
Symbolic Logic Meets Machine Learning:
A Brief Survey in Infinite Domains

Vaishak Belle1,2(B)

1 University of Edinburgh, Edinburgh, UK
2 Alan Turing Institute, London, UK

vaishak@ed.ac.uk

Abstract. The tension between deduction and induction is perhaps the most fun-
damental issue in areas such as philosophy, cognition and artificial intelligence
(AI). The deduction camp concerns itself with questions about the expressive-
ness of formal languages for capturing knowledge about the world, together with
proof systems for reasoning from such knowledge bases. The learning camp
attempts to generalize from examples about partial descriptions about the world.
In AI, historically, these camps have loosely divided the development of the field,
but advances in cross-over areas such as statistical relational learning, neuro-
symbolic systems, and high-level control have illustrated that the dichotomy is
not very constructive, and perhaps even ill-formed.

In this article, we survey work that provides further evidence for the connec-
tions between logic and learning. Our narrative is structured in terms of three
strands: logic versus learning, machine learning for logic, and logic for machine
learning, but naturally, there is considerable overlap. We place an emphasis on the
following “sore” point: there is a common misconception that logic is for discrete
properties, whereas probability theory and machine learning, more generally, is
for continuous properties. We report on results that challenge this view on the
limitations of logic, and expose the role that logic can play for learning in infinite
domains.

1 Introduction

The tension between deduction and induction is perhaps the most fundamental issue in
areas such as philosophy, cognition and artificial intelligence (AI). The deduction camp
concerns itself with questions about the expressiveness of formal languages for captur-
ing knowledge about the world, together with proof systems for reasoning from such
knowledge bases. The learning camp attempts to generalize from examples about partial
descriptions about the world. In AI, historically, these camps have loosely divided the
development of the field, but advances in cross-over areas such as statistical relational
learning [38,83], neuro-symbolic systems [28,37,60], and high-level control [50,59]
have illustrated that the dichotomy is not very constructive, and perhaps even ill-formed.
Indeed, logic emphasizes high-level reasoning, and encourages structuring the world in
terms of objects, properties, and relations. In contrast, much of the inductive machinery

The author was supported by a Royal Society University Research Fellowship. He is grateful to
Ionela G. Mocanu, Paulius Dilkas and Kwabena Nuamah for their feedback.

c© Springer Nature Switzerland AG 2020
J. Davis and K. Tabia (Eds.): SUM 2020, LNAI 12322, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-58449-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58449-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-58449-8_1

4 V. Belle

assume random variables to be independent and identically distributed, which can be
problematic when attempting to exploit symmetries and causal dependencies between
groups of objects. But the threads connecting logic and learning go deeper, far beyond
the apparent flexibility that logic offers for modeling relations and hierarchies in noisy
domains. At a conceptual level, for example, although there is much debate about what
precisely commonsense knowledge might look like, it is widely acknowledged that con-
cepts such as time, space, abstraction and causality are essential [68,98]. In that regard,
(classical, or perhaps non-classical) logic can provide the formal machinery to rea-
son about such concepts in a rigorous way. At a pragmatic level, despite the success
of methods such as deep learning, it is now increasingly recognized that owing to a
number of reasons, including model re-use, transferability, causal understanding, rela-
tional abstraction, explainability and data efficiency, those methods need to be further
augmented with logical, symbolic and/or programmatic artifacts [17,35,97]. Finally,
for building intelligent agents, it is recognized that low-level, data-intensive, reactive
computations needs to be tightly integrated with high-level, deliberative computations
[50,59,67], the latter possibly also engaging in hypothetical and counterfactual reason-
ing. Here, a parallel is often drawn to Kahneman’s so-called System 1 versus System
2 processing in human cognition [51], in the sense that experiential and reactive pro-
cessing (learned behavior) needs to be coupled with cogitative processing (reasoning,
deliberation and introspection) for sophisticated machine intelligence.

The purpose of this article is not to resolve this debate, but rather provide further
evidence for the connections between logic and learning. In particular, our narrative is
inspired by a recent symposium on logic and learning [13], where the landscape was
structured in terms of three strands:

1. Logic vs. Machine Learning, including the study of problems that can be solved
using either logic-based techniques or via machine learning, . . .;

2. Machine Learning for Logic, including the learning of logical artifacts, such as
formulas, logic programs, . . .; and

3. Logic for Machine Learning, including the role of logics in delineating the bound-
ary between tractable and intractable learning problems, . . . , and the use of logic
as a declarative framework for expressing machine learning constructs.

In this article, we particularly focus on the following “sore” point: there is a com-
mon misconception that logic is for discrete properties, whereas probability theory and
machine learning, more generally, is for continuous properties. It is true that logical
formulas are discrete structures, but they can very easily also express properties about
countably infinite or even uncountably many objects. Consequently, in this article we
survey some recent results that tackle the integration of logic and learning in infinite
domains. In particular, in the context of the above three strands, we report on the fol-
lowing developments. On (1), we discuss approaches for logic-based probabilistic infer-
ence in continuous domains. On (2), we cover approaches for learning logic programs
in continuous domains, as well as learning formulas that represent countably infinite
sets of objects. Finally, on (3), we discuss attempts to use logic as a declarative frame-
work for common tasks in machine learning over discrete and continuous features, as
well as using logic as a meta-theory to consider notions such as the abstraction of a
probabilistic model.

Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains 5

We remark that this survey is undoubtedly a biased view, as the area of research is
large, but we do attempt to briefly cover the major threads. Readers are encouraged to
refer to discussions in [13,38,83], among others, to get a sense of the breadth of the
area.

2 Logic vs. Machine Learning

To appreciate the role and impact of logic-based solvers for machine learning systems, it
is perhaps useful to consider the core computational problem underlying (probabilistic)
machine learning: the problem of inference, including evaluating the partition func-
tion (or conditional probabilities) of a probabilistic graphical model such as a Bayesian
network.

When leveraging Bayesian networks for machine learning tasks [56], the networks
are often learned using local search to maximize a likelihood or a Bayesian quantity. For
example, given dataD and the current guess for the network N , we might estimate the
“goodness” of the guess by means of a score: score(N ,D) ∝ log Pr(D | N) − size(N).
That is, we want to maximize the fit of the data wrt the current guess, but we would
like to penalize the model complexity, to avoid overfitting. Then, we would opt for a
second guess N′ only if score(N′,D) > score(N ,D). Needless to say, even with a
reasonable local search procedure, the most significant computational effort here is that
of probabilistic inference.

Reasoning in such networks becomes especially challenging with logical syntax.
The prevalence of large-scale social networks, machine reading domains, and other
types of relational knowledge bases has led to numerous formalisms that borrow the
syntax of predicate logic for probabilistic modeling [78,81,85,93]. This has led to a
large family of solvers for the weighted model counting (WMC) problem [20,39]. The
idea is this: given a Bayesian network, a relational Bayesian network, a factor graph, or
a probabilistic program [84], one considers an encoding of the formalism as a weighted
propositional theory, consisting of a propositional theory Δ and a weight function w
that maps atoms in Δ to R+. Recall that SAT is the problem of finding an assignment to
such a Δ, whereas #SAT counts the number of assignments for Δ.WMC extends #SAT
by computing the sum of the weights of all assignments: that is, given a set of models
M(Δ) = {M | M |= Δ}, we evaluate the quantity W(Δ) =

∑
M∈M(Δ) w(M) where w(M)

is factorized in terms of the atoms true at M. To obtain the conditional probability of a
query q against evidence e (wrt the theory Δ), we define Pr(q | e) = W(Δ∧q∧e)/W(Δ∧e).

The popularity of WMC can be explained as follows. Its formulation elegantly
decouples the logical or symbolic representation from the numeric representation,
which is encapsulated in the weight function. When building solvers, this allows us to
reason about logical equivalence and reuse SAT solving technology (such as constraint
propagation and clause learning). WMC also makes it more natural to reason about
deterministic, hard constraints in a probabilistic context [20]. Both exact solvers, based
on knowledge compilation [23], as well as approximate solvers [19] have emerged in
the recent years, as have lifted techniques [95] that exploit the relational syntax during
inference (but in a finite domain setting). For ideas on generating such representations
randomly to assess scalability and compare inference algorithms, see [29], for example.

6 V. Belle

On the point of modelling finite vs infinite properties, note that owing to the under-
lying propositional language, the formulation is limited to discrete random variables.
A similar observation can be made for SAT, which for the longest time could only be
applied in discrete domains. This changed with the increasing popularity of satisfiability
modulo theories (SMT) [4], which enable us to, for example, reason about the satisfi-
ability of linear constraints over the rationals. Extending earlier insights on piecewise-
polynomial weight functions [88,89], the formulation of weighted model integration
(WMI) was proposed in [12]. WMI extends WMC by leveraging the idea that SMT
theories can represent mixtures of Boolean and continuous variables: for example, a
formula such as p ∧ (x > 5) denotes the logical conjunction of a Boolean variable p
and a real-valued variable x taking values greater than 5. For every assignment to the
Boolean and continuous variables, the WMI problem defines a weight. The total WMI
is computed by integrating these weights over the domain of solutions to Δ, which is
a mixed discrete-continuous (or simply hybrid) space. Consider, for example, the spe-
cial case when Δ has no Boolean variables, and the weight of every model is 1. Then,
the WMI simplifies to computing the volume of the polytope encoded in Δ. When we
additionally allow for Boolean variables in Δ, this special case becomes the hybrid ver-
sion of #SAT, known as #SMT [21]. Since that proposal, numerous advances have been
made on building efficient WMI solvers (e.g., [69,74,99]) including the development
of compilation targets [53,54,100].

Note that WMI proposes an extension of WMC for uncountably infinite (i.e., con-
tinuous) domains. What about countably infinite domains? The latter type is particularly
useful for reasoning in (general) first-order settings, where we may say that a property
such as ∀x, y, z(parent(x, y) ∧ parent(y, z) ⊃ grandparent(x, z)) applies to every pos-
sible x, y and z. Of course, in the absence of the finite domain assumption, reasoning
in the first-order setting suffers from undecidability properties, and so various strate-
gies have emerged for reasoning about an open universe [87]. One popular approach
is to perform forward reasoning, where samples needed for probability estimation are
obtained from the facts and declarations in the probabilistic model [45,87]. Each such
sample corresponds to a possible world. But there may be (countably or uncountably)
infinitely many worlds, and so exact inference is usually sacrificed. A second approach
is to restrict the model wrt the query and evidence atoms and define estimation from
the resulting finite sub-model [41,70,90], which may also be substantiated with exact
inference in special cases [6,7].

Given the successes of logic-based solvers for inference and probability estimation,
one might wonder whether such solvers would also be applicable to learning tasks in
models with relational features and hard, deterministic constraints? These, in addition
to other topics, are considered in the next section.

3 Machine Learning for Logic

At least since the time of Socrates, inductive reasoning has been a core issue for the
logical worldview, as we need a mechanism for obtaining axiomatic knowledge. In that
regard, the learning of logical and symbolic artifacts is an important issue in AI, and
computer science more generally [43]. There is a considerable body of work on learning

Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains 7

propositional and relational formulas, and in context of probabilistic information, learn-
ing weighted formulas [13,26,75,83]. Approaches can be broadly lumped together as
follows.

1. Entailment-based scoring: Given a logical language L, background knowledge B ⊂
L, examples D (usually a set of L-atoms), find a hypothesis H ∈ H ,H ⊂ L such
that B∪H entail the instances inD. Here, the setH places restrictions of the syntax
of H so as to control model complexity and generalization. (For example, H = D
is a trivial hypothesis that satisfies the entailment stipulation.)

2. Likelihood-based scoring: Given L and D as defined above, find H ⊂ L such that
score(H ,D) > score(H′,D) for every H′ � H . As discussed before, we might
define score(H ,D) ∝ log Pr(D | H) − size(H). Here, like H above, size(H)
attempts to the control model complexity and generalization.

Many recipes based on these schemes are possible. For example, we may use
entailment-based inductive synthesis for an initial estimate of the hypothesis, and then
resort to Bayesian scoring models [85]. The synthesis step might invoke neural machin-
ery [35]. We might not require that the hypothesis entails every example in D but only
the largest consistent subset, which is sensible when we expect the examples to be noisy
[26]. We might compile B to an efficient data structure, and perform likelihood-based
scoring on that structure [63], and so B could be seen as deterministic domain-specific
constraints. Finally, we might stipulate the conditions under which a “correct” hypoth-
esis may be inferred wrt unknown ground truth, only a subset of which is provided
in D. This is perhaps best represented by the (probably approximately correct) PAC-
semantics that captures the quality possessed by the output of learning algorithm whilst
costing for the number of examples that need to be observed [22,94]. (But other formu-
lations are also possible, e.g., [42].)

This discussion pertained to finite domains. What about continuous spaces? By
means of arithmetic fragments and formulations like WMI, it should be clear that it
now becomes possible to extend the above schemes to learn continuous properties. For
example, one could learn linear expressions from data [55]. For an account that also
tries to evaluate a hypothesis that is correct wrt unknown ground truth, see [72]. If the
overall objective is to obtain a distribution of the data, other possibilities present them-
selves. In [77], for example, real-valued data points are first lumped together to obtain
atomic continuous random variables. From these, relational formulas are constructed so
as to yield hybrid probabilistic programs. The learning is based on likelihood scoring.
In [91], the real-valued data points are first intervalized, and polynomials are learned
for those intervals based on likelihood scoring. These weighted atoms are then used for
learning clauses by entailment judgements [26].

Such ideas can also be extended to data structures inspired by knowledge compila-
tion, often referred to as circuits [20,82]. Knowledge compilation [25] arose as a way to
represent logical theories in a manner where certain kinds of computations (e.g., check-
ing satisfiability) is significantly more effective, often polynomial in the size of the cir-
cuit. In the context of probabilistic inference, the idea was to then position probability
estimation to also be computable in time polynomial in the size of the circuit [20,82].
Consequently, (say) by means of likelihood-based scoring, the learning of circuits is

8 V. Belle

particularly attractive because once learned, the bottleneck of inference is alleviated
[63,66]. In [15,73], along the lines of the work above on learning logical formulas in
continuous domains, it is shown that the learning of circuits can also be coupled with
WMI.

What about countably infinite domains? In most pragmatic instances of learning
logical artifacts, the difference between the uncountable and countably infinite setting
is this: in the former, we see finitely many real-valued samples as being drawn from
an (unknown) interval, and we could inspect these samples to crudely infer a lower
and upper bound. In the latter, based on finitely many relational atoms, we would need
to infer a universally quantified clause, such as ∀x, y, z(parent(x, y) ∧ parent(y, z) ⊃
grandparent(x, z)). If we are after a hypothesis that is simply guaranteed to be consistent
wrt the observed examples, then standard rule induction strategies would suffice [75],
and we could interpret the rules as quantifying over a countably infinite domain. But this
is somewhat unsatisfactory, as there is no distinction between the rules learned in the
standard finite setting and its supposed applicability to the infinite setting. What is really
needed is an analysis of what rule learning would mean wrt the infinitely many exam-
ples that have not been observed. This was recently considered via the PAC-semantics
in [10], by appealing to ideas on reasoning with open universes discussed earlier [6].

Before concluding this section, it is worth noting that although the above discus-
sion is primarily related to the learning of logical artifacts, it can equivalently be
seen as a class of machine learning methods that leverage symbolic domain knowl-
edge [30]. Indeed, logic-based probabilistic inference over deterministic constraints,
and entailment-based induction augmented with background knowledge are instances
of such a class. Analogously, the automated construction of relational and statistical
knowledge bases [18,79] by combining background knowledge with extracted tuples
(obtained, for example, by applying natural language processing techniques to large
textual data) is another instance of such a class.

In the next section, we will consider yet another way in which logical and symbolic
artifacts can influence learning: we will see how such artifacts are useful to enable
tractability, correctness, modularity and compositionality.

4 Logic for Machine Learning

There are two obvious ways in which a logical framework can provide insights on
machine learning theory. First, consider that computational tractability is of central
concern when applying logic in computer science, knowledge representation, database
theory and search [62,65,71]. Thus, the natural question to wonder is whether these
ideas would carry over to probabilistic machine learning. On the one hand, probabilistic
extensions to tractable knowledge representation frameworks could be considered [57].
But on the other, as discussed previously, ideas from knowledge compilation, and the
use of circuits, in particular, are proving very effective for designing tractable paradigms
for machine learning. While there has always been an interest in capturing tractable dis-
tributions by means of low tree-width models [2], knowledge compilation has provided
a way to also represent high tree-width models and enable exact inference for a range
of queries [63,82]. See [24] for a comprehensive view on the use of knowledge compi-
lation for machine learning.

Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains 9

The other obvious way logic can provide insights on machine learning theory is
by offering a formal apparatus to reason about context. Machine learning problems are
often positioned as atomic tasks, such as a classification task where regions of images
need to be labeled as cats or dogs. However, even in that limited context, we imagine
the resulting classification system as being deployed as part of a larger system, which
includes various modules that communicate or interface with the classification system.
We imagine an implicit accountability to the labelling task in that the detected object is
either a cat or a dog, but not both. If there is information available that all the entities
surrounding the object of interest have been labelled as lions, we would want to accord a
high probability to the object being a cat, possibly a wild cat. There is a very low chance
of the object being a dog, then. If this is part of a vision system on a robot, we should
ensure that the robot never tramples on the object, regardless of whether it is a type of
cat or a dog. To inspect such patterns, and provide meta-theory for machine learning, it
can be shown that symbolic, programmatic and logical artifacts are enormously useful.
We will specifically consider correctness, modularity and compositionality to explore
the claim.

On the topic of correctness, the classical framework in computer science is verifi-
cation: can we provide a formal specification of what is desired, and can the system
be checked against that specification? In a machine learning context, we might ask
whether the system, during or after training, satisfies a specification. The specification
here might mean constraints about the physical laws of the domain, or notions of per-
turbation in the input space while ensuring that the labels do not change, or insisting
that the prediction does not label an object as being both a cat and a dog, or other-
wise ensuring that outcomes are not subject to, say, gender bias. Although there is a
broad body of work on such issues, touching more generally on trust [86], we discuss
approaches closer to the thrust of this article. For example, [49] show that a trained
neural network can be verified by means of an SMT encoding of the network. In recent
work, [96] show that the loss function of deep learning systems can be adjusted to log-
ical constraints by insisting that the distribution on the predictions is proportional to
the weighted model count of those constraints. In [63], prior (logical) constraints are
compiled to a circuit to be used for probability estimation. In [80], circuits are shown
to be amenable to training against probabilistic and causal prior constraints, including
assertions about fairness, for example.

In [32,67], a somewhat different approach to respecting domain constraints is taken:
the low-level prediction is obtained as usual from a machine learning module, which is
then interfaced with a probabilistic relational language and its symbolic engine. That
is, the reasoning is positioned to be tackled directly by the symbolic engine. In a
sense, such approaches cut across the three strands: the symbolic engine uses weighted
model counting, the formulas in the language could be obtained by (say) entailment-
based scoring, and the resulting language supports modularity and compositionality
(discussed below).

While there is not much to be said about the distinction between finite vs infinite
wrt correctness, many of these ideas are likely amenable to extensions to an infinite
setting in the ways discussed in the previous sections (e.g., considering constraints of a
continuous or a countably infinite nature).

10 V. Belle

On the topic of modularity, recall that the general idea is to reduce, simplify or
otherwise abstract a (probabilistic) computation as an atomic entity, which is then to
be referenced in another, possibly more complex, entity. In standard programming lan-
guages, this might mean the compartmentalization and interrelation of computational
entities. For machine learning, approaches such as probabilistic programming [27,40]
support probabilistic primitives in the language, with the intention of making learning
modules re-usable and modular. It can be shown, for example, that the computational
semantics of some of these languages reduce to WMC [36,48]. Thus, in the infinite
case, a corresponding reduction to WMI follows [1,31,91].

A second dimension to modularity is the notion of abstraction. Here, we seek to
model, reason and explain the behavior of systems in a more tractable search space,
by omitting irrelevant details. The idea is widely used in natural and social sciences.
Think of understanding the political dynamics of elections by studying micro level phe-
nomena (say, voter grievances in counties) versus macro level events (e.g., television
advertisements, gerrymandering). In particular, in computer science, it is often under-
stood as the process of mapping one representation onto a simpler representation by
suppressing irrelevant information. In fact, integrating low-level behavior with high-
level reasoning, exploiting relational representations to reduce the number of inference
computations, and many other search space reduction techniques can all loosely be seen
as instances of abstraction [8].

While there has been significant work on abstraction in deterministic systems [3],
for machine learning, however, a probabilistic variant is clearly needed. In [47], an
account of abstraction for loop-free propositional probabilistic programs is provided,
where certain parts of the program (possibly involving continuous properties) can be
reduced to a Bernoulli random variable. For example, suppose every occurrence of the
continuous random variable x, drawn uniformly on the interval [0,1], in a program is
either of the form x ≤ 7 or of the form x > 7. Then, we could use a discrete ran-
dom variable b with a 0.7 probability of being true to capture x ≤ 7; and analogously,
¬b to capture x > 7. The resulting program is likely to be simpler. In [8], an account
of abstraction for probabilistic relational models is considered, where the notion of
abstraction also extends to deterministic constraints and complex formulas. For exam-
ple, a single probabilistic variable in the abstracted model could denote a complex logi-
cal formula in the original model. Moreover, the logical properties that enable verifying
and inducing abstractions are also considered, and it is shown how WMC is sufficient
for the computability of these properties (also see [48]).

Incidentally, abstraction brings to light a reduction between finite vs infinite: it is
shown in [8] that the modelling of piecewise densities as weighted propositions, which
is leveraged in WMI [12,31], is a simple case of the more general account. Therefore, it
is worthwhile to investigate whether this or other accounts of abstraction could emerge
as general-purpose tools that allow us to inspect the conditions under which infinitary
statements reduce to finite computations.

A broader point here is the role abstraction might play in generating explanations
[44]. For example, a user’s understanding of the domain is likely to be different from the
low-level data that a machine learning system interfaces with [92], and so, abstractions
can capture these two levels in a formal way.

Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains 11

Finally, we turn to the topic of compositionality, which, of course, is closely related
to modularity in that we want to distinct modules to come together to form a com-
plex composition. Not surprisingly, this is of great concern in AI, as it is widely
acknowledged that most AI systems will involve heterogeneous components, some
of which may involve learning from data, and others reasoning, search and sym-
bol manipulation [68]. In continuation with the above discussion, probabilistic pro-
gramming is one such endeavor that purports to tackle this challenge by allowing
modular components to be composed over programming and/or logical connectives
[5,11,16,27,32,40,46,67,76,85]. (See [34,64,71] for ideas in deterministic systems.)
However, probabilistic programming only composes probabilistic computations, but
does not offer an obvious means to capture other types of search-based computations,
such as SAT, and integer and convex programming.

Recall that the computational semantics of probabilistic programs reduces to WMC
[36,48]. Following works such as [14,33], an interesting observation made in [52] is
that by appealing to a sum of products computation over different semiring structures,
we can realize a large number of tasks such as satisfiability, unweighted model counting,
sensitivity analysis, gradient computations, in addition to WMC. It was then shown
in [9] that the idea could be generalized further for infinite domains: by defining a
measure on first-order models, WMI and convex optimization can also be captured.
As the underlying language is a logical one, composition can already be defined using
logical connectives. But an additional, more involved, notion of composition is also
proposed, where a sum of products over different semirings can be concatenated. To
reiterate, the general idea behind these proposals [9,33,52] is to arrive at a principled
paradigm that allows us to interface learned modules with other types of search and
optimization computations for the compositional building of AI systems. See also [58]
for analogous discussions, but where a different type of coupling for the underlying
computations is suggested. Overall, we observed that a formal apparatus (symbolic,
programmatic and logical artifacts) help us define such compositional constructions by
providing a meta-theory.

5 Conclusions

In this article, we surveyed work that provides further evidence for the connections
between logic and learning. Our narrative was structured in terms of three strands: logic
versus learning, machine learning for logic, and logic for machine learning, but natu-
rally, there was considerable overlap.

We covered a large body of work on what these connections look like, including,
for example, pragmatic concerns such as the use of hard, domain-specific constraints
and background knowledge, all of which considerably eases the requirement that all of
the agent’s knowledge should be derived from observations alone. (See discussions in
[61] on the limitations of learned behavior, for example.) Where applicable, we placed
an emphasis on how extensions to infinite domains are possible. In the very least, log-
ical artifacts can help in constraining, simplifying and/or composing machine learning
entities, and in providing a principled way to study the underlying representational and
computational issues.

12 V. Belle

In general, this type of work could help us move beyond the narrow focus of the
current learning literature so as to deal with time, space, abstraction, causality, quan-
tified generalizations, relational abstractions, unknown domains, unforeseen examples,
among other things, in a principled fashion. In fact, what is being advocated is the tack-
ling of problems that symbolic logic and machine learning might struggle to address
individually. One could even think of the need for a recursive combination of strands
2 and 3: purely reactive components interact with purely cogitative elements, but then
those reactive components are learned against domain constraints, and the cogitative
elements are induced from data, and so on. More broadly, making progress towards
a formal realization of System 1 versus System 2 processing might also contribute to
our understanding of human intelligence, or at least capture human-like intelligence in
automated systems.

References

1. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Quantifying program bias. CoRR,
abs/1702.05437 (2017)

2. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Advances in Neural Information Process-
ing Systems, pp. 569–576 (2002)

3. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus action
theories. In: AAAI, pp. 1048–1055 (2017)

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Hand-
book of Satisfiability, chap. 26, pp. 825–885. IOS Press (2009)

5. Belle, V.: Logic meets probability: towards explainable AI systems for uncertain worlds.
In: IJCAI (2017)

6. Belle, V.: Open-universe weighted model counting. In: AAAI, pp. 3701–3708 (2017)
7. Belle, V.: Weighted model counting with function symbols. In: UAI (2017)
8. Belle, V.: Abstracting probabilistic models: relations, constraints and beyond. Knowl.-

Based Syst. 199, 105976 (2020). https://www.sciencedirect.com/science/article/abs/pii/
S0950705120302914

9. Belle, V., De Raedt, L.: Semiring programming: a declarative framework for generalized
sum product problems. In: AAAI Workshop: Statistical Relational Artificial Intelligence
(2020)

10. Belle, V., Juba, B.: Implicitly learning to reason in first-order logic. In: Advances in Neural
Information Processing Systems, pp. 3376–3386 (2019)

11. Belle, V., Levesque, H.J.: Allegro: belief-based programming in stochastic dynamical
domains. In: IJCAI (2015)

12. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid domains by
weighted model integration. In: IJCAI, pp. 2770–2776 (2015)

13. Benedikt, M., Kersting, K., Kolaitis, P.G., Neider, D.: Logic and learning (dagstuhl seminar
19361). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2020)

14. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint logic programming: syn-
tax and semantics. TOPLAS 23(1), 1–29 (2001)

15. Bueff, A., Speichert, S., Belle, V.: Tractable querying and learning in hybrid domains via
sum-product networks. In: KR Workshop on Hybrid Reasoning (2018)

16. Bundy, A., Nuamah, K., Lucas, C.: Automated reasoning in the age of the internet. In:
Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI), vol. 11110, pp. 3–18.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99957-9 1

https://www.sciencedirect.com/science/article/abs/pii/S0950705120302914
https://www.sciencedirect.com/science/article/abs/pii/S0950705120302914
https://doi.org/10.1007/978-3-319-99957-9_1

Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains 13

17. Bunel, R., Hausknecht, M., Devlin, J., Singh, R., Kohli, P.: Leveraging grammar and rein-
forcement learning for neural program synthesis. arXiv preprint arXiv:1805.04276 (2018)

18. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward
an architecture for never-ending language learning. In: AAAI, pp. 1306–1313 (2010)

19. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware
sampling and weighted model counting for SAT. In: AAAI, pp. 1722–1730 (2014)

20. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting. Artific.
Intell. 172(6–7), 772–799 (2008)

21. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and value esti-
mation for probabilistic programs. TACAS 9035, 320–334 (2015)

22. Cohen, W.W.: PAC-learning nondeterminate clauses. In: AAAI, pp. 676–681 (1994)
23. Darwiche, A.: New advances in compiling CNF to decomposable negation normal form.

In: ECAI, pp. 328–332 (2004)
24. Darwiche, A.: Three modern roles for logic in AI. In: Proceedings of the 39th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 229–243
(2020)

25. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264
(2002)

26. De Raedt, L., Dries, A., Thon, I., Van den Broeck, G., Verbeke, M.: Inducing probabilistic
relational rules from probabilistic examples. In: Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence (2015)

27. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn.
100(1), 5–47 (2015)

28. De Raedt, L., Manhaeve, R., Dumancic, S., Demeester, T., Kimmig, A.: Neuro-symbolic=
neural+ logical+ probabilistic. In: NeSy 2019@ IJCAI, The 14th International Workshop
on Neural-Symbolic Learning and Reasoning, pp. 1–4 (2019)

29. Dilkas, P., Belle, V.: Generating random logic programs using constraint programming.
CoRR, abs/2006.01889 (2020)

30. Domingos, P.: The Master Algorithm: How the Quest for the Ultimate Learning Machine
Will Remake Our World. Basic Books (2015)

31. Dos Martires, P.Z., Dries, A., De Raedt, L.: Exact and approximate weighted model inte-
gration with probability density functions using knowledge compilation. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7825–7833 (2019)

32. Dries, A., Kimmig, A., Davis, J., Belle, V., De Raedt, L.: Solving probability problems in
natural language. In: IJCAI (2017)

33. Eisner, J., Filardo, N.W.: Dyna: extending datalog for modern AI. In: de Moor, O., Gottlob,
G., Furche, T., Sellers, A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 181–220. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24206-9 11

34. Ensan, A., Ternovska, E.: Modular systems with preferences. In: IJCAI, pp. 2940–2947
(2015)

35. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res.
61, 1–64 (2018)

36. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference in proba-
bilistic logic programs using weighted CNF’s. In: UAI, pp. 211–220 (2011)

37. d’Avila Garcez, A., Gori, M., Lamb, L.C., Serafini, L., Spranger, M., Tran, S.N.: Neural-
symbolic computing: an effective methodology for principled integration of machine learn-
ing and reasoning. arXiv preprint arXiv:1905.06088 (2019)

38. Getoor, L., Taskar, B. (eds.): An Introduction to Statistical Relational Learning. MIT Press,
Cambridge (2007)

39. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook of Satisfiability.
IOS Press (2009)

http://arxiv.org/abs/1805.04276
https://doi.org/10.1007/978-3-642-24206-9_11
http://arxiv.org/abs/1905.06088

14 V. Belle

40. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a
language for generative models. In: Proceedings of UAI, pp. 220–229 (2008)

41. Grohe, M., Lindner, P.: Probabilistic databases with an infinite open-world assumption.
In: Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, pp. 17–31 (2019)

42. Grohe, M., Ritzert, M.: Learning first-order definable concepts over structures of small
degree. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pp. 1–12. IEEE (2017)

43. Gulwani, S.: Dimensions in program synthesis. In: PPDP, pp. 13–24. ACM (2010)
44. Gunning, D.: Explainable artificial intelligence (XAI). Technical report, DARPA/I20 (2016)
45. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., De Raedt, L.: The magic of logical

inference in probabilistic programming. Theor. Pract. Logic Program. 11(4–5), 663–680
(2011)

46. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press (2003)
47. Holtzen, S., Millstein, T.: and G. Van den Broeck. Probabilistic program abstractions, In

UAI (2017)
48. Holtzen, S., Van den Broeck, G., Millstein, T.: Dice: compiling discrete probabilistic pro-

grams for scalable inference. arXiv preprint arXiv:2005.09089 (2020)
49. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural net-

works. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

50. Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief space. I. J.
Robotic Res. 32(9–10), 1194–1227 (2013)

51. Kahneman, D.: Thinking, Fast and Slow. Macmillan (2011)
52. Kimmig, A., Van den Broeck, G., De Raedt, L.: Algebraic model counting. J. Appl. Log.

22, 46–62 (2017)
53. Kolb, S., Mladenov, M., Sanner, S., Belle, V., Kersting, K.: Efficient symbolic integration

for probabilistic inference. In: IJCAI (2018)
54. Kolb, S., et al.: The PYWMI framework and toolbox for probabilistic inference using

weighted model integration (2019). https://www.ijcai.org/proceedings/2019/
55. Kolb, S., Teso, S., Passerini, A., De Raedt, L.: Learning SMT (LRA) constraints using SMT

solvers. In: IJCAI, pp. 2333–2340 (2018)
56. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Techniques. MIT

Press (2009)
57. Koller, D., Levy, A., Pfeffer, A.: P-classic: a tractable probablistic description logic. In:

Proceedings of the AAAI/IAAI, pp. 390–397 (1997)
58. Kordjamshidi, P., Roth, D., Kersting, K.: Systems AI: a declarative learning based program-

ming perspective. In: IJCAI, pp. 5464–5471 (2018)
59. Lakemeyer, G., Levesque, H.J.: Cognitive robotics. In: Handbook of Knowledge Represen-

tation, pp. 869–886. Elsevier (2007)
60. Lamb, L., Garcez, A., Gori, M., Prates, M., Avelar, P., Vardi, M.: Graph neural

networks meet neural-symbolic computing: a survey and perspective. arXiv preprint
arXiv:2003.00330 (2020)

61. Levesque, H.J.: Common Sense, the Turing Test, and the Quest for Real AI. MIT Press
(2017)

62. Levesque, H.J., Brachman, R.J.: Expressiveness and tractability in knowledge representa-
tion and reasoning. Comput. Intell. 3, 78–93 (1987)

63. Liang, Y., Bekker, J., Van den Broeck, G.: Learning the structure of probabilistic senten-
tial decision diagrams. In: Proceedings of the 33rd Conference on Uncertainty in Artificial
Intelligence (UAI) (2017)

http://arxiv.org/abs/2005.09089
https://doi.org/10.1007/978-3-319-63387-9_1
https://www.ijcai.org/proceedings/2019/
http://arxiv.org/abs/2003.00330

Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains 15

64. Lierler, Y., Truszczynski, M.: An abstract view on modularity in knowledge representation.
In: AAAI, pp. 1532–1538 (2015)

65. Liu, Y., Levesque, H.: Tractable reasoning with incomplete first-order knowledge in
dynamic systems with context-dependent actions. In: Proceedings of the IJCAI, pp. 522–
527 (2005)

66. Lowd, D., Domingos, P.: Learning arithmetic circuits. In: Proceedings of the 24th Confer-
ence in Uncertainty in Artificial Intelligence (UAI), pp. 383–392 (2008)

67. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deepproblog: neu-
ral probabilistic logic programming. In: Advances in Neural Information Processing Sys-
tems, pp. 3749–3759 (2018)

68. Marcus, G., Davis, E.: Rebooting AI: Building Artificial Intelligence We Can Trust. Pan-
theon (2019)

69. Merrell, D., Albarghouthi, A., D’Antoni, L.: Weighted model integration with orthogonal
transformations. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (2017)

70. Milch, B., Marthi, B., Sontag, D., Russell, S.J., Ong, D.L., Kolobov, A.: Approximate infer-
ence for infinite contingent Bayesian networks. In: AISTATS, pp. 238–245 (2005)

71. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search prob-
lems. In: AAAI, pp. 430–435 (2005)

72. Mocanu, I.G., Belle, V., Juba, B.: Polynomial-time implicit learnability in SMT. In: ECAI
(2020)

73. Molina, A., Vergari, A., Di Mauro, N., Natarajan, S., Esposito, F., Kersting, K.: Mixed
sum-product networks: a deep architecture for hybrid domains. In: Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

74. Morettin, P., Passerini, A., Sebastiani, R.: Advanced SMT techniques for weighted model
integration. Artif. Intell. 275, 1–27 (2019)

75. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic
Program. 19, 629–679 (1994)

76. Nitti, D., Belle, V., De Laet, T., De Raedt, L.: Planning in hybrid relational mdps. Mach.
Learn. 106(12), 1905–1932 (2017)

77. Nitti, D., Ravkic, I., Davis, J., Raedt, L.D.: Learning the structure of dynamic hybrid rela-
tional models. In: Proceedings of the Twenty-second European Conference on Artificial
Intelligence, pp. 1283–1290. IOS Press (2016)

78. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: scaling up statistical inference in markov logic
networks using an rdbms. Proc. VLDB Endowment 4(6), 373–384 (2011)

79. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: Deepdive: web-scale knowledge-base construction
using statistical learning and inference. VLDS 12, 25–28 (2012)

80. Papantonis, I., Belle, V.: On constraint definability in tractable probabilistic models. arXiv
preprint arXiv:2001.11349 (2020)

81. Poole, D.: First-order probabilistic inference. In: Proceedings of the IJCAI, pp. 985–991
(2003)

82. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: UAI, pp. 337–
346 (2011)

83. Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical relational artificial intelli-
gence: logic, probability, and computation. Synth. Lect. Artif. Intell. Mach. Learn. 10(2),
1–189 (2016)

84. Renkens, J., et al.: ProbLog2: from probabilistic programming to statistical relational learn-
ing. In: Roy, D., Mansinghka, V., Goodman, N. (eds.) Proceedings of the NIPS Probabilistic
Programming Workshop, December 2012. Accepted

85. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136
(2006)

http://arxiv.org/abs/2001.11349

16 V. Belle

86. Rudin, C., Ustun, B.: Optimized scoring systems: toward trust in machine learning for
healthcare and criminal justice. Interfaces 48(5), 449–466 (2018)

87. Russell, S.J.: Unifying logic and probability. Commun. ACM 58(7), 88–97 (2015)
88. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and continuous

graphical models. In: AAAI (2012)
89. Shenoy, P., West, J.: Inference in hybrid Bayesian networks using mixtures of polynomials.

Int. J. Approximate Reasoning 52(5), 641–657 (2011)
90. Singla, P., Domingos, P.M.: Markov logic in infinite domains. In: UAI, pp. 368–375 (2007)
91. Speichert, S., Belle, V.: Learning probabilistic logic programs in continuous domains. In:

ILP (2019)
92. Sreedharan, S., Srivastava, S., Kambhampati, S.: Hierarchical expertise level modeling for

user specific contrastive explanations. In: IJCAI, pp. 4829–4836 (2018)
93. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic databases. Synth. Lect. Data Manage.

3(2), 1–180 (2011)
94. Valiant, L.G.: Robust logics. Artif. Intell. 117(2), 231–253 (2000)
95. Van den Broeck, G.: Lifted Inference and Learning in Statistical Relational Models. Ph.D.

thesis. KU Leuven (2013)
96. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Van den Broeck, G.: A semantic loss function for

deep learning with symbolic knowledge. In: International Conference on Machine Learn-
ing, pp. 5502–5511 (2018)

97. Xu, K., Li, J., Zhang, M., Du, S.S., Kawarabayashi, K.-I., Jegelka, S.: What can neural
networks reason about? arXiv preprint arXiv:1905.13211 (2019)

98. Zellers, R., Bisk, Y., Schwartz, R., Choi, Y.: Swag: a large-scale adversarial dataset for
grounded commonsense inference. arXiv preprint arXiv:1808.05326 (2018)

99. Zeng, Z., Van den Broeck, G.: Efficient search-based weighted model integration. arXiv
preprint arXiv:1903.05334 (2019)

100. Zuidberg Dos Martires, P., Dries, A., De Raedt, L.: Knowledge compilation with continu-
ous random variables and its application in hybrid probabilistic logic programming. arXiv
preprint arXiv:1807.00614 (2018)

http://arxiv.org/abs/1905.13211
http://arxiv.org/abs/1808.05326
http://arxiv.org/abs/1903.05334
http://arxiv.org/abs/1807.00614

	Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains
	1 Introduction
	2 Logic vs. Machine Learning
	3 Machine Learning for Logic
	4 Logic for Machine Learning
	5 Conclusions
	References

