v ∈ Θ Corresponding ranking τ ∈ EΘ

v = (v1, v2, v3, v4) τ = (τ(1), τ(2), τ(3), τ(4))

(
5
/8, 1/12, 1/6, 1/8) (1, 3, 4, 2)

(
5
/8, 1/12, 1/12, 5/24) (1, 4, 2, 3)

(
5
/8, 1/12, 1/12, 5/24) (1, 4, 3, 2)

(
3
/8, 1/12, 1/6, 3/8) (4, 1, 3, 2)

Let us show that there is no E-admissible ranking τ that starts for instance
with (1, 2). Assume ex absurdo that such an E-admissible ranking τ exists. This
would imply that there exists v ∈ Θ such that v1 ≥ v2 ≥ max{v3, v4}, which by
Eq. (2) would imply that 1

/12 = v2 ≥ v4 ≥ v4 = 1
/8, which is impossible. ♦

Algorithm. Eqs. (Aj), (Bj) and (Cj) used in Proposition 2 to check the
E-admissibility of a ranking with a given initial sequence of labels can be turned
into an efficient algorithm. We can indeed proceed recursively: checking whether
there exists an E-admissible ranking starting with (k1, . . . , km) basically requires
to check whether it is the case for (k1, . . . , km−1) and then whether Eqs. (Aj), (Bj)
and (Cj) still hold for j = m.

Algorithms 1 and 2 provide a pseudo-code version of this procedure. Note that
as all branch-and-bound techniques, it does not reduce the worst-case complexity
of building an E-admissible set. Indeed, if all the rankings are E-admissible—
which typically happens when all probability intervals are wide, then no single
branch can be pruned from the search tree. In that case, the algorithm navigates
the complete tree, which clearly has a factorial complexity in the number of
labels n. Then, even a simple enumeration of all E-admissible rankings has such
a complexity.

However, in practice we can expect many branches of the tree to be quickly
pruned: indeed, as soon as one of the Eqs. (Aj), (Bj) or (Cj) fail to hold, a branch
can be pruned from the tree. We expect this to allow for efficient inferences in
many circumstances.
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Algorithm 1. Find the E-admissible rankings optn
Require: Probability intervals [vk, vk ] for k ∈ {1, . . . , n}
Ensure: The set Θ = {[vk, vk ] : k ∈ {1, . . . , n}} is coherent

optn ← ∅

for all k1 ∈ {1, . . . , n} do
Recur(1, (k1))

end for

Algorithm 2. Recur( j, (k1, . . . , k j))
if j = n − 1 then

append the unique kn ∈ {1, . . . , n} \ {k1, . . . , kn−1} to the end of (k1, . . . , kn−1)
add (k1, . . . , kn) to optn �we found a solution.

else

for all k j+1 ∈ {1, . . . , n} \ {k1, . . . , k j } do

if Equations (Aj+1), (Bj+1) and (Cj+1) hold then
append k j+1 to the end of (k1, . . . , k j )
Recur( j + 1, (k1, . . . , k j+1))

end if
end for

end if

4 An Application to Label Ranking

In this section, we explore an application of the IPL model to supervised learning
of label rankings. Usually, supervised learning consists in mapping any instance
x ∈ X to a single (preferred) label Λ = {λ1, . . . , λn} representing its class. Here,
we study a more complex issue called label ranking, which rather maps x ∈ X

to a predicted total order ŷ on the labels in Λ—or a partial order, should we
accept to make imprecise predictions for the sake of robustness.

For this purpose, we exploit a set of training instances associated with rank-
ings (xi, τi), with i ∈ {1, . . . ,m}, in order to estimate the theoretical conditional
probability measure Px : 2L(Λ)

→ [0, 1] associated to an instance x ∈ X . Ideally,
observed outputs τi should be complete orders over Λ; however, this is seldom the
case, total orders being more difficult to observe: training instances are therefore
frequently associated with incomplete rankings τi (i.e., partial orders over Λ).

Here, we will apply the approach detailed in Sect. 3.1 to learning an IPL
model from such training data, using the contour likelihood to get the parameter
set corresponding to a specific instance x.

4.1 Estimation and Prediction

Precise Predictions. In [7], it was proposed to use an instance-based approach:
the predictions for any x ∈ X are made locally using its nearest neighbours.
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Let NK (x) stand for the set of nearest neighbours of x in the training set, each
neighbour xi ∈ NK (x) being associated with a (possibly incomplete) ranking τi;
and let Mi be the number of ranked labels in τi. Using the classical instance-based
assumption that distributions are locally identical (i.e., in the neighborhood of
x), the probability of observing τ1, . . . , τK given a parameter value v is:

P(τ1, . . . , τK |v) =
∏

xi ∈NK (x)

Mi∏

m=1

vτi (m)

∑Mi

j=m vτi (j)
. (11)

We can then use maximum likelihood estimation (MLE) in order to determine
v from τ1, . . . , τK , by maximizing (11)—or equivalently, its logarithm

l(v) =
K∑

i=1

Mi∑

m=1

[
log(vτi (m)

) − log
Mi∑

j=m

vτi (j)

]
.

Various ways to obtain this maximum have been investigated. We will use here
the minorization-maximization (MM) algorithm [16], which aims, in each itera-
tion, to maximize a function which minorizes the log-likelihood:

Qk(v) =

K∑

i=1

Mi∑

m=1

⎡⎢⎢⎢⎢⎣
log(vτi (m)

) −

log
∑Mi

j=m vτi (j)

log
∑Mi

j=m v
(k)

τi (j)

⎤⎥⎥⎥⎥⎦
where v(k) is the estimation of v in the k-th iteration. When the parameters
are fixed, the maximization of Qk can be solved analytically and the algorithm
provably converges to the MLE estimate v∗ of v. The best ranking τ∗ is then

τ∗ ∈ arg max
τ∈L(Λ)

P(τ|v∗);

it is simply obtained by ordering the labels according to v∗ (see Eq. (2)).

Imprecise Predictions. An IPL model is in one-to-one correspondence with
an imprecise parameter estimate, which can be obtained here by extending the
classical likelihood to the contour likelihood method [5]. Given a parameter space
Σ and a positive likelihood function L, the contour likelihood function is:

L∗

(v) =
L(v)

maxv∈Σ L(v)
;

by definition, L∗ takes values in ]0, 1]: the closer L∗

(v) is to 1, the more likely
v is. One can then naturally obtain imprecise estimates by considering “cuts”.
Given β in [0, 1], the β-cut of the contour likelihood, written B∗

β, is defined by

B∗

β = {v ∈ Σ : L∗

(v) ≥ β} .

Once B∗

β is determined, for any test instance x to be processed, we can easily
obtain an imprecise prediction ŷ in the form of a partial ranking, using the results
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of Sect. 3.1: we will retrieve ŷ such that λi � λj for all vk ∈ B∗

β. We stress here
that the choice of β directly influences the precision (and thus the robustness)
of the model: B∗

1 = v∗, which generally leads to a precise PL model; when β
decreases, the IPL model is less and less precise, possibly leading to partial (and
even empty) predictions.

In our experiments, the contour likelihood function is modelled by gener-
ating multiple strengths v according to a Dirichlet distribution with parameter
β = γv∗, where v∗ is the ML estimate obtained with the best PL model (or equiv-
alently, the best strength v) and γ > 0 is a coefficient which makes it possible to
control the concentration of parameters generated around v∗.

4.2 Evaluation

When the observed and predicted rankings y and ŷ are complete, various accu-
racy measures [15] have been proposed to measure how close they are to each
other (0/1 accuracy, Spearman’s rank, . . . ). Here, we retain Kendall’s Tau:

Aτ(y, ŷ) =
C − D
n(n−1)

/2
, (12)

where C and D are respectively the number of concording and discording pairs
in y and ŷ. In the case of imprecise predictions ŷ, the usual quality measures
can be decomposed into two components [9]: correctness (CR), measuring the
accuracy of the predicted comparisons, and completeness (CP):

CR(y, ŷ) =
C − D
C + D

and CP(y, ŷ) =
C + D
n(n−1)

/2
, (13)

where C and D are the same as in Eq. (12). Should ŷ be complete, C+D = n(n−1)
/2,

CR(y, ŷ) = Aτ(y, ŷ) and CP(y, ŷ) = 1; while CR(y, ŷ) = 1 and CP(y, ŷ) = 0 if ŷ is
empty (since no comparison is done).

4.3 Results

We performed our experiments on several data sets, mostly adapted from the
classification setting [7]; we report here those obtained on the Bodyfat, Housing
and Wisconsin data sets. For each dataset, we tested several numbers of neigh-
bours: K ∈ {5, 10, 15, 20} (for the MLE estimate and using Eq. (12)), and chose
the best by tenfold cross-validation. The sets of parameters B∗

β were obtained
as explained above, by generating 200 strengths with γ ∈ {1, 10}, the best value
being selected via tenfold cross validation repeated 3 times.

We also compared our approach to another proposal [8] based on a rejection
threshold of pairwise preference probabilities, in three different configurations:

– using the original, unperturbed rankings;
– by deleting some labels in the original rankings with a probability p ∈ [0, 1];
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– by introducing some noise in the rankings, by randomly swapping adjacent
labels with a probability p ∈ [0, 1] (the labels being chosen at random).

Figure 3 displays the results of both methods for the Bodyfat data set (with
m = 252 and n = 7) when rankings remain unperturbed, with a confidence inter-
val of 95% (±2 standard deviation of measured correctness). Our approach based
on the contour likelihood function is on par with the method based on absten-
tion, which was the case with all tested data sets. Both methods see correctness
increase once we allow for abstention. On the other data sets, the same behaviour
can be seen: our approach seems to be on par with the one based on abstention,
provided that the contour likelihood function has been correctly modelled (i.e.,
the generation of strengths is appropriate).

Fig. 3. Comparison of methods on Bodyfat with no perturbations

In order to be able to compare the two methods, we show underneath results
on a specific range of the completeness. We only show the domain [0.6, 1]; how-
ever the behaviour is similar outside this range.

Figures 4 and 5 show that both methods are also on par on the Housing data
set (m = 506, n = 6) even when the data sets are missing some labels. It can also
be noticed that for a given completeness level, the correctness is lower than in
the unperturbed case. On average, the greater the level of perturbation is, the
lower the average correctness is. This also stands for the other data sets.

Figures 6 and 7 display that with a different method of perturbation (label
swapping), our approach gives similar results on the Wisconsin data set (m =

194, n = 16). Moreover, the correctness is again lower in average for a given
completeness level if the data set is perturbed. We observe the same behaviour
for the label swapping perturbation method on the other data sets.

Such results are encouraging, as they show that we can at least achieve results
similar to state-of-the-art approaches. We yet have to identify those cases where
the two approaches significantly differ.
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Fig. 4. Comparison of methods on Hous-
ing with no perturbations

Fig. 5. Comparison of methods on Hous-
ing with 60% of missing label pairs

Fig. 6. Comparison of methods on Wis-
consin with no perturbations

Fig. 7. Comparison of methods on Wis-
consin with 60% of swapped label pairs

5 Conclusions

In this paper, we made a preliminary investigation into performing robust infer-
ence and making cautious predictions with the well known Plackett–Luce model,
a popular ranking model in statistics. We have provided efficient methods to do
so when the data at hand are poor, that is either of a low quality (noisy, partial)
or scarce. We have demonstrated the interest of our approach in a label ranking
problem, in presence of missing or noisy ranking information.

Possible future investigations may focus on the estimation problem, which
may be improved, for example by extending Bayesian approaches [14] through
the consideration of sets of prior distributions; or by developing a natively impre-
cise likelihood estimate, for instance by coupling recent estimation algorithms
using stationary distribution of Markov chains [20] with recent works on impre-
cise Markov chains [17].

As suggested by an anonymous reviewer, it might be interesting to consider
alternatives estimation methods such as epsilon contamination. There already
exist non-parametric, decomposition-based approaches to label ranking with
imprecise ranks; see [4,11]. However, the PL model, being tied to an order repre-
sentation, may not be well-suited to such an approach. We intend to investigate
this in the future.
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Last, since the Plackett–Luce model is known to be strongly linked to par-
ticular RUM models [2,24], it may be interesting to investigate what becomes
of this connection when the RUM model is imprecise (for instance, in our case,
by considering Gumbel distributions specified with imprecise parameters).
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