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Abstract. It is well-known in computational social choice that the
weighted average does not guarantee any equity or fairness in the share
of goods. In a supervised learning problem, this translates into the fact
that the empirical risk will lead to models that are good in average,
but may have terrible performances for under-represented populations.
Such a behaviour is quite damaging in some problems, such as the ones
involving imbalanced data sets, in the inputs or the outputs (default
prediction, ethical issues, ...). On the other hand, the OWA operator is
known in computational social choice to be able to correct this unfairness.
This paper proposes a means to transpose this feature to the supervised
learning setting.

1 Introduction

The typical way to learn a predictive model from data is to search for the model
that minimizes the average loss of the predictions made by this model on a set
of training data. However, minimizing the average loss may well lead to poor
results on some under-represented populations.

This is a well known fact, that happens in several settings that have pro-
posed different solutions to the issue: in class imbalanced data sets, concerning
for instance rare diseases or default (of payment, of production), the classical
solution is to modify the sample sizes, for instance by over-sampling instances
of the under-represented class [9]; in fairness issues [10], where the goal can be
to protect sensitive populations or minorities, often by modifying not the sam-
ple but the loss function adequately; in extreme statistics [11], where one must
guarantee that rare instances will be well predicted, for instance by learning a
model specifically dedicated to them.

In this paper, we look at another aspects of misrepresentation of some data
in the learning problem. Namely, we want to ensure that the loss incurred for
data poorly represented in the feature space (whatever their class is) is not high.
This is yet a different kind of under-representation of some population, whose
closest related problem is the previously mentioned one of extreme statistics [11].
Our goal here is to propose a method ensuring that under-represented data will
not suffer from a too high loss, while preserving a good average accuracy. To
perform such a task, we will modify the classical expected loss by using the
notion of ordered weighted averaging, an often used notion in fairness problems
within computational social choice [13].
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More precisely, we will propose to give more weight to unknown zones. The
paper is organised as follows: the formal mathematical framework can be found in
Sect. 2, where we provide reminders, notations and preliminaries, and in Sect. 3,
where we describe our proposal. This is followed by the experiments in Sect. 4
then by some related works in the Sect. 5. The paper ends with some conclusion
and discussion on our work in Sect. 6.

2 Preliminaries

We consider a standard supervised problem where we have observations (z;, y;) €
X xY,i=1,...,n where z; are some inputs, and y; the observed outputs.

2.1 Supervised Classification via Empirical Risk Minimization

The general goal of supervised machine learning is to estimate a predictive model
h* : X — ), issued from a space H of hypothesis, such that the model delivers
good prediction in average. This principle is most often translated by choosing
the model minimizing the empirical risk, i.e.,

h* = arg hm€17r_tl Remp(h)

where
n

Remp(h) = 3" U(h (), 1) &
i=1
with ¢(h(z;),y;) the loss of predicting h(x) when y is the observed value.
This empirical loss serves as an estimate of the true loss, ie., R(h) =
Jawy €(h(z),y)dp(z,y), that is inaccessible as we do not know p(z,y). Also,
in many cases, H is a parametric family with parameters 8 € @, and in this case
we will denote by hy the predictive function having 6 for parameter.

2.2 Some Shortcomings Due to the Averaging of the Risk

Guaranteeing a low average loss does not prevent from having large losses for
poorly represented groups of values, and even in some cases promote such large
discrepancies [10].

Ezample 1. Figure 1 displays two different classes (i.e., y € {0, 1}) represented in
red and blue, that suffer from the problem we consider in this paper. Indeed, the
two classes are balanced (there are about as much red as blue), but some region
of the input space are less represented than others. More precisely, the data
corresponding to each class have been generated by the following distributions:
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with 7§ = 7} = 0.95 and 72 = 7% = 0.05, meaning that the upper-right region
is much less represented than the lower-left in Fig. 1. The frontier in this region
corresponds to the one obtained by a logistic regression trained according to

Eq. 1. It is easy to see that the model does a very bad job at predicting the data
in the upper-right corner, as could be expected.

Logistic Regression boundary

Fig. 1. Logistic Regression boundary (Color figure online)

2.3 A Short Introduction to Ordered Weighted Averages (OWA)

The OWA operators, initially introduced by Yager [14], apply a weighted aggre-
gation functions on ordered values. Usually, the OWA is applied to a vector
a = (ay,...,a,) of real-valued quantities a; € R, and is defined by a set
(wi,...,wy) of positive weights (w; > 0) summing up to one (3, w; = 1).
Formally speaking, the OWA consists in first permuting the values a; in ascend-
ing order, i.e., such that for i < j, we have a,(;y < a,(;), with o denoting the
permutation. The classical OWA operator is then

OWA(aq,...,an) = Z Wil (7)- (2)
i=1

The OWA operator therefore allows to put different strength on lower or higher
values, irrespectively of where they appear in the vector a. We retrieve the
arithmetic mean for w; = 1/n, and kth percentiles when we have w/, = 1
for some 4. In particular, the minimum and maximum values are respectively
retrieved for wy; = 1 and w, = 1. They characterize what Yager called extreme
behaviour of “andness” and “orness”, respectively.

3 Owur Proposal

In this paper, we consider the use of OWA operators [8], that propose to make
weighted averages not on the initial observations (z;,y;) and their associated
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losses, but on a re-ordering of them, with the idea that a higher weight should
be given to poorly represented instances, to be ranked first in our proposal. We
will denote by (24(;), Yo (i)) the corresponding permutation on observations. More
precisely, we propose not to optimise Repmp(h), but rather Row a(h), where

ROWA(h) = Z wig(h(‘ra(i))a ya(i)) (3)
i=1

with the idea that when ¢ < j, the instances z,(;) is not as well represented as
T4(;) in the data set. It should be noted that in contrast to usual OWA and
Eq. (3), we will not considering the re-ordering of values £(h(2,(;)), Yo(i)), but a
re-ordering based on the representativeness of the instances x;.

3.1 Ranking Instances by Representativeness

A first task to apply Eq.(3) to our setting is to order the instances by their
representativeness in the data set. To do this, we can order them by measuring,
for instance, the epistemic uncertainty, or lack of knowledge concerning each
instance z;, e.g., following ideas from [12] to obtain a score E; for each instance
x;, and then ordering them accordingly in Eq. (3), i.e., 0(i) < o(j) if E; > Ej.

One simple idea that we will apply in the following is to measure the density
of points around a neighbourhood of fixed size around x; to compute its associ-
ated epistemic uncertainty. For this, an easy technique one can use is to simply
perform a kernel density estimation through the formula

f@) = Y Kelw— )

with K. a kernel function. Common choices of kernel functions include:

— the Parzen window, defined as K .(x — ;) = il‘x_mq, that simply comes

down to count the number of points that are at a distance below a certain e;
— the triangle kernel, defined as K (z — ;) = ( — |z — @;|)1|4—4,|<c, for which
weights decrease linearly from one to zero depending on the distance;

—(z—x;

)2
— the normal window, defined as K (v — x;) = - 127re 22, for which the

weights for the points depend on a normal distribution around the chosen
point with a mean of zero and a standard deviation of e.

The three kernels are pictured in Fig. 2a.

Once a kernel is chosen, we can then simply use f(x;) = FE; as a score
quantifying epistemic uncertainty. Note that in our case, it is not important to
have a reliable estimate of the density (a very difficult problem), but to just
have a reliable ordering between the different points, as f(z;) will only be used
to order values in OWA operators.
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Figure 2b represents the distribution of the epistemic uncertainty of points
given in Fig. 1, computed for a triangular kernel with e being the mean distance
between points. One can readily see that the most uncertain points (hence the
first in the re-ordering) are those in the upper right corner, that is precisely
those for which we would like to increase accuracy, followed by the ones on the
border of the big cluster.

Distribution of epistemic uncertainty
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Fig. 2. Epistemic uncertainty

3.2 OWA Weights to Induce Equity

The next step is how we can choose the weights in Eq.(3) so as to balance
the accuracy in the model between well-represented and poorly represented
instances. Clearly, if we pick w; = 1/n, this re-ordering is a useless step and
leads us to the usual solution. However, we can easily pick weights that will
enforce giving more importance to poorly represented instances. More precisely,
we can pick a function ¢ : [0,1] — [0, 1] and take as weights

wi = ¢(/n) — ¢(i=Y/n)

if ¢(x) = x, then we retrieve the weighted average. If ¢ is concave, then we start
giving more weights to first ordered instances, and less weight to last ordered
instances. In terms of OWA, we increase the “andness” of the function, that we
can then parameterize to be more or less fair. Ideally, this number of parameters
should not be too high, and example of such functions include:

— The L, norm on with p € [0, 1], which function is ¢(x) = zP. The lower p,
the more we increase the “andness”

— piece-wise linear functions made of two linear parts, that can be define with
two parameters p and prop as follows:

(4)

¢(x)_{ px if x<prop

L—pxprop .. + prop(p—1) if prop<az <1

1—prop 1—prop

where p defines the slope before the abscissa value prop.
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Both are represented on Fig. 3 with the L./, norm and the linear by part function
with prop = 0.1 and p = 4.

Different functions for phi
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Fig. 3. Different functions for ¢

Remark 1 (Model optimisation). Note that as we do not modify the nature of
the loss function ¢, most optimisation techniques used for the arithmetic mean
will be straightforward to extend. Thanks to the versatility of ¢, we can also
think of other kind of behaviours than concave ones. For instance, an S-shaped
function would amount to try to balance between being quite good on poorly
represented as well as quite good of very-well represented groups, thus protecting
minorities and majorities.

4 Experiments

This section presents some experiments using our approach to try to augment
the accuracy on the poorly represented data, that we will call minority, while
preserving a good average accuracy. After quickly describing the chosen model,
we will provide results first on synthetic data sets, second on real-world data
sets. In this latter case, since there are no benchmark data sets focusing on the
problem we try to solve, we will try to adapt common UCI data sets [6] to our
setting.

4.1 Implementing the Proposal

We will apply our approach to standard regularized logistic regression in binary
classification problems, with the output class Y € {0,1}. Let us simply recall
that in this case, we learn a probabilistic model of the shape

1

ho() = 1+ exp—0z

(5)
with hg(z) = p(y = 1|x). The associated loss is

Uy, ho(x)) = —(ylog(he(z)) + (1 — y)log(1 — he(x)) + 6° (6)
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that corresponds to a logarithmic loss with a Lo regularisation term. In experi-
ments, we use python sklearn package to fit the different models, with which it
is straightforward to add weights to samples.

In the experiments, we used the triangle kernel applied to data with an
Euclidean distance computed between them. The reason for this choice is that
it gives no ties between values f(z;) in practice (while Parzen windows delivers
the same value when having the same number of data within it), and that it has
a finite support, therefore being more coherent than the normal kernel with the
fact that epistemic uncertainty is mostly a local property. However, our tests
with other kernel functions show no significant differences.

Regarding the parametric shape of the OWA, we picked the shape given
by Eq.(4), as in our experiments the use of the L, norm tended to give too
quickly too much importance to poorly represented data, introducing sometimes
important discontinuities in our results for small changes of the parameter. This
can already be seen in Fig.3. Thus, the ¢ function depends on two parameters
p, the slope of the first linear part of the function and prop, the abscissa of the
slope breaking point.

As our aim is to improve accuracy on minorities while keeping a good average
accuracy, this means that our performances will be measures according to two
values: the average accuracy on the minority samples only, acc € [0, 1], and the
classical average accuracy, ACC € [0,1]. For this reasons, we will present our
experimental results a Pareto front on the space [0, 1] x [0, 1], as for a given couple
(p, prop)x of the proposal, we will obtain a pair (accg, ACCy). This means that
we will present the results for all non-dominated values, that is all (accg, ACCYy)
such that there will be no other pairs (p, prop)y with accyr > accy, and ACCyr >
ACC.

4.2 Synthetic Data Set

In the first set of experiments, we simply consider the same distributions as the
ones described in Example 1 for a binary problem.

As in Example 1, minorities of each class represent about 5% of the total
quantity of samples from that class. For each set of experiments, we generate
1000 points for the training set, and as much for the testing set.

In the experiments, we proceeded with a simple grid search to fix p and prop.
We let p vary between 1 and 5 with a 0.5 increment, and prop between [0.1, 0.3]
with a step of 0.05. Every test is made on 10 different sets of data and the mean
is taken to obtain reliable estimates. The total accuracy and the accuracy of the
minority are studied.

Figure4 illustrates the results obtained for a particular run and give the
model obtained for the parameters p = 5.0 and prop = 0.2. One can easily see
that the obtained model is much more relevant on the minorities, as it starts to
discriminate the two classes in this region.

One question though is to know whether this potential benefit on the minority
region does not alter too much the overall accuracy. The answer is provided by
Fig.5 that displays the obtained Pareto front as well as the results of the basic
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Logistic Regression Boundaries
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Fig. 4. Logistic Regression Boundaries for extreme values

model (1,—). One can observe that the accuracy on the minority region can
increase by more than 10%, going from 0.53 to 0.66, while the loss on the average
accuracy is below 3%. Note that the Pareto allows a possible decision maker to
finely choose the trade-off between minority protection and overall performances.

4.3 TUCI Data Sets

As we said, there are to our knowledge no benchmark data set that explicitly
deals with the problem of within-class imbalance, the situation described by
our synthetic example. For this reason, we tried to apply it to UCI data sets
susceptible to display similar behaviours.

To test whether this is the case, a simple procedure is adopted: we split
the data set into training and test sets, and order the elements of the test set
according to their epistemic uncertainty, computed by using the samples of the
training set. A logistic regression is then fitted to the data, and we check the
difference between the global average accuracy (ACC) and the average accuracy
of the first a% of the ordered test samples (acc). If the difference ACC — acc is
big enough, we retain the data set.

In our experiment, we fixed the value « to 10%, and similarly to the previous
case, proceeded to apply our method by letting p vary between 1 and 5 with a 0.5
increment, and prop between [0.1,0.3] with a step of 0.05. Each training/testing
experiment is made by taking 50% of the data set as training, and the process
is repeated a hundred times for each configuration, the mean being kept as a
representative point.

Perhaps surprisingly, it proved quite hard in this manner to find suitable
data sets. Finally, we retained three binary classification data sets that are sum-
marised in Table 1.
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Table 1. Data set descriptions
Data set Samples | Percentage of positive class
Istanbul Stock Exchange [4] | 536 50%
Credit Approval [5] 653 45%
Vertebral Column [5] 310 68%
o774 ! ‘ N
' 0(2.5, 0.25)
0.772 (2.5, 0.20)
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£ 0.768 |
S
£
= 0.766 .
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0.776 0.777 0.778 0.779 0.780 0.781 0.782
Total Accuracy

Fig. 6. Istanbul Stock Exchange Pareto Front with (p, prop) values
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Fig. 7. Credit Approval Pareto Front with (p, prop) values
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Fig. 8. Vertebral Column with (p, prop) values

The resulting Pareto fronts of our experiments, along with the accuracies of
the base model corresponding to (1, —), are given in Figs. 6 (Istanbul), 7 (Credit)
and 8 (Vertebral). In each of them, we can see a possible increase in the minority
accuracy that out-weights the drop in global, average accuracy. However, it is
clear that since for these data sets the difference between acc and ACC is already
quite low for the basic model (given by the point (1, —) in the Figures), we cannot
hope to achieve a gain as significant as the one of the synthetic data sets.

So, while the presented results confirm that the proposed approach is work-
ing, future works should focus on exhibiting similar behaviours in existing data
sets, maybe by revisiting the ordering we use, the considered learning algorithm
or by focusing on specific data sets such as class imbalanced data sets, hoping

that the imbalance in the classes is transferred to the input space.
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5 Links with Other Learning and Estimation Approaches

To our knowledge, the learning approach presented here is quite original, in the
sense that applying OWA to learning problems in order to solve inequities has,
to our knowledge, not been done before.

5.1 From OWA to Probability Sets

A now well-established trend in the learning literature is the so-called distribu-
tionally robust approach [1,7] that consider the problem of finding the minimax
model over a possible set P of probability distributions, mostly defined as a
neighbourhood of the empirical distribution of the observations (x;,y;). Such
approaches have been applied, for instance, to fairness issues in machine learn-
ing [10] or to transfer learning problems [2].

Since it is well-known that the OWA operator correspond to apply a Choquet
integral with a specific Choquet measure [8], and that such Choquet integral can
correspond to lower/upper expectations computed for specific probability sets,
it would be interesting to study under which conditions and to which extent our
current approach could be interpreted as the solution of a minimax problem for
some specific set P.

5.2 From OWA Loss to Weighted Likelihood

Another classical way to learn a model, and particularly probabilistic models, is
through the maximisation of a likelihood function. In such a case, each parameter
value 6 determine a probability distribution of a random variable X. First recall
that the likelihood of a parameter value 6, given a set of observations x; € X is
L(0xi) = 1; po(ws).

Provided we consider the logarithmic loss in Eq. (3), one can easily express
our weighting scheme in terms of likelihood. For this, it is sufficient to consider
the log-likelihood

C0lzi) = —In(L(0]2:)) = — Zln(pe(xi)) (7)

where the loss is In(pg(z;)). We can then apply the OWA loss instead of the cur-
rent loss to get Cowa(0|z;) = — >, wiIn(pe(24(;y)) with w; the OWA weights.
It is then possible to go back to the formula of the likelihood, obtaining

L(X)= Hpe(fﬂa(i))wi

as our new, weighted likelihood. Thus the OWA transformation on the loss which
corresponds to multiply the terms by weights, is equivalent to a exponent oper-
ation with weight for the likelihood. While such an exponent weight may appear
odd at first, it should be noticed that it has been proposed and used before
like in [3], where it has been used to down weight anomalous point in Bayesian
prediction.
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6 Conclusion

In this paper, we have presented an original approach, based on OWA operators,
to obtain more balanced and equitable classifiers in those problems where data
can be scarce in some regions of the input space. Such an approach aims at
ensuring that even poorly represented instances will be treated fairly, in the
sense that we will not allow them to suffer huge losses, while keeping an average
loss comparable to the one obtained without including such equity requirement.

Our illustrative experiments on synthetic data sets indeed show that the
method is appropriate, and allows one to obtain a more balanced model. We
have also shown that the same observation can be made on UCI data sets, albeit
the improvement is here much more general, due to the fact that there is no
benchmark data sets explicitly suffering from the problem we have considered
in this paper.

We nevertheless believe that the idea of using aggregation operators issued
from the social choice literature to solve inequities and unfairness in supervised
learning procedure is a promising idea, that needs to be developed. This study
is simply a first proposal going in this direction, and many aspects remain to
be studied, such as the nature of the ordering between instances or whether
there are algorithms where our approach can make a bigger difference, notably
in the case of multi-class problems, as we only used logistic regression on binary
problems here.
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