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Abstract. A chronicle is a kind of temporal pattern mined from a set of
sequences made-up of time-stamped events. It has been shown recently
that such knowledge is effective in sketching machines’ behaviours in
industry. However, chronicles that describe a same new sequence of
events could be multiple and conflictual. To predict nature and time
interval of future events, we need to consider all the chronicles that match
a new sequence. In this paper, we introduce a new approach, called FCP,
that uses the evidence theory and chronicle mining to classify sequences.
The approach has been evaluated on both synthetic and real-world data
sets and compared to baseline state-of-the-art approaches.

Keywords: Chronicle mining · Prediction maintenance · Evidence
theory

1 Introduction

In industry 4.0, predictive maintenance relies on analysing sequential data con-
taining time-stamped events. Therefore, data mining and particularly pattern
mining techniques [1] turned to be very effective to understand failure sequences
[9] by finding recurrent abnormal behaviours before any prediction task.

One type of pattern stands out thanks to its information richness and it is
called chronicle. A chronicle is a pattern that represents a sequence of events
that happened enough frequently to be extracted. Introduced in [6], this new
kind of sequences is enriched with the time interval that separates each pair of
events, making it possible to predict that an event B will probably happen at a
time interval [t1, t2] if event A occurs. If the event B requires an intervention,
such as a machine failure, then maintenance may be performed on time avoiding
cascading troubles.

Chronicles are complex but highly expressive patterns that enable to take into
account the quantitative temporal dimension of the data contrary to classical
sequential patterns. Dousson et al. [5] introduced what is called later chronicle
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mining. They proposed an incomplete algorithm (which does not generate all the
patterns) called FACE (Frequency Analyzer for Chronicle Extraction). Then,
Cram et al. [3] introduced another complete algorithm to mine the complete set
of chronicles. Sellami et al. have introduced a new approach called FADE [9]
that mines failure chronicles (chronicles that end with failure event).

In this paper, we tackle the problem of sequences’ classification and failure
time prediction in the context of predictive maintenance. We aim to understand
and predict failures for a target maintenance. Once the failure is predicted,
the maintenance is scheduled using failure criticality assessment [2]. Chronicle
mining algorithm is used to extract knowledge from the data set: normal and
abnormal behaviour patterns. Assuming a set of chronicles representing different
machine behaviours with certain level of reliability, a major task is how to classify
new incoming sequence.

Therefore, we propose to combine the use of evidence theory and chronicle
mining to classify sequence in the context of predictive maintenance. The evi-
dence theory, is a strong mathematical framework that allows to model uncertain
knowledge and combine information for decision making. To summarize, this
paper introduces two contributions: (i) using both normal and failure chroni-
cles for sequence classification and time to failure prediction and finally (ii), a
new algorithm called FCP that uses the mined chronicles and evidence theory
framework to combine information and predict if a new sequence will lead to a
machine failure, and if yes, in which time interval the crash will occur.

2 Background

2.1 Evidence Theory

The evidence theory also called the belief function theory was introduced by
Dempster [4]. In this section, we present the main concepts of this theory. The
frame of discernment is the set of N possible answers for a treated problem
and generally denoted θ. It is composed of exhaustive and exclusive hypotheses:
θ = (H1,H2, . . . , HN ).

These elements are assumed to be mutually exclusive and exhaustive. From
the frame of discernment θ, we deduce the set 2θ containing all the 2N subsets
A of θ: 2θ =

{
A,A ⊆ θ

}
=

{
H1,H2, . . . , HN ,H1 ∪ H2, ..., θ

}
. A Basic Belief

Assignment (BBA) m is the mapping from elements of the power set 2θ onto [0,
1], having as constraints:

{∑
A⊆θ m(A) = 1

m(∅) = 0.
(1)

The belief function offers many advantages. One of its proposed asset is the
information fusion allowing extracting the more veracious proposition from a
multi-source context. This benefit is granted by the Dempster rule of combina-
tion [4] defined as follows:
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m⊕(A) = m1⊕m2(A) =
1

1 − ∑
B∩C=∅ m1(B) ∗ m2(C)

∑

B∩C=A

m1(B)∗m2(C);∀A ⊆ θ, A �= ∅

(2)

The pignistic transformation allows the decision from a BBA by distributing
equiprobably the mass of a proposition A on its sub-hypotheses, formally:

BetP (Hn) =
∑

A⊆θ

|Hn ∩ A|
|A| ∗ m(A);∀Hn ∈ θ (3)

2.2 Chronicle Mining

To give formal definition of chronicles, this section starts by introducing the
concept of event [3].

Definition 1 (Event). Let E be a set of event types, and T a time domain such
that T ⊆ R. E is assumed totally ordered and is denoted ≤E. According to [3],
an event is a couple (e, t) where e ∈ E is the type of the event and t ∈ T is its
time.

Definition 2 (Sequence). Let E be a set of event types, and T a time domain
such that T ⊆ R. E is assumed totally ordered and is denoted ≤E. According to the
definition in [3], a sequence is a couple 〈SID, 〈(e1, t1), (e2, t2), ..., (en, tn)〉〉 such
that 〈(e1, t1), (e2, t2), ..., (en, tn)〉 is a sequence of events, and SID its identifier.
For all i, j ∈ [1, n], i < j ⇒ ti ≤ tj. If ti = tj then ei <E ej where <E is the
lexical order.

When the events are time-stamped, how to describe the quantitative time
intervals among different events is very important for the prediction of possible
future events. To achieve this goal, the notion temporal constraints is introduced.

Definition 3 (Temporal constraint). A temporal constraint is a quadruplet
(e1, e2, t−, t+), denoted e1[t−, t+]e2, where e1, e2 ∈ E, e1 ≤E e2 and t−, t+ ∈ T.

t− and t+ are two integers which are called lower and upper bounds of the
time interval, such that t− ≤ t+. A couple of events (e1, t1) and (e2, t2) are said
to satisfy the temporal constraint e1[t−, t+]e2 iff t2 − t1 ∈ [t−, t+]. It is defined
that e1[a, b]e2 ⊆ e′

1[a
′, b′]e′

2 iff [a, b] ⊆ [a′, b′], e1 = e′
1, and e2 = e′

2. The concept
of chronicles [3] is defined as follows.

Definition 4 (Chronicle). A chronicle is a pair C = (E , T ) such that:

1. E = {e1...en}, where ∀i, ei ∈ E and ei ≤E ei+1,
2. T = {tij}1≤i<j≤|E| is a set of temporal constraints on E such that for all pairs

(i, j) satisfying i < j, tij is denoted by ei[t−ij , t
+
ij ]ej.
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Definition 5 (Chronicle support). An occurrence of a chronicle C in a
sequence S is a set (e1, t1) . . . (en, tn) of events of the sequence S that satisfies all
temporal constraints defined in C. The support of a chronicle C, denoted Supp(.)
in the sequence S is the number of its occurrences in a data set of sequences [9].
In this paper, we assume that a sequence could contain at most only one occur-
rence of any chronicle.

3 Chronicle Mining and Evidence Theory for Failure
Prediction

In this section, we define the notions we use in our approach to combine chronicles
for prediction.

Definition 6 (Chronicle cover). Assuming a sequence S = 〈(e1, t1),
(e2, t2), . . . , (en, tn)〉 and a frequent chronicle C. We say that C covers the
sequence S, denoted by C <·S, if and only if the events represented by the chron-
icle belong to the sequence as well as the time intervals between these events in
the sequence belong to the temporal constraints extracted by the chronicle, i.e.,

C <·S ⇔ ∀ei[t−, t+]ej ∈ C,∃((e, t), (e′, t′)) ∈ S ∧ e = ei, e
′ = ej ∧ t′ − t ∈ [t−, t+]. (4)

Let C be a set of frequent chronicles, CT ⊂ C , such that T ∈ {F,N} and
where F̄ = N . CF denotes the set of chronicles that point to the failure event,
where CN is the set of chronicles that do not, and so match normal sequences.

Definition 7 (BBA modeling). Assuming a chronicle Ci ∈ CT that covers a
sequence S, we model the BBA mi of Ci in θ = {T, T̄} as follows:

⎧
⎪⎨

⎪⎩

mi(T ) = Supp(Ci)
mi(T̄ ) = 0
mi(θ) = 1 − Supp(Ci)

(5)

Definition 8 (Chronicles combination). Assuming N chronicles Ci that
cover a sequence S, with mi, i ∈ [1, N ], the mass function relative to the ith

chronicle. The joint mass function that combines all the mi mass functions of
the chronicles Ci that cover S using the Dempster Rule of combination is defined
as follows:

m⊕(A) = m1 ⊕ . . . ⊕ mN (A);∀A ⊆ θ (6)

To make the decision, we compute the pignistic probability BetP for failure
(F) and normal (N). The final decision is obtained by retaining the hypothesis
that maximized the pignistic probability as follows:

x = argmaxBetPxi∈θ(xi). (7)

For the prediction task, we developed the FCP method (Fusion of Chroni-
cles for Prediction). It consists in comparing the input sequence (to predict) with
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every chronicle in terms of events and time constraints. To each matching chron-
icle, we model a BBA that measures to which degree the chronicle expresses the
failure (F) and normal (N) behaviour classes. The level of uncertainty is retained
using the support of the chronicle. Once all matching chronicles are modelled, we
use the Dempster rule of combination to combine all the BBAs. The joint BBA
shows the membership of the input sequence to both classes. The final class is
computed using the argmax function. If the final class is failure, we display the
failure time by aggregating the time constraints of all matching failure chroni-
cles. Algorithm 1 performs the combination of the covering chronicles to predict
the status of a sequence using all aforementioned notions.

4 Experiments and Results

Two kinds of data sets are used to validate our approach. The first one is gen-
erated synthetically according to several parameters, such as the number of
sequences, the mean size (i.e. width) of a sequence and the number of items
(events).1 In addition, data are generated following a failure model sequence
that represents 5% of the entire produced data set. Even such kind of data sets
do not include natural patterns of failure/normal events, they are interesting
in the way they allow the evaluation of our approach when we vary the data
features, which is infeasible with real data sets whose parameters are fixed.

The second experiment is made on an industrial real data set, denoted
SECOM (semi-conductor manufacturing process), introduced in [8]. It’s a data
set that records 1567 measurements of 590 sensors installed in manufacturing

1 Reader may refer to https://gitlab.inria.fr/tguyet/pychronicles for further details
about data sets generation.

https://gitlab.inria.fr/tguyet/pychronicles
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machines. Each record has a timestamp (the instant at which the 590 measure-
ments are taken), and also a general state; 1 for a normal state, and −1 for a
failure.

4.1 The Performance Evaluation

The performance of our approach is evaluated on different synthetic data sets
to assess the effect of several parameters mainly on the run-time and the mem-
ory usage. Figure 1 shows the execution time of FCP according to the number
of sequences and the vocabulary size. The execution time increases when the
number of sequences and their sizes increase. Indeed, when number and size
of sequences are large, the number of extracted frequent chronicles increases
accordingly. The Dempster rule of combination is the most consuming part of
our approach. The more we find matching chronicles, the more we model and
combine BBAs.
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Fig. 1. FCP experiments on synthetic data sets

As part of the performance evaluation, we also assessed the memory consump-
tion of both algorithms. Figure 1 shows the amount of memory used according
to the sequence number variation. For FCP, the use of memory increases when
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the number of covering chronicles increases, especially because of the operation
of combination that uses matrix structures within the evidence theory for mass
functions.

4.2 The Prediction Quality Experiments

To evaluate the prediction quality of our approach, we used the 10-fold-cross-
validation method [10] to compute the precision, the recall and the F-measure.
A failure sequence is considered correctly classified, if we predict the failure
state and also the time interval into which the breakdown will occur. A normal
sequence is correctly classified if we predict the normal state.

First, we evaluate the prediction quality of our approach FCP on different
synthetic data sets. We carried out experiments to assess the precision of FCP
by varying the minimum support, denoted minsup, of the mining algorithm [9].
The Fig. 1 (d) pictures the results. It shows that the precision decreases as long
as minsup increases. In fact, precision and minsup are both linked. Indeed, the
more we increase minsup, less chronicles we mine. Then, unfortunately, several
sequences could not be covered by any chronicle. We note that best prediction
results are observed when minsup is set to 0.4.

The prediction approaches that use chronicles for prediction are limited. In
this paper, we compare our approach to FADE [9]. The latter consists in mining
frequent chronicles. Then, it uses the highest support matching chronicle to
predict. As for FCP, FADE classifies the sequence and predicts when it is going
to happen using time constraint of the chronicle failure event. For these reasons
FADE is a natural comparative reference to FCP. In addition, we adapted the
k-NN algorithm introduced in [7] for evaluation. In our adapted version, we
choose the k most similar chronicles to our sequence among the chronicles that
cover it. So we do not consider all chronicles, just the k nearest chronicles that
correspond to the top 30% of the covering chronicles. Second, we combine the
obtained classes using the weighted majority vote method, so the weight of a
class is proportional to the distance between the sequence and the chronicles
that represent the class in question. Knowing that, our approach uses mined
patterns, classifies sequences and predict time to failure. We also compare FCP
to other neural network based classification approaches [11]. Table 1 shows the
results in terms of recall, precision and F-measure on the SECOM data set.

Table 1. Quality of prediction on the SECOM data set

Approach Parameters Recall Precision F-measure

FCP minsup = 0.4 0.78 0.81 0.79

FADE [9] minsup = 0.4 0.72 0.70 0.71

k-NN [7] k equivalent to 30% of chronicles 0.69 0.71 0.69

LSTM [11] 1 shared layer; 2 prediction layers 0.73 0.74 0.73
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5 Conclusion

In this paper, we are interested in prediction of failures as well as their time of
occurrence, in the context of predictive maintenance of industrial machines. To
resolve this problem, we rely on frequent chronicle mining, which allows not only
the extraction of patterns, but also the time constraint between events for each
sequence in the data set. We used evidence theory to combine chronicles. Exper-
iments show that our FCP approach is more effective than existing methods. As
future work, we intend to work on improving prediction of the occurrence time.
As current works predict a large time interval, we intend to be more precise by
predicting the most probable instant of occurrence.
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