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Preface

This volume contains papers from the 14th International Conference on Scalable
Uncertainty Management (SUM 2020). Established in 2007, the SUM conferences are
annual events which aim to gather researchers with a common interest in managing and
analyzing imperfect information from a wide range of fields, such as Artificial Intel-
ligence and Machine Learning, Databases, Information Retrieval and Data Mining, the
Semantic Web, and Risk Analysis. It aims to foster collaboration and cross-fertilization
of ideas from these different communities.

SUM 2020 was initially planned to be held in Bolzano, Italy, during September
23–25, 2020. Moreover, it was supposed to take place in the context of the Bolzano
Summer of Knowledge, which aimed to bring together researchers from multiple
different disciplines such as Philosophy, Knowledge Representation, Logic, Conceptual
Modeling and Ontology Engineering, Biology, Medicine, Cognitive Science, and
Neuroscience. The idea was to have several weeks of conferences, workshops, and
summer schools related to these areas, all with an emphasis on exploring themes
around knowledge. Unfortunately, the COVID-19 pandemic forced the postponement
of this event. Therefore, SUM 2020 was changed to a fully virtual conference.

Prior to the conference, SUM 2020 solicited three types of paper submissions. Long
papers could report on original research, or provide a survey that synthesizes some
current research trends. Short papers could be about promising work in progress,
system descriptions, or position papers on controversial issues. Finally, extended
abstracts could report on recently published work in a relevant journal or top-tier
conference. A special feature of SUM 2020 was the addition of a PhD track for papers
where the first author was a PhD student. We received 30 submissions, all of which
were reviewed by at least three members of the Technical Program Committee. On the
basis of these reviews, 12 submissions were accepted as long papers and 9 as short
papers.

The conference also included two invited talks. The first invited speaker was
Gabriella Pasi from the University of Milano-Bicocca, Italy. She gave a talk on
“Assessing Information Credibility in the Social Web.” The second invited speaker was
V. S. Subrahmanian from Dartmouth College, USA, and his talk was on “Deception,
Deterrence and Security.”

Additionally, there were five invited tutorials. Vaishak Belle from the University of
Edinburgh and the Alan Turing Institute, UK, gave a tutorial entitled “Symbolic Logic
meets Machine Learning: A Brief Survey in Infinite Domains.” Leopoldo Bertossi from
Adolfo Ibáñez University, Chile, gave a tutorial entitled “Score-Based Explanations in
Data Management and Machine Learning.” Davide Ciucci from the University of
Milano-Bicocca, Italy, gave a tutorial on “Rough sets.” Frédéric Pichon from Artois
University, France, spoke about “Information fusion using belief functions: source
quality and conflict.” Finally, Steven Schockaert from Cardiff University, UK, spoke
about “Representing Knowledge using Vector Space Embeddings.” The tutorial



authors also had a chance to submit a 14-pages paper, that was reviewed by the
Program Committee co-chairs, to be included in these proceedings. Vaishak Belle and
Leopoldo Bertossi have such a paper.

There are a number of people we would like to thank for their support in preparing
this conference. Our appreciation is particularly warranted this year, due to the addi-
tional stresses, uncertainties, and complications posed by the worldwide COVID-19
pandemic. Firstly, we would like to thank Rafael Peñaloza who was initially in charge
of local arrangements and maintaining the conference’s web presence. He then pivoted
towards helping coordinate the online component of the conference. Secondly, we
would like to thank the SUM Steering Committee, which was chaired by Henri Prade.
They provided invaluable advice along the way by proposing potential tutorial speakers
and helping us navigate the transition from a physical to virtual conference. Thirdly, we
would like to thank the members of the Technical Program Committee for providing
high-quality and timely reviews. We would like also to thank all authors who submitted
papers to the conference. Finally, we are very grateful to Springer for sponsoring the
Best Student Paper Award as well as for the ongoing support of its staff in publishing
this volume.

July 2020 Jesse Davis
Karim Tabia
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Assessing Information Credibility in the Social
Web

Gabriella Pasi

Università degli Studi di Milano Bicocca, Italy
gabriella.pasi@unimib.it

Abstract. In the context of the Social Web, where a large amount of User
Generated Content is diffused through Social Media without any form of trusted
external control, the risk of running into misinformation is not negligible. For
this reason, the issue of assessing the credibility of “potential” information is of
increasing interest and importance. In the last few years several approaches have
been proposed to automatically assess the credibility of UCG in Social Media.
Most are data-driven approaches, based on machine learning techniques, but
recently model-driven approaches are also being investigated, in particular,
approaches relying on the Multi Criteria Decision Making paradigm. In this talk
an overview of the approaches aimed at tackling this problem are addressed,
with particular emphasis on model driven approaches; their application to
specific problems will also be addressed.



Deception, Deterrence and Security

V. S. Subrahmanian

Department of Computer Science, Institute for Security, Technology, and Society
Dartmouth College, Hanover, NH 03755

vs@dartmouth.edu

Abstract. Deception is at the heart of many security issues. For instance,
phishing and spear-phishing attacks use deception. So do man in the middle
attacks in which, for instance, a fake cell tower deceives individual mobile
devices to connect to them. However, deception can also be used for “good” in
order to inject uncertainty and inflict costs on a malicious adversary. In this talk,
I will go over 2 major case studies involving deception for good which have a
deterrent effect on a malicious adversary. In the first, I will discuss how selective
disclosure of probabilistic logic-based behavioral models can help shape the
actions of terrorist groups, making their behavior more predictable (for us) and
hence more defendable. In a second application, this time in cybersecurity, I will
show methods and a prototype system to inflict costs on an adversary who steals
valuable intellectual property by populating a network with automatically
generated fake documents that masquerade as intellectual property.
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Symbolic Logic Meets Machine Learning:
A Brief Survey in Infinite Domains

Vaishak Belle1,2(B)

1 University of Edinburgh, Edinburgh, UK
2 Alan Turing Institute, London, UK

vaishak@ed.ac.uk

Abstract. The tension between deduction and induction is perhaps the most fun-
damental issue in areas such as philosophy, cognition and artificial intelligence
(AI). The deduction camp concerns itself with questions about the expressive-
ness of formal languages for capturing knowledge about the world, together with
proof systems for reasoning from such knowledge bases. The learning camp
attempts to generalize from examples about partial descriptions about the world.
In AI, historically, these camps have loosely divided the development of the field,
but advances in cross-over areas such as statistical relational learning, neuro-
symbolic systems, and high-level control have illustrated that the dichotomy is
not very constructive, and perhaps even ill-formed.

In this article, we survey work that provides further evidence for the connec-
tions between logic and learning. Our narrative is structured in terms of three
strands: logic versus learning, machine learning for logic, and logic for machine
learning, but naturally, there is considerable overlap. We place an emphasis on the
following “sore” point: there is a common misconception that logic is for discrete
properties, whereas probability theory and machine learning, more generally, is
for continuous properties. We report on results that challenge this view on the
limitations of logic, and expose the role that logic can play for learning in infinite
domains.

1 Introduction

The tension between deduction and induction is perhaps the most fundamental issue in
areas such as philosophy, cognition and artificial intelligence (AI). The deduction camp
concerns itself with questions about the expressiveness of formal languages for captur-
ing knowledge about the world, together with proof systems for reasoning from such
knowledge bases. The learning camp attempts to generalize from examples about partial
descriptions about the world. In AI, historically, these camps have loosely divided the
development of the field, but advances in cross-over areas such as statistical relational
learning [38,83], neuro-symbolic systems [28,37,60], and high-level control [50,59]
have illustrated that the dichotomy is not very constructive, and perhaps even ill-formed.
Indeed, logic emphasizes high-level reasoning, and encourages structuring the world in
terms of objects, properties, and relations. In contrast, much of the inductive machinery

The author was supported by a Royal Society University Research Fellowship. He is grateful to
Ionela G. Mocanu, Paulius Dilkas and Kwabena Nuamah for their feedback.

c© Springer Nature Switzerland AG 2020
J. Davis and K. Tabia (Eds.): SUM 2020, LNAI 12322, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-58449-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58449-8_1&domain=pdf
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4 V. Belle

assume random variables to be independent and identically distributed, which can be
problematic when attempting to exploit symmetries and causal dependencies between
groups of objects. But the threads connecting logic and learning go deeper, far beyond
the apparent flexibility that logic offers for modeling relations and hierarchies in noisy
domains. At a conceptual level, for example, although there is much debate about what
precisely commonsense knowledge might look like, it is widely acknowledged that con-
cepts such as time, space, abstraction and causality are essential [68,98]. In that regard,
(classical, or perhaps non-classical) logic can provide the formal machinery to rea-
son about such concepts in a rigorous way. At a pragmatic level, despite the success
of methods such as deep learning, it is now increasingly recognized that owing to a
number of reasons, including model re-use, transferability, causal understanding, rela-
tional abstraction, explainability and data efficiency, those methods need to be further
augmented with logical, symbolic and/or programmatic artifacts [17,35,97]. Finally,
for building intelligent agents, it is recognized that low-level, data-intensive, reactive
computations needs to be tightly integrated with high-level, deliberative computations
[50,59,67], the latter possibly also engaging in hypothetical and counterfactual reason-
ing. Here, a parallel is often drawn to Kahneman’s so-called System 1 versus System
2 processing in human cognition [51], in the sense that experiential and reactive pro-
cessing (learned behavior) needs to be coupled with cogitative processing (reasoning,
deliberation and introspection) for sophisticated machine intelligence.

The purpose of this article is not to resolve this debate, but rather provide further
evidence for the connections between logic and learning. In particular, our narrative is
inspired by a recent symposium on logic and learning [13], where the landscape was
structured in terms of three strands:

1. Logic vs. Machine Learning, including the study of problems that can be solved
using either logic-based techniques or via machine learning, . . .;

2. Machine Learning for Logic, including the learning of logical artifacts, such as
formulas, logic programs, . . .; and

3. Logic for Machine Learning, including the role of logics in delineating the bound-
ary between tractable and intractable learning problems, . . . , and the use of logic
as a declarative framework for expressing machine learning constructs.

In this article, we particularly focus on the following “sore” point: there is a com-
mon misconception that logic is for discrete properties, whereas probability theory and
machine learning, more generally, is for continuous properties. It is true that logical
formulas are discrete structures, but they can very easily also express properties about
countably infinite or even uncountably many objects. Consequently, in this article we
survey some recent results that tackle the integration of logic and learning in infinite
domains. In particular, in the context of the above three strands, we report on the fol-
lowing developments. On (1), we discuss approaches for logic-based probabilistic infer-
ence in continuous domains. On (2), we cover approaches for learning logic programs
in continuous domains, as well as learning formulas that represent countably infinite
sets of objects. Finally, on (3), we discuss attempts to use logic as a declarative frame-
work for common tasks in machine learning over discrete and continuous features, as
well as using logic as a meta-theory to consider notions such as the abstraction of a
probabilistic model.
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We remark that this survey is undoubtedly a biased view, as the area of research is
large, but we do attempt to briefly cover the major threads. Readers are encouraged to
refer to discussions in [13,38,83], among others, to get a sense of the breadth of the
area.

2 Logic vs. Machine Learning

To appreciate the role and impact of logic-based solvers for machine learning systems, it
is perhaps useful to consider the core computational problem underlying (probabilistic)
machine learning: the problem of inference, including evaluating the partition func-
tion (or conditional probabilities) of a probabilistic graphical model such as a Bayesian
network.

When leveraging Bayesian networks for machine learning tasks [56], the networks
are often learned using local search to maximize a likelihood or a Bayesian quantity. For
example, given dataD and the current guess for the network N , we might estimate the
“goodness” of the guess by means of a score: score(N ,D) ∝ log Pr(D | N) − size(N).
That is, we want to maximize the fit of the data wrt the current guess, but we would
like to penalize the model complexity, to avoid overfitting. Then, we would opt for a
second guess N′ only if score(N′,D) > score(N ,D). Needless to say, even with a
reasonable local search procedure, the most significant computational effort here is that
of probabilistic inference.

Reasoning in such networks becomes especially challenging with logical syntax.
The prevalence of large-scale social networks, machine reading domains, and other
types of relational knowledge bases has led to numerous formalisms that borrow the
syntax of predicate logic for probabilistic modeling [78,81,85,93]. This has led to a
large family of solvers for the weighted model counting (WMC) problem [20,39]. The
idea is this: given a Bayesian network, a relational Bayesian network, a factor graph, or
a probabilistic program [84], one considers an encoding of the formalism as a weighted
propositional theory, consisting of a propositional theory Δ and a weight function w
that maps atoms in Δ to R+. Recall that SAT is the problem of finding an assignment to
such a Δ, whereas #SAT counts the number of assignments for Δ.WMC extends #SAT
by computing the sum of the weights of all assignments: that is, given a set of models
M(Δ) = {M | M |= Δ}, we evaluate the quantity W(Δ) =

∑
M∈M(Δ) w(M) where w(M)

is factorized in terms of the atoms true at M. To obtain the conditional probability of a
query q against evidence e (wrt the theory Δ), we define Pr(q | e) = W(Δ∧q∧e)/W(Δ∧e).

The popularity of WMC can be explained as follows. Its formulation elegantly
decouples the logical or symbolic representation from the numeric representation,
which is encapsulated in the weight function. When building solvers, this allows us to
reason about logical equivalence and reuse SAT solving technology (such as constraint
propagation and clause learning). WMC also makes it more natural to reason about
deterministic, hard constraints in a probabilistic context [20]. Both exact solvers, based
on knowledge compilation [23], as well as approximate solvers [19] have emerged in
the recent years, as have lifted techniques [95] that exploit the relational syntax during
inference (but in a finite domain setting). For ideas on generating such representations
randomly to assess scalability and compare inference algorithms, see [29], for example.
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On the point of modelling finite vs infinite properties, note that owing to the under-
lying propositional language, the formulation is limited to discrete random variables.
A similar observation can be made for SAT, which for the longest time could only be
applied in discrete domains. This changed with the increasing popularity of satisfiability
modulo theories (SMT) [4], which enable us to, for example, reason about the satisfi-
ability of linear constraints over the rationals. Extending earlier insights on piecewise-
polynomial weight functions [88,89], the formulation of weighted model integration
(WMI) was proposed in [12]. WMI extends WMC by leveraging the idea that SMT
theories can represent mixtures of Boolean and continuous variables: for example, a
formula such as p ∧ (x > 5) denotes the logical conjunction of a Boolean variable p
and a real-valued variable x taking values greater than 5. For every assignment to the
Boolean and continuous variables, the WMI problem defines a weight. The total WMI
is computed by integrating these weights over the domain of solutions to Δ, which is
a mixed discrete-continuous (or simply hybrid) space. Consider, for example, the spe-
cial case when Δ has no Boolean variables, and the weight of every model is 1. Then,
the WMI simplifies to computing the volume of the polytope encoded in Δ. When we
additionally allow for Boolean variables in Δ, this special case becomes the hybrid ver-
sion of #SAT, known as #SMT [21]. Since that proposal, numerous advances have been
made on building efficient WMI solvers (e.g., [69,74,99]) including the development
of compilation targets [53,54,100].

Note that WMI proposes an extension of WMC for uncountably infinite (i.e., con-
tinuous) domains. What about countably infinite domains? The latter type is particularly
useful for reasoning in (general) first-order settings, where we may say that a property
such as ∀x, y, z(parent(x, y) ∧ parent(y, z) ⊃ grandparent(x, z)) applies to every pos-
sible x, y and z. Of course, in the absence of the finite domain assumption, reasoning
in the first-order setting suffers from undecidability properties, and so various strate-
gies have emerged for reasoning about an open universe [87]. One popular approach
is to perform forward reasoning, where samples needed for probability estimation are
obtained from the facts and declarations in the probabilistic model [45,87]. Each such
sample corresponds to a possible world. But there may be (countably or uncountably)
infinitely many worlds, and so exact inference is usually sacrificed. A second approach
is to restrict the model wrt the query and evidence atoms and define estimation from
the resulting finite sub-model [41,70,90], which may also be substantiated with exact
inference in special cases [6,7].

Given the successes of logic-based solvers for inference and probability estimation,
one might wonder whether such solvers would also be applicable to learning tasks in
models with relational features and hard, deterministic constraints? These, in addition
to other topics, are considered in the next section.

3 Machine Learning for Logic

At least since the time of Socrates, inductive reasoning has been a core issue for the
logical worldview, as we need a mechanism for obtaining axiomatic knowledge. In that
regard, the learning of logical and symbolic artifacts is an important issue in AI, and
computer science more generally [43]. There is a considerable body of work on learning
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propositional and relational formulas, and in context of probabilistic information, learn-
ing weighted formulas [13,26,75,83]. Approaches can be broadly lumped together as
follows.

1. Entailment-based scoring: Given a logical language L, background knowledge B ⊂
L, examples D (usually a set of L-atoms), find a hypothesis H ∈ H ,H ⊂ L such
that B∪H entail the instances inD. Here, the setH places restrictions of the syntax
of H so as to control model complexity and generalization. (For example, H = D
is a trivial hypothesis that satisfies the entailment stipulation.)

2. Likelihood-based scoring: Given L and D as defined above, find H ⊂ L such that
score(H ,D) > score(H′,D) for every H′ � H . As discussed before, we might
define score(H ,D) ∝ log Pr(D | H) − size(H). Here, like H above, size(H)
attempts to the control model complexity and generalization.

Many recipes based on these schemes are possible. For example, we may use
entailment-based inductive synthesis for an initial estimate of the hypothesis, and then
resort to Bayesian scoring models [85]. The synthesis step might invoke neural machin-
ery [35]. We might not require that the hypothesis entails every example in D but only
the largest consistent subset, which is sensible when we expect the examples to be noisy
[26]. We might compile B to an efficient data structure, and perform likelihood-based
scoring on that structure [63], and so B could be seen as deterministic domain-specific
constraints. Finally, we might stipulate the conditions under which a “correct” hypoth-
esis may be inferred wrt unknown ground truth, only a subset of which is provided
in D. This is perhaps best represented by the (probably approximately correct) PAC-
semantics that captures the quality possessed by the output of learning algorithm whilst
costing for the number of examples that need to be observed [22,94]. (But other formu-
lations are also possible, e.g., [42].)

This discussion pertained to finite domains. What about continuous spaces? By
means of arithmetic fragments and formulations like WMI, it should be clear that it
now becomes possible to extend the above schemes to learn continuous properties. For
example, one could learn linear expressions from data [55]. For an account that also
tries to evaluate a hypothesis that is correct wrt unknown ground truth, see [72]. If the
overall objective is to obtain a distribution of the data, other possibilities present them-
selves. In [77], for example, real-valued data points are first lumped together to obtain
atomic continuous random variables. From these, relational formulas are constructed so
as to yield hybrid probabilistic programs. The learning is based on likelihood scoring.
In [91], the real-valued data points are first intervalized, and polynomials are learned
for those intervals based on likelihood scoring. These weighted atoms are then used for
learning clauses by entailment judgements [26].

Such ideas can also be extended to data structures inspired by knowledge compila-
tion, often referred to as circuits [20,82]. Knowledge compilation [25] arose as a way to
represent logical theories in a manner where certain kinds of computations (e.g., check-
ing satisfiability) is significantly more effective, often polynomial in the size of the cir-
cuit. In the context of probabilistic inference, the idea was to then position probability
estimation to also be computable in time polynomial in the size of the circuit [20,82].
Consequently, (say) by means of likelihood-based scoring, the learning of circuits is



8 V. Belle

particularly attractive because once learned, the bottleneck of inference is alleviated
[63,66]. In [15,73], along the lines of the work above on learning logical formulas in
continuous domains, it is shown that the learning of circuits can also be coupled with
WMI.

What about countably infinite domains? In most pragmatic instances of learning
logical artifacts, the difference between the uncountable and countably infinite setting
is this: in the former, we see finitely many real-valued samples as being drawn from
an (unknown) interval, and we could inspect these samples to crudely infer a lower
and upper bound. In the latter, based on finitely many relational atoms, we would need
to infer a universally quantified clause, such as ∀x, y, z(parent(x, y) ∧ parent(y, z) ⊃
grandparent(x, z)). If we are after a hypothesis that is simply guaranteed to be consistent
wrt the observed examples, then standard rule induction strategies would suffice [75],
and we could interpret the rules as quantifying over a countably infinite domain. But this
is somewhat unsatisfactory, as there is no distinction between the rules learned in the
standard finite setting and its supposed applicability to the infinite setting. What is really
needed is an analysis of what rule learning would mean wrt the infinitely many exam-
ples that have not been observed. This was recently considered via the PAC-semantics
in [10], by appealing to ideas on reasoning with open universes discussed earlier [6].

Before concluding this section, it is worth noting that although the above discus-
sion is primarily related to the learning of logical artifacts, it can equivalently be
seen as a class of machine learning methods that leverage symbolic domain knowl-
edge [30]. Indeed, logic-based probabilistic inference over deterministic constraints,
and entailment-based induction augmented with background knowledge are instances
of such a class. Analogously, the automated construction of relational and statistical
knowledge bases [18,79] by combining background knowledge with extracted tuples
(obtained, for example, by applying natural language processing techniques to large
textual data) is another instance of such a class.

In the next section, we will consider yet another way in which logical and symbolic
artifacts can influence learning: we will see how such artifacts are useful to enable
tractability, correctness, modularity and compositionality.

4 Logic for Machine Learning

There are two obvious ways in which a logical framework can provide insights on
machine learning theory. First, consider that computational tractability is of central
concern when applying logic in computer science, knowledge representation, database
theory and search [62,65,71]. Thus, the natural question to wonder is whether these
ideas would carry over to probabilistic machine learning. On the one hand, probabilistic
extensions to tractable knowledge representation frameworks could be considered [57].
But on the other, as discussed previously, ideas from knowledge compilation, and the
use of circuits, in particular, are proving very effective for designing tractable paradigms
for machine learning. While there has always been an interest in capturing tractable dis-
tributions by means of low tree-width models [2], knowledge compilation has provided
a way to also represent high tree-width models and enable exact inference for a range
of queries [63,82]. See [24] for a comprehensive view on the use of knowledge compi-
lation for machine learning.
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The other obvious way logic can provide insights on machine learning theory is
by offering a formal apparatus to reason about context. Machine learning problems are
often positioned as atomic tasks, such as a classification task where regions of images
need to be labeled as cats or dogs. However, even in that limited context, we imagine
the resulting classification system as being deployed as part of a larger system, which
includes various modules that communicate or interface with the classification system.
We imagine an implicit accountability to the labelling task in that the detected object is
either a cat or a dog, but not both. If there is information available that all the entities
surrounding the object of interest have been labelled as lions, we would want to accord a
high probability to the object being a cat, possibly a wild cat. There is a very low chance
of the object being a dog, then. If this is part of a vision system on a robot, we should
ensure that the robot never tramples on the object, regardless of whether it is a type of
cat or a dog. To inspect such patterns, and provide meta-theory for machine learning, it
can be shown that symbolic, programmatic and logical artifacts are enormously useful.
We will specifically consider correctness, modularity and compositionality to explore
the claim.

On the topic of correctness, the classical framework in computer science is verifi-
cation: can we provide a formal specification of what is desired, and can the system
be checked against that specification? In a machine learning context, we might ask
whether the system, during or after training, satisfies a specification. The specification
here might mean constraints about the physical laws of the domain, or notions of per-
turbation in the input space while ensuring that the labels do not change, or insisting
that the prediction does not label an object as being both a cat and a dog, or other-
wise ensuring that outcomes are not subject to, say, gender bias. Although there is a
broad body of work on such issues, touching more generally on trust [86], we discuss
approaches closer to the thrust of this article. For example, [49] show that a trained
neural network can be verified by means of an SMT encoding of the network. In recent
work, [96] show that the loss function of deep learning systems can be adjusted to log-
ical constraints by insisting that the distribution on the predictions is proportional to
the weighted model count of those constraints. In [63], prior (logical) constraints are
compiled to a circuit to be used for probability estimation. In [80], circuits are shown
to be amenable to training against probabilistic and causal prior constraints, including
assertions about fairness, for example.

In [32,67], a somewhat different approach to respecting domain constraints is taken:
the low-level prediction is obtained as usual from a machine learning module, which is
then interfaced with a probabilistic relational language and its symbolic engine. That
is, the reasoning is positioned to be tackled directly by the symbolic engine. In a
sense, such approaches cut across the three strands: the symbolic engine uses weighted
model counting, the formulas in the language could be obtained by (say) entailment-
based scoring, and the resulting language supports modularity and compositionality
(discussed below).

While there is not much to be said about the distinction between finite vs infinite
wrt correctness, many of these ideas are likely amenable to extensions to an infinite
setting in the ways discussed in the previous sections (e.g., considering constraints of a
continuous or a countably infinite nature).
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On the topic of modularity, recall that the general idea is to reduce, simplify or
otherwise abstract a (probabilistic) computation as an atomic entity, which is then to
be referenced in another, possibly more complex, entity. In standard programming lan-
guages, this might mean the compartmentalization and interrelation of computational
entities. For machine learning, approaches such as probabilistic programming [27,40]
support probabilistic primitives in the language, with the intention of making learning
modules re-usable and modular. It can be shown, for example, that the computational
semantics of some of these languages reduce to WMC [36,48]. Thus, in the infinite
case, a corresponding reduction to WMI follows [1,31,91].

A second dimension to modularity is the notion of abstraction. Here, we seek to
model, reason and explain the behavior of systems in a more tractable search space,
by omitting irrelevant details. The idea is widely used in natural and social sciences.
Think of understanding the political dynamics of elections by studying micro level phe-
nomena (say, voter grievances in counties) versus macro level events (e.g., television
advertisements, gerrymandering). In particular, in computer science, it is often under-
stood as the process of mapping one representation onto a simpler representation by
suppressing irrelevant information. In fact, integrating low-level behavior with high-
level reasoning, exploiting relational representations to reduce the number of inference
computations, and many other search space reduction techniques can all loosely be seen
as instances of abstraction [8].

While there has been significant work on abstraction in deterministic systems [3],
for machine learning, however, a probabilistic variant is clearly needed. In [47], an
account of abstraction for loop-free propositional probabilistic programs is provided,
where certain parts of the program (possibly involving continuous properties) can be
reduced to a Bernoulli random variable. For example, suppose every occurrence of the
continuous random variable x, drawn uniformly on the interval [0,1], in a program is
either of the form x ≤ 7 or of the form x > 7. Then, we could use a discrete ran-
dom variable b with a 0.7 probability of being true to capture x ≤ 7; and analogously,
¬b to capture x > 7. The resulting program is likely to be simpler. In [8], an account
of abstraction for probabilistic relational models is considered, where the notion of
abstraction also extends to deterministic constraints and complex formulas. For exam-
ple, a single probabilistic variable in the abstracted model could denote a complex logi-
cal formula in the original model. Moreover, the logical properties that enable verifying
and inducing abstractions are also considered, and it is shown how WMC is sufficient
for the computability of these properties (also see [48]).

Incidentally, abstraction brings to light a reduction between finite vs infinite: it is
shown in [8] that the modelling of piecewise densities as weighted propositions, which
is leveraged in WMI [12,31], is a simple case of the more general account. Therefore, it
is worthwhile to investigate whether this or other accounts of abstraction could emerge
as general-purpose tools that allow us to inspect the conditions under which infinitary
statements reduce to finite computations.

A broader point here is the role abstraction might play in generating explanations
[44]. For example, a user’s understanding of the domain is likely to be different from the
low-level data that a machine learning system interfaces with [92], and so, abstractions
can capture these two levels in a formal way.
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Finally, we turn to the topic of compositionality, which, of course, is closely related
to modularity in that we want to distinct modules to come together to form a com-
plex composition. Not surprisingly, this is of great concern in AI, as it is widely
acknowledged that most AI systems will involve heterogeneous components, some
of which may involve learning from data, and others reasoning, search and sym-
bol manipulation [68]. In continuation with the above discussion, probabilistic pro-
gramming is one such endeavor that purports to tackle this challenge by allowing
modular components to be composed over programming and/or logical connectives
[5,11,16,27,32,40,46,67,76,85]. (See [34,64,71] for ideas in deterministic systems.)
However, probabilistic programming only composes probabilistic computations, but
does not offer an obvious means to capture other types of search-based computations,
such as SAT, and integer and convex programming.

Recall that the computational semantics of probabilistic programs reduces to WMC
[36,48]. Following works such as [14,33], an interesting observation made in [52] is
that by appealing to a sum of products computation over different semiring structures,
we can realize a large number of tasks such as satisfiability, unweighted model counting,
sensitivity analysis, gradient computations, in addition to WMC. It was then shown
in [9] that the idea could be generalized further for infinite domains: by defining a
measure on first-order models, WMI and convex optimization can also be captured.
As the underlying language is a logical one, composition can already be defined using
logical connectives. But an additional, more involved, notion of composition is also
proposed, where a sum of products over different semirings can be concatenated. To
reiterate, the general idea behind these proposals [9,33,52] is to arrive at a principled
paradigm that allows us to interface learned modules with other types of search and
optimization computations for the compositional building of AI systems. See also [58]
for analogous discussions, but where a different type of coupling for the underlying
computations is suggested. Overall, we observed that a formal apparatus (symbolic,
programmatic and logical artifacts) help us define such compositional constructions by
providing a meta-theory.

5 Conclusions

In this article, we surveyed work that provides further evidence for the connections
between logic and learning. Our narrative was structured in terms of three strands: logic
versus learning, machine learning for logic, and logic for machine learning, but natu-
rally, there was considerable overlap.

We covered a large body of work on what these connections look like, including,
for example, pragmatic concerns such as the use of hard, domain-specific constraints
and background knowledge, all of which considerably eases the requirement that all of
the agent’s knowledge should be derived from observations alone. (See discussions in
[61] on the limitations of learned behavior, for example.) Where applicable, we placed
an emphasis on how extensions to infinite domains are possible. In the very least, log-
ical artifacts can help in constraining, simplifying and/or composing machine learning
entities, and in providing a principled way to study the underlying representational and
computational issues.
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In general, this type of work could help us move beyond the narrow focus of the
current learning literature so as to deal with time, space, abstraction, causality, quan-
tified generalizations, relational abstractions, unknown domains, unforeseen examples,
among other things, in a principled fashion. In fact, what is being advocated is the tack-
ling of problems that symbolic logic and machine learning might struggle to address
individually. One could even think of the need for a recursive combination of strands
2 and 3: purely reactive components interact with purely cogitative elements, but then
those reactive components are learned against domain constraints, and the cogitative
elements are induced from data, and so on. More broadly, making progress towards
a formal realization of System 1 versus System 2 processing might also contribute to
our understanding of human intelligence, or at least capture human-like intelligence in
automated systems.
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Abstract. We describe some approaches to explanations for observed
outcomes in data management and machine learning. They are based
on the assignment of numerical scores to predefined and potentially rele-
vant inputs. More specifically, we consider explanations for query answers
in databases, and for results from classification models. The described
approaches are mostly of a causal and counterfactual nature. We argue
for the need to bring domain and semantic knowledge into score compu-
tations; and suggest some ways to do this.

1 Introduction

In data management and machine learning one wants explanations for certain
results. For example, for query results from databases, and for outcomes of clas-
sification models. Explanations, that may come in different forms, have been
the subject of philosophical enquires for a long time, but, closer to home, they
appear under different forms in model-based diagnosis and in causality as devel-
oped in artificial intelligence. In the last few years, explanations that are based
on numerical scores assigned to elements of a model that may contribute to an
outcome have become popular. These scores attempt to capture the degree of
their contribution to an outcome, e.g. answering questions like these: What is the
contribution of this tuple to the answer to this query? What is the contribution
of this feature value of an entity to the displayed classification of the latter?

Let us consider, as an example, a financial institution that uses a learned
classifier, e.g. a decision tree, to determine if clients should be granted loans
or not, returning labels 0 or 1, resp. A particular client, an entity e, applies
for a loan, the classifier returns M(e) = 1, i.e. the loan is rejected. The client
requests an explanation. A common approach consists in giving scores to the
feature values in e, to quantify their relevance in relation to the classification
outcome. The higher the score of a feature value, the more explanatory is that
value. For example, the fact that the client has value “5 years” for feature Age
could have the highest score.

Motivated, at least to a large extent, by the trend towards explainable AI
[22], different explanation scores have been proposed in the literature. Among
them, in data management, the responsibility score as found in actual causality
[10,13] has been used to quantify the strength of a tuple as a cause for a query
c© Springer Nature Switzerland AG 2020
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result [2,19]. The Shapley-value, as found in coalition game theory, has been used
for the same purpose [15]. In machine learning, in relation to results of classifica-
tion models, the Shapley-value has been used to assign scores to feature values. In
the form of the SHAP-score, it has become quite popular and influential [17,18].
A responsibility-based score, RESP, was introduced in [5] to assign numbers
to feature values of entities under classification. It is based on the notions of
counterfactual intervention and causal responsibility.

Some scores used in machine learning appeal to the components of the math-
ematical model behind the classifier. There can be all kinds of explicit models,
and some are easier to understand or interpret or use for this purpose. For exam-
ple, the FICO-score proposed in [9], for the FICO dataset about loan requests,
depends on the internal outputs and displayed coefficients of two nested logistic
regression models. Decision trees [21], random forests [7], rule-based classifiers,
etc., could be seen as relatively easy to understand and use for explanations on
the basis of their components.

Other scores can be applied with black-box models, in that they use, in princi-
ple, only the input/output relation that represents the classifier, without having
access to the internals details of the model. In this category we could find clas-
sifiers based on complex neural networks, or XGBoost [16]. They are opaque
enough to be treated as black-box models. The SHAP-score and the RESP-score
can be applied to this category. In [5], the SHAP-score, the RESP-score and
the FICO-score are compared. In general, the computation of the first two is
intractable.

The SHAP-score and the RESP-score can be applied with open-box models.
In this case, an interesting question is whether having access to the mathemat-
ical model may make their computation tractable, at least for some classes of
classifiers.

As suggested above, scores can be assigned to tuples in databases, to measure
their contribution to a query answer, or to the violation of an integrity constraint.
The responsibility score has been applied for this purpose [2,19], and is based on
causality in databases [19]. Also the Shapley-value has been used for this task [15].

In this article we survey some of the approaches to score-based explanations
we just mentioned above, in databases and in classification in machine learning.
This is not intended to be an exhaustive survey of these areas, but it is heavily
influenced by our latest research. Next, we discuss the relevance of bringing
domain and semantic knowledge into these score computations. We also show
some first ideas and techniques on how this knowledge can be accommodated
in the picture. To introduce the concepts and techniques we will use mostly
examples, trying to convey the main intuitions and issues.

This paper is structured as follows. In Sect. 2 we concentrate on causal expla-
nations in databases. In Sect. 3, we describe the use of the Shapley-value to pro-
vide explanation scores in databases. In Sect. 3, we describe score-based expla-
nations for classification results. In Sect. 5, we show how semantic knowledge can
be brought into the score computations. We conclude with some final remarks
in Sect. 6.
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2 Explanations in Databases

In data management we need to understand and compute why certain results
are obtained or not, e.g. query answers, violations of semantic conditions, etc.;
and we expect a database system to provide explanations.

2.1 Causal Responsibility

Here, we will consider causality-based explanations [19,20], which we will illus-
trate by means of an example.

Example 1. Consider the database D, and the Boolean conjunctive query (BCQ)

R A B

a b
c d
b b

S A

a
c
b

Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)).

It holds: D |= Q, i.e. the query is true
in D.

We ask about the causes for Q to be true: A tuple τ ∈ D is counterfactual
cause for Q (being true in D) if D |= Q and D � {τ} �|= Q.

In this example, S(b) is counterfactual cause for Q: If S(b) is removed from
D, Q is no longer true.

Removing a single tuple may not be enough to invalidate the query. Accord-
ingly, a tuple τ ∈ D is an actual cause for Q if there is a contingency set Γ ⊆ D,
such that τ is a counterfactual cause for Q in D � Γ .

In this example, R(a, b) is an actual cause for Q with contingency set
{R(b, b)}: If R(a, b) is removed from D, Q is still true, but further remov-
ing R(b, b) makes Q false. �

Notice that every counterfactual cause is also an actual cause, with empty
contingent set. Actual but non-counterfactual causes need company to invalidate
a query result. Now we ask how strong are these tuples as causes? For this we
appeal to the responsibility of an actual cause τ for Q [19], defined by:

ρ
D
(τ) :=

1
|Γ | + 1

,
with |Γ | = size of a smallest contin-
gency set for τ , and 0, otherwise.

Example 2. (Example 1 cont.) The responsibility of R(a, b) is 1
2 = 1

1+1 (its
several smallest contingency sets have all size 1).

R(b, b) and S(a) are also actual causes with responsibility 1
2 ; and S(b) is

actual (counterfactual) cause with responsibility 1 = 1
1+0 . �
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High responsibility tuples provide more interesting explanations. Causes in
this case are tuples that come with their responsibilities as “scores”. Actually,
all tuples can be seen as actual causes and only the non-zero scores matter.
Causality and responsibility in databases can be extended to the attribute-value
level [2,4].

There is a connection between database causality and repairs of databases
w.r.t. integrity constraints (ICs) [1], and also connections to consistency-based
diagnosis and abductive diagnosis. These connections have led to new complex-
ity and algorithmic results for causality and responsibility [2,3]. Actually, the
latter turns out to be intractable. In [3], causality under ICs was introduced and
investigated. This allows to bring semantic and domain knowledge into causality
in databases.

Model-based diagnosis is an older area of knowledge representation where
explanations are main characters. In general, the diagnosis analysis is performed
on a logic-based model, and certain elements of the model are identified as expla-
nations. Causality-based explanations are somehow more recent. In this case, still
a model is used, which is, in general, a more complex than a database with a
query. In the case of databases, actually there is an underlying logical model,
the lineage or provenance of the query [8] that we will illustrate in Sect. 2.2, but
it is still a relatively simple model.

The idea behind actual causality is the (potential) execution of counterfactual
interventions on a structural logico-probabilistic model [13], with the purpose of
answering hypothetical or counterfactual questions of the form: What would
happen if we change ...?. It turns out that counterfactual interventions can also
be used to define different forms of score-based explanations, in the same spirit
of causal responsibility in databases (c.f. Sect. 4.2). Score-based explanations
can also be defined in the absence of a model, and without counterfactual inter-
ventions (or at least with them much less explicit).

2.2 The Causal-Effect Score

Sometimes responsibility does not provide intuitive or expected results, which
led to the consideration of an alternative score, the causal-effect score. We show
the issues and this score by means of an example.

Example 3. Consider the database E that represents the graph below, and the
Boolean Datalog query Π that is true in E if there is a path from a to b. Here,
E ∪ Π |= yes.

E X Y

t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)

P (x, y) ← E(x, y)

P (x, y) ← P (x, z), E(z, y)
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All tuples are actual causes since every tuple appears in a path from a to b.
Also, all the tuples have the same causal responsibility, 1

3 , which may be coun-
terintuitive, considering that t1 provides a direct path from a to b. �

In [27], the notion causal effect was introduced. It is based on three main
ideas, namely, the transformation, for auxiliary purposes, of the database into a
probabilistic database, interventions on the lineage of the query, and the use of
expected values for the query. This is all shown in the next example.

Example 4. Consider the database D below, and a BCQ.

R A B
a b
a c
c b

S B
b
c

Q : ∃x∃y(R(x, y) ∧ S(y)), which is
true in D.

The lineage of the query instantiated on D is given by the propositional
formula:

ΦQ(D) = (XR(a,b) ∧ XS(b)) ∨ (XR(a,c) ∧ XS(c)) ∨ (XR(c,b) ∧ XS(b)), (1)

where Xτ is a propositional variable that is true iff τ ∈ D. Here, ΦQ(D) takes
value 1 in D.

Now, for illustration, we want to quantify the contribution of tuple S(b)
to the query answer. For this purpose, we assign probabilities, uniformly and
independently, to the tuples in D, obtaining a a probabilistic database Dp [29].
Potential tuples outside D get probability 0.

Rp A B prob
a b 1

2

a c 1
2

c b 1
2

Sp B prob
b 1

2

c 1
2

The Xτ ’s become independent, identically distributed Boolean random vari-
ables; and Q becomes a Boolean random variable. Accordingly, we can ask
about the probability that Q takes the truth value 1 (or 0) when an intervention
is performed on D.

Interventions are of the form do(X = x), meaning making X take value x,
with x ∈ {0, 1}, in the structural model, in this case, the lineage. That is, we ask,
for {y, x} ⊆ {0, 1}, about the conditional probability P (Q = y | do(Xτ = x)),
i.e. conditioned to making Xτ false or true.

For example, with do(XS(b) = 0) and do(XS(b) = 1), the lineage in (1)
becomes, resp., and abusing the notation a bit:

ΦQ(D|do(XS(b) = 0) := (XR(a,c) ∧ XS(c)).
ΦQ(D|do(XS(b) = 1) := XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b).
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On the basis of these lineages and Dp, when XS(b) is made false, the probability
that the instantiated lineage becomes true in Dp is:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1) × P (XS(c) = 1) =
1
4
.

Similarly, when XS(b) is made true, the probability of the lineage becoming
true in Dp is:

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b) = 1) =
13
16

.

The causal effect of a tuple τ is defined by:

CED,Q(τ) := E(Q | do(Xτ = 1)) − E(Q | do(Xτ = 0)).
In particular, using the probabilities computed so far:

E(Q | do(XS(b) = 0)) = P (Q = 1 | do(XS(b) = 0)) =
1
4
,

E(Q | do(XS(b) = 1)) = P (Q = 1 | do(XS(b) = 1)) =
13
16

.

Then, the causal effect for the tuple S(b) is: CED,Q(S(b)) = 13
16 − 1

4 =
9
16 > 0, showing that the tuple is relevant for the query result, with a rele-
vance score provided by the causal effect, of 9

16 . �

Let us now retake the initial example of this section.

Example 5. (Example 3 cont.) The Datalog query, here as a union of BCQs,
has the lineage: ΦQ(D) = Xt1 ∨ (Xt2 ∧ Xt3) ∨ (Xt4 ∧ Xt5 ∧ Xt6). It holds:

CED,Q(t1) = 0.65625,

CED,Q(t2) = CED,Q(t3) = 0.21875,

CED,Q(t4) = CED,Q(t5) = CED,Q(t6) = 0.09375.

The causal effects are different for different tuples, and the scores are much
more intuitive than the responsibility scores. �

The definition of the causal-effect score may look rather ad hoc and arbitrary.
We will revisit it in Sect. 3.2, where we will have yet another score for applica-
tions in databases. Actually, trying to take a new approach to measuring the
contribution of a database tuple to a query answer, one can think of applying
the Shapley-value, which is firmly established in game theory, and also used in
several other areas.

The main idea is that several tuples together are necessary to violate an IC
or produce a query result, much like players in a coalition game. Some may
contribute more than others to the wealth distribution function (or simply, game
function), which in this case becomes the query result, namely 1 or 0 if the query
is Boolean, or a number if the query is an aggregation. The Shapley-value of a
tuple can be used to assign a score to its contribution. This was done in [15],
and will be retaken in Sect. 3.2. But first things first.
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3 The Shapley-Value in Databases

3.1 The Shapley-Value

The Shapley value was proposed in game theory by Lloyd Shapley in 1953 [28],
to quantify the contribution of a player to a coalition game where players share
a wealth function.1 It has been applied in many disciplines. In particular, it
has been investigated in computer science under algorithmic game theory [23],
and it has been applied to many and different computational problems. The
computation of the Shapley-value is, in general, intractable. In many scenarios
where it is applied its computation turns out to be #P-hard [11,12].

In particular, the Shapley value has been used in knowledge representation,
to measure the degree of inconsistency of a propositional knowledge base [14];
in data management to measure the contribution of a tuple to a query answer
[15] (c.f. Sect. 3.2); and in machine learning to provide explanations for the out-
comes of classification models on the basis of numerical scores assigned to the
participating feature values [18] (c.f. Sect. 4.1).

Consider a set of players D, and a game function, G : P(D) → R, where
P(D) the power set of D. The Shapley-value of player p in D es defined by:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p}) − G(S)). (2)

Notice that here, |S|!(|D| − |S| − 1)! is the number of permutations of D with all
players in S coming first, then p, and then all the others. That is, this quantity
is the expected contribution of player p under all possible additions of p to a
partial random sequence of players followed by a random sequence of the rests
of the players. Notice the counterfactual flavor, in that there is a comparison
between what happens having p vs. not having it. The Shapley-value is the only
function that satisfy certain natural properties in relation to games. So, it is a
result of a categorical set of axioms or conditions.

3.2 Shapley for Query Answering

Back to query answering in databases, the players are tuples in the database D.
We also have a Boolean query Q, which becomes a game function, as follows:
For S ⊆ D,

Q(S) =
{

1 if S |= Q
0 if S �|= Q

With this game elements we can define a specific Shapley-value for a database
tuple τ :

Shapley(D,Q, τ) :=
∑

S⊆D\{τ}

|S|!(|D| − |S| − 1)!
|D|! (Q(S ∪ {τ}) − Q(S)).

1 The original paper and related ones on the Shapley value can be found in the book
edited by Alvin Roth [26]. Shapley and Roth shared the Nobel Prize in Economic
Sciences 2012.
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If the query is monotone, i.e. its set of answers never shrinks when new tuples
are added to the database, which is the case of conjunctive queries (CQs), among
others, the difference Q(S ∪ {τ}) − Q(S) is always 1 or 0, and the average in
the definition of the Shapley-value returns a value between 0 and 1. This value
quantifies the contribution of tuple τ to the query result. It was introduced and
investigated in [15], for BCQs and some aggregate queries defined over CQs. We
report on some of the findings in the rest of this section. The analysis has been
extended to queries with negated atoms in CQs [24].

A main result obtained in [15] is in relation to the complexity of computing
this Shapley score. It is the following Dichotomy Theorem: For Q a BCQ with-
out self-joins, if Q is hierarchical, then Shapley(D,Q, τ) can be computed in
polynomial-time (in the size of D); otherwise, the problem is FP#P -complete.

Here, Q is hierarchical if for every two existential variables x and y,
it holds: (a) Atoms(x) ⊆ Atoms(y), or Atoms(y) ⊆ Atoms(x), or
Atoms(x) ∩ Atoms(y) = ∅. For example, Q : ∃x∃y∃z(R(x, y) ∧ S(x, z)), for
which Atoms(x) = {R(x, y), S(x, z)}, Atoms(y) = {R(x, y)}, Atoms(z) =
{S(x, z)}, is hierarchical. However, Qnh : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y)), for
which Atoms(x) = {R(x), S(x, y)}, Atoms(y) = {S(x, y), T (y)}, is not hierar-
chical.

These are the same criteria for (in)tractability that apply to BCQs over
probabilistic databases [29]. However, the same proofs do not (seem to) apply.
The intractability result uses query Qnh above, and a reduction from counting
independent sets in a bipartite graph.

The dichotomy results can be extended to summation over CQs, with the
same conditions and cases. This is because the Shapley-value, as an expectation,
is linear. Hardness extends to aggregates max, min, and avg over non-hierarchical
queries.

For the hard cases, there is an Approximation Result: For every fixed BCQ Q
(or summation over a CQ), there is a multiplicative fully-polynomial randomized
approximation scheme (FPRAS), A, with

P (τ ∈ D | Shapley(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Shapley(D,Q, τ)}) ≥ 1 − δ.

A related and popular score, in coalition games and other areas, is the
Bahnzhaf Power Index, which is similar to the Shapley-value, but the order
of players is ignored, by considering subsets of players rather than permutations
thereof:

Banzhaf (D,Q, τ) :=
1

2|D|−1
·

∑

S⊆(D\{τ})
(Q(S ∪ {τ}) − Q(S)).

The Bahnzhaf-index is also difficult to compute; provably #P-hard in general.
The results in [15] carry over to this index when applied to query answering in
databases.

In [15] it was proved that the causal-effect score of Sect. 2.2 coincides with
the Banzhaf-index, which gives to the former a more fundamental or historical
justification.
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4 Score-Based Explanations for Classification

Let us consider a classifier, C, that receives a representation of a entity, e, as a
record of feature values, and outputs a label, L(e), corresponding to the possible
decision alternatives. We could see C as a black-box, in the sense that only by
direct interaction with it, we have access to its input/output relation. We may
not have access to the mathematical classification model inside C.

To simplify the presentation we will assume that the entities and the classifier
are binary, that is, in the representation e = 〈x1, . . . , xn〉 of an entity, the feature
values are binary (0 or 1), corresponding to propositional features (false or true,
resp.). The label is always 0 or 1. For example, we could have a client of a
financial institution requesting a loan, but the classifier, on the basis of his/her
feature values, assigns the label 1, for rejection. An explanation is requested
by the client. Of course, the same situation may occur if we have an explicit
classification model, e.g. a classification tree or a logistic regression model, in
which cases, we might be in a better position to given an explanation, because
we can inspect the internals of the model [25]. However, we will put ourselves in
the “worst scenario” in which we do not have access to the internal model.

An approach to explanations that has become popular, specially in the
absence of the model, assigns numerical scores, trying to answer the question
about which of the feature values xi of e contribute the most to the received
label.

Score-based methodologies are sometimes based on counterfactual interven-
tions: What would happen with the label if we change this value, leaving the
others fixed? Or the other way around: What if we leave this value fixed, and
change the others? The resulting labels can be aggregated, leading to a score for
the feature value under inspection.

In the next two sections we briefly introduce two scores. Both can be applied
with open-box or black-box models.

4.1 The SHAP-Score

We will consider until further announcement the uniform probability space. Actu-
ally, since we consider only binary feature values taking values 0 or 1, this is the
uniform distribution on E = {0, 1}n, assigning probability Pu(e) = 1

2n to e ∈ E.
One could consider appealing to other, different distributions.

In the context of classification, the Shapley-value has taken the form of the
SHAP-score [17], which we briefly introduce. Given the binary classifier, C, on
binary entities, it becomes crucial to identify a suitable game function. In this
case, it will be expressed in terms of expected values (not unlike the causal-
effect score), which requires an underlying probability space on the population



26 L. Bertossi

of entities. For the latter we use, as just said, the uniform distribution over
{0, 1}n.

Given a set of features F = {F1, . . . , Fn}, and an entity e whose label is to be
explained, the set of players D in the game is F(e) := {F (e) | F ∈ F}, i.e. the
set of feature values of e. Equivalently, if e = 〈x1, . . . , xn〉, then xi = Fi(e). We
assume these values have implicit feature identifiers, so that duplicates do not
collapse, i.e. |F(e)| = n. The game function is defined as follows. For S ⊆ F(e),

Ge(S) := E(L(e′) | e′
S = eS),

where eS : is the projection of e on S. That is, the expected value of the label
for entities e′ when their feature values are fixed and equal to those in in S for
e. Other than that, the feature values of e′ may independently vary over {0, 1}.

Now, one can instantiate the general expression for the Shapley-value in (2),
using this game function, as Shapley(F(e),Ge, F (e)), obtaining, for a particular
feature value F (e):

SHAP(F(e),Ge, F (e)) :=
∑

S⊆F(e)\{F (e)}

|S|!(n − |S| − 1)!
n!

×

(E(L(e′|e′
S∪{F (e)} = eS∪{F (e)}) − E(L(e′)|e′

S = eS)).

Here, the label L acts as a Bernoulli random variable that takes values through
the classifier. We can see that the SHAP-score is a weighted average of differences
of expected values of the labels [17].

4.2 The RESP-Score

In the same setting of Sect. 4.1, let us consider the following score introduced
in [5]. For F ∈ F , and an entity e for which we have obtained label 1, the
“negative” outcome one would like to see explained:

COUNTER(e, F ) := L(e) − E(L(e′) | e′
F�{F} = eF�{F}). (3)

This score measures the expected difference between the label for e and those
for entities that coincide in feature values everywhere with e but on feature F .
Notice the essential counterfactual nature of this score, which is reflected in all
the possible hypothetical changes of features values in e.

The COUNTER-score can be applied in same scenarios as SHAP, it is easier
to compute, and gives reasonable and intuitive results, and also behaves well
in experimental comparisons with other scores [5]. As with the SHAP-score,
one could consider different underlying probability distributions (c.f. [5] for a
discussion). Again, so as for SHAP, there is no need to access the internals of
the classification model.

One problem with COUNTER is that changing a single value, no matter how,
may not switch the original label, in which case no explanations are obtained.
In order to address this problem, we can bring in contingency sets of feature
values, which leads to the RESP-score introduced in [5]. We just give the idea
and a simplified version of it by means of an example.
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Example 6. In the picture below, the black box is the classifier. Entities have
three feature values. The table on the right-hand side shows all the possible
entities with their labels. We want to explain the label 1 obtained by entity e1.

Through counterfactual interventions we change feature values in e1, trying
to change the label to 0. This process is described in the figure above, on the
left-hand side, where we are attempting to quantify the contribution of value
x = F (e1). Let us assume that by changing x into any x′, we keep obtaining
label 1. So, we leave x as it is, and consider changing other original values, y and
z, into y′ and z′, still getting 1. However, if we now, in addition, change x into
x′, we get label 0. Then, in the spirit of actual causality, as seen in Sect. 2.1, we
can say that the feature value x is an actual cause for the original label 1, with
y and z forming a contingency set for x; in this case, of size 2.

On this basis, we can define [6]: (a) x is a counterfactual explanation for
L(e) = 1 if L(e x

x′ ) = 0, for some x′ ∈ Dom(F ) (the domain of feature F ). (b)
x is an actual explanation for L(e) = 1 if there is a set of values Y in e, with
x /∈ Y, and new values Y′ ∪ {x′}, such that L(e Y

Y′ ) = 1 and L(e xY
x′Y′ ) = 0.

Here, as usual, x
x′ , denotes the replacement of value x by x′, and so on.

Contingency sets may come in sizes from 0 to n − 1 for feature values in
records of length n. Accordingly, we can define for the actual cause x: If Y is
a minimum size contingency set for x, RESP(x) := 1

1+|Y| ; and as 0 when x is
not an actual cause. This score can be formulated in terms of expected values,
generalizing expression (3) through the introduction of contingency sets [5].

Coming back to the entities in the figure above, due to e7, F2(e1) is coun-
terfactual explanation; with RESP(F2(e1)) = 1. Due to e4, F1(e1) is actual
explanation; with {F2(e1)} as contingency set, and RESP(F1(e1)) = 1

2 . �

5 Bringing-In Domain Knowledge

The uniform space gives equal probability to each entity in the underlying pop-
ulation. One can argue that this is not realistic, in that certain combinations
of feature values may be more likely than others; or that certain correlations
among them exist. One can consider assigning or modifying probabilities in the
hope of capturing correlations and logical relationships between feature values.
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5.1 Empirical Distributions

An alternative consists in using an empirical distribution as a proxy. In this case
we have a sample S ⊆ E (we could have repetitions, but we do not consider
this case here). The probability of e ∈ E, is given by:

PS(e) :=
{ 1

|S| if e ∈ S

0 if e /∈ S
(4)

The empirical distribution was used in [5] to compute the SHAP-score. More
precisely, the entities in S come with labels obtained via the classifier C; and the
score is computed with expectations directly with the entities in S, with their
labels. The empirical distribution may be better at capturing correlations.

5.2 Imposing Constraints

One can introduce constraints that prohibit certain combinations of values, in
the spirit of denial constraints in databases, but in this case admitting positive
and negative atoms. For example, we may not want the combination of “The
age is not greater than 20” and “Gets an account overdraft above $50M” to hold
simultaneously.

These constraints, which are satisfied or violated by a single entity at a time,
are of the form:

χ : ¬(
∧

i∈S

Fi ∧
∧

j∈S′
F̄j), (5)

where S ∪ S′ ⊆ F , S ∩ S′ = ∅, and Fi, F̄j mean that features Fi, Fj take values
1 and 0, resp. In the example, it would be of the form ¬(Age ∧ OverDr50M ).
The events, i.e. subsets of E, associated to the violation of χ should get zero
probability.

A way to accommodate a constraint, χ, consists in defining an event associ-
ated to it:

A(χ) = {e ∈ E | e |= χ},

where e |= χ has the obvious meaning of satisfaction of χ by entity e.
Given the uniform probability space 〈E,Pu〉, we can redefine the probability

in order to enforce χ. For A ⊆ E,

Pu
χ (A) := Pu(A|A(χ)) =

Pu(A ∩ A(χ))
Pu(A(χ))

. (6)

Since χ is logically consistent (it is satisfied by some entities in E), the condi-
tional distribution is well-defined. Notice that the probability of χ’s violation
set, i.e. of E � A(χ), is now:

Pu
χ (E � A(χ)) =

Pu(∅)
Pu(A(χ))

= 0.
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This definition can be extended to finite sets, Θ, of constraints, as long as it is
consistent (i.e. satisfiable in E), by using ∧Θ, the conjunction of the constraints
in Θ: Pu

Θ(A) := Pu
∧Θ(A).

Of course, one could go beyond constraints of the form (5), applying the same
ideas, and consider any propositional formula that is intended to be evaluated
on a single entity at a time, as opposed to considering combinations of feature
values for different entities.

The resulting modified distributions that accommodate constraints could be
used in the computation of any of the scores expressed in terms of expected
values (or in probabilistic terms, in general).

6 Final Remarks

Explainable AI (XAI) is an effervescent area of research. Its relevance can only
grow considering that legislation around explainability, transparency and fairness
of AI/ML systems is being produced and enforced. There are different approaches
and methodologies in relation to explanations, and causality, counterfactuals and
scores have a relevant role to play.

Much research is still needed on the use of contextual, semantic and domain
knowledge. Some approaches may be more appropriate, e.g. declarative ones [6].

Still fundamental research is needed on what is a good explanation, and in
particular, on what are the desired properties of an explanation score. After all,
the original, general Shapley-value emerged from a list of desiderata in relation
to coalition games. Although the Shapley value is being used in XAI, in par-
ticular in its SHAP incarnation, there could be a different and specific set of
desired properties of explanation scores that could lead to a still undiscovered
explanation-score.

Acknowledgments. L. Bertossi is a member of the Academic Network of Relation-
alAI Inc., where his interest in explanations in ML started.
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Abstract. This paper is a plea for developing possibilistic learning
methods that would be consistent with if-then rule-based reasoning. The
paper first recall the possibility theory-based handling of cascading sets
of parallel if-then rules. This is illustrated by an example describing a
classification problem. It is shown that the approach is both close to a
possibilistic logic handling of the problem and can also be put under the
form of a max-min-based matrix calculus describing a function under-
lying a structure somewhat similar to a max-min neural network. The
second part of the paper discusses how possibility distributions can be
obtained from precise or imprecise statistical data, and then surveys the
few existing works on learning in a possibilistic setting. A final discussion
emphasizes the interest of handling learning and reasoning in a consistent
way.

1 Introduction

Nowadays, many people tend to oppose new artificial intelligence (AI) based on
data and machine learning with so-called “old fashioned AI”, oriented towards
reasoning, exploiting knowledge and having its roots in expert systems. Indeed,
at first glance, they look quite different. The former is fond of numerical methods,
black box models, and often relies on neural net approaches and/or statistical
views. The latter privileges logic-based modeling, often referred as ‘symbolic AI’,
and is more suitable for explanations. A closer analysis reveals that there are
several kinds of meeting points between machine learning (ML) on the one hand,
and knowledge representation and reasoning (KRR) on the other hand [8]. In
this paper, we consider a problem that is at the crossroads of ML and KRR:
the classification of items. Such a problem can be envisaged as the learning of a
function that maps sets of feature values into classes, taking advantage of a set
of examples. Alternatively, a set of if-then rules may also describe a classification
process.

There are a number of examples where logical and functional views co-exist.
Quite early the authors have pointed out that a set of rules could to do a job
similar to a multiple criteria aggregation function [19]. Conversely, an aggrega-
tion function may need to be “decomposed” into rules for explanation purposes,
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e.g., [42]. A perfect example of this situation is offered by Sugeno integrals which
have both a (possibilistic) logic translation [25] and can be learnt in an extended
version space setting [44].

An early example of the interface between reasoning and learning can be
found with rule-based fuzzy logic controllers [43]. At the beginning, rules were
obtained from experts and processed by a fuzzy logic inference machinery. Later
on, the idea of learning the fuzzy rules became prominent, but, while the rules
so obtained were good enough for control purposes, they were no longer inter-
pretable by humans! Recently, Denœux [11] showed a striking parallel between
the combination machinery of belief functions and neural nets. In [8], one may
find a rich bibliography of recent works mixing logic and neural nets in a more
or less empirical way.

In this paper, we use the setting of possibility theory for modeling uncertainty,
which allows for the representation of incomplete or imprecise information. The
discussion of the KRR and ML sides of a classification task is illustrated in the
following by means of a simple example dealing with professions that can be
recommended to people and associated salaries on the basis of their tastes and
aspirations. We handle it in an expert system style in order to remain close to
the if-then rule format of knowledge. As we shall see, it can be both interfaced
with logic and then with statistics.

The paper first deals with the if-then rule reasoning side, before showing its
relation with possibilistic logic. Then we review how possibility degrees can be
extracted from statistics, thus providing a basis for a learning process. Lastly,
we survey the existing works in possibilistic learning, and discuss them.

2 Possibilistic Handling of a Rule-Based System

We first introduce an illustrative example, then explain the possibilistic machin-
ery necessary for handling it, and finally point out links with a functional view
on the one hand and a purely logical approach on the other hand. We consider
a simple example of a knowledge base, as it appears in the final version of [29]
in French. The first four rules relate, in a very sketchy and very incomplete way,
tastes and aspirations of people with professions that can be recommended to
them. They form a set of parallel rules. The last three rules that relate profes-
sions with salary levels, are also parallel. They can be chained with the previous
set. Intentionally, these rules present different peculiarities: combined condition,
pair of rules expressing equivalence, presence of disjunctions.

Example 1. – R1: if a person likes meeting people, then recommended profes-
sions are professor or business man or lawyer or doctor

– R2: if a person is fond of creation/inventions, then recommended professions
are engineer or public researcher or architect

– R’2: if a person is not fond of creation/invention, then he/she cannot be an
engineer nor a researcher nor an architect

– R3: if a person looks for job security and is fond of intellectual speculation,
then recommended professions are professor or public researcher
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– R’4 if a person is a professor or a researcher, then her salary is rather low
– R”4 if a person is an engineer, a lawyer or an architect, her salary is average

or high
– R”’4 if a person is a business man or a doctor, then her salary is high. �

2.1 Possibilistic If-Then Rules

All these rules are pervaded with uncertainty. We choose here to represent it
in the setting of possibility theory [16,22], using an inference machinery first
described in [28,30], in the spirit of expert systems. All the if-then rules, as
in the above example, are of the form “if p then q”, or more generally, “if
p1 and ... and pn then q”, where p (resp. pi) stands for a(x) ∈ P (resp.
ai(x) ∈ Pi) and q for b(x) ∈ Q; a, ai, b denote attributes applied to some item
x, P, Pi, Q are subsets of the respective domains of these attributes. Thus, in
our example, the domain of the attribute profession is Dpro = {business man,
lawyer, doctor, professor, researcher, architect, engineer}, and the
domain of the attribute salary is Dsal={low, average, high}.

The rules are supposed to be applied to a base of facts (kept separated from
rules in expert systems). The facts pertain to items x, which are here supposed to
be described in terms of the four attributes lik.-meet.-peo., fond-creation, job-
secur., fond-intel.-spec.. For simplicity, these attributes are supposed to have
binary domains {yes, no}, i.e., {1, 0}. These attribute values may be uncertain.
The information about ai(x) is represented by a possibility distribution πai(x),
a mapping from Dai

to [0, 1]. πai(x) is supposed to be normalized, i.e., ∃u ∈
Dai

, πai(x)(u) = 1, which expresses the consistency of the information about
ai for x; πai(x) may take intermediary degrees in [0, 1] for some values in the
attribute domain of ai.

In possibility theory [16,22], uncertainty is assessed in terms of [0, 1]-valued
possibility (Π) and necessity (N) degrees of propositions, according to the dual-
ity N(p) = 1 − Π(¬p). On binary domains, i.e., for a true or false propo-
sition p, it is equivalent to work with the possibility distribution defined by
the pair (π(p), π(¬p)). Normalization is assumed, i.e., max(π(p), π(¬p)) = 1.
(π(p), π(¬p)) = (1, 0), (0, 1), (1, 1) respectively mean that p is true, false, and
unknown.The pair (π(p), π(¬p)) = (1, λ), with 0 < λ < 1 means that it is certain
at level 1 − λ that p is true.

The inference machinery includes five basic steps that are now described.
We restate this forgotten approach, while highlighting what is the underlying
functional machinery. The two first steps compute the compatibility between
rule conditions and facts by possibilistic pattern matching. Then uncertainty is
propagated and results of parallel rules are combined.

1. Compatibility between an elementary condition and a fact. The com-
patibility between condition pi and the information is computed as the pair
(π(pi), π(¬pi)) (P denotes the complement of P ):
π(pi) = Π(Pi) = supu∈Pi

πai(x)(u); π(¬pi) = Π(P i) = supu�∈Pi
πai(x)(u).

The normalization of πai(x) ensures that max(π(pi), π(¬pi)) = 1.
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2. Compatibility between a compound condition and facts. In case of a
condition of the form ‘p1 and ... and pn’, the elementary compatibilities are
combined conjunctively: π(p) = minn

i=1 π(pi); π(¬p) = maxn
i=1 π(¬pi).

The first of the two formulas requires the logical independence of
the attributes ai, which means that the joint possibility distribution
π(a1(x),...,an(x)) can be decomposed into minn

i=1 πai(x) for any x; otherwise
the formula provides an upper approximation of π(p) [16]. It can be checked
that these formulas preserve normalization. Observe also that as soon as
∃i, (π(pi), π(¬pi)) = (0, 1), expressing the falsity of pi, then p is false (i.e.,
(π(p), π(¬p)) = (0, 1)); besides, if ∃j, (π(pj), π(¬pj)) = (1, 1), expressing
ignorance about pj , while all the other conditions are at least somewhat cer-
tainly true (i.e., ∀i �= j, (π(pi), π(¬pi)) = (1, λi)), then (π(p), π(¬p)) = (1, 1),
expressing ignorance about condition p.

3. Uncertainty propagation. The uncertainty attached to a rule “if p
then q” is naturally assessed in terms of conditional distributions. Con-
ditional possibility in the qualitative setting is defined by π(q|p) ={

1 if π(p) = Π(p ∧ q)
Π(p ∧ q) otherwise.

. In the quantitative setting, π(q|p) = Π(p∧
q)/π(p) [16,22]. Thus, in the possibilistic setting the rule “if p then q” is rep-
resented by a pair (π(q|p), π(¬q|p)) = (1, r), r < 1, and (π(q|p), π(¬q|p)) =
(r′, 1) corresponds to the rule “if p then ¬q”, with certainty level 1 − r′. The
normalization condition max(π(q|p), π(¬q|p)) = 1 is assumed. Similarly, in
context ¬p, we use the normalized pair (π(q|¬p), π(¬q|¬p)).

This information can be put in a matrix form:
[

π(q|p) π(q|¬p)
π(¬q|p) π(¬q|¬p)

]
. An uncer-

tain rule like R1 of the form “if p then q” has a matrix of the form
[
1 1
r 1

]
; a

pair of rules like R2 and R’2 of the form “if p then q” and “if ¬p then ¬q”

is encoded by a matrix of the form
[
1 s
r 1

]
; and the matrix

[
1 0
0 1

]
expresses

a form of equivalence between p and q. The propagation of uncertainty is
performed by the max-min composition:

π(q) = max(min(π(q|p), π(p)),min(π(q|¬p), π(¬p))
π(¬q) = max(min(π(¬q|p), π(p)),min(π(¬q|¬p), π(¬p)),

i.e., by a matrix product ⊗ (min is replaced by product in the quantitative
setting):1 [

π(q)
π(¬q)

]
=

[
π(q|p) π(q|¬p)

π(¬q|p) π(¬q|¬p)

]
⊗

[
π(p)

π(¬p)

]
. (1)

1 For the max-min composition,

[
π(q)

π(¬q)

]
=

[
Π(p ∧ q) Π(¬p ∧ q)

Π(p ∧ ¬q) Π(¬p ∧ ¬q)

]
⊗

[
π(p)

π(¬p)

]
(1′),

taking advantage of the monotonicity and of the max-decomposability of possibility
measures. In contrast with (1), there are inequality constraints between matrix terms
and (π(p), π(¬p)).
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The result is normalized, i.e., max(π(q), π(¬q)) = 1, since the columns of the
square matrix are normalized and max(π(p), π(¬p)) = 1.
In case of ignorance about p (i.e., π(p) = π(¬p) = 1), one concludes that q
is ignored as well (π(q) = π(¬q) = 1), except if the knowledge says that q
(or ¬q) is somewhat certain in both contexts p and ¬p. Namely, even if p is

unknown, we have for instance,
[
1 1
r t

]
⊗

[
1
1

]
=

[
1

max(r, t)

]
, i.e., q is somewhat

certain, unconditionally.
In the following, we assume that we are never in the above situation, and
that we deal with rules, i.e., for a rule Ri, or a pair (Ri, R

′
i) such that[

π(qi|pi) π(qi|¬pi)
π(¬qi|pi) π(¬qi|¬pi)

]
=

[
1 si
ri 1

]
, with possibly si or ri equal to 1. Let-

ting
[

π(pi)
π(¬pi)

]
=

[
λi

ρi

]
, we get

[
π(qi)
π(qi)

]
=

[
αi

βi

]
=

[
1 si
ri 1

]
⊗

[
λi

ρi

]
. Due to the

normalisation of the inputs, we have αi = max(λi, si) and βi = max(ρi, ri).,

i.e.,
[
αi

βi

]
= max(

[
si
ri

]
,

[
λi

ρi

]
).

4. Possibility distribution associated to the conclusion of a rule. If
we have applied the rule “if p then q” where q stands for “b(x) ∈ Q”,

the resulting possibility distribution is π∗
b(x)(u) =

{
π(q) if u ∈ Q

π(¬q) otherwise
, which

also writes (μQ is the characteristic function of Q ⊆ Db(x)), π∗
b(x)(u) =

max(min(μQ(u), π(q)),min(μQ(u), π(¬q))).

5. Combination of the conclusions obtained from several parallel rules.
When several rules pertain to the same attribute b for an item x, one applies
a min-based conjunctive combination. In case of two rules with conclusions
qi (“b(x) ∈ Qi”):

π∗
b(x)(u) = min(π∗1

b(x)(u), π∗2
b(x)(u)) =

max(min(μQ1∩Q2(u), π(q1), π(q2)),min(μQ1∩Q2(u), π(q1), π(¬q2)),

min(μQ1∩Q2(u), π(¬q1), π(q2)),min(μQ1∩Q2(u), π(¬q1), π(¬q2))).

Obviously, the normalization of π∗1
b(x) and π∗2

b(x) does not guarantee the normal-
ization of π∗

b(x). In this case the non normalization of the result reveals a lack
of coherence of the rules which are then inconsistent with some inputs [18].
Since the subsets Q1∩Q2, Q1∩Q2, Q1∩Q2, Q1∩Q2 form a partition of Db(x)

(provided that they are not empty), π∗
b(x) is the union of disjoint subsets with

weights:⎡
⎢⎢⎣

Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

min(π(q1), π(q2))
min(π(q1), π(¬q2))
min(¬q1), π(q2))

min(π(¬q1), π(¬q2))

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

min(α1, α2)
min(α1, β2)
min(β1, α2)
min(β1, β2)

⎤
⎥⎥⎦ .
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Using the notations of step 3 for the uncertainty propagation in rule Ri the
computation of π∗

b(x) can be computed as a min-max product, denoted �:

⎡
⎢⎢⎣

Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)
Π(Q1 ∩ Q2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

s1 1 s2 1
s1 1 1 r2
1 r1 s2 1
1 r1 1 r2

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

λ1

ρ1
λ2

ρ2

⎤
⎥⎥⎦ ,

and

π∗
b(x)(u)=min(π∗1

b(x)(u), π∗2
b(x)(u))=

⎡
⎢⎢⎣

min(max(s1, λ1), max(s2, λ2))
min(max(s1, λ1), max(r2, ρ2))
min(max(r1, ρ1), max(s2, λ2))
min(max(r1, ρ1), max(r2, ρ2))

⎤
⎥⎥⎦

if u ∈ Q1 ∩ Q2

if u ∈ Q1 ∩ Q2

if u ∈ Q1 ∩ Q2

if u ∈ Q1 ∩ Q2

.

This is for two rules, but it straightforwardly extends to n rules.

2.2 Example

In the example, the output of rules R1, (R2, R′2) handled together and R3
correspond to the 3 subsets Q1 =

{
‘‘professor”, ‘‘businessman”, ‘‘lawyer”,

‘‘doctor”
}
; Q2 = {‘‘engineer”, ‘‘researcher”, ‘‘architect”}; Q3 = {‘‘professor”,

‘‘researcher”}. Note that Q1 ∩ Q2 = ∅; Q3 ⊆ Q1 ∪ Q2.
In order to compute the output π∗

pro(x), applying step 5 to 3 rules, we have
to consider 8 = 23 subsets Q∗

1 ∩Q∗
2 ∩Q∗

3 where Q∗
i stands for Qi or Qi. We have

Q1 ∩ Q2 ∩ Q3 = Q1 ∩ Q2 ∩ Q3 = ∅; Q1 ∩ Q2 ∩ Q3 = Q1 ∩ Q3 = {‘‘professor”};
Q1∩Q2∩Q3 = Q1∩Q3 = {‘‘businessman”, ‘‘lawyer”, ‘‘doctor”}; Q1∩Q2∩Q3 =
Q2∩Q3 = {‘‘researcher”}; Q1∩Q2∩Q3 = Q2∩Q3 = {‘‘architect”, ‘‘engineer”};
Q1 ∩ Q2 ∩ Q3 = ∅; Q1 ∩ Q2 ∩ Q3 = Q1 ∩ Q2 = {‘‘others”} (where Dpro =
Q1 ∪ Q2 ∪ Q3 ∪ {others}).

Since the two first subsets and the second last one are empty, we have only
5 lines in the matrix product⎡

⎢⎢⎢⎢⎣
Π(Q1 ∩ Q3)
Π(Q1 ∩ Q3)
Π(Q2 ∩ Q3)
Π(Q2 ∩ Q3)
Π(Q1 ∩ Q2)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

min(α1, β2, β3)
min(α1, β2, α3)
min(β1, α2, α3)
min(β1, α2 β3)
min(β1, β2, β3)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

s1 1 1 r2 1 r3
s1 1 1 r2 s3 1
1 r1 s2 1 s3 1
1 r1 s2 1 1 r3
1 r1 1 r2 1 r3

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

ρ1
λ2

ρ2
λ3

ρ3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

which gives:

π∗
pro(x)(u) =

⎡
⎢⎢⎢⎢⎣

min(max(s1, λ1),max(r2, ρ2),max(r3, ρ3))
min(max(s1, λ1),max(r2, ρ2),max(s3, λ3))
min(max(r1, ρ1),max(s2, λ2),max(s3, λ3))
min(max(r1, ρ1),max(s2, λ2),max(r3, ρ3))
min(max(r1, ρ1),max(r2, ρ2),max(r3, ρ3))

⎤
⎥⎥⎥⎥⎦

if u ∈ Q1 ∩ Q3

if u ∈ Q1 ∩ Q3

if u ∈ Q2 ∩ Q3

if u ∈ Q2 ∩ Q3

if u ∈ Q1 ∩ Q2

.
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2.3 From a Functional View to a Logical View

The above approach strictly adheres to possibility theory, following the different
steps of a rule-based inference system. Thus it amounts to the computation of a
function. Each layer of parallel rules can be viewed as the result of a min−max
matrix product. Several layers (two in our example) of rules, used in forward
chaining, correspond to a cascade of such matrix products, the inputs of which
are computed as a pattern matching step. These products define an input-output
(non-linear) function. It has some structural and computational resemblance
with a min −max multiple layer neural net [9]. As proposed in [29], this matrix
calculus can be used as a basis for explanation purposes, by leaving uninstan-
tiated some of the weights and observing their impact on the result. In that
respect, the possibilistic handling of symbolic weights presents some similarity
with the idea underlying provenance calculus [32] in databases.

The above approach, which can be understood as the description of an input-
output function, can be also put into a logical format. Indeed, the rule “if p then
q is somewhat certain” is represented by the pair (π(q|p), π(¬q|p)) = (1, r).
Using possibility-necessity duality, we get N(q|p) = 1 − π(¬q|p) = 1 − r and
N(¬q|p) = 1 − π(q|p) = 0. The conditional necessity and the necessity of a
material implication N(p → q) are distinct notions, although they are closely
related: We have N(q|p) = 0 if N(¬p) = N(p → q), and N(q|p) = N(p → q)
otherwise.

In possibilistic logic [22,26], classical logic formulas are associated with lower
bounds of their necessity degrees, and material implication is used instead of
conditioning. When formulas are associated with degree 1, we retrieve classical
logic.

The inference can be also be put under the form of a max-min matrix calculus
[16], This is structurally similar to (1), but note the inequality:

[
N(q)

N(¬q)

]
≥

[
N(p → q) N(¬p → q)

N(p → ¬q) N(¬p → ¬q)

]
⊗

[
N(p)

N(¬p)

]
. (2)

Even if (1) and (2) look different, they do the same job for propagating
uncertainty.2

This can be checked by careful examination. Take (1) as
[

π(q)
π(¬q)

]
=

[
α
β

]
=[

1 s
r 1

]
⊗

[
λ
ρ

]
. Then due to input normalization, α = max(s, λ); β = max(r, ρ)

2 By duality the inequality (2) writes

[
π(q)

π(¬q)

]
≤

[
Π(p ∧ q) Π(¬p ∧ q)

Π(p ∧ ¬q) Π(¬p ∧ ¬q)

]
�[

π(¬p)
π(p)

]
(2′) where � is the min − max product. Note that (2’) provides an

upper bound for

[
π(q)

π(¬q)

]
obtained by (1’). It can be checked that this upper

bound coincides with this latter vector if Π(p ∧ q) = Π(¬p ∧ ¬q) = 1 or if
Π(¬p ∧ q) = Π(p ∧ ¬q) = 1.
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(this remains true for product-based conditioning). Besides, we should have
min(N(p → q), N(p → ¬q)) = 0 = min(N(¬p → q), N(¬p → ¬q)) in (2),
otherwise it would constrain the input with N(¬p) > 0 or N(p) > 0. Consider
the case where (2) is of the form

[
1 − β
1 − α

]
≥

[
N(p → q) 0

0 N(¬p → ¬q)

]
⊗

[
1 − ρ
1 − λ

]

in agreement with conditional necessity.

The max-min product reduces to
[
1 − β
1 − α

]
≥ min(

[
N(p → q)

N(¬p → ¬q)

]
,

[
1 − ρ
1 − λ

]
).

This is the dual of expression (1) that reduces to the max of two vectors (up to the
inequality). Thus, α ≤ max(1 − N(¬p → ¬q), λ) = max(Π(¬p ∧ q), λ) is to be
compared with α = max(s, λ) = max(π(q|¬p), λ). In general, π(q|¬p) = Π(¬p ∧
q) except if π(¬p) = Π(¬p ∧ q) where π(q|¬p) = 1; in this latter case the inequal-
ity writes α = max(π(q|¬p), λ) = 1 ≤ max(π(¬p), λ) = max(π(¬p), π(p)) = 1,
which clearly holds. A similar computation can de made for β.

A set of (uncertain) if-then rules, represented by conditional tables, can be
translated into a possibilistic logic base. In contrast with logic, the expression
in terms of conditional possibility captures the directed nature of if-then rules
(contraposition does not hold: π(q|p) �= π(¬p|¬q) while p → q ≡ ¬q → ¬p).

The rule-based approach has also some similarity with possibilistic Bayesian
networks [1] where conditioning is also used, but the max-min matrix prod-
uct only performs local propagation, while the chain rule in possibilistic nets
compute a joint possibility distribution over variables [1]. Possibilistic networks,
using either min-based or product-based conditioning, can be translated exactly
under the form of a set of possibilistic logic formulas and vice-versa [1]. Thus,
we have three representation formats (rule-based, logic, possibilistic net) that
can be translated into one another. Min-based and product-based possibilistic
conditionings are based on counterparts of Bayes formula; see [21] for a discus-
sion of possibilistic Bayes rules in an abductive perspective and [20] in a fusion
perspective.

3 Possibilistic Learning

In the previous section, we have seen that a set of uncertain rules can be read
either as a function induced by a cascade of min −max matrix compositions,
agreeing with possibility theory and resembling a min−max multiple layer neu-
ral net, or a possibilistic logic base, or yet a possibilistic Bayesian-like net. If
the rules are not provided by some expert, the question of learning one of these
representations arises.

In our example, we may imagine having a Boolean table where people are
described in terms of their aspirations, the profession they practice, and the
level of their salary. Under a functional view, one may learn a min−max neu-
ral network [51]. With a probabilistic approach, if we view the salary level as
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classes, using, e.g., a naive Bayesian classifier one may compute the probability
of classifying a new item in a particular class. One may also learn the concept
of, e.g., “high” salary, and associate the rule(s) with a probability. But, how to
get a possibility distribution over the salaries, or over the professions? How to
get certainty levels associated to rules?

Before going further, it is important to keep in mind several distinctive fea-
tures of possibility theory. First, possibility theory is dedicated to the represen-
tation of epistemic uncertainty, since the pair of dual measures of possibility
and of necessity can distinguish between what is possible without being certain
at all and what is certain to some extent. So, the possibilistic setting is spe-
cially appropriate in case of missing information, of imprecise information, or of
poor information (when information is too sparse for statistical purposes). Sec-
ond, possibility theory has a qualitative version (where typically a finite linearly
ordered scale is used and conditioning is min-based) and a quantitative version
(where the scale is the unit interval [0, 1] and conditioning is defined by the prod-
uct). In any case, possibility theory is not a substitute to probability theory, and
if good statistics are available one should privilege probabilistic approaches for
learning purposes. Third, the possibilistic framework is highly compatible with
classical logic, through the use of standard possibilistic logic. In that respect,
one should remember that a belief base in classical logic usually has a subset
of models that represents an imprecise view of the world inasmuch there are
propositions whose truth value remains unknown, while the specification of a
join probability distribution does not leave room for incomplete information,
nor for inconsistent information.

In the following, we first recall possible ways of extracting a possibility dis-
tribution and certainty levels from data, before surveying the variety of works
existing in possibilistic learning, which are not always aware of each other.

3.1 Building Possibility Distributions and Eliciting Certainty

A survey of practical methods for obtaining possibility distributions, both in
quantitative and in qualitative possibility theory, can be found in [23]. In the
qualitative case, the task is made easier since only the relative values of the pos-
sibility degrees matter when expressing strict inequalities between them. Then
one may exploit constraints induced by certainty qualification, or representing
conditional statements. We now focus on the quantitative case. Roughly speak-
ing, one may either read statistical information in a possibilistic way, or learn
from imprecise or incomplete data. We first review the statistical approach.

From Statistical Data to Possibility Distributions. There are two main
methods for changing probability into possibility: one named “antipignistic” and
another obeying minimum specificity principle, that we recall successively. They
are useful when having to combine pieces of uncertain information received in
different formats.

Let us start with a motivating example [14]. Consider a game of coin toss-
ing with an unfair coin. Assume the coin is biased so that heads are the most
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frequent outcome. The set of events is X = {x1 = head, x2 = tail}. We have
p(x1) > 1/2 > p(x2) with p(x1) + p(x2) = 1 in terms of probability. A natural
measurement of this necessity (certainty) n(x1) of getting head is the excess of
probability in favor of head, namely n(x1) = p(x1) − p(x2), while n(x2) = 0.
Indeed, if p(x2) = 0 we are fully certain that heads will be the outcome. The
larger p(x2) < 0.5 the less certain we are about the head output.

More generally, in a finite setting, let X = {x1, · · · , xn} with p(xi) = pi and
Σn

i=1pi = 1. Then one can define the set function N given by

N(A) = Σxi∈A max(pi − maxxk �∈A pk, 0) = max(P (A) − maxxk �∈A pk, 0).

Assuming p1 ≥ · · · ≥ pi ≥ · · · ≥ pn and letting Ai = {x1, · · · , xi}, we
have N(Ai) = Σi

j=1pj − pi+1, ∀i = 1, · · · , n with pn+1 by convention. Then
it can be shown that N(A) = maxAk⊆A N(Ak) and N is a necessity measure
(it is min decomposable, and min(N(A), N(A)) = 0,∀A); moreover, N(A) ≥
Prob(A),∀A ⊆ X [14]. Let π(xi) = πi. The possibility distribution π underlying
N (such that N(A) = minx�∈A 1 − π(x)) is πi = Σn

j=1 min(pj , pi), i = 1, . . . , n.
It defines a bijective mapping which turns probability measures into possibil-

ity measures [14]. In particular we have πi > πi+1 ⇔ pi > pi+1. This approach
provides a statistical interpretation of certainty levels that experts attach to
rules. The idea of excess of probability provides an intuitive ground to the per-
ception of the idea of certainty.

This transformation has other intuitive grounds. The converse transformation
is given by pi = Σn

j=i
1
j (πj − πj+1). Especially, this converse mapping turns a

uniform possibility distributions into a uniform probability distribution when no
information is available. It is also known as Smets’ pignistic transformation and
the Shapley value; see [12,50] for more justifications.

Another transformation of statistical probability into possibility is based on
a totally different rationale. This is the most specific possibility distribution π∗

whose associated possibility measure dominates the probability measure [10,13].
In a finite setting, if p1 > · · · > pi, · · · > pn, then the most specific possibility
distribution is defined by: π∗

i = Σj≥i pj .
It can be checked that ∀i = 1, · · · n, π∗

i ≤ πi, i.e., π∗ is more specific than
the antipignistic transform. This transformation is motivated by the concern to
keep as much information as possible.

Whatever the transformation used, an issue is then how to apply it for
conditional possibility. Indeed consider the simplest network linking two vari-
ables, one has p(x, y) = p(y|x) · p(x) in probability, while in possibility we have
π(x, y) = π(y|x) · π(x) (or π(x, y) = min(π(y|x), π(x)) in a qualitative setting).
It can be checked that whatever the transformation, whatever how conditioning
is defined for possibility, there is no well-behaved correspondence when chang-
ing simultaneously the joint distribution, the conditional distribution and the
marginal distribution from probability to possibility; see [33] for a discussion
and experiments. If we apply a transformation, it should be done on the joint
distribution (from which the other distributions can be derived).
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Handling Imprecise Data. As already said, it may be questionable, when good
statistical probabilities are available, to turn them into possibilities. Possibilities
makes much more sense when learning from incomplete data or poor data.

In case of epistemic uncertainty, one may have imprecise information under
the form of interval data, thus leading to a random set, which may in turn be
viewed as the basic probability assignment underlying a belief function [49]. In
general, this set of intervals is not nested, and thus does not directly give birth to
a necessity measure in place of the belief function. Then one may look for a nested
approximation of the set of intervals (e.g., by enlarging some of them) [15], and
more generally by computing the best upper or lower consonant approximation
of a belief function [17]. See [23] for a detailed overview. It has been also proved
that the least informative belief function having a given pignistic probability
transform is unique and consonant [27] and is thus a necessity measure (it is the
antipignistic transformation).

However, a straightforward way of deriving a possibility distribution from
statistical interval data is to consider the contour function [49] of the basic
probability assignment m (i.e., the one-point coverage function of the random
set) π∗(u) = Σu∈Im(I), where m(I) is the relative number of observations of
interval I. Clearly, this is only a partial view of the data, as it is generally
not possible to reconstruct m from π∗. This view of possibility distributions as
induced by random sets was very early pointed out by Kampé de Fériet [38].
Even if π∗ is not generally normalized, and once renormalized leads to a quite
imprecise representation of the belief function [17], it is also useful for defining
a possibilistic likelihood-based score function.

Indeed, as log-likelihood functions are used to measure the adequateness of a
probability distribution with respect to a set of data, a new likelihood function
based on contour functions has been proposed in the possibilistic framework
[35] in order to learn possibilistic network structures from imprecise data. The
idea is to define a random set likelihood (replacing the probability distribution by
the basic probability assignment) and then to approximate it in terms of contour
function. It can be shown that the possibilititic transform of the basic probability
assignment maximizing the random set likelihood maximizes the possibilititic
likelihood, which indicates that the two likelihood agree from a maximization
point of view. The maximization takes place under the constraint that the sum
of the possibility degrees is equal to some fixed value S called imprecision degree
where S > 1 in order to control the imprecision of data sets [34].

Besides, an informational distance function for possibility distributions that
agrees with the view of possibility distributions as families of probabilities that
are upper and lower bounded by the associated possibility and necessity mea-
sures, has been proposed in [47]. The authors show that, given a set of data
following a probability distribution, the optimal possibility distribution with
respect to this informational distance is the distribution obtained as the result
of the probability-possibility transformation that agrees with the maximal speci-
ficity principle. It is also shown that when the optimal distribution is not
available due to representation bias, maximizing this possibilistic informational
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distance provides more faithful results than approximating the probability dis-
tribution and then applying the probability-possibility transformation.

3.2 Possibilistic Learning: A Survey

Existing works in possibilistic learning can be roughly clustered in four groups.
We can learn: i) default rules, ii) possibilistic networks and naive possibilistic
classifiers, iii) possibilistic logic theories, and iv) decision trees.

Learning Default Rules. It is desirable to guarantee that any new default
rule deducible from a set of default rules extracted from a data set is also valid
with respect to this data set. It has been shown [3] that default rules of the
form “if p then generally q”, denoted by p � q, where � obeys the postulates
of preferential inference [39], have both

– a possibilistic semantics expressed by the constraint Π(p ∧ q) > Π(p ∧ ¬q),
for some possibility measure Π.

– a probabilistic semantics expressed by the constraint Prob(p ∧ q) > Prob(p ∧
¬q) for some big-stepped probability Prob.

This is a very special kind of probability measure such that if p1 > p2 > ... >
pn−1 ≥ pn, the following inequalities hold ∀i = 1, . . . , n − 1, pi > Σj=i,n pj .
Note that here we retrieve the idea of an excess of probability which is present
whatever the conditioning. Then, one can safely infer a new default p � q from
a set of K defaults Δ = {pk � qk|k = 1,K} if and only if the constraints
modeling Δ entail the constraints modeling p � q. Thus, extracting defaults
amounts to looking for big-stepped probabilities, by clustering lines describing
items in Boolean tables, so as to find default rules, see [2] for details. Then the
rules discovered are genuine default rules, and can be encoded in possibilistic
logic (assuming rational monotony for the inference relation).

Learning Possibilistic Networks and Possibilistic Classifiers. We first
focus on the use of possibilistic networks for classification. Based on the quan-
titative counterpart of Bayes rule, possibilistic naive possibilistic classifiers have
been proposed. In [4], the authors handle uncertain inputs in binary possibilistic-
based classification, using a possibilistic counterpart of Jeffrey’s rule, and present
an efficient algorithm in polynomial time. The interest of possibilistic classifiers
for handling uncertainty is also advocated in [7] in the case of numerical data
where possibility distributions are used for encoding families of Gaussian prob-
abilistic distributions compatible with the data set.

The learning of possibilistic networks, as graphical models suitable for rep-
resenting and reasoning with uncertain and incomplete information, has been
pioneered by R. Kruse and its co-authors, e.g., [5,6,31] emphasizing their inter-
est for dealing with imprecise data. In [36], two types of approaches are compared
for learning possibilistic networks from data, one based on probability-possibility
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transformation, the other using contour functions and possibilistic likelihood.
The experimental comparison gives a slight advantage to the second type of
approach.

Learning Possibilistic Logic Theories. A new formalization of inductive
logic programming (ILP) in first-order possibilistic logic that allows us to han-
dle exceptions by means of prioritized rules has been proposed in [46]. The pos-
sibilistic formalization provides a sound encoding of non-monotonic reasoning
[3] that copes with rules with exceptions and prevents an example from being
classified in more than one class.

A different approach to the induction of possibilistic logic theories is pro-
posed in [41]. It relies on the fact that any set of Markov logic [45] formulas
can be exactly translated into possibilistic logic formulas [26,40]. So we can use
the learning machinery of Markov logic to learn possibilistic logic theories. The
approach allows for representing joint relational models in such a way that each
weighted formula can be interpreted in isolation.

Learning Decision Trees. An extension of classification trees to deal with
uncertain information where uncertainty is encoded in possibility theory is pre-
sented in [37] to cope with imprecise class labels in the training set. Class labels
in data sets are no longer singletons but are given in the form of possibility distri-
butions. The approach uses an information closeness index when evaluating the
entropy of a given training partition in the attribute selection step. Besides, tak-
ing advantage of a cumulative entropy function derived from the informational
distance function for possibility distributions [47], a procedure is presented in
[48], which performs significant choices of split and provides a statistically rele-
vant stopping criterion that allows the learning of trees whose size is well-suited
w.r.t. the available data.

4 Concluding Remarks - Final Discussion

Possibilistic learning has been investigated in a rather scattered way until now
and has not yet raised much attention. In order to learn a possibilistic model one
may think of learning first a probabilistic model and to transform probabilities
into possibility and necessity values. But this may create difficulties about the
agreement of the possibilistic reasoning machinery with the probabilities that
are learnt. A better strategy would be to directly learn a possibilistic model.

We might also think of taking advantage of the min−max matrix composi-
tion view of a set of if-then rules. In the example used in the first part of the
paper, the attributes have a clear meaning, it would be natural to look for a
two layer model, although on might argue here that both aspirations and salary
levels determine the profession one looks for. Once the number of the layers is
fixed, and the variables of each layer determined, one may directly compute the
relevant possibility degrees from the set of examples. But this is under the non
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very realistic assumption of knowing the variables in each layer. One may try to
use a neural net approach, but this will raise the problem of its interpretation.
Yet another type of method might be to learn rules using a version space app-
roach, whose extension to a possibilistic setting, for coping with outliers, makes
sense [24]. These are clearly topics for further research.

This paper has aimed at showing that rule-based systems and learning are
not just the past and the future of artificial intelligence respectively, but they
have connections and may be made more compatible. The paper has used the
possibilistic setting which is especially appropriate as a bridge between logic
and numerical approaches. This paper can be also related to the more general
concern of unifying logic-based machine learning techniques, a topic that has
been forgotten or neglected [24].
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Abstract. The unification of logic and probability is a long-standing
concern in AI, and more generally, in the philosophy of science. In
essence, logic provides an easy way to specify properties that must hold
in every possible world, and probability allows us to further quantify the
weight and ratio of the worlds that must satisfy a property. To that end,
numerous developments have been undertaken, culminating in propos-
als such as probabilistic relational models. While this progress has been
notable, a general-purpose first-order knowledge representation language
to reason about probabilities and dynamics, including in continuous set-
tings, is still to emerge. In this paper, we survey recent results pertaining
to the integration of logic, probability and actions in the situation calcu-
lus, which is arguably one of the oldest and most well-known formalisms.
We then explore reduction theorems and programming interfaces for the
language. These results are motivated in the context of cognitive robotics
(as envisioned by Reiter and his colleagues) for the sake of concreteness.
Overall, the advantage of proving results for such a general language is
that it becomes possible to adapt them to any special-purpose fragment,
including but not limited to popular probabilistic relational models.

1 Introduction

The unification of logic and probability is a long-standing concern in AI [72], and
more generally, in the philosophy of science [31]. The motivation stems from the
observation that (human and agent) knowledge is almost always incomplete. It
is then not enough to say that some formula φ is unknown. One must also know
which of φ or ¬φ is the more likely, and by how much. On the more pragmatic
side, when reasoning about uncertain propositions and statements, it is beneficial
to be able to leverage the underlying relational structure. Basically, logic provides
an easy way to specify properties that must hold in every possible world, and
probability allows us to further quantify the weight and ratio of the worlds
that must satisfy a property. For example, the sibling relation is symmetric in
every possible world, whereas the influence of smoking among siblings can be
considered a statistical property, perhaps only true in 80% of the worlds.
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Another argument increasingly made in favor of unifying logic and probability
is that perhaps it would help us enable an apparatus analogous to Kahneman’s
so-called System 1 versus System 2 processing in human cognition [43]. That
is, we want to interface experiential and reactive processing (assumed to be
handled by some data-driven probabilistic learning methodology) with cogitative
processing (assumed to be handled by a deliberative reasoning methodology).

To that end, numerous developments have been undertaken in AI. Closely
following Bayesian networks [52,70], and particle filters [30,35], the areas of sta-
tistical relational learning and probabilistic relational modeling [28,36] emerged,
and have been very successful. Since the world is rarely static, the application
of such proposals to dynamic worlds has also seen many successes, e.g., [68,80].
However, these closely follow propositional representations, such as Bayesian
networks, using logic purely for templating purposes (i.e., syntactic sugar in
programming language parlance). So, although the progress has been notable, a
general-purpose first-order knowledge representation language to reason about
probabilities and dynamics, including in continuous settings, is still to emerge.

In the early days of the field, approaches such as [33] provided a logical
language that allowed one to reason about the probabilities of atoms, which could
be further combined over logical connectives. That work has inspired numerous
extensions for reasoning about dynamics. But this has been primarily in the
propositional setting [40,45,82], or with discrete probabilistic models [78]. (See
[15] for extended discussions.) In this paper, we survey recent results pertaining
to the integration of logic, probability and actions in the situation calculus [65,
71]. The situation calculus is one of the oldest and most well-known knowledge
representation formalisms. In that regard, the results illustrate that we obtain
perhaps the most expressive formalism for reasoning about degrees of belief in
the presence of noisy sensing and acting. For that language, we then explore
reduction theorems and programming interfaces. Of course, the advantage of
proving results for such a general language is that it becomes possible to adapt
them to any special-purpose fragment, including but not limited to popular
probabilistic relational models.

To make the discussion below concrete, we motivate one possible application
of such a language: cognitive robotics, as envisioned by Reiter [71] and further
discussed in [48]. This is clearly not the only application of a language such
as the situation calculus, which has found applications in areas such as service
composition, databases, automated planning, decision-theoretic reasoning and
multi-agent systems [71,83].

2 Motivation: Cognitive Robotics

The design and control of autonomous agents, such as robots, has been a major
concern in artificial intelligence since the early days [65]. Robots can be viewed
as systems that need to act purposefully in open-ended environments, and so
are required to exhibit everyday commonsensical behavior. For the most part,
however, traditional robotics has taken a “bottom-up” approach [79] focusing
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on low-level sensor-effector feedback. Perhaps the most dominant reason for
this is that controllers for physical robots need to address the noise in effec-
tors and sensors, often characterized by continuous probability distributions,
which significantly complicates the reasoning and planning problems faced by a
robot. While the simplicity of Bayesian statistics, defined over a fixed number of
(propositional) random variables, has enabled the successful handling of prob-
abilistic information in robotics modules, the flip side is that the applicability
of contemporary methods is at the mercy of the roboticist’s ingenuity. It is also
unclear how precisely commonsensical knowledge can be specified using condi-
tional independences between random variables while also accounting for how
these dependencies further change as the result of actions.

Cognitive robotics [48], as envisioned by Reiter and his colleagues [71], follows
closely in the footsteps of McCarthy’s seminal ideas [64]: it takes the view that
understanding the relationships between the beliefs of the agent and the actions
at its disposal is key to a commonsensical robot that can operate purposefully
in uncertain, dynamic worlds. In particular, it considers the study of knowledge
representation and reasoning problems faced by the agent when attempting to
answer questions such as [53]:

– to execute a program, what information does a robot need to have at
the outset vs. the information that it can acquire en route by perceptual
means?

– what does the robot need to know about its environment vs. what need
only be known by the designer?

– when should a robot use perception to find out if something is true as
opposed to reasoning about what it knows was true in the past?

The goal, in other words, is to develop a theory of high-level control that maps the
knowledge, ignorance, intention and desires of the agent to appropriate actions.
In this sense, cognitive robotics not only aims to connect to traditional robotics,
which already leverages probabilistic reasoning, vision and learning for stochas-
tic control, but also to relate to many other areas of AI, including automated
planning, agent-oriented programming, belief-desire-intention architectures, and
formal epistemology.

In lieu of this agenda, many sophisticated control methodologies and for-
mal accounts have emerged, summarized in the following section. Unfortunately,
despite the richness of these proposals, one criticism leveled at much of the work
in cognitive robotics is that the theory is far removed from the kind of con-
tinuous uncertainty and noise seen in typical robotic applications. That is, the
formal machinery of GOLOG to date does not address the complications due
to noise and uncertainty in realistic robotic applications, at least in a way that
relates these complications to what the robot believes, and how that changes
over actions. The assumptions under which real-time behavior can be expected
is also left open. For example, can standard probabilistic projection methodolo-
gies, such as Kalman and particle filters, be subsumed as part of a general logical
framework?
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The results discussed in this article can be viewed as a research agenda
that attempts to bridge the gap between knowledge representation advances
and robotic systems. By generalizing logic-based knowledge representation lan-
guages to reason about discrete and continuous probability distributions in the
specification of both the initial beliefs of the agent and the noise in the sensors
and effectors, the idea is to contribute to commonsensical and provably correct
high-level controllers for agents in noisy worlds.

3 Tools of the Trade

To represent the beliefs and the actions, efforts in cognitive robotics would need
to rely on a formal language of suitable expressiveness. Reiter’s variant of the
situation calculus has perhaps enjoyed the most success among first-order for-
malisms, although related proposals offer attractive properties of their own.1

Reiter’s variant was also the language considered in a recent survey on cognitive
robotics [48], and so the reported results can easily be put into context.2

In this section, we will briefly recap some of the main foundational results
discussed in [48]. In a few cases, we report on recent developments expanding on
those results.

3.1 Language

Intuitively, the language L of the situation calculus [65] is a many-sorted dialect
of predicate calculus, with sorts for actions, situations and objects (for every-
thing else, and includes the set of reals R as a subsort). A situation represents
a world history as a sequence of actions. A set of initial situations correspond
to the ways the world might be initially. Successor situations are the result of
doing actions, where the term do(a, s) denotes the unique situation obtained on
doing a in s. The term do(ā, s), where ā is the sequence [a1, . . . , an] abbrevi-
ates do(an, do(. . . , do(a1, s) . . . )). Initial situations are defined as those without
a predecessor, and we let the constant S0 denote the actual initial situation. See
[71] for a comprehensive treatment.

The picture that emerges from the above is a set of trees, each rooted at an
initial situation and whose edges are actions. In general, we want the values of
predicates and functions to vary from situation to situation. For this purpose, L
includes fluents whose last argument is always a situation.

Following [71], dynamic domains in L are modeled by means of a basic
action theory D, which consists domain-independent foundational axioms, and

1 For example, the fluent calculus [77] offers an intuitive and simple state update
mechanism in a first-order setting, and extensions of propositional dynamic logic
[41] offer decidable formalisms.

2 There has been considerable debate on why a quantified relational language is crucial
for knowledge representation and commonsense reasoning; see references in [26,57],
for example. Moreover, owing to the generality of the underlying language, decidable
variants can be developed (e.g., [20,38]).
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a domain-dependent first-order initial theory D0 (standing for what is true ini-
tially), and domain-dependent precondition and effect axioms, the latter taking
the form of so-called successor state axioms that incorporates a monotonic solu-
tion to the frame problem [71].

To represent knowledge, and how that changes, one appeals to the possible-
worlds approach [34]. The idea is that there many different ways the world
can be, where each world stands for a complete state of affairs. Some of these
are considered possible by a putative agent, and they determine what the agent
knows and does not know. Essentially, situations can be viewed as possible worlds
[74]: a special binary fluent K, taking two situation arguments determines the
accessibility relation between worlds. So, K(s′, s) says that when the agent is at
s, he considers s′ possible. Knowledge, then, is simply truth at accessible worlds:
Knows(φ, s) .= ∀s′. K(s′, s) ⊃ φ[s′].

Sensing axioms additionally capture the discovery of the truth values
of fluents. For example, to check whether f is true at s, we would use:
SF(sensetruef , s) ≡ f(s) = 1. A successor state axiom formalizes the incor-
poration of these sensed values in the agent’s mental state: K(s′, do(a, s)) ≡
∃s′′[K(s′′, s) ∧ s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ (SF(a, s′′) ≡ SF(a, s))]. This says
that if s′′ is the predecessor of s′, such that s′′ was considered possible at s, then
s′ would be considered possible from do(a, s) contingent on sensing outcomes.

3.2 Reasoning Problems

A fundamental problem underlying almost all applications involving basic action
theories is projection. Given a sequence of actions a1 through an, denoted
ā = [a1, . . . , an], we are often interested in asking whether φ holds after these
via entailment: D |= φ[do(ā, S0)]? One of the main results by Reiter is the
existence of a reduction operator called regression that eliminates the actions:
D |= φ[do(ā, S0) iff Duna ∪ D0 |= R[φ[do(ā, S0)]. Here, Duna is an axiom that
declares that all named actions are unique, and R[φ[do(ā, S0)] mentions only a
single situation term, S0.

In the worst case, regressed formulas are exponentially long in the length of
the action sequence [71], and so it has been argued that for long-lived agents
like robots, continually updating the current view of the state of the world,
is perhaps better suited. Lin and Reiter [60] proposed a theory of progression
that satisfies: D |= φ[do(ā, S0) iff Duna ∪ P(D0, ā) |= φ[S0]. Here P(D0, ā) is the
updated initial theory that denotes the state of the world on doing ā. In general,
progression requires second-order logic, but many special cases that are definable
in first-order logic have since been identified (e.g., [61]).

3.3 Closed vs Open Worlds

D0 is assumed to be any set of first-order formulas, but then computing its
entailments, regardless of whether we appeal to regression or progression, would
be undecidable. Thus, restricting the theory to be equivalent to a relational
database is one possible tractable fragment, but this makes the closed world
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assumption which is not really desirable for robotics. A second possibility is to
assume that at the time of query evaluation, the agent has complete knowledge
about the predicates mentioned in the query. This leads to a notion of local
completeness [27]. A third possibility is to provide some control over the compu-
tational power of the evaluation scheme, leading to a form of limited reasoning.
First-order fragments such as proper and proper+ [47,56], which correspond to an
infinite set of ground literals and clauses respectively, have been shown to work
well with projection schemes for restricted classes of action theories [61,62].

An altogether different and more general strategy for reasoning about incom-
plete knowledge is to utilize the epistemic situation calculus. A regression theo-
rem was already proved in early work [74], and a progression theorem has been
considered in [63]. However, since propositional reasoning in epistemic logic is
already intractable [34], results such as the representation theorem [57] that
shows how epistemic operators can be eliminated under epistemic closure (i.e.,
knowing what one knows as well as what one does not know) needs to be lever-
aged at least. Alternatively, one could perhaps appeal to limited reasoning in
the epistemic setting [46].

3.4 High-Level Control

To program agents whose actions are interpreted over a basic action theory,
high-level programming languages such as GOLOG emerged [54]. These lan-
guages contained the usual programming features like sequence, conditional,
iteration, recursive procedures, and concurrency but the key difference was that
the primitive instruction was an action from a basic action theory. The execution
of the program was then understood as D |= Do(δ, S0, do(ā, S0)) where δ is a
GOLOG program, and on starting from S0, the program successfully terminates
in do(ā, S0). So, from S0, executing the program leads to performing actions ā.

As argued in [48], GOLOG programs can range from a fully determinis-
tic instruction a1; . . . ; an to a general search while ¬φ do πa. a: the former
instructs the agent to perform action a1, then a2, and so on until an in sequence,
and the latter instructs to try every possible action (sequence) until the goal is
satisfied. It is between these two extremes where GOLOG is most powerful: it
enables a partial specification of programs that can perform guided search for
sub-goals in the presence of other loopy or conditional plans.

To guide search in the presence of nondeterminism, rewards can be stipulated
on situations leading to a decision-theoretic machinery [17]. Alternatively, if the
nondeterminism is a result of not knowing the true state of the world, sensing
actions can be incorporated during program execution, leading to an online
semantics for GOLOG execution [73].

4 Tools Revisited

In this section, we revisit the results from the previous section and discuss how
these have been generalized to account for realistic, continuous, models of noise.
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Perhaps the most general formalism for dealing with degrees of belief in for-
mulas, and in particular, with how degrees of belief should evolve in the presence
of noisy sensing and acting is the account proposed by Bacchus et al. [1], hence-
forth BHL. Among its many properties, the BHL model shows precisely how
beliefs can be made less certain by acting with noisy effectors, but made more
certain by sensing (even when the sensors themselves are noisy). Not only is
it embedded in the rich theory of the situation calculus, including the use of
Reiter’s successor state axioms, it is also a stochastic extension to the categor-
ical epistemic situation calculus. The main advantage of a logical account like
BHL is that it allows a specification of belief that can be partial or incomplete,
in keeping with whatever information is available about the application domain.
It does not require specifying a prior distribution over some random variables
from which posterior distributions are then calculated, as in Kalman filters, for
example [79]. Nor does it require specifying the conditional independences among
random variables and how these dependencies change as the result of actions, as
in the temporal extensions to Bayesian networks [70]. In the BHL model, some
logical constraints are imposed on the initial state of belief. These constraints
may be compatible with one or very many initial distributions and sets of inde-
pendence assumptions. (See [15] for extensive discussions.) All the properties of
belief will then follow at a corresponding level of specificity.

4.1 Language

The BHL model makes use of two distinguished binary fluents p and l [9].
The p fluent determines a probability distribution on situations, by associat-
ing situations with weights. More precisely, the term p(s′, s) denotes the relative
weight accorded to situation s′ when the agent happens to be in situation s.
Of course, p can be seen as a companion to K. As one would for K, the prop-
erties of p in initial states, which vary from domain to domain, are specified
with axioms as part of D0. The term l(a, s) is intended to denote the likelihood
of action a in situation s to capture noisy sensors and effectors. For example,
think of a sonar aimed at the wall, which gives a reading for the true value
of a fluent f that corresponds to the distance between the robot and the wall.
Supposing the sonar’s readings are subject to additive Gaussian noise. If now
a reading of z were observed on the sonar, intuitively, those situations where
f = z should be considered more probable than those where f �= z. Then
we would have: l(sensef (z), s) = u ≡ u = N (z − f(s); 0, 1)). Here, a stan-
dard normal is assumed, where the mean is 0, and the variance is 1.3 Analo-
gously, noisy effectors can be modeled using actions with double the arguments:
l(move(x, y), s) = u ≡ u = N (y − x; 0, 1). This says the difference between
actual distance moved and the intended amount is normally distributed, corre-
sponding to additive Gaussian noise. Such noise models can also be made context

3 If the specification of the p-axiom or the l-axiom includes disjunctions and existential
quantifiers, we will then be dealing with uncertainty about distributions. See [14],
for example.
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dependent (e.g., specifying the sensor’s error profile to be worse for lower tem-
peratures, where the temperature value is situation-dependent). In the case of
noisy effectors, the successor state axioms have to be defined to use the second
argument, as this is what actually happens at a situation [15].

Analogous to the notion of knowledge, the degree of belief in φ in situation s
is defined as the weight of accessible worlds where φ is true:

Bel(φ, s) .=
1
γ

∑

{s′:φ[s′]}
p(s′, s).

Here, γ is the normalization factor and corresponds to the numerator but with
φ replaced by true. The change in p values over actions is specified using
a successor state axiom, analogous to the one for K: p(s′, do(a, s)) = u ≡
∃s′′ [s′ = do(a, s′′) ∧ Poss(a, s′′) ∧ u = p(s′′, s) × l(a, s′′)] ∨ ¬∃s′′ [s′ =
do(a, s′′) ∧ Poss(a, s′′) ∧ u = 0]. This axioms determines how l affects the p-
value of successor situations.

As the BHL model is defined as a sum over possible worlds, it cannot actually
handle Gaussians and other continuous distributions involving π, e, exponentia-
tion, and so on. Therefore, BHL always consider discrete probability distributions
that approximate the continuous ones. However, this limitation was lifted in [15],
which shows how Bel is defined in continuous domains.

4.2 Reasoning Problems

The projection problem in this setting is geared for reasoning about formulas
that now mention Bel . In particular, we might be interested in knowing whether
D |= Bel(φ, do(ā, S0)) ≥ r for a real number r.

One reductive approach would be to translate both D and φ, which would
mention Bel , into a predicate logic formula. This approach, however, presents a
serious computational problem because belief formulas expand into a large num-
ber of sentences, resulting in an enormous search space with initial and successor
situations. The other issue with this approach is that sums (and integrals in the
continuous case) reduce to complicated second-order formulas.

In [10], it is shown how Reiter’s regression operator can be generalized to
operate directly on Bel -terms. This involves appealing to the likelihood axioms.
For example, imagine a robot that is uncertain about its distance d to the wall,
and the prior is a uniform distribution on the interval [2, 12]. Assume the robot
(noise-free) moves away by 2 units and is now interested in the belief about
d ≤ 5. Regression would tell the robot that this is equivalent to its initial beliefs
about d ≤ 3 which here would lead to a value of .1. Imagine then the robot is also
equipped with a sonar unit with additive Gaussian noise. After moving away by
2 units, if the sonar were now to provide a reading of 8, then regression would
derive that belief about d ≤ 5 is equivalent to 1/γ × ∫ 3

2
.1 × N (6 − x; 0, 1) dx.

Essentially, the posterior belief about d ≤ 5 is reformulated as the product of
the prior belief about d ≤ 3 and the likelihood of d ≤ 3 given an observation of
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6. That is, observing 8 after moving away by 2 units is equated here to observing
6 initially. (Here, γ is the normalization factor.)

Progression too could potentially be addressed by expanding formulas involv-
ing Bel -terms, but it is far from clear what precisely this would look like. In par-
ticular, given initial beliefs about fluents (such as the one about d earlier), we
intuit that a progression account would inform us how this distribution changed.
For example, on moving away from the wall by 2 units, we would now expect d
to be uniformly distributed on the interval [4, 14]. However, this leads to a com-
plication: because if the robot had instead moved towards the wall by 4 units,
then those points where d ∈ [2, 4] initially are mapped to a single point d = 0
that should then obtain a probability mass of .2, while the other points retain
their initial density of .1. In [11], it is shown that for a certain class of basic
action theories called invertible theories, such complications are avoidable, and
moreover, the progressed database can be specified by means of simple syntactic
manipulations.

4.3 Closed vs Open Worlds

The closed vs open world discussion does not seem immediately interesting here,
because, after all, the language is clearly open in the sense of not knowing
the values of fluents, and according a distribution to these values. However,
consider that the closed-world assumption was also motivated previously by
computational concerns. In that regard, the above regression and progression
results already studied special cases involving conjugate distributions [18], such
as Gaussians which admit attractive analytical simplifications. For example, effi-
cient Kalman filters [79] often make the assumption that the initial prior and
the noise models are Gaussians, in which case the posterior would also be a
Gaussian. In [12], it is further shown that when the initial belief is a Bayesian
network, by way of regression, projection can be handled effectively by sampling.
(That is, once the formula is regressed, the network is sampled and the samples
are evaluated against the regressed formula.)

In the context of probabilistic specifications, the notion of “open”-ness can
perhaps be interpreted differently. We can take this to mean that we do not know
the distribution of the random variables, or even that the set of random variables
is not known in advance. As argued earlier, this is precisely the motivation
for the BHL scheme, and a recent modal reformulation of BHL illustrates the
properties of such a language in detail [7]. A detailed demonstration of how such
specifications would work in the context of robot localization was given in [14].

The question of how to effectively compute beliefs in such rich settings is
not clear, however. We remark that various static frameworks have emerged for
handling imprecision or uncertainty in probabilistic specifications [24,58,66]. For
example, when we have finitely many random variables but there is uncertainty
about the underlying distribution, credal representations are of interest [24], and
under certain conditions, they can be learned and reasoned with in an efficient
manner [58]. On the other hand, when we have infinitely many random vari-
ables (but with a single underlying distribution), proposal such as [72] and [2]
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are of interest, the latter being a weighted representation inspired by proper+

knowledge bases. Extending these to allow uncertainty about the underlying dis-
tribution may also be possible. Despite being static, by means of regression or
progression, perhaps such open knowledge bases can be exploited for cognitive
robotics applications, but that remains to be seen.

4.4 High-Level Control

A high-level programming language that deals with noise has to reason about
two kinds of complications. First, when a noisy physical or sensing action in the
program is performed, we must condition the next instruction on how the belief
has changed as a result of that action. Second, because sensing actions in the
language are of the form sense(z) that expects an input z, an offline execution
would simulate possible values for z whereas an online execution would expect an
external source to provide z (e.g., reading off the value of a sonar). We also would
not want the designer to be needlessly encumbered by the error profiles of the
various effectors and sensors, so she has to be encouraged to program around
sense-act loops; that is, every action sequence should be accompanied with a
suitable number of sensing readings so that the agent is “confident” (i.e., the
distribution of the fluent in question is narrow) before performing more actions.
In [13], such a desiderata was realized to yield a stochastic version of knowledge-
based programming [71]. Primitive instructions are dummy versions of noisy
actions and sensors; e.g., move(x,y) is simply move(x) and sonar(z) is simply
sonar. The idea then is that the modeler simply uses these dummy versions as
she would with noise-free actions, but the execution semantics incorporates the
change in belief. It is further shown that program execution can be realized by
means of a particle filtering [79] strategy: weighted samples are drawn from the
initial beliefs, which correspond to initial situations, and on performing actions,
fluent values at these situations are updated by means of the successor state
axioms. The degree of belief in φ corresponds to summing up the weights of
samples where φ is true.

Such an approach can be contrasted with notable probabilistic relational
modelling proposals such as [68]: the difference mainly pertains to three sources
of generality. First, a language like the situation calculus allows knowledge bases
to be arbitrary quantificational theories, and BHL further allows uncertainty
about the distributions defined for these theories. Second, the situation calcu-
lus, and by extension, GOLOG and the paradigm in [13] allows us to reason
about non-terminating and unbounded behavior [23]. Third, since an explicit
belief state is allowed, it becomes possible to provide a systematic and generic
treatment for multiple agents [6,44].

On the issue of tractable reasoning, an interesting observation is that because
these programs require reasoning with an explicit belief state [34], one might
wonder whether the programs can be “compiled” to a reactive plan, possibly
with loops, where the next action to be performed depends only on the sensing
information received in the current state. This relates knowledge-based program-
ming to generalized planning [55,76], and of course, the advantage is also that
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numerous strategies have been identified to synthesize such loopy, reactive plans.
Such plans are also shown to be sufficient for goal achievability [59]; however,
knowledge-based programs are known to be exponentially more succinct than
loopy, reactive plans [49]. In [42], a generic algorithmic framework was proposed
to synthesize such plans in noise-free environments. How the correctness of such
plans should be generalized to noisy environments was considered in [3,8]. The
algorithmic synthesis problem was then considered in [81].

5 Related Work and Discussions

There are many threads of research in AI, automated planning and robotics
that are close in spirit to what is reported here. For example, belief update
via the incorporation of sensor information has been considered in probabilis-
tic formalisms such as Bayesian networks [52,70], Kalman and particle filters
[79]. But these have difficulties handling strict uncertainty. Moreover, since rich
models of actions are rarely incorporated, shifting conditional dependencies and
distributions are hard to address in a general way. While there are graphical
formalisms with an account of actions, such as [25,39], they too have difficulties
handling strict uncertainty and quantification. To the best of our knowledge,
no existing probabilistic formalism handles changes in state variables like those
possible in the BHL scheme. Related to these are relational probabilistic models
[21,32,66,67]. Although limited accounts for dynamic domains are common here
[50,69], explicit actions are seldom addressed in a general way. We refer inter-
ested readers to discussions in [15], where differences are also drawn to prior
developments in reasoning about actions, including stochastic but non-epistemic
GOLOG dialects [37].

Arguably, many of the linguistic restrictions of such frameworks is often
motivated by computational considerations. So what is to be gained by a gen-
eral approach? This question is especially significant when we take into account
that numerous “hybrid” approaches have emerged over the years that provide a
bridge between a high-level language and a low-level operation [19,51]. Our sense
is that while these and other approaches are noteworthy, and are extended in
a modular manner to keep things tractable and workable on an actual physical
robot, it still leaves a lot at the mercy of the roboticist’s ingenuity. For example,
extending an image recognition algorithm to reason about a structured world is
indeed possible, but it is more likely than not that this ontology is also useful
for a number of other components, such as the robot’s grasping arm; more-
over, changes to one must mean changes to all. Abstracting a complex behavior
module of a robot is a painstaking effort: often the robot’s modules are written
in different programming languages with varying levels of abstraction, and to
reduce these interactions to atoms in the high-level language would require con-
siderable know-how of the system. Moreover, although a roboticist can abstract
probabilistic sensors in terms of high-level categorical ones, there is loss in detail,
as it is not clear at the outset which aspect of the sensor data is being approxi-
mated and by how much. Thus, all of these “bottom-up” approaches ultimately
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challenge the claim that the underlying theory is a genuine characterization of
the agent.

In service of that, the contributions reported in this work attempt to express
all the (inner and outer) workings of a robot in a single mathematical language:
a mathematical language that can capture rich structure as well as natively
reason about the probabilistic uncertainty plaguing a robot; a mathematical
language that can reason with all available information, some of which may be
probabilistic, and some categorical; a mathematical language that can reason
about the physical world at different levels of abstraction, in terms of objects,
atoms, and whatever else physicists determine best describes our view of the
world. Undoubtedly, given this glaring expressiveness, the agenda will raise sig-
nificant challenges for the applicability of the proposal in contemporary robots,
but our view is that, it will also engender novel extensions to existing algorithms
to cope with the expressiveness. Identifying tractable fragments, for example,
will engender novel theoretical work. As already discussed, many proposals from
the statistical relational learning community are very promising in this regard,
and are making steady progress towards the overall ambition. (But as discussed,
they fall short in terms of being able to reason about non-terminating behav-
ior, arbitrary first-order quantification, among other things, and so identifying
richer fragments is a worthwhile direction.) It is also worth remarking that the
tractability of reasoning (and planning) has been the primary focus of much of
the research in knowledge representation. The broader question of how to learn
models has received lesser attention, and this is precisely where statistical rela-
tional learning and related paradigms will prove useful [4]. (It would be especially
interesting to consider relational learning with neural modules [29].) Indeed, in
addition to approaches such as [22,75], there have been a number of advances
recently on learning dynamic representations (e.g., [68]), which might provide
fertile ground to lift such ideas for cognitive robotics. Computability results for
qualitative learning in dynamic epistemic logic has been studied in [16]. Recently,
proper+ knowledge bases were shown to be polynomial-time learnable for query-
ing tasks [5]. Ultimately, learning may provide a means to coherently arrive at
action descriptions at different levels of granularity from data [26]. In the long
term, the science of building a robot, which currently is more of an art, can
perhaps be approached systematically. More significantly, through the agenda of
cognitive robotics, we might gain deep insights on how commonsense knowledge
and actions interact for general-purpose, open-ended robots. In that regard, the
integration of logic, probability and actions will play a key role.
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Abstract. Analogical proportions are statements of the form “a is to b
as c is to d”, where a, b, c, d are tuples of attribute values describing
items. The mechanism of analogical inference, empirically proved to be
efficient in classification and reasoning tasks, started to be better under-
stood when the characterization of the class of classification functions with
which the analogical inference always agrees was established for Boolean
attributes. The purpose of this paper is to study the case of finite attribute
domains that are not necessarily two-valued, i.e., when attributes are nom-
inal. In particular, we describe the more stringent class of “hard” anal-
ogy preserving (HAP) functions f : X1 × . . . × Xm → X over finite
domains X1, . . . , Xm, X for binary classification purposes. This descrip-
tion is obtained in two steps. First we observe that such AP functions are
almost affine, that is, their restriction to any S1×· · ·×Sm, where Si ⊆ Xi

and |Si| ≤ 2 (1 ≤ i ≤ m), can be turned into an affine function by renam-
ing variable and function values. We then use this result together with
some universal algebraic tools to show that they are essentially unary or
quasi-linear, which provides a general representation of HAP functions. As
a by-product, in the case when X1 = · · · = Xm = X, it follows that this
class of HAP functions constitutes a clone on X, thus generalizing several
results by some of the authors in the Boolean case.

1 Introduction

An analogy establishes a parallel between two situations, which are similar in
many respects and dissimilar in others. If such a parallel holds to some extent,
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there are pairs (a, b) and (c, d) such as “a is to b in situation 1 as c is to d in
situation 2” [7]. Analogical proportions are of the form “a is to b as c is to d”. It
is only recently that researchers have provided representations of this quaternary
relation in different settings [10,12], or algorithms for finding an item d, given a,
b, and c, for building an analogical proportion from these three items when it is
possible [9]. The items considered in this paper are supposed to be represented
by vectors of attribute values.

Analogical inference relies on the idea that if four items a, b, c, d are in
analogical proportion for each of the n attributes describing them, it may still
be the case for another attribute. For instance, if class labels are known for
a, b, c and unknown for d, then one may infer the label for d as a solution
of an analogical proportion equation [16]. Obviously, analogical inference rule
is not a sound rule, and the effectiveness of analogical classifiers [2,11] looks
quite mysterious. From a theoretical viewpoint it is quite challenging to find and
characterize situations where such an inference rule can be applied in a sound
way. In case of Boolean attributes, a first step for explaining this state of facts
was to characterize the set of functions for which analogical inference is sound,
i.e., no error occurs, no matter which triplets of examples are used. In [4], it was
proved that these so-called “analogy-preserving” (AP) functions coincide exactly
with the set of affine Boolean functions. Moreover, when the function is close
to being affine, it was also shown that the prediction accuracy remains high [5].
When attributes are valued on finite domains, which we refer to as the “nominal
case” (it includes the Boolean case), the problem of identifying the AP functions
had remained a challenging open problem until now. This paper aims to solving
this problem in the context of binary classification problems and to providing a
complete description of the more stringent class of “hard” AP functions.

The paper is organized as follows. Section 2 provides the necessary back-
ground on analogical proportions and analogical inference in the Boolean and in
the nominal cases. Then we introduce the notion of analogy-preserving functions
on which analogical inference never fails, and discusses an illustrative example
in the nominal case, which emphasizes the linkage of analogical proportions with
trees cataloguing items according to the values of the attributes used for describ-
ing them. Later, a local description of hard analogy preserving functions is given
in terms of almost affine functions, which is then extended to a global description
given in terms of the notion of quasi-linear functions.

2 Background

Postulates. An analogical proportion is a 4-ary relation, denoted a : b :: c : d,
between items a, b, c, d, supposed to obey the following 3 postulates (e.g., [10]):

– ∀a, b, a : b :: a : b (reflexivity)
– ∀a, b, c, d, a : b :: c : d → c : d :: a : b (symmetry)
– ∀a, b, c, d, a : b :: c : d → a : c :: b : d (central permutation)
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The repeated and alternate application of the two last postulates entail that an
analogical proportion a : b :: c : d has 8 equivalent forms: a : b :: c : d = c : d :: a :
b = c : a :: d : b = d : b :: c : a = d : c :: b : a = b : a :: d : c = b : d :: a : c = a :
c :: b : d. Some immediate consequences can be observed:

i) ∀a, b, a : a :: b : b (identity)
ii) ∀a, b, c, d, a : b :: c : d → d : b :: c : a (extreme permutation)
iii) ∀a, b, c, d, a : b :: c : d → b : a :: d : c (inside pair reversing)
iv) ∀a, b, c, d, a : b :: c : d → d : c :: b : a (complete reversal)

Boolean Case. Let us now assume for a while that a, b, c, d denote Boolean
variables, i.e., their values belong to the set {0, 1}. This may be thought of as
encoding the fact that a given property is true or false for the considered item.
Since items are usually described in terms of several properties, this modeling of
analogical proportions is then extended to tuples in a component-wise manner
as recalled later. As shown in [13], the minimal Boolean model obeying the
analogical proportion postulates makes a : b :: c : d true only for the six patterns

(a, b, c, d) ∈ {(0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1), (1, 1, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0)},

while a : b :: c : d is false for the other ten patterns of values for the four variables
a, b, c, d. This is the truth table of a quaternary connective that can be logically
expressed as a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) [12].

It can be seen on this expression that the analogical proportion “a is to b as c
is to d” formally states that “a differs from b as c differs from d and b differs from
a as d differs from c”. It means that a = b ⇔ c = d, and that a �= b ⇔ c �= d (with
the further requirement that both truth value changes are in the same direction
(either from 1 to 0, or from 0 to 1, when going from a to b, and from c to d).
So, the analogy is as much a matter of dissimilarity as a matter of similarity.

Nominal Case. In the nominal case, attributes are supposed to take their values
on finite domains (which are not necessarily ordered). For instance, the attribute
domain of color may be the set {blue, red, yellow}. Let s and t be two values
in such a finite domain X. It follows from reflexivity and central permutation
postulates that s : t :: s : t and s : s :: t : t should hold. By the symmetry
postulate, s and t play the same role. Note also that s and t are not necessarily
distinct. This leads to a minimal model of analogical proportion for nominal
values, which can be stated as follows: a : b :: c : d holds if and only if

(a, b, c, d) ∈ {(s, t, s, t), (s, s, t, t) | s, t ∈ X}.

This clearly covers the Boolean case as a particular case, leading to the 6 lines
seen in the Boolean truth table. If |X| = n, we obviously have n4 tuples (a, b, c, d).
Among them, we have i) n valid analogies of type s : s :: s : s, ii) n(n − 1) of
type s : t :: s : t with s �= t, and iii) n(n − 1) of type s : s :: t : t with s �= t.

Hence, a total of n(2n − 1), which shows that the number of valid analogies
increases with the square of the cardinality of the underlying set. For instance, for
an attribute such as color whose values belong to, e.g., X = {blue, red, yellow},
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we have only 15 valid analogies among 81 combinations. For instance, red :
yellow :: red : yellow holds, but it is not the case for red : yellow :: red : blue. Fol-
lowing the definition, an analogical proportion that holds with nominal attribute
values involves at most two distinct values. This remark will have important con-
sequences in the theoretical part of this paper. So, in the nominal case, a : b :: c : d
is false if and only if |{a, b, c, d}| ≥ 3 or (a, b, c, d) ∈ Neg , where

Neg = {(s, t, t, s), (s, s, s, t), (s, s, t, s), (s, t, s, s), (t, s, s, s) | s, t ∈ X, s �= t}.

Representing objects with a single Boolean or nominal attribute is usually
not expressive enough. In general, items are represented by tuples of values, each
component being the value of an attribute, either Boolean or nominal. Extending
the definition of analogy to nominal tuples of the form a = (a1, . . . , am) belonging
to a Cartesian product X = X1 × . . . × Xm can be done component-wise as
follows:

a : b :: c : d holds ⇔ ∀i ∈ [1,m], ai : bi :: ci : di holds.

Throughout the paper, the attribute domains X1, . . . , Xm are assumed to be
finite sets with at least two elements each.

Analogical Inference. In the Boolean case, the problem of finding an x ∈ {0, 1}
such that a : b :: c : x holds, does not always have a solution. Indeed, neither
0 : 1 :: 1 : x nor 1 : 0 :: 0 : x has a solution (since 0111, 0110, 1000, 1001 are
not valid patterns for an analogical proportion). In fact, a solution exists if and
only if (a ≡ b) ∨ (a ≡ c) holds. When a solution exists, it is unique and is given
by x = c ≡ (a ≡ b). This corresponds to the original view advocated by S. Klein
[8], who however applied the latter formula even to the cases 0 : 1 :: 1 : x and
1 : 0 :: 0 : x, where it yields x = 0 and x = 1 respectively.

In the nominal case, the situation is similar. The analogical proportion a :
b :: c : x may have no solution (s : t :: t : x has no solution as soon as s �= t),
and otherwise (if a = b or a = c) the solution is unique, and is given by x = b if
a = c and x = c if a = b. Namely, the solutions of s : t :: s : x, s : s :: t : x, and
s : s :: s : x are x = t, x = t, and x = s, respectively.

This motivates the following inference pattern first proposed in [16]

∀i ∈ {1, . . . , m}, ai : bi :: ci : di holds
am+1 : bm+1 :: cm+1 : dm+1 holds

which enables us to compute dm+1, provided that am+1 : bm+1 :: cm+1 : x has
a solution. This pattern expresses a rather bold inference which amounts to
saying that if the representations of four items are in analogical proportion on
m attributes, they should remain in analogical proportion with respect to their
labels. Note that, we can restrict ourselves to binary labels, since a multiple class
prediction can be obtained by solving a series of binary class problems.

In this paper, we adopt a completely different viewpoint: instead of adding
constraints for ensuring the soundness of analogical inference, we want to char-
acterize contexts where this inference is valid, without adding any further con-
straints. In the next section, we proceed with a discussion on analogical inference,
and we present the notion of analogy-preserving functions.
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3 Analogy-Preserving Functions

In the analogical inference pattern that was introduced in the previous section,
we implicitly assume that there is a dependency that links labels to the values
of the m attributes. More precisely, there is some unknown function f such that
em+1 = f(e1, . . . , em), for any item e = (e1, . . . , em). Such a function f can be
thought of as a classifier that associates to each item, a (unique) class based on
the values of the m attribute values describing it.

Since the solutions of analogical equations (when they exist) are unique, the
previous pattern can be also written as follows:

a1 · · · ai · · · am f(a)
b1 · · · bi · · · bm f(b)
c1 · · · ci · · · cm f(c)
d1 · · · di · · · dm f(d)

where a = (a1, . . . , am), b = (b1, . . . , bm), c = (c1, . . . , cm) and d = (d1, . . . , dm).

Remark 3.1. Note that in the nominal case, each column i has at most two
distinct elements belonging to the attribute domain Xi of attribute i.

As previously highlighted, the conclusions obtained by analogical inference
are brittle. This means here that for a given d = (d1, . . . , di, . . . , dm) for which
we want to evaluate f(d), there may exist several triplets (a,b, c) such that
f(a) : f(b) :: f(c) : x is solvable, maybe leading to different solutions. In that
case, at least from a theoretical viewpoint, it is clear that applying the analogical
inference principle for a given d will not give a unique value to predict f(d). To
cope with real-life situations, one generally uses a majority vote for computing
a plausible f(d). But an interesting particular case is when all the analogical
predictions are the same whatever the triplets. This will be the case as soon as
the function f is analogy-preserving, a notion we now formally define.

3.1 Basic Notions and Motivation

In the following, X1, . . . , Xm,X denote finite sets with cardinality at least 2.

Definition 3.2. Let X = X1 × · · · × Xm. A function f : X → X is analogy-
preserving (AP for short) if for every a,b, c,d ∈ X,

a : b :: c : d and solvable(f(a), f(b), f(c)) ⇒ sol(f(a), f(b), f(c)) = f(d),

where solvable(f(a), f(b), f(c)) means that there exists an x such that f(a) :
f(b) :: f(c) : x holds, and sol(f(a), f(b), f(c)) is the unique solution for x.

Note that if f is AP, there cannot exist a,b, c,d,a′,b′, c′ such that

1. a : b :: c : d and a′ : b′ :: c′ : d,
2. solvable(f(a), f(b), f(c)) and solvable(f(a′), f(b′), f(c′)), and
3. sol(f(a), f(b), f(c)) �= sol(f(a′), f(b′), f(c′)).
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In other words, AP functions are exactly those for which analogical inference
never fails. Let us denote by AP the set of all AP functions. The following
examples suggest that the class of AP functions is quite large and diverse.

Example 3.3. Consider the class of essentially unary1 functions f : X → X, i.e.,
of the form f(x) = ϕ(xi), for some map ϕ : Xi → X. It is not difficult to see that
such functions are AP. This corresponds to the simplest example of classifiers
since the predicted classes are then determined by the value of a single attribute.

Example 3.4. Consider now the class of injective functions f : X → X, i.e., of
functions that satisfy the condition: if x �= y, then f(x) �= f(y). Again, such
functions are AP. The key observation is that if a,b, c are pairwise distinct, then
so are f(a), f(b), f(c) and the condition solvable(f(a), f(b), f(c)) in the defini-
tion of AP functions does not hold. Thus injective functions are AP. However,
injective functions are of little interest in classification since the number of class
labels is expected to be smaller than the number of items.

Example 3.5. Using the same argument, we can relax the previous example to
obtain other classes of AP functions. For instance, let 1 = (1, . . . , 1) ∈ {0, 1}m
and consider the class of pseudo-Boolean functions f : {0, 1}m → X satisfying the
following condition: the kernel2 of f is the form ker f = {(a,a⊕1) | a ∈ {0, 1}m},
where ⊕ denotes addition modulo 2. Again, it is not difficult to verify that such
functions are AP. These are examples of “reflexive” functions [6], i.e., functions
satisfying the condition that for every x ∈ {0, 1}m, f(x ⊕ 1) = f(x).

Example 3.6. Examples 3.4 and 3.5 can be generalized as follows. Recall that
the set B := {0, 1} constitutes a 2-element field with the operations ⊕ (addition
modulo 2) and ⊗ (multiplication modulo 2). For any natural number m, the
set B

m, equipped with scalar multiplication and addition of vectors, is a vector
space over B. Let V be a fixed subspace of the vector space B

m. Any function
f : Bm → X such that ker f is the set of affine spaces that are translations of
V is AP. Examples 3.4 and 3.5 correspond to the cases where V is the trivial
subspace and the 1-dimensional subspace {0,1}, respectively.

In view of Remark 3.1 we will focus on the following subclass of AP functions.

Definition 3.7. An AP function f : X → X is called a hard AP (HAP) func-
tion if for all Si ⊆ Xi with |Si| ≤ 2 (1 ≤ i ≤ m) it holds that |Imf |S | ≤ 2, where
S := S1 × · · · × Sm. We denote the class of HAP functions by HAP.

Remark 3.8. Observe that HAP contains all essentially unary functions. If X
is a 2-element set, then HAP = AP.

1 An argument xi is said to be inessential in f : X → X if for all (a1, . . . , am) ∈ X,
a′
i ∈ Xi, we have f(a1, . . . , am) = f(a1, . . . , ai−1, a

′
i, ai+1, . . . , am). Otherwise, xi

is said to be essential in f . The number of essential arguments of f is called the
essential arity of f .

2 Recall that the kernel of f is ker f := {(a,b) ∈ {0, 1}m × {0, 1}m | f(a) = f(b)}.
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3.2 ANF Representations and Affine Functions

In this section we recall some well-known facts about the simplest interesting
case of functions, namely, the Boolean functions.

There are several formalisms to represent Boolean functions, such as the
classical DNF and CNF representations. However, in the analogical framework
the algebraic representation of Boolean functions turns out be more relevant
than the former classical representations based on the standard logical opera-
tors ∨ (disjunction) and ∧ (conjunction). Following [15,17], each Boolean func-
tion f : {0, 1}m → {0, 1} (of arity m) is uniquely represented by a multilinear
polynomial called the algebraic normal form of f that we recall below.

Let B be the 2-element field over {0, 1} with its 2 usual operators ⊕ (addition
modulo 2) and ⊗ (multiplication modulo 2). Note that they correspond respec-
tively to the exclusive or and to the conjunction in logical terms. Equipped with
scalar multiplication (which coincides here with the multiplication modulo 2)
over B and addition, the set B[x1, . . . , xm] of polynomials on the m indetermi-
nates x1, . . . , xm is a vector space over B.

A (multilinear) monomial is a term of the form xI :=
∏

i∈I xi, for some
(possibly empty) finite set of positive integers I with the convention that 1 is
the empty monomial x∅. The size |I| is called the degree of xI , denoted d(xI).
A (multilinear) polynomial is a sum of monomials

∑

I⊆{1,...,m}
ωI · xI

where each ωI belongs to B (addition is understood as addition modulo 2). Note
that the monomials 0 and 1 are just 0 · x∅ and 1 · x∅, respectively. The degree of
a polynomial is then the maximum degree among the degrees of its monomials.

An algebraic normal form (ANF) of a Boolean function f of arity m is simply
a multilinear polynomial in B[x1, . . . , xm] that represents it:

f(x1, . . . , xm) =
∑

I⊆{1,...,m}
ωI · xI .

It is well known that the ANF representation of a Boolean function is unique
(see, e.g., [6]), and thus we can define the degree d(f) of a Boolean function
f as the degree of the polynomial that represents it. Note that the constant 0
and 1 functions are the only Boolean functions of degree 0, whereas projections
(that correspond to the selection of a single attribute and that are represented
by variables xi) and their negations (that are represented by polynomials of the
form xi ⊕ 1) are the only functions of degree 1.

A Boolean function f : Bm → B is said to be affine if d(f) ≤ 1, i.e., there
exist ω0, ω1, . . . , ωm ∈ B such that

f(x1, . . . , xm) =
m∑

i=1

ωi · xi + ω0.
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The set of affine functions of arity m is denoted by Lm, so that L =
⋃

m≥0 Lm

is the set of all affine functions. If ω0 = 0, then such an affine function is said to
be linear. Thus, affine functions are either linear functions or their negations.

Our interest in this class of affine functions is motivated by the characteriza-
tion of AP Boolean functions (i.e., in case when items are described by Boolean
attributes) [4]: AP Boolean functions are exactly those Boolean functions that
are affine, i.e., AP = L.

In the following sections, we will generalize this result to the case of nomi-
nal attributes. This is not a straightforward extension of the Boolean case as we
shall see. Before doing that, we provide an illustrative example that puts nominal
analogical proportions in another perspective, and that reveals the close relation-
ship of analogical proportions and taxonomic trees, as recently suggested in the
Boolean case [1].

3.3 An Illustrative Example

In the illustrative example below, items are assumed to be described by means
of three attributes (i.e., m = 3), numbered from 1 to 3, namely: 1 = shape,
2 = color, and 3 = weight, where respectively X1 = {circle (c), square (s)},
X2 = {blue (b), red (r), yellow (y)}, and X3 = {light (l), heavy (h)}. Due to
space constraints, we chose a small example, with a non-Boolean nominal
attribute, namely, X2 with |X2| = 3. There are two class labels referred to
by 0 and 1.

Table 1 enumerates the 12 items, a,a′,b, . . . , f ′, that can be distinguished on
the basis of the three attributes above. Moreover, we consider 4 ways of classi-
fying them into the two classes, each of which corresponding to the 4 functions
g1, g2, g3, g4.

Table 1. Items, attributes, and classifications.

Items shape color weight g1 g2 g3 g4

a c b l 1 1 1 1

a′ c b h 1 1 0 0

b c r l 1 0 0 1

b′ c r h 0 0 0 0

c c y l 0 1 0 1

c′ c y h 0 1 0 0

d s b l 1 0 1 1

d′ s b h 1 0 0 0

e s r l 1 1 0 1

e′ s r h 0 1 0 0

f s y l 0 0 0 1

f ′ s y h 0 0 0 0
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Clearly, g1 is not an AP function since: i) a : a′ :: b : b′ holds, ii) 1 : 1 :: 1 : x
is solvable (just take x = 1), iii) but g1(b′) = 0 is not the solution of 1 : 1 :: 1 : x.

The function g2 looks more promising, since the 4-tuple a, a′, b, b′ is associ-
ated with 1 : 1 :: 0 : 0, which holds as an analogical proportion. However, looking
at a, b′, d, e′ we again have an analogical proportion on the three attributes.
However this is associated with 1 : 0 :: 0 : 1 which is not an analogical propor-
tion. Nonetheless, 1 : 0 :: 0 : x is not a solvable proportion: as such, it cannot
be considered as a counter-example for proving that g2 is not AP. In fact, by
an exhaustive search we can see that there is no counter-example in the table
showing that g2 is not AP. Thus, g2 is AP: class 1 can be described by the equiv-
alence c ≡ ¬r (since ¬r = b ∨ y and ¬c = s here), and class 0 can be described
by c ⊕ ¬r.

For g3, we can consider the following four tuples: c = (c, y, l) with g3(c) = 0,
c′ = (c, y, h) with g3(c′) = 0, d = (s, b, l) with g3(d) = 1, and d′ = (s, b, h) with
g3(d′) = 0. In this case, we have c : c′ :: d : d′ and solvable(g3(c), g3(c′), g3(d)),
but g3(c) : g3(c′) :: g3(d) : g3(d′) does not hold. This shows that g3 is not AP.
For g3, class 1 corresponds to the blue light objects, which clearly corresponds
to a monomial of degree 2.

The situation is simpler for g4, where class 1 corresponds to the light objects.
It is not difficult to see that it is essentially unary, and thus an AP function.

What happens with these different classification functions is better under-
stood by looking at classification trees, which is the topic of the next subsection.

3.4 Taxonomic Trees

A table describing all the possible items that can be distinguished in terms of a
set of nominal attributes can be straightforwardly associated with a taxonomic
tree, taking the attributes in some order. The tree corresponding to Table 1, with
two binary attributes and one ternary one, is given in Fig. 1. At the third level,
we retrieve the 2 ·2 ·3 = 12 items from a to f ′. They can be encoded by following
the path from the root, using a standard convention: at each level the edges are
numbered from the left from 0 to 1, or to 2. Thus, for example, b′ is associated
with 011, corresponding to attribute values c, r,h; see Fig. 1.

A large number of analogical proportions are hidden between the leaves of
such a taxonomic tree. Namely, in our example with 12 items, there are exactly
30 distinct analogical proportions on the three attributes (where all the elements
in the 4-tuples are distinct). For instance, we have a : a′ :: b : b′, or c : c′ :: d : d′.
This can be checked by observing that here these analogical proportions involving
3 attributes are either

– of the form uxt : uyt :: vxt : vyt (with one constant attribute value), or
– of the form uxt : vxz :: uyt : vyz (with no constant attribute value),

where t, u, v, x, y, z are attribute values, one by attribute in each tuple (such as
tux), since an analogical proportion can involve at most 2 distinct values for each
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attribute. The ordering of attributes has no special meaning, but is the same in
each tuple. The 2 above patterns remain the same under symmetry. Note that

uxt : uxt :: vxt : vxt and uxt : vyt :: uxt : vyt

are not considered, since they hold trivially by identity or reflexivity. Note also
that the form uxt : vxz :: uyt : vyz is the same as uxt : uyt :: vxz : vyz by
central permutation (even if the number of constant attributes in the first and
second pairs of tuples vary from two to one).
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Fig. 1. Example of classification tree.

Reading this taxonomic tree horizontally, there is quite a number of analog-
ical proportions that hold between 4-tuples of items. Assume for a short while
that we only have a tree induced by 3 binary attributes. Then each of the two
forms uxt : uyt :: vxt : vyt and uxt : vxz :: uyt : vyz yields 6 analogical pro-
portions, i.e., in this case we have 12 distinct non-trivial analogical proportions.
Indeed, considering the first form uxt : uyt :: vxt : vyt, there are 3 · 2 = 6 possi-
ble choices of value for t in case of 3 binary attributes, the possible instantiations
of ux, uy, vx, vy being all equivalent due to analogical proportion postulates.
For the second form uxt : vxz :: uyt : vyz, we can observe that uxt and uyt
(as well as vxz and vyz) differ only on one attribute value. There are 6 possi-
ble instantiations for this attribute in case of 3 binary attributes, the possible
instantiations of the two remaining binary attributes being all equivalent.

In case of two binary attributes and one ternary attribute as in the example,
a similar counting can be made. For the first form, we now have 1 · 3 + 2 · 2 =
7 possible instantiations for t. Moreover when t is not a value of the ternary
attribute, we have 3 possible ways of instantiating ux, uy, vx, vy. Altogether
the first form then yields 1 · 3 + 2 · 2 · 3 = 15 analogical proportions. For the
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second form there are 3 ways of instantiating the “changing attribute” if it is
the ternary one; and 2 · 2 if it is a binary attribute, in this later case there
are 3 possible ways of instantiating the remaining attributes. Again, we get 15
analogical proportions, and a total of 30 distinct analogical proportions.

As suggested by the above example, the number of analogical proportions
increases rapidly with the cardinalities of the attribute domains and with the
number of levels in the tree. This suggests how important the presence of ana-
logical proportions in a classification process is.

Given one of our functions gi, nothing forbids to consider its value as another
attribute (an n-ary one if there are n classes). So instead of considering a, we
consider (a, gi(a)) as an (m + 1)-tuple. We can then carry on the building of
the tree as the dotted part in Fig. 1 associated with the example. But now,
a choice has to be made between the different classification options for each
item corresponding to a path from the root to a leaf: the classification option
is related to the value of gi (in our case 0 or 1). If the class assignment is not
“well-balanced” the resulting function will not be AP, as in Fig. 1 where we can
clearly observe that 0001 : 0011 :: 0101 : 0110 does not hold (on the 4th digit).

4 Local Description of HAP Functions: Almost Affine
Functions

Recall that B denotes the 2-element field with ⊕ (addition modulo 2) and ⊗
(multiplication modulo 2). In the Boolean case, i.e., when X1 = · · · = Xm =
X = B, the class of AP functions was completely described in [4], where the
following theorem was proved:

Theorem 4.1. A function f : Bm → B is AP if and only if it is affine. In
particular, the class of AP functions constitutes a clone of Boolean functions,
i.e., it contains all projections and it is closed under compositions.

To extend this result to HAP functions in the arbitrary nominal case (see
Subsect. 3.1), we shall make use of the following useful observations. From the
definition of HAP functions it follows that the restriction f |S of a HAP function
f to any subset S := S1 × · · · × Sm ⊆ X = X1 × · · · × Xm with |Si| ≤ 2
(1 ≤ i ≤ m) must have at most 2 distinct values. Therefore, every such function
can be thought of as a Boolean function by a suitable renaming of variable and
function values. Thus, from Theorem 4.1, we have the following corollary.

Corollary 4.2. Let X be a set, let S1, . . . , Sm be 2-element sets, and set S :=
S1×· · ·×Sm. A function f : S → X is HAP if and only if there exist ϕf : {0, 1} →
X and ϕf

i : Si → {0, 1} such that

f |S = ϕf (ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm) ⊕ c). (1)

Remark 4.3. Note that the term ⊕ c can be encoded into ϕf so that (1) can be
simplified into

f |S = ϕf (ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm)). (2)
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We will generalize these results by introducing the notion of “almost affine”
functions, and show that HAP functions are exactly the almost affine functions.

Definition 4.4. A function f : X → X is almost affine if for any Si ⊆ Xi

with |Si| ≤ 2, and S := S1 × · · · × Sm, there exist ϕf,S : {0, 1} → Im(f |S) and
ϕf,S
i : Si → {0, 1} such that f |S = ϕf,S(ϕf,S

1 (x1) ⊕ · · · ⊕ ϕf,S
m (xm)).

Theorem 4.5. A function f : X → X is HAP if and only if it is almost affine.

Proof. By Corollary 4.2, we know that every HAP function is almost affine.
Moreover, by definition, every restriction f |S of an almost affine function f is
AP on S ⊆ X. Therefore, f is HAP. ��

As we will see, this description is quite useful. However, it has some limita-
tions since it requires a local inspection on each subset

S = S1 × · · · × Sm ⊆ X = X1 × · · · × Xm.

In the next section we provide a global description of almost affine functions,
and thus a description of HAP functions.

5 Global Description of HAP Functions: Quasi-Linear
Functions

In the previous section, we showed that the class of HAP functions f : X → X
coincides exactly with the class of almost affine functions. In this section we will
show that the HAP functions are either essentially unary or quasilinear.

Definition 5.1. A function f : X → X is quasilinear if there exist ϕ : {0, 1} →
X and ϕi : Xi → {0, 1} (1 ≤ i ≤ m) such that f = ϕ(ϕ1(x1) ⊕ · · · ⊕ ϕm(xm)).

We are going to make use of Jablonski’s Fundamental Lemma (see, e.g. [14]).

Lemma 5.2 (Jablonski’s Fundamental Lemma).

1. Let f : Xm → X be a function that has at least two essential arguments and
|Im(f)| = � > 2. Then there exist sets Si ⊆ X (1 ≤ i ≤ m) with |Si| ≤ 2 such
that for S := S1 × · · · × Sm, |Im(f |S)| ≥ 3.

2. More generally, let f : X → X be a function that has at least two essential
arguments and |Im(f)| = � > 2. Then for any k with 2 < k ≤ �, there exist
sets Si ⊆ Xi (1 ≤ i ≤ m) with |Si| ≤ k − 1 such that for S := S1 × · · · × Sm,
|Im(f |S)| ≥ k.

Lemma 5.3. Let f : X → X. Assume that for all Si ⊆ Xi with |Si| ≤ 2 (1 ≤
i ≤ m), and S := S1×· · ·×Sm, we have that |Im(f |S)| ≤ 2. Then f is essentially
unary or |Im(f)| ≤ 2.
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Proof. Suppose, to the contrary, that f has at least two essential arguments and
|Im(f)| = � ≥ 3. By Lemma 5.2, item 2., there exist sets Si ⊆ Xi (1 ≤ i ≤ m)
with |Si| ≤ 2 such that for S := S1 × · · · × Sm, |Im(f |S)| ≥ 3. We have reached
a contradiction. ��

In other words, Lemma 5.3 asserts that an almost affine function f is either
essentially unary or has a range of at most two elements.

Proposition 5.4. A function f : X → X is almost affine if and only if it is
essentially unary or quasilinear.

Proof. Assume that f : X → X is almost affine and has at least two essential
arguments. Then |Im(f)| ≤ 2 by Lemma 5.3.

We are going to show that for all Si ⊆ Xi (1 ≤ i ≤ m) and S := S1×· · ·×Sm,
there exist maps ϕf,S : {0, 1} → X and ϕf,S

i : Si → {0, 1} such that

f |S = ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm)
)
.

The claim holds whenever |Si| ≤ 2 (1 ≤ i ≤ m) by definition.
We proceed with an inductive argument. Assume that the claim holds for all

sets Si ⊆ Xi (1 ≤ i ≤ m) with |Si| ≤ ki for some k1, . . . , km with 2 ≤ ki ≤ |Xi|.
We will show that if j ∈ {1, . . . , m} and kj < |Xj |, then the claim holds also for
all sets Si ⊆ Xi (1 ≤ i ≤ n) with |Si| ≤ ki (i �= j) and |Sj | = kj + 1.

So, let Si ⊆ Xi (1 ≤ i ≤ m) with |Si| ≤ ki (i �= j) and |Sj | = kj + 1, and
write S := S1 × · · · × Sm. Assume that a, b ∈ Sj , a �= b. Let S′

j := Sj \ {b} and
S∗
j := {a, b}, and let

S′ := S1 × · · · × Sj−1 × S′
j × Sj+1 × · · · × Sm,

S∗ := S1 × · · · × Sj−1 × S∗
j × Sj+1 × · · · × Sm,

T := S1 × · · · × Sj−1 × {a} × Sj+1 × · · · × Sm = S′ ∩ S∗,
T ′ := S1 × · · · × Sj−1 × {b} × Sj+1 × · · · × Sm = S \ S′.

By the inductive hypothesis, there exist maps ϕf,S′
, ϕf,S′

i (1 ≤ i ≤ m) and
ϕf,S∗

, ϕf,S∗
i (1 ≤ i ≤ m) such that f |S′ = ϕf,S′(

ϕf,S′
1 (x1) ⊕ · · · ⊕ ϕf,S′

m (xm)
)
,

and f |S∗ = ϕf,S∗(
ϕf,S∗
1 (x1) ⊕ · · · ⊕ ϕf,S∗

m (xm)
)
.

Let now ϕf,S := ϕf,S′
, ϕf,S

i := ϕf,S′
i for i �= j, and define ϕf,S

j : Sj → {0, 1} as

the extension of ϕf,S′
j : S′

j → {0, 1} that satisfies the condition ϕf,S
j (a) = ϕf,S

j (b)

if and only if ϕf,S∗
j (a) = ϕf,S∗

j (b).
It remains to show that f |S = ϕf,S

(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm)
)
. Let x =

(x1, . . . , xm) ∈ S. If x ∈ S′ then

ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm)
)

= ϕf,S′(
ϕf,S′
1 (x1) ⊕ · · · ⊕ ϕf,S′

m (xm)
)

= f(x).
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Assume now that x ∈ S\S′ = T ′. Then xj = b, so x ∈ S∗. If ϕf,S∗
j (a) = ϕf,S∗

j (b),
then also ϕf,S

j (a) = ϕf,S
j (b), and we have

ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

j (b) ⊕ · · · ⊕ ϕf,S
m (xm)

)

= ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

j (a) ⊕ · · · ⊕ ϕf,S
m (xm)

)

= ϕf,S∗(
ϕf,S∗
1 (x1) ⊕ · · · ⊕ ϕf,S∗

j (a) ⊕ · · · ⊕ ϕf,S∗
m (xm)

)

= ϕf,S∗(
ϕf,S∗
1 (x1) ⊕ · · · ⊕ ϕf,S∗

j (b) ⊕ · · · ⊕ ϕf,S∗
m (xm)

)
f(x).

If ϕf,S∗
j (a) �= ϕf,S∗

j (b), i.e., ϕf,S∗
j (a) ⊕ 1 = ϕf,S∗

j (b), then also ϕf,S
j (a) ⊕ 1 =

ϕf,S
j (b), and we have

ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

j (b) ⊕ · · · ⊕ ϕf,S
m (xm)

)

= ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

j (a) ⊕ 1 ⊕ · · · ⊕ ϕf,S
m (xm)

)

= ϕf,S∗(
ϕf,S∗
1 (x1) ⊕ · · · ⊕ ϕf,S∗

j (a) ⊕ 1 ⊕ · · · ⊕ ϕf,S∗
m (xm)

)

= ϕf,S∗(
ϕf,S∗
1 (x1) ⊕ · · · ⊕ ϕf,S∗

j (b) ⊕ · · · ⊕ ϕf,S∗
m (xm)

)
f(x).

Therefore ϕf,S
(
ϕf,S
1 (x1) ⊕ · · · ⊕ ϕf,S

m (xm)
)

= f(x) for all x ∈ S. ��
Example 5.5. Note that both g2 and g4 of Subsect. 3.3 are in fact HAP functions,
since both are quasilinear. Indeed, g2 and g4 can be represented as

g2(x1, x2, x3) = ϕ(ϕ1(x1) ⊕ ϕ2(x2) ⊕ ϕ3(x3))

with

ϕ1 : {c, s} → {0, 1}, c �→ 0, s �→ 1,

ϕ2 : {b, r, y} → {0, 1}, b �→ 1, r �→ 0, y �→ 1,

ϕ3 : {l,h} → {0, 1}, l �→ 0, h �→ 0,

ϕ : {0, 1} → {0, 1}, 0 �→ 0, 1 �→ 1

and
g4(x1, x2, x3) = ψ(ψ1(x1) ⊕ ψ2(x2) ⊕ ψ3(x3))

with

ψ1 : {c, s} → {0, 1}, c �→ 0, s �→ 0,

ψ2 : {b, r, y} → {0, 1}, b �→ 0, r �→ 0, y �→ 0,

ψ3 : {l,h} → {0, 1}, l �→ 1, h �→ 0,

ψ : {0, 1} → {0, 1}, 0 �→ 0, 1 �→ 1.

Moreover, g4 is essentially unary because

g4(x1, x2, x3) = γ(x3)

with γ : {l,h} → {0, 1}, l �→ 1, h �→ 0.
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We have seen that the class of HAP functions on X coincides with the class
of almost affine functions on X. In the case when X1 = · · · = Xm = X, this
class is exactly Burle’s clone of quasilinear functions [3], thus generalizing the
last assertion of Theorem 4.1.

Proposition 5.6. For every finite X, the class of HAP functions on X con-
stitutes a clone, i.e., it contains every projection on X and it is closed under
forming compositions: if f : Xn → X and each gi : Xm → X is HAP on X, then
so is f ′ = f(g1, . . . , gn) : Xm → X.

6 Conclusion

The above results describe the class of hard analogy-preserving functions over
finite domains, including the Boolean case as a particular case. The case of non-
finite domains remains open. Still it is an important step towards a better under-
standing of analogical inference. The analogy-preserving functions are those for
which analogical inference never fails for predicting their values. Still the set of
situations where analogical inference gives good predictions is much larger, as
shown by experiments, since a good prediction does not require that all predic-
tions given by triplets are the same, but that a majority of triplets give the good
prediction. However, these theoretical results contribute to a better understand-
ing of analogical inference and show that applying analogical proportion-based
inference amounts to enforcing linearity as much as possible, at least in a local
manner. Analogical proportions are pervasive, as shown by their abundance in
taxonomic trees, and are thus an important notion for reasoning from data.
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Abstract. We consider the problem of quantitatively assessing the con-
flict between knowledge bases in knowledge merging scenarios. Using the
notion of Craig interpolation we define a series of disagreement mea-
sures and analyse their compliance with properties proposed in previous
work by Potyka. We study basic complexity theoretic questions in that
scenario and discuss the suitability of our approaches.

Keywords: Disagreement measure · Craig interpolation

1 Introduction

Inconsistencies arise easily whenever knowledge has to be aggregated from dif-
ferent sources [2,3,14]. Approaches to belief merging and information fusion
address these issues by providing computational approaches for automatically
resolving these issues in some sensible way. These fields bear a close relationship
with the fields of judgement and preference aggregation [8,20] and also feature
their own version of Arrow’s impossibility result [1], insofar that there cannot be
any “rational” belief merging approach [7]. This calls for semi-automatic meth-
ods that take human background knowledge into account when knowledge has
to be merged in order not to remove important pieces of information. In order to
support the task of semi-automatic merging, we investigate approaches to anal-
yse belief merging settings, i. e., approaches that can explain reasons for incon-
sistency and assess their severity. More specifically, we investigate disagreement
measures [17], i. e., functions that take a knowledge base profile P = 〈K1, . . . ,Kn〉
as input and return a non-negative value that quantifies the severity of the dis-
agreement between the different sources of information modelled by K1, . . . ,Kn.
Disagreement measures are closely related to inconsistency measures [9,18,19],
which themselves are functions that assess the severity of inconsistency in a sin-
gle knowledge base. Disagreement and inconsistency measures can be used to
help in debugging inconsistencies in semi-automated settings [4,5,10].

In this paper, we develop novel disagreement measures based on the concept
of Craig interpolation [6]. Given two knowledge bases K1, K2 with K1∪K2 being
inconsistent, an interpolant is a formula that concisely characterises an aspect of
this inconsistency (we will provide formal definitions later). Thus, interpolants
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play a similar role in analysing the disagreement between two knowledge bases
as minimal inconsistent subsets do in analysing the inconsistency within a sin-
gle knowledge base. As a matter of fact, minimal inconsistent subsets play a
dominant role in many approaches to measuring inconsistency [12,15,21] and,
therefore, it seems plausible to explore the use of interpolants in measuring dis-
agreement. In order to do that, we consider the set of all interpolants (up to
semantical equivalence) and define measures based on the size of that set and on
the information content of the weakest/strongest interpolants (which are well-
defined concepts due to the fact that the set of interpolants form a complete
lattice). We show that our approaches provide meaningful results and comply
with many of the rationality postulates introduced in [17]. We also undertake
a small study of the computational complexity of several tasks relevant for our
work, showing that (unsurprisingly) all of those are intractable. In summary, the
contributions of this paper are as follows:

1. We make some general observations on interpolants in order to establish a
framework suitable for measuring disagreement (Sect. 3).

2. We present novel disagreement measures based on interpolants (Sect. 4).
3. We investigate the compliance of these disagreement measures with rational-

ity postulates from the literature (Sect. 5).
4. We investigate the computational complexity of several tasks pertaining to

our disagreement measures (Sect. 6).

We introduce necessary preliminaries in Sect. 2 and conclude in Sect. 7.
We omit several proofs due to space restrictions. These can be found in an

online appendix1.

2 Preliminaries

Let At be some fixed propositional signature, i. e., a (possibly infinite) set of
propositions, and let L(At) be the corresponding propositional language con-
structed using the usual connectives ∧ (conjunction), ∨ (disjunction), → (impli-
cation), and ¬ (negation). A literal is a proposition p or a negated proposition
¬p.

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K
be the set of all knowledge bases.

A clause is a disjunction of literals. A formula is in conjunctive normal form
(CNF) if the formula is a conjunction of clauses. If Φ is a formula or a set of
formulas we write At(Φ) to denote the set of propositions appearing in Φ. For a
set Φ = {φ1, . . . , φn} let

∧
Φ = φ1 ∧ . . . ∧ φn and ¬Φ = {¬φ | φ ∈ Φ}.

Semantics for a propositional language is given by interpretations where an
interpretation ω on At is a function ω : At → {true, false}. Let Ω(At) denote the
set of all interpretations for At. An interpretation ω satisfies (or is a model of)

1 http://mthimm.de/misc/rst dismes proofs.pdf.

http://mthimm.de/misc/rst_dismes_proofs.pdf
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an atom a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The satisfaction
relation |= is extended to formulas in the usual way. For Φ ⊆ L(At) we also
define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.

In the following, let Φ,Φ1, Φ2 be formulas or sets of formulas. Define the set
of models Mod(Φ) = {ω ∈ Ω(At) | ω |= Φ}. We write Φ1 |= Φ2 if Mod(Φ1) ⊆
Mod(Φ2). Φ1, Φ2 are equivalent, denoted by Φ1 ≡ Φ2, if and only if Mod(Φ1) =
Mod(Φ2). Define the closure Cn(Φ) of a formula or set of formulas Φ via Cn(Φ) =
{φ | Φ |= φ}. If Mod(Φ) = ∅ we also write Φ |=⊥ and say that Φ is inconsistent
(or unsatisfiable).

3 Craig Interpolants

An important result in first-order logic is Craig’s Interpolation Theorem [6].

Theorem 1 [6]. Let φ, ψ be closed formulæ such that φ |= ψ. Then there exists
a closed formula I containing only predicate symbols, function symbols and con-
stants occurring in both φ and ψ such that φ |= I and I |= ψ.

Every formula I satisfying the property in Theorem 1 will be called an inter-
polant of φ and ψ. In the context of propositional logic, and of finite sets of
propositional formulas, the concept of interpolant specializes as follows:

Definition 2. Let Φ and Φ′ be finite sets of propositional logic formulas. A
formula φ is called an interpolant of Φ wrt. Φ′ if

1. Φ |= φ,
2. Φ′ ∪ {φ} |=⊥, and
3. At(φ) ⊆ At(Φ) ∩ At(Φ′)

Consider, for instance, two sets Φ1 = {r ∨ ¬p,¬r ∨ ¬q} and Φ2 = {p, q}. The
formula p → ¬q is an interpolant of Φ1 wrt Φ2, as Φ1 |= p → ¬q, Φ2 ∪ {p →
¬q} |=⊥ and At({p → ¬q}) = {p, q} ⊆ At(Φ1) ∩ At(Φ2).

Clearly, two finite sets Φ and Φ′ of formulas in propositional logic have an
interpolant if and only if Φ ∪ Φ′ is unsatisfiable. Let I(Φ,Φ′) denote the set of
interpolants of Φ and Φ′.

Let ϕ be a formula and x a propositional symbol, we write ϕ[x �→ �] to
denote that all occurrences of x in ϕ are replaced by �. Analogously, ϕ[x �→⊥]
means that all ocurrences of x are replaced by ⊥. For instance, for the formula
ϕ = p ∨ ¬q, we get ϕ[p �→ �] ≡ � ∨ ¬q.

Definition 3. Let φ be a propositional formula and x ∈ At(φ). We use the
following notation:

– ∃xφ := φ[x �→ ⊥] ∨ φ[x �→ �];
– ∀xφ := φ[x �→ ⊥] ∧ φ[x �→ �].

Let Φ be a finite set of propositional formulæ, and let φ be the conjunction of all
the formulæ in Φ. For every x ∈ At(φ), we use the following notation ∃xΦ :=
∃xφ, ∀xΦ := ∀xφ.
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Propositional logic allows uniform interpolation: For every formula φ and every
set {y1, . . . , ym} ⊆ At(φ) there exists a propositional formula IΦ such that
At(IΦ) ⊆ {y1, . . . , ym} with the property that for every formula φ′ such that
φ ∧ φ′ |=⊥ and {y1, . . . , ym} = At(φ) ∩ At(φ′), IΦ is an interpolant of φ and φ′.
This follows from the following result (here formulated for finite sets of proposi-
tional formulæ).

Proposition 1. Let Φ be a finite set of propositional formulas. Assume that
At(Φ) = {x1, . . . , xn, y1, . . . , ym}. Then the following hold:

1. Φ |= ∃x1 . . . ∃xnΦ.
2. Let ψ be a propositional formula with At(ψ) ⊆ {y1, . . . , ym} such that Φ |= ψ.

Then ∃x1 . . . ∃xnΦ |= ψ.
3. ∀x1 . . . ∀xnΦ |= Φ (i.e. ∀x1 . . . ∀xnΦ |= φi for every formula φi ∈ Φ).
4. Let ψ be a formula with At(ψ) ⊆ {y1, . . . , ym} such that ψ |= Φ.

Then ψ |= ∀x1 . . . ∀xnΦ.

In the following, we define some auxiliary notions for interpolants and make
some first observations regarding the structure of I(Φ,Φ′).

Proposition 2. Let Φ and Φ′ be finite sets of formulas.

1. If Φ ∪ Φ′ �|=⊥ then I(Φ,Φ′) = ∅.
2. If Φ |=⊥ and Φ′ |=⊥ then I(Φ,Φ′) = L(At(Φ) ∩ At(Φ′)).
3. If Φ |=⊥ and Φ′ �|=⊥ then I(Φ,Φ′) = L(At(Φ) ∩ At(Φ′)) ∩ (¬Cn(Φ′) ∪ {φ |

φ |=⊥}).
4. If Φ �|=⊥ and Φ′ |=⊥ then I(Φ,Φ′) = L(At(Φ) ∩ At(Φ′)) ∩ Cn(Φ).

Proof. (1) Assume that I(Φ,Φ′) �= ∅. Then there exists a formula φ such that
Φ |= φ and Φ′ ∪ {φ} |=⊥. Hence, Φ ∪ Φ′ |=⊥.

(2) If Φ |=⊥ and Φ′ |=⊥ then (i) Φ |= φ for all φ ∈ L(At(Φ) ∩ At(Φ′)) and
(ii) Φ′ ∪ {φ} |=⊥ for all φ ∈ L(At(Φ) ∩ At(Φ′)).

(3) If Φ |=⊥ then Φ |= φ for all φ ∈ L(At(Φ) ∩ At(Φ′)). If Φ′ �|=⊥ then
Φ′ ∪ {φ} |=⊥ for all φ such that (i) φ = ¬φ′, where φ′ ∈ Cn(Φ′) or (ii) φ |=⊥.

(4) If Φ �|=⊥ and Φ′ |=⊥ then a formula φ is an interpolant iff Φ |= φ and
φ ∈ L(At(Φ) ∩ At(Φ′)).

As the notion of an interpolant is a syntactical one, the set I(Φ,Φ′) also contains
infinite syntactical variants for each interpolant (except for the case where Φ∪Φ′

is consistent); in particular, if φ ∈ I(Φ,Φ′) then for every formula φ′ ∈ L(At(Φ)∩
At(Φ′)), if φ ≡ φ′ then φ′ ∈ I(Φ,Φ′). However, we will consider the following
finite representation of I(Φ,Φ′). For that, let [·] : L(At) → Ω(At) be a function
that maps each formula to its equivalence class w.r.t. ≡.

Definition 4. Let Φ and Φ′ be finite set of formulas. We denote by SI(Φ,Φ′)
the set of equivalence classes of interpolants wrt. semantical equivalence, i. e.,

SI(Φ,Φ′) = {[φ] | φ ∈ I(Φ,Φ′)}
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In the following, by abuse of notation we refer to [φ] also as an interpolant if φ
is an interpolant.

Remark 1. If the sets Φ,Φ′ of propositional formulæ are finite then the set
At(Φ) ∩ At(Φ′) is finite, so the set of all equivalence classes of formulæ over
this set of atoms is finite and has at most 22

|At(Φ)∩At(Φ′)|
elements, thus SI(Φ,Φ′)

is finite.

It can be easily seen that the elements of SI(Φ,Φ′) form a lattice wrt. |= and
the operations ∧ and ∨. Formally, we can make the following observations.

Proposition 3. Let Φ and Φ′ be finite set of formulas.

1. If [φ], [φ′] ∈ SI(Φ,Φ′) then [φ ∧ φ′] ∈ SI(Φ,Φ′).
2. If [φ], [φ′] ∈ SI(Φ,Φ′) then [φ ∨ φ′] ∈ SI(Φ,Φ′).
3. There is a uniquely defined [φw] ∈ SI(Φ,Φ′) with φ′ |= φw for all [φ′] ∈

SI(Φ,Φ′).
4. There is a uniquely defined [φs] ∈ SI(Φ,Φ′) with φs |= φ′ for all [φ′] ∈

SI(Φ,Φ′).

Conditions 1 and 2 of the proposition above are trivial. We illustrate the
intuition of both conditions 3 and 4 with an example. Consider the knowledge
bases K1 = {a, b} and K2 = {a,¬b}. We have that

SI(K1,K2) = {[a ∧ b], [b], [a → b], [a ↔ b]}.

Note that every formula in SI(K1,K2) implies a → b (the φω of condition 3).
Similarly, the formula a∧ b implies all formulae in SI(K1,K2), which makes a∧ b
the formula [φs] of condition 4.

Remark 2. If the sets Φ,Φ′ of propositional formulæ are finite then as SI(Φ,Φ′)
is finite, (SI(Φ,Φ′),∧,∨) is a complete lattice.

We call [φw] the weakest interpolant and [φs] the strongest interpolant. It
can be easily seen that

[φw] =

⎡

⎣
∨

[φ]∈SI(Φ,Φ′)

φ

⎤

⎦ [φs] =

⎡

⎣
∧

[φ]∈SI(Φ,Φ′)

φ

⎤

⎦

We abbreviate the weakest interpolant of SI(Φ,Φ′) by Weakest(Φ,Φ′) and the
strongest interpolant of SI(Φ,Φ′) by Strongest(Φ,Φ′). If SI(Φ,Φ′) = ∅ both
notions are undefined. We conclude this section with some further observations
that will be useful in the remainder of the paper.

Proposition 4. Let Φ, Φ′, and Φ′′ be finite set of formulas.

1. I(Φ,Φ′) ⊆ I(Φ,Φ′ ∪ Φ′′)
2. I(Φ,Φ′) ⊆ I(Φ ∪ Φ′′, Φ′)
3. SI(Φ,Φ′) ⊆ SI(Φ,Φ′ ∪ Φ′′)
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4. SI(Φ,Φ′) ⊆ SI(Φ ∪ Φ′′, Φ′)
5. Weakest(Φ,Φ′) |= Weakest(Φ,Φ′ ∪ Φ′′)
6. Weakest(Φ,Φ′) |= Weakest(Φ ∪ Φ′′, Φ′)
7. Strongest(Φ,Φ′ ∪ Φ′′) |= Strongest(Φ,Φ′)
8. Strongest(Φ ∪ Φ′′, Φ′) |= Strongest(Φ,Φ′)

Proof. Considering item 1, for φ ∈ I(Φ,Φ′), from Φ′ ∪{φ} |=⊥ it directly follows
Φ′ ∪Φ′′ ∪{φ} |=⊥. The other two conditions of Definition 2 remain valid as well.
Item 2 is proven analogously and the remaining items follow directly from 2. ��

4 Disagreement Measures Based on Interpolation

We consider the scenario of measuring disagreement between multiple knowledge
bases [17] using interpolation. For that, we denote a knowledge base profile by
P = 〈K1, . . . ,Kn〉 with K1, . . . ,Kn being knowledge bases. Furthermore, for P of
this form and another knowledge base K, we denote by P ◦ K the concatenation
of P with K, i. e., P ◦ K = 〈K1, . . . ,Kn,K〉. Furthermore, for k ∈ N define
P ◦k K = (P ◦k−1 K) ◦ K and P ◦1 K = P ◦ K. Let K denote the set of all
knowledge base profiles. Then Potyka [17] defines a disagreement measure as
follows. Let R

∞
≥0 be the set of non-negative real values including ∞.

Definition 5. A disagreement measure D is a function D : K → R
∞
≥0 that

satisfies

Consistency D(P ) = 0 iff
⋃

P is consistent.
Symmetry D(〈K1, . . . ,Kn〉) = D(〈Kσ(1), . . . ,Kσ(n)〉) for each permutation σ of

{1, . . . , n}.

We also write D(K1, . . . ,Kn) for D(〈K1, . . . ,Kn〉) to ease notation.
In the following, we define a series of disagreement measures that work on

knowledge base profiles with exactly two elements. In order to generalise these
measures to arbitrary knowledge base profiles, we consider the following con-
structions.

Definition 6. Let D be a function D : K × K → R
∞
≥0. Then the induced sum-

measure DΣ : K → R
∞
≥0 and max-measure Dmax : K → R

∞
≥0 are defined via

DΣ(P ) =
∑

K,K′∈P

D(K,K′)

Dmax(P ) = max{D(K,K′) | K,K′ ∈ P}

In order to obtain valid disagreement measures using these two constructions, we
only need to require the Consistency property from the used two-place functions:

Consistency2 D(K1,K2) = 0 iff K1 ∪ K2 is consistent.
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Proposition 5. Let D be a function D : K × K → R
∞
≥0 that satisfies

Consistency2 then both DΣ and Dmax are disagreement measures.

Proof. We first consider DΣ. If
⋃

P is consistent then K ∪ K′ is consistent as
well for all K,K′ ∈ P , implying D(K,K′) = 0. It follows DΣ(P ) = Dmax(P ) = 0
showing Consistency. The property Symmetry is satisfied by construction.

Let us now define some concrete measure using interpolants.

Definition 7. Let K1,K2 be finite and consistent set of formulas. Define the
measure DSI : K × K → R

∞
≥0 via

DSI(K1,K2) = |SI(K1,K2)|

Observe that DSI satisfies Consistency2, as SI(K,K′) = ∅ if K ∪ K′ is consistent.
So DΣ

SI
and Dmax

SI
are disagreement measures according to Proposition 5.

Example 1. Consider the three following knowledge bases: K1 = {a, b},K2 =
{b, c} and K3 = {a,¬b}. Going for their interpolants we get:

– SI(K1,K2) = SI(K2,K1) = ∅, as K1 is consistent with K2;
– SI(K1,K3) = {[b], [a ∧ b], [a → b]} and SI(K3,K1) = {[¬b], [a → ¬b], [a ∧ ¬b]};
– SI(K2,K3) = {[b]} and SI(K3,K2) = {[¬b]}, as At({K2,K3}) = {b}.

Therefore, DΣ
SI

(K1,K2,K3) = 8 and Dmax
SI

(K1,K2,K3) = 3.

We consider another measure based on the information content of strongest
(resp. weakest) interpolant. We use the following definition of an information
measure, similar in spirit to the definition given in [11].

Definition 8. An information measure J is a function J : L(At) → R
∞
≥0 that

satisfies the following four properties:

1. J(�) = 0.
2. J(⊥) = ∞.
3. If φ |= φ′ then J(φ) ≥ J(φ′).
4. If φ �|= ⊥ then J(φ) < ∞.

Here is a simple example of an information measures:

JM (φ) =

⎧
⎨

⎩

0 if � |= φ
∞ if φ |=⊥
1/|Mod(φ)| otherwise

(1)

It is easy to verify that JM is indeed an information measure according to Defi-
nition 8.

Then consider the following measure.
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Definition 9. Let K1,K2 be finite and consistent set of formulas and J some
information measure. Define the following measure DJ : K × K → R

∞
≥0:

DJ(K1,K2) =

⎧
⎨

⎩

0 if K1 ∪ K2 is consistent
∞ if J(Weakest(K1,K2)) = 0
J(Strongest(K1,K2))
J(Weakest(K1,K2))

otherwise

Again, observe that DJ satisfies Consistency2 (independently of J). So DΣ
J and

Dmax
J are disagreement measures according to Proposition 5.

Example 2. Consider the three knowledge bases from Example 1: K1 =
{a, b},K2 = {b, c} and K3 = {a,¬b}. In the table below, we show their strongest
and weakest interpolants as well as their disagreement measure DJM

, where JM

is the information measure defined in (1) above.

(K1,K3) (K3,K1) (K2,K3), (K3,K2) (K1,K2) (K1,K2)
Weakest [¬a ∨ b] [¬a ∨ ¬b] [b] [¬b] - -
Strongest [a ∧ b] [a ∧ ¬b] [b] [¬b] - -

DJM
3 3 1 1 0 0

As K1 is consistent with K2 they do not have any interpolant, and therefore their
disagreement measure DJM

is zero. Note that each of the weakest interpolants
between K1 and K3 have each 6 models, while their strongest interpolants have
each 2 models.

5 Analysis

Potyka [17] proposes some desirable properties for disagreement measures,
inspired by similar properties from inconsistency measurement [18]. Let D
be some disagreement measure. For P = 〈K1, . . . ,Kn〉, we say that Ki, i ∈
{1, . . . , n}, is involved in a conflict, if there is C ⊆ {1, . . . , n} such that

⋃
j∈C Kj

is consistent but Ki ∪ ⋃
j∈C Kj is inconsistent.

Monotony (MO) D(K1, . . . ,Kn) ≤ D(K1 ∪ K′, . . . ,Kn).
Dominance (DO) For formulas φ, ψ with φ |= ψ and φ �|=⊥, D(K1 ∪

{φ}, . . . ,Kn) ≥ D(K1 ∪ {ψ}, . . . ,Kn).
Safe Formula Independence (SFI) For a formula φ with φ �|=⊥ and At(φ) ∩

At(
⋃ Ki) = ∅, D(K1 ∪ {φ}, . . . ,Kn) = D(K1, . . . ,Kn).

Adjunction Invariance (AI) For formulas φ, ψ, D(K1 ∪ {φ, ψ}, . . . ,Kn) =
D(K1 ∪ {φ ∧ ψ}, . . . ,Kn).

Tautology (TA) If K is a knowledge base with � |= K then D(P ) ≥ D(P ◦ K).
Contradiction (CO) If K is inconsistent then D(P ) ≤ D(P ◦ K).
Majority (MAJ) If K ∈ P is consistent and involved in a conflict, then there

is k ∈ N with D(P ◦k K) < D(P ).
Majority Agreement in the Limit (MAJL) If M is a maximal consistent

subset of
⋃

P then limk→∞ D(P ◦k M) = 0.
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Table 1. Compliance of investigated disagreement measures with postulates.

MO DO SFI AI TA CO MAJ MAJL

DΣ
SI ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗

Dmax
SI ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

DΣ
J ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

Dmax
J ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗

We check compliance of the disagreement measures DΣ
SI

,Dmax
SI

,DΣ
J and Dmax

J

against the disagreement measures postulates mentioned above. For this, we
introduce the concept of agreement between interpretations. We say that an
interpretation w agrees with an interpretation w′ modulo a set of propositional
symbols X iff w(p) = w′(p), for all p ∈ X. Note that the agreement relation is
symmetric, that is, if w agrees with w′ modulo X then w′ agrees with w modulo
X. We recall the Coincidence Lemma on propositional logic:

Lemma 1 (Coincidence Lemma). If two interpretations w and w′ agree with
At(α), then w |= α iff w′ |= α.

Proposition 6. Let K be knowledge base, and ϕ a consistent formula. If At(K)∩
At(ϕ) = ∅, At(α) ⊆ At(K) and K ∪ {ϕ} |= α then K |= α.

Proof. The case that K is inconsistent is trivial. So we focus on the case that
K is consistent. Let then w ∈ Mod(K) be an interpretation of K, we will show
that w ∈ Mod(α). As ϕ is consistent, it has at least one interpretation. Let w′ ∈
Mod(ϕ), and let w0 be the following interpretation: w0(p) = w(p), if p ∈ At(K);
and w0(p) = w′(p), otherwise. Note that w0 agrees with w modulo At(K), which
implies that w0 |= K. As At(K) ∩ At(ϕ) = ∅, we get that w0 agrees with w′

modulo At(ϕ). This implies that w0 |= ϕ. Therefore, as w0 |= K and w0 |= ϕ,
we have that w0 |= K ∪ {ϕ}. Thus, as K ∪ {ϕ} |= α, we get that w0 |= α. As,
by hypothesis, At(α) ⊆ At(K), we get that w agrees with w0 modulo At(α). This
implies, from Lemma 1, that w |= α.

Theorem 2. The compliance of the measures DΣ
SI

, Dmax
SI

, DΣ
J , and Dmax

J is as
shown in Table 1.

Note again that the proof of the above theorem can be found online2.
Potyka [17] has defined disagreement measures from inconsistency measures.

The idea is that the degree of disagreement in a knowledge profile would corre-
spond to measuring the degree of inconsistencies between the knowledge bases in
a knowledge profile. Potyka then discusses about some principles that disagree-
ment measures should satisfy, and show that many of the disagreement measures
induced from inconsistency measures fail to satisfy some of these principles. He

2 http://mthimm.de/misc/rst dismes proofs.pdf.

http://mthimm.de/misc/rst_dismes_proofs.pdf
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then proposes the disagreement measure Dη, based on the η-inconsistency mea-
sure [13], to capture some of these principles. Following this line, we analyse
here some desirable properties that disagreement measures on interpolants sat-
isfy. We show that Potyka’s Dη measure has some issues that are better handled
by disagreement measures based on interpolants.

We start by addressing the Adjunction Invariance axiom. Breach of this
axiom can lead to unintuitive behaviours. For instance, both {α ∧ ¬α} and
{α,¬α} should have the same disagreement value, since they present the same
conflicts. Most of the disagreement measures induced from inconsistency mea-
sures analysed by Potyka, including his Dη measure, is not adjunctive invariant.
On the other hand, as shown above, disagreement measures based on interpolants
are adjunctive invariant. This is because interpolants are not syntax sensitive,
instead they consider formulæ that share the same signature.

Potyka’s disagreement measure Dη plateaus when each knowledge base in a
knowledge profile conflicts with each other. As he himself criticizes, this scenario
makes the measurement purely dependable on the size of the knowledge profile.
Precisely, in that case Dη(P ) = (|P | − 1)/|P |. In this scenario, a disagreement
measure should still be able to distinguish an increase of conflicts, even if two
knowledge profiles have the same size. We illustrate it in the following example.

Example 3. Let P = 〈K1,K2,K3〉, and P ′ = 〈K1,K2,K4〉 be two knowledge pro-
files, where K1 = {a, b},K2 = {¬a, b},K3 = {¬b} and K4 = {¬b,¬a}. Note that
the four knowledge bases are consistent, but are inconsistent with each other.
For the Dη disagreement measure, we would have Dη(P ) = Dη(P ′) = 2/3.

Note that, against K1 and K2, the knowledge base K4 presents more conflicts
than K3. Thus, though both P and P ′ have the same size, P ′ is more conflicting
than P . A disagreement measure should be able to distinguish this difference of
conflicts. The Dη measure, however, does not distinguish these conflicts, since
when knowledge bases are pairwise inconsistent, the measure considers only the
size of the knowledge profile, which is rather simplistic.

On the other hand, disagreement measures on interpolants are able to dis-
tinguish this tenuous difference of conflicts. To illustrate this, consider the
DΣ

SI
measure. For the knowledge bases above we would get DSI(K1,K2) =

4,DSI(K1,K3) = 1,DSI(K1,K4) = 4,DSI(K2,K3) = 1 and DSI(K2,K4) = 4.
Thus, DSI(P )Σ = (4 + 1 + 1) ∗ 2 = 12 and DΣ

SI
(P ′) = (4 + 4 + 4) ∗ 2 = 24.

This shows that disagreement measures on interpolants, such as DΣ
SI

, present
ways of distinguishing sensible conflicts between knowledge bases. Towards this
end, a deeper investigation of which rational behaviours interpolants yield for
disagreement measures is a path worth to explore.

6 Computational Complexity

To conclude our analysis, we now investigate the computational complexity of
problems related to our novel measures.
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Let us first consider some general observations on interpolants, which seem—
to the best of our knowledge—not have been explicitly mentioned in the litera-
ture thus far.

Theorem 3. Let Φ and Φ′ be sets of formulas and let φ be a formula. Deciding
whether φ is an interpolant of Φ wrt. Φ′ is coNP-complete.

Proof. For coNP-membership, consider the complement problem of deciding
whether φ is not an interpolant of Φ wrt. Φ′ and define the following non-
deterministic algorithm. On instance (φ, Φ, Φ′) we guess a triple (ω, ω′, a) with
interpretations ω, ω′, and an atom a. Then φ is not an interpolant of Φ wrt. Φ′

if either

1. ω |= Φ and ω �|= φ,
2. ω′ |= Φ′ ∪ {φ}, or
3. a ∈ At(φ) \ (At(Φ) ∩ At(Φ′)).

Observe that each of these checks correspond to disproving one item of Def-
inition 2 and that they can be done in polynomial time. If follows coNP-
membership of the original problem.

For coNP-hardness, we reduce the problem Taut to our problem. An
instance to Taut consists of a formula ψ and it has to be decided whether ψ is
tautological. On input ψ we construct the instance (φ, Φ, Φ′) for our problem (let
a be a fresh atom not appearing in ψ) with

φ = a Φ = {ψ → a} Φ′ = {¬a}
It remains to show that ψ is tautological if and only if φ is an interpolant of Φ
wrt. Φ′. Assume that ψ is tautological, then it follows Φ |= a. Obviously, Φ′ ∪{a}
is inconsistent and φ only contains atoms of the shared vocabulary. It follows
that φ is an interpolant of Φ wrt. Φ′. The other direction is analogous. ��

In [16] it is shown that, essentially, the size3 of an interpolant φ ∈ SI(Φ,Φ′)
is probably not bound polynomially in the size of both Φ and Φ′ (very surprising
results would follow in this case). This makes a characterisation of the com-
plexity of various other computational problems hard. For example, a standard
approach to decide whether some given formula φ would not be the strongest
(weakest) interpolant, would be to guess another formula φ′ (e. g., the actual
strongest/weakest interpolant) and verify that φ′ is an interpolant and φ′ |= φ
(φ |= φ′). However, as φ′ might be of exponential size this is not feasible to show
membership in some class of the polynomial hierarchy or even Pspace. We can
therefore only provide a straightforward upper bound for the complexity of these
and other problems of relevance to us.

Theorem 4. Let Φ and Φ′ be sets of formulas.

1. For a formula φ, the problem of deciding whether φ = Strongest(Φ,Φ′) is in
Expspace.

3 More specifically, the smallest size of a φ′ ∈ [φ].
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2. For a formula φ, the problem of deciding whether φ = Weakest(Φ,Φ′) is in
Expspace.

3. The problem of determining Strongest(Φ,Φ′) is in FExpspace.
4. The problem of determining Weakest(Φ,Φ′) is in FExpspace.
5. The problem of counting |SI(Φ,Φ′)| is in FExpspace.

Proof. We first show 5. For that, we enumerate (by reusing space) every subset
M ⊆ Ω(At) of interpretations (note that every interpretation is of polynomial
size and there are exponentially many interpretations; therefore M is of expo-
nential size). Each such set M characterises a formula φM and its equivalence
class [φM ] via Mod(φM ) = M . We can then easily verify whether φM is an
interpolant of Φ wrt. Φ, see Theorem 3 and the fact that coNP ⊆ Expspace. In
the positive case we add 1 to some counter. After enumerating all possible M ,
the counter is exactly the number |SI(Φ,Φ′)|.

In order to prove 1–4, the above algorithm can easily be adapted. For 1.,
whenever we have verified a formula φM to be an interpolant, we can check
whether φM |= φ and φ �|= φM . In that case, φ cannot be the strongest interpolant.
Case 2 is analogous. Cases 3–4 can be realised by keeping track of the strongest
(weakest) interpolant found so far and always comparing it newly discovered
interpolants. ��

7 Summary and Conclusion

We investigated the problem of measuring disagreement in belief merging sce-
narios. For that, we made use of the concept of Craig interpolants and defined
disagreement measures that consider the number of semantically equivalent
interpolants between two knowledge bases and the information content in the
strongest and weakest interpolants. We showed that our measures satisfy a num-
ber of desirable properties and we briefly discussed the computational complexity
of related problems.

For future work, we will investigate the possibility of defining further mea-
sures based on interpolation and investigate their properties. Moreover, a deeper
analysis of the differences of our measures with the measures proposed by Potyka
[17] is needed. Precisely, our approach based on interpolants has a semantic per-
spective in assessing the culpability degree of the inconsistencies between two
knowledge bases. We shall investigate what properties this semantic perspec-
tive brings upon these inconsistency measures. We will also explore algorithmic
approaches to compute our measures and investigate applying our ideas to the
area of inconsistency measurement [19].

Acknowledgements. The research reported here was partially supported by the
Deutsche Forschungsgemeinschaft (grant DE1983/9-1).
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Abstract. Learning ranking models is a difficult task, in which data
may be scarce and cautious predictions desirable. To address such
issues, we explore the extension of the popular parametric probabilistic
Plackett–Luce model, often used to model rankings, to the imprecise set-
ting where estimated parameters are set-valued. In particular, we study
how to achieve cautious or conservative inference with it, and illustrate
their application on label ranking problems, a specific supervised learning
task.

Keywords: Preference learning · Cautious inference · Poor data

1 Introduction

Learning and estimating probabilistic models over rankings of objects has
received attention for a long time: earlier works can be traced back at least
to the 1920s [21]. Recently, this problem has known a revival, in particular due
to the rising interest of machine learning in the issue [12]. Popular approaches
range from associating a random utility to each object to be ranked, from which
a distribution on rankings is derived [3], to directly defining a parametric distri-
bution over the set of rankings [19].

Multiple reasons motivate making cautious inferences of ranking models. The
information at hand may be scarce—this is typically the case in the cold-start
problem of a recommender system, or partial—for instance because partial rank-
ings are observed (e.g., pairwise comparisons, top-k items). In addition, since
inferring a ranking model is difficult and therefore prone to uncertainty, it may
be useful to output partial rankings as predictions, thus abstaining to predict
when information is unreliable.

Imprecise probability theory is a mathematical framework where partial esti-
mates are formalized in the form of sets of probability distributions. Therefore,
it is well suited to making cautious inferences and address the aforementioned
problems; yet, to our knowledge, it has not yet been applied to ranking models.
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In this paper, we use the imprecise probabilistic framework to infer a impre-
cise Plackett–Luce model, which is a specific parametric model over rankings,
from data. We present the model in Sect. 2. We address its inference in Sect. 3,
showing that for this specific parametric model, efficient methods can be devel-
oped to make cautious inferences based on sets of parameters. Section 4 will
then present a direct application to label ranking, where we will use relative
likelihoods [5] to proceed with imprecise model estimation.

2 Imprecise Plackett–Luce Models

In this paper, we consider the problem of estimating a probabilistic ranking
model over a set of objects or labels Λ = {λ1, . . . , λn}. This model defines prob-
abilities over total orders on the labels—that is, complete, transitive, and asym-
metric relations � on Λ. Any complete order � over the labels can be identified
with its induced permutation or label ranking τ, that is the unique permutation
of Λ such that

λτ(1) � λτ(2) � · · · � λτ(n).

We will use the terms “order on the labels”, “ranking” and “permutation” inter-
changeably. We denote by L(Λ) all n! permutations on Λ, and denote a generic
permutation by τ.

We focus on the particular probability model P : 2L(Λ)
→ [0, 1] known as the

Plackett–Luce (PL) model [6,13]. It is parametrised by n parameters or strengths
v1, . . . , vn in R>0 := {x ∈ R : x > 0}.1 The strength vector v = (v1, . . . , vn)
completely specifies the PL model. For any such vector, an arbitrary ranking τ
in L is assigned probability

Pv(τ) :=
n∏

k=1

vτ(k)∑n
�=k vτ(�)

=
vτ(1)

vτ(1) + · · · + vτ(n)
·

vτ(2)

vτ(2) + · · · + vτ(n)
· · ·

vτ(n−1)

vτ(n−1) + vτ(n)
. (1)

Clearly, the parameters v1, . . . , vn are defined up to a common positive multi-
plicative constant, so it is customary to assume that

∑n
k=1 vk = 1. Therefore, the

parameter v = (v1, . . . , vn) can be regarded as an element of the interior of the
n-simplex Σ := {(x1, . . . , xn) ∈ R

n
≥0 :

∑n
k=1 xk = 1}, denoted int(Σ).

This model has the following nice interpretation: the larger a weight vi is,
the more preferred is the label λi. The probability that λi is ranked first is

∑

τ∈L(Λ)

τ(1)=λi

Pv(τ) = vi;

conditioning on λi being the first label, the probability that λj is ranked second
(i.e. first among the remaining labels) is equal to vj/

∑n
k=1,k�i vk . This reasoning

can be repeated for each of the labels in a ranking. As a consequence, given a

1 We also define the set of non-negative real numbers as R
≥0 := {x ∈ R : x ≥ 0}.
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PL model defined by v, finding the “best” (most probable) ranking amounts to
finding the permutation τ�v which ranks the strengths in decreasing order:

τ�v ∈ arg max
τ∈L(Λ)

Pv(τ
′

) ⇔ vτ(1) ≥ vτ(2) ≥ vτ(3) · · · ≥ vτ(n−1) ≥ vτ(n). (2)

We obtain an imprecise Plackett–Luce (IPL) model by letting the strengths
vary over a subset Θ of int(Σ).2 Based on this subset of admissible strengths, we
can compute the lower and upper probabilities of a ranking τ as

PΘ(τ) := inf
v∈Θ

Pv(τ) and PΘ(τ) := sup
v∈Θ

Pv(τ) for all τ in L(Λ).

The above notion of “best” ranking becomes ambiguous for an IPL model, since
two vectors v � u ∈ Θmight be associated with different “best” rankings τ�v � τ

�
u .

Therefore, we consider two common ways to extend (2). The first one,
(Walley–Sen) maximality [22,23], considers that τ1 dominates τ2 (noted τ1 �M

τ2) if it is more probable for any v ∈ Θ:

τ1 �M τ2 ⇔ (∀v ∈ Θ), Pv(τ1) > Pv(τ2). (3)

The set MΘ of maximal rankings is composed of all such undominated rankings:

MΘ := {τ ∈ L(Λ) : �τ′ s.t. τ′ �M τ}. (4)

We may have |MΘ | > 1 when Θ is imprecise.
The second one is E-admissibility [18]. A ranking τ is E-admissible if it is

the “best”, according to Eq. (2), for some v ∈ Θ. The set EΘ of all E-admissible
rankings is then

EΘ :=
⋃

v∈Θ

arg max
τ∈L(Λ)

Pv(τ) =
{
τ : (∃v ∈ Θ) s. t. (∀τ′ ∈ L(Λ)), Pv(τ) ≥ Pv(τ

′

)

}
. (5)

By comparing Eqs. (4) and (5), we immediately find that EΘ ⊆ MΘ.

3 Learning an Imprecise Plackett–Luce Model

We introduce here two methods for inferring an IPL model. The first one
(Sect. 3.1), which does not make further assumptions about Θ, provides an outer
approximation of the set of all maximal rankings. The second one (Sect. 3.2)
computes the set of E-admissible rankings via an exact and efficient algorithm,
provided that the set of strengths Θ has the form of probability intervals.

2 Taking int(Σ) rather than Σ assures that all probabilities are positive and that Eq. (1)
is well-defined.
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3.1 General Case

Section 2 shows that the “best” ranking is found using Eq. (2). In the case of
an IPL model, making robust and imprecise predictions requires to compare
all possible ranks in a pairwise way, the complexity of which is n!—and thus
generally infeasible in practice. However, checking maximality can be simplified.
Notice that the numerator in Eq. (1) does not depend on τ (product terms can
be arranged in any order). Hence, when comparing two permutations τ and τ′

using Eq. (3), only denominators matter: indeed, τ � τ′ iff for all v ∈ Θ,

Pv(τ)

Pv(τ′)
=

vτ′(1) + · · · + vτ′(n)

vτ(1) + · · · + vτ(n)
·

vτ′(2) + · · · + vτ′(n)

vτ(2) + · · · + vτ(n)
· · ·

vτ′(n−1) + vτ′(n)

vτ(n−1) + vτ(n)
> 1. (6)

Assume for a moment that strengths are precisely known, and that τ and τ′

only differ by a swapping of two elements: τ(k) = τ′(k) for all k ∈ {1, . . . ,m}\{i, j}
where i � j, and τ( j) = τ′(i), τ(i) = τ′( j). Assume, without loss of generality, that
i < j. Then, the product terms in Eq. (6) only differ in the ratios involving rank
j but not rank i; using furthermore τ(i) = τ′( j), we get

Pv(τ)

Pv(τ′)
=

n∏

k=1
k�{i+1,..., j }

∑n
�=k vτ′(�)∑n
�=k vτ(�)︸�������︷︷�������︸

=1

·

j∏

k=i+1

∑n
�=k vτ′(�)∑n
�=k vτ(�)

=

j∏

k=i+1

vτ(i) +
∑n

�=k,��j vτ′(�)

vτ(j) +
∑n

�=k,��j vτ(�)
.

In this last ratio, we introduce now for any k in {i+1, . . . , j} the sums of strengths
Ck :=

∑n
�=k,��j vτ(�) =

∑n
�=k,��j vτ′(�): these terms being positive, it follows that

τ � τ′ ⇔

Pv(τ)

Pv(τ′)
> 1 ⇔ (∀v ∈ Θ), vτ(i) > vτ(j).

In the case of imprecisely known strengths, the latter inequality will hold
whenever the following (sufficient, but not necessary) condition is met:

vτ(i) := inf
v∈Θ

vτ(i) > vτ(j) := sup
v∈Θ

vτ(j).

Now comes a crucial insight. Assume a ranking τ which prefers λ� to λk whereas
vk > v� , for some k � �: then, we can find a “better” ranking τ′ (i.e., which
dominates τ according to Eq. (3)) by swapping labels λ� and λk . In other terms,
as soon as vk ≥ v� , all maximally admissible rankings satisfy λk � λ� .

It follows that given an IPL model with strengths Θ ⊆ int(Σ), we can deduce
a partial ordering on objects from the pairwise comparisons of strength bounds:
more particularly, we will infer that λk � λ� whenever vk ≥ v� . This partial
ordering can be obtained easily; it may contain solutions that are not optimal
under the maximality criterion, but it is guaranteed to contain all maximal
solutions.
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3.2 Interval-Valued Case

We assume here that strengths are interval-valued: vk ∈ [vk, vk] ⊆ ]0, 1[; that is,
the set Θ of possible strengths (called credal set hereafter) is defined by:

Θ = (

n
�

k=1

[vk, vk]) ∩ Σ. (7)

Note that we assume vk > 0 for each label λk : each object has a strictly positive
lower probability of being ranked first. It follows that vk < 1, and thus Θ ⊆ int(Σ).
Such interval-valued strengths fall within the category of probability intervals on
singletons [1, Sect. 4.4], and are coherent (nonempty and convex) iff [10]:

(∀k ∈ {1, . . . , n}),
(
vk +

n∑

i=1
i�k

vi ≥ 1 and vk +

n∑

i=1
i�k

vi ≤ 1
)
. (8)

From now on, we will assume this condition to hold, and thus that Θ is coherent.
We are interested in computing the set of E-admissible rankings, i.e. rankings

τ such that there exists v ∈ Θ for which τ maximises Pv (see Sect. 2). Our
approach relies on two propositions, the proofs of which will be omitted due to
the lack of place.

Checking E-admissibility. We provide here an efficient way of checking
whether a ranking τ is E-admissible. According to Eq. (2), it will be the case
iff v is decreasingly ordered wrt to τ, i.e. vτ(1) ≥ vτ(2) ≥ vτ(3) ≥ . . .

Proposition 1. Consider any interval-valued parametrisation of an IPL model
such as defined by Eq. (7), and any ranking τ in L(Λ). Then, τ is E-admissible
(i.e., τ ∈ EΘ) iff there exists an index k ∈ {1, . . . , n} such that

1 −

k−1∑

�=1

min
1≤ j≤�

vτ(j) −

n∑

�=k+1

max
�≤ j≤n

vτ(j) ∈ [ max
k≤ j≤n

vτ(j), min
1≤ j≤k

vτ(j)] (9)

and
vτ(�) ≤ min{vτ(1), . . . , vτ(�)} for all � in {1, . . . , k − 1},

vτ(�) ≥ max{vτ(�), . . . , vτ(n)} for all � in {k + 1, . . . , n}.
(10)

Checking E-admissibility via Proposition 1 has a polynomial complexity in
the number n of labels. Indeed, we need to check n different values of k: for each
one, Eq. (9) requires to calculate a sum of n−1 terms, and Eq. (10) to check n−1
inequalities, which yields a complexity of 2n(n − 1).
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Computing the Set of E-admissible Rankings. Although Eq. (9) opens
the way to finding the set of E-admissible rankings, there are n! many candidate
rankings: checking all of them is intractable.

We propose to address this issue by considering a search tree, in which a node
is associated with a specific sequence of labels. Each subsequent node adds a new
element to this sequence: a leaf is reached when the sequence corresponds to a
complete ranking. By navigating the tree top-down, we may progressively check
whether a sequence corresponds to the beginning of an E-admissible ranking.
Should it not, all completions of the sequence can be ignored.

This requires a way of checking whether a sequence κ = (k1, k2, . . . , km),
by essence incomplete, may be completed into an E-admissible ranking—i.e.,
whether we can find τ ∈ EΘ such that τ(1) = k1, τ(2) = k2, . . . , τ(m) = km. Propo-
sition 2 provides a set of necessary and sufficient conditions to this end.

Proposition 2. Consider any coherent parametrisation of an IPL model such
as defined by Eq. (7), and a sequence of distinct labels κ = (k1, . . . , km) of length
m ≤ n − 1. Then, there exists an E-admissible ranking beginning with this initial
sequence iff the following equations are satisfied for every j in {1, . . . ,m}:

j∑

�=1

min{vk1, . . . , vk� } +
n∑

i=1
i�{k1,...,k j }

min{vk1, . . . , vk j , vi} ≥ 1; (Aj)

vk j ≥ max{vi : i ∈ {1, . . . , n} \ κj}; (Bj)

j−1∑

t=0

max{vi : i ∈ {1, . . . , n} \ κt } +
n∑

i=1
i�{k1,...,k j }

vi ≤ 1; (Cj)

here, κj ( j = 0, . . . ,m) is the sub-sequence of the j first labels in κ (by convention,
κ0 is empty), and {1, . . . , n} \ κj is the set of labels not appearing in κj .

In the special case of m = 1, which is typically the case at depth one in the
search tree, Eqs. (Aj), (Bj) and (Cj) reduce to:

n∑

i=1

min{vk1, vi} ≥ 1; (A1)

vk1 ≥ max{vi : i ∈ {1, . . . , n}}; (B1)

max{vi : i ∈ {1, . . . , n}} +
n∑

i=1
i�k1

vi ≤ 1. (C1)

Note that under the coherence requirement (8), Eq. (C1) is a direct consequence
of Eq. (B1), but it is not the case for Eq. (Cj) when j ≥ 2.
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Fig. 1. Probability intervals for Example 1

Fig. 2. Search tree for n = 4

Example 1. Consider an IPL model that is defined by strength intervals [v1, v1] =
[

3
/8, 5/8], [v2, v2] = [

1
/12, 1/12], [v3, v3] = [

1
/30, 1/5] and [v4, v4] = [

1
/8, 3/8], displayed

in Fig. 1 (the coherence of which can be checked using Eq. (8)).
Consider the tree in Fig. 2, which will help navigate the set of possible rank-

ings with n = 4 labels. The left-most node at depth m = 1 corresponds to the
sequence (λ1); its left-most child (left-most node at depth m = 2) to the sequence
(λ1, λ2). We can see that this sequence has been ruled out as a possible initial
segment for an E-admissible ranking: no further completion (i.e., neither of the
two rankings (λ1, λ2, λ3, λ4) and (λ1, λ2, λ4, λ3)) will be checked.

The sequence (λ1, λ3, λ2) has been ruled out as well; however, the sequence
(λ1, λ3, λ4) has been considered as valid, and can be straightforwardly completed
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into a valid E-admissible ranking (since only one possible label remains). Even-
tually, all E-admissible rankings τ = (τ(1), τ(2), τ(3), τ(4)) corresponding to the
IPL model are

{(1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2), (4, 1, 3, 2)}.

A possible strength vector for which τ = (1, 3, 4, 2) dominates all others is
given by v = (

5
/8, 1/12, 1/6, 1/8): it can easily be checked that v ∈ Θ and that vτ(1) =

5
/8 ≥ vτ(2) = 1

/6 ≥ vτ(3) = 1
/8 ≥ vτ(4) = 1

/12, i.e. τ is E-admissible according to
Eq. (2). We provide below possible strength vectors for each of the E-admissible
rankings associated with the IPL model considered:

Admissible strength vector v ∈ Θ Corresponding ranking τ ∈ EΘ

v = (v1, v2, v3, v4) τ = (τ(1), τ(2), τ(3), τ(4))

(
5
/8, 1/12, 1/6, 1/8) (1, 3, 4, 2)

(
5
/8, 1/12, 1/12, 5/24) (1, 4, 2, 3)

(
5
/8, 1/12, 1/12, 5/24) (1, 4, 3, 2)

(
3
/8, 1/12, 1/6, 3/8) (4, 1, 3, 2)

Let us show that there is no E-admissible ranking τ that starts for instance
with (1, 2). Assume ex absurdo that such an E-admissible ranking τ exists. This
would imply that there exists v ∈ Θ such that v1 ≥ v2 ≥ max{v3, v4}, which by
Eq. (2) would imply that 1

/12 = v2 ≥ v4 ≥ v4 = 1
/8, which is impossible. ♦

Algorithm. Eqs. (Aj), (Bj) and (Cj) used in Proposition 2 to check the
E-admissibility of a ranking with a given initial sequence of labels can be turned
into an efficient algorithm. We can indeed proceed recursively: checking whether
there exists an E-admissible ranking starting with (k1, . . . , km) basically requires
to check whether it is the case for (k1, . . . , km−1) and then whether Eqs. (Aj), (Bj)
and (Cj) still hold for j = m.

Algorithms 1 and 2 provide a pseudo-code version of this procedure. Note that
as all branch-and-bound techniques, it does not reduce the worst-case complexity
of building an E-admissible set. Indeed, if all the rankings are E-admissible—
which typically happens when all probability intervals are wide, then no single
branch can be pruned from the search tree. In that case, the algorithm navigates
the complete tree, which clearly has a factorial complexity in the number of
labels n. Then, even a simple enumeration of all E-admissible rankings has such
a complexity.

However, in practice we can expect many branches of the tree to be quickly
pruned: indeed, as soon as one of the Eqs. (Aj), (Bj) or (Cj) fail to hold, a branch
can be pruned from the tree. We expect this to allow for efficient inferences in
many circumstances.
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Algorithm 1. Find the E-admissible rankings optn
Require: Probability intervals [vk, vk ] for k ∈ {1, . . . , n}
Ensure: The set Θ = {[vk, vk ] : k ∈ {1, . . . , n}} is coherent

optn ← ∅

for all k1 ∈ {1, . . . , n} do
Recur(1, (k1))

end for

Algorithm 2. Recur( j, (k1, . . . , k j))
if j = n − 1 then

append the unique kn ∈ {1, . . . , n} \ {k1, . . . , kn−1} to the end of (k1, . . . , kn−1)
add (k1, . . . , kn) to optn �we found a solution.

else

for all k j+1 ∈ {1, . . . , n} \ {k1, . . . , k j } do

if Equations (Aj+1), (Bj+1) and (Cj+1) hold then
append k j+1 to the end of (k1, . . . , k j )
Recur( j + 1, (k1, . . . , k j+1))

end if
end for

end if

4 An Application to Label Ranking

In this section, we explore an application of the IPL model to supervised learning
of label rankings. Usually, supervised learning consists in mapping any instance
x ∈ X to a single (preferred) label Λ = {λ1, . . . , λn} representing its class. Here,
we study a more complex issue called label ranking, which rather maps x ∈ X

to a predicted total order ŷ on the labels in Λ—or a partial order, should we
accept to make imprecise predictions for the sake of robustness.

For this purpose, we exploit a set of training instances associated with rank-
ings (xi, τi), with i ∈ {1, . . . ,m}, in order to estimate the theoretical conditional
probability measure Px : 2L(Λ)

→ [0, 1] associated to an instance x ∈ X . Ideally,
observed outputs τi should be complete orders over Λ; however, this is seldom the
case, total orders being more difficult to observe: training instances are therefore
frequently associated with incomplete rankings τi (i.e., partial orders over Λ).

Here, we will apply the approach detailed in Sect. 3.1 to learning an IPL
model from such training data, using the contour likelihood to get the parameter
set corresponding to a specific instance x.

4.1 Estimation and Prediction

Precise Predictions. In [7], it was proposed to use an instance-based approach:
the predictions for any x ∈ X are made locally using its nearest neighbours.
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Let NK (x) stand for the set of nearest neighbours of x in the training set, each
neighbour xi ∈ NK (x) being associated with a (possibly incomplete) ranking τi;
and let Mi be the number of ranked labels in τi. Using the classical instance-based
assumption that distributions are locally identical (i.e., in the neighborhood of
x), the probability of observing τ1, . . . , τK given a parameter value v is:

P(τ1, . . . , τK |v) =
∏

xi ∈NK (x)

Mi∏

m=1

vτi (m)

∑Mi

j=m vτi (j)
. (11)

We can then use maximum likelihood estimation (MLE) in order to determine
v from τ1, . . . , τK , by maximizing (11)—or equivalently, its logarithm

l(v) =
K∑

i=1

Mi∑

m=1

[
log(vτi (m)

) − log
Mi∑

j=m

vτi (j)

]
.

Various ways to obtain this maximum have been investigated. We will use here
the minorization-maximization (MM) algorithm [16], which aims, in each itera-
tion, to maximize a function which minorizes the log-likelihood:

Qk(v) =

K∑

i=1

Mi∑

m=1

⎡⎢⎢⎢⎢⎣
log(vτi (m)

) −

log
∑Mi

j=m vτi (j)

log
∑Mi

j=m v
(k)

τi (j)

⎤⎥⎥⎥⎥⎦
where v(k) is the estimation of v in the k-th iteration. When the parameters
are fixed, the maximization of Qk can be solved analytically and the algorithm
provably converges to the MLE estimate v∗ of v. The best ranking τ∗ is then

τ∗ ∈ arg max
τ∈L(Λ)

P(τ|v∗);

it is simply obtained by ordering the labels according to v∗ (see Eq. (2)).

Imprecise Predictions. An IPL model is in one-to-one correspondence with
an imprecise parameter estimate, which can be obtained here by extending the
classical likelihood to the contour likelihood method [5]. Given a parameter space
Σ and a positive likelihood function L, the contour likelihood function is:

L∗

(v) =
L(v)

maxv∈Σ L(v)
;

by definition, L∗ takes values in ]0, 1]: the closer L∗

(v) is to 1, the more likely
v is. One can then naturally obtain imprecise estimates by considering “cuts”.
Given β in [0, 1], the β-cut of the contour likelihood, written B∗

β, is defined by

B∗

β = {v ∈ Σ : L∗

(v) ≥ β} .

Once B∗

β is determined, for any test instance x to be processed, we can easily
obtain an imprecise prediction ŷ in the form of a partial ranking, using the results
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of Sect. 3.1: we will retrieve ŷ such that λi � λj for all vk ∈ B∗

β. We stress here
that the choice of β directly influences the precision (and thus the robustness)
of the model: B∗

1 = v∗, which generally leads to a precise PL model; when β
decreases, the IPL model is less and less precise, possibly leading to partial (and
even empty) predictions.

In our experiments, the contour likelihood function is modelled by gener-
ating multiple strengths v according to a Dirichlet distribution with parameter
β = γv∗, where v∗ is the ML estimate obtained with the best PL model (or equiv-
alently, the best strength v) and γ > 0 is a coefficient which makes it possible to
control the concentration of parameters generated around v∗.

4.2 Evaluation

When the observed and predicted rankings y and ŷ are complete, various accu-
racy measures [15] have been proposed to measure how close they are to each
other (0/1 accuracy, Spearman’s rank, . . . ). Here, we retain Kendall’s Tau:

Aτ(y, ŷ) =
C − D
n(n−1)

/2
, (12)

where C and D are respectively the number of concording and discording pairs
in y and ŷ. In the case of imprecise predictions ŷ, the usual quality measures
can be decomposed into two components [9]: correctness (CR), measuring the
accuracy of the predicted comparisons, and completeness (CP):

CR(y, ŷ) =
C − D
C + D

and CP(y, ŷ) =
C + D
n(n−1)

/2
, (13)

where C and D are the same as in Eq. (12). Should ŷ be complete, C+D = n(n−1)
/2,

CR(y, ŷ) = Aτ(y, ŷ) and CP(y, ŷ) = 1; while CR(y, ŷ) = 1 and CP(y, ŷ) = 0 if ŷ is
empty (since no comparison is done).

4.3 Results

We performed our experiments on several data sets, mostly adapted from the
classification setting [7]; we report here those obtained on the Bodyfat, Housing
and Wisconsin data sets. For each dataset, we tested several numbers of neigh-
bours: K ∈ {5, 10, 15, 20} (for the MLE estimate and using Eq. (12)), and chose
the best by tenfold cross-validation. The sets of parameters B∗

β were obtained
as explained above, by generating 200 strengths with γ ∈ {1, 10}, the best value
being selected via tenfold cross validation repeated 3 times.

We also compared our approach to another proposal [8] based on a rejection
threshold of pairwise preference probabilities, in three different configurations:

– using the original, unperturbed rankings;
– by deleting some labels in the original rankings with a probability p ∈ [0, 1];
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– by introducing some noise in the rankings, by randomly swapping adjacent
labels with a probability p ∈ [0, 1] (the labels being chosen at random).

Figure 3 displays the results of both methods for the Bodyfat data set (with
m = 252 and n = 7) when rankings remain unperturbed, with a confidence inter-
val of 95% (±2 standard deviation of measured correctness). Our approach based
on the contour likelihood function is on par with the method based on absten-
tion, which was the case with all tested data sets. Both methods see correctness
increase once we allow for abstention. On the other data sets, the same behaviour
can be seen: our approach seems to be on par with the one based on abstention,
provided that the contour likelihood function has been correctly modelled (i.e.,
the generation of strengths is appropriate).

Fig. 3. Comparison of methods on Bodyfat with no perturbations

In order to be able to compare the two methods, we show underneath results
on a specific range of the completeness. We only show the domain [0.6, 1]; how-
ever the behaviour is similar outside this range.

Figures 4 and 5 show that both methods are also on par on the Housing data
set (m = 506, n = 6) even when the data sets are missing some labels. It can also
be noticed that for a given completeness level, the correctness is lower than in
the unperturbed case. On average, the greater the level of perturbation is, the
lower the average correctness is. This also stands for the other data sets.

Figures 6 and 7 display that with a different method of perturbation (label
swapping), our approach gives similar results on the Wisconsin data set (m =

194, n = 16). Moreover, the correctness is again lower in average for a given
completeness level if the data set is perturbed. We observe the same behaviour
for the label swapping perturbation method on the other data sets.

Such results are encouraging, as they show that we can at least achieve results
similar to state-of-the-art approaches. We yet have to identify those cases where
the two approaches significantly differ.
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Fig. 4. Comparison of methods on Hous-
ing with no perturbations

Fig. 5. Comparison of methods on Hous-
ing with 60% of missing label pairs

Fig. 6. Comparison of methods on Wis-
consin with no perturbations

Fig. 7. Comparison of methods on Wis-
consin with 60% of swapped label pairs

5 Conclusions

In this paper, we made a preliminary investigation into performing robust infer-
ence and making cautious predictions with the well known Plackett–Luce model,
a popular ranking model in statistics. We have provided efficient methods to do
so when the data at hand are poor, that is either of a low quality (noisy, partial)
or scarce. We have demonstrated the interest of our approach in a label ranking
problem, in presence of missing or noisy ranking information.

Possible future investigations may focus on the estimation problem, which
may be improved, for example by extending Bayesian approaches [14] through
the consideration of sets of prior distributions; or by developing a natively impre-
cise likelihood estimate, for instance by coupling recent estimation algorithms
using stationary distribution of Markov chains [20] with recent works on impre-
cise Markov chains [17].

As suggested by an anonymous reviewer, it might be interesting to consider
alternatives estimation methods such as epsilon contamination. There already
exist non-parametric, decomposition-based approaches to label ranking with
imprecise ranks; see [4,11]. However, the PL model, being tied to an order repre-
sentation, may not be well-suited to such an approach. We intend to investigate
this in the future.
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Last, since the Plackett–Luce model is known to be strongly linked to par-
ticular RUM models [2,24], it may be interesting to investigate what becomes
of this connection when the RUM model is imprecise (for instance, in our case,
by considering Gumbel distributions specified with imprecise parameters).
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15. Hüllermeier, E., Furnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artif. Intell. 172, 1897–1916 (2008)

16. Hunter, D.R., et al.: MM algorithms for generalized Bradley-Terry models. Ann.
Stat. 32(1), 384–406 (2004)

17. Krak, T., De Bock, J., Siebes, A.: Imprecise continuous-time Markov chains. Int.
J. Approx. Reason. 88, 452–528 (2017)

18. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)
19. Marden, J.: Analyzing and Modeling Rank Data, vol. 64. Chapman & Hall/CRC,

London (1996)
20. Maystre, L., Grossglauser, M.: Fast and accurate inference of Plackett-Luce models.

In: Advances in Neural Information Processing systems, pp. 172–180 (2015)
21. Thurstone, L.: A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927)
22. Troffaes, M.: Generalising the conjunction rule for aggregating conflicting expert

opinions. Int. J. Intell. Syst. 21(3), 361–380 (2006)
23. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,

New York (1991)
24. Yellott Jr., J.I.: The relationship between Luce’s Choice Axiom, Thurstone’s The-

ory of Comparative Judgment, and the double exponential distribution. J. Math.
Psychol. 15(2), 109–144 (1977)



Inference with Choice Functions
Made Practical

Arne Decadt(B), Jasper De Bock, and Gert de Cooman

FLip, ELIS, Ghent University, Ghent, Belgium
{arne.decadt,jasper.debock,gert.decooman}@ugent.be

Abstract. We study how to infer new choices from previous choices
in a conservative manner. To make such inferences, we use the theory
of choice functions: a unifying mathematical framework for conservative
decision making that allows one to impose axioms directly on the repre-
sented decisions. We here adopt the coherence axioms of De Bock and
De Cooman (2019). We show how to naturally extend any given choice
assessment to such a coherent choice function, whenever possible, and
use this natural extension to make new choices. We present a practical
algorithm to compute this natural extension and provide several methods
that can be used to improve its scalability.

Keywords: Choice functions · Natural extension · Algorithms · Sets
of desirable option sets

1 Introduction

In classical probability theory, decisions are typically made by maximizing
expected utility. This leads to a single optimal decision, or a set of optimal
decisions all of which are equivalent. In imprecise probability theory, where
probabilities are only partially specified, this decision rule can be generalized
in multiple ways; Troffaes [9] provides a nice overview. A typical feature of the
resulting imprecise decision rules is that they will not always yield a single opti-
mal decision, as a decision that is optimal in one probability model may for
example be sub-optimal in another.

We will not focus on one particular imprecise decision rule though. Instead,
we will adopt the theory of choice functions: a mathematical framework for
decision making that incorporates several (imprecise) decision rules as special
cases, including the classical approach of maximizing expected utility [1,3,7]. An
important feature of this framework of choice functions is that it allows one to
impose axioms directly on the decisions that are represented by such a choice
function [3,7,10]. We here adopt the coherence axioms that were put forward by
De Bock and De Cooman [3].

As we will explain and demonstrate in this contribution, these coherence
axioms can be used to infer new choices from previous choices. For any given
assessment of previous choices that is compatible with coherence, we will achieve
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-58449-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58449-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-58449-8_8


114 A. Decadt et al.

this by introducing the so-called natural extension of this assessment: the
unique most conservative coherent choice function that is compatible with the
assessment.

We start in Sect. 2 with an introduction to choice functions and coherence
and then go on to define the natural extension of choice assessments in Sect. 3.
From then on, we work towards a method to compute this natural extension.
An important step towards this goal consists in translating our problem to the
setting of sets of desirable option sets; we do this in Sect. 4. In this setting, as
we show in Sect. 5, the problem takes on a more manageable form. Still, the
complexity of the problem depends rather heavily on the size of the assessment
that is provided. To address this issue, Sect. 6 presents several methods that can
be used to replace an assessment by an equivalent yet smaller one. Section 7 then
presents a practical algorithm that implements our approach. Section 8 concludes
the paper and provides some suggestions for future work.

To adhere to the page-limit constraint, all proofs are omitted. They are avail-
able in an extended on-line version [4].

2 Choice Functions

A choice function C is a function that, when applied to a set of options, chooses
one or more options from that set. Usually the options are actions that have
a corresponding reward. This reward furthermore depends on the state of an
unknown—uncertain—variable X that takes values in a set X . We will assume
that the rewards can be represented by real numbers, on a real-valued utility
scale. In this setting, an option u is thus a function from states x in X to R.
We will denote the set of all possible options by V . Evidently, V is a vector
space with vector addition u + v : x �→ u(x) + v(x) and scalar multiplication
λu : x �→ λu(x) for all x ∈ X , λ ∈ R and u, v ∈ V . Moreover, we endow V with
the partial order ≤ defined by u ≤ v ⇔ (∀x ∈ X )u(x) ≤ v(x) for all u, v ∈ V
and a corresponding strict version <, where u < v if both u �= v and u ≤ v.1

To make this more tangible, we consider the following toy problem as a running
example.

Example 1.1. A farming company cultivates tomatoes and they have obtained a
large order from a foreign client. However, due to government regulations they
are not sure whether they can deliver this order. So, the state space X is {order
can be delivered, order cannot be delivered}. The company now has multiple
options to distribute their workforce. They can fully prepare the order, partially
prepare the order or not prepare the order at all. Since X only has two elements,
we can identify the options with vectors in R

2. We will let the first component
of these vectors correspond to the reward if the order can be delivered. For
example, the option of fully preparing the order could correspond to the vector

1 Our results in Sect. 2 and 3 also work for any ordered vector space over the real
numbers; we restrict ourselves to the particular order < for didactic purposes.
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v1 := (5,−3). If the order goes through, then the company receives a payment—
or utility—of 5 for that order. However, if the order does not go through, the com-
pany “receives” a negative reward −3, reflecting the large amount of resources
that they spent on an order that could not be delivered in the end. ♦

We will restrict ourselves to choices from finite sets of options. That is, the
domain of our choice functions will be Q := {A ⊂ V : n ∈ N, |A| = n}∪{∅}: the
set of all finite subsets of V , including the empty set. Formally, a choice function
is then any function C : Q → Q such that C(A) ⊆ A for all A ∈ Q. We will also
consider the corresponding rejection function RC : Q → Q : A �→ A \ C(A).

Example 1.2. We will let the choice function C correspond to choices that the
strategic advisor of the company makes or would make for a given set of options,
where these choices can be multi-valued whenever he does not choose a single
option. Suppose for example that he has rejected v3 and v4 from a set B1 :=
{v1, v2, v3, v4}, with v1 := (5,−3), v2 := (3,−2), v3 := (1,−1), and v4 := (−2, 1),
but remains undecided about whether to choose v1 or v2. This corresponds to
the statement C(B1) = {v1, v2}, or equivalently, RC(B1) = {v3, v4}. ♦

We will give the following interpretation to these choice functions. For every
set A ∈ Q and option u ∈ A, we take u ∈ C(A)—u is chosen—to mean that
there is no other option in A that is preferred to u. Equivalently, u ∈ RC(A)—
u is rejected from A—if there is an option in A that is preferred to u. The
preferences in this interpretation are furthermore taken to correspond to a strict
partial vector order ≺ on V that extends the original strict order <. This implies
that it should have the following properties: for all u, v, w ∈ V and λ > 0,

O1. u �≺ v or v �≺ u, (antisymmetry)
O2. if u ≺ v and v ≺ w then also u ≺ w, (transitivity)
O3. if u ≺ v then also u + w ≺ v + w, (translation invariance)
O4. if u ≺ v then also λu ≺ λv. (scaling invariance)

Crucially, however, the strict partial order ≺ need not be known. Instead, in
its full generality, our interpretation allows for the use of a set of strict partial
orders, only one of which is the true order ≺. As shown in reference [3], this
interpretation can be completely characterized using five axioms for choice func-
tions. Rather than simply state them, we will motivate them one by one starting
form our interpretation.

The first axiom states that we should always choose at least one option,
unless we are choosing from the empty set:

C0. C(A) �= ∅ for all A ∈ Q \ {∅}.

This follows directly from our interpretation. Indeed, if every option in A would
be rejected, then for every option v in A, there would be some other option in
A that is preferred to v. Transitivity (O2) would then imply that A contains an
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option that is preferred to itself, contradicting antisymmetry (O1). To under-
stand the second axiom, first observe that it follows from translation invariance
(O3) that u ≺ v if and only if 0 ≺ v − u. So if we let A − u := {v − u : v ∈ A},
then it follows from our interpretation that u is chosen from A if and only if 0
is chosen from A − u:

C1. u ∈ C(A) ⇔ 0 ∈ C(A − u) for all A ∈ Q and u ∈ A.

An important consequence of this axiom, is that knowing from which sets zero is
chosen suffices to know the whole choice function. To formalize this, we introduce
for any choice function C a corresponding set of option sets

KC := {A ∈ Q : 0 /∈ C(A ∪ {0})}. (1)

For any option set A ∈ KC , it follows from our interpretation for C that A∪{0}
contains at least one option that is preferred to zero. Or equivalently, since zero
is not preferred to itself because of O1, that A contains at least one option that
is preferred to zero. We call such an option set A a desirable option set and will
therefore refer to KC as the set of desirable option sets that corresponds to C.
Since it follows from C1 that

(∀A ∈ Q)(∀u ∈ A) u �∈ C(A) ⇔ A − u ∈ KC , (2)

We see that the set of desirable option sets KC fully characterizes the choice
function C. Whenever convenient, we can therefore express axioms for C in
terms of KC as well. The next axiom is a first example where this is convenient.
Since the preference order ≺ is taken to extend the order <, it follows that we
must prefer all elements of V>0 := {u ∈ V : 0 < u} to zero. Hence, {u} is a
desirable option set for all u ∈ V>0:

C2. {u} ∈ KC for all u ∈ V>0.

Or to state it in yet another way: the set of positive singletons V s
>0 := {{u} : u ∈

V>0} should be a subset of KC .
Another axiom that is easier to state in terms of KC follows from the fact

that we can take positive linear combinations of preferences. For example, if we
have two non-negative real numbers λ1, λ2 and they are not both zero, and we
know that 0 ≺ u1 and 0 ≺ u2, then it follows from O2, O3 and O4 that also
0 ≺ λ1u1 + λ2u2. To state this more compactly, we let2

R
n,+ := {λ ∈ R

n : (∀j ∈ {1, . . . , n})(λj � 0),
∑n

j=1 λj > 0}

for any positive integer n and introduce a product operation λu :=
∑n

j=1 λjuj

for tuples λ = (λ1, . . . , λn) ∈ R
n with tuples of vectors u = (u1, . . . , un) ∈ V n.

Then for any λ ∈ R
2,+ and any u ∈ V 2 such that 0 ≺ u1 and 0 ≺ u2, we have

2 We will denote tuples in boldface and their elements roman with a positive integer
index corresponding to their position.
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that 0 ≺ λu. Consider now two sets A,B ∈ KC . Then as we explained after
Eq. (1), each of them contains at least one option that is preferred to zero. Hence,
by the reasoning above, there will be at least one pair of options u = (u1, u2) in
A×B for which 0 ≺ u1 and 0 ≺ u2 and thus 0 ≺ λu = λ1u1+λ2u2 for λ ∈ R

2,+.
Thus, the set of all such possible combinations—where λ can depend on u—will
contain at least one option preferred to zero en must therefore belong to KC :

C3. {λ(u)u : u ∈ A × B} ∈ KC for all λ : A × B → R
2,+ and A,B ∈ KC .

The final axiom states that if an option u is rejected from an option set A,
then it will also be rejected from any superset B:

C4. A ⊆ B ⇒ RC(A) ⊆ RC(B) for all A,B ∈ Q.

Once more, this follows from our interpretation for C. If u is rejected from A,
then this means that there is an element v ∈ A that is preferred to u. Since v
and u also belong to B, it thus follows that u is rejected from B as well. This
axiom is also known as Sen’s condition α [8].

Definition 1. We call a choice function C : Q → Q coherent if it satisfies
axioms C0 − C4. The set of all coherent choice functions is denoted by C.
A crucial point is that the axioms C0 − C4 are the same as the axioms R0 − R4

in [3], but tailored to our notation and in a different order; C0 corresponds
to R1 whereas C1 corresponds to R0. Interestingly, as proven in reference [3],
the axioms C0 − C4 are therefore not only necessary for a choice function to
correspond to a set of strict partial orders, but sufficient as well.

3 Natural Extension

Fully specifying a coherent choice function is hard to do in practice, because this
would amount to specifying a set-valued choice for every finite set of options,
while at the same time taking into account the coherence axioms. Instead, a user
will typically only be able to specify C(A)—or RC(A)—for option sets A in some
small—and often finite—subset O of Q. For all other option sets A ∈ Q \ O, we
can then set C(A) = A because this adds no information to the choice function
assessment. The resulting choice function may not be coherent though. To make
this more concrete, let us go back to the example.

Example 1.3. Suppose that the strategic advisor of the farming company has
previously rejected the options v3 and v4 from the option set B1, as in Exam-
ple 1.2, and has chosen v6 from B2 := {v5, v6}, where v5 := (3, 1) and
v6 := (−4, 8). This corresponds to the choice function assessments C(B1) =
{v1, v2} and C(B2) = {v6}. Suppose now that the company’s strategic advisor
has fallen ill and the company is faced with a new decision problem that amounts
to choosing from the set B3 = {(−3, 4), (0, 1), (4,−3)}. Since no such choice was
made before, the conservative option is to make the completely uninformative
statement C(B3) = B3. However, perhaps the company can make a more infor-
mative choice by taking into account the advisor’s previous choices? ♦
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In order to make new choices based on choices that have already been
specified—as in the last question of the example—we can make use of coherence.
Indeed, all the coherence axioms except C0 allow one to infer new choices—or
rejections—from other ones. In this way, we obtain a new choice function C ′ that
is more informative than C in the sense that C ′(A) ⊆ C(A) for all A ∈ Q. Any
such choice function C ′ that is more informative than C, we call an extension of
C. In order to adhere to the coherence axioms, we are looking for an extension
C ′ of C that is coherent. We denote the set of all such extensions by C.

Whenever at least one such coherent extension exists, we call C consistent.
The least informative such coherent extension of C is then called its natural
extension, as it is the only coherent extension of C that follows solely from C and
the coherence axioms, without adding any additional unwarranted information.
In order to formalize this notion, we let

CC := {C ′ ∈ C : C ′(A) ⊆ C(A) for all A ∈ Q}

and let Ex(C) be defined by

Ex(C)(A) :=
⋃

C′∈CC

C ′(A) for all A ∈ Q,

where, by convention, the union over an empty set is taken to be empty itself.

Definition 2. For any choice function C, we call C consistent if CC �= ∅ and
then refer to Ex(C) as the natural extension of C.

Theorem 1. For any choice function C that is consistent, Ex(C) is the least
informative coherent extension of C. That is, Ex(C) ∈ CC and, for all C ′ ∈ CC ,
we have that C ′(A) ⊆ Ex(C)(A) for all A ∈ Q. If on the other hand C is not
consistent, then Ex(C) is incoherent and Ex(C)(A) = ∅ for all A ∈ Q.

Given a choice function C that summarizes earlier choices and a new decision
problem that consists in choosing from some set of options A, we now have a
principled method to make this choice, using only coherence and the information
present in C. First we should check if C is consistent. If it is not, then our
earlier choices are not compatible with coherence, and would therefore better
be reconsidered. If C is consistent, then the sensible choices to make are the
options in Ex(C)(A), since the other options in A can safely be rejected taking
into account coherence and the information in C. If Ex(C)(A) contains only
one option, we arrive at a unique optimal choice. If not, then adding additional
information is needed in order to be able to reject more options. The problem
with this approach, however, is that it requires us to check consistency and
evaluate Ex(C)(A). The rest of this contribution is devoted to the development
of practical methods for doing so. We start by translating these problems to the
language of sets of desirable option sets.
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4 Sets of Desirable Option Sets

As explained in Sect. 2, every coherent choice function C is completely deter-
mined by its corresponding set of desirable option sets KC . Conversely, with
any set of desirable option sets K ⊆ Q, we can associate a choice function CK ,
defined by

CK(A) := {u ∈ A : (A − u) \ {0} /∈ K} for all A ∈ Q. (3)

In order for CK to be coherent, it suffices for K to be coherent in the following
sense.

Definition 3. A set of desirable option sets K ⊆ Q is called coherent [2] if for
all A,B ∈ K:

K0. A \ {0} ∈ K;
K1. {0} /∈ K;
K2. V s

>0 ⊆ K;

K3. {λ(u)u : u ∈ A × B} ⊆ K for all λ : A × B → R
2,+;

K4. A ∪ Q ∈ K for all Q ∈ Q.

We denote the set of all coherent K by K̄.

Proposition 2. If a set of desirable option sets K ⊆ Q is coherent, then CK is
coherent too.

Proposition 3. If a choice function C is coherent, then KC is coherent too.

Theorem 4. The map Φ : C → K̄ : C �→ KC is a bijection and has inverse
Φ−1(K) = CK for all K ∈ K̄.

In other words: every coherent choice function C corresponds uniquely to a
coherent set of desirable option sets K, and vice versa.

The plan is now to use this connection to transform the problem of computing
the natural extension of a choice function C to a similar problem for sets of
desirable option sets. We start by transforming the choice function C into a
set of option sets. One way to do this would be to consider the set of desirable
option sets KC . However, there is also a smarter way to approach this that yields
a more compact representation of the information in C.

Definition 4. An assessment is any subset of Q. We denote the set of all
assessments, the power set of Q, by A . In particular, with any choice function
C, we associate the assessment

AC := {C(A) − u : A ∈ Q, u ∈ RC(A)}.
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Example 1.4. In our running example, the assessment that corresponds to C is
AC = {A1, A2, A3}, with A1 := {w1, w2}, A2 := {w3, w4} and A3 := {w5},
where w1 := v1 − v3 = (4,−2) and similarly w2 := v2 − v3 = (2,−1), w3 :=
v1 − v4 = (7,−4), w4 := v2 − v4 = (5,−3) and w5 := v6 − v5 = (−7, 7). ♦

An assessment such as AC may not be coherent though. To extend it to a
coherent set of desirable option sets, we will use the notions of consistency and
natural extension that were developed for sets of desirable option sets by De
Bock and De Cooman [2]. To that end, for any assessment A ∈ A , we consider
the set K̄(A) := {K ∈ K̄ : A ⊆ K} of all coherent sets of desirable option sets
that contain A and let

Ex(A) :=
⋂

K̄(A), (4)

where we use the convention that
⋂ ∅ = Q.

Definition 5. For any assessment A ∈ A , we say that A is consistent if
K̄(A) �= ∅ and we then call Ex(A) the natural extension of A [2, Definition 9].

As proven by De Bock and De Cooman [2], the consistency of A implies the
coherence of Ex(A). Our next result establishes that the converse is true as well.

Theorem 5. For any assessment A ∈ A the following are equivalent:

1. A is consistent;
2. Ex(A) is coherent;
3. ∅ /∈ Ex(A).

The connection with choice functions is established by the following result.

Theorem 6. Let C be a choice function. Then C is consistent if and only if
∅ /∈ Ex(AC), and if it is, then CEx(AC)(A) = Ex(C)(A) for all A ∈ Q.

By this theorem, we see that checking consistency and computing the natural
extension of a choice function C amounts to being able to check for any option
set whether it belongs to Ex(AC) or not. Indeed, given some choice function C,
we can check its consistency by checking if ∅ ∈ Ex(AC) and, taking into account
Eq. (3), we can calculate Ex(C)(A) for a given set A ∈ Q, by checking for any
element u ∈ A if (A − u) \ {0} ∈ Ex(AC).

5 Natural Extension and Consistency for Finite
Assessments

In practice, we will typically be interested in computing the natural extension
Ex(C) of choice functions C that are finitely generated, in the sense that C(A) �=
A for only finitely many option sets A ∈ Q. In that case, if we let OC := {A ∈
Q : C(A) �= A}, then

AC = {C(A) − u : A ∈ Q, u ∈ RC(A)} = {C(A) − u : A ∈ OC , u ∈ RC(A)}.
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Since OC is finite and every RC(A) ⊆ A is finite because A is, it then follows
that AC is finite as well. Without loss of generality, for finitely generated choice
functions C, AC will therefore be of the form AC = {A1, . . . , An}, with n ∈
N ∪ {0}. The list of option sets A1, . . . , An may contain duplicates in practice,
for example if different A ∈ OC and u ∈ A yield the same option set C(A) − u.
It is better to remove these duplicates, but our results will not require this. The
only thing that we will assume is AC = {A1, . . . , An}.

The following theorem is the main result that will allow us to check in practice
whether an option set belongs to Ex(AC) or not.

Theorem 7. Let A = {A1, . . . , An}, with A1, . . . , An ∈ Q and n ∈ N∪ {0}. An
option set S ∈ Q then belongs to Ex(A) if and only if either S ∩ V>0 �= ∅ or,
n �= 0 and, for every u ∈ ×n

j=1Aj, there is some s ∈ S ∪ {0} and λ ∈ R
n,+ for

which λu ≤ s.

In combination with Theorem6, this result enables us to check the consistency
and compute the natural extension of finitely generated choice functions. Check-
ing consistency is equivalent to checking if ∅ /∈ Ex(AC).

Example 1.5. We will now go ahead and test if the strategic advisor was at least
consistent in his choices. Since ∅ ∩V>0 = ∅, we have to check the second condition
in Theorem 7. In particular, we have to check if, for every tuple u ∈ A1×A2×A3,
there is some λ ∈ R

3,+ such that λu ≤ 0. We will show that this is not the case
for the particular tuple u = (w2, w4, w5) ∈ A1 × A2 × A3. Assume that there is
some λ = (λ1, λ2, λ3) ∈ R

3,+ such that λ1w2 + λ2w4 + λ3w5 = λu ≤ 0. Notice
that 2w4 ≤ 5w2, so if we let μ1 := 2

5λ1 + λ2 and μ2 := 7λ3 then

λu � 2
5
λ1w4 + λ2w4 + λ3w5 = μ1w2 +

1
7
μ2w5 = (5μ1 − μ2,−3μ1 + μ2).

Since λu ≤ 0, this implies that 5μ1 ≤ μ2 ≤ 3μ1 and thus μ1 ≤ 0 and μ2 ≤ 0.
This is impossible though because λ ∈ R

3,+ implies that μ1 > 0 or μ2 > 0.
Hence, ∅ /∈ Ex(AC), so AC is consistent. We conclude that the decisions of the
strategic advisor were consistent, enabling us to use natural extension to study
their consequences. ♦

If a finitely generated choice function C is consistent, then for any option
set A ∈ Q, we can evaluate Ex(C)(A) by checking for every individual u ∈ A if
u ∈ Ex(C)(A). As we know from Theorem 6 and Eq. (3), this will be the case if
and only if (A − u) \ {0} /∈ Ex(AC).

Example 1.6. We can now finally tackle the problem at the end of Exam-
ple 1.3: choosing from the set B3 = {(−3, 4), (0, 1), (4,−3)}. This comes down
to computing Ex(C)(B3). Because of Theorem 6, we can check if (4,−3) is
rejected from B3 by checking if {(−7, 7), (−4, 4)} ∈ Ex(AC). By Theorem 7,
this requires us to check if for every u ∈ A1 × A2 × A3 we can find some
s ∈ {(−7, 7), (−4, 4), (0, 0)} and some λ ∈ R

3,+ such that λu ≤ s. Since
(−7, 7) = w5 ∈ {w5} = A3, s = (−7, 7) and λ = (0, 0, 1) do the job for every
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u. So we can reject (4,−3). Checking if (0, 1) is rejected is analogous: we have
to check if {(−3, 3), (4,−4)} ∈ Ex(A). In this case, we can use s = (−3, 3) and
λ = (0, 0, 3

7 ) for every u in A1×A2×A3 to conclude that (0, 1) is rejected as well.
Since Ex(C)(B3) must contain at least one option because of C0 (which applies
because Theorem 1 and the consistency of C imply that Ex(C) is coherent) it
follows that Ex(C)(B3) = {(−3, 4)}. So based on the advisor’s earlier decisions
and the axioms of coherence, it follows that the company should choose (−3, 4)
from B3. ♦
In this simple toy example, the assessment AC was small and the conditions in
Theorem 7 could be checked manually. In realistic problems, this may not be the
case though. To address this, we will provide in Sect. 7 an algorithm for checking
the conditions in Theorem7. But first, we provide methods for reducing the size
of an assessment.

6 Simplifying Assessments

For any given assessment A = {A1, . . . , An}, the number of conditions that we
have to check to apply Theorem 7 is proportional to the size of ×n

j=1Aj . Since
Theorem 7 draws conclusions about Ex(A) rather than A1, . . . , An, it can thus
be useful to try to make ×n

j=1Aj smaller without altering Ex(A), as this will
reduce the number of conditions that we have to check. This is especially true
when we want to apply Theorem7 to several sets S, for example because we
want to evaluate the natural extension of a choice function in multiple option
sets.

To make ×n
j=1Aj smaller, a first straightforward step is to remove duplicates

from A1, . . . , An; after all, it is only the set A = {A1, . . . , An} that matters, not
the list A1, . . . , An that generates it. To further reduce the size of ×n

j=1Aj , we
need to reduce the size of A and the option sets it consists of. To that end, we
introduce a notion of equivalence for assessments.

Definition 6. For any two assessments A1,A2 ∈ A , we say that A1 and A2

are equivalent if K̄(A1) = K̄(A2).

It follows immediately from Definition 5 and Eq. (4) that replacing an assessment
with an equivalent one does not alter its consistency, nor, if it is consistent, its
natural extension.

The following result shows that it is not necessary to directly simplify a
complete assessment; it suffices to focus on simplifying subsets of assessments.

Proposition 8. If two assessments A1,A2 ∈ A are equivalent and A1 ⊆ A ∈
A , then A is equivalent to (A \ A1) ∪ A2.

This result is important in practice because it means that we can build and
simplify assessments gradually when new information arrives and that we can
develop and use equivalence results that apply to small (subsets of) assessments.

A first simple such equivalence result is that we can always remove zero from
any option set.
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Proposition 9. Consider an option set A ∈ Q. Then the assessment {A} is
equivalent to {A \ {0}}.
This result can be generalized so as to remove options for which there is a second
option that can, by scaling, be made better than the first option.

Theorem 10. Consider an option set A ∈ Q and two options u, v ∈ A such
that u �= v and u ≤ μv for some μ ≥ 0. Then the assessment {A} is equivalent
to {A \ {u}}.
If V = R

2, this result—together with Proposition 8—guarantees that every
option set in A can be replaced by an equivalent option set of size at most
two.

Proposition 11. Let V = R
2 and consider any option set A ∈ Q. Then there is

always an option set B ∈ Q with at most two options such that {A} is equivalent
to {B}, and this option set B can be found by repeated application of Theorem10.

In the case of our running example, all the option sets in A can even be reduced
to singletons.

Example 1.7. In A1 we see that w1 = 2w2 and in A2 we see that w4 ≤ 5
7w3.

So, by Proposition 8 and Theorem 10, we can simplify the assessment AC of
Example 1.4 to A′

C := {{w2}, {w3}, {w5}}. ♦
Our equivalence results so far were all concerned with removing options from

the option sets in A. Our next result goes even further: it provides conditions
for removing the option sets themselves.

Theorem 12. Consider an assessments A and an option set A ∈ A such that
A ∈ Ex(A \ {A}). Then A is equivalent to A \ {A}.
Example 1.8. Let us start from the assessment A′

C = {{w2}, {w3}, {w5}} in
Example 1.7. We will remove {w2} from this assessment using Theorem 12. To
do that, we need to show that {w2} ∈ Ex({{w3}, {w5}}). To that end, we apply
Theorem 7 for S = {w2}. Since w2 �> 0, it follows that S ∩V>0 = ∅. We therefore
check the second condition of Theorem7. Since {w3} × {w5} is a singleton, we
only need to check the condition for a single tuple u = (w3, w5). For s = w2

and λ = (14 , 0), we find that λu = 1
4w3 + 0w5 = (74 ,−1) ≤ (2,−1) = w2 =

s. Hence, {w2} ∈ Ex({{w3}, {w5}}) and we can therefore replace A′
C by the

smaller yet equivalent assessment A′′
C = {{w3}, {w5}}. Taking into account our

findings in Example 1.7, it follows that AC is equivalent to A′′
C and, therefore,

that Ex(AC) = Ex(A′′
C).

Obviously, this makes it easier to evaluate Ex(C). Suppose for example that
we are asked to choose from {v7, v8}, with v7 := (5,−2) and v8 := (−4, 3). By
Theorem 6 and Eq. (3), we can check if we can reject v8 by checking if {v7−v8} =
{(9,−5)} ∈ Ex(A′′

C) = Ex(AC). For s = (9,−5), u = (w3, w5) and λ = (97 , 0)
we see that λu = (9,− 36

7 ) ≤ s, so Theorem 7 tells us that, indeed, {(9,−5)} ∈
Ex(A′′

C). If we were to perform the same check directly for Ex(AC), then we
would have to establish four inequalities—one for every u ∈ A1 × A2 × A3—
while now we only had to establish one. ♦
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7 Practical Implementation

For large or complicated assessments, it will no longer be feasible to manually
check the conditions in Theorem 7. In those cases, the algorithm that we are
about to present can be used instead. According to Theorem 7, testing if an
option set S belongs to Ex(A) for some assessment sequence A = {A1, . . . , An}
requires us to check if S ∩ V>0 �= ∅ and, in case n �= 0, if there is for every
u ∈ ×n

j=1Aj some s ∈ S ∪ {0} and λ ∈ R
n,+ such that λu ≤ s. If one of

these two conditions is satisfied, then S belongs to Ex(A). The first condition
is not complicated, as we just have to check for every s ∈ S if s > 0. For the
second condition, the difficult part is how to verify, for any given u ∈ ×n

j=1Aj

and s ∈ S ∪ {0}, whether there is some λ ∈ R
n,+ for which λu ≤ s. If one of

these two conditions is satisfied then S belongs to Ex(A). Given the importance
of this basic step, we introduce a boolean function IsFeasible : V n × V →
{True,False}. For every u ∈ V n and s ∈ V , it returns True if λu ≤ s for at
least one λ ∈ R

n,+, and False otherwise.
So the only problem left is how to compute IsFeasible(u, s). The tricky

part is the constraint that λ = (λ1, . . . , λn) ∈ R
n,+. By definition of Rn,+, this

can be rewritten as λj ≥ 0 for all j ∈ {1, . . . , n} and
∑n

j=1 λj > 0, which are all
linear constraints. Since the condition λu ≤ s is linear as well, we have a linear
feasibility problem to solve. However, strict inequalities such as

∑n
j=1 λj > 0 are

problematic for software implementations of linear feasibility problems. A quick
fix is to choose some very small ε > 0 and impose the inequality

∑n
j=1 λj ≥ ε

instead, but since this is an approximation, it does not guarantee that the result
is correct. A better solution is to use the following alternative characterisation
that, by introducing an extra free variable, avoids the need for strict inequalities.3

Proposition 13. Consider any s ∈ V and any u = (u1, . . . , un) ∈ V n. Then
IsFeasible(u, s) = True if and only if there is a μ = (μ1, . . . , μn+1) ∈ R

n+1

such that
∑n

j=1 μjuj ≤ μn+1s, μj ≥ 0 for all j ∈ {1, . . . , n}, μn+1 ≥ 1 and
∑n

j=1 μj ≥ 1.

Computing IsFeasible(u, s) is therefore a matter of solving the following linear
feasibility problem:

find μ1, . . . , μn+1 ∈ R,

subject to μn+1s(x) − ∑n
j=1 μjuj(x) ≥ 0 for all x ∈ X ,

∑n
j=1 μj ≥ 1, μn+1 ≥ 1,

and μj ≥ 0 for all j ∈ {1, . . . , n}.

For finite X , such problems can be solved by standard linear programming meth-
ods; see for example [5].

3 This result was inspired by a similar trick that Erik Quaegebeur employed in his
CONEstrip algorithm [6].
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Algorithm 1. Check if an option set S ∈ Q is in Ex(A) for an assessment
A ∈ A
Precondition: S, A1, . . . , An ∈ Q with n ∈ N ∪ {0} and A = {A1, . . . , An}.

1: function IsInExtension(S, A1, . . . , An) � Check if S is in Ex(A).
2: for all s ∈ S do
3: if s > 0 (so s � 0 and s �= 0) then
4: return True
5: if n = 0 then
6: return False
7: for all u ∈ ×n

j=1Aj do
8: for all s ∈ S ∪ {0} do � Search an s and λ such that λu ≤ s.
9: res ← IsFeasible(u, s)

10: if res then
11: break � Stop the loop in s when a suitable s is found.

12: if ¬ res then
13: return False � If there is no such s.
14: return True � When all u have been checked.

Together, Theorem 7 and Proposition 13 therefore provide a practical method
to test if an option set S belongs to Ex(A), with A = {A1, . . . , An}. Pseudocode
for this method is given in Algorithm1. First, in lines 2 to 4, we check if S∩V>0 �=
∅. If it is, then S ∈ Ex(A) and we thus return True. If this is not the case, and
the assessment is empty, i.e. n = 0, then we have to return False, as we do
in lines 5 and 6. Next, in lines 7 to 11, we run through all u ∈ ×n

j=1Aj and
search an s ∈ S ∪ {0} for which IsFeasible(u, s) = True, i.e. for which there
is some λ ∈ R

n,+ such that λu ≤ s. As soon as we have found such an s, we
can break from the loop—halt the search—and go to the next u. However, if
we went through all of S ∪ {0} and we did not find such an s, then the second
condition of Theorem 7 is false for the current u and thus S does not belong to
Ex(A); we then return False, as in lines 12 and 13. On the other hand, if we went
through all u ∈ ×n

j=1Aj and for every one of them we have found an s ∈ S ∪{0}
such that IsFeasible(u, s)=True, then we conclude that S is in Ex(A) by the
second condition of Theorem 7, so we return True.

Example 2. Roger is an expert in the pro snooker scene. An important game
is coming soon where two players will play two matches. Betting sites will
offer bets on the following three possible outcomes: the first player wins 2-0,
a 1-1 draw, or the second player wins 2-0. So a bet corresponds with an
option in R

3, the components of which are the rewards for each of the three
outcomes. Before the possible bets are put online, we ask Roger to provide
us with an assessment. He agrees to do so, but tells us that we should not
contact him again when the bets are online. We ask him to choose from
the sets B1 = {(−4, 1,−1), (3,−5,−1), (−3, 1,−1), (4, 0,−4), (3,−5, 4)},
B2 = {(−4, 2, 4), (−2,−4, 3), (0,−4, 2), (0, 3,−5), (2, 1, 3)} and B3 =
{(−4, 1, 4), (−2,−2, 4), (−5, 3, 4)}. He provides us with the choice assess-
ment C(B1) = {(4, 0,−4), (3,−5, 4)}, C(B2) = {(−4, 2, 4)} and
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C(B3) = {(−4, 1, 4), (−2,−2, 4)}. Some time later, the betting site makes
the following set of bets available:

A = {(−1,−1, 2), (−4,−4, 6), (−2,−10, 6), (−1, 0,−2), (−2, 8,−6),
(2,−4, 4), (4,−6, 1), (−3, 8, 5), (2, 9,−9), (1, 7,−3)}.

The question then is what bet to choose from A, based on what Roger has told us.
The assessment AC that corresponds to Roger’s choice statements contains eight
option sets. However, we can use Theorems 10 and 12 and Proposition 8 to reduce
AC to the equivalent assessment A∗ = {{(3,−5, 0)}, {(−6, 1, 1), (−2, 2,−8)}}.
With Theorems 5 and 6 and Algorithm 1, we find that the assessment is consis-
tent and with subsequent runs of Algorithm1, and using Theorem 6 and Eq. (3),
we find that Ex(C)(A) = {(−4,−4, 6), (−2,−10, 6), (−3, 8, 5)}. So we can greatly
reduce the number of bets to choose from but we cannot, based on the available
information, deduce entirely what Roger would have chosen. ♦

8 Conclusion and Future Work

The main conclusion of this work is that choice functions provide a principled as
well as practically feasible framework for inferring new decisions from previous
ones. The two key concepts that we introduced to achieve this were consistency
and natural extension. The former allows one to check if an assessment of choices
is compatible with the axioms of coherence, while the latter allows one to use
these axioms to infer new choices. From a practical point of view, our main
contribution is an algorithm that is able to execute both tasks. The key technical
result that led to this algorithm consisted in establishing a connection with
the framework of sets of desirable option sets. This allowed us to transform an
assessment of choices into an assessment of desirable option sets, then simplify
this assessment, and finally execute the desired tasks directly in this setting.

Future work could add onto Sect. 6 by trying to obtain a ‘simplest’ repre-
sentation for any given assessment, thereby further reducing the computational
complexity of our algorithm. We would also like to conduct extensive experi-
ments to empirically evaluate the time efficiency of our algorithm and the pro-
posed simplifications, and how this efficiency scales with a number of important
parameters. This includes the number of option sets in an assessment, the size of
the option sets themselves, the dimension of the vector space V and the size of
the option set A for which we want to evaluate the natural extension Ex(C)(A).
We also intend to consider alternative forms of assessments, such as bounds on
probabilities, bounds on expectations and preference statements, and show how
they can be made to fit in our framework. Finally, we would like to apply our
methods to a real-life decision problem.
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Abstract. In this work, we study the theoretical properties, from the
perspective of learning theory, of three-way clustering and related for-
malisms, such as rough clustering or interval-valued clustering. In par-
ticular, we generalize to this setting recent axiomatic characterization
results that have been discussed for classical hard clustering. After
proposing an axiom system for three-way clustering, which we argue
is a compatible weakening of the traditional hard clustering one, we
provide a constructive proof of an existence theorem, that is, we show
an algorithm which satisfies the proposed axioms. We also propose an
axiomatic characterization of the three-way k-means algorithm family
and draw comparisons between the two approaches.

Keywords: Three-way clustering · Rough clustering · Interval-set
clustering · Learning theory

1 Introduction

Clustering, that is the unsupervised task of grouping objects into groups by
account of their similarity [30], is a popular and important task in data analysis
and related fields. Several clustering approaches have been proposed, such as
hierarchical and partitive [24], density-based [16] or subspace-based [27], and
have been successfully applied to different domains [9].

Compared to other areas in Machine Learning, however, the study of the
formal properties of clustering, from a learning theory perspective [26], have
been lacking, convergence or soundness results for specific algorithms aside [25].

In the recent years, starting from the seminal work of Kleinberg [10], there
has been an increasing interest toward the study of the learnability of clustering,
focusing on formal characterizations based on an axiomatic perspective: that is,
studying systems of axioms that clustering methods should satisfy and then
prove either impossibility theorems or characterization results.

A major limitation of these works consists in the fact that they apply only
to hard clustering methods, that is methods in which each object is definitely
assigned to one and only cluster. Today, however, many soft clustering [23]
approaches have been developed and shown to be effective in practical appli-
cations: probabilistic clustering methods [17], fuzzy clustering [3], possibilistic
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clustering [12], credal clustering [8], three-way clustering [32] and related for-
malisms [13,31]. Contrary to traditional hard clustering approaches, soft clus-
tering methods allow clusters to overlap or, either, the relation of containment
of objects into cluster to be only partially or imprecisely defined.

In this article, we start to address this gap by extending the available results
to soft clustering, in particular we will study a formal characterization of three-
way clustering and related approaches (e.g. rough clustering, interval clustering).
Specifically, in Sect. 2, we present the necessary background about three-way
clustering and the learning theory of clustering; in Sect. 3, we present the main
content of the paper by generalizing the learning theory of hard clustering to
three-way clustering; finally, in Sect. 4, we discuss the proposed approach and
describe some possible future work.

2 Background

2.1 Formal Theory of Clustering

Let X be a set of objects and d : X × X �→ R be a distance function, i.e. a
function s.t.:

d(x, y) ≥ 0 ∧ d(x, y) = 0 iff x = y (1)
d(x, y) = d(y, x) (2)

Remark. We notice that, formally, a distance d should also satisfy the triangle
inequality ∀x, y, z ∈ X d(x, y) ≤ d(x, z) + d(z, y). Functions not satisfying the
triangle inequality are more usually denoted as semi-distances. However, since
[10], in the literature on formal clustering theory it is customary to not make
such a distinction.

Let DX be the collection of all distance functions over X and Π(X) be the
collection of partitions over X. A partition π is trivial if π = antidiscr(X) = {X}
or π = discr(X) = {{x} : x ∈ X} and denote as Π̂(X) the collection of non-
trivial partitions.

Definition 1. A clustering algorithm is a computable function c : DX �→ Π(X).

Given d, then c(d) = π = {π1, ..., πn} where each πi is a cluster. We denote
the case in which two objects x, y belong to the same cluster πi as x ∼π y
The formal study of clustering algorithms, after Kleinberg [10], starts from the
definition of characterization axioms:

Axiom 1 (Scale Invariance). A clustering algorithm c is scale invariant if,
for any d ∈ DX and α > 0, c(d) = c(α · d).

Axiom 2 (Richness). A clustering algorithm c is rich if Range(c) = Π(X):
that is, for each π ∈ Π(X), ∃d ∈ DX s.t. c(d) = π.
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Axiom 3 (Consistency). Let d, d′ ∈ DX and π ∈ Π(X). Then, d’ is a π-
transformation of d if

∀x ∼π y.d′(x, y) ≤ d(x, y) (3)
∀x �∼π y.d′(x, y) ≥ d(x, y) (4)

A clustering algorithm c is consistent if, given d s.t. c(d) = π, for any d′ π(X)-
transformation of d it holds that c(d′) = c(d).

The following impossibility theorem represents a seminal result in the formal
learning theory of clustering:

Theorem 1 ([10]). If |X| ≥ 2 then no clustering algorithm satisfies Axioms 1,
2, 3.

Corollary 1 ([10]). For each pair of Axioms among 1, 2, 3 there exists a
clustering algorithm that satisfies it.

Remark. We note that the axioms, and the proofs of Theorems 1 and Corol-
lary 1, allow one to arbitrarily choose the distance function, irrespective of the
nature and topological structures of the instances in X. While this assumption
may seem overly general, it is to note that in the definitions the instances of X
are completely abstract, and the topological space is entirely determined by the
function d. In this respect, letting d vary arbitrarily may be seen as requiring
that, no matter the nature of the distance function chosen for the given applica-
tion, a clustering should respect some properties w.r.t. the chosen distance. This
is in analogy with the distribution-independence assumption in the definition of
PAC learnability for supervised learning theory [26].

It is to note that these results can be interpreted similarly to the No
Free Lunch theorem for supervised learning: that is, there is no clustering
algorithm that (under the requirement of allowing to return every possible
clustering) satisfies two intuitively appealing criteria. Indeed, Zadeh et al.
[35] have shown that the most problematic constraint is due to the Rich-
ness axiom and proposed an alternative formalization based on the concept of
k-clustering algorithms (i.e. clustering algorithms which require an additional
input k ∈ N

+) and the k-Richness axiom:

Axiom. 2’ (k-Richness). A k-clustering algorithm ck : DX �→ Πk(X) is k-rich
if ∀k,Range(ck) = Πk(X), where Πk(X) is the collection of k-partitions on X.

The authors also showed that, considering k-Richness in place of Richness,
provides a consistent set of axioms:

Theorem 2 ([35]). There exists a k-clustering algorithm that satisfies Axioms
1, 2’, 3.

Lastly, we recall the work of Ben-David et al. [2] on clustering quality mea-
sures (CQM), i.e. functions q : Π(X)×DX �→ R, which showed that the following
set of axioms represents a consistent formalization of these measures:



A Formal Learning Theory for Three-Way Clustering 131

Axiom 1q (Scale Invariance). A CQM q is scale invariant if ∀α > 0, π ∈
Π(X), q(π, d) = q(π, α · d).

Axiom 2q (Richness). A CQM q is rich if ∀π ∈ Π̂(X) exists d ∈ DX s.t.
π = argmaxπ′∈Π̂(X) {q(π′, d)}.

Axiom 3q (Consistency). A CQM q is consistent if given d ∈ Dx, π ∈ Π(x),
for any π(X)-transformation d′ of d it holds that q(π, d′) ≥ q(π, d).

Theorem 3 ([2]). There exists a CQM that satisfies Axioms 1q, 2q, 3q.

We can note that, even though Axioms 1q through 3q are defined for clus-
tering quality measures, they also implicitly define a clustering algorithm by
c(d; q) = argmaxπ′∈Π̂(X) {q(π′, d)}

2.2 Three-Way Clustering and Related Formalisms

An orthopair on a universe X is defined as O = 〈P,N〉, where P ∩ N = ∅. From
P and N a third set, can be defined as Bnd = X \ (P ∪ N). In the setting
of clustering an orthopair can be understood as an uncertain or imprecisely
known cluster: the objects in P are those that surely belong to the cluster (P =
Positive), those in N are the ones that surely do not belong to the cluster (N
= negative), and the objects in Bnd are those that may possibly belong to the
cluster (Bnd = Boundary). In the setting of three-way clustering P is also called
the Core region of the cluster, and Bnd as the Fringe region. In the following,
we will denote a cluster as the orthopair Oi = (Corei, F ringei).

Different clustering frameworks have been proposed based on the idea of
employing orthopairs as a representation of clusters, namely rough clustering
[15], interval-set clustering [31], three-way clustering [32] and shadowed set clus-
tering [18]. In these frameworks, a variety of different clustering algorithms have
been proposed: rough k-means [15,19,21] and variations based on evolution-
ary computing [14] or the principle of indifference [22] for the optimal selection
of the thresholds that define the Core and Fringe regions, three-way c-means
[28,36], different three-way clustering algorithms that automatically determine
the appropriate thresholds or number of clusters such as gravitational search-
based three-way clustering [33], variance-based three-way clustering [1], three-
way clustering based on mathematical morphology [29] or density-based [34] and
hierarchical [5] three-way clustering, and many others.

In the context of this paper we will not consider specific three-way clustering
algorithms, as we will be primarily interested in the general formalism behind
these clustering frameworks that we now recall. As highlighted previously dif-
ferent frameworks have been proposed, based on similar but different axiom
requirements: rough clustering, interval-set clustering, three-way clustering.

A rough clustering is defined as a collection of O = {O1, ..., On} of orthopairs
satisfying:

(R1) ∀i �= j, Corei ∩ Corej = Corei ∩ Fringej = Corej ∩ Fringei = ∅
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(R2) ∀x ∈ X, �i s.t. x ∈ Corei → ∃i �= j s.t. x ∈ Fringei, F ringej .

On the other hand, both interval-set clustering and three-way clustering are
defined as collections O = {O1, ..., On} of orthopairs s.t.:

(T1) ∀i, Corei �= ∅
(T2)

⋃
i(Corei ∪ Fringei) = X

(T3) ∀i �= j, Corei ∩ Corej = Corei ∩ Fringej = Corej ∩ Fringei = ∅
Finally, shadowed set clustering [18] adopts a framework which is instead based
on fuzzy clustering, where the degree of membership of an object x ∈ X to a
cluster C ∈ π is given by a membership function C : X �→ [0, 1]. Compared
with standard fuzzy clustering, in shadowed set clustering the membership func-
tion for each cluster C are then discretized into three regions, which are then
equivalent to the three regions in three-way clustering (i.e., CoreC , F ringeC and
ExtC = (CoreC ∪ FringeC)c) [20].

Thus, while the different clustering frameworks are based on the same math-
ematical representation (i.e., orthopairs), there are some differences: rough clus-
tering allows the core regions to be empty (in this case, the object is required
to belong to at least two fringe regions); interval–set (and three–way) clustering
require the core regions to be non–empty and allows objects to be in only one
fringe region.

Recently, the notion of an orthopartition [4] has been proposed as a unified
representation for clustering based on orthopairs. Formally, an orthopartition is
defined as a collection O of orthopairs s.t.:

(O1) ∀i �= j Corei ∩ Corej = Corei ∩ Fringej = Corej ∩ Fringei = ∅
(O2)

⋃
i(Corei ∪ Fringei) = X

(O3) ∀x ∈ U (∃i s.t. x ∈ Fringei) → (∃j �= i s.t. x ∈ Fringej)

It can easily be seen that the axioms for orthopartitions more closely follow
the ones for rough clustering (Axiom O3 does not hold for three-way clustering).
However, in [4], it has been shown that every three-way clustering can easily be
transformed in an orthopartition by isolating in an ad-hoc cluster the elements
not satisfying (O3). As all the different representations can be transformed into
each other, in the following, we will thus refer generally to three-way clustering
as a general term for clustering based on orthopairs.

Since a three-way clustering represents an incomplete or uncertain state of
knowledge about a clustering (i.e. about which specific clusters do the objects
belong), we can also represent a three-way clustering as a collection of consistent
clusterings, that is given a three-way clustering O:

Σ(O) = {π ∈ Π(X) : π is consistent with O} (5)

where π is consistent with O iff ∀Oi ∈ O,∃πj ∈ π s.t. πj ⊆ Corei ∪ Fringei.
We notice that, in general, a collection of clusterings C does not necessarily

represents the collection of consistent clusterings for any given three-way clus-
tering O. However, it can also be easily seen that each collection of clusterings
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C can be extended to a collection of consistent clusterings (for a given three-way
clustering O). Thus, when we refer to a collection of clusterings, we will implicitly
refer to its extension that we denote as tw(Σ), where Σ is a collection of clus-
terings. The vacuous three-way clustering is defined as Ov s.t. Σ(Ov) = Π(X).
Let O be a three-way clustering, we denote by Core(O) ⊂ X the collection of
objects in the core regions of the clusters of O.

If we denote as O(X) the set of three-way clusterings over X, then a three-way
clustering algorithm is a computable function ctw : DX �→ O(X).

3 Formal Theory of Three-Way Clustering

Our aim is to study the learnability properties and formal characterization of
three-way clustering. One aspect that should be considered, in this respect, is
the increased flexibility derived from adopting the three-way formalism, which
is due not only to the increased model complexity, but also to the fact that it
allows to conceive weakenings of the axioms proposed for hard clustering, as long
as they retain compatibility with the standard case. In particular, since as pre-
viously argued, the Richness axiom represents the most problematic constraint,
we will study possible weakenings of it which are meaningful in the three-way
clustering setting. This, however, should be done with care, e.g.. the following
naive consistent weakening of the Richness axiom:

⋃

O∈Range(ctw)

Σ(O) = Π(X)

would clearly be too permissive, as it would admit always returning the vacuous
three-way clustering as output. Similarly, requiring that Range(ctw) = O(X)
would be too strong a requirement: as a consequence of Theorem 1 it would
result in an unsatisfiable constraint.

The following axiom, which is intermediate in strength between Axiom 2 and
Axiom 2q (as shown previously, any clustering quality measure implicitly defines
a clustering algorithm), represents a weakening of the Richness axiom which is
coherent with the three-way clustering setting:

Axiom 2tw (Almost Richness). A three-way clustering algorithm ctw is
almost rich if ⋃

O∈Range(ctw)

Σ(O) = Π(X) (6)

and

∀π ∈ Π̂(X),∃d ∈ DX s.t. ctw(d) = π (7)

First, we notice that, obviously, when restricted to hard clustering algorithms
Almost Richness reduces to Richness.

Proposition 1. If c is a clustering algorithm, then it satisfies Axiom 2 iff it
satisfies Axiom 2tw.
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Proof. For a clustering algorithm c its output c(d) is always a single partition
π. Thus, Σ({π}) = π and thus, if c is almost rich it is also rich. Equation (7)
becomes redundant in this particular case. The converse (richness implies almost
richness) is evident.

Second, we note that in Axiom 2tw, we restrict the range to Π̂(X) rather than
Π(X), in analogy with Axiom 2q; in this sense, as stated above, the proposed
Axiom is intermediate in strength between Axioms 2 and 2q.

On the other hand, as regards Axioms 1 and 3, we simply require that they
hold for each possible three-way clustering O (thus, we do not weaken these two
axioms).

In order to prove that Axiom 2tw, together with Axioms 1 and 3, characterizes
three-way clustering, we first introduce the notion of a CQM s.t. the resulting
cq
tw is almost rich.

For a pair of clusters πi, πj let s(πi) = 1
2|πi|

∑
x�=y∈πi

d(x, y) be the mean dis-
tance of the elements inside cluster πi and d(πi, πj) = 1

|πi||πj |
∑

x∈πi

∑
y∈πj

d(x, y)

the mean distance between elements belonging to two different clusters πi, πj .
Given a partition π and a distance d, we define a CQM qtw : Π(X) ×
DX �→ R

2 as
qtw(π, d) = 〈qintra, qinter〉 (8)

where

qintra(π, d) =
1
|π|

∑

πi∈π

s(πi) − minx�=y∈Xd(x, y) (9)

qinter(π, d) =
1

|π|2
∑

πi �=πj∈π

d(πi, πj) − minx�=y∈Xd(x, y) (10)

Remark. We notice that, strictly speaking, the introduced quality measure qtw

is not a CQM, as a CQM is defined as a function q : Π(X) × DX �→ R while
qtw : Π(X) × DX �→ R

2.

Definition 2. Given two clustering π1, π2 and a distance function, we say that
qtw(π1, d) < qtw(π2, d) if both:

qintra(π1, d) ≥ qintra(π2, d) (11)

qinter(π1, d) ≤ qinter(π2, d) (12)

and at least one of the two is strict. Then, we say that π1 <q π2 if qtw(π1, d) <
qtw(π2, d).

The idea is that if π1 <q π2 then instances in π1 have greater intra-cluster
distance and smaller inter-cluster distance.

The following result shows that, indeed, the three Axioms provide a charac-
terization for three-way clustering.
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Algorithm 1. Three-way Clustering based on qtw

Require: d distance function
Σ = ∅
for π ∈ Π(X) do

check := �
for π′ �= π ∈ Π(X) do

if π′ >q π then
check := ⊥
break

end if
end for
if check then

Σ.append(π)
end if

end for
Return tw(Σ)

Theorem 4. There exists a three-way clustering algorithm that satisfies Axioms
1, 2tw and 3.

Proof. The Theorem can be proven based on the previously defined CQM qtw.
Indeed, from qtw, we can define a three-way clustering algorithm cq

tw as shown
in Algorithm 1. It can be verified that, ∀d ∈ DX , cq

tw(d) = {π ∈ Π(X) : �π′ ∈
Π(X), π′ >q π}. It is easily shown that cq

tw satisfies Scale-Invariance and Con-
sistency (when restricted to pairs of objects x, y in the core regions of tw(Σ),
where Σ is the result of cq

tw). We thus show only the proof for Almost Richness.
Let π be a given non-trivial clustering and let d be the distance function

defined ∀x, y as

d(x, y) =

{
ε if x ∼π y

α if x �∼π y

with α � ε. Then, qtw(π, d) = 〈0, α − ε〉 and evidently, for any other π′,
qtw(π′, d) < qtw(π, d) (hence, π′ <q π). This satisfies the second condition of
the Axiom.

As regards the first condition, let d be s.t. ∀x, y, d(x, y) = ε. Then, for any
π ∈ Π(X) qtw(π, d) = 〈0, 0〉. The condition, and hence the result, follows. ��

The proof of Theorem 4 is constructive and directly provides a three-way
clustering algorithm satisfying Axioms 1, 2tw, 3. Further, evidently Π̂(X) ⊂
Range(cq

tw) ⊂ O(X) but future work should study how to provide a more precise
specification of the range of cq

tw.
As a limitation of this result, it is easy to observe that an exact implementa-

tion of this algorithm is not practical from a time complexity perspective: indeed,
as the algorithm requires to compute the value of q for all possible clusterings its
complexity is evidently exponential in |X|. A possible solution to this problem
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would be to define heuristic or randomized algorithms for implementing approx-
imation of the cq

tw three-way clustering algorithm (possibly, with proven quality
bounds).

A different approach, instead, consists in studying other, more efficient three-
way clustering algorithms and providing their axiomatic characterization, in
order to understand their flexibility when compared with cq

tw. We will provide
such a characterization for the three-way k-means algorithm [28,36] (and related
ones, such as rough k-means [15,21]). In order to prove this result, we will focus
on a simplified single-step version of the algorithm, as defined in Algorithm 2.

Algorithm 2. Single-Step Three-way K-Means
Require: d distance function
Require: x1, ..., xk ∈ X cluster centroids
Require: δ, Δ ∈ [0, 1] parameters

Let d̂(x, y) := d(x,y)
maxa,b∈Xd(a,b)

for x ∈ X do
I := {i : d̂(x, xi) ≤ Δ}
for i ∈ I do

if (|I| = 1) ∧ (d̂(x, xi) ≤ δ) then
x ∈ Corei

else
x ∈ Fringei

end if
end for

end for

Evidently, Algorithm 2 is Scale-Invariant (as it only uses the normalized
distance) but it can easily be shown that is neither Consistent, nor Almost Rich,
but it is k-Rich.

Example 1. For Consistency, consider a distance function d, let a, b ∈ X
s.t. d(a, b) = maxx,y∈Xd(x, y) and suppose that the result of Algorithm 2,
denoted as O, assigns a, b to two different clusters. Further, let d′ s.t. ∀x, y ∈
X \ {a, b}d′(x, y) = d(x, y), while d(a, b) � d′(a, b). Then, evidently, d’ is a O-
transformation of d, but Consistency is violated. For Almost Richness, it easily
follows from the fact the result of Algorithm 2 contains exactly k clusters.

We can characterize this Algorithm (and similar algorithms such as three-
way k-means [28] or rough k-means [13]) via the following two Axioms (together
with Scale-Invariance):

Axiom 2twk (Three-way k-Richness). A three-way k-clustering algorithm
ck
tw : DX �→ Ok(X) is k-rich if ∀k,Range(ck

tw) = Ok(X) where Ok(X) = {O ∈
O(X) : |O| = k}.

That is, a three-way clustering algorithm is k-rich if as possible outputs (by
changing the distance function) we can obtain all the orthopartions made exactly
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of k orthopairs. This requirement is a natural generalization of k-Richness to the
setting of three-way clustering.

Axiom 3twk ((δ,Δ)-Consistency). Let d, d′ ∈ DX and δ < Δ ∈ [0, 1]. Then,
d′ is a (δ,Δ)-transformation of d if:

sign(
d(x, y)

maxa,bd(a, b)
− δ) = sign(

d′(x, y)
maxa,bd′(a, b)

− δ) (13)

sign(
d(x, y)

maxa,bd(a, b)
− Δ) = sign(

d′(x, y)
maxa,bd′(a, b)

− Δ) (14)

A three-way clustering algorithm ctw is (δ,Δ)-consistent if, given d s.t. ctw(d) =
O, for any d′ (δ,Δ)-transformation of d it holds that ctw(d′) = O.

So, (δ,Δ)-consistency means that small changes in the distance function do not
alter the clustering result. The notion of (δ,Δ)-consistency can be seen as a
restricted form of Consistency, determined by two thresholds that are used to
describe three different regions (a natural requirement in the setting of three-
way clustering): the objects whose normalized distance is lower than δ; those
for which the normalized distance is between Δ and δ; and those for which the
normalized distance is greater than Δ).

Theorem 5. Algorithm 2 satisfies Axioms 1, 2twk, 3twk.

Proof. Evidently, Algorithm 2 is Scale-Invariant. Further, by construction, it is
also (δ,Δ)-consistent w.r.t. its input parameters δ,Δ. Thus, we only need to
show that it is Three-way k-Rich.

Let O ∈ Ok(X) be the target three-way clustering and δ < Δ the input
parameters. For each cluster Oi ∈ O select one element xi ∈ Oi. Then, for each
x, if x ∈ Corei set d(x, xi) < δ and if x ∈ Fringei set δ < d(x, xi) < Δ. For any
two x, y s.t. they belong to different clusters set d(x, y) = 1. Then the output of
Algorithm 2 in this case is exactly O.

We can thus compare the two algorithms, cq
tw and Three-way K-Means,

through their characterization. Indeed, we can observe that the two algorithms
can be seen as offering a trade-off between representational flexibility and com-
putational efficiency. Indeed, cq

tw is more flexible (as it does not require to set,
a-priori, the number of clusters k) and satisfies a stricter notion of consistency.
Thus, its result is more well-behaved w.r.t. coherent modifications to the dis-
tance function. However, it has exponential complexity in the size of X, as it
requires an enumeration of all π ∈ Π(X). On the other hand, having fixed
both k, the number of clusters, and the cluster centroids (i.e., x1, ..., xk in Algo-
rithm 2), the complexity of Three-way K-Means is linear in |X|. However, the
Three-way K-Means family of algorithms satisfies a weaker form of consistency
(i.e., (δ,Δ)-consistency) and, further, requires to set both the number of clusters
(which in practice is selected heuristically using criteria such as the Silhouette or
cross-validation [11]) and the cluster centroids: this usually involves an iterative
approach which, however, only guarantees convergence to a local optimum (as,
even for traditional k-Means, the problem of finding the optimal k-clustering is
NP-hard [6]).
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4 Conclusion

In this article, we set out the foundations for the study of the theoretical prop-
erties of three-way clustering and related formalisms, from the perspective of
computational learning theory. We provided an axiomatic characterization of
three-way clustering and proved that, contrary to the case of traditional clus-
tering, these requirements are consistent, i.e., there exists a three-way clustering
algorithm satisfying them, which however has exponential time complexity. We
then studied an axiomatic characterization of the popular Three-way k-Means
family of clustering algorithm, showing that it provides a trade-off, favoring bet-
ter time complexity against reduced flexibility. Our results represent a first step
towards a formal study of three-way clustering and, as such, we think that the
following open problems may be important to understand the formal properties
of this increasingly popular clustering framework:

– What is the exact characterization of Range(cq
tw)? As we previously argued,

it can easily be shown that Π̂(X) � Range(cq
tw) � O(X), but it is not clear

which proper three-way clusterings can be represented by cq
tw;

– Is there a three-way clustering algorithm satisfying the following generalized
Almost Richness axiom (together with Consistency and Scale-Invariance):

∀O ∈ Ô(X)∃d ∈ DX s.t ctw(d) = O (15)

where Ô(X) is the set of non-trivial three-way clusterings? Otherwise, what
is the greatest subset of O(X) which admits a consistent and scale-invariant
three-way clustering algorithm?

– While the time complexity of cq
tw is exponential in |X|, can we find an approx-

imation or randomization scheme for cq
tw with provable error bounds?

– What is the learning-theoretic axiomatic characterization of other three-
way clustering algorithms, such as three-way density-based clustering [34]
or rough-set hierarchical clustering [5]?

More generally, and observing that rough k-means can be seen as a particular
case of both evidential clustering [7] and possibilistic clustering [12], we can think
to extend the learning-theoretic axiomatic characterization to these other soft
clustering approaches.
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Abstract. Structured safety arguments are widely applied in critical
systems to demonstrate their safety and other attributes. Graphical for-
malisms such as Goal Structuring Notation (GSN) are used to represent
these argument structures. However, they do not take into account the
uncertainty that may exist in parts of these arguments. To address this
issue, several frameworks for confidence assessment have been proposed.
In this paper, a comparative study is carried out on three approaches
based on Dempster-Shafer theory. We extract and compare the implicit
logic at work in these works, and show that, to some extent, these current
approaches fail to provide a consistent relationship between the informal
statement of arguments, their logical model and the use of belief func-
tions. We also propose recommendations to improve this consistency.

Keywords: Confidence assessment · Goal Structuring Notation
(GSN) · Dempster-Shafer theory (DST) · Evidence fusion · Safety cases

1 Introduction

The deployment of autonomous systems in the highly uncertain human environ-
ment raises the issue of safety. Argument structures are widely used to evaluate
and prove the safety of these systems. They are a clearly represented collec-
tion of rational pieces of evidence like test or simulation results, expert judg-
ments, analysis reports, etc. They aim to demonstrate that a certain property
of the system is satisfied. Many studies and standards define safety arguments
as “Safety cases” (e.g, in the automotive [17] or railway [12] industries), but it
is now extended to more general domains like dependability, assurance or trust
cases. These cases are presented in the form of texts, tables or, more inter-
estingly, graphically. Using graphical tools to represent arguments structures is
more relevant because graphs are simpler to review, offer a clear overlook, help
to understand the connection between pieces of evidence, and moreover they are
easier to use and manage. Formalisms such as Goal Structuring Notation (GSN)
[19] and Claims-Arguments-Evidence (CAE) [2] are commonly used in this field.
c© Springer Nature Switzerland AG 2020
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However, even with all these benefits, these tools do not take into account the
uncertainties pervading this sort of arguments. Especially since autonomous sys-
tems, and critical systems in general, are becoming much more complex, they
are affected by many sources of uncertainty like any decision support system, AI
based system and the like. As a response to this issue many research projects
are conducted to find a solution.

Several works have proposed methods based on Bayesian Networks (BN) to
model uncertainty in a safety argument [6,14,15]. Nevertheless, these approaches
have a major impediment, which is the need for data. As a matter of fact, using
BN requires statistical information that is often not available. Moreover, the
use of subjective probabilities is questionable in the presence of partial igno-
rance. Dempster-Shafer theory (DST) (aka Theory of Evidence) was developed
to address the issue of imprecise evidence [21]. It represents a form of general-
ized probability theory where probability masses are assigned to sets of possible
values, instead of singletons. In some works on safety argumentation, aggrega-
tion rules stemming from DST are used to merge confidence degrees in pieces
of evidence (represented by mass functions) and calculate an overall mass func-
tion, in order to estimate an overall confidence in the top statement of a safety
argument (e.g.,“the system is acceptably safe”). In our problem, the connection
between pieces of evidence is represented by various types of arguments. In the
literature, they strongly influence the choice of an aggregation rule. However, no
real consensus emerges in current research works to relate argument types, their
logical modeling, and aggregation rules based on DST.

In this paper, three approaches to uncertain safety cases using DST are com-
pared as to the different definitions of types of arguments they propose and
we review and discuss the aggregation methods they use. Section 2 presents
the background on safety cases and introduces the existing selected approaches.
Section 3 extracts the formal definitions of arguments from the selected articles
[1,4,24]. Then, we compare and analyze the aggregation rules used to compute
belief degrees of the top statement of an argument. Section 4 suggests the exis-
tence of two basic types of arguments and proposes a rigorous methodology.

2 Baseline and Related Work

This section introduces a safety case formalism (GSN), some works on confidence
quantification, and basic concepts of DST.

2.1 Background

Safety arguments or safety cases can be defined in multiple ways. In fact, the
definition may vary slightly according to the field where it is used. For instance,
in the automotive industry [17], it is defined as : argument that functional safety
is achieved for items, or elements, and satisfied by evidence compiled from work
products of activities during development. This concept has been generalized
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Fig. 1. GSN main components.

in the OMG (Object Management Group) standardized Assurance Case Meta-
model [5] and an instance of it is the goal structuring notation (GSN), which is
commonly used to represent safety cases [19]. As presented in Fig. 1, it includes
nine main elements. It breaks down the conclusion called a Goal (following a
given Context and in accordance with a specific Strategy) into Sub-goals and
supports each of them by evidence items called Solutions. The choice of strategies
and sub-goals is supported by the use of so-called Justifications. Figure 2 presents
an example of a GSN pattern.
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A given prevention 

risk control is 
implemented.
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Gn
 {Hazard Hn} has been 
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been removed.

Sn1 Sn2 Sn3

Fig. 2. GSN example adapted from Hazard Avoidance Pattern [20].

GSN is categorised as a qualitative method to justify safety. However, in this
example, many uncertainties may exist. For instance, what is the uncertainty



144 Y. Idmessaoud et al.

linked to the element “C1: List of identified hazards” or what is the confidence
in the solutions Sn (also called pieces of evidence). In order to estimate the con-
fidence in the top goal G1, all these uncertainties should be assessed. Some quan-
titative approaches have been proposed to assess uncertainties in such arguments
[13]. In [6,14,15], Belief Bayesian Networks (BBN) are used to assess confidence
in safety case structure and pieces of evidence. They measure confidence by
computing probabilities from evidence to conclusion. Due to the huge amount
of data required to apply BBN, other works based on subjective logic [18,29]
or on DST are proposed to define and estimate uncertainties. These works are
presented in Sect. 2.2.

Dempster-Shafer Theory offers a powerful setting to combine pieces of evi-
dence. A mass function, or basic belief assignment (BBA), assigns probabili-
ties over the power set of the universe of possibilities (Ω), known as the frame
of discernment. Formally, a mass function mΩ : 2Ω → [0, 1] is such that∑

E⊆Ω m(E) = 1, and m(∅) = 0. Any subset E of Ω such as m(E) > 0 is
called a focal set of m. Mass assignment induces the concept of belief function
(bel : 2Ω → [0, 1]). It represents the summation of all the masses supporting
the same statement and is defined by : bel(A) =

∑
E⊆Ω,E �=∅ m(E). Belief in

the denial or uncertainty of the statement A are respectively represented by :
disb(A) = bel(¬A) and uncer(A) = 1 − bel(A) − disb(A).

In our case, we use propositional variables for which the frame of discernment
has two states: Ω = {True(T ), False(F )}. As a consequence, in such frames,
mass function and belief function for T and F are equal. For example, consider
a statement A saying that a clock provides the right time. The mass function
mΩ such that mΩ({T}) = 0.5, mΩ({F}) = 0.2 and mΩ({T, F}) = 0.3 quantifies
respectively the degrees of belief (0.5), of disbelief (0.2) and of uncertainty (0.3)
in A. In this case, due to the Boolean form of the frame of discernment, we have
bel(A) = mΩ({T}), disb(A) = mΩ({F}) = 0.2 and uncer(A) = mΩ({T, F}) =
1 − mΩ({T}) − mΩ({F}). They represent respectively our belief that the time
read is correct, not correct, and the probability that we don’t know the time by
reading the watch (Tautology).

Another important tool from DST is the Dempster rule of combination. It
is used to merge various pieces of evidence coming from independent sources of
information, and is represented by mass functions mi, i = 1, . . . , n. It proceeds
in two steps. For two mass functions:

1. a conjunction of random sets: m∩ = m1 ⊗ m2 such that
m∩(A) =

∑
E1,E2:E1∩E2=A m1(E1) · m2(E2);

2. a renormalization step if m∩(∅) > 0: m(A) = m∩(A)/(1 − m∩(∅)). The value
m∩(∅) represents the degree of conflict between m1 and m2.

This combination rule is commutative and associative.

2.2 Some DST-Based Approaches to Safety Cases

In this subsection, we discuss three uncertainty management methods in safety
cases proposed in the literature. All such methods are DST-based. Two of them
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use Goal Structuring Notation (GSN) for structuring arguments. Our objective
is to extract, in each paper, definitions of argument types, and to evaluate their
consistency with the proposed aggregation rule that computes degrees of belief
of conclusions.

Cyra and Gorski [4] present an argument model called VAA inspired by
Toulmin [23] to graphically represent all pieces of evidence that support a conclu-
sion (e.g., “The system is safe”). It proposes a method that, in a first step, trans-
forms qualitative expert opinions expressed in natural language, about pieces of
evidence (forming premises), into belief and plausibility functions, using [18]. In
a second step, the authors define five argument patterns and associate to each of
them an appropriate belief aggregation rule. These rules use as inputs the values
obtained at the first step, to calculate the overall confidence in the conclusion.

Anaheed et al. [1] define four basic types of arguments. Each argument
type is composed of at least two premises that support a conclusion. Premises are
assessed by two parameters (sufficiency and insufficiency) and every argument
type is associated to an aggregation rule. In this paper, they propose an algorithm
based on a bottom-up approach that computes the degree of confidence in each
premise to calculate the overall confidence in the system.

Wang et al. [24–27] propose a confidence assessment method by converting
qualitative expert opinions, on their confidence in pieces of evidence appearing
in a GSN, into mass functions. These values are then merged by Dempster rule of
combination to obtain the overall confidence in the studied system. The paper
also defines two parameters to assess confidence: Trustworthiness to quantify
confidence in the evidence; Appropriateness to quantify the confidence in the
claim that the evidence supports the conclusion.

3 Comparative Study

In this section, we introduce a framework for confidence assessment. Then, we
compare argument types given in the studied papers and the propagation rules
used to calculate the overall confidence.

3.1 General Framework for BF-Based Confidence Estimation

In order to estimate the overall confidence of the argument structure, our main
issue is how to propagate the quantitative values coming from the confidence in
premises in accordance with the characteristics of its structure. In this regard,
it is important to propose a general method to compute degrees of belief in
conclusions of safety cases. Most works omit to provide this general method
putting together logic and belief functions. Such a methodology was described
more than 30 years ago [3] and is recalled here.

The first step is to define the nature of the relationship between premises in
their support of the conclusion, known as argument types. These types should
be firstly expressed informally in a natural language (e.g, if premises P1 and P2

are true, then the conclusion (C) is true) because it is more understandable for
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the human expert. Then this verbal relation should be transformed into a formal
logical sentence (e.g., P1 ∧ P2 ⇒ C). The importance of these definitions lies in
the fact that they significantly affect the logical expression of the links between
pieces of evidence and the conclusion. The second step is mass assignment. This
task consists in defining masses assigned to the focal sets deduced from the
logical expressions obtained from argument definitions.

Consider a set of well-formed formulas K = {φ1, . . . φn} in propositional logic,
and a formula C such that K � C. Assume each formula φi is a piece of evidence
that comes from a specific source independent of other ones. Uncertainty about
the validity of each formula can be represented by a mass function mi assigning
some probabilities to φi,¬φi and the tautology �. Take for example the case of
a simple premise P and a rule in the form of an equivalence P ≡ C. One mass
function will be assigned to the premise P in the form of three values m1(P ),
m1(¬P ) and m1(�) summing to 1, and another will be assigned to the rule
(m2(P ≡ C) + m2(�) = 1).

The third step is to choose the appropriate aggregation rule. This rule will
be used to calculate the belief in the top goal (conclusion) based on beliefs
about premises and rules. Extending classical logic inference to this uncertain
environment can be done by means of Dempster rule of combination [3], first
computing an overall mass function, m = m1⊗· · ·⊗mn and then computing the
degree of belief in the conclusion C as Bel(C) =

∑
φi�C m(φi). There are also

several variants of this combination rule that could be used in evidence fusion.
However, each method obeys certain assumptions and describes some kind of
situation. That is why it is needed to make sure that every definition resulting
from the first step verifies the assumptions and each fusion rule fits with the
given situation. Here, pieces of evidence and rules are supposed to come from
independent sources. If this assumption is not satisfied, idempotent combination
rules can be used as discussed in [7,8].

The complete process includes an additional preliminary step, which con-
sists in transforming expert opinions (qualitative values) expressed in natural
language (safe, little safe, uncertain, etc.) into a numerical format that can be
computed with (i.e. mass, belief or plausibility functions). This could be done in
[4] using the triangle method of Josang [18]. This is needed to compute the belief
in the conclusion. The choice of this transformation has a profound impact on
the results. However this aspect of the evaluation process will not be addressed
in this paper.

3.2 Definition of Argument Types

The concept of argument type pertains to the logical relationship between the
premises and the conclusion. In other words, it answers the question : In which
format do the premises support the conclusion ? The terminology is not uniform.
For instance, in [4] this relation is named a warrant, in [29] it is called an affection
factor and in [24] it is named appropriateness. Moreover, most papers only give
an informal definition.
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Table 1. Formal definitions of arguments. Note that argument types 4 and 5 are
logically equivalent (∧n

i=1[pi ⇒ C] ≡ [∨n
i=1pi] ⇒ C).

Formal definition Terminology for argument types

Type 1 (∧n
i=1pi) ≡ C NSC-Arg [4], Consensus [29], Full complementary [24]

Type 2 ∧n
i=1(pi ≡ C) Disparate [24]

Type 3 (∧n
i=1pi) ⇒ C SC-Arg, C-Arg [4], Conjunctive argument [29]

Type 4 ∧n
i=1(pi ⇒ C) A-Arg [4], Alternative argument [1]

Type 5 (∨n
i=1pi) ⇒ C Disjunctive argument [29], Full redundant [24]

Type 6

{
∧n

i=1(pi ≡ C)

(∧n
i=1pi) ≡ C

AC-Arg [4], Complementary [24], Containment,
Overlapping arguments [1]

Type 7

{
∧n

i=1(pi ≡ C)

(∨n
i=1pi) ≡ C

R-Arg [24]

Table 1 presents formal definitions of argument types that we infer from the
reviewed papers. We notice from the formal definitions given in Table 1 that the
premises are related to the conclusion by either an equivalence or an implication
connective. The choice could be justified by the intuitive perception of the rela-
tion between premises and conclusion (e.g. “The system is safe” is supported by
“Hazard H1 has been addressed”).

As already noticed, there are two types of arguments, one using implication,
the other using equivalence. Using equivalence assumes that there is a symme-
try between the conclusion and premises. Consider a small safety case where
the statement “The system is safe” is supported by the premise “All tests are
conclusive”. Using equivalence means, on the one hand, that the system is safe
because we are confident in our tests; on the other hand, that the actual safety of
the system can only be ensured by the success of the tests, which is not necessary
true. In addition to this, the use of equivalence generates cases for the denial of
the conclusion (disbelief) which appears in the calculation as a conjunction of
one or several premises with the negation of the conclusion (¬C). For instance,
consider the case of a conclusion (C) supported by a single premise (p) with
an equivalence relation between them (Type 1 or 2). Combining the masses of
(p) and the rule (p ≡ C) with DS combination rule reveals two cases where
the conclusion is not satisfied (¬p ∧ ¬C) and (p ∧ ¬C). Using implication can
only indicates that, due to the tests, the system is safe; it cannot prove that it is
faulty. Choosing between equivalence or implication could also be justified by the
purpose of the safety case. Generally speaking, a safety case is used to demon-
strate that a system is acceptably safe. Its purpose is to provide a structured
argument in order to certify a critical system, and not to present statements
that it could be faulty, i.e. that there is disbelief about safety greater than 0.
This is actually guaranteed when using only implication. In contrast, if the goal
is to use the safety case at the debugging phase, i.e. to consider that disbelief in
the conclusion may be not null, the equivalence may be an appropriate choice
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between premises and conclusion. Since we are interested, in this study, in the
certification aspect of safety cases, the remainder of the paper will be focusing
on argument types modelled by implication from tests to a statement of safety.

We also notice from Table 1 that the premises are linked with each other by
AND, OR logic gates or by a combination of the two. It depends on whether,
for instance, tests justifying a conclusion are alternative or complementary. For
example, type 3 represents the situation where the conjunction of all premises
is needed to support the conclusion. In the contrary, type 4 represents the case
of separate rules where each premise alone can support the whole conclusion.

3.3 Mass Assignment

As seen in previous sections, masses are allocated to propositions of interest.
Apart from the assignment of masses to logical expressions resulting from the
definition types arguments (called appropriateness in [24]), masses are also
assigned to premises to assess their degree of confidence. This evaluation is
used under the name trustworthiness in [24] and affection factor in [29]. Nor-
mally, mass functions assigned to premises (Pi) have two parameters : belief
(i.e. mp(Pi)), disbelief (i.e. mp(¬Pi)) and the remainder is their uncertainty (i.e
mp(�) = 1 − mp(Pi) − mp(¬Pi)). In cases when the argument is an implication,
not an equivalence, the disbelief in the premises will not affect the conclusion,
and need not be taken into account in the uncertainty propagation. This remark
reduces the number of useful focal sets and simplifies the calculation.

The choice of mass functions is a very important step in the assessment
process. It has a huge impact on the form of the final result. We can either
define several mass functions, one for each logical expression, to emphasize the
fact that there are multiple independent sources of information. Or, one mass
function is distributed over all the logical expressions to represent the situation
where a single source supplies these pieces of information.

3.4 Belief Aggregation

As we saw in the previous Sect. 3.2 the informal definition of argument types
is important for the belief assessment process. Since masses are also assigned
to the logical formulas resulting from these definitions, many authors confuse
logical and numerical aspects. But as explained in Sect. 3.1, the definition of
argument type, especially the informal ones, conditions the choice of focal sets,
on the one hand. On the other hand, it also affects the choice of the aggregation
rule. For example, one may think of using the disjunctive consensus rule [10],
if disjunction is expressed in the definition. In this section, we are interested in
choosing aggregation rules based on Dempster-Shafer Theory and observing the
effect of mass functions assignment on the degree belief of the conclusion.

DST offers many aggregation rules (Dempster rule, disjunctive consensus,
Yager’s rule, etc. see [21,22] for surveys). However, we are going to focus on
the methods used in the studied papers listed in Table 2. In general, Dempster
combination rule computes the intersection of focal sets. If some focal sets from
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one source are inconsistent with some from another source, a renormalization
must take place. It also assumes that sources are independent and reliable. Other
combination rules that express a conjunction exist (e.g. Yager’s [28] and Inagaki’s
rules [16]). For instance, Yager’s rule uses a renormalization scheme different
from the one of Dempster, reallocating mass of the empty set to the whole
frame. The disjunctive rule of combination is a union of random sets and does
not need renormalization. Finally, the weighted average rule [21] is used to make
a trade-off between conjunctive and disjunctive methods.

So long as the focal propositions involved in a safety case are not conflict-
ing, there is no need to renormalize the resulting mass function, nor to use
the disjunctive rule. By taking into account the definition of a safety case and
the underying assumptions, applying Dempster rule (without normalization) to
aggregate evidences is well adapted.

Table 2. Consistency between argument types and combination rules.

Authors Argument types Combination rules Consistency

Cyra and Gorski [4] NSC-Arg DS rule Yes

SC-Arg DS rule Yes

A-Arg Yager’s rule No

C-Arg Weighted average No

AC-Arg - -

Anaheed et al. [1] Alternative DS rule No

Disjoint Weighted average No

Containment DS + Weighted average No

Overlapping No

Wang et al. [24] Disparate DS rule Yes

Complementary Yes

Full complementary Yes

Redundant Yes

Full redundant Yes

As can be seen from Table 2, several combination rules are proposed to obtain
the overall confidence in the conclusion. But, none of the reviewed papers clearly
justifies its choice of the applied method, nor does it lay bare the underlying inde-
pendence assumptions. Also, some of the proposed expressions are not consistent
with the verbal definition. For instance, in [1], the type Alternative argument is
used when several independent premises support the conclusion. The formal def-
inition induced is : ∧n

i=1(pi ⇒ C) (Table 1). However, the authors only consider
the confidence in the premises (also called trustworthiness, in [24]), but they did
not consider the confidence in the relation between them and the conclusion (the
rule). A possible formula that takes into consideration this definition could be
Eq. (1).
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Consider the example of a conclusion (C) separately supported by two
premises p1 and p2, which refers to an argument of type 4 in Table 1, i.e.,
(p1 ⇒ C) ∧ (p2 ⇒ C). We develop this example below. For other argument
types, the calculation follows the same method. The confidence assessment pro-
cess is measured through two parameters. The confidence in premises is modelled
by mass functions mpi

and the confidence in the support of the the conclusion
by each premise (the rules) is modelled by the mass function mri

. Then, we
apply Dempster combination rule, presented earlier, to merge each premise with
its appropriate rule (see Table 3), and secondly merge the two resulting mass
functions mi (see Table 4). Notice that we could also merge premises and rules
separately first, then fuse partial conclusions together. The result will be the
same because Dempster rule is associative and commutative.

Table 3. Combination of a premise with its rule

m1 = mp1 ⊗ mr1 mr1(p1 ⇒ C) mr1(�)

mp1(p1) p1 ∧ C p1

mp1(�) p1 ⇒ C �

In the example given in Table 3, the focal formula p1 ∧ C results from the
conjunction between formulas p1 and p1 ⇒ C. Its mass is calculated by multi-
plying the masses values in the corresponding line and column. Since the frame
of discernment (Ω) of elementary mass functions has two states, masses and
belief functions of non-tautological inputs are equal. The calculation of the
remaining masses follows the same logic. An example is given here, where,
beli⇒(pi ⇒ C) represents the degree of belief that the ith premise supports
the conclusion and belip(pi) represents the belief degree in the ith premise. For
instance, m1(p1 ∧ C) = mp1(p1) × mr1(p1 ⇒ C) = bel1p(p1) × bel1⇒(p1 ⇒ C).
Likewise the combination of m1 and m2, yields mass function m12 using Table 4.

Table 4. Combination of confidence in type 4 : ∧n
i=1(pi ⇒ C)

m12 = m1 ⊗ m2 m2(P2 ∧ C) m2(P2) m2(P2 ⇒ C) m2(�)

m1(P1 ∧ C) P1 ∧ P2 ∧ C P1 ∧ P2 ∧ C P1 ∧ C P1 ∧ C

m1(P1) P1 ∧ P2 ∧ C P1 ∧ P2 P1 ∧ (P2 ⇒ C) P1

m1(P1 ⇒ C) P2 ∧ C P1 ∧ (P2 ⇒ C) (P1 ∨ P2) ⇒ C P1 ⇒ C

m1(�) P2 ∧ C P2 P2 ⇒ C �
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The calculation of the degree of belief belc(C) in the conclusion for type 4
arguments is as follows (in Table 4 cells in gray identify φ’s that imply C):

bel4c(C) =
∑

φ:φ implies C

m12(φ) = m12(P1 ∧ P2 ∧ C) + m12(P1 ∧ C) + m12(P2 ∧ C)

= m1(P1 ∧ C)
∑
φ2

m2(φ2) + m2(P2 ∧ C)
∑
φ1

m1(φ1) − m1(P1 ∧ C)m2(P2 ∧ C)

= m1(P1 ∧ C) + m2(P2 ∧ C) − m1(P1 ∧ C)m2(P2 ∧ C)

= bel1p(P1)bel
1
⇒(P1 ⇒ C) + bel2p(P2)bel

2
⇒(P2 ⇒ C)

− bel1p(P1)bel
1
⇒(P1 ⇒ C)bel2p(P2)bel

2
⇒(P2 ⇒ C)

= 1 − [1 − bel1p(P1)bel
1
⇒(P1 ⇒ C)][1 − bel2p(P2)bel

2
⇒(P2 ⇒ C)]

In general, with n premises, the formula for type 4 arguments is as follows.

bel4c(C) = 1 −
n∏

i=1

[1 − belip(pi)beli⇒(pi ⇒ C)] (1)

Letting belic(C) = belip(pi)beli⇒(pi ⇒ C) be the degree of belief in C due to
premise pi, the expression in Eq. (1) is a many-valued disjunction connective
aggregating the weights belic(C). So it is enough that belic(C) = 1 for some pi to
get belc(C) = 1, which is in agreement with the argument type.

It is important to mention that in Eq. (1), a mass function m⇒ was assigned
to each rule pi ⇒ C, assuming independence between them, according to type 4
in Table 1. In type 5 argument, we assign a single mass function m⇒ to the com-
plete rule with a disjunction of premises ([∨n

i=1pi] ⇒ C). The formula resulting
from this new mass assignment is given in (2). In general, the belief in the con-
clusion for type 5 arguments is as follows, using Dempster rule of combination:

bel5c(C) = bel⇒([∨n
i=1pi] ⇒ C)[1 −

n∏

i=1

(1 − belip(pi))] (2)

where bel⇒([∨n
i=1pi] ⇒ C) is the belief that the disjunction of all premises sup-

port the conclusion. We stress again that in Eq. (1), we assign one mass function
to each simple rule, while in (2), we assign a single mass to a composite rule. So,
even though types 4 and 5 are logically equivalent (∧n

i=1[pi ⇒ C]) ≡ ([∨n
i=1pi] ⇒

C), because the assignment of masses is different in types 4 and 5, they pro-
duce different results for the belief calculation. The same combination pattern
applies to arguments of type 3 in Table 1. It requires all premises be true to
justify the conclusion, and a simple support mass is assigned to the implication
[∧n

i=1pi] ⇒ C. It yields for type 3 arguments:

bel3c(C) = bel⇒([∧n
i=1pi] ⇒ C)

n∏

i=1

belip(pi) (3)
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In (2) a multivalued disjunction connective is applied to the degrees of belief in
the premises while in (3), it is a multivalued conjunction.

In contrast, equation (4) below for type 4 arguments supposes a single mass
function m⇒ with masses distributed over the elementary rules pi ⇒ C, assum-
ing

∑n
i=1 m⇒(pi ⇒ C) + m⇒(�) = 1. The resulting belief in the conclusion is

then a weighted sum of the degrees of belief in the premises:

bel′c(C) =
n∑

i=1

bel⇒(pi ⇒ C)belip(pi) (4)

In front of these three expressions (Eqs. (1), (2) and (4)) which result from
the same logical form of the argument, a question arises. Which of them is
the most appropriate for this argument type? The choices of the assignment of
mass function in each equation do not model the same situation. Comparing
the first and second formulas, on the one hand (1) suggests that each argument
is based on one piece of evidence that could support the whole conclusion and
is independent from the other ones. On the other hand, 2 supposes that all
such arguments are provided at once by a single source. If we also compare
Eqs. (1) and (4), (1) represents the situation when the elementary arguments
are independent, so that a mass is allocated each implication independently of
the others. On the contrary, in (4) the belief mass assigned to in one implication
affects those assigned to other ones, because, due to the use of a single mass
function, the sum of all such masses must be one.

It is important to use each formula giving the belief in the conclusion in the
appropriate situation, laying bare the underlying assumptions. For instance, the
A-Arg presented in [4] is formally defined by ∧n

i=1(pi ⇒ C), and uses Yager’s
combination rule to calculate the overall confidence in the conclusion. However,
Yager’s rule was developed to deal with highly conflicting sources in place of
Dempster rule. But the authors of [4] do not explain the presence of a con-
flict between pieces of evidence. Conflicts occur in cases when the intersection
between focal sets is empty, which could be the case if masses were assigned
to expressions supporting the negation of the implication (e.g., pi ∧ ¬C), or in
argument types involving equivalence. In the argument types discussed above,
the focal sets resulting from handling argument of types 3, 4, 5 inspired by
the selected articles do not generate such conflicts. In particular, the degree of
disbelief in the conclusion is always 0 with these argument types.

4 Lessons Learned

As shown in the previous sections, defining an “Argument Type” is a very deli-
cate process. It depends on the assessor’s understanding of the argument. Four
important issues emerge from this paper:

Formal representation of the argument: The assessor should faithfully
translate the informal definition of each argument into a formal one, by choos-
ing the proper logical connectives relating premises to one another (conjunction,
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disjunction) or between them and the conclusion (equivalence, implication). In
order to do so, it is necessary to avoid vagueness and imprecision in the formu-
lation of (informal) verbal definitions and to describe the characteristics of each
argument type as accurately as possible. In this paper, two basic types have
been laid bare : Those using conjunction of premises (Type 3) and those using
a disjunction (Type 4 and 5). Indeed, it is important to know if for instance the
truth in one premise is sufficient to ensure the conclusion, or if all premises are
necessary to ensure the conclusion.

Using equivalence vs. implication connectives: Implication is the com-
monly used logical operator for representing arguments supporting a conclusion.
However, we have seen that some verbal descriptions used in the literature on
safety arguments can be formally translated into equivalences. The equivalence
operator should be used carefully because it involves several situations that we
may not intentionally want to encounter. Consider for example a conclusion (C)
supported by one premise (P). Using the rule (P ≡ C) implies that (P ⇒ C)
and that (C ⇒ P ). We saw in Sect. 3.4 that the second implication is not nec-
essary true. In addition to this, equivalence is also expressed as (¬P ≡ ¬C), in
particular, ¬P ⇒ ¬C); this is why using equivalence, disbelief in the conclusion
may be different from zero.

Assigning mass functions: It should be clear that the formal definition of
the argument types is not enough determine the degree of belief in the conclusion.
For instance, when we changed the mass functions definition in the 4th and 5th

logically equivalent types in Table 1 while using the same combination rule (i.e.,
Dempster rule), we obtained three distinct formulas (1, 2, 4). It is necessary
to be sure that the choice of mass assignment reflects as well as possible the
situation described in the arguments.

Choosing a combination rule: Changing the combination rule obviously
affects the result of uncertainty propagation. So, it is important to choose the
right one. However, as we saw in Sect. 3.4, applying Dempster combination rule
is well adapted to computing the overall confidence, because no conflict is met
during the combination step using arguments modelled by implication. In that
case it is equivalent to Yager’s rule. A possible use of this rule could be justified to
cope with conflicts between the involved pieces of evidence, in place of Dempster
rule. On the other hand, the disjunctive rule is too weak to be applied if one
wants to jointly exploit the pieces of evidence in the safety case. A trade-off
could be the rule in [11] which combines focal sets conjunctively when they are
consistent and disjunctively when they conflict.

5 Conclusion

In this paper, we propose a comparative study between some confidence propa-
gation methods in safety cases. We highlight four important elements to be con-
sidered in the development of a safety case. First, arguments should be expressed
in formal logic. Second, we advocate the use of the implication connective, rather
than equivalence, to describe the relationship between premises and conclusion.
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Then, we propose a simplified framework to define mass functions attached to
premises and arguments. Finally, we argue that Dempster rule of combination
should be preferred when the focal sets issued from independent mass functions
to be combined do not conflict.

In future works, we plan to experiment an approach that exploits this
methodology in an application pervaded with high uncertainties, such as
autonomous vehicles. Another issue is the improvement of methods proposed
for translating expert opinions into usable numerical values, such as those pro-
posed in [18] and applied in [4,24]. In this regard, it would also be interesting
to develop non-quantitative approaches using qualitative counterparts of belief
functions as suggested in [9].
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Abstract. We propose an interactive elicitation protocol for the Sugeno
integral. Our approach at each step asks the decision maker whether the
overall evaluation of a given alternative attains at least a certain level.
This information is encoded in terms of constraints on the capacity and
a lattice of feasible capacities is identified. The procedure continues until
a necessary winner is identified. The efficiency of our methodology is
evaluated in numerical experiments.

Keywords: Sugeno integral · Capacity · Preference elicitation

1 Introduction

The Sugeno integral is used in multicriteria decision making as a tool for guiding
decision support [7,12]. Sugeno integrals are qualitative aggregation operators
that take as input some local evaluation of alternatives and output a global eval-
uation. In this paper we provide an elicitation protocol for the Sugeno integral.

The problem of eliciting some Sugeno integrals agreeing with a dataset has
received some attention [6,10–12] both from theoretical and practical point of
view. The theoretical results concern the elicitation of a unique family of Sugeno
integrals expected to be consistent with a set of data. Inconsistency is usually
to be avoided; in [8] the data is partitioned in classes and a fuzzy integral is
calculated for each one. In [10,11] the aim is to identify the bounds of the set
of the family of Sugeno integrals consistent with the data. If the dataset is not
fully consistent with only one family of Sugeno integrals, they consider several
ones; this point of view is motivated by the fact that the dataset may contain
many classes of profiles.

Sugeno integrals are defined with capacities used in multicriteria decision
making to represent the weights of subsets of criteria. Sugeno integrals are used
in [10] to extract knowledge from experimental data in multi-factorial evalua-
tion; a capacity associated to a Sugeno integral consistent with the dataset is
calculated and then a set of rules corresponding to the capacity are derived.
Some other work on eliciting or learning a capacity from examples are based on
linear programming methods that minimize the total error [1].
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The approach presented in this paper is different. We are proposing incremen-
tal elicitation and winner determination processes in which preference queries
are selected one at a time. The elicitation is targeted towards the determination
of the best choice among a set of alternatives.

The aim of this paper is to introduce an adaptive elicitation procedure in the
context of the Sugeno integral for the fast determination of a necessary winner
and to evaluate the practical efficiency of this procedure.

The elicitation continues until we have enough information about the capacity
to identify the alternative associated with the highest Sugeno value; to do this
we adopt the maximin criterion as proposed in a previous work in multi attribute
decision making [15]. The proposed method bears strong similarity to the regret-
based approach for eliciting a capacity for the Choquet integral [2]; the main
difference lies in the fully ordinal setting under consideration in this paper, that
makes regret a meaningless concept in our context.

The paper is organized as follows. In Sect. 2 we provide some background on
the Sugeno integral and its use in multiple criteria decision making. We then
describe our elicitation method in Sect. 3. In Sect. 4 we provide numerical tests
to evaluate our approach; we conclude with final remarks in Sect. 5.

2 Background and Notation

Let X be a finite set of alternatives or objects that need to be compared in
order to make a decision. An object x ∈ X is evaluated with respect to a set
of n criteria C = {1, · · · , n}. An object is represented by a vector (x1, · · · , xn)
where xi represents the evaluation of x according to the criterion i. The criteria
are evaluated on a common (finite) evaluation scale L. The global evaluation is
also given on L. We assume that L is a bounded totally ordered finite set with
a bottom denoted by 0L, a top denoted by 1L. Moreover L is equipped with an
involutive negation denoted by 1L− which is an order reverse function.

2.1 Lattice of Capacities

A capacity (or fuzzy measure) v is a set function, defined over subsets of C, that
is monotone with respect to set inclusion, i.e., v : 2C → L such that if A ⊆ B ⊆ C
then v(A) ≤ v(B), v(∅) = 0 and v(C) = 1.

We denote by VC the set of all capacities on C, and we drop the subscript
C when it is clear from the context. A partial order ≤ between capacities is
established as follows:

v1 ≤ v2 whenever v1(G) ≤ v2(G) for all G ∈ 2C .

The pair (VC ,≤) is a bounded lattice. It can also be identified by the tuple
(VC ,∧,∨,⊥,
) where the binary operators ∨ (join) and ∧ (meet), and the ele-
ments ⊥ and 
 are established as follows:

– given v1, v2 ∈ VC , the capacity v1 ∧ v2 is such that (v1 ∧ v2)(G) =
min(v1(G), v2(G)) for all G ∈ 2C ;
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– given v1, v2 ∈ VC , the capacity v1 ∨ v2 is such that (v1 ∨ v2)(G) =
max(v1(G), v2(G)) for all G ∈ 2C ;

– ⊥ gives 0 to all proper subsets of C, ⊥(G) = 0 for all G ⊂ C;
– the 
 element is the capacity that associates 1 to every non-empty subset,


(G) = 1 for all G ⊆ C.

Considering two capacities v̌, v̂, an interval [v̌, v̂]VC is the subset {v ∈ VC |v̌ ≤
v ≤ v̂}; the interval is nonempty if and only if v̌ ≤ v̂. Note that a nonempty
interval is a sublattice [5] i.e., the interval is closed with the infimum ∧ and the
supremum ∨.

Since the intersection of two sublattices is a sublattice, then the intersection
of two intervals which is an interval is also a sublattice. The intersection of n
intervals [v̌i, v̂i]V , with i = 1, . . . , n is given by

⋂

i=1,...,n

[v̌i, v̂i]V =
[ ∨

v̌i,
∧

v̂i
]

V
.

It follows that the intersection of n intervals is not empty if and only if∨
v̌i ≤ ∧

v̂i i.e for all i, j ∈ {1, · · · , n}, we have v̌i ≤ v̂j .
We provide a direct proof, using lattice theory, of a statement mentioned in

the proof of Proposition 6 in the paper by Prade et al. [10].

Proposition 1. Assume n intervals [v̌i, v̂i]V , with i = 1, . . . , n whose pairwise
intersections [v̌i, v̂i]V ∩ [v̌j , v̂j ]V for all i, j ∈ {1, . . . , n}, are not empty. Then
the intersection

⋂
i=1,...,n[v̌i, v̂i]V is not empty.

Proof. The fact the pairwise intersections are not empty means that

[v̌i, v̂i]V ∩ [v̌j , v̂j ]V 
= ∅ ∀i, j ⇐⇒ v̌i ∨ v̌j ≤ v̂i ∧ v̂j ∀i, j

Since, by definition of ∨ and ∧, it holds v̌i ≤ v̌i ∨ v̌j and v̂i ∧ v̂j ≤ v̂j , it also
follows that v̌i ≤ v̂j ∀i, j. It follows that

∨
i v̌i ≤ ∧

i v̂i that exactly means⋂
i=1,...,n[v̌i, v̂i]V is not empty.

2.2 Discrete Sugeno Integral

We now review the definition of the Sugeno integral, as used in Multi Criteria
Decision Analysis (MCDA) to aggregate into a single score the evaluation of an
object with respect to several criteria.

Let σ be a permutation on C such that xσ(1) ≤ . . . ≤ xσ(n). The Sugeno
integral [13] of an alternative x with respect to capacity v can be defined by
means of several equivalent expressions:

Sv(x) = max
A⊆C

min(v(A),min
i∈A

xi) = min
A⊆C

max(v(A),max
i∈A

xi), (1)

where A is the complement of A. These expressions can be simplified as follows:

Sv(x) = max
α∈L

min(v({i : xi ≥ α}), α) = min
a∈L

max(v({i : xi > α}), α). (2)
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A basic property of the Sugeno integral is that the result of the aggregation
is between the minimum and the maximum component.

min
i=1,...,n

xi ≤ Sv(x1, . . . , xn) ≤ max
i=1,...,n

xi

A direct consequence is that Sv(c, . . . , c) = c for any capacity v (idempotency
or unanimity). Note also that the value of the Sugeno integral of an alternative
x is monotone with respect to the order between capacities:

If v1 ≤ v2 then Sv1(x) ≤ Sv2(x) ∀x ∈ X (3)

2.3 The Set of Capacities Consistent with Preference Data

We now summarize the results presented in [12] about the identification of the
family of Sugeno integrals consistent with a dataset of statements comparing
alternatives to a global evaluation level. More precisely, we consider preference
statements of the type “the global evaluation of x is higher or equal than a level
α” or “the global evaluation of y is lower or equal than a level λ”, and we want
to derive the set of capacities consistent with such statements.

For a pair (x, α) ∈ X × L, we define the capacities v̌x,α and v̂x,α as follows.

Definition 1. Given x ∈ X and α ∈ L, the capacities v̌x,α and v̂x,α are defined
as:

v̌x,α(A) =

⎧
⎨

⎩

1L if A = C
α if {i ∈ C|xi ≥ α} ⊆ A
0L otherwise

and v̂x,α(A) =

⎧
⎨

⎩

0 if A = ∅
α if A ⊆ {i ∈ C|xi > α}
1L otherwise.

Note that we always have v̌x,α ≤ v̂x,α. Using v̌x,α and v̂x,α we can determine
the set of capacities (that is a sub-interval of the lattice of capacities) consistent
with a statement of the type SV (x) ≥ α, Sv(x) ≤ α, or Sv(x) = α.

Proposition 2. The set of capacities satisfying the equation Sv(x) ≥ α is:

{v ∈ V |Sv(x) ≥ α} = {v ∈ V |v̌x,α ≤ v ≤ 
V } = [v̌x,α,
V ]V (4)

while the set of capacities satisfying the equation Sv(x) ≤ α is:

{v ∈ V |Sv(x) ≤ λ} = {v ∈ V |⊥V ≤ v ≤ v̂x,λ} = [⊥V , v̂x,α]V . (5)

Therefore, the set of capacities satisfying Sv(x) = α is:

{v ∈ V |Sv(x) = α} = {v ∈ V |v̌x,α ≤ v ≤ v̂x,α} = [v̌x,α, v̂x,α]V .

In [12] the authors focus in considering a set P of assignments of alternatives
to global evaluations, that is the constraints Sv(xk) = αk for k = 1, . . . , m. The
set of the capacities compatible with all assignments in P is

V P =
{

v ∈ V
∣∣∣

m∨

k=1

v̌xk,αk
≤ v ≤

m∧

k=1

v̂xk,αk

}
=

[ m∨

k=1

v̌xk,αk
,

m∧

k=1

v̂xk,αk

]

V
.
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In order to know if the set of capacities V P consistent with the preferences P,
is empty it is not necessary to compare the capacities ∨m

k=1v̌xk,αk
and ∧m

k=1v̂xk,αk

for all subsets of criteria A since it is is proved in [12] the following property
(that makes use of Proposition 1).

Proposition 3. The set of capacities VP = [∨m
k=1v̌xkαk

,∧m
k=1v̂xk,αk

]V is not
empty if and only if for all αk < αl we have {i|xl

i ≥ αl} 
⊆ {i|xk
i > αk}.

In this work we do not assume that all input statements are assignments, but
we collect, using an interactive process, statements of the type Sv(x) ≥ α or
Sv(x) ≤ α. Let P be divided in two parts (xk, αk)k=1,...,m1 and (yk, λk)k=1,...,m2

such that the global evaluation of xk is bigger than αk and the global evaluation
of yk is lower than λk. Hence the set of consistent capacities V P is:

V P =
{

v ∈ V
∣∣∣
∨

k

v̌xk,αk
≤ v

}
∩

{
v ∈ V |v ≤

∧

k

v̂yk,λk

}
(6)

=
[ m1∨

k=1

v̌xk,αk
,

m2∧

k=1

v̂yk,λk

]

V
. (7)

Note that this intersection can be empty. We will see, in the next section, that
this intersection is always non empty with the proposed algorithm.

We conclude this section with a remark concerning the focal sets of a capacity.
The qualitative Moebius transform of a capacity v is the set function v# defined
as follows:

v#(A) =
{

v(A) if v(B) < v(A) ∀B ⊂ A
0 otherwise

The sets A such that v#(A) > 0 are call the focal sets of v. The qualitative
Moebius transform contains all the information to compute v since for all A,
v(A) = ∨B⊆Av#(B), and the qualitative Moebius transform is sufficient to cal-
culate the Sugeno integral:

Sv(x) = max
A⊆C

min(v#(A),min
i∈A

xi) (8)

This means that we just need to identify the focal sets in order to calculate
the Sugeno integral. The preferences, described above, may be just given for
objects with local evaluations equal to 0L or 1L. Nevertheless, in practice these
theoretical objects could be inappropriate. For instance, imagine the situation of
caregivers assessing the overall health of given patients: it would be difficult for
them to assess abstract patients without referring to real cases. This difficulty of
reasoning with abstract items is the reason why we decide to not use focal sets
in the method proposed in this paper.

3 Incremental Elicitation Protocol

We provide an interactive elicitation method based on the maximin decision
criteria. The goal of the elicitation is to determine a necessary winner.
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Our method bears similarity to methods, relying on minimax regret, for the
incremental elicitation of a capacity for the Choquet integral [2]. We note that, in
our qualitative framework, minimax regret is not applicable since the difference
of two Sugeno value is meaningless in decision context.

First of all, in Sect. 3.1, we introduce some concept of decision-making under
uncertainty to be used to identify the most promising alternative when the capac-
ity is not known precisely. We focus in the case where the capacity lies in an
interval between a lower and a upper capacity.

Then in Sect. 3.2 we use these concepts to design our interactive elicitation
protocol.

3.1 Reasoning with an Uncertain Capacity

Suppose now that a set P of statements have been collected and that the set of
capacities V P ⊆ V consistent with P has been identified; each v ∈ V P is such
that v satisfies all preferences in P.

First of all, we observe that, in some cases, the set P is enough to identify the
best alternative in X. An alternative is a necessary winner if it is the optimal
alternative with respect to all capacities in V P .

Definition 2. A necessary winner with respect to P is an alternative x ∈ X
such that

x ∈ arg max
x∈X

Sv(x) ∀v ∈ V P .

If a necessary winner exists, it is not necessary to elicit further information
from the decision maker in order to make a decision, since the current available
information is enough to identify the best choice (or one of the best choices, in
case of ties) among the set of alternatives.

In most cases, however, a necessary winner does not exists. When it is nec-
essary to make a choice with the only knowledge that the capacity lies in V P ,
we can recommend the alternative(s) ensuring the highest Sugeno value in the
worst-case. We therefore adopt the maximin criterion (similarly to a previous
work in multiattribute decision making [15]), that is particularly apt to the ordi-
nal settings where the Sugeno integral is typically used.

Given a set of capacities V P and an alternative x ∈ X, the minimum (or
pessimistic) value according to Sugeno is s↓

P(x) = minv∈V P Sv(x) while its max-
imum (or optimistic) value is s↑

P(y) = maxv∈V P Sv(x). We now define the max-
imin Sugeno value s∗

P as

s∗
P = max

x∈X
s↓

P(x) = max
x∈X

min
v∈V P

Sv(x)

and a maximin recommendation x∗
P is such that:

x∗
P ∈ arg max

x∈X
s↓

P(x) = arg max
x∈X

min
v∈V P

Sv(x)
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and x∗
P is said to be maximin optimal (x∗

P has the highest “pessimistic” value).
The value s↓

P(x) is the worst-case “utility” associated with recommending alter-
native x; any choice that is not maximin optimal has strictly lower Sugeno value
than x∗ for some capacity v ∈ V P .

We further assume that all preference statements are of the kind S(x) ≥ α
or S(x) ≤ α. Then, as we have seen previously in Sect. 2.3, the set of capacities
consistent with P can be written as the intersection of intervals. We will see
that, using the proposed algorithm, this set of capacities is a lattice interval; i.e.,

V P = [v̌, v̂]V .

Given an interval of capacities, the maximin alternative (the choice that maxi-
mizes the worst-case Sugeno value) is easily found: using the property described
in Eq. 3 and the fact that the set of the valid capacities is a lattice, s↓

P(x), the
minimum Sugeno value of an alternative x, is just Sv̌(x), the Sugeno integral of
x computed with the “bottom” capacity v̌.

Proposition 4. Assuming that the set of feasible capacities V P is an interval
(sublattice) of V , then we have:

s↓
P(x) = Sv̌(x), s∗

P = max
x∈X

Sv̌(x) and x∗
P = arg max

x∈X
Sv̌(x) (9)

We need a measure of how “uncertain” we are with respect to our recom-
mendation. Now, we consider the most optimistic Sugeno value, i.e. the maximax
value, that can be attained by any alternative y different from the recommen-
dation x∗

P .

s◦
P = max

y 	=x∗
P

s↑
P(y) = max

y 	=x∗
P

max
v∈V P

Sv(y) = max
y 	=x∗

P
Sv̂(y)

y◦
P ∈ arg max

y 	=x∗
P

s↑
P(y) = arg max

y 	=x∗
P

max
v∈V P

Sv(y) = arg max
y 	=x∗

P
Sv̂(y)

We dub y◦
P as the “adversary”, since it is the alternative that may have the high-

est value. Recall that s∗
P is the value of the maximin optimal recommendations.

By comparing s∗
P and s◦

P we determine whether there is any residual uncertainty
about which is the optimal alternative. We notice that if s∗

P ≥ s◦
P then it means

that the current maximin recommendation x∗
P is surely an optimal recommen-

dation. This observation is formally stated in the following proposition, whose
proof is very straightforward.

Proposition 5. If s∗
P ≥ s◦

P then x∗
P is a necessary winner.

Proof. For all v ∈ V P , Sv(x∗
P) ≥ s∗

P , and s◦
P ≥ s↑

P(y) ≥ Sv(y), for all y 
= x∗
P .

Therefore, if s∗
P ≥ s◦

P , then by transitivity we have Sv(x∗
P) ≥ Sv(y) for all

v ∈ V P and for all y 
= x∗
P .

Example 1. Suppose that the available alternatives are X = {a, b, c, d} whose
performances are given in the following table of criteria.
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Alternative Criteria

1 2 3

a 0.2 0.4 0.5

b 0.7 0.2 0.4

c 0.1 1 0.7

d 0 0.5 0

The scale is L = {0, 0.1, 0.2, . . . , 0.9, 1}. Assume that we know that alterna-
tive a is deemed to have value higher or equal than 0.4, that alternative b has
Sugeno value at least 0.5, and that alternative c has Sugeno value at most 0.8;
that is Sv(a) ≥ 0.4, Sv(b) ≥ 0.5, and Sv(c) ≤ 0.8. We now inspect the lower
bound v̌ and the upper bound v̂ capacities, based on combining Eqs. 4 and 5.

Subset ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v̌(·) 0 0.5 0 0 0.5 0.5 0.4 1

v̂(·) 0 1 0.8 1 1 1 1 1

We determine the optimistic s↑
P and the pessimistic value s↓

P of each alter-
native by computing the Sugeno integral of a, b, c with respect to v̌, v̂.

Alternative a b c d

s↓
P(·) 0.4 0.5 0.4 0

s↑
P(·) 0.5 0.7 0.8 0.5

We can determine that b attains the maximin optimal value s∗
P = s↓

P(b) = 0.5,
while the adversary is c that can obtain up to s◦

P = s↑
P(c) = 0.8 in the optimistic

case.

We conclude this part by observing that the condition in the proposition
above gives us a sufficient condition for detecting a necessary winner, but not
a necessary one1: it is possible that a necessary winner exists even when such
condition is not satisfied (see example below). This means that, in some cases,
the interactive approach that we present next may pose some questions that
could be avoided with a more precise check for determining a necessary winner.
However, by proceeding in this way we keep the algorithm rather simple and
efficient.

1 In future works, we will consider optimization techniques for identifying necessary
winners.
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Example 1 (continued). Now consider the set of alternatives to be restricted
to c and d. Note that c dominates d, that is, the former has a strictly higher
performance than the latter with respect to all three criteria; it follows that
Sugeno of c is higher than the value of d. Alternative c is a necessary winner in
X ′ = {c, d}. However, we have s↓

P(c) = 0.4 < 0.5 = s↑
P(d) and the condition of

Proposition 5 is not met.

Algorithm 1. Interactive Elicitation and Winner Determination
1: procedure InteractiveElic(X, P)
2: (v̌, v̂) = Init(P) � Initialization
3: repeat
4: x∗

P = arg maxx∈X Sv̌(x) � Determine maximin recommendation
5: s∗

P = maxx∈X Sv̌(x)
6: y◦

P = arg maxy �=x∗
P Sv̂(y)

7: s◦
P = maxy �=x∗

P Sv̂(y)
8: q ← SelectQuery(v̌, v̂, x∗

P , y◦
P) � Use a query strategy

9: p ← AskQuery(q) � Ask query q to user
10: P = P ∪ p
11: (v̌, v̂) = Update(v̌, v̂, p) � Update lattice of capacities
12: until s∗

P ≥ s◦
P � Termination condition

13: return x∗
P � We return the necessary winner

3.2 An Interactive Elicitation Scheme for Determining a Necessary
Winner

This section proposes an interactive elicitation process based on the concepts
introduced above; Algorithm 1 depicts the pseudocode of our procedure. The
input parameters are X, the dataset, and the preference statements P. During
the course of the process, we maintain an explicit representation of the set V P

of feasible capacities.
The pair (v̌, v̂) is initialized depending on P:

– In the case that we start from an empty set of statements (P = ∅) we initialize
the pair (v̌, v̂) = (⊥,
). These capacities entails particular cases for Sugeno
integral: S⊥(x) = minn

i=1 xi and S�(x) = maxn
i=1 xi.

– If P is not empty, for each p ∈ P, we use Eq. 7 in order to initialise (v̌, v̂).

At each step of the elicitation, a query is asked and a new statement is
acquired. Based on this the lattice is updated. We then we compute the new
maximin optimal alternative ensuring the highest value s↓

P .
Questions are chosen considering the value s∗

P of the maximin alternative,
given preferences P, and the value of y◦

P that is the alternative, different than
x, that have the highest Sugeno value. Proposition 5 gives us a termination
condition for ending the elicitation process.
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The function Update updates the lower bound v̌ and the upper bound v̂ of
the lattice of capacities consistent with the current information. That is,

v̌ := v̌ ∨ v̌x,succ(α) if p of type S(x) > α

v̂ := v̂ ∧ v̂x,α if p of type S(x) ≤ α

where succ(α) is the level in L right above α; see Definition 1 for how v̌x,α and
v̂x,α are defined.

A question is identified by a pair (x, α): the alternative x that we are asking
about, and the level α. The space of possible queries at a given step of the
elicitation is

Q(v̌, v̂) = {(x, α)|x ∈ X,Sv̌(x) ≤ α ≤ Sv̂(x)}.

We now formally state a property ensuring that the algorithm cannot lead
to an empty set of feasible capacities.

Proposition 6. During all the steps of procedure InteractiveElic we have
v̌ ≤ v̂ (that means the sublattice of capacities that they represent is not empty).

Proof. The property is true when we start the procedure. The proof is based on
showing that the property is still satisfied after updating the lattice of capacities.

Suppose to have v̌ and v̂ with v̌ ≤ v̂. Consider any pair (x, α) ∈ Q(v̌, v̂), i.e.,
x and α satisfy Sv̌(x) ≤ α ≤ Sv̂(x). There are two possible answers we want to
have either Sv(x) ≥ α or Sv(x) ≤ α. Hence we update the bounds of the set of
capacities solution. In the first case the lower bound of the set of the capacities
solution changes, while in the second one it is the upper bound.

– Suppose to have Sv(x) ≥ α. Let us denote the new lower bound by v̌′,

v̌′(A) = v̌(A) ∨ v̌x,α(A) =
{

max(v̌(A), α) if {i|xi ≥ α} ⊆ A
v̌(A) otherwise

Let us prove that v̌′ ≤ v̂. We have v̌ ≤ v̂ so we just need to prove that
v̂(A) ≥ α if {i|xi ≥ α} ⊆ A: We have

Sv̂(x) = max
β∈L

min(v̂({i|xi ≥ β}), β) ≥ α,

so there exists β ≥ α such that v̂({i|xi ≥ β}) ≥ β. We have {i|xi ≥ β} ⊆
{i|xi ≥ α} which entails v̂({i|xi ≥ α}) ≥ v̂({i|xi ≥ β}) ≥ β ≥ α. We conclude
using the monotonicity of v̂.

– Suppose to have Sv(x) ≤ α. Let us denote the new upper bound by v̂′,

v̂′(A) = v̂(A) ∧ v̂x,α(A) =
{

min(v̂(A), α) if A ⊆ {i|xi > α}
v̂(A) otherwise

Let us prove that v̌ ≤ v̂′. We have v̌ ≤ v̂ so we just need to prove that
v̌(A) ≤ α if A ⊆ {i|xi > α}: We have

Sv̌(x) = min
β∈L

max(v̌({i|xi > β}), β) ≤ α,
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so there exists β ≤ α such that v̌({i|xi > β}) ≤ β. We have {i|xi > α} ⊆
{i|xi > β} which entails v̌({i|xi > α}) ≤ v̌({i|xi > β}) ≤ β ≤ α. We conclude
using the monotonicity of v̌.

Fig. 1. The CSS1 strategy analyzes the different relative positions of the upper bounds
and lower bounds of x∗

P and y◦
P .

3.3 Strategies to Choose the Next Question

We now address the problem of choosing the next question. This is an important
point since a good strategy for asking questions will reduce the length of the elic-
itation process and as well mitigate the cognitive effort of the user. We consider
different strategies to select the next question based on the current lattice of
valid capacities. The effectiveness of these strategies are evaluated in simulation
(see Sect. 4).

The Current solution strategy (CSS) uses the information about the current best
recommendation x∗

P , and the “adversary” y◦
P to derive a question to ask. We

propose two versions of this idea:

– CSS0 (simpler version): we simply choose to ask about x∗
P or y◦

P depending
on which has the largest interval, and as level we pick the midpoint.

– CSS1 ( more elaborate): we evaluate candidate queries with respect to their
capability of resolving the uncertainty about which between x∗

P and y◦
P

has the highest Sugeno value. The discussion depends on how the intervals
[s↓

P(x∗
P), s↑

P(x∗
P)] and [s↓

P(y◦
P), s↑

P(y◦
P)] relate to each other. It is worth notic-

ing that we know that s↓
P(x∗

P) ≥ s↓
P(y◦

P) by definition of maximin.
We inspect the order between s↑

P(x∗
P) and s↑

P(y◦
P) to decide which queries

to consider. We then propose an heuristic in order to choose between these
possible queries based on the length of the intervals [s↓

P(x∗
P), s↑

P(x∗
P)] and

[s↓
P(y◦

P), s↑
P(y◦

P)] as depicted in Fig. 1. Note that, in the following discussion,
we denote by d(α, β) the number of levels between α and β where α and β
are elements on the scale L.



Incremental Elicitation of Capacities for the Sugeno Integral 167

• Case i): s↑
P(y◦

P) ≤ s↑
P(x∗

P), i.e.,
[
s↓

P(y◦
P) [s↓

P(x∗
P) s↑

P(y◦
P)

]
s↑

P(x∗
P)].

The optimistic value of y◦
P is lower or equal than the pessimistic value of

x∗
P .

In this case we could ask the user to compare alternative x∗
P and the level

s↑
P(y◦

P). If the answer is that Sv(x∗
P) ≥ s↑

P(y◦
P), we know that y◦

P cannot
be better than x∗

P , and therefore we resolve the uncertainty between the
two; this event happens if the true Sugeno value of x∗

P is between s↑
P(y◦

P)
and s↑

P(x∗
P). We then quantify the “score” of this query as the propor-

tion of the interval of [s↓
P(x∗

P), s↑
P(x∗

P)] that makes us certain that x∗
P

is preferred to y◦
P , i.e. the number of levels between s↑

P(x∗
P) and s↑

P(y◦
P)

divided by the number of levels between s↑
P(x∗

P) and s↓
P(x∗

P). Hence the

value of this query is d(s↑
P(x∗

P),s↑
P(y◦

P))

d(s↑
P(x∗

P),s↓
P(x∗

P))
.

Alternatively, we could also ask to compare alternative y◦
P and the level

s↓
P(x∗

P). If the user states that the Sugeno value of y◦
P is lower than

s↓
P(x∗

P), then we can also conclude that y◦
P cannot be better than x∗

P .

Reasoning as above, we score this query d(s↓
P(x∗

P),s↓
P(y◦

P))

d(s↑
P(y◦

P),s↓
P(y◦

P))
.

We ask the query (among the two) that has the highest “value”.

• Case ii): s↑
P(x∗

P) ≤ s↑
P(y◦

P), i.e.,
[
s↓

P(y◦
P) [s↓

P(x∗
P) s↑

P(x∗
P)] s↑

P(y◦
P)

]
.

(the optimistic value of y◦
P is at least the pessimistic value of x∗

P).
We can ask to compare alternative y◦

P and s↑
P(x∗

P), whose “score”

is d(s↑
P(y◦

P),s↑
P(x∗

P))

d(s↑
P(y◦

P),s↓
P(y◦

P))
, or, as in the previous case, to compare y◦

P and

s↓
P(x∗

P), with value d(s↑
P(x∗

P),s↑
P(y◦

P))

d(s↑
P(y◦

P),s↓
P(y◦

P))
. Since the denominator of both for-

mulas is the same, the test reduces to checking d(s↑
P(y◦

P), s↑
P(x∗

P)) ≥
d(s↑

P(x∗
P), s↑

P(y◦
P)).

• Case iii): s↓
P(y◦

P) = s↓
P(x∗

P) and s↑
P(y◦

P) = s↑
P(x∗

P). In this case we ask
about x∗

P and its midpoint level.

The Halve largest gap (HLG) asks the question about alternative xH with the
largest gap measured by the number of levels; xH = arg maxx∈X d(s↓

P(x), s↑
P(x))

and the level αH is the midpoint between s↑
P(xH) and s↓

P(xH).

The Random strategy chooses, as q query, an alternative x at random and a the
midpoint between s↑

P(x) and s↓
P(x) (this strategy is considered as a baseline).

Example 1 (continued). We show how the different strategies will determine the
next query to ask in our example. Remember that x∗

P = b and y◦
P = c. The

strategy CSS0 asks about alternative c and its midpoint level 0.6, since the
interval [s↓

P(b), s↑
P(b)] = [0.5, 0.7] is smaller (in terms of number of levels) that

the interval [s↓
P(c), s↑

P(c)] = [0.4, 0.8].
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Since s↑
P(x∗

P) = 0.7 < 0.8 = s↑
P(y◦

P) the analysis performed by CSS1 proceeds
by considering the second case. CSS1 asks either to compare alternative c with
level 0.5 or to compare alternative c with level 0.7 (their “score” is the same).

HLG asks about alternative d, that has the widest gap [s↓
P(d), s↑

P(d)] =
[0, 0.5], and its midpoint level 0.2. This query is not very informative since we
know already that d cannot be strictly better than b.

Table 1. Simulation results (averaged over 30 runs) showing the number of queries
that are needed in order to find a necessary winner.

Dataset m n Capacity Query strategies

CSS1 CSS0 HLG Random

Tiny 7 4 WeightedMax 5.5 6.3 9.1 16.9

Tiny 7 4 WeightedMin 8.1 9.1 10.4 17.8

Tiny 7 4 Sampled 8.9 8.3 11.1 16.9

Synthetic 30 8 WeightedMax 14.7 10.2 45.2 56.2

Synthetic 30 8 WeightedMin 15.8 17.2 34.8 70.6

Synthetic 30 8 Sampled 27.3 22.3 54.7 100.6

Cars 80 6 WeightedMax 3.6 4.1 12.8 4.7

Cars 80 6 WeightedMin 12.6 12.2 26.8 42.7

Cars 80 6 Sampled 9.3 10.0 31.0 22.2
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Fig. 2. The values s∗ and s◦ as a function of the number of queries with CSS1 on the
tiny dataset (averaged over 30 runs)
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4 Experimental Results

We evaluate the proposed paradigm with numerical experiments where we simu-
late the elicitation process by assuming that the preferences of a decision-maker
are consistent with a Sugeno integral with a capacity v. At each step of the
simulation, a question of the type “Is Sv(x) lower or equal to α?” is asked to
decision maker. The simulated user answers such questions based on the “true”
capacity v, and the answers are used by our algorithm to update the lattice of
consistent capacities, determine the maximin recommendations and to select the
question to ask next, as discussed before in Sect. 3.2.

In our tests we considered 3 different datasets: a very small dataset, dubbed
“tiny” of 7 items and 4 criteria (with an evaluation scale of 20 levels), a randomly
generated “synthetic” dataset (30 items, 8 criteria, 25 levels), and a dataset of
“cars” (100 items, 6 criteria, 5 levels).

Simulated users answer queries according to capacities that are either Weight-
edMax, WeightedMin or generic capacities (note that the form of the capacity
is not known to the elicitation algorithm). Capacities are randomly generated
in the following way: for WeightedMax and WeightedMin the weight vector is
uniformly sampled (one criteria forced to have weight 1L). For generic capaci-
ties, we iteratively pick a random subset of criteria and assign it a random level
(sampled uniformly) between 0L and 1L with subsets and supersets updated
accordingly to monotonicity; the process is repeated a fixed number of times.

We compare the effectiveness of the heuristic strategies (presented in the
Sect. 3.2) for choosing the next question to ask to the user. In Table 1 we show the
average number of queries that are needed to find a necessary winner according to
the different query strategies, in the different simulation settings (all experiments
have been repeated 30 runs).

In Fig. 2 we provide, for one of the experiments, the detail about how the
values s∗

P and s◦
P evolve over time: the former is monotonically non decreasing,

while the latter decreases most of the time. Note that our protocol can be ter-
minated early providing a “good” recommendation before a necessary winner is
found.

The experimental results show the superiority of the CSS strategies with
respect to the other heuristics, with both CSS0 and CSS1 performing quite well.

5 Discussion and Conclusions

The Sugeno integral is used as an aggregation method for multicriteria deci-
sion making. Despite its popularity, the elicitation of a Sugeno integral is still
a problematic issue. In this paper we have provided a novel formalization for
decision-making under capacity uncertainty using the maximin utility criterion.
We have provided an incremental elicitation method for determining a neces-
sary winner; at each step the user is asked to answer a query of the type “Is the
Sugeno value of item x at most α?” where x and α are dynamically chosen to
improve the knowledge about the capacity as much as possible. The algorithm
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maintains a representation of the lattice of consistent capacities that is updated
after each answer. We provided an experimental validation of the approach with
simulations comparing different heuristics for choosing the next question to ask.

Several directions for future research are possible: additional strategies for
choosing the next question (for instance adapting the ideas of [14] in an ordinal
setting), experimentation with real data, the extension to different type of ques-
tions (e.g. comparing two alternatives) and handling combinatorial domains. We
are also interested in methods that support the interpretation of real data, for
instance by using if-then rules based on Sugeno integrals. As the Sugeno integral
represents a single threshold rule [6], an interesting direction is to adapt our
procedure for Sugeno Utility Functionals (SUF) [4].

Another challenge is the prediction of preferences [9]; one idea is to compute
a family of capacities on a training set of preferences and use it for prediction.
The analogy-based method [3] seems as well to be an approach to consider.
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LNCS (LNAI), vol. 8176, pp. 411–424. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41575-3 32

https://doi.org/10.1007/978-3-642-41575-3_32
https://doi.org/10.1007/978-3-642-41575-3_32


Computable Randomness Is About More
Than Probabilities

Floris Persiau(B), Jasper De Bock, and Gert de Cooman

FLip, ELIS, Ghent University, Technologiepark 125, 9052 Zwijnaarde, Belgium
floris.persiau@ugent.be

Abstract. We introduce a notion of computable randomness for infi-
nite sequences that generalises the classical version in two important
ways. First, our definition of computable randomness is associated
with imprecise probability models, in the sense that we consider lower
expectations—or sets of probabilities—instead of classical ‘precise’ prob-
abilities. Secondly, instead of binary sequences, we consider sequences
whose elements take values in some finite sample space. Interestingly,
we find that every sequence is computably random with respect to at
least one lower expectation, and that lower expectations that are more
informative have fewer computably random sequences. This leads to the
intriguing question whether every sequence is computably random with
respect to a unique most informative lower expectation. We study this
question in some detail and provide a partial answer.

Keywords: Computable randomness · Coherent lower expectations ·
Imprecise probabilities · Supermartingales · Computability

1 Introduction

When do we consider an infinite sequence ω = (x1, . . . , xn, . . . ), whose individual
elements xn take values in some finite sample space X, to be random? This is
actually not a fair question, because randomness is never defined absolutely,
but always relative to an uncertainty model. Consider for example an infinite
sequence generated by repeatedly throwing a single fair die and writing down
the number of eyes on each throw. In this case, we would be justified in calling
this sequence random with respect to a precise probability model that assigns
probability 1

/6 to every possible outcome.
It is exactly such precise probability models that have received the most

attention in the study of randomness [2,3,11]. Early work focused on binary
sequences and the law of large numbers that such sequences, and computably
selected subsequences, were required to satisfy: an infinite binary sequence of
zeros and ones is called Church random if the relative frequencies in any com-
putably selected subsequence converge to 1

/2 [2]. Schnorr, inspired by the work
of Ville, strengthened this definition by introducing a notion of computable ran-
domness [11]. On his account, randomness is about betting. The starting point
is that a precise probability model that assigns a (computable) probability p to
1 and 1 − p to 0 can be interpreted as stating that p is a fair price for bet I1(Xi)
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that yields 1 when Xi = 1 and 0 when Xi = 0, for every—a priori unknown—
value Xi of a binary sequence ω = (x1, . . . , xn, . . . ) of zeros and ones. Such a
sequence is then considered to be computably random with respect to p if there
is no computable betting strategy for getting rich without bounds along ω with-
out borrowing, simply by betting according to this fair price. Notably, binary
sequences that are computably random for p = 1

/2 are also Church random. So
here too, the relative frequency of any element x ∈ X will converge to a limit
frequency along ω—1

/2 in the binary case for p = 1
/2. In fact, this is typically

true for any notion of randomness with respect to a precise probability model.
However, as has been argued extensively [7], there are various random phe-

nomena where this stabilisation is not clearly present, or even clearly absent.
Hence, only adopting precise probability models to define notions of random
sequences is too much of an idealisation. Recently, this issue was addressed
by De Cooman and De Bock for binary sequences by introducing a notion of
computable randomness with respect to probability intervals instead of pre-
cise probability models, whose lower bounds represent supremum acceptable
buying prices, and whose upper bounds represent infimum acceptable selling
prices, again for the bet I1(Xi) that, for every value xi of a binary sequence
ω = (x1, . . . , xn, . . . ), yields 1 if Xi = 1 and 0 otherwise [5].

On this account, relative frequencies must not necessarily converge to a limit
frequency along ω, but may fluctuate within the probability interval.

Here, we generalise the work done by De Cooman and De Bock [5] for binary
sequences, and develop a similar concept for infinite sequences that take values in
more general finite sample spaces. To this end, we consider an even more general
framework for describing uncertainty: we use coherent lower expectations—or
sets of probability mass functions—instead of probability intervals or probabil-
ities. Loosely speaking, we say that an infinite sequence ω = (x1, . . . , xn, . . . )
is computably random with respect to a (forecasting system of) lower expecta-
tion(s), when there is no computable betting strategy for getting rich without
bounds along ω without borrowing and by only engaging in bets whose (upper)
expected profit is non-positive or negative.1

This contribution is structured as follows. We start in Sect. 2 with a brief intro-
duction to coherent lower expectations, and explain in particular their connection
with probabilities and their interpretation in terms of gambles and betting. Next,
in Sect. 3, we define a subject’s uncertainty for an infinite sequence of variables
X1, . . . , Xn, . . . by introducing forecasting systems that associate with every finite
sequence (x1, . . . , xn) a coherent lower expectation for the variable Xn+1. This allows
us to introduce corresponding betting strategies to bet on the infinite sequence of
variables along a sequence ω = (x1, . . . , xn, . . . ) in terms of non-negative (strict)
supermartingales. After explaining in Sect. 4 when such a non-negative (strict)
supermartingale is computable, we extend the existing notion of computable ran-
domness from precise and interval probability models to coherent lower expecta-
tions in Sect. 5, and study its properties. The remainder of the paper focuses on

1 A real number x ∈ R is called positive if x > 0, non-negative if x ≥ 0, negative if
x < 0 and non-positive if x ≤ 0.
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special cases. When we restrict our attention to stationary forecasting systems
that forecast a single coherent lower expectation in Sect. 6, it turns out that every
sequenceω is computably randomwith respect to at least one coherent lower expec-
tation and that if ω is computably random for some coherent lower expectation,
then it is also computably random for any coherent lower expectation that is less
informative, i.e., provides fewer gambles. This makes us question whether there is
a unique most informative coherent lower expectation for which ω is computably
random. After inspecting some examples, it turns out that such a most informa-
tive coherent lower expectation sometimes exists, but sometimes does not. When
it does not, our examples lead us to conjecture that it ‘almost’ exists. We conclude
the discussion in Sect. 7 by introducing a derived notion of computable random-
ness with respect to a gamble f and an interval I by focusing on the behaviour of
coherent lower expectations on a specific gamble f of their domain. It turns out
that for every gamble f , a sequence ω is ‘almost’ computably random with respect
to some smallest interval. To adhere to the page constraints, all proofs are omitted.
They are available in an extended on-line version [9].

2 Coherent Lower Expectations

To get the discussion started, we consider a single uncertain variable X that takes
values in some finite set X, called the sample space. A subject’s uncertainty about
the unknown value of X can then be modelled in several ways. We will do so
by means of a coherent lower expectation: a functional that associates a real
number with every gamble, where a gamble f : X → R is a map from the sample
space X to the real numbers. We denote the linear space of all gambles by L(X).

Definition 1. A coherent lower expectation E : L(X) → R is a real-valued func-
tional on L(X) that satisfies the following axioms. For all gambles f , g ∈ L(X)

and all non-negative α ∈ R:

C1. min f ≤ E( f ) [boundedness]
C2. E(α f ) = αE( f ) [non-negative homogeneity]
C3. E( f ) + E(g) ≤ E( f + g) [superadditivity]

We will use E to denote the set of all coherent lower expectations on L(X).

As a limit case, for any probability mass function p on X, it is easy to
check that the linear expectation Ep, defined by Ep( f ) �

∑
x∈X f (x)p(x) for all

f ∈ L(X), is a coherent lower expectation, which corresponds to a maximally
informative or least conservative model for a subject’s uncertainty. More gener-
ally, a coherent lower expectation E can be interpreted as a lower envelope of
such linear expectations. That is, there is always a (closed and convex) set M of
probability mass functions such that E( f ) = min{Ep( f ) : p ∈ M} for all f ∈ L(X)

[13]. In that sense, coherent lower expectations can be regarded as a generalisa-
tion of probabilities to (closed and convex) sets of probabilities. Alternatively,
the lower expectation E( f ) can be interpreted directly as a subject’s supremum
buying price for the uncertain reward f .
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The particular interpretation that is adopted is not important for what we
intend to do here. For our purposes, the only thing we will assume is that when
a subject specifies a coherent lower expectation, every gamble f ∈ L(X) such
that E( f ) > 0 is desirable to him and every gamble f ∈ L(X) such that E( f ) ≥ 0
is acceptable to him. We think this makes sense under both of the aforemen-
tioned interpretations. Furthermore, as we will see in Sect. 5, the distinction
between desirable and acceptable gambles does not matter for our definition of
computable randomness. For now, however, we proceed with both notions.

Whenever a subject specifies a coherent lower expectation, we can consider
an opponent that takes this subject up on a gamble f on the unknown outcome
X in a betting game. Borrowing terminology from the field of game-theoretic
probabilities [12], we will refer to our subject as Forecaster and to his opponent
as Sceptic. Forecaster will only bet according to those gambles f ∈ L(X) that
are acceptable to him (E( f ) ≥ 0), or alternatively, those that are desirable to
him (E( f ) > 0). This leads to an unknown reward f (X) for Forecaster and an
unknown reward − f (X) for Sceptic. After Sceptic selects such a gamble, the
outcome x ∈ X is revealed, Forecaster receives the (possibly negative) reward
f (x), and Sceptic receives the reward − f (x). Equivalently, when considering for
any coherent lower expectation E the conjugate upper expectation E, defined
as E( f ) � −E(− f ) for all f ∈ L(X), then Sceptic is allowed to bet according to
any gamble f ∈ L(X) for which E( f ) ≤ 0 (or E( f ) < 0), leading to an uncertain
reward f (X) for Sceptic and an uncertain reward − f (X) for Forecaster. In what
follows, we will typically take the perspective of Sceptic. The gambles that are
available to her will thus be the gambles f ∈ L(X) with non-positive (or negative)
upper expectation E( f ) ≤ 0 (E( f ) < 0).

An important special case is the so-called vacuous coherent lower expecta-
tion Ev, defined by Ev( f ) � min f for all f ∈ L(X). If Forecaster specifies Ev, this
corresponds to a very conservative attitude where he is only interested in gam-
bles f that give him a guaranteed non-negative (or positive) gain, i.e., min f ≥ 0
(min f > 0), implying that Sceptic has a guaranteed non-negative (or positive)
loss, i.e., max f ≤ 0 (max f < 0).

Example 2. Consider an experiment with three possible outcomes A, B and
C, i.e., X � {A, B,C}, and three probability mass functions p0, p1 and p2
defined by (p0(A), p0(B), p0(C)) � (0, 1/2, 1/2), (p1(A), p1(B), p1(C)) � (

1
/2, 0, 1/2)

and (p2(A), p2(B), p2(C)) � (

1
/2, 1/2, 0). We can then define a coherent lower expec-

tation E by E( f ) � min{Ep0( f ), Ep1( f ), Ep2( f )} for every gamble f ∈ L(X). For
the particular gamble f defined by ( f (A), f (B), f (C)) � (1,−2, 3), the value of
this lower expectation then equals E( f ) = min{1/2, 2, −1/2} = −1

/2. ♦

3 Forecasting Systems and Betting Strategies

We now consider a sequential version of the betting game in Sect. 2 between
Forecaster and Sceptic, by considering a sequence of variables X1, . . . , Xn, . . . , all
of which take values in our finite sample space X.
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On each round of the game, indexed by n ∈ N0 � N ∪ {0}, the a priori
unknown finite sequence of outcomes x1:n = (x1, . . . , xn) has been revealed and
we assume that Forecaster’s uncertainty about the next—as yet unknown—
outcome Xn+1 ∈ X is described by a coherent lower expectation. Hence, on each
round of the game, Forecaster’s uncertainty can depend on and be indexed by
the past states.

All finite sequences s = x1:n = (x1, . . . , xn)—so-called situations—are collected
in the set S � X

∗ =
⋃

n∈N0
X

n. By convention, we call the empty sequence the
initial situation and denote it by �. The finite sequences s ∈ S form an event tree,
and it is on this whole event tree that we will describe Forecaster’s uncertainty,
using a so-called forecasting system.

Definition 3. A forecasting system E
•

: S → E is a map that associates with
every situation s ∈ S a coherent lower expectation Es ∈ E. The collection of all
forecasting systems is denoted by E

S.

Every forecasting system corresponds to a collection of bets that are available
to Sceptic. That is, in every situation s = x1:n, Sceptic is allowed to bet on the
unknown outcome Xn+1 according to any gamble f ∈ L(X) such that Es( f ) ≤ 0
(or E s( f ) < 0). This leads to an uncertain reward f (Xn+1) for Sceptic and an
uncertain reward − f (Xn+1) for Forecaster. Afterwards, when the outcome xn+1 is
revealed, Sceptic gets the amount f (xn+1), Forecaster gets the amount − f (xn+1)
and we move to the next round. To formalise this sequential betting game, we
introduce the notion of a supermartingale, which is a special case of a so-called
real process.

A real process F : S → R is a map that associates with every situation s =

x1:n ∈ S of the event tree, a real number F(s). With every real process F there
corresponds a process difference ΔF that associates with every situation s ∈ S a
gamble ΔF(s) on X, defined as ΔF(s)(x) � F(sx) −F(s) for every s ∈ S and x ∈ X,
where sx denotes the concatenation of s and x. We call a real process M a (strict)
supermartingale if Es(ΔM(s)) ≤ 0 (Es(ΔM(s)) < 0) for every situation s ∈ S. Note
that a supermartingale is always defined relative to a forecasting system E

•

.
Similarly, a real process M is called a (strict) submartingale if Es(ΔM(s)) ≥

0 (E s(ΔM(s)) > 0) for every s ∈ S. Due to the conjugacy relation between
upper and lower expectations, M is a (strict) supermartingale if and only if
−M is a (strict) submartingale. We collect the super- and submartingales in the
sets M(E

•

) and M(E
•

), respectively. A supermartingale M is called non-negative
(positive) if M(s) ≥ 0 (M(s) > 0) for all s ∈ S.

From the previous discussion, it is clear that Sceptic’s allowable betting
behaviour corresponds to supermartingales or strict supermartingales, depend-
ing on whether we consider acceptable or desirable gambles, respectively. Indeed,
in each situation s = x1:n ∈ S, she can only select a gamble ΔM(s) for
which Es(ΔM(s)) ≤ 0 (Es(ΔM(s)) < 0) and her accumulated capital M(x1:n) =
M(�) +

∑n−1
k=0 ΔM(x1:k)(xk+1), with M(�) being her initial capital, will therefore

evolve as a (strict) supermartingale. As mentioned before, it will turn out not
to matter whether we consider acceptable or desirable gambles, or equivalently,
supermartingales or strict supermartingales. To be able to explain why that is,
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we will proceed with both. In particular, we will restrict Sceptic’s allowed betting
strategies to non-negative (strict) supermartingales, where the non-negativity
is imposed to prevent her from borrowing money. Non-negative supermartin-
gales M that start with unit capital M(�) are called test supermartingales.

Example 4. Consider a repetition of the experiment in Example 2, and a station-
ary forecasting system E

•

defined by E s( f ) = E( f ) = min{Ep0( f ), Ep1( f ), Ep2( f )}
for every s ∈ S and f ∈ L(X), with p0, p1 and p2 as in Example 2. An example
of a non-negative (test) supermartingale M is then given by the recursion equa-
tion ΔM(s) = (ΔM(s)(A),ΔM(s)(B),ΔM(s)(C)) � (

−M(s)
/2, M(s)

/2, −M(s)
/2) for every

s ∈ S, with M(�) � 1. E.g., for s = A, it follows that M(A) = M(�)+ΔM(�)(A) =
M(�) −M(�)

/2 = M(�)
/2 = 1

/2. It is easy to see that M is non-negative by construc-
tion and, for every s ∈ S, it holds that Es(ΔM(s)) = max{0, −M(s)

/2, 0} = 0. ♦

In what follows, we will use Sceptic’s allowed betting strategies—so non-
negative (strict) supermartingales—to introduce a notion of computable ran-
domness with respect to a forecasting system. We denote the set of all infinite
sequences of states—or so-called paths—by Ω � X

N and, for every such path
ω = (x1, . . . , xn, . . . ) ∈ Ω, we let ωn � (x1, . . . , xn) for all n ∈ N0.

However, not all betting strategies within the uncountable infinite set of
all allowed betting strategies are implementable. We will therefore restrict our
attention to those betting strategies that are computable, as an idealisation of
the ones that can be practically implemented.

4 A Brief Introduction to Computability

Computability deals with the ability to compute mathematical objects in an
effective manner, which means that they can be approximated to arbitrary pre-
cision in a finite number of steps. In order to formalise this notion, computability
theory uses so-called recursive functions as its basic building blocks [8,10].

A function φ : N0 → N0 is recursive if it can be computed by a Turing
machine, which is a mathematical model of computation that defines an abstract
machine. By the Church–Turing thesis, this is equivalent to the existence of
an algorithm that, upon the input of a natural number n ∈ N0, outputs the
natural number φ(n). The domain N0 can also be replaced by any other countable
set whose elements can be expressed by adopting a finite alphabet, which for
example allows us to consider recursive functions from S to N0 or from S×N0 to
N0. Any set of recursive functions is countable, because the set of all algorithms,
which are finite sequences of computer-implementable instructions, is countable.

We can also consider recursive sequences of rationals, recursive rational pro-
cesses and recursive nets of rationals. A sequence {rn}n∈N0 of rational numbers
is called recursive if there are three recursive maps a, b, σ from N0 to N0 such
that b(n) � 0 for all n ∈ N0 and rn = (−1)σ(n) a(n)

b(n) for all n ∈ N0. By replacing
the domain N0 with S, we obtain a recursive rational process. That is, a rational
process F : S → Q is called recursive if there are three recursive maps a, b, σ from
S to N0 such that b(s) � 0 for all s ∈ S and F(s) = (−1)σ(s) a(s)

b(s) for all s ∈ S.
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In a similar fashion, a net of rationals {rs,n}s∈S,n∈N0 is called recursive if there
are three recursive maps a, b, σ from S ×N0 to N0 such that b(s, n) � 0 for every
s ∈ S and n ∈ N0, and rs,n = (−1)σ(s,n) a(s,n)

b(s,n) for all s ∈ S and n ∈ N0.
Using these recursive objects, we now move on to define the following mathe-

matical objects that can be computed in an effective manner: computable reals,
computable real gambles, computable probability mass functions and, finally,
computable real processes such as non-negative supermartingales.

We say that a sequence {rn}n∈N0 of rational numbers converges effectively
to a real number x ∈ R if |rn − x | ≤ 2−N for all n, N ∈ N0 such that n ≥ N. A
real number x is then called computable if there is a recursive sequence {rn}n∈N0

of rationals that converges effectively to x. Of course, every rational number
is a computable real. A gamble f : X → R and a probability mass function
p : X → [0, 1] are computable if f (x) or p(x) is computable for every x ∈ X,
respectively. After all, finitely many algorithms can be combined into one.

However, a real process F : S → R may not be computable even if each of its
individual elements F(s) is, with s ∈ S, because there may be no way to com-
bine the corresponding infinite number of algorithms into one finite algorithm.
For that reason, we will look at recursive nets of rationals instead of recursive
sequences of rationals. We say that a net {rs,n}s∈S,n∈N0 of rational numbers con-
verges effectively to a real process F : S → R if |rs,n − F(s)| ≤ 2−N for all s ∈ S

and n, N ∈ N0 such that n ≥ N. A real process F is then called computable if
there is a recursive net {rs,n}s∈S,n∈N0 of rationals that converges effectively to
F. Of course, every recursive rational process is also a computable real process.
Observe also that, clearly, for any computable real process F and any s ∈ S, F(s)
is a computable real number. Furthermore, a constant real process is computable
if and only if its constant value is.

To end this section, we would like to draw attention to the fact that the set
of all real processes is uncountable, while the set of all computable real (or recur-
sive rational) processes is countable, simply because the set of all algorithms is
countable. In the remainder, we will denote by MC(E

•

) the set of all computable
non-negative supermartingales for the forecasting system E

•

.

5 Computable Randomness for Forecasting Systems

At this point, it should be clear how Forecaster’s uncertainty about a sequence
of variables X1, . . . , Xn, . . . can be represented by a forecasting system E

•

, and
that such a forecasting system gives rise to a set of betting strategies whose cor-
responding capital processes are non-negative (strict) supermartingales. We will
however not allow Sceptic to select any such betting strategy, but will require
that her betting strategies should be effectively implementable by requiring that
the corresponding non-negative (strict) supermartingales are computable. In this
way, we restrict Sceptic’s betting strategies to a countably infinite set. We will
now use these strategies to define a notion of computable randomness with
respect to a forecasting system E

•

. The definition uses supermartingales rather
than strict supermartingales, but as we will see shortly, this makes no difference.
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Loosely speaking, we call a path ω computably random for E
•

if there is no cor-
responding computable betting strategy M that allows Sceptic to become rich
without bounds along ω, i.e., supn∈N0

M(ωn
) = +∞, without borrowing.

Definition 5. A path ω is computably random for a forecasting system E
•

if
there is no computable non-negative real supermartingale M ∈ MC(E

•

) that is
unbounded along ω. We denote the collection of all forecasting systems for which
ω is computably random by E

S

C(ω).

It turns out that our definition is reasonably robust with respect to the
particular types of supermartingales that are considered.

Proposition 6. A path ω is computably random for a forecasting system E
•

if and only if there is no recursive positive rational strict test supermartingale
M ∈ MC(E

•

) such that limn→∞

M(ωn
) = +∞.

As a consequence, whenever we restrict Sceptic’s allowed betting strategies to
a set that is smaller than the one in Definition 5, but larger than the one in
Proposition 6, we obtain a definition for computably random sequences that is
equivalent to Definition 5. Consequently, it indeed does not matter whether we
restrict Sceptic’s allowed betting strategies to supermartingales or strict super-
martingales.

If we consider binary sequences and restrict Sceptic’s betting behaviour to
non-negative computable test supermartingales, our definition of computable
randomness coincides with the one that was recently introduced by De Cooman
and De Bock for binary sequences [5]. The equivalence is not immediate though
because the forecasting systems in Ref. [5] specify probability intervals rather
than coherent lower expectations. Nevertheless, it does hold because in the
binary case, for every coherent lower expectation, the corresponding closed con-
vex set of probability mass functions on X = {0, 1}—see Sect. 2—is completely
characterised by the associated probability interval for the outcome 1. Further-
more, in the case of binary sequences and stationary, precise, computable fore-
casting systems, it can also be shown that our definition of computable ran-
domness coincides with the classical notion of computable randomness w.r.t.
computable probability mass functions [11].

Next, we inspect some properties of computably random sequences ω and the
set of forecasting systems E

S

C(ω) for which ω is computably random. We start
by establishing that for every forecasting system E

•

, there is at least one path
ω ∈ Ω that is computably random for E

•

.

Proposition 7. For every forecasting system E
•

, there is at least one path ω
such that E

•

∈ E

S

C(ω).

Consider now the vacuous forecasting system E
•,v defined by Es,v � Ev for every

s ∈ S. Our next result shows that the set of forecasting systems E

S

C(ω) for which
ω is computably random is always non-empty, as it is guaranteed to contain this
vacuous forecasting system.
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Proposition 8. All paths are computably random for the vacuous forecasting
system: E

•,v ∈ E

S

C(ω) for all ω ∈ Ω.

Furthermore, if a path ω is computably random for a forecasting system E
•

,
then it is also computably random for every forecasting system that is more
conservative.

Proposition 9. If ω is computably random for a forecasting system E
•

, i.e., if
E
•

∈ E

S

C(ω), then ω is also computably random for any forecasting system E ′

•

for
which E ′

•

≤ E
•

, meaning that E ′

s( f ) ≤ E s( f ) for all situations s ∈ S and gambles
f ∈ L(X).

The following result establishes an abstract generalisation of frequency stabil-
isation, on which early notions of randomness—like Church randomness—were
focused [2]. It states that if we systematically buy a gamble f for its coher-
ent lower expectation E( f ), then in the long run we will not lose any money.
The connection with frequency stabilisation will become apparent further on in
Sect. 6, where we present an intuitive corollary that deals with running aver-
ages of a gamble f along the infinite sequence ω and its computable infinite
subsequences.

Theorem 10. Consider a computable gamble f , a forecasting system E
•

for
which E

•

( f ) is a computable real process, a path ω = (x1, . . . , xn, . . . ) ∈ Ω that is
computably random for E

•

, and a recursive selection process S : S → {0, 1} for
which limn→+∞

∑n
k=0 S(x1:k) = +∞. Then

lim inf
n→+∞

∑n−1
k=0 S(x1:k)

[
f (xk+1) − E x1:k

( f )
]

∑n−1
k=0 S(x1:k)

≥ 0.

6 Computable Randomness for Lower Expectations

We now introduce a simplified notion of imprecise computable randomness with
respect to a single coherent lower expectation; a direct generalisation of com-
putable randomness with respect to a probability mass function. We achieve this
by simply constraining our attention to stationary forecasting systems: forecast-
ing systems E

•

that assign the same lower expectation E to each situation s ∈ S.
In what follows, we will call ω computably random for a coherent lower expecta-
tion E if it is computably random with respect to the corresponding stationary
forecasting system. We denote the set of all coherent lower expectations for which
ω is computably random by EC(ω).

Since computable randomness for coherent lower expectations is a special case
of computable randomness for forecasting systems, the results we obtained before
carry over to this simplified setting. First, every coherent lower expectation has
at least one computably random path.

Corollary 11. For every coherent lower expectation E, there is at least one
path ω such that E ∈ EC(ω).
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Secondly, EC(ω) is non-empty as every path ω is computably random for the
vacuous coherent lower expectation Ev.

Corollary 12. All paths are computably random for the vacuous coherent lower
expectation: Ev ∈ EC(ω) for all ω ∈ Ω.

Thirdly, if a path ω is computably random for a coherent lower expectation
E ∈ EC(ω), then it is also computably random for any coherent lower expectation
E ′ that is more conservative.

Corollary 13. If ω is computably random for a coherent lower expectation E,
then it is also computably random for any coherent lower expectation E ′ for
which E ′

≤ E, meaning that E ′

( f ) ≤ E( f ) for every gamble f ∈ L(X).

And finally, for coherent lower expectations, Theorem10 turns into a property
about running averages. In particular, it provides bounds on the limit inferior
and superior of the running average of a gamble f along the infinite sequence ω
and its computable infinite subsequences. Please note that unlike in Theorem 10,
we need not impose computability on the gamble f nor on the real number E( f ).

Corollary 14. Consider a path ω = (x1, . . . , xn, . . . ) ∈ Ω, a coherent lower expec-
tation E ∈ EC(ω), a gamble f and a recursive selection process S for which
limn→+∞

∑n
k=0 S(x1:k) = +∞. Then

E( f ) ≤ lim inf
n→+∞

∑n−1
k=0 S(x1:k) f (xk+1)
∑n−1

k=0 S(x1:k)
≤ lim sup

n→+∞

∑n−1
k=0 S(x1:k) f (xk+1)
∑n−1

k=0 S(x1:k)
≤ E( f ).

When comparing our notion of imprecise computable randomness with the
classical precise one, there is a striking difference. In the precise case, for a given
path ω, there may be no probability mass function p for which ω is computably
random (for example, when the running frequencies do not converge). But, if
there is such a p, then it must be unique (because a running frequency cannot
converge to two different numbers). In the imprecise case, however, according
to Corollary 12 and 13, every path ω is computably random for the vacuous
coherent lower expectation, and if it is computably random for a coherent lower
expectation E , it is also computably random for any coherent lower expecta-
tion E ′ that is more conservative—or less informative—than E. This leads us
to wonder whether for every path ω, there is a least conservative—or most
informative—coherent lower expectation Eω such that ω is computably random
for every coherent lower expectation E that is more conservative than or equal to
Eω, but not for any other. Clearly, if such a least conservative lower expectation
exists, it must be given by

Eω( f ) � sup{E( f ) : E ∈ EC(ω)} for all f ∈ L(X),

which is the supremum value of E( f ) over all coherent lower expectations E
for which ω is computably random. The crucial question is whether this Eω is
coherent (C1 and C2 are immediate, but C3 is not) and whether ω is computably
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random with respect to Eω. If the answer to both questions is yes, then Eω is the
least conservative coherent lower expectation for which ω is computably random.

The following example illustrates that there are paths ω for which this is
indeed the case. It also serves as a nice illustration of some of the results we
have obtained so far.

Example 15. Consider any set {p0, . . . , pM−1} of M pairwise different, com-
putable probability mass functions, and any path ω that is computably random
for the non-stationary precise forecasting system E

•

, defined by E s � Epn mod M

for all n ∈ N0 and s = x1:n ∈ S; it follows from Proposition 7 that there is at least
one such path. Then as we are about to show, ω is computably random for a
coherent lower expectation E ′ if and only if E ′

≤ E, with E( f ) � minM−1
k=0 Epk ( f )

for all f ∈ L(X).
The ‘if’-part follows by recalling Proposition 9 and noticing that for all s =

x1:n ∈ S and all f ∈ L(X):

E ′

( f ) ≤ E( f ) = min{Ep0( f ), . . . , EpM−1( f )} ≤ Epn mod M ( f ) = E s( f ).

For the ‘only if’-part, consider for every i ∈ {0, . . . ,M − 1} the selection pro-
cess Si : S → {0, 1} that assumes the value Si(x1:n) = 1 whenever n mod m = i
and 0 elsewhere. Clearly, these selection processes are recursive and limn→∞∑n

k=0 Si(x1, . . . , xn) = +∞ along the path ω = (x1, . . . , xn, . . . )—and any other
path, in fact. Furthermore, due to the computability of the probability mass
functions pi, it follows that E

•

( f ) is a computable real process for any com-
putable gamble f ∈ L(X). For any computable gamble f ∈ L(X), it therefore
follows that

E ′

( f ) ≤ lim inf
n→∞

n−1∑

k=0

f (xi+kM )

n
≤ lim sup

n→∞

n−1∑

k=0

f (xi+kM )

n
≤ Epi ( f ),

where the first and third inequality follow from Corollary 14 and Theorem 10,
respectively, and the second inequality is a standard property of limits inferior
and superior. Since (coherent lower) expectations are continuous with respect
to uniform convergence [13], and since every gamble on a finite set X can be
uniformly approximated by computable gambles on X, the same result holds
for non-computable gambles as well. Hence, for any gamble f ∈ L(X) we find
that E ′

( f ) ≤ Epi ( f ). As this is true for every i ∈ {0, . . . ,M − 1}, it follows that
E ′

( f ) ≤ E( f ) for all f ∈ L(X).
Hence, ω is indeed computably random for E ′ if and only if E ′

≤ E. Since
E is clearly coherent itself, this also implies that ω is computably random with
respect to E and—therefore—that Eω = E. So for this particular path ω, Eω = E
is the least conservative coherent lower expectation for which ω is computably
random. ♦

However, unfortunately, there are also paths for which this is not the case.
Indeed, as illustrated in Ref. [5], there is a binary path ω—so with X = {0, 1}—
that is not computably random for Eω with Eω( f ) �

1
2

∑
x∈{0,1} f (x) for every

gamble f ∈ L(X).
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Interestingly, however, in the binary case, it has also been shown that while
ω may not be computably random with respect to Eω, there are always coher-
ent lower expectations E that are infinitely close to Eω and that do make ω
computably random [5].2 So one could say that ω is ‘almost’ computably ran-
dom with respect to Eω. Whether a similar result continuous to hold in our more
general—not necessarily binary—context is an open problem. We conjecture that
the answer is yes.

Proving this conjecture is beyond the scope of the present contribution
though. Instead, we will establish a similar result for expectation intervals.

7 Computable Randomness for Expectation Intervals

As a final specialisation of our notion of computable randomness, we now focus
on a single gamble f on X and on expectation intervals I = [E( f ), E( f )] that
correspond to lower expectations for which ω is computably random. We will
denote the set of all closed intervals I ⊆ [min f ,max f ] by If .

Definition 16. A path ω is computably random for a gamble f ∈ L(X) and a
closed interval I if there is a coherent lower expectation E ∈ EC(ω) for which E( f ) =
min I and E( f ) = max I. For every gamble f ∈ L(X), we denote the set of all closed
intervals for which ω is computably random by If (ω).

Note that if ω is computably random for a gamble f and a closed interval I, it
must be that I ∈ If ; so If (ω) ⊆ If . This follows directly from C1 and conjugacy.
We can also prove various properties similar to the ones in Sect. 5 and 6. The
following result is basically a specialisation of Corollaries 11–13.

Proposition 17. Consider any gamble f ∈ L(X). Then

(i) for every I ∈ If , there is at least one ω ∈ Ω for which I ∈ If (ω);
(ii) for every ω ∈ Ω, If (ω) is non-empty because [min f ,max f ] ∈ If (ω);
(iii) for every ω ∈ Ω, if I ∈ If (ω) and I ⊆ I ′ ∈ If , then also I ′ ∈ If (ω).

Moreover, as an immediate consequence of Corollary 14, if ω is computably
random for a gamble f and a closed interval I ∈ If , then the limit inferior and
limit superior of the running averages of the gamble f along the path ω and its
computable infinite subsequences, lie within the interval I.

The properties in Proposition 17 lead to a similar question as the one we
raised in Sect. 6, but now for intervals instead of lower expectations. Is there,
for every path ω and every gamble f ∈ L(X), a smallest interval such that ω is
computably random or ‘almost’ computably random for this gamble f and all
intervals that contain this smallest interval, but for no other. The following result
is the key technical step that will allow us to answer this question positively. It
establishes that when ω is computably random for a gamble f and two intervals
I1 and I2, then it is also computably random for their intersection.
2 This result was established in terms of probability intervals; we paraphrase it in
terms of coherent lower expectations, using our terminology and notation.
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Proposition 18. For any ω ∈ Ω and f ∈ L(X) and for any two closed intervals
I and I ′ in If : if I ∈ If (ω) and I ′ ∈ If (ω), then I ∩ I ′ � ∅ and I ∩ I ′ ∈ If (ω).

Together with Proposition 17 and the fact that If (ω) is always non-empty,
this result implies that If (ω) is a filter of closed intervals. Since the intersection
of a filter of closed intervals in a compact space—such as [min f ,max f ]—is
always closed and non-empty [1], it follows that the intersection

⋂
If (ω) of all

closed intervals I for which ω is computably random with respect to f and
I, is non-empty and closed, and is therefore a closed interval itself. Recalling
the discussion in Sect. 6, it furthermore follows that

⋂
If (ω) = [Eω( f ), Eω( f )].

Similar to what we saw in Sect. 6, it may or may not be the case that ω is
computably random for the gamble f and the interval [Eω( f ), Eω( f )]; that is,
the—possibly infinite—intersection

⋂
If (ω) may not be an element of If (ω).

However, in this interval case, there is a way to completely characterise the
models—in this case intervals—for which ω is computably random. To that end,
we introduce the following two subsets of [min f ,max f ]:

L f (ω) � {min I : I ∈ If (ω)} and Uf (ω) � {max I : I ∈ If (ω)}.

Due to Proposition 17(iii), these sets are intervals: on the one hand L f (ω) =

[min f , Eω( f )] or L f (ω) = [min f , Eω( f )) and on the other hand Uf (ω) =

[Eω( f ),max f ] or Uf (ω) = (Eω( f ),max f ]. As our final result shows, these two
intervals allow for a simple characterisation of whether a path ω is computably
random for a gamble f and a closed interval I.

Proposition 19. Consider a path ω, a gamble f ∈ L(X) and a closed interval
I. Then I ∈ If (ω) if and only if min I ∈ L f (ω) and max I ∈ Uf (ω).

So we see that while ω may not be computably random for f and the inter-
val [Eω( f ), Eω( f )], it will definitely be ‘almost’ computably random, in the sense
that it is surely random for f and any interval I ∈ If such that min I < Eω( f )
and max I > Eω( f ). In order to get some further intuition about this result, we
consider an example where L f (ω) and Uf (ω) are closed, and where ω is therefore
computably random for f and [Eω( f ), Eω( f )].

Example 20. Consider two probability mass functions p0 and p1, and let the
coherent lower expectation E be defined by E( f ) � min{Ep0( f ), Ep1( f )} for all
f ∈ L(X). Then, as we have seen in Example 15, there is a path ω for which E is
the least conservative coherent lower expectation that makes ω random. Clearly,
for any fixed f ∈ L(X), if we let I � [E( f ), E( f )], it follows that

⋂
If (ω) = I ∈

If (ω), and therefore also that L f (ω) = [min f ,min I] and Uf (ω) = [max I,max f ].
Note that in this example, by suitably choosing p0 and p1, I can be any interval
in If , including the extreme cases where I = [min f ,max f ] or I is a singleton. ♦

8 Conclusions and Future Work

We have introduced a notion of computable randomness for infinite sequences
that take values in a finite sample space X, both with respect to forecasting
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systems and with respect to two related simpler imprecise uncertainty models:
coherent lower expectations and expectation intervals. In doing so, we have gen-
eralised the imprecise notion of computable randomness of De Cooman and De
Bock [5], from binary sample spaces to finite ones.

An important observation is that many of their ideas, results and conclusions
carry over to our non-binary case. On our account as well as theirs, and in
contrast with the classical notion of (precise) computable randomness, every path
ω is for example computably random with respect to at least one uncertainty
model, and whenever a path ω is computably random for a certain uncertainty
model, it is also computably random for any uncertainty model that is more
conservative—or less informative.

For many of our results, the move from the binary to the non-binary case
was fairly straightforward, and our proofs then mimic those in Ref. [5]. For
some results, however, additional technical obstacles had to be overcome, all
related to the fact that coherent lower expectations are more involved than
probability intervals. Proposition 18, for example, while similar to an analogous
result for probability intervals in Ref. [5], eluded us for quite a while. The key
step that made the proof possible is our result that replacing computable (real)
betting strategies with recursive (rational) ones leads to an equivalent notion of
computable randomness; see Proposition 6.

In our future work, we would like to extend our results in Sect. 7—that
for every path ω and every gamble f , ω is ‘almost’ computably random for
a unique smallest expectation interval—from expectation intervals to coherent
lower expectations. That is, we would like to prove that every path ω is ‘almost’
computably random for a unique maximally informative coherent lower expec-
tation. We are convinced that, here too, Proposition 6 will prove essential.

Furthermore, we would like to develop imprecise generalisations of other clas-
sical notions of randomness, such as Martin-Löf and Schnorr randomness [2], and
explore whether these satisfy similar properties. Moreover, we want to explore
whether there exist different equivalent imprecise notions of computable ran-
domness in terms of generalised randomness tests, bounded machines etc. [6]
instead of supermartingales. We also wonder if it would be possible to define
notions of computable randomness with respect to uncertainty models that are
even more general than coherent lower expectations, such as choice functions [4].

Finally, we believe that our research can function as a point of departure
for developing completely new types of imprecise learning methods. That is, we
would like to create and implement novel algorithms that, given a finite sequence
of data out of some infinite sequence, estimate the most informative expecta-
tion intervals or coherent lower expectation for which the infinite sequence is
computably random. In this way, we obtain statistical methods that are reli-
able in the sense that they do not insist anymore on associating a single precise
probability mass function, which is for example, as was already mentioned in
the introduction, not defensible in situations where relative frequencies do not
converge.
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Abstract. It is well-known in computational social choice that the
weighted average does not guarantee any equity or fairness in the share
of goods. In a supervised learning problem, this translates into the fact
that the empirical risk will lead to models that are good in average,
but may have terrible performances for under-represented populations.
Such a behaviour is quite damaging in some problems, such as the ones
involving imbalanced data sets, in the inputs or the outputs (default
prediction, ethical issues, . . .). On the other hand, the OWA operator is
known in computational social choice to be able to correct this unfairness.
This paper proposes a means to transpose this feature to the supervised
learning setting.

1 Introduction

The typical way to learn a predictive model from data is to search for the model
that minimizes the average loss of the predictions made by this model on a set
of training data. However, minimizing the average loss may well lead to poor
results on some under-represented populations.

This is a well known fact, that happens in several settings that have pro-
posed different solutions to the issue: in class imbalanced data sets, concerning
for instance rare diseases or default (of payment, of production), the classical
solution is to modify the sample sizes, for instance by over-sampling instances
of the under-represented class [9]; in fairness issues [10], where the goal can be
to protect sensitive populations or minorities, often by modifying not the sam-
ple but the loss function adequately; in extreme statistics [11], where one must
guarantee that rare instances will be well predicted, for instance by learning a
model specifically dedicated to them.

In this paper, we look at another aspects of misrepresentation of some data
in the learning problem. Namely, we want to ensure that the loss incurred for
data poorly represented in the feature space (whatever their class is) is not high.
This is yet a different kind of under-representation of some population, whose
closest related problem is the previously mentioned one of extreme statistics [11].
Our goal here is to propose a method ensuring that under-represented data will
not suffer from a too high loss, while preserving a good average accuracy. To
perform such a task, we will modify the classical expected loss by using the
notion of ordered weighted averaging, an often used notion in fairness problems
within computational social choice [13].
c© Springer Nature Switzerland AG 2020
J. Davis and K. Tabia (Eds.): SUM 2020, LNAI 12322, pp. 187–199, 2020.
https://doi.org/10.1007/978-3-030-58449-8_13
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More precisely, we will propose to give more weight to unknown zones. The
paper is organised as follows: the formal mathematical framework can be found in
Sect. 2, where we provide reminders, notations and preliminaries, and in Sect. 3,
where we describe our proposal. This is followed by the experiments in Sect. 4
then by some related works in the Sect. 5. The paper ends with some conclusion
and discussion on our work in Sect. 6.

2 Preliminaries

We consider a standard supervised problem where we have observations (xi, yi) ∈
X × Y, i = 1, . . . , n where xi are some inputs, and yi the observed outputs.

2.1 Supervised Classification via Empirical Risk Minimization

The general goal of supervised machine learning is to estimate a predictive model
h∗ : X → Y, issued from a space H of hypothesis, such that the model delivers
good prediction in average. This principle is most often translated by choosing
the model minimizing the empirical risk, i.e.,

h∗ = arg min
h∈H

Remp(h)

where

Remp(h) =
n∑

i=1

�(h(xi), yi) (1)

with �(h(xi), yi) the loss of predicting h(x) when y is the observed value.
This empirical loss serves as an estimate of the true loss, i.e., R(h) =∫

X×Y �(h(x), y)dp(x, y), that is inaccessible as we do not know p(x, y). Also,
in many cases, H is a parametric family with parameters θ ∈ Θ, and in this case
we will denote by hθ the predictive function having θ for parameter.

2.2 Some Shortcomings Due to the Averaging of the Risk

Guaranteeing a low average loss does not prevent from having large losses for
poorly represented groups of values, and even in some cases promote such large
discrepancies [10].

Example 1. Figure 1 displays two different classes (i.e., y ∈ {0, 1}) represented in
red and blue, that suffer from the problem we consider in this paper. Indeed, the
two classes are balanced (there are about as much red as blue), but some region
of the input space are less represented than others. More precisely, the data
corresponding to each class have been generated by the following distributions:

X|y = 0 ∼ π1
0 N (

[
1
1

]
,

[
3 0
0 0.5

]
) + π2

0 N (
[
16
6

]
,

[
1 0
0 0.5

]
)
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X|y = 1 ∼ π1
0 N (

[
0
2

]
,

[
3 0
0 0.5

]
) + π2

0 N (
[
15
7

]
,

[
1 0
0 0.5

]
)

with π1
0 = π1

1 = 0.95 and π2
0 = π2

1 = 0.05, meaning that the upper-right region
is much less represented than the lower-left in Fig. 1. The frontier in this region
corresponds to the one obtained by a logistic regression trained according to
Eq. 1. It is easy to see that the model does a very bad job at predicting the data
in the upper-right corner, as could be expected.

Fig. 1. Logistic Regression boundary (Color figure online)

2.3 A Short Introduction to Ordered Weighted Averages (OWA)

The OWA operators, initially introduced by Yager [14], apply a weighted aggre-
gation functions on ordered values. Usually, the OWA is applied to a vector
a = (a1, . . . , an) of real-valued quantities ai ∈ R, and is defined by a set
(w1, . . . , wn) of positive weights (wi ≥ 0) summing up to one (

∑
i wi = 1).

Formally speaking, the OWA consists in first permuting the values ai in ascend-
ing order, i.e., such that for i < j, we have aσ(i) ≤ aσ(j), with σ denoting the
permutation. The classical OWA operator is then

OWA(a1, . . . , an) =
n∑

i=1

wiaσ(i). (2)

The OWA operator therefore allows to put different strength on lower or higher
values, irrespectively of where they appear in the vector a. We retrieve the
arithmetic mean for wi = 1/n, and kth percentiles when we have wk/n = 1
for some i. In particular, the minimum and maximum values are respectively
retrieved for w1 = 1 and wn = 1. They characterize what Yager called extreme
behaviour of “andness” and “orness”, respectively.

3 Our Proposal

In this paper, we consider the use of OWA operators [8], that propose to make
weighted averages not on the initial observations (xi, yi) and their associated
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losses, but on a re-ordering of them, with the idea that a higher weight should
be given to poorly represented instances, to be ranked first in our proposal. We
will denote by (xσ(i), yσ(i)) the corresponding permutation on observations. More
precisely, we propose not to optimise Remp(h), but rather ROWA(h), where

ROWA(h) =
n∑

i=1

wi�(h(xσ(i)), yσ(i)) (3)

with the idea that when i ≤ j, the instances xσ(i) is not as well represented as
xσ(j) in the data set. It should be noted that in contrast to usual OWA and
Eq. (3), we will not considering the re-ordering of values �(h(xσ(i)), yσ(i)), but a
re-ordering based on the representativeness of the instances xi.

3.1 Ranking Instances by Representativeness

A first task to apply Eq. (3) to our setting is to order the instances by their
representativeness in the data set. To do this, we can order them by measuring,
for instance, the epistemic uncertainty, or lack of knowledge concerning each
instance xi, e.g., following ideas from [12] to obtain a score Ei for each instance
xi, and then ordering them accordingly in Eq. (3), i.e., σ(i) ≤ σ(j) if Ei ≥ Ej .

One simple idea that we will apply in the following is to measure the density
of points around a neighbourhood of fixed size around xi to compute its associ-
ated epistemic uncertainty. For this, an easy technique one can use is to simply
perform a kernel density estimation through the formula

f(x) =
1
n

n∑

i=1

Kε(x − xi)

with Kε a kernel function. Common choices of kernel functions include:

– the Parzen window, defined as Kε(x − xi) = 1
2ε1|x−xi|<ε, that simply comes

down to count the number of points that are at a distance below a certain ε;
– the triangle kernel, defined as Kε(x − xi) = (1ε − |x − xi|)1|x−xi|<ε, for which

weights decrease linearly from one to zero depending on the distance;

– the normal window, defined as Kε(x − xi) = 1
ε
√
2π

e
−(x−xi)

2

2ε2 , for which the
weights for the points depend on a normal distribution around the chosen
point with a mean of zero and a standard deviation of ε.

The three kernels are pictured in Fig. 2a.
Once a kernel is chosen, we can then simply use f(xi) = Ei as a score

quantifying epistemic uncertainty. Note that in our case, it is not important to
have a reliable estimate of the density (a very difficult problem), but to just
have a reliable ordering between the different points, as f(xi) will only be used
to order values in OWA operators.
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Figure 2b represents the distribution of the epistemic uncertainty of points
given in Fig. 1, computed for a triangular kernel with ε being the mean distance
between points. One can readily see that the most uncertain points (hence the
first in the re-ordering) are those in the upper right corner, that is precisely
those for which we would like to increase accuracy, followed by the ones on the
border of the big cluster.

(a) Methods to estimate density (b) Distribution of the epistemic uncer-
tainty

Fig. 2. Epistemic uncertainty

3.2 OWA Weights to Induce Equity

The next step is how we can choose the weights in Eq. (3) so as to balance
the accuracy in the model between well-represented and poorly represented
instances. Clearly, if we pick wi = 1/n, this re-ordering is a useless step and
leads us to the usual solution. However, we can easily pick weights that will
enforce giving more importance to poorly represented instances. More precisely,
we can pick a function φ : [0, 1] → [0, 1] and take as weights

wi = φ(i/n) − φ(i−1/n)

if φ(x) = x, then we retrieve the weighted average. If φ is concave, then we start
giving more weights to first ordered instances, and less weight to last ordered
instances. In terms of OWA, we increase the “andness” of the function, that we
can then parameterize to be more or less fair. Ideally, this number of parameters
should not be too high, and example of such functions include:

– The Lp norm on with p ∈ [0, 1], which function is φ(x) = xp. The lower p,
the more we increase the “andness”

– piece-wise linear functions made of two linear parts, that can be define with
two parameters p and prop as follows:

φ(x) =

{
px if x ≤ prop

1−p×prop
1−prop x + prop(p−1)

1−prop if prop ≤ x ≤ 1
(4)

where p defines the slope before the abscissa value prop.
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Both are represented on Fig. 3 with the L1/2 norm and the linear by part function
with prop = 0.1 and p = 4.

Fig. 3. Different functions for φ

Remark 1 (Model optimisation). Note that as we do not modify the nature of
the loss function �, most optimisation techniques used for the arithmetic mean
will be straightforward to extend. Thanks to the versatility of φ, we can also
think of other kind of behaviours than concave ones. For instance, an S-shaped
function would amount to try to balance between being quite good on poorly
represented as well as quite good of very-well represented groups, thus protecting
minorities and majorities.

4 Experiments

This section presents some experiments using our approach to try to augment
the accuracy on the poorly represented data, that we will call minority, while
preserving a good average accuracy. After quickly describing the chosen model,
we will provide results first on synthetic data sets, second on real-world data
sets. In this latter case, since there are no benchmark data sets focusing on the
problem we try to solve, we will try to adapt common UCI data sets [6] to our
setting.

4.1 Implementing the Proposal

We will apply our approach to standard regularized logistic regression in binary
classification problems, with the output class Y ∈ {0, 1}. Let us simply recall
that in this case, we learn a probabilistic model of the shape

hθ(x) =
1

1 + exp −θx
(5)

with hθ(x) = p(y = 1|x). The associated loss is

�(y, hθ(x)) = −(ylog(hθ(x)) + (1 − y)log(1 − hθ(x)) + θ2 (6)
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that corresponds to a logarithmic loss with a L2 regularisation term. In experi-
ments, we use python sklearn package to fit the different models, with which it
is straightforward to add weights to samples.

In the experiments, we used the triangle kernel applied to data with an
Euclidean distance computed between them. The reason for this choice is that
it gives no ties between values f(xi) in practice (while Parzen windows delivers
the same value when having the same number of data within it), and that it has
a finite support, therefore being more coherent than the normal kernel with the
fact that epistemic uncertainty is mostly a local property. However, our tests
with other kernel functions show no significant differences.

Regarding the parametric shape of the OWA, we picked the shape given
by Eq. (4), as in our experiments the use of the Lp norm tended to give too
quickly too much importance to poorly represented data, introducing sometimes
important discontinuities in our results for small changes of the parameter. This
can already be seen in Fig. 3. Thus, the φ function depends on two parameters
p, the slope of the first linear part of the function and prop, the abscissa of the
slope breaking point.

As our aim is to improve accuracy on minorities while keeping a good average
accuracy, this means that our performances will be measures according to two
values: the average accuracy on the minority samples only, acc ∈ [0, 1], and the
classical average accuracy, ACC ∈ [0, 1]. For this reasons, we will present our
experimental results a Pareto front on the space [0, 1]×[0, 1], as for a given couple
(p, prop)k of the proposal, we will obtain a pair (acck, ACCk). This means that
we will present the results for all non-dominated values, that is all (acck, ACCk)
such that there will be no other pairs (p, prop)k′ with acck′ ≥ acck and ACCk′ ≥
ACCk.

4.2 Synthetic Data Set

In the first set of experiments, we simply consider the same distributions as the
ones described in Example 1 for a binary problem.

As in Example 1, minorities of each class represent about 5% of the total
quantity of samples from that class. For each set of experiments, we generate
1000 points for the training set, and as much for the testing set.

In the experiments, we proceeded with a simple grid search to fix p and prop.
We let p vary between 1 and 5 with a 0.5 increment, and prop between [0.1, 0.3]
with a step of 0.05. Every test is made on 10 different sets of data and the mean
is taken to obtain reliable estimates. The total accuracy and the accuracy of the
minority are studied.

Figure 4 illustrates the results obtained for a particular run and give the
model obtained for the parameters p = 5.0 and prop = 0.2. One can easily see
that the obtained model is much more relevant on the minorities, as it starts to
discriminate the two classes in this region.

One question though is to know whether this potential benefit on the minority
region does not alter too much the overall accuracy. The answer is provided by
Fig. 5 that displays the obtained Pareto front as well as the results of the basic
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Fig. 4. Logistic Regression Boundaries for extreme values

model (1,−). One can observe that the accuracy on the minority region can
increase by more than 10%, going from 0.53 to 0.66, while the loss on the average
accuracy is below 3%. Note that the Pareto allows a possible decision maker to
finely choose the trade-off between minority protection and overall performances.

4.3 UCI Data Sets

As we said, there are to our knowledge no benchmark data set that explicitly
deals with the problem of within-class imbalance, the situation described by
our synthetic example. For this reason, we tried to apply it to UCI data sets
susceptible to display similar behaviours.

To test whether this is the case, a simple procedure is adopted: we split
the data set into training and test sets, and order the elements of the test set
according to their epistemic uncertainty, computed by using the samples of the
training set. A logistic regression is then fitted to the data, and we check the
difference between the global average accuracy (ACC) and the average accuracy
of the first α% of the ordered test samples (acc). If the difference ACC − acc is
big enough, we retain the data set.

In our experiment, we fixed the value α to 10%, and similarly to the previous
case, proceeded to apply our method by letting p vary between 1 and 5 with a 0.5
increment, and prop between [0.1, 0.3] with a step of 0.05. Each training/testing
experiment is made by taking 50% of the data set as training, and the process
is repeated a hundred times for each configuration, the mean being kept as a
representative point.

Perhaps surprisingly, it proved quite hard in this manner to find suitable
data sets. Finally, we retained three binary classification data sets that are sum-
marised in Table 1.
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Fig. 5. Pareto front on synthetic data set

Table 1. Data set descriptions

Data set Samples Percentage of positive class

Istanbul Stock Exchange [4] 536 50%

Credit Approval [5] 653 45%

Vertebral Column [5] 310 68%

0.776 0.777 0.778 0.779 0.780 0.781 0.782

0.764

0.766

0.768

0.770

0.772

0.774

(1 ,-)
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Fig. 6. Istanbul Stock Exchange Pareto Front with (p, prop) values
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Fig. 7. Credit Approval Pareto Front with (p, prop) values
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Fig. 8. Vertebral Column with (p, prop) values

The resulting Pareto fronts of our experiments, along with the accuracies of
the base model corresponding to (1,−), are given in Figs. 6 (Istanbul), 7 (Credit)
and 8 (Vertebral). In each of them, we can see a possible increase in the minority
accuracy that out-weights the drop in global, average accuracy. However, it is
clear that since for these data sets the difference between acc and ACC is already
quite low for the basic model (given by the point (1,−) in the Figures), we cannot
hope to achieve a gain as significant as the one of the synthetic data sets.

So, while the presented results confirm that the proposed approach is work-
ing, future works should focus on exhibiting similar behaviours in existing data
sets, maybe by revisiting the ordering we use, the considered learning algorithm
or by focusing on specific data sets such as class imbalanced data sets, hoping
that the imbalance in the classes is transferred to the input space.
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5 Links with Other Learning and Estimation Approaches

To our knowledge, the learning approach presented here is quite original, in the
sense that applying OWA to learning problems in order to solve inequities has,
to our knowledge, not been done before.

5.1 From OWA to Probability Sets

A now well-established trend in the learning literature is the so-called distribu-
tionally robust approach [1,7] that consider the problem of finding the minimax
model over a possible set P of probability distributions, mostly defined as a
neighbourhood of the empirical distribution of the observations (xi, yi). Such
approaches have been applied, for instance, to fairness issues in machine learn-
ing [10] or to transfer learning problems [2].

Since it is well-known that the OWA operator correspond to apply a Choquet
integral with a specific Choquet measure [8], and that such Choquet integral can
correspond to lower/upper expectations computed for specific probability sets,
it would be interesting to study under which conditions and to which extent our
current approach could be interpreted as the solution of a minimax problem for
some specific set P.

5.2 From OWA Loss to Weighted Likelihood

Another classical way to learn a model, and particularly probabilistic models, is
through the maximisation of a likelihood function. In such a case, each parameter
value θ determine a probability distribution of a random variable X. First recall
that the likelihood of a parameter value θ, given a set of observations xi ∈ X is
L(θ|xi) =

∏
i pθ(xi).

Provided we consider the logarithmic loss in Eq. (3), one can easily express
our weighting scheme in terms of likelihood. For this, it is sufficient to consider
the log-likelihood

C(θ|xi) = −ln(L(θ|xi)) = −
∑

i

ln(pθ(xi)) (7)

where the loss is ln(pθ(xi)). We can then apply the OWA loss instead of the cur-
rent loss to get COWA(θ|xi) = −∑

i wi ln(pθ(xσ(i))) with wi the OWA weights.
It is then possible to go back to the formula of the likelihood, obtaining

L(X) =
∏

i

pθ(xσ(i))wi

as our new, weighted likelihood. Thus the OWA transformation on the loss which
corresponds to multiply the terms by weights, is equivalent to a exponent oper-
ation with weight for the likelihood. While such an exponent weight may appear
odd at first, it should be noticed that it has been proposed and used before
like in [3], where it has been used to down weight anomalous point in Bayesian
prediction.
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6 Conclusion

In this paper, we have presented an original approach, based on OWA operators,
to obtain more balanced and equitable classifiers in those problems where data
can be scarce in some regions of the input space. Such an approach aims at
ensuring that even poorly represented instances will be treated fairly, in the
sense that we will not allow them to suffer huge losses, while keeping an average
loss comparable to the one obtained without including such equity requirement.

Our illustrative experiments on synthetic data sets indeed show that the
method is appropriate, and allows one to obtain a more balanced model. We
have also shown that the same observation can be made on UCI data sets, albeit
the improvement is here much more general, due to the fact that there is no
benchmark data sets explicitly suffering from the problem we have considered
in this paper.

We nevertheless believe that the idea of using aggregation operators issued
from the social choice literature to solve inequities and unfairness in supervised
learning procedure is a promising idea, that needs to be developed. This study
is simply a first proposal going in this direction, and many aspects remain to
be studied, such as the nature of the ordering between instances or whether
there are algorithms where our approach can make a bigger difference, notably
in the case of multi-class problems, as we only used logistic regression on binary
problems here.
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Abstract. We present a Bayesian approach to conversational recom-
mender systems. After any interaction with the user, a probability mass
function over the items is updated by the system. The conversational fea-
ture corresponds to a sequential discovery of the user preferences based
on questions. Information-theoretic criteria are used to optimally shape
the interactions and decide when the conversation ends. Most probable
items are consequently recommended. Dedicated elicitation techniques
for the prior probabilities of the parameters modelling the interactions
are derived from basic structural judgements based on logical compatibil-
ity and symmetry assumptions. Such prior knowledge is combined with
data for better item discrimination. Our Bayesian approach is validated
against matrix factorization techniques for cold-start recommendations
based on metadata using the popular benchmark data set MovieLens.
Results show that the proposed approach allows to considerably reduce
the number of interactions while maintaining good ranking performance.

Keywords: Conversational recommender systems · Bayesian methods

1 Introduction

The task of selecting from a collection of items the one which is in some sense
optimal for a specific user is a classic AI problem. Several algorithms have been
explored to perform tasks of this kind and automated recommendations are
currently provided by all major e-commerce platforms [9,18]. In standard setups,
no explicit interaction with the users is considered, and the recommendation
system bases its decision on some background information (also called metadata)
about the user, historical records of her choices and those of other similar users,
and, more recently, contextual information [1,13].

Modern technologies such as chatbots or personal assistants need instead sys-
tems capable of supporting and modelling dynamic and sequential interactions,
thus requiring a substantial re-design of traditional approaches. Here we focus on
such a newer class of recommendation systems, called here conversational, as we
term conversation a sequence of dynamically customized interactions between
the user and the system, before the latter returns an item recommendation [4].
This class of systems is typically based on knowledge-based recommendation
techniques requiring a strong interaction with the user.
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Recommendations based on conversations are particularly relevant when the
goal is to support the user in purchasing high-involvement products. In such
situations, indeed, the user wants to be involved in the decision process, and
thus is not bothered by the need to interact with the system [10].

To achieve that, we take inspiration from existing approaches in the field of
computer testing [3,14], whose goal is to determine the skills of a student on the
basis of the answers to the questions of a test. In particular we focus on adaptive
approaches, where the system selects the next question to ask to the student
from a given set on the basis of the previous answers by information-theoretic
scores, that are also used to decide when the test should be ended. This can
be easily obtained by generative probabilistic models such as Bayesian networks
[16], to be sequentially updated any time a new answer is collected.

The adaptive concept is reshaped here as a conversational approach which
lends itself to the (future) development of a dynamic generation of questions
and richer interaction models. The question selection is consequently reduced
to an inference in the corresponding generative model. The major issue consists
therefore in a reliable and scalable elicitation strategy of the model parameters.
This is achieved by combining prior structural judgements and historical data.

The paper is organized as follows. We first review the basics of probabilistic
approaches to recommender systems in Sect. 2. Elicitation strategies based on
structural judgements such as logical compatibility and symmetry are in Sect. 3.
A procedure to cope also with non-exclusive answers is in Sect. 4. Our conversa-
tional approach driven is indeed detailed in Sect. 5. In Sect. 6, we show how our
elicitation techniques can be merged with historical data and how to prevent a
fragmentation of these data over the items. Finally, we discuss our experiments
in Sect. 7 and the conclusions in Sect. 8.

2 Bayesian Recommendations

Consider a recommendation system based on a catalogue I of n items, say I :=
{i1, . . . , in}. The system is intended to support the user in selecting a single item
from the catalogue on the basis of a conversational process. The system outcome
can however be used to rank the items. We assume that, after the conversation,
the user always picks one item from I. The uncertain quantity I denotes the
element of I to be picked by the user. We consider a Bayesian setup and model
the subjective probabilities of picking the different items before the beginning of
the conversational process as a prior probability mass function P (I).

We call questions, the interactions between the system and the user. Let
us start with a static approach to elicitation based on a list of m questions
Q = {Q1, . . . , Qm}, called here a questionnaire. A generic question is denoted as
an uncertain quantity Q taking its possible values (answers) from Q. We assume
a finite set of possible answers for Q, say Q := {q1, . . . , qr}. The selection of the
optimal item to be suggested at the end of the conversation might be based
on the conditional probabilities P (i|q) for each item i ∈ I given the collected
answers, denoted as q.
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To improve the quality of the user experience, it seems desirable to minimize
the number of questions required to safely identify the optimal suggestion. To this
goal, the list of questions in Q should be built dynamically. Such a customized
list of questions is called conversation. Before discussing this dynamic approach,
we will present the set up that allows for the computation of P (i|q), be q the
output of a conversation or a whole questionnaire.

Let us start from the case of a single question Q. As a model of the relation
between Q and I, we might be able to elicit a conditional probability table P (Q|I),
whose columns are indexed by the answers, and whose rows are associated to
the items. After an answer Q = q ∈ Q is received from the user, the probability
mass function over the items can be updated by Bayes rule, i.e.,

P (i|q) =
P (i) P (q|i)

∑
i∈I P (i) P (q|i) . (1)

This shows that the impact of an answer Q = q on the choice I only depends on
the relative proportions of the values of P (q|i) for the different values of i ∈ I. In
particular, setting an element of the conditional probability table equal to zero
implies a logical constraint for which the answer associated with column Q = q
makes the choice of the item associated with row I = i impossible. To model a
whole conversation made of m questions, we formulate a naive-like assumption
about the conditional independence of the questions given the item:

P (q1, . . . , qm|i) =
m∏

j=1

P (qj |i) . (2)

Under the assumption in Eq. (2), if a conditional probability table P (Q|I) is
available for each Q ∈ Q, the probability P (i|q) can be obtained by recursively
applying Eq. (1) to update the probability P (i|q1, . . . , qk) after the first k answers
by conditioning also on the next answer qk+1. The following example will be used
through the paper to illustrate the features of our method.

Example 1. Users of a platform for online booking of entertainers are invited to
answer a number of questions about the kind of entertainment they are looking
for. The two questions Q1 and Q2 asked to the users and a catalogue of three
entertainers-items are in Table 1.

Table 1. A catalogue and two questions of a questionnaire

I Description

i1 DJ for all events

i2 Band for weddings and corporate events

i3 Magician for birthdays and parties

Q1 Which artist?

q11 DJ

q21 Band

q31 Musician

q41 Entertainer

Q2 Which event?

q12 Wedding

q22 Corporate event

q32 Birthday

q42 Party for kids



Conversational Recommender System by Bayesian Methods 203

3 Structural Judgements for Prior Elicitation

In this section we describe a general elicitation procedure for the conditional
probability table P (Q|I). This is based on logical arguments, discussed in
Sect. 3.1, to be integrated by symmetry considerations, discussed in Sect. 3.2.

3.1 Logical Compatibility

Consider the natural language item descriptions in Table 1. It is straightforward
to deduce from this information a number of incompatibility relations between
the entertainers and the answers to the two questions in Table 1. E.g., the magi-
cian is not available for weddings, this meaning that answer q12 is not compatible
with item i3. Assuming such a compatibility analysis available for all the items
and answers, we might define an indicator function δ(i, q), for each i ∈ I and
q ∈ Q, and for each Q ∈ Q, that returns one if i is compatible with q and zero
otherwise. An item i is therefore characterized by its set of compatible answers
or support. We will denote as Qj(i) the support of i associated with Qj , i.e.,

Qj(i) := {q ∈ Qj : δ(i, q) = 1} . (3)

For instance, in Example 1, Q1(i2) = {q21} and Q2(i2) = {q12 , q
2
2}. Notation Q(i)

is used instead for the union of all the supports of i associated to the different
questions in Q. E.g., in Example 1, Q(i2) = {q21 , q

1
2 , q

2
2}.

At the probabilistic level, we translate logical incompatibilities into zero-
probability statements as follows:

q �∈ Q(i) ⇒ P (q|i) = 0 , (4)

i.e., if the right item to recommend is not compatible with an answer, that
answer is impossible. If q �∈ Q(i), also the joint probability P (i, q) is zero as
P (i, q) = P (q|i) P (i). On the other hand, if q ∈ Q(i), the elicitation of P (q|i)
might need additional assumptions. This is not the case of the following example.

Example 2. In the setup of Example 1, for question Q1, Q1(i1) = {q11}, Q1(i2) =
{q21} and Q1(i3) = {q41}. In other words, each item admits only a single consis-
tent answer. Thus, because of Eq. (4), for each i, P (q|i) is zero for any q apart
from the one in Q1(i). P (Q1|I) takes therefore the values in Table 2 (left).

Table 2. Elicitation of P (Q1|I) and P (Q2|I) (two alternatives)

P (q1|i) q11 q21 q31 q41

i1 1 0 0 0

i2 0 1 0 0

i3 0 0 0 1

P (q2|i) q12 q22 q32 q42

i1
1
4

1
4

1
4

1
4

i2
1
2

1
2 0 0

i3 0 0 1
2

1
2

P (q2|i) q12 q22 q32 q42 q̃2

i1
1
4

1
4

1
4

1
4 0

i2
1
4

1
4 0 0 1

2

i3 0 0 1
4

1
4

1
2
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The above notion of logical compatibility is sufficient to elicit the conditional
probability table P (Q|I) in the special case where each item is compatible only
with a single answer, i.e., |Q(i)| = 1 for each i ∈ I, where symbol | · | denotes
cardinality. If this is the case, P (q|i) = 1 if q ∈ Q(i) and zero otherwise.

For questions of this kind, after an answer Q = q ∈ Q, the updating as in
Eq. (1) corresponds to a uniform scaling of the prior probability for the items
compatible with q, whereas all the incompatible ones receive zero mass:

P (i|q) =
{

P (i)[
∑

i′:q∈Q(i′) P (i′)]−1 if q ∈ Q(i)
0 otherwise

(5)

Note that in this setting the Bayesian approach acts as a logical filter, making
the items incompatible with the answers impossible.

3.2 Symmetry Statements

Consider a question Q ∈ Q such that the assumptions in the previous section
are not satisfied, i.e., there are items compatible with more than a single answer.
In this case, the elicitation of P (Q|I) requires further assumptions. We adopt a
strategy forcing answers to have the same impact on all compatible items. Such
a prior assumption will be relaxed when coping with historical data in Sect. 6).
Other strategies are in [15]. Let us introduce the discussion by an example.

Example 3. In the setup of Example 1, for question Q2, we have Q2(i1) =
{q12 , q

2
2 , q

3
2 , q

4
2}, Q2(i2) = {q12 , q

2
2} and Q2(i3) = {q32 , q

4
2}. Assuming the same

probability for the answers compatible with a given item completely determines
the conditional probability table P (Q2|I), that is depicted in Table 2 (middle).

The procedure considered in Example 3 allows to elicit a conditional probabil-
ity table in the general case of items compatible with multiple answers. This basi-
cally corresponds to set a uniform probability P (q|i) = |Q(i)|−1 for all q ∈ Q(i)
and zero otherwise. After answer Q = q, the updating in Eq. (1), differently from
Eq. (5), is a non-uniform rescaling:

P (i|q) = P (i)
|Q(i)|−1

∑
i′:q∈Q(i′) P (i′)|Q(i′)|−1

, (6)

if q ∈ Q(i) and zero otherwise. Yet, when supports have different cardinalities,
this approach might lead to questionable results as in the following example.

Example 4. Consider the same setup of Example 2 with a uniform prior over
the items, i.e., P (ik) = 1

3 for k = 1, 2, 3. After the answer Q2 = q12, following
Eq. (6), we obtain P (i1|q12) = 1

3 and P (i2|q12) = 2
3 . In other words, both the band

and the DJ are available for the wedding, but despite the uniform prior, the band
has twice the probability of being selected, the reason being the lower cardinality
of the support of the band compared to the DJ.
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According to Example 4, the strategy of Example 2 leading to Table 2 (mid-
dle) has a bias towards items with smaller supports (i.e., lower compatibility).
To prevent such bias, we propose an alternative elicitation as in this example.

Example 5. In the setup of Example 2 add to question Q2 a fifth answer q̃2 com-
patible with all the items. Consider the elicitation of P (I|Q2) in Table 2 (right).
With a uniform prior over I as in Example 4, P (i1|q12) = P (i2|q12) = 1

2 .

The procedure in Example 5 can be generalized by setting the parameters of
the conditional probability table P (Q|I) as follows:

(i) P (q|i) = κ−1 for each q ∈ Q and i ∈ I,
(ii) P (q̃|i) = 1 − κ−1|Q(i)|.
The value of κ > 0 is arbitrary, provided that the table is a proper stochastic
matrix, i.e., its elements have non-negative values and normalized rows. Setting
κ := maxi∈I |Q(i)| guarantees non-negative probability of the dummy state q̃.
Non-negativity of other elements follows from (i) and normalization from (ii).

Considering this approach to the elicitation of P (Q|I), after a (non-dummy)
answer Q = q, the updated probability is given by Eq. (5) as all valid P (i|q)
have the same value. This proves that posterior inferences are not affected by
the choice of κ. Moreover, if i′ and i′′ are two items consistent with q:

P (i′|q)
P (i′′|q) =

P (i′)
P (i′′)

, (7)

i.e., even in general, this approach does not suffer from the bias in Example 4.

4 Coping with Non-exclusive Answers

In some cases it might be reasonable to allow users to select multiple answers to a
question, thus violating the original assumption about answers being described as
mutually exclusive events. For instance, in the setup of Example 1, if we assume
the answers to Q1 non-exclusive, an user might return a set-valued answer such
as Q∗

1 = {q11 , q
2
1}, meaning (DJ, band). Different semantics can be considered to

model set-valued observations. Following the random set literature [5], we distin-
guish between ontic (or conjunctive) and epistemic (or disjunctive) semantics.
From an epistemic perspective, the set reflects an incomplete knowledge about
the actual value of the answer (which has a single value). In our example, this
assumption implies that the user is eventually looking for a DJ or for a band
and certainly not for a musician or an entertainer. Yet, for some reason (e.g.,
limited capability of introspection or limited amount of time to answer), she is
not able to isolate a single option (which should however exists). The ontic view,
instead, regards the set of answers as a precise component of a more complex
entity, e.g., the combination (DJ, band) is exactly the option the user wants to
select. The two semantics requires different modelling strategies.

In the ontic case, we replace the set of possible answers Q with its partition
set in order to include all the 2|Q|−1 possible set-valued options (remember that
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the user should always provide at least an answer). Afterwards, the elicitation
and updating procedures remain as in the previous section.

In the epistemic case, in terms of elicitation nothing changes as the question Q
is assumed to take single elements of Q as values. Consequently the quantification
of P (Q|I) can be achieved as in Sect. 3.2. The difference arises at the updating
level as the procedure in Eq. (5) cannot directly cope with set-valued answers.
To update item probabilities we should instead intend a set-valued answer Q∗ ⊆
Q as a virtual evidence [17], that is not able to reveal the actual state of Q
in a reliable way. A virtual evidence describes an observation in terms of its
likelihoods for the different (actual) states of Q, these values being defined up to
a non-negative constant. Here, we set to zero the likelihoods of the answers not
selected by the user, while giving the same value to the selected ones, i.e., those
in Q∗. This leads to the following updating rule:

P (i|Q∗) :=

∑
q∈Q∗ P (q|i) P (i)
∑

q∈Q∗ P (q)
, (8)

where P (q) =
∑

i∈I P (q|i) P (i). Let us see how this can be achieved in practice.

Example 6. Consider the same setup of Example 5 but with a set-value answer
Q∗

1 = {q11 , q
2
1}, i.e., the user replied DJ and band. Following Eq. (8):

P (i|Q∗
2) ∝ [P (q12 |i) + P (q22 |i)]P (i) (9)

for each i ∈ I, where the proportionality constant is obtained by normalization.

5 Adaptive Conversations

We detail here the high-level procedure used to create a conversation by select-
ing sequentially the question and driven by decision theoretic criteria. This is
inspired by the similar approaches considered for computer adaptive testing [14].

Question Selection. In classical recommendation systems the assessment of the
user preferences with respect to the different items is based on a static block of
background user information. Such information can be already available in the
system or directly obtained from the user after some kind of reduced interac-
tion, e.g., a predefined questionnaire. However, as discussed in the introduction,
in modern setups the process of collecting information about the user prefer-
ences with respect to the catalogue should be based on a sequence of dynamic
interactions. In this view, the questionnaire approach leaves the place to a conver-
sational process taking the form of a personalized sequence of questions dynam-
ically picked from a larger set of questions. The prior probability mass function
P (I) is thus sequentially updated each time a new answer is collected, and the
updated probability P (I|Q) is used to select the most informative next ques-
tion. The choice between a possibly huge set of candidate questions/interactions
can be driven by information-theoretic criteria making any sequence potentially



Conversational Recommender System by Bayesian Methods 207

different from the other. In particular, taking inspiration from the literature in
the field of adaptive testing, we pick the question that minimizes the conditional
entropy (and hence maximizes the expected information gain), i.e., the adaptive
conversational process selects the question Q∗

j such that:

j∗ = arg min
j=1,...,m

H(I|Qj) , (10)

where H(I|Q) :=
∑

q∈Q H(I|q)P (q) and H(I|q) is the entropy of the posterior
mass function over I after the answer q ∈ Q to the question Q, and {Qj}m

j=1 is
the set of questions the system can choose from.

Stopping Rule. This procedure is iterated after every answer and the conversa-
tion ends if the posterior entropy H(I|q) decreases under a fixed threshold. As the
entropy of a mass function P (I) is defined as H(I) := −∑

i∈I P (i) log|I| P (i), a
natural threshold H∗

τ is the entropy of a mass function over I which is uniform
on τ items, while the other ones have zero probability, i.e., H∗

τ := − log|I| τ
−1.

Setting this value in the stopping rule forces the system to halt when most of
the posterior probability mass is concentrated on the τ most probable items.

6 Coping with Data

The elicitation procedure in Sect. 3 is based on structural judgements about
logical compatibility for items and answers merged with symmetry (i.e., indif-
ference) statements. Yet, this might be insufficient to capture actual preferences
as outlined by the following example.

Example 6. Consider the setup in Example 5. In Table 2 (right), P (q12 |i2) =
P (q22 |i2), i.e., the band is equally likely to perform at weddings and corporate
events. Yet, in past activities, the band was more likely to attend weddings.

Data about the users, in the form of their answers to the questions and
the items eventually picked, might help to achieve a better quantification of
the model parameters. In this section we describe how to combine data with
the elicitation procedure described in Sect. 3. Let us first show how this can be
directly achieved in the conditional probability table P (Q|I).

6.1 Bayesian Learning

Bayesian approaches allow to combine the elicited parameters with data about
items and questions. The probability tables can be used to parametrize a multi-
nomial Dirichlet prior, to be merged with the likelihood of the observed data.
The posterior expected value might increase the discriminative power of the
system and the consequent quality of the recommendations.

Let αk
j := P (qk|ij) for each qk ∈ Q and ij ∈ I, where P (Q|I) has been elicited

as in Sect. 3.2. Assume that nj i.i.d. observations about users who picked item
I = ij are available, of which nk

j reported answer qk, for k = 1, . . . , |Q|. We
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update the values of P (Q|i) by integrating the product of a Dirichlet prior with
weights s αk

j and the likelihood based on the counts [2]. This gives the posterior:

P ′(qk|ij) =
sαk

j + nk
j

s + nj
, (11)

for each j = 1, . . . , |Q|, where s > 0 is the equivalent sample size of the Dirichlet
prior. Note that the parameters of the Dirichlet distribution are required to be
strictly positive, while the elements of P (Q|I) can be zero. If the latter is the
case, we take the limit αk

j → 0 and consider Eq. (11) still valid.

Example 7. In the setup of Example 5 assume data about the answers provided
to question Q2 for the band i2 available. The counts are n1

2 = 5, n2
2 = 3, n3

2 = 1,
n4
2 = 0. For s = 1, with the prior parameters as in Table 2 (right), Eq. (11)

gives P (q12 |i2) = 0.525 and P (q22 |i2) = 0.325, which means that higher number of
weddings compared to corporate events breaks the prior equal probability of the
two options. Note also that, despite its (prior) incompatibility with the band the
birthday option (q32) has a non-zero count. In such a prior-data conflict [7], the
option takes a non-zero probability P (q32 |i2) = 0.1, while the incompatible and
unobserved answer q42 gets sharp zero probability.

A separate discussion should be provided for the updated probabilities of
the dummy state q̃. This answer has zero counts by definition, but its prior
might be non-zero, thus leading to a non-zero posterior (e.g., in the previous
example, P (q̃2|i2) = 0.05). As discussed in Sect. 3.2, these non-zero values are
not affecting those of the updated mass functions P (I|q), and hence those of
the corresponding entropies H(I|q). This is not the case for conditional entropy
H(I|Q) because of weighted average based on P (Q). A temporary revision of
the marginal probability mass function P (Q), that sets P (q̃) = 0 and rescales
the other values, only for the choice of the next question, might fix the issue.

6.2 Preventing Data Fragmentation

The above procedure separately processes data corresponding to different items.
For large catalogues this induces a data fragmentation, thus making some esti-
mator unreliable. To prevent this we introduce the notion of latent question.
Given question Q, its latent counterpart Q̂ is a second variable taking its values
(called latent answers) from the same set of possible states Q and sharing the
same supports (see Sect. 3.1). The latent question Q̂ is a (stochastic) function of
I = i and Q = q. Unlike Q, Q̂ is always consistent with the support of i, being
a random element of it or its unique value, or q in the case also Q is consis-
tent. Therefore, the support of an item i can be defined in terms of the latent
compatible answers and indicated as Q̂(i). We assume conditional independence
between Q and I given Q̂, this meaning that if the answer to the latent question
is known, the answer to the non-latent question does not depend on the selected
item, i.e., P (q|q̂, i) = P (q|q̂), for each q, q̂ ∈ Q and i ∈ I. By this statement and
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total probability, the elements of table P (Q|I) can be expressed as:

P (q|i) =
∑

q̂∈Q
P (q|q̂) P (q̂|i) . (12)

Equation (12) offers a strategy to probability tables elicitation less prone
to fragmentation issues. To achieve that, for P (Q̂|I), we adopt the strategy in
Sect. 3.2. The data are used instead for the quantification of P (Q|Q̂), for which
we adopt a diagonal Dirichlet prior to be combined with the data likelihood.
Note that the values of Q̂ can be generated from those about Q and I. To
reduce variance, we replace sampled outcomes of Q̂ with a collection of uniform
fractional counts for the different elements of Q̂(i). Following a Bayesian scheme
analogous to that described in Sect. 6.1, we indeed obtain the posterior estimator
for P (Q|Q̂). Finally, marginalizing the latent question as in Eq. (12) we obtain
P (Q|I). Note also that, without data, P (Q|Q̂) acts as the identity matrix, and
the approach proposed here corresponds to that in Sect. 3.2.

Example 9. In the setup of Example 1, consider the data about Q1 and I in
Table 3 (left). The DJ and the band exhibit some inconsistency with respect
to their support, e.g., once the DJ performed even if the request was for a
musician. This is modelled by the latent question Q̂1. The definition of Q̂1 allows
to complete the data about the latent question as in Table 3 (middle) and hence
P (Q̂|Q). Following Eq. (12), we combine this probability table with P (Q̂1|I)
elicited as in Table 2 and obtain the quantification in Table 3 (right).

Table 3. Counts for Q1, Q̂1 and I (left) and corresponding P (Q1|I) (right).

n(Q1, I) q11 q21 q31 q41

i1 4 0 1 0

i2 2 6 3 0

i3 0 0 0 5

n(Q̂1, Q1) q11 q21 q31 q41

q̂11 4 0 1 0

q̂21 2 6 3 0

q̂31 0 0 0 0

q̂41 0 0 0 5

P (Q1|I) q11 q21 q31 q41

i1
5
6 0 1

6 0

i2
1
6

7
12

1
4 0

i3 0 0 0 1

In the above procedure, the latent question and its operational definition can
be intended as a rule for the clustering of data associated to different items,
the latent answers indexing the clusters, i.e., all items associated to the data in
cluster q̂ include the latent answer q̂ in their support. As we act in a probabilistic
setting, soft clustering can be obtained [12], e.g., when the item associated to
an observation has |Q(i)| > 1 and the answer q /∈ Q(i). Nothing prevents us
from considering other data-based clustering algorithms relaxing the one-to-one
correspondence between questions and latent questions.

In this section we have focused on models with a single question. To cope
with multiple questions, the naive-like assumption formulated in Eq. (2) for (non-
latent) questions should be reformulated in terms of the latent ones and we
assume conditional independence of the latent questions given the item.
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Finally, if a more general notion of latent question is adopted, so that (observ-
able) questions and latent questions may take their values from different sets,
we could also consider the case of multiple (observable) questions associated to
the same latent one. This can be easily achieved by maintaining the assumption
of conditional independence between the item and all the questions given their
latent question, that corresponds in this case to the conditional independence
between the questions of the same latent question given the latent question itself.
In practice, if Qa and Qb are the two questions and Q̂ their common latent ques-
tion, we have Qa and Qb independent given Q̂, we separately learn P (Qa|Q̂) and
P (Qb|Q̂), and finally obtain:

P (qa, qb|i) =
∑

q̂∈Q̂
P (qa|q̂)P (qb|q̂)P (q̂|i) . (13)

Moreover, with the aim of preserving the naive independence structure defined in
Eq. (2), which is not necessary but simplifies the implementation of the conver-
sational approach discussed in Sect. 5, the above model may be approximated by
one assuming conditional independence of Qa and Qb and having for all qa ∈ Qa

P (qa|i) =
∑

qb∈Qb

P (qa, qb|i) . (14)

7 Experiments

For validation we consider the classical MovieLens database [8]. The dataset
contains information about 13‘816 movies. Each record is characterized by a
list of genres taken from nineteen pre-defined categories, a period (before 1980,
from 1980 to 1999, from 2000 to 2016, after 2016, in our discretization) and a tag
relevance score for each of the tags included in MovieLens database Tag Genome.
The tag relevance score is a number between zero and one, describing how much
the tag reflects the movie characteristics. E.g., tag violence has relevance 0.991
for the movie Reservoir Dogs and 0.234 for Toy Story. We only consider the 200
tags most used by the users, out of the 1‘128 available.

Tags together with genre and period are regarded as questions and used to
simulate a conversation based on a static questionnaire whose goal is to detect
the right item/movie. No set-valued answers are allowed for these questions.
We instead allow sets for answers about the genre in the learning phase, for
which the ontic semantics discussed in Sect. 4 is adopted. Each element of the
set is treated as a fractional observation with weight inversely proportional to
the cardinality of set of genres provided. The (unobserved) value assumed by
the latent genres is assigned consistently with the support of the corresponding
item using the procedure described in Sect. 6.2. On the other end, to simplify
the procedure, and at the same time increasing the flexibility of the adaptive
approach by augmenting the number of questions in the pool, each genre is
separately asked by nineteen independent questions along the conversation.
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For each movie in the database, a complete list of questionnaire answers
is generated as follows. For the question period we might corrupt the actual
period by changing it into the previous or the next with probability py. For the
genre, we take the list of genres assigned to a movie and corrupt each of them
(independently) with probability pg. Corruption consists either in removing the
genre from the list, or permuting the genre by replacing it by a similar one.
Finally, answers to tag-related questions are simulated as follows. A positive
answer to a question about a tag is assigned with probability equal to the tag
relevance score of the movie. Subsequently, positive tag answers can be corrupted
with probability pt by setting them to zero. This corruption step, simulates a user
who has, in general, a number of desiderata smaller than the total number of tags
that could properly describe a movie. In our experiments we use py = pg = pt = p
and consider two noise levels, namely low (p = 10%) and high (p = 50%).

We select 2‘000 movies, used as the catalogue, from which we have generated
the test set for the experiments. The remaining movies are used to generate the
training dataset from which the conditional probability tables P (Q|Q̂) for the
genre, period and tag questions given the actual genre, period and tags of the
selected movie (latent question) are estimated as described in Sect. 6. The tables
P (Q̂|I) for the genre and period are defined by compatibility and similarity con-
straints as in Sect. 3. Concerning tags, instead, the probability P (Q̂ = 1|i) of a
tag being compatible with item i is set equal to the tag relevance score for item
i. Finally, a uniform prior over the items is assumed. The goal of the system is to
detect the right movie on the basis of the answers to the questions. In the con-
versational case, questions are selected following the adaptive strategy detailed
in Sect. 5. The algorithm in charge of the elicitation and question selection has
been implemented in Python.1

The performances of our approach are compared against that of traditional
algorithms based on measures of similarity between the item and user features,
such as the LightFM algorithm [11]. Here the item features, i.e., the (eventually
probabilistic) supports Qj(i) for all questions Qj , j = 1, . . . ,m and the user
features, i.e., their (simulated) noisy answers, take values from the same space.
Thus, there is no need of learning linear transformations to a common latent
space, as one can simply compute the items-user similarity in the original space.
In the experiments below, the cosine similarity is used to measure the affinity
between items and users requests. Note that, as we are considering a situation
where each user has only a single conversation with the system, we cannot learn
users and items similarities from historical interactions as done in traditional
collaborative filtering. The fact that the similarity-based approach does not take
advantage of the training dataset to improve its item selection strategy limits its
accuracy, especially when the noise is large. However, as no standard solutions
could be found in the literature (the field of conversational recommendations is
relatively new) and since our focus was the ability of the Bayesian model to drive
an adaptive conversation (rather than a possible improvement in the accuracy
of the final rank), we have been satisfied with validating its accuracy against

1 https://github.com/IDSIA/bayesrecsys.

https://github.com/IDSIA/bayesrecsys
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such simple baseline, yet quite popular in the context of neighbourhood-based
filtering [6].

As a first experiment, we evaluate the benefits of the adaptive approach in
the question selection process with respect to a random strategy. Figure 1 shows
the average probability of the movie selected by the user as a function of the
number of questions for the two strategies with the two different noise levels.
In both cases increasing the number of questions makes the right movie more
probable, but the growth is quicker if the questions are selected on the basis
of their expected information gain. with the gap between the two approaches
increasing unless half of the questions in the questionnaire has been asked.
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Fig. 1. Adaptive vs. random selection for two noise levels.

For the validation against the similarity-based approach, which does not pro-
vide probabilities, we consider the average rank of the right movie as a function of
the number of questions. As in the previous experiment we consider our Bayesian
approach with adaptive selection of the questions, and the same approach with
random selection of the questions. The two methods are compared against the
similarity-based approach. As we have no standard method available to select
the order of the questions in this case, we test the similarity-based approach
using both the order selected by the Bayesian conversation and the random
order. Note that, as a consequence, the improvement in the performance of the
similarity-based approach in the adaptive setting compared to the random one,
are only due to the Bayesian question selection strategy. Results are shown in
Fig. 2 (top left), with a zoom of the tails in Fig. 2 (top right). As in the previous
analysis the advantages of the adaptive approach compared to the random one
are clear. Moreover, results show that the Bayesian model, by correctly mod-
elling the users behaviours from the historical data, outperforms the similarity
approach the more the largest is the noise corrupting the data. In Fig. 2 (top
left) we also report as a black dotted line the ranks of the Bayesian adaptive
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approach based on structural judgments without learning from the data. The
higher ranks compared to the approach based on data advocates the learning
procedure discussed in Sect. 6.
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Fig. 2. Average recommendation rank as a function of the number of questions for low
(10%, top left and right) and high (50%, bottom) noise levels.

8 Conclusions

A new approach to automatic recommendations which assumes a dynamic inter-
action between the system and the user to provide customized and self-adaptive
recommendations has been developed on the basis of a pure Bayesian approach.
The framework introduced in this paper sets the ground to several future devel-
opments, among which the dynamic generations of questions in order to improve
the conversational nature of the system. This could be based on a natural lan-
guage generation system interacting with the structured probabilistic description
of item properties and elicitation of user needs. Also, this work has focused on a
setting where each user interacts with the system a single time. Therefore, col-
laborative filtering approaches that learn users’ taste and items similarities from
historical data were not applicable. Such setting looks appropriate for highly
involved decisions, such as the selection of an entertainer for a special event.
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Abstract. When classifying an example on the basis of an observed population
of (training) samples, at least three kinds of situations can arise where picking a
single class may be difficult: high aleatory uncertainty due to the natural mixing
of classes, high epistemic uncertainty due to the scarcity of training data, and
non-conformity or atypicality of the example with respect to observations made
so far. While the two first kinds of situations have been explored extensively, the
last one still calls for a principled analysis. This paper is a first proposal to address
this issue within the theory of belief function.

Keywords: Belief functions · Supervised classification · Epistemic and
aleatoric uncertainty · Atypicality management · Novelty detection

1 Introduction

In a classification problem, it is classical to make a (precise, crisp) decision by assigning
a test instance to a single class based on a set of training instances. However, various
kinds of uncertainty may prove to be a hindrance to this process: the classes can be
mixed and none seems to prevail (aleatoric uncertainty or ambiguity); the training data
can be scarce (epistemic uncertainty); or the example to be classified can differ from
the training observations (non-conformity or atypicality). Although related to epistemic
uncertainty, atypicality cannot necessarily be reduced by obtaining additional labeled
training data. It is central in novelty, anomaly or outlier detection [2].

The theory of belief functions, introduced in [3,6], and then further developed by
Smets [9], provides a suitable framework for representing uncertainties. In this paper,
we study how atypical instances can be accounted for in the framework of belief func-
tions, in addition to situations of ambiguous or scarce data. Our ultimate purpose is to
propose a safe, cautious decision-making process in presence of uncertainty, by taking
into account the quantity and quality of data based on which the decision is to be made.

Note that atypicality has been already accounted for in different settings, such as
distance rejection [5] or conformal predictions [7], and was also addressed using belief
functions (e.g., [1]) for specific kinds of atypicality. Yet, to our knowledge, no prin-
cipled, generic way to deal with atypicality has been proposed in the belief function
c© Springer Nature Switzerland AG 2020
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framework. This paper can be seen as a preliminary contribution to this issue. We estab-
lish our basic setting in Sect. 2. Section 3 then discusses some desirable properties when
accounting for atypicality, for which Sect. 4 proposes several strategies.

2 Basic Setting

We recall here basic material on the theory of belief functions, a rich and flexible frame-
work for managing uncertainty, which will be required in the rest of the paper.

2.1 Preliminaries on Belief Functions

Let us consider a variable ω taking values in a finite unordered set Ω = {ω1, . . . ,ωM}
called the frame of discernment. Partial knowledge regarding the actual value taken by
ω is represented by a mass function [6] m : 2Ω → [0;1] such that

∑
A⊆Ω

m(A) = 1. (1)

The sets A ⊆ Ω such that m(A) > 0 are called focal sets of m. If m(A) = 1 for some
A⊆ Ω , m is said to be categorical and is denoted by mA (if A= Ω , mΩ represents com-
plete ignorance). It is often required that m( /0) = 0; otherwise, m( /0) may have various
interpretations, such as the degree of conflict after inconsistent pieces of information
were aggregated, or the degree of belief that ω /∈ Ω (open world assumption).

Any mass function can be equivalently represented by a belief function bel, and a
plausibility function pl defined, respectively, for all A ⊆ Ω by:

bel(A) = ∑
B⊆A

m(B), pl(A) = ∑
B∩A�= /0

m(B). (2)

Various strategies have been proposed for making decisions based on a belief
function—see, e.g., [4]. Hereafter, we will denote by δ any decision operator to be
applied to a mass function defined over the set of classes. For instance, the interval
dominance operator may result in a cautious decision, as it may provide a set of classes.

Definition 1 (Interval dominance). Given a mass m, ωi is said to dominate ω j , noted
ωi � ω j , if bel({ωi}) > pl({ω j}). The interval dominance rule consists in computing
the set of non-dominated classes:

δID (m) =
{

ωi : pl({ωi}) ≥ bel({ω j}) for all j �= i
}
. (3)

2.2 Uncertain Class Membership Model

We assume that a source provides us with information regarding the actual class of a
test instance x to be classified, in the form of a mass function m. This mass function is
usually derived from a sample of N training instances xi (i= 1, . . . ,xN) observed in the
same region than x, and to which x is assumed to be similar. For example, when using
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decision trees, x is classified using the training data falling into the same leaf node; in
the K-NN algorithm, the decision is made based on the K closest training instances.

Aleatoric uncertainty (due to mixed classes) can straightforwardly be modeled and
transferred to the test instance via a multinomial model. Let (n1,n2, . . . ,nM) denote the
class counts in the observed training sample of size N (with ∑k nk = N); then,

m({ωi}) = ni
N

∀i= 1, . . . ,M.

In cautious classification, it is desirable to take the quantity of information carried
out by the training sample into account in the decision process: then, should the avail-
able information be scarce, cautious strategies may be deployed, such as retaining a set
of plausible classes instead of a single one. The imprecise Dirichlet model (IDM) makes
it possible to integrate this notion of quantity of available information in the model of
class frequencies. Rather than the mass function provided above, it would result in

mIDir(Ω) =
s

N+ s
, mIDir({ωi}) = ni

N+ s
∀i= 1, . . . ,M, (4)

where the user-defined parameter s can be interpreted as a number of additional
unknown observations interfering with estimating the probabilities of the classes. This
mass function produces in turn the bounds

[
belIDir({ωi}) = ni

N+ s
; plIDir({ωi}) = ni+ s

N+ s

]
∀i= 1, . . . ,M, (5)

which account for both aleatoric uncertainty (which occurs if n1, . . . ,nM take similar
values) and epistemic uncertainty (in which case the width of the intervals will increase
when s/(N+ s) increases).

2.3 Conformity

Although the IDM integrates both the aleatoric and epistemic uncertainty due to the
training sample, it does not take into account the typicality of a test instance of interest,
that is, the extent to which it is similar to one of the training instances from which mIDir

is obtained. We assume here that this information is provided by a separate source, in
the form of a conformity score C ∈ [0;1]: we have C = 0 for a completely unusual
instance, and C = 1 for a normal one. How this level of typicality may be assessed is
beyond the scope of this preliminary work, and thus left aside for now.

Figure 1 displays two situations where an instance x is to be classified into one of
three classes {ω1,ω2,ω3} = Ω , based on a set of four training instances (with known
classes). The same IDM would be built (the class counts being the same), but the level
of typicality of x with respect to the four instances is very different. Note that here, C
can be derived from the distance of x to its first neighbour in the training sample.
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Fig. 1. Two situations with identical class counts but different levels of typicality

The purpose of this paper is to determine how a mass function m related to the
class of the instance x can be revised according to its level of typicality C. To this
end, we introduce the notion of conformity operator Cf, which updates m into a new
mass function Cf [m,C]. This operator may be required to have various properties (see
Sect. 3), according to which different operators may be proposed (see Sect. 4).

3 Desirable Properties of Conformity Operators

Hereafter, by abuse of notation, Cf [pl, ·] (respectively, Cf [bel, ·]) will stand for the plau-
sibility function (resp., belief function) obtained from a revised mass function Cf [m, ·].
Property 1 (Class preference preservation). A conformity operator Cf preserves the
preferential information over the classes if, for any C ∈ [0;1],

pl({ωi}) ≤ bel({ω j}) ⇒ Cf [pl,C] ({ωi}) ≤ Cf [bel,C] ({ω j}). (6)

Plainly put, it means that taking into account conformity does not alter interval domi-
nance between classes (see Definition (1)).

The example in Fig. 2 displays the decision boundaries of a decision tree applied
to the Iris dataset (two features were kept for illustrative purpose). Instances 1, 2 and 3
are atypical. For instance 1, class Setosa clearly dominates both others, an information
which may reasonably be kept by the revision process. However, it is more question-
able for instance 2, which seems closer to class Versicolor than class Setosa once class
dispersion is taken into account: then, its seems legitimate to discard the information
brought by the training subset associated with the leaf of the tree. Overall, keeping the
preference information inferred from the reference population seems reasonable if the
model is unlikely to confuse atypicality with another source of uncertainty. In Fig. 2,
instance 2 is equally far from the Versicolor and Setosa classes, which by nature the
decision tree cannot detect.
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Fig. 2. Iris dataset example and some non-conformal examples

Property 2 (Decision strengthening). A conformity operator Cf strengthens the deci-
sions made with a strategy δ if

C ≤C′ ⇒ δ (Cf [m,C]) ⊆ δ
(
Cf

[
m,C′]) . (7)

In other terms, the set of plausible classes for an instance should grow with its level of
conformity: as it becomes atypical, classes previously deemed likely may be dropped
off. This is similar to assuming an open-world, since known classes are discarded, pos-
sibly ending up with an empty set at the limit, similarly to conformal predictions.

Property 3 (Decision weakening). A conformity operator Cf weakens the decisions
made with a strategy δ if

C ≤C′ ⇒ δ
(
Cf

[
m,C′]) ⊆ δ (Cf [m,C]) . (8)

Conversely to Property 2, Property 3 is more in line with a closed world assumption,
where Ω is assumed to necessarily contain all classes, but where the information related
to an atypical example may seem too weak to provide a reliable prediction.

In the example above corresponding to Fig. 2, assume that the decision for instance
3 is δ (m3) = {Versicolor, Virginica}. Then, requesting Property 2 would amount to dis-
carding Versicolor, this class being too far; whereas Property 3 would rather leave us
with complete ignorance, Setosa being then added to the set of plausible classes.

Other properties can also be proposed, for instance to specify the desired behaviour
of the decision rule for extremely non-conformal examples (when C → 0). In Sect. 4,
we mention a few operators which satisfy some of the properties described above.

4 Some Conformity Operators and Their Decision Rule

This section investigates various belief-theoretic conformity operators in the light of the
aforementioned properties. In a nutshell, they consist in computing a linear transforma-
tion of the initial mass according to the level of non-conformity.
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4.1 Classical Discounting in a Closed World

A first strategy amounts to discounting1 m according to the level 1−C of atypicity:

Cf1 [m,C] =Cm +(1−C)mΩ . (9)

In the case of a mass function induced by the IDM, we thus have
⎧
⎨

⎩

Cf1 [m,C] ({ωi}) =C
ni

N+ s
, for all i= 1, . . . ,M;

Cf1 [m,C] (Ω) =C
s

N+ s
+(1−C).

(10)

Cf1 satisfies Property 3 (decision weakening) with respect to δID, as discounting makes
the belief-plausibility intervals wider, leading to the extreme case δID (Cf1 [m,0]) = Ω .
On the contrary, and for the same reason, Cf1 does not satisfy Property 1 (class prefer-
ence preservation). Such a rule therefore appears to be more consistent with a closed
world assumption, where atypical instances are treated as being hard to characterize:
complete atypicity should therefore be associated with complete ignorance.

4.2 Open World with an “Unknown” Class ωu

Our second operator Cf2 considers the open world assumption via an “unknown” class
ωu: that is, Cf2 [m,C] is now a mass function defined on a frame Θ = Ω ∪ωu:

Cf2 [m,C] =Cm↑Θ +(1−C)mωu , (11)

where the vacuous extension m↑Θ of m onto Θ [8] is such that m↑Θ (A) = m(A) for any
A ⊆ Ω and m↑Θ (A) = 0 for A � Ω ; and where mωu({ωu}) = 1.

When applied to a mass function mIDir generated by the IDM, this operator gives
⎧
⎪⎪⎨

⎪⎪⎩

Cf2
[
mIDir,C

]
({ωi}) =C

ni
N+ s

for all ωi ∈ Ω ,

Cf2
[
mIDir,C

]
({ωu}) = 1−C,

Cf2
[
mIDir,C

]
(Ω) =C

s
N+ s

;

(12)

then, for any ωi ∈ Ω , we have the following belief and plausibility values:

Cf2
[
belIDir,C

]
({ωi}) =C

ni
N+ s

, Cf2
[
plIDir,C

]
({ωi}) =C

ni+ s
N+ s

, (13)

and
Cf2

[
belIDir,C

]
({ωu}) = Cf2

[
plIDir,C

]
({ωu}) = 1−C. (14)

Applying δID to an updated mass function Cf2 [m,C] (defined on Θ ) satisfies Prop-
erties 1 and 2, with the extreme case δID (Cf2 [m,0]) = {ωu}. Also note that

δID (Cf2 [m,C]) � ωu ⇔ max
ω j∈Ω

Cf2 [bel,C] ({ω j}) ≤ 1−C, (15)

δID (Cf2 [m,C]) = {ωu} ⇔ max
ω j∈Ω

Cf2 [pl,C] ({ω j})< 1−C. (16)

1 The discounting εm of m by a factor ε is defined by εm(A) = (1− ε)m(A), for all A �= Ω ; and
εm(Ω) = (1− ε)m(Ω)+ ε .



Dealing with Atypical Instances in Evidential Decision-Making 223

As a consequence, the set of decisions will include {ωu} only if the degree of support
to each class is low. This inspires an alternative strategy, where ωu is left aside when
computing non-dominated classes, and added post-hoc when it is non-dominated.

Definition 2 (interval dominance with atypicity trigger). Given a mass m defined
on Θ = Ω ∪{ωu}, the interval dominance with atypicity trigger rule is defined by

δID:AT (m) =

⎧
⎨

⎩

δID (m[Ω ]) if min
ω j∈δID(m[Ω ])

bel({ω j})> 1−C,

δID (m[Ω ])∪{ωu} otherwise,
(17)

where the conditioning m[Ω ] of m on Ω [8] is such that m[Ω ](A) = ∑B⊆Θ :B∩Ω=Am(B),
for any A ⊆ Ω .

In a nutshell, the set of non-dominated classes is determined from well-identified classes
(i.e., associated with an identified subpopulation), and a warning trigger is sent if the
instance is deemed atypical. This strategy satisfies Property 1 and includes ωu when
C = 0: in particular, δID:AT (Cf1 [m,0]) =Θ , and δID:AT (Cf2 [m,0]) = ωu.

4.3 Classical Discounting in an Open World

Finally, we propose a third operator where the mass m is first vacuously extended onto
Θ and then discounted according to the level of atypicity C:

Cf3 [m,C] =Cm↑Θ +(1−C)mΘ . (18)

In the case of masses mIDir obtained via the IDM, we thus obtain:
⎧
⎪⎪⎨

⎪⎪⎩

Cf3
[
mIDir,C

]
({ωi}) = C

ni
N+ s

for all ωi ∈ Ω ,

Cf3
[
mIDir,C

]
(Ω) = C

s
N+ s

,

Cf3
[
mIDir,C

]
(Θ) = 1−C;

(19)

therefore, for any ωi ∈ Ω , we have the following belief and plausibility values:

Cf3
[
belIDir,C

]
({ωi}) =C

ni
N+ s

, Cf3
[
plIDir,C

]
({ωi}) =C

ni+ s
N+ s

+1−C, (20)

and
Cf3

[
belIDir,C

]
({ωu}) = 0, Cf3

[
plIDir,C

]
({ωu}) = 1−C. (21)

Note that applying δID to Cf3 [m, ·] satisfies Property 3, since δID (Cf3 [m, ·]) =Θ .

Remark 1 (Open world assumption). The “unknown” class ωu introduced above plays
in spirit a role very similar to /0 in the “canonical” open-world assumption (where m( /0)
quantifies the belief that the instance is from a class outside Ω ). However, introducing
ωu makes it possible to 1) distinguish between this degree of belief and the degree of
conflict arising from combining belief masses, and 2) properly handle this degree of
belief when it comes to decision making.
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Table 1. Summary of the conformity operators and their associated decision strategies

Conformity
operator

Mass function
combined to m

Associated
decision rule

Set of decisions
for C = 0

Properties satisfied Type of frame

Prop. 1 Prop. 2 Prop. 3 Open Closed

Cf1 mΩ δID Ω × ×
Cf2 mωu δID ωu × × ×
Cf2 mωu δID:AT δID (m[Ω ])∪{ωu} × × × ×
Cf3 mΩ∪ωu δID Ω ∪ωu × ×

5 Conclusion and Perspectives

Table 1 summarizes the properties of the conformity operators with their associated
decision strategies presented in this paper. We recall the mass function used in each
conformity operator, the set of decisions retrieved by the strategy whenC= 0, the prop-
erties satisfied (class preference preservation, decision strengthening, decision weaken-
ing), and the frame assumptions associated with the operator. Note that a conformity
operator cannot satisfy all properties at the same time, some of them being antgonist.

When defining a conformity operator, whether a property should be satisfied—
or, equivalently, whether the associated frame assumption should be accounted for—
depends on the application considered. For instance, in novelty detection, the open
world assumption is clearly at work; this is not so clear in outlier or anomaly detec-
tion problems, where the set of possible classes (or states) is assumed to be known, a
deviance to which the user is interested in detecting.

Future work will be conducted into two directions. First, we will study whether
further properties should be required or desirable, for which we may propose accord-
ingly additional conformity operators. Besides, we will compare our strategies based on
conformity operators to other approaches dealing with atypical examples, such as con-
formal predictions. For this purpose, we will define a thorough experimental evaluation
process, so as to assess the interest of the various properties and operators proposed.
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IDEX-0004-02), which were funded by the French Government, through the program “Invest-
ments for the future” managed by the National Agency for Research.
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Abstract. A chronicle is a kind of temporal pattern mined from a set of
sequences made-up of time-stamped events. It has been shown recently
that such knowledge is effective in sketching machines’ behaviours in
industry. However, chronicles that describe a same new sequence of
events could be multiple and conflictual. To predict nature and time
interval of future events, we need to consider all the chronicles that match
a new sequence. In this paper, we introduce a new approach, called FCP,
that uses the evidence theory and chronicle mining to classify sequences.
The approach has been evaluated on both synthetic and real-world data
sets and compared to baseline state-of-the-art approaches.

Keywords: Chronicle mining · Prediction maintenance · Evidence
theory

1 Introduction

In industry 4.0, predictive maintenance relies on analysing sequential data con-
taining time-stamped events. Therefore, data mining and particularly pattern
mining techniques [1] turned to be very effective to understand failure sequences
[9] by finding recurrent abnormal behaviours before any prediction task.

One type of pattern stands out thanks to its information richness and it is
called chronicle. A chronicle is a pattern that represents a sequence of events
that happened enough frequently to be extracted. Introduced in [6], this new
kind of sequences is enriched with the time interval that separates each pair of
events, making it possible to predict that an event B will probably happen at a
time interval [t1, t2] if event A occurs. If the event B requires an intervention,
such as a machine failure, then maintenance may be performed on time avoiding
cascading troubles.

Chronicles are complex but highly expressive patterns that enable to take into
account the quantitative temporal dimension of the data contrary to classical
sequential patterns. Dousson et al. [5] introduced what is called later chronicle
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mining. They proposed an incomplete algorithm (which does not generate all the
patterns) called FACE (Frequency Analyzer for Chronicle Extraction). Then,
Cram et al. [3] introduced another complete algorithm to mine the complete set
of chronicles. Sellami et al. have introduced a new approach called FADE [9]
that mines failure chronicles (chronicles that end with failure event).

In this paper, we tackle the problem of sequences’ classification and failure
time prediction in the context of predictive maintenance. We aim to understand
and predict failures for a target maintenance. Once the failure is predicted,
the maintenance is scheduled using failure criticality assessment [2]. Chronicle
mining algorithm is used to extract knowledge from the data set: normal and
abnormal behaviour patterns. Assuming a set of chronicles representing different
machine behaviours with certain level of reliability, a major task is how to classify
new incoming sequence.

Therefore, we propose to combine the use of evidence theory and chronicle
mining to classify sequence in the context of predictive maintenance. The evi-
dence theory, is a strong mathematical framework that allows to model uncertain
knowledge and combine information for decision making. To summarize, this
paper introduces two contributions: (i) using both normal and failure chroni-
cles for sequence classification and time to failure prediction and finally (ii), a
new algorithm called FCP that uses the mined chronicles and evidence theory
framework to combine information and predict if a new sequence will lead to a
machine failure, and if yes, in which time interval the crash will occur.

2 Background

2.1 Evidence Theory

The evidence theory also called the belief function theory was introduced by
Dempster [4]. In this section, we present the main concepts of this theory. The
frame of discernment is the set of N possible answers for a treated problem
and generally denoted θ. It is composed of exhaustive and exclusive hypotheses:
θ = (H1,H2, . . . , HN ).

These elements are assumed to be mutually exclusive and exhaustive. From
the frame of discernment θ, we deduce the set 2θ containing all the 2N subsets
A of θ: 2θ =

{
A,A ⊆ θ

}
=

{
H1,H2, . . . , HN ,H1 ∪ H2, ..., θ

}
. A Basic Belief

Assignment (BBA) m is the mapping from elements of the power set 2θ onto [0,
1], having as constraints:

{∑
A⊆θ m(A) = 1

m(∅) = 0.
(1)

The belief function offers many advantages. One of its proposed asset is the
information fusion allowing extracting the more veracious proposition from a
multi-source context. This benefit is granted by the Dempster rule of combina-
tion [4] defined as follows:
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m⊕(A) = m1⊕m2(A) =
1

1 − ∑
B∩C=∅ m1(B) ∗ m2(C)

∑

B∩C=A

m1(B)∗m2(C);∀A ⊆ θ, A �= ∅

(2)

The pignistic transformation allows the decision from a BBA by distributing
equiprobably the mass of a proposition A on its sub-hypotheses, formally:

BetP (Hn) =
∑

A⊆θ

|Hn ∩ A|
|A| ∗ m(A);∀Hn ∈ θ (3)

2.2 Chronicle Mining

To give formal definition of chronicles, this section starts by introducing the
concept of event [3].

Definition 1 (Event). Let E be a set of event types, and T a time domain such
that T ⊆ R. E is assumed totally ordered and is denoted ≤E. According to [3],
an event is a couple (e, t) where e ∈ E is the type of the event and t ∈ T is its
time.

Definition 2 (Sequence). Let E be a set of event types, and T a time domain
such that T ⊆ R. E is assumed totally ordered and is denoted ≤E. According to the
definition in [3], a sequence is a couple 〈SID, 〈(e1, t1), (e2, t2), ..., (en, tn)〉〉 such
that 〈(e1, t1), (e2, t2), ..., (en, tn)〉 is a sequence of events, and SID its identifier.
For all i, j ∈ [1, n], i < j ⇒ ti ≤ tj. If ti = tj then ei <E ej where <E is the
lexical order.

When the events are time-stamped, how to describe the quantitative time
intervals among different events is very important for the prediction of possible
future events. To achieve this goal, the notion temporal constraints is introduced.

Definition 3 (Temporal constraint). A temporal constraint is a quadruplet
(e1, e2, t−, t+), denoted e1[t−, t+]e2, where e1, e2 ∈ E, e1 ≤E e2 and t−, t+ ∈ T.

t− and t+ are two integers which are called lower and upper bounds of the
time interval, such that t− ≤ t+. A couple of events (e1, t1) and (e2, t2) are said
to satisfy the temporal constraint e1[t−, t+]e2 iff t2 − t1 ∈ [t−, t+]. It is defined
that e1[a, b]e2 ⊆ e′

1[a
′, b′]e′

2 iff [a, b] ⊆ [a′, b′], e1 = e′
1, and e2 = e′

2. The concept
of chronicles [3] is defined as follows.

Definition 4 (Chronicle). A chronicle is a pair C = (E , T ) such that:

1. E = {e1...en}, where ∀i, ei ∈ E and ei ≤E ei+1,
2. T = {tij}1≤i<j≤|E| is a set of temporal constraints on E such that for all pairs

(i, j) satisfying i < j, tij is denoted by ei[t−ij , t
+
ij ]ej.
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Definition 5 (Chronicle support). An occurrence of a chronicle C in a
sequence S is a set (e1, t1) . . . (en, tn) of events of the sequence S that satisfies all
temporal constraints defined in C. The support of a chronicle C, denoted Supp(.)
in the sequence S is the number of its occurrences in a data set of sequences [9].
In this paper, we assume that a sequence could contain at most only one occur-
rence of any chronicle.

3 Chronicle Mining and Evidence Theory for Failure
Prediction

In this section, we define the notions we use in our approach to combine chronicles
for prediction.

Definition 6 (Chronicle cover). Assuming a sequence S = 〈(e1, t1),
(e2, t2), . . . , (en, tn)〉 and a frequent chronicle C. We say that C covers the
sequence S, denoted by C <·S, if and only if the events represented by the chron-
icle belong to the sequence as well as the time intervals between these events in
the sequence belong to the temporal constraints extracted by the chronicle, i.e.,

C <·S ⇔ ∀ei[t−, t+]ej ∈ C,∃((e, t), (e′, t′)) ∈ S ∧ e = ei, e
′ = ej ∧ t′ − t ∈ [t−, t+]. (4)

Let C be a set of frequent chronicles, CT ⊂ C , such that T ∈ {F,N} and
where F̄ = N . CF denotes the set of chronicles that point to the failure event,
where CN is the set of chronicles that do not, and so match normal sequences.

Definition 7 (BBA modeling). Assuming a chronicle Ci ∈ CT that covers a
sequence S, we model the BBA mi of Ci in θ = {T, T̄} as follows:

⎧
⎪⎨

⎪⎩

mi(T ) = Supp(Ci)
mi(T̄ ) = 0
mi(θ) = 1 − Supp(Ci)

(5)

Definition 8 (Chronicles combination). Assuming N chronicles Ci that
cover a sequence S, with mi, i ∈ [1, N ], the mass function relative to the ith

chronicle. The joint mass function that combines all the mi mass functions of
the chronicles Ci that cover S using the Dempster Rule of combination is defined
as follows:

m⊕(A) = m1 ⊕ . . . ⊕ mN (A);∀A ⊆ θ (6)

To make the decision, we compute the pignistic probability BetP for failure
(F) and normal (N). The final decision is obtained by retaining the hypothesis
that maximized the pignistic probability as follows:

x = argmaxBetPxi∈θ(xi). (7)

For the prediction task, we developed the FCP method (Fusion of Chroni-
cles for Prediction). It consists in comparing the input sequence (to predict) with
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every chronicle in terms of events and time constraints. To each matching chron-
icle, we model a BBA that measures to which degree the chronicle expresses the
failure (F) and normal (N) behaviour classes. The level of uncertainty is retained
using the support of the chronicle. Once all matching chronicles are modelled, we
use the Dempster rule of combination to combine all the BBAs. The joint BBA
shows the membership of the input sequence to both classes. The final class is
computed using the argmax function. If the final class is failure, we display the
failure time by aggregating the time constraints of all matching failure chroni-
cles. Algorithm 1 performs the combination of the covering chronicles to predict
the status of a sequence using all aforementioned notions.

4 Experiments and Results

Two kinds of data sets are used to validate our approach. The first one is gen-
erated synthetically according to several parameters, such as the number of
sequences, the mean size (i.e. width) of a sequence and the number of items
(events).1 In addition, data are generated following a failure model sequence
that represents 5% of the entire produced data set. Even such kind of data sets
do not include natural patterns of failure/normal events, they are interesting
in the way they allow the evaluation of our approach when we vary the data
features, which is infeasible with real data sets whose parameters are fixed.

The second experiment is made on an industrial real data set, denoted
SECOM (semi-conductor manufacturing process), introduced in [8]. It’s a data
set that records 1567 measurements of 590 sensors installed in manufacturing

1 Reader may refer to https://gitlab.inria.fr/tguyet/pychronicles for further details
about data sets generation.

https://gitlab.inria.fr/tguyet/pychronicles
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machines. Each record has a timestamp (the instant at which the 590 measure-
ments are taken), and also a general state; 1 for a normal state, and −1 for a
failure.

4.1 The Performance Evaluation

The performance of our approach is evaluated on different synthetic data sets
to assess the effect of several parameters mainly on the run-time and the mem-
ory usage. Figure 1 shows the execution time of FCP according to the number
of sequences and the vocabulary size. The execution time increases when the
number of sequences and their sizes increase. Indeed, when number and size
of sequences are large, the number of extracted frequent chronicles increases
accordingly. The Dempster rule of combination is the most consuming part of
our approach. The more we find matching chronicles, the more we model and
combine BBAs.
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Fig. 1. FCP experiments on synthetic data sets

As part of the performance evaluation, we also assessed the memory consump-
tion of both algorithms. Figure 1 shows the amount of memory used according
to the sequence number variation. For FCP, the use of memory increases when



232 A. Ben Chrayet et al.

the number of covering chronicles increases, especially because of the operation
of combination that uses matrix structures within the evidence theory for mass
functions.

4.2 The Prediction Quality Experiments

To evaluate the prediction quality of our approach, we used the 10-fold-cross-
validation method [10] to compute the precision, the recall and the F-measure.
A failure sequence is considered correctly classified, if we predict the failure
state and also the time interval into which the breakdown will occur. A normal
sequence is correctly classified if we predict the normal state.

First, we evaluate the prediction quality of our approach FCP on different
synthetic data sets. We carried out experiments to assess the precision of FCP
by varying the minimum support, denoted minsup, of the mining algorithm [9].
The Fig. 1 (d) pictures the results. It shows that the precision decreases as long
as minsup increases. In fact, precision and minsup are both linked. Indeed, the
more we increase minsup, less chronicles we mine. Then, unfortunately, several
sequences could not be covered by any chronicle. We note that best prediction
results are observed when minsup is set to 0.4.

The prediction approaches that use chronicles for prediction are limited. In
this paper, we compare our approach to FADE [9]. The latter consists in mining
frequent chronicles. Then, it uses the highest support matching chronicle to
predict. As for FCP, FADE classifies the sequence and predicts when it is going
to happen using time constraint of the chronicle failure event. For these reasons
FADE is a natural comparative reference to FCP. In addition, we adapted the
k-NN algorithm introduced in [7] for evaluation. In our adapted version, we
choose the k most similar chronicles to our sequence among the chronicles that
cover it. So we do not consider all chronicles, just the k nearest chronicles that
correspond to the top 30% of the covering chronicles. Second, we combine the
obtained classes using the weighted majority vote method, so the weight of a
class is proportional to the distance between the sequence and the chronicles
that represent the class in question. Knowing that, our approach uses mined
patterns, classifies sequences and predict time to failure. We also compare FCP
to other neural network based classification approaches [11]. Table 1 shows the
results in terms of recall, precision and F-measure on the SECOM data set.

Table 1. Quality of prediction on the SECOM data set

Approach Parameters Recall Precision F-measure

FCP minsup = 0.4 0.78 0.81 0.79

FADE [9] minsup = 0.4 0.72 0.70 0.71

k-NN [7] k equivalent to 30% of chronicles 0.69 0.71 0.69

LSTM [11] 1 shared layer; 2 prediction layers 0.73 0.74 0.73
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5 Conclusion

In this paper, we are interested in prediction of failures as well as their time of
occurrence, in the context of predictive maintenance of industrial machines. To
resolve this problem, we rely on frequent chronicle mining, which allows not only
the extraction of patterns, but also the time constraint between events for each
sequence in the data set. We used evidence theory to combine chronicles. Exper-
iments show that our FCP approach is more effective than existing methods. As
future work, we intend to work on improving prediction of the occurrence time.
As current works predict a large time interval, we intend to be more precise by
predicting the most probable instant of occurrence.
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ligence, Chambéry, France, August 28–September 3, pp. 166–174 (1993)

7. Fan, Y., Ye, Y., Chen, L.: Malicious sequential pattern mining for automatic mal-
ware detection. Exp. Syst. Appl. 52, 16–25 (2016)

8. McCann, M., Li, Y., Maguire, L., Johnston, A.: Causality challenge: Benchmarking
relevant signal components for effective monitoring and process control. In: Pro-
ceedings of the International Conference on Causality: Objectives and Assessment,
Whistler, Canada, pp. 277–288 (2008)

9. Sellami, C., Miranda, C., Samet, A., Bach Tobji, M.A., de Beuvron, F.: On mining
frequent chronicles for machine failure prediction. J. Intell. Manuf., 1 (2019)

10. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Roy.
Stat. Soc. Ser. B Methodol., 111–147 (1974)

11. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30


Rule-Based Classification
for Evidential Data

Nassim Bahri1(B), Mohamed Anis Bach Tobji1,2,
and Boutheina Ben Yaghlane3
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Abstract. In this paper, we tackle the problem of multi-rules based
classification for evidential data, i.e., data where imperfection is modeled
through the Evidence theory. In this setting, a new algorithm called
EviRC is introduced. This method uses different pruning techniques to
omit irrelevant rules and defines a new matching criteria between the
rules and the instance to classify. The selected rules are then combined
using the powerful combination rules of the Evidence theory. Extensive
experiments were conducted on several data sets in order to evaluate the
proposed method. The experiments produce interesting results in term
of classification quality.

Keywords: Association rules · Classification · Dempster-Shafer
theory · Associative classifier · Association Rule Mining

1 Introduction

Associative classifiers consists of a kind of classification techniques that rely
on association rules to classify a new instance [22]. They select high-quality
rules to build an accurate classifier. Initially introduced in [22], various related
works were proposed such [20,23] and [13]. However most of them deal with
certain databases and does not consider imperfection inside the data. To handle
imperfection in data, several models were introduced. The most known are the
probabilistic databases [2], the possibilistic databases [10] and the evidential
databases [9,11,19]. The latter model is considered flexible since it manages a
wide variety of imperfection and is relevant in various domains including pattern
mining [6,18,26], classification [16], skyline analysis [1,12], database modeling
and querying [7,11], and clustering [4]. Various works used the evidential data
model in real-world applications. In [28], a hard rating data set is transformed
into soft rating one thanks to the evidence theory. In [5], the authors create
an evidential educational database including students’ feedbacks about their
c© Springer Nature Switzerland AG 2020
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academic program. Finally, in [25], Samet et al. introduced a new opinion mining
approach to evaluate the reliability level of a biomedical evidential database.
This work studied the field of multi-rule based classification for evidential data.
It considers associative classifier on databases without class label ambiguities.

In this paper, we present a new method denoted EviRC that stands for
Evidential Rule-based Classifier. This latter extracts valid classification rules
from an evidential database (i.e., rules satisfying the minimum support and
confidence thresholds). Then, two pruning techniques are performed to remove
irrelevant rules. We introduce also a new measure to evaluate the relevance of
the rule compared to the instance. Finally, we present the results of several
experiments performed to evaluate the proposed approach.

2 Background Material

In this section, we briefly review the basic concepts related to the evidence
theory, the evidential databases, and the evidential association rules.

2.1 Evidence Theory and Evidential Databases

The Dempster-Shafer theory (DST) also known as “Evidence theory” was intro-
duced by Dempster in [14,15] and developed by Shafer in [27]. It is known to
be a powerful framework for representing and reasoning under uncertainty. Its
basic concepts are defined as follows: Let Θ = {θ1, θ2, ..., θn} be a finite set of
mutually exclusive and exhaustive propositions. Θ is called the Frame of Dis-
cernment (FoD) and represents the problem domain. A Basic Belief Assignment
function (bba) is used to express the degree of belief committed to an element
from the set 2Θ such that:

m : 2Θ → [0, 1]; m(∅) = 0;
∑

A⊂Θ

m(A) = 1 (1)

A proposition A ∈ 2Θ is called a focal element only if m(A) > 0. |A| refers to
the cardinality of the element A. Note that an element A can be a singleton
(|A| = 1) or a composite (|A| > 1). From the mass function two other measures
are derived: (i) the belief function denoted bel. It quantifies the degree of truth
given to a specified proposition A such that:

belΘ : 2Θ → [0, 1]; belΘ(A) =
∑

B⊆A

m(B) (2)

(ii) the plausibility function denoted pl. It quantifies the amount of belief that
could be given to a subset A of Θ. This function is defined as follows:

plΘ : 2Θ → [0, 1]; plΘ(A) =
∑

B∩A �=∅
m(B) = 1 − belΘ(Ā) (3)
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An evidential database denoted EDB stores and manages imperfect data [19].
Imperfection in such model is handled using the evidence theory. An EDB is
defined on n attributes and d tuples. Each attribute i (with 1 ≤ i ≤ n) has a
domain Θi. The value of the attribute i in the jth line is represented through a
normalized bba denoted mij fulfilling the property expressed in Eq. (1).

2.2 Evidential Association Rules

The Association Rule Mining (ARM) consists on discovering hidden correlations
between items in large databases [3]. An item in the evidential database corre-
sponds to a focal element. It can be defined formally as xi ∈ 2Θi (the domain of
attribute i). An itemset X is a conjunction of items that don’t share the same
domain. Thus, it is defined as: X ∈ ∏n

i=1 2Θi , with n is the number of attributes
constituting the evidential database. We define the inclusion operator which is
a relation between two distinct itemsets [18]. It’s defined as follows: Let X and
Y be two evidential itemsets: X ⊆ Y ⇐⇒ ∀xi ∈ X,xi ∈ yi. Where xi and yi

denoted respectively the ith item of X and Y . An evidential association rule R
is an expression in the form: X → Y satisfying X ∩ Y = ∅, where X and Y
are two itemsets. We call X the antecedent of the rule and Y the consequent. A
valid association rule, is a rule that meet the user defined thresholds. The most
commonly used measures are the support and the confidence as stated in [3].

Definition 1. Let X be an evidential itemset.

mj(X) =
∏

xi∈X

mij(xi) (4)

where mj refers to the mass of the itemset X in the transaction j. Thus, the
mass of X in the evidential database is computed as follows:

mEDB(X) =
1
d

d∑

j=1

mj(X) (5)

where d is the size of the evidential database. Then, the support function of X
is naturally defined as follows:

SupEDB(X) = BelEDB(X) (6)

For the context of evidential ARM, the authors in [18] define the confidence
measure of a rule R as follows:

Confidence(R) = Bel(Y |X) (7)

where bel(Y |X) represents the conditional belief. In [17], Fagin et al. propose a
definition of the conditional belief. This definition is used in the existing associa-
tive classifiers based on the DST, namely [18] and [26] to compute the confidence
of a rule as follows:

Bel(Y |X) =
Bel(X ∩ Y )

Bel(X ∩ Y ) + Pl(X ∩ Y )
(8)
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3 Problem and Proposed Approach: EviRC

The associative classification problem is formally defined as follows: Let R be the
set of classification rules. A rule ri ∈ R can be expressed in the following form
[29]: ri : (ai) → yi. The left side of the rule is called the antecedent (considered
as a precondition). It contains a set of attributes’ values, whereas the consequent
part of the rule (yi) describes the class label. Indeed, the set of classification rules
can contain redundant and conflicting rules [13].

Definition 2. Given two rules R1: X → C1 and R2: X → C2, R1 and R2
are called conflicting rules. Given R3: X → C, R4: Y → C, with X ⊂ Y and
confidence(R3) ≥ confidence(R4). R3 and R4 are called redundant rules.

The associative classification problem consists in classifying a new data
instance using the set of extracted rules while considering the conflictual and
the redundant rules. In this context, we introduce our method which consists of
three major steps detailed as follows:

1. Rule mining Phase: Firstly, we mine association rules from an evidential
database. Then, we keep only those satisfying the given support and confidence
thresholds. Finally, we preserve the set of rules (called classification rules) in
the form P → ci, where P is the rule’s precondition and ci is a class label. We
denote by RS the set of rules whose consequent parts are a class label.

2. Classifier Building: Once the classification rules are filtered, a post-
mining step is needed to select a subset of the most pertinent rules. For this
aim, two pruning measures were used. The first one is the PER that stands for
Pessimistic Error Rate. It was initially introduced in the C4.5 method [24] to
remove non-interesting rules. Later, it becomes widely used in the context of
rule-based classification. The second used pruning criteria is the lift, also called
the interest factor. It aims to analyse a statistical independence between the
rules’ variables in order to identify the misleading ones [29]. In our proposed
method, only the rules whose variables are positively correlated are retained.
Then, the next step consists of removing the redundant rules as done in the
algorithm CMAR [20] because of their non informative nature. To do this, we
rank the rules according to their confidence, support, and specificity. Then, only
general and high-confidence rule are retained.

3. Rule Selection and Combination: From the retained rules, we extract
a subset of rules matching the given instance in order to predict its class label.
Given an instance X, characterized by a set of BBAs such that [26]:

X = {mi|mi ∈ X,xj
i ∈ Θi,

∑

xj
i∈mi

M(xj
i ) = 1} (9)

with xj
i is the jth focal element of the BBA mi and M(•) is a mass function.

We denote by ρX the subset of classification rules covering the given instance. It
contains rules whose antecedent parts have a non-null intersection with X. ρX

is formally defined as:

ρX = {R ∈ RS ,∀mi ∈ X,∃xj
i ∈ Θi|xj

i ∩ Ra �= ∅} (10)



238 N. Bahri et al.

where Ra is the antecedent of the rule. Next, for each retrieved rule, we compute a
discount factor denoted df . It measures the relevance of the rule’s precondition
with the instance to classify and calculated as follows: for each element from
the rule’s premise {rai ∈ Ra, rai ∈ Θi}, we compute a “distance” with the
appropriate feature of the instance under classification.

di(rai,mi) =
∑

xj
i∈mi

|rai ∩ xi
i|

|rai ∪ xi
i|

× M(xj
i ) (11)

where i ∈ 1..N and N is the number of features. Thus, the discount factor is
calculated as:

df(R,X) =
∏

rai∈Ra

di(rai,mi) (12)

Next, each rule is transformed into a BBA according to the FoD of the class
attribute:

⎧
⎨

⎩

mΘC

R ({Rc}) = df × Confidence(R);
mΘC

R ({ΘC \ Rc}) = df × (1 − Confidence(R));
mΘC

R ({ΘC}) = 1 − (mΘC

R ({Rc}) + mΘC

R ({ΘC \ Rc})).
(13)

where Rc is the conclusion part of the rule. Finally, the concluded BBAs are
fused following the Dempster rule of combination [14]:

mρX
= ⊕n

i=1m
ΘC

Ri
(14)

where i ∈ 1..|ρX |. In the last stage of this process, the class label is decided based
on the pignistic probability computed from the final BBA (obtained from Eq. 14).

BetP (A) =
∑

B⊆Θ

m(B) × |A ∩ B|
|B| ∀A ⊆ Θ (15)

4 Experiments and Results

To assess the performance of our proposed method, we conducted several exper-
iments on different data sets. We developed the EviRC algorithm [8] under
Python and we compared it with some existing methods.

Data Sets: To lead the experiments, we used four well-known data sets from
the UCI benchmarks repository [21]: Balance Scale, Iris, Titanic and Vertebral.
These data sets are perfect. To evaluate the performance of our proposed method,
and due to the lack of real evidential data sets, we infect them with imperfec-
tion. For each feature, we introduce partial ignorance at a degree denoted u%.
This means that the feature value will be transformed into a normalized BBA
where the mass of the original value is (100 − u)% and where the remaining u%
is assigned to the frame of discernment.
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(a) Balance Scale dataset
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(d) Vertebral dataset

Fig. 1. The accuracy of classification methods on several data sets

Experimental Setup and Results: To perform the different experiments, we
deal with a commonly used technique known as the B-Fold Cross-Validation.
In this setup, we fix the value of B to 5. To evaluate the performance of our
proposed method in comparison to the existing ones namely EvAC-Generic [26],
EvAC-Precise [26], and DS-ARM [18], we conducted several experiments on the
selected data sets (Data sets are available online on: https://bit.ly/3ezGSTP).
In each experimentation, the support and confidence thresholds are respectively
fixed to 20% and 50%. Then, the uncertainty degree (u) is varied from 0%
to 30%. Figure 1 depicts the accuracy of several algorithms when varying the
uncertainty degree on different data sets. From the Fig. 1, we observe that EviRC
outperforms the other classification methods in 80% of the data sets when data
are imperfect. These results confirm the importance of the pruning phase to
build an accurate classifier. Indeed, considering all extracted rules in both EvAC
(Generic and Precise) and DS-ARM introduces noise to the built classifier which
affects the classification accuracy. Also, the rule selection strategy employed
in EviRC contributes in improving its accuracy in comparison to the others
methods. From Fig. 1, we note that DS-ARM is worse than EvAC and/or EviRC.
This is explained by the fact that DS-ARM doesn’t remove redundant rules when
building the associative classifier. However, Fig. 1(d) revealed a weird behaviour
of our proposed method in comparison to EvAC and DS-ARM. This may be
related to the number of features describing the data set or even the features’

https://bit.ly/3ezGSTP
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domains. Hence, investigating the impact of feature size and domains will be
considered in an extended version of this work.

5 Conclusions and Further Research

This paper considers the problem of multi-rules based classification for eviden-
tial data. In the first part of this analysis, we outlined the problem statement of
the associative classification. Then, we presented our proposed method, denoted
EviRC, that classifies evidential data using multiple association rules. The con-
ducted experiments show an interesting behavior of EviRC compared to the
existing methods. In the future, we intend to improve the rule pruning by con-
sidering further interestingness measures and evaluate the effectiveness of our
introduced method when the class label presents imperfect information.
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Abstract. Increasing numbers of undecided individuals in pre-election
polls throughout western democracies impose a severe challenge for elec-
tion forecasting. While conventionally these voters are neglected rely-
ing on presumably unjustified assumptions, we sketch more nuanced
approaches incorporating the potential valuable information in a set-
valued manner. Hereby, each undecided voter is represented by the set
of parties he or she is incapable to choose from. This set, containing
one true, but unknown element, enables modelling under so-called epis-
temic imprecision. Depending on further assumptions, (imprecise) tran-
sition probabilities between the options can be estimated in order to
achieve election forecasting. Starting with Dempster’s upper and lower
probabilities as the most cautious approach, two further ideas are intro-
duced, providing initial methodology. Furthermore, extensions including
Bayesian modeling are sketched. The theory is applied using data from
the German Longitudinal Election Study for forecasting concerning the
most recent German federal election of 2017. The results are promising,
laying the groundwork for further research.

Keywords: Epistemic modeling · Election forecasting · Coarse data ·
Partial identification · Survey methodology

1 Introduction

If we think of an election in a multiparty system as a choice of individuals
i ∈ {1, · · · , N} between the options {1, · · · , j} = S, a decided individual in a pre-
election poll is capable to single out one element of S as his or her choice, while
an undecided is not. The position of the undecided can therefore be accurately
represented by a nonempty subset l ⊂ S containing all parties the individual is
pondering between, hence all options that cannot be excluded.

One advantage of this set-valued information is the rather practical character,
as most individuals are capable to state this subset l precisely [8, p. 256 f],
providing the opportunity to obtain this information by a pre-election survey.
The idea of set-valued response in election choice was recently introduced by [8]
in a political science framework, arguing that stepwise exclusion of options is the
c© Springer Nature Switzerland AG 2020
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natural process of human choice [8, p. 256]. Furthermore, in her work about set-
valued data, Plass [9, p. 2–3] argues that providing set-valued response categories
might reduce nonresponse substantially. In conventional analysis, the undecided
are overall neglected [11, p. 265], not only relying on disputable assumptions
about the left out individuals but also missing out on valuable information about
their position. Moreover, concerning the question which combination of parties
will constitute the government, coalitions can be represented more directly by
set-valued information. Despite these reasons, set-valued data is regrettably not
yet included in most surveys but first approaches already exist as can be found
in [8,9,11].

The subset l, further on called consideration set following [8], determining
the undecided individual’s position, can be seen as a disjunctive random set, con-
taining one ill-known true value. (e.g. [3]) Thus, to predict the undecided’s choice
on election day, we can develop models under epistemic imprecision, following
[3, ch. 2], using the coarse information together with assumptions and further
sources of information. A wide range of approaches are possible, reaching from
Dempster’s so to say agnostic bounds [4] up to point-valued estimation, rely-
ing on strong assumptions. We develop and apply three approaches weighting
the justifiability of assumptions with the precision of the results and introduce
methodology for overall election outcome forecasting using transition probabili-
ties. We hereby break first ground introducing epistemic methodology to election
forecasting.1

This paper is structured as follows: First, we briefly recall the underlying
epistemic theory in Sect. 2.1 before introducing the general problem in Sect. 2.2
and three modeling approaches in Sect. 2.3. In Sect. 3, we apply the developed
approaches to the most recent German federal election. The concluding remarks
reflect on the approaches and future possibilities.

2 Methods

2.1 The Epistemic View of Set-Valued Information

Given the accurate, set-valued representation l ∈ P(S) = 2S of an undecided
individual with P(S) as the power set of the parties to choose from, there exists
one true, yet unknown element l ∈ l representing the undecided’s choice on
election day. The consideration sets l result from individuals excluding their
neglectable options, leading to a subset, which by definition contains the true
element l. Hence, l is a set consisting of distinguishable and finite elements
containing incomplete information about the true value of interest l. This is the
so-called epistemic view of set-valued information, following [3]. While we are
looking for the random variable Y (ω) mapping from an underlying space Ω to
S, we are only provided with incomplete information in the sense that ∀ω ∈ Ω

1 In that sense we contribute to a solution of a “chicken-egg dilemma” (Fink), result-
ing from the lack of surveys including the set-valued question as well as missing
methodology, providing applicable approaches for such data.
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only Y (ω) ∈ l = Y(ω) is observable, where Y is a multi-valued mapping Ω → 2S

representing the set of mappings {Y : Ω → S, Y (ω) ∈ Y(ω) ∀ω}. [1, p. 1504]
We thus build an epistemic model of the random variable Y (ω), while for the
undecided all that is known is Y (ω) ∈ l.

The realization l can therefore be seen as a realization of an ill-known random
variable incompletely described by a coarse version in the form of the set l. Due
to the lack of information about the true value l, prediction approaches have to
incorporate further information and assumptions in order to obtain more concise
or even point-valued results. By [3, p. 1503] this is described as representing
both reality as well as knowledge of reality, explicitly accounting for the limited
precision. Thus, one has to ponder between imprecise results and the justifiability
of assumptions leading to more precise statements.2

2.2 From Set-Valued Information to Forecasting

Each individual from the sample is determined by both its consideration set
l ∈ P(S) and its co-variables X = x in some space X, assessing their personal
characteristics. The individual’s consideration set from the pre-election survey
is written as an event {Y = l} with l ∈ P(S) and his or her possibly unknown
choice on election day {Y = l} with l ∈ S. Given the consideration sets of
participant i ∈ {1, · · · , n} in the pre-election poll, we want to obtain the expected
frequency of each element of S within the population, with latent probability
distribution P (Y = l) for all l ∈ S, which is a multinomial distribution over
the state space with |S| − 1 parameters. The observations Yi are assumed to
be identically and independently distributed and P (Y = l) can be written in
respect to the consideration sets and co-variables as

P (Y = l) =
∑

(l,x) ∈ (2S×X)

P (Y = l,Y = l,X = x) = (1)

∑

(l,x) ∈ (2S×X)

P (Y = l|Y = l,X = x)︸ ︷︷ ︸
Transition Probabilities

·P (Y = l|X = x)︸ ︷︷ ︸
Consideration Sets

· P (X = x)︸ ︷︷ ︸
Co−V ariables

(2)

The probability distribution can therefore be factorized into three parts. First,
the from now on so-called transition probabilities, determining the probability to
vote for a specific party given the consideration set and co-variables. Second, the
probability of the consideration sets given the co-variables and third, the one for
the co-variables. While the second and third part can be directly estimated from
the data of the pre-election survey alone, the first requires further assumptions
and/or sources of information, as the eventual choice l from the options l is not
observable amongst the undecided. For the decided individuals, the transition
probabilities are naturally one, while for the undecided either point- or interval-
valued estimation is necessary. The transition probabilities can be seen as a
further (imprecise) multinomial distribution over the individual’s consideration
set.
2 See also Manski’s Law of Decreasing Credibility [7, p. 1].
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There are different directive questions concerning the estimation process
of the transition probabilities resulting in several modeling approaches. First,
one has to ponder whether results are obliged to be point-valued or not. Sec-
ond, if the pre-election poll remains the only source of data and third, which
assumptions are made in order to determine estimation. In the following section,
three approaches relying on different constellations of these issues are discussed.
Hereby, basic methodology to brake first ground is introduced and an outlook
to improve these ideas is provided.

2.3 Approaches to Estimate Transition Probabilities

Starting with the idea of Dempster [4] as the first approach, only to use infor-
mation available in the data alone, not relying on further assumptions nor infor-
mation, the transition probabilities reflect the entire ambiguity of the individuals.
Thus, as no information is available about which element of l constitutes the true
one, for every l consisting of more than one element the transition probabilities
take the whole range between 0 and 1.3 Combination with the decided individu-
als and weighting according to Eq. (2) leads to interval-valued forecasting which
tends to be wide. Hence, these so-called Dempster’s bounds reach from worst-
to best case scenario for each party, while the range of the interval reflects the
ambiguity concerning the respective party. Even if the results might not be pro-
viding sufficient information depending on the question at hand, all information
of the dataset that can be used, not relying on any assumption, is used in the
process. The hereby estimated bounds can be seen as the extreme case, resulting
from the most cautious way of modeling, leading to rather imprecise results.

As the other extreme, depending on the question at hand and preference,
results are required to be point-valued, forcing overall stronger assumptions.
Hereby, the parameters of the transition probabilities have to be estimated in a
point-valued way to ensure overall point-valued forecasting.

As there is no information about the undecideds’ choice provided, for the
second approach we fall back on the decided individuals. Using the decided,
the probability distribution P (Yi = l|Xi = xi, Id = 1) can be estimated from the
data, with Id as the indicator function for being decided. To enable point-valued
estimation we then assume that, given the co-variables, the undecided choose
identical to the decided. The consideration set hereby becomes the restriction
of possible outcomes, while the tendency towards a party of the consideration
set is predicted using the decided and co-variables as underlying data. Those
predictions of affinity towards the parties of the undecided have to be scaled
to comply with the multinomial distribution, excluding all options not in l.
Therefore, for all l ∈ l the predicted affinity towards one party is divided by the
sum of all the ones in the consideration set resulting in

P̂ (Y = l|Y = l,X = x) =
P̂ (Y = l|X = x, Id = 1)

∑
a∈l P̂ (Y = a|X = x, Id = 1)

(3)

3 For more details and examples see for instance [11, p. 261] or [4, p. 325 ff].
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leading to point-valued identification of every parameter.4 There are several
ways to estimate the conditional distributions for each individual necessary for
Eq. (3), while we choose the most common approach of linear logit models (e.g.
[5, p. 238 ff.]) Even though it is not impossible that the undecided, given the
co-variables, behave in average identical to the decided while only excluding
options outside the consideration set, some structural differences are likely to be
ignored. Nevertheless, it can be argued that the drawbacks from neglecting the
undecided overall outweighs this strong assumption.

The third approach includes information from the previous election, using
data to estimate the transition probabilities of the former election P (Y + =
k|Y+ = k,X+ = x+), available within the post-election poll, with + denoting
the previous election. Incorporating data from different surveys is controversial,
as both the political landscape and the selection of participants might differ
severely. In order to obtain point-valued estimates with this information alone,
it has to be assumed that the transition probabilities, given the co-variables,
are constant between the elections. As this assumption is likely to be violated,
there are reasons to rather incorporate the information in another (possibly
hierarchical) way together with other sources of information. Nevertheless, point-
valued forecasting can be achieved at the cost of these drawbacks.

These three approaches take first steps towards election forecasting includ-
ing the undecided, while for further research each of them can be further
developed and improved. Prior information to facilitate the estimation process
in the form p(Y = l|Y = l) could be incorporated in the analysis, as well as set-
valued prior information could be used to achieve more plausible interval-valued
results. One could assume, building on the third approach, that given specific
expert knowledge, the transition probabilities are constant between the elections.
Also complex hierarchical Bayesian methodology using the sources of informa-
tion from the decided individuals, the undecideds’ choice of the former period
and (set-valued) expert knowledge is possible. A natural way to make such point-
valued approaches more robust would be to rely on appropriate neighbourhood
models. Another instance where including expert knowledge could be important,
is to either weaken assumptions or to deal with the missing not at random struc-
tures within the nonresponse of the survey. The three original approaches are
computationally rather simple, but even the more complex methods suggested
should still be scalable, as typical electoral polls rarely exceed 2000 participants.

3 Application

3.1 The Data from GLES

We applied the ideas developed above for the most recent German federal elec-
tion of 2017 using the state of the art pre- and post-election surveys provided

4 Note although intuitively this is a kind of random coarsening assumption, it differs
from the usual CAR conditions.
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for scientific use by the GLES.5 Set-valued response is regrettably not directly
included in this survey, but the assessment of the parties by the individuals as
well as their statement about the certainty of their choice are, enabling construc-
tion of consideration set as described by [11, p. 261]. To facilitate a proof of con-
cept of our methodology, we only focus on the most common case of indifference
between exactly two parties as well as we only use the two binary co-variables
sex and residence in east or west Germany.6 Moreover, we examine the so-called
second vote7 for the six main parties anticipated to reach at least one seat in the
parliament, not including non-voters and small parties. Furthermore, structures
of the nonresponse in the dataset are not explicitly adjusted for.

Fig. 1. Overview of occurrences of different groups amongst the participants questioned
for the 2017 federal election by the GLES.

From the overall 1774 individuals used, 581 are undecided between exactly two
parties, constituting about a third of the sample, while from the overall survey
11.87% were undecided between more than two options. Figure 1 illustrates the
number of observations within the undecided and decided voters concerning the
specific groups.

3.2 Results of the Different Approaches

We apply all three approaches discussed in Sect. 2.3 calculating overall forecasts
according to Eq. (2), reliant on the same underlying dataset. The results are
illustrated in Fig. 2 providing an overview of differences and similarities as well
as general tendencies within the approaches.
5 German Longitudinal Election Study: Pre- and post- election cross-section available

under https://www.gesis.org/wahlen/gles/daten; last visited: 13.07.20.
6 We are aware that two variables do not capture the entire structural properties of

the individual in our proof-of-concept model, as should be by the co-variables in an
ideal scenario to improve estimation for approaches 2 and 3.

7 Vote for the party, which is usually used for forecasting.

https://www.gesis.org/wahlen/gles/daten
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Fig. 2. Results from epistemic election forecasting of the three approaches based on
the same underlying observations.

For the interval-valued Dempster bounds, upper and lower probabilities are illus-
trated with two separated plots. Hereby, the entire ambiguity is reflected between
the upper and lower bounds, thus enclosing the other two approaches and show-
ing the strongest deviation from conventional approaches. The second approach
(estimation based on the decided) and the third (assuming constant transition
probabilities between this and the last election) seem roughly similar here. The
party CDU has by far the highest estimates throughout all approaches, but
varies the most between upper and lower bounds. In contrast, the AfD has the
lowest turnout with diminishing differences between the approaches. As the non-
response structures are not adjusted for, the consideration sets are constructed
and the variable selection merely served as a proof of concept, the results should
be treated with caution concerning their political implications and validity.

Overall, the methodology has proven to be straightforwardly applicable pro-
ducing plausible, but not yet sufficient results for final election outcome fore-
casting. Adjustments, necessary due to the missing not at random structures
through weighting or expert knowledge and incorporation of further sources of
information should yield substantially improved results.
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4 Concluding Remarks

In this paper we introduced ideas in order to include the otherwise wasted infor-
mation of the undecided from pre-election polls, by using their consideration
sets. Several approaches are possible, weighting the precision of the results with
the justifiability of the assumption, resulting in point- or interval-valued fore-
casting. We introduced and applied three approaches constituting possible direc-
tions, with the most cautious Dempster bounds and two point-valued ones based
on different strong assumptions. Reliant on constructed consideration sets and
simplifications, our forecasts are not yet perfected, but the potential is con-
siderable. The approaches can be further developed and improved, as already
sketched in Sect. 2.3, by making use of supplementary sources of information like
expert knowledge or previous elections, for example, in an hierarchical Bayesian
manner with imprecise probabilities. One further natural question would be the
relationship with other approaches dealing with imprecise data using likelihood
or loss minimisation like [2,6,10]. In contrast to conventional methodology, the
approaches discussed here explicitly address and incorporate the ambiguity of
the individuals by making use of their consideration sets, introducing new ideas
to election forecasting in times of increasing relevance of undecided voters.

Acknowledgement. We are very thankful to the four anonymous reviewers for their
helpful remarks.
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11. Plass, J., Fink, P., Schöning, N., Augustin, T.: Statistical modelling in surveys with-
out neglecting ‘The undecided’. In: Augustin, T., Doria, S., Miranda, E., Quaeghe-
beur, E. (eds.) ISIPTA 2015, pp. 257–266. SIPTA (2015)



Multi-dimensional Stable Matching
Problems in Abstract Argumentation

Francesco Santini(B)

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Perugia, Italy

francesco.santini@unipg.it

Abstract. We show how different multi-dimensional extensions of the
stable matching (or marriage) problem can be represented by Abstract
Argumentation frameworks: the set of stable extensions exactly corre-
sponds to the set of solutions in the original problem. We show how to
allow incomplete preference lists and ties in the same problems, and con-
sequently frameworks. All the proposed problems are NP-Complete or
NP-Hard: efficient stable-semantics solvers can help their solutions, and
in general cross-fertilisation can benefit both the fields.

1 Introduction

In his pioneering work on Abstract Argumentation [5], P.M. Dung set a wide
scenario by connecting stable models in Logic and Game Theory to Abstract
Argumentation Frameworks (AAF s), which are essentially directed graphs where
arguments are represented as nodes, and the attack relation is represented by
edges. From such a simple abstraction, it is possible to capture important prop-
erties in many related fields.

The Stable Matching (or marriage, SM ) problem [9,10] is exactly one of
such areas. It is the problem of finding a stable matching between two equally
sized sets of elements given an ordering of preferences for each element. For
example, given the sets of men and women, a match is stable when there does
not exist any man-woman marriage by which both man and woman would be
individually better off than they are with the person to which they are currently
matched. Stable matchings correspond to stable extensions if an AAF is correctly
generated from the given SM problem [5].

In 1976, D. Knuth proposed twelve open questions on the SM problem [11],
one of which required to generalise it from two to three parties, thus obtaining a
3-dimensional SM. The proposed entities to be matched were split into women,
men, and dogs. Since Knuth did not specify any precise definition of “preference”
or “blocking triples”, one can conceive a number of ways to define such a problem.

In this paper we extend the SM-to-AAF encoding in [5] with the purpose to
deal with different definitions of n-dimensional SM (nDSM ), where n ≥ 2. We
also consider incomplete lists of preference and ties. The cross-fertilisation can
be fruitful in several ways: Argumentation-based solvers, which are constantly
c© Springer Nature Switzerland AG 2020
J. Davis and K. Tabia (Eds.): SUM 2020, LNAI 12322, pp. 251–260, 2020.
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increasing their performance [1],1 could be tested and compared on frameworks
generated from SM problems, and complexity results about nDSM may suggest
the complexity of Argumentation-related problems on different graph topologies
(see Sect. 5).

2 Background

In this section we report the necessary background information about AAF s and
SM s.

Definition 1 (Abstract Frameworks [5]). An Abstract Argumentation
Framework (AAF) is a pair 〈Args, R〉 of a set Args of arguments and a binary
relation R on Args, called attack relation. ∀ai, aj ∈ Args, aiRaj (or R(ai, aj))
means that ai attacks aj (R is asymmetric).

A semantics is the formal definition of a method (either declarative or pro-
cedural) ruling the argument evaluation process. In the extension-based app-
roach, a semantics definition specifies how to derive a set of extensions from an
AAF, where an extension B of an AAF 〈Args, R〉 is simply a subset of Args. In
Definition 2 we define conflict-free sets:

Definition 2 (Conflict-free sets [5]). A set B ⊆ Args is conflict-free iff no
two arguments a and b in B exist such that a attacks b.

This is what we need to define the only semantics on which we focus in this
paper:

Definition 3 (Stable semantics [5]). A conflict-free set B ⊆ Args is a stable
extension iff for each argument which is not in B, there exists an argument in
B that attacks it.

In [5] P.M. Dung shows how his theory based on Abstract Argumentation
can be used to investigate the logical structure of the classical SM problem
solutions. An instance of the classical SM problem [9] comprises a set |M | = n
of n men and a set |W | = n of women, where each of these individuals ranks
all the members of the opposite sex in a strict linear order (without ties). All
men and women must be matched together in a couple such that no element
x of couple ci prefers an element y of different couple cj that also prefers x:
this statement represents the overall stability condition. If such an (x, y) pair
exists in the match, then it is defined as blocking ; a matching MT is stable if no
blocking pair exists.

To assemble a framework representing an SM problem, the set Args has
cardinality |M | · |W | = n2, and each argument is labelled by using an element
from M , and one from W . With wi �k wj we mean that man mk prefers woman
wi to wj (the same holds for women). In the following we will also use p(mi, wj)
to denote the rank of wj in the preference list of mi: e.g., p(mi, wj) = 1 means
wj is the most preferred woman for mi.
1 See also the International Competition on Computational Models of Argumentation

(ICCMA) page: http://argumentationcompetition.org/index.html.

http://argumentationcompetition.org/index.html
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Definition 4 (SMs and AAFs [5]). Given an SM, a corresponding AAF
is Args = {(m × w) | m ∈ M,w ∈ W}, and R ⊆ Args × Args such that
R((mk, wl), (mi, wj)) iff

– i = k and wl �i wj, or
– j = l and mk �j mi.

As a result, the set of stable extensions and the set of stable marriages cor-
respond.

Theorem 1 (Stable extensions/marriages [5]). A set B ⊆ Args represents
a solution to the SM problem iff B is a stable extension of the corresponding
AAF.

In Fig. 1 we report in tabular form the list of preferences for both men and
women. Figure 2 encodes the SM problem in Fig. 1 as proposed in Definition 4.
The only stable extension is {(m1, w2), (m2, w1)}, which consequently represents
the only stable marriage.

w1 w2
m1 1 2
m2 1 2

m1 m2
w1 2 1
w2 1 2

Fig. 1. An SM problem given in tabu-
lar form, with men preferences on the left
and women preferences on the right, e.g.,
p(m1, w1) = 1 and p(w2,m1) = 2.

m1w1

m1w2

m2w1

m2w2

Fig. 2. The AAF encoding of the SM
problem in Fig. 1. The only stable
extension is {(m1, w2), (m2, w1)}.

3 Encoding Multi-dimensional Matching Problems

In this section we propose three different extensions of the SM problem, first
to dimension three, and then to dimension n. We show how to obtain an AAF
whose stable extensions represent the solutions of such problems.

3.1 3-Gender Stable Matching Problem

An instance of the 3-gender Stable Matching Problem (3GSM ) involves three
finite sets X, Y , and Z. These sets have equal cardinality k, and their intersection
is the empty, i.e. X∩Y, Y ∩Z,X∩Z = ∅. A match in 3GSM is a complete match
of the three sets, that is a subset of X ×Y ×Z with cardinality k such that each
element of X, Y , and Z appears exactly once. For each element x of X, we define
its preference, denoted by �x, to be a linear order on the elements of Y ×Z. The
meaning of (y1, z1) �x (y2, z2) is that x prefers to be matched to (y1, z1) than
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to (y2, z2). We can analogously define �y and �z, respectively over the elements
in X × Z and X × Y . It is known that some instances of 3GSM do not have
stable matchings, but in general this problem may have more than one solution;
moreover, deciding if 3GSM has at least a matching is NP-complete [12].

A matching MT is unstable if there exists a triple t ∈ X×Y ×Z which is not
in MT, and each component of t prefers the pair of remaining components to the
pair it is matched with in MT. Formally, a stable match is a match MT, such that,
for all (x, y, z) �∈ MT and for the triples (x, y1, z1), (x2, y, z2), (x3, y2, z) ∈ MT ,
it holds that (y1, z1) �x (y, z), or (x2, z2) �y (x, z), or (x3, y3) �z (x, y).

To encode such a problem into a corresponding 〈Args, R〉, we propose the
classical example with men/women/dogs, that is X = M = {m1,m2}, Y =
W = {w1, w2}, Z = D = {d1, d2}, and the preference lists in Fig. 3.

Definition 5 (3GSM and AAF). Given a 3GSM problem, a corresponding
AAF is defined by Args = {(m,w, d) | m ∈ M,w ∈ W,d ∈ D} and R ⊆
Args × Args, such that R((mg, wh, di), (mj , wk, dl)) iff

– g = j and (wh, di) �g (wk, dl), or
– h = k and (mg, di) �h (mj , dl), or
– i = l and (mg, wh) �i (mj , wk).

(w1,d1) (w1,d2) (w2,d1) (w2,d2)
m1 3 2 1 4
m2 2 1 4 3

(m1,d1) (m1,d2) (m2,d1) (m2,d2)
w1 1 2 3 4
w2 2 4 3 1

(m1,w1) (m1,w2) (m2,w1) (m2,w2)
d1 3 2 1 4
d2 2 1 4 3

Fig. 3. A 3GSM problem given in tabular form, with preferences of men/women/dogs.

(m1,w1,d1) (m1,w1,d2) (m1,w2,d1) (m1,w2,d2)

(m2,w1,d1) (m2,w1,d2) (m2,w2,d1) (m2,w2,d2)

Fig. 4. The AAF encoding of the 3GSM problem in Fig. 3.
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The stable extensions are {(m1, w2, d1), (m2, w1, d2)}, {(m1, w2, d2), (m2,
w1, d1)} and {(m1, w1, d1), (m2, w2, d2)}, and they have been computed using
ConArg [3,4].2 Theorem 2 formally links the solutions of both the problems.

Theorem 2. A set B ⊆ Args represents a solution of a 3GSM problem iff B is
a stable extension of the corresponding AAF as defined in Definition 5.

Proof. (⇒) Let B be a solution of the 3GSM. Since attacks in Definition 5 are
only posed between arguments with the same m/w/d, B is consequently conflict-
free. Let us now suppose (mg, wh, di) �∈ B. This means there exists (mg, wk, dl)
such that (wk, dl) �h (wh, di), or (mj , wh, dl) such that (mj , dl) �h (ng, di), or
(mj , wk, di) such that (mj , wk) �i (mg, wh). Therefore, according to Definition 5
(mg, wh, di) is attacked by at least one of such arguments: all arguments outside
B are attacked by B means B is stable.

(⇐) Let B be a stable extension. We also suppose that B does not represent
a total function of M to W × D (or from W to M × D or from D to M × W ).
Consequently, we derive that there exists (mg, wh, di) ∈ Args \ B such that mg

is not matched with any (wh, di): this means that (mg, wh, di) is not attacked
by B, which is a contradiction because B is stable. Hence B corresponds to a
total function: all men, women, and dogs in 3GSM are matched. In addition, by
defining the attacks as in Definition 5, the stability of B enforces the fact there
does not exist a triple t = (mg, wh, di) ∈ M × W × D such that is t �∈ B and
each component of t prefers the pair that it is matched with in t to the pair that
it is matched with in B.

From the properties of the related 3GSM problem it is easy to prove that:

Proposition 1. An AAF assembled as proposed in Definition 5 may have no
stable extension or several of them.

The problem in this subsection can be extended to deal with nGSM problems.

Proposition 2. Given n genders, Definition 5 can be straightforwardly extended
to let an AAF represent an nGSM, with n > 3. The set of stable extensions
corresponds to the solution of such an nGSM as well.

Proof (Sketch of). It is possible to extend Definition 5 in this way: the set of argu-
ments can be modelled by Args = {(x1, x2, . . . , xn) | x1 ∈ X1, x2 ∈ X2, . . . , xn ∈
Xn}, and the conditions on the attack relationship are n, one for each gender.
The proof of Theorem2 can be accordingly extended by considering n compo-
nents for a tuple t.

3.2 3-Person Stable Assignment Problem

The 3-person stable assignment problem (3PSA) is a three-dimensional gener-
alisation of the stable roommate problem [8], which partitions 2n persons into

2 ConArg Web interface: http://www.dmi.unipg.it/conarg/.

http://www.dmi.unipg.it/conarg/
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n pairs of stable roommates: differently from stable marriages, any two ele-
ments of a non-bipartioned set can be matched. Also this problem has been
already represented as an AAF by P.M. Dung in [5], with the purpose to show
that a stable extension may not exist in some frameworks. A 3PSA instance
of size n involves a set S of cardinality 3k, where k is an integer. The pref-
erence of s ∈ S, denoted �s, is a linear order on the set of unordered pairs
{{s1, s2} | s1 �= s2 and s1, s2 ∈ S \ {s}}.

A stable assignment MT in 3PSA is a partition of S into k disjoint three-
element subsets, such that for all {s1, s2, s3} �∈ MT and for the subsets
{s1, s11, s12}, {s2, s21s22}, {s3, s31, s32} ∈ MT , either {s11, s12} �s1 {s2, s3},
{s21, s22} �s2 {s1, s3}, or {s31, s32} �s3 {s1, s2}. The NP-completeness of 3PSA
follows from that of 3GSM because the former is a generalisation of the lat-
ter [12]; for the same reason, even in this case a solution may not exist.

Definition 6 (3PSA and AAF). Given a 3PSA problem over a set S of car-
dinality 3k, a corresponding AAF is defined by Args = {{q, r, s} | q, r, s ∈ S},
and R ⊆ Args × Args such that R({qf , rh, si}, {qj , rk, sl}) iff

– f = j and {rh, si} �f {rk, sl}, or
– h = k and {qf , si} �h {qj , sl}, or
– i = l and {qf , rh} �i {qj , rk}.

Similarly to 3GSM, even for the frameworks based on 3PSA we can derive
the same conclusions.

Theorem 3. A set B ⊆ Args represents a solution of a 3PSA problem iff B is
a stable extension of the corresponding AAF as defined in Definition 6.

Proposition 3. Given a set S of cardinality nk, Definition 6 can be straightfor-
wardly extended to let an AAF represent an nPSA, with n > 3. The set of stable
extensions corresponds to the solution of such an nPSA as well.

3.3 Cyclic Preferences

In an instance of the three-dimensional stable matching problem with cyclic pref-
erences (c3DSM ), we have three disjoint sets of entities X, Y and Z such that
|X| = |Y | = |Z| = n (we can consider them as genders, for example). Each agent
x ∈ X has a total order of the agents in Y according to the preference of x. Simi-
larly, each agent y ∈ Y has a total order of the agents in Z, and each agent z ∈ Z
has a total order of the agents in X: this is the reason why preferences are cyclic.
A triple (x, y, z) �∈ MT , is blocking if (x, y1, z1), (x2, y, z2), (x3, y3, z) ∈ MT and
y �x y1, z �y z2, and x �z x3.

A match M is a solution of c3DSM if there exists no blocking triple for
MT. We know from [7] and [13] that if n = 3, 4, 5 this problem admits a stable
matching, and from [13] that if n = 3, it admits two solutions. Moreover, the
complexity of this problem is still an open question [7,13]. As for the other
problems in this section, we can define an AAF which represents a c3DSM
problem.
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Definition 7 (c3DSM and AAF). Given a c3DSM problem, a corresponding
AAF is defined by Args = {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z} and R ⊆ Args ×Args,
such that R((xg, yh, zi), (xj , yk, zl)) iff

– g = j and yh �g yk, or
– h = k and zi �h zl, or
– i = l and xg �i xj.

Even for this extension, similar formal results can be obtained as in previous
subsections.

Theorem 4. A set B ⊆ Args represents a solution of the c3DSM problem iff B
is a stable extension of the corresponding AAF as defined in Definition 7.

Proposition 4. Given n genders, Definition 7 can be straightforwardly extended
to let an AAF represent an cnDSM, with n > 3. The set of stable extensions
corresponds to the solution of such an cnDSM as well.

4 Incomplete Preference Lists and Ties

The original SM problem has been extended in the literature in several ways [9]
in order to more naturally model the preferences of the elements in the considered
set.

A different variant of the SM problem allows incomplete preference lists: an
SM problem has incomplete lists (SMI ) if an individual can exclude a partner
whom she/he does not want to be matched with [9]. In practice some preferences
are just omitted. Therefore, function p is partial: there exists some (mi, wj) for
which p is not defined, i.e., p(mi, wj) ↑ and/or p(wj ,mi) ↑.3 A further extension
is represented by preference lists that allow ties, i.e., in which it is possible to
express the same preference for more than one possible partner: the problem is
usually named as “SM with ties” (SMT ) [9].

We define 3GSMIT as the 3GSM problem including incomplete preference
lists and ties. In the same way as in Sect. 3 we can model this problem with an
AAF.

(w1,d1) (w1,d2) (w2,d1) (w2,d2)
m1 2 1 − 3
m2 2 1 4 3

(m1,d1) (m1,d2) (m2,d1) (m2,d2)
w1 1 2 3 3
w2 2 4 3 1

(m1,w1) (m1,w2) (m2,w1) (m2,w2)
d1 3 2 1 3
d2 2 1 − 3

Fig. 5. A 3GSMIT problem given in tabular form, with men/women/dogs preferences.

3 Conversely, p(mi, wj) ↓ and/or p(wj , pi) ↓ if p is defined on that couple.



258 F. Santini

(m1,w1,d1) (m1,w1,d2) (m1,w2,d2)

(m2,w1,d1) (m2,w2,d1) (m2,w2,d2)

Fig. 6. The AAF from the 3GSM problem with incomplete preferences and ties in
Fig. 5.

Definition 8 (3GSMIT and AAF). Given a 3GSMIT problem, a correspond-
ing AAF is Args = {(m,w, d) | m ∈ M,w ∈ W,d ∈ D, p(m,w) ↓ ∧p(w,m) ↓
∧p(m, d) ↓ ∧p(d,m) ↓,∧p(w, d) ↓ ∧p(d,w) ↓} and R ⊆ Args × Args, s.t.
R((mg, wh, di), (mj , wk, dl)) iff

– g = j and (wh, di) �g (wk, dl), or
– h = k and (mg, di) �h (mj , dl), or
– i = l and (mg, wh) �i (mj , dk).4

In Fig. 5 we report a modified version of the 3GSM problem in Sect. 3.1: “−”
means a preference is not defined, and now we also have some ties. The set of sta-
ble extensions in the encoded framework in Fig. 6 is different w.r.t. the result for
Fig. 4: besides {(m1, w2, d2), (m2, w1, d1)} and {(m1, w1, d1), (m2, w2, d2)} which
are maintained even for the AAF in Fig. 6, we have {(m1, w1, d2), (m2, w2, d1)}
instead of {(m1, w2, d1), (m2, w1, d2)} (both these arguments are not present in
Fig. 6 anymore).

Moreover, if from the same example we remove e.g. the preference towards
(m2, d2) from the list of w2, argument (m2, w2, d2) disappears from Fig. 6. In
this case the stable extensions are {(m1, w1, d2), (m2, w2, d1)} and {(m1, w1, d1)}.
The second stable extension is not a perfect match: e.g. m2 is not matched to any
couple. This requires us to redefine the correspondence between stable extensions
and solutions of 3GSMIT.

Theorem 5. Being 〈Args, R〉 a framework representing a 3GSMIT problem with
|M | = |W | = |D| = k, B is a stable solution of the problem iff there exists a
stable extension B ⊆ Args such that |B| = k and all mi ∈ M,wj ∈ W,dk ∈ D
appear as labels of arguments in B.

5 Conclusion

We have shown how different multi-dimensional extensions of the SM problem
can be modelled by AAFs whose stable extensions exactly cover the set of solu-
tions in the corresponding matching problem. The 2-sex encoding was originally
4 Note that the stability conditions now use � instead of � because of ties.
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proposed by P.M. Dung in [5]. These problems find real-world applications in
many fields, for instance the assignment of graduating medical students to their
first hospital appointments. nGSM, nPSA, and cnDSM are NP-complete prob-
lems or the complexity is still open. Solving them with an Argumentation-based
solver can be a convenient option [3,4].

In the future, studying the complexity of these problems can help in under-
standing the complexity of solving the stable semantics in n-partite frame-
works [6], and vice-versa. Moreover, we plan to use Weighted Abstract Argu-
mentation [2] to study and model strategies in Cooperative Games, from a more
general approach than just focusing on marriages. We think of using weights
on arguments/attacks to study (strictly or weakly) dominant strategies. Finally,
we plan to generate a synthetic benchmark of AAFs obtained from random n-
dimensional matching problems.
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Abstract. Formal Concept Analysis (FCA) theory relies on relational
representation called formal context. Dealing with incomplete represen-
tations is a challenging issue in FCA. In this spirit, a Kripke structure
has been proposed as semantics of three-valued Kleene’s logic for the
exclusive definition of validity and possibility of attribute implications.
Existing approaches consider possible intents as a set of attributes possi-
bly satisfied by a given set of objects (a possible extent is dually consid-
ered). It appears that such a consideration is counter intuitive and quite
misleading. Indeed, considering a possible intent as a whole granule of
knowledge, in which each attribute is possibly satisfied by “all” objects,
is a binding measure, in the sense that we cannot have possible interme-
diate granules of knowledge (i.e. intents or extents).

In this paper, we propose as a first stage, a new Kripke structure as
semantics of modal logic. This structure is based on a completely differ-
ent consideration, namely: “an object is a possible world”. As a second
stage, a distance δ that measures the implication strength o → Y (dually
p → X) between an object o and a set of properties Y (dually between
a property p and a set of objects X) is proposed. This distance which
is recursively defined upon the accessibility relation, allows to bring an
ordered set of possible worlds.

Keywords: Modal logic · FCA · Incomplete representations

1 Introduction

Formal concept analysis (FCA for short), introduced by Wille [17], provides
a theoretical framework that aims to extract interesting clusters (granules) of
knowledge called formal concepts and dependencies. These formal concepts are
obtained from a relational representation of data, called formal context. In clas-
sical setting, a formal context is a binary relationship between a set of objects
and a set of properties, usually represented by an object-property table. A table
entry may contain cross mark or blank mark, depending on whether an object
has the property in question or not. FCA considers Galois derivation operator
c© Springer Nature Switzerland AG 2020
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for extracting and organizing formal concepts on lattice called concept lattice.
A formal concept is then a pair of objects and properties that are in mutual
correspondence. The set of objects is the extent of the concept and the set
of properties is the intent. Formal Concept Analysis has gained recognition in
many areas due to its potential of knowledge discovery [15]. For several real life
applications criteria, the classical definition of FCA has been extended to many
forms. Fuzzy set theory has led to an extension of the original FCA setting by
allowing a fuzzy value for the proposition “object o has a property p”. Fuzzy
formal concepts result from such representation [2]. Recently in [8,9], Dubois
and Prade have proposed a possibility-theoretic reading of FCA. Besides the
operator of sufficiency, typically used in FCA, three other operators have been
proposed namely possibility, necessity and dual sufficiency [1,6,7].

In [5] authors treat in an exhaustive way, the several possible meanings of the
proposition objects “object o has a property p” as it may be uncertain, gradual,
interval-valued, unknown (missing) or even not applicable. Authors also notice
the suitable theoretical framework for each case.

Related to total ignorance in Formal Concept Analysis [3], a three-valued
Kleene’s logic is investigated to obtain as much of attribute implicational knowl-
edge about a given context. A Kripke structure [14], based on completion, repre-
sents semantics of this logic. In this approach [3], a possible intent is considered
as a set of properties possibly satisfied by a given set of objects (a possible extent
is dually considered).

It appears that such a consideration is counter intuitive and quite misleading.
Indeed, considering a possible intent as a whole granule of knowledge, in which
each attribute is possibly satisfied by “all” objects, is a binding measure, in
the sense that we cannot have possible intermediate granules of knowledge (i.e.
intents or extents).

The aim of this paper is to take benefits from the theoretical framework
supplied by modal logic (Possible Worlds Semantics) and its underlying notion
of accessibility relation. For this purpose, as first stage, we propose a new Kripke
structure for Formal Concept Analysis. This structure is based on a completely
different consideration, namely: “an object is a possible world”. As a second
stage, we propose to evaluate to which extent an object o satisfies a set of
properties Y , by evaluating the implication o → Y . The accessibility relation
is used to this purpose by means of the notion of transitions between possible
worlds.

The paper is organized as follows. Section 2 gives a survey on FCA and exist-
ing approaches related to incomplete formal contexts. Section 3 presents briefly
Logical Concept Analysis [10,11]. The proposed modal structure is presented
in Sect. 4. Whereas the next section gives an interpretation of such a structure
w.r.t. incomplete formal contexts. Endly, immediate perspectives are outlined.
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2 Formal Concept Analysis

2.1 Classical Setting

Formal concept analysis mainly relies on a formal context. In the classical setting,
a formal context is a triple K = (O,P, I) where I is a binary relationship
between a set O of objects and a set P of properties (also called attributes
in the sequel). Usually, a formal context is represented under the form of a
table which formalizes this relationship, the rows correspond to objects and the
columns to properties. The notation oIp means that object o ∈ O satisfies the
property p ∈ P. In [17], a Galois powerset derivation operator (.)Δ has been
considered for a given set of objects X (similarly for a given set of properties
Y ). This powerset operator is defined s.t. XΔ = {p ∈ P|∀o ∈ O (o ∈ X ⇒ oIp)}.
Similarly for a set of properties Y , we define the set Y Δ of objects that satisfy
all properties in Y s.t. Y Δ = {o ∈ O|∀p ∈ P (p ∈ Y ⇒ oIp)}.

A formal concept in K is a pair 〈X,Y 〉 such that XΔ = Y and Y Δ = X, where
X (resp. Y ) is called the extent (resp. the intent). The set of all formal concepts
in K equipped with a partial order ≤ defined by: 〈X1, Y1〉 ≤ 〈X2, Y2〉 iff X1 ⊆
X2 (or equivalently Y2 ⊆ Y1) forms a complete lattice, called a concept lattice.

2.2 Incomplete Representations

It is widely agreed that in many areas, the relationship between a given set of
objects and the set of their corresponding properties may be incomplete. For this
purpose, incomplete representations of formal contexts have been addressed by
Obiedkov [16], Burmeister et al. [3]. The authors have proposed to introduce a
third value, denoted “?”, in the formal context, resulting in an incomplete formal
context K? = (O,P, {+,−, ?}, I) (also called three-valued formal context). Let
o ∈ O and p ∈ P, the interpretation of the relationship I is given as follows:
(o, p,+) ∈ I means that the object o has the property p; (o, p,−) ∈ I means
that the object o does not have the property p and (o, p, ?) ∈ I means that it is
unknown, whether the object o has the property p or not.

In the proposal of Burmeister and Holzer [3], an incomplete formal con-
text is defined as the family of all complete Boolean formal contexts, called
completions, obtained by modifying unknown entries (o, p, ?) into known ones
((o, p,+) or (o, p,−)). For a set X ⊆ O of objects (dually for a set Y of prop-
erties), Burmeister and Holzer [3] have also proposed two powerset derivation
operators (.)� and (.)♦, defined as follows:

X� = {p ∈ P | (o, p,+) ∈ I for all o ∈ X}, is the set of all properties in P
applying to all objects in X.

X♦ = {p ∈ P | ((o, p,+) ∈ I or (o, p, ?) ∈ I) for all o ∈ X} is the set of all
properties in P possibly applying to all objects in X.

Applying (.)� (resp. (.)♦) powerset operator to a given set of objects X
generates a certain intent X� (resp. a possible intent X♦). Certain extents (resp.
possible extents) are dually defined in [3].
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3 Logical Concept Analysis

Logical models were studied to provide a rich and uniform representation of infor-
mation and its semantics. In this spirit, logical models have been considered for
FCA upon the hypothesis that the objects and the properties can be interpreted
by logical formulae. Ferré et al. have proposed a Logical Concept Analysis frame-
work where the powerset of the set of properties is considered as an arbitrary
logic, to which are associated a deduction relation [10,11]. It becomes that an
object satisfies a set of properties if we can infer the formula representing the
properties from the formula representing the object. The authors have refor-
mulated a formal context (O,P, I) by (O, 2P , i ), where 2P is a powerset of P
and i is a mapping from O to 2P defined by i(o) = {p ∈ P | oIp}. The auhors
have also proposed to consider two alternative powerset derivation operators σ
and τ , defined as follows for a set X (resp. Y ) of objects (resp. of properties):
σ(X) =

⋂

o∈O
i(o) and τ(Y ) = {o ∈ O | i(o) ⊇ O}.

Although Logical Concept Analysis approaches provide a rich representation
framework as well as a way for reasoning on logical formulae (descriptions of
objects), it may be argued that all existing approaches do not allow to consider
incomplete representations. For this purpose, we propose to consider Kripke
structure in order to deal with incomplete formal contexts. Indeed, let us assim-
ilate an object (in the sense of FCA) with a possible word (in the sense of modal
logic). Let also od be a partial description of an object o, this might be a set of
sentences or a single property. Thus, possible words semantics brings a way in
order to evaluate to which extent an object o satisfies a set of properties Y , by
evaluating the implication od → Y . If (od → Y ) is true then Y is true in o. If
od → Y is not true then we go to the nearest object o′ that has a closer descrip-
tion to the object o, if A is true in the object o′ then od → Y is true, otherwise Y
is recursively evaluated in o′, and so on. Such an inference model needs a suited
modal structure. The next section illustrates our proposition dedicated to this
purpose.

4 Possible World Semantics Proposal

4.1 Model

Modal logic [12] adds to the language of classical logic two “modalities” opera-
tors, namely possibility (♦) and necessity (�). These operators are also described
trough the idea of possible worlds. A possible truth is one that can be ultimately
false and a necessity truth is one that can only be true [4]. The most common
semantics of modal logics introduces the notion of worlds and imposes further
structures called accessibility relations [13]. It becomes that a model M of modal
logic (possible worlds semantics) is a triple M = (W,R, V ) of a non empty set of
possible worlds W , a binary accessibility relation R between worlds, and a val-
uation function assigning to a given proposition variable p ∈ P , a set of worlds
where p is true. If a world w1 is accessible from the world w, then w1 is called
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a “possible world” of w, that is when the proposition p is true in one of the
possible worlds of a world w, then it is said that p is possibly true in the world
w, denoted by w |= ♦p; if p is true in every possible worlds of the world w,
then p is necessary true in w, denoted by w |= �p.

Based on this principle, the proposed model, in which the set of propositional
variables P corresponds to the set of properties P, is given trough the Definition
1. Whereas the Definition 2. introduces the “possible satisfaction” of a subset
Y ⊆ P of propositional variables by an object o. It is worth noticing that such
a set of propositional variables Y is considered with a conjunctive semantics.

Definition 1. (Model) For a formal context (2O,P, f), the corresponding model
M = (W,R, V ) is given as: W = O ; V = f (s.t. f is a mapping from P to
2O defined by f(p) = {o ∈ O | oIp}); and the world o1 is R accessible to the
world o0, denoted o0Ro1, if the world o0 can be transformed into o1 by adding a
propositional variable in o0.

Definition 2. A set of propositional variables Y ⊆ P is possible in the world
o0, noted o0 |= ♦Y , iff there exists o1 such that o0Ro1 and o1 |= Y .

Let us denote by “R-step” a single transition (single step) among the accessibility
relation. It may be remarked that applying once ♦ operator, corresponds to such
a transition. Thus, k × R-step (cf. Definition 3.) between the world o0 and the
world ok represents the transformation of world o0 to the world ok by adding,
in each step, a property pi.

Definition 3. A set of propositional variables Y is reached from o0 by k×R-
step (k > 1), we write o0 |= ♦kY , iff there exists o1 such that o0Ro1 and
o1 |= ♦k−1Y .

Let (o0, oi−1, oi, ok) be a set of possible worlds. We propose to consider a distance
between two given worlds as the succession of transformations between these
two worlds. We give hereafter the definition of the proposed distance. It is worth
noticing that the distance between two successive worlds can be calculated by
different ways. For instance, we assume that d(oi, oi+1) = 1 if oiRoi+1.

Definition 4. The distance between the world o0 and the world ok, denoted
d(o0, ok), is the sum of the elementary distances between oi−1 to oi such that
oi−1Roi. Formally, d(o0, ok) =

∑k
i=0 d(oi−1, oi) with oi−1Roi.

The degree to which extent a possible world (object) o satisfies a set of propo-
sitional variables denoted δ(o0 → Y ), may be evaluated by the degree of the
implication o0 → Y . We propose to calculate δ(o0 → Y ) as follows (μ is an
arbitrary constant s.t. μ > |P|):

δ(o0 → Y ) =

⎧
⎨

⎩

0 if o0 |= Y∑k
i=0 d(oi−1, oi) if oi−1Roi and ok |= Y

μ if � ∃oi, oi+1, oiRoi+1 and oi+1 |= Y
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4.2 Possible Formal Concepts

The modal structure M = (W,R, V ), above proposed, induces new powerset
derivation operators, namely (.)♦p : 2P → 2W and (.)♦o : 2W → 2P , respec-
tively defined for Y ⊆ P and X ⊆ Was: (Y )♦p = {o ∈ W |o |= ♦Y } and
(X)♦o = {p ∈ P | ∑

i δ(oi → p) ≤ 1, oi ∈ X}. On this basis, we consider in our
proposal, “possible formal concepts” as given in the following definition, whereas
the Proportions 1 and 2. give some useful algebraic properties

Definition 5. A possible formal concept is a pair (X,Y ) such that X♦o = Y ,
and Y ♦p = X.

Proposition 1. Let X1,X2 two sets of possible worlds and Y1, Y2 two sets of
propositional variables, the following properties are satisfied:

(1): X1 ⊆ X2 ⇒ X♦o
2 ⊆ X♦o

1

(2): Y1 ⊆ Y2 ⇒ Y
♦p

2 ⊆ Y
♦p

1

Proofs are omitted in this paper due to the lack of space

Proposition 2. Let Bp denotes the set of all possible formal concepts. The set
(Bp ∪ 〈W, ∅p〉 ∪ 〈∅O, P 〉) equipped with a partial order (denoted �) defined as:
(X1, Y1) � (X2, Y2) iff X1 ⊆ X2 (or, equivalently Y2 ⊆ Y1) forms a possible
concepts lattice.

5 Incomplete Representations

In the previous section, a generic modal structure (model) has been proposed
for FCA. This section details how the proposed model may be used for handling
incomplete formal contexts K? = (O,P, {+,−, ?}, I). Indeed, in addition to
what is certainly known, the accessibility relation allows to represent properties
possibly satisfied by an object. Formally, a subset of properties Y is “possibly
satisfied” in the world o (denoted o |= ♦Y ) iff we can change one unknown
entry “?” in o0 into a known one “+” and then o0 |= Y . The following propo-
sition gives an useful way for approximation of possible formal concepts (i.e.
intermediate formal concept).

Proposition 3. These two properties are verified:

(1) X� ⊆ X♦o ⊆ X♦

(2) Y � ⊆ Y ♦p ⊆ Y ♦

Recall also that both (.)� and (.)♦ operators have been proposed in [3]. Thus,
the above proposition gives a comparative study of our approach w.r.t the one
proposed in [3].
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Example 1. Let us consider the incomplete formal context K? presented in
Table 1 for which V (p1) = {o1, o3}, V (p2) = {o1, o2}, and V (p3) = {o1}. The
Fig. 1 gives the modal representation of K?. The set Y = {p2, p3} is satisfied
in the object o1 (o1 |= Y ). The set Y is also possibly satisfied in the object
o2 (o2 |= ♦Y ), and it is not possibly satisfied in o3. On the other hand, the
set Y is possibly possibly satisfied in o3 (o3 |= ♦2Y ). Applying the modal
operators to {o1, o2} (resp. to {p2, p3}) results on: {o1, o2}♦o = {p2, p3}, (resp.
{p2, p3}♦p = {o1, o2}). It becomes that the pair 〈{o1, o2}, {p2, p3}〉 forms a pos-
sible formal concept of the incomplete formal context K?.

Table 1. Incomplete formal context K?

K? p1 p2 p3

o1 + + +

o2 − + ?

o3 + ? ?

Fig. 1. Possible worlds representation of K?

6 Conclusion

In this paper we have proposed a theoretical framework based on possible words
semantics, in order to deal with incomplete representations, namely incomplete
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formal contexts. The proposed modal structure relies essentially on an accessi-
bility relation that allows 1 to k transitions between possible worlds by adding
to each transition a property, achieving then possible formal concepts. Powerset
operators dedicated to this purpose are also given and some of their properties
are established. We have also proposed to evaluate to which extent an object o
satisfies a set of properties Y by introducing the measure δ(o → Y ). As imme-
diate perspectives:

– We intend to investigate similar properties between ♦o(dually ♦p) operator
and possibility operator (.)Π already considered by Dubois and prade [8].

– Noting that the closure property cannot be established as such, we expect to
introduce constraints on the accessibility relation in order to get this impor-
tant property.

– A scalable application to information retrieval is in progress.
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Abstract. We propose a novel symbolic approach to provide counter-
factual explanations for a classifier predictions. Contrary to most expla-
nation approaches where the goal is to understand which and to what
extent parts of the data helped to give a prediction, counterfactual expla-
nations indicate which features must be changed in the data in order to
change this classifier prediction. Our approach is symbolic in the sense
that it is based on encoding the decision function of a classifier in an
equivalent CNF formula. In this approach, counterfactual explanations
are seen as the Minimal Correction Subsets (MCS), a well-known concept
in knowledge base reparation. Hence, this approach takes advantage of
the strengths of already existing and proven solutions for the generation
of MCS. Our preliminary experimental studies on Bayesian classifiers
show the potential of this approach on several datasets.

Keywords: eXplainable AI · MCS · Counterfactual explanation

1 Introduction

Recently, a symbolic approach for explaining classifiers has been proposed in
[5]. This approach first compiles a classifier into an equivalent and tractable
symbolic representation then enumerates some forms of explanations such as
prime implicants. It has many nice features in terms of tractability, explana-
tion enumeration and formal analysis of classifiers. This paper proposes a novel
approach that is designed to equip such symbolic approaches [5] with a module
for counterfactual explainability. Intuitively, we view the process of computing
counterfactual explanations as the one of computing Minimal Correction Sub-
sets (MCS generation) where the knowledge base stands for the classifier and
the data instance in hand. As we will show later, our symbolic approach for
counterfactual generation has many nice features added to the fact of lying on
well-known concepts and efficient existing techniques for MCS generation.

The inputs to our approach are a classifier’s decision function f compiled into
an equivalent symbolic representation in the form of an Ordered Decision Dia-
gram (ODD) and a data instance x. Our contribution is to model the problem of
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counterfactual generation as the one of MCS generation. We will show the prop-
erties of this encoding and highlight the links between MCS and counterfactual
explanations. Our experiments show that using existing MCS generation tools,
one can efficiently compute counterfactual explanations as far as a classifier can
be compiled into an ODD which is the case of Bayesian network classifiers [5],
decision trees and some neural nets [4].

2 From a Symbolic Representation of a Classifier to an
Equivalent CNF Encoding

Our approach for counterfactual explanation proceeds in two steps : The first
one is encoding a symbolic representation (given in the form of an ODD) into
an equivalent CNF representation. The second step consists in computing MCSs
meant as counterfactual explanations given the CNF representation of the clas-
sifier and any data instance. In this section, we describe the first step of our
approach. For the sake of simplicity, the presentation is limited to binary classi-
fiers with binary features but the approach still applies to non binary classifiers
as stressed in [5].

Definition 1 (Binary Classifier). A binary classifier is defined by two sets
of variables: A feature space X= {X1,...,Xn} where |X| = n, and a binary class
variable denoted Y . Both the features and the class variable take values in {0,1}.
Definition 2 (Decision Function of a Classifier). A decision function of
a classifier (X,Y ) is a function f : X → Y mapping each instantiation x of X
to y = f(x).

Definition 3 (Ordered Decision Diagram ODD). An Ordered Decision
Diagram (ODD) is a rooted, directed acyclic graph, defined over an ordered set
of discrete variables, and encoding a decision function. Each node is labeled with
a variable Xi , i = 1, . . . , n and has an outgoing edge for each value xi of the
variable Xi, except for the sink nodes, which represent the terminal nodes.

An Ordered Binary Decision Diagram OBDD is an ODD where all the variables
are binary. If there is an edge from a node labeled Xi to a node labeled Xj , then
i<j (more on tractable representations such as ODDs can be found in [6]).

Example 1. Figure 1a shows a naive Bayes classifier for deciding whether a stu-
dent will be admitted to a university (class variable: Admit (A)). The features
of an applicant are: work-experience (WE), first-time-applicant (FA), entrance-
exam (E) and gpa (GPA). In Fig. 1b, we provide the OBDD representing the
classifier decision function f with the variable ordering (WE, FA, E, GPA). Here,
the sinks correspond to the values of the class variable (A).

Let us now focus on our target representation. A CNF (Clausal Normal Form)
formula is a conjunction of clauses. A clause is a formula composed of a disjunc-
tion of literals. A literal is either a Boolean variable or its negation. A quantifier-
free formula is built from atomic formulae using conjunction ∧, disjunction ∨,
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A

WE FA E GPA

A p(A)
1 .7

WE A p(WE|A)
1 1 .3
1 0 .8

FA A p(FA|A)
1 1 .2
1 0 .7

E A p(E|A)
1 1 .15
1 0 .4

GPA A p(GPA|A)
1 1 .11
1 0 .97

Naive Bayes network classifier f
OBDDf

Fig. 1. A Naive Bayes network classifier and its corresponding OBDD.

and negation ¬. An interpretation μ assigns values from {0, 1} to every Boolean
variable. Let Σ be a CNF formula, μ satisfies Σ iff μ satisfies all clauses of Σ.

There are several methods to encode a decision diagram as a CNF formula.
For instance in [2], the authors proposed a method called “Single-Cut-Node”
to store a BDD (Binary Decision Diagram) as a CNF where they model BDD
nodes as multiplexers. A second method called “The No-Cut method” creates
clauses starting from f corresponding to the “off-set” and a last method called
“The Auxiliary-Variable-Cut” which combines the two other methods. For the
sake of simplicity and clarity, we choose the simplest method which does not
involve adding new variables during the encoding process since we want to
restrict our explanations to the input variables of the classifier. We implement
a simple way to encode the symbolic representation of a classifier as a CNF for-
mula based on the “The No-Cut” method [2]. In our case, since we are dealing
with binary Boolean functions (binary features and class variable), our tractable
representation of the decision function f is an OBDD. We use along with this
paper positive/true/1 and negative/false/0 interchangeably. Let us first define an
“off-set” of a Boolean function and a CNF formula.

Definition 4 (Off-Set of a Boolean function). The Off-set of a Boolean
function f , denoted as f0, is f0 = {v ∈ ⋃n

i=1{0, 1}i, |f(v) = 0} If f0={0, 1}n,
then f is unsatisfiable. Otherwise, f is satisfiable.

Intuitively, f0 is the set of counter-models of f . This concept contains the
counter-models we need to enumerate in order to construct our CNF’s clauses.
The OBDD is used to enumerate all the paths from the root to the 0-sink node
(the off-set), where each element of f0 corresponds to a path within it.

Definition 5 (CNF encoding of an OBDD). Let f be the decision func-
tion encoded by an ordered binary decision diagram OBDDf . Let also Off-
set(OBDDf ) be the off-set of OBDDf . We define the obtained CNF formula
from OBDDf as Σf =∧¬ei where ei∈f0 and i= 1..|f0|.
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Let α be the associated formula of f . The intuition is that ¬ α ≡ ∨ ei where ei
∈ f0. Then f comes down to negating ∨ ei allowing to obtain directly f in the
form of a CNF. Following Definition 5, we have:

– Every variable of the feature space X ={X1,...,Xn} of the classifier will cor-
respond to a Boolean variable in the CNF Σf .

– The class variable Y is captured by the truth value of the CNF (Σf ).
– Modeling a prediction made by the classifier for a given data instance x comes

down to the truth value of: (CNF Σf ∧ Σx) where Σx stands for the data
instance x encoded as a CNF by a set of unit1 clauses.

Our encoding guarantees the logical equivalence between the OBDDf and
the obtained CNF Σf . The following proposition formally states this result.

Proposition 1. Let f be a binary decision function and OBDDf its compiled
representation. Let also Σf be the CNF representation of the decision function f
obtained following Definition 5. Then an interpretation μ is model (resp. counter-
model) of Σf iff it is mapped to 1 (resp. to 0) by f .

Lemma 1. Given a binary classifier, a data instance x and the predicted class
f(x) = y, (Σf ∧ Σx) is SAT (resp. UNSAT) iff f(x)= 1 (resp. f(x)= 0).

We stress that both of the compilation of the classifier to a symbolic represen-
tation and the encoding into a CNF formula, is done only once in our approach
and can be re-used to explain as many instances as wanted.

3 Generating Counterfactual Explanations

Intuitively, a counterfactual explanation for an instance of interest x and a clas-
sifier f is the minimum changes to x needed to alter the output of f .

Definition 6 (Counterfactual Explanation). Let x be a complete data
instance and f(x) its prediction by the decision function f . A counterfactual
explanation x́ of x is such that:

– x́ ⊆ x (x́ is a subset or a part of x)
– f(x[x́])=1-f(x) ( prediction inversion)
– There is no x̂ ⊂ x́ such that f(x[x̂])= f(x[x́]) (minimality)

In Definition 6, the term x[x́] denotes the data instance x where variables
included in x́ are reversed. In our setting, a counterfactual x́ is defined as a part
of the data instance x such that x́ is minimal and x́ allows to flip the prediction
f(x). The explanation comes as follow: an output y is returned because vari-
ables from the features space X had values (x1, x2...). If instead, X had values
(x′

1, x
′
2, ...) while all other variables had remained constant, the output y′ would

have been returned. Counterfactual explanations are expected to explain both
1 A unit clause involves only one Boolean variable represented by a literal.
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the outcome of a prediction and how that would change if things had been differ-
ent. Our main idea is to model the counterfactual explanation task as a Partial
Max-SAT problem. Recall that our CNF encoding of an OBDD representation
of a classifier’s decision function f ensures that a negative (resp. positive) predic-
tion leads to an unsatisfiable (resp. satisfiable) CNF Boolean formula. Namely,
f(x) = 1 iff (Σf∧Σx) is satisfiable. In the case where f(x) = 0, Σf ∧ Σx is unsat-
isfiable and it is possible to identify the subsets of Σx allowing to restore the
consistency of Σf∧Σx (recall that Σf is satisfiable unless the classifier f always
predicts 0 regardless of the instance x). This is a well-known problem dealt with
in many areas such as knowledge base reparation, consistency restoration, etc.
We will see later how to provide explanations when the outcome is positive,
namely f(x) = 1, using the same mechanisms. It is important to note that our
CNF is composed of two parts: Σf and Σx, where Σf encodes the classifier and
it is satisfiable and Σx encode the data instances x and represented as a set
of unit clauses. In the case of negative predictions, since Σf∧Σx is unsatisfi-
able (inconsistent), we can compute a sort of reparation set that is composed of
the subsets of data instance x that cause the unsatisfiability of Σf∧Σx. This is
known as the minimal correction subset (MCS).

Definition 7 (MSS). A maximal satisfiable subset (in short, MSS) Φ of a CNF
Σ is a subset (of clauses) Φ ⊆ Σ that is satisfiable and such that ∀ α ∈ Σ \ Φ,
Φ ∪ {α} is unsatisfiable.

Definition 8 (MCS (Co-MSS)). A minimal correction subset (in short MCS,
also called Co-MSS) Ψ of a CNF Σ is a set of formulas Ψ ⊆ Σ whose complement
in Σ, i.e., Σ \ Ψ , is an MSS of Σ.

In our case, given a data instance x and a function f , and their respective CNFs
Σx and Σf , an MCS Φ ensures the minimality property and tells what clauses to
remove from Σf∧Σx to restore its consistency. Note that although the number of
MCSs can be exponential in the worst case, it remains low in many benchmarks.

3.1 Counterfactuals for Negative Predictions Through MCSs

Our main idea for explaining a negative prediction for an instance x is to compute
its MCSs. An MCS identifies the subset of clauses to be repaired to restore
the satisfiability of the CNF formula. In order for an MCS to correspond to a
counterfactual explanation, it should contain only the unit clauses belonging to
Σx indicating what features need to be removed or flipped such that the whole
CNF (namely, Σf∧Σx) becomes again satisfiable. This leads to splitting the
CNF into two subsets: hard constraints and soft ones.

Definition 9 (Partial Max-SAT). Given a CNF formula Σ where some
clauses are hard and some are soft, Partial Max-SAT is the problem of find-
ing a truth assignment that satisfies all hard constraints and the maximum of
soft ones.
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In order to solve Partial Max-SAT, we will consider the general setting, where a
formula is composed of two disjoint sets of clauses Σ = ΣH ∪ ΣS [1], where ΣH

denotes the hard clauses and ΣS denotes the soft ones. The set of hard clauses
is Σf while soft clauses is Σx representing the data instance x to explain. The
CNF encoding of the classifier Σf as a set of hard clauses is presented in the
previous section. The CNF encoding of the data instance Σx as soft clauses is
done as follows. Let Σx be the soft clauses, defined as follows:
– Each clause α ∈ Σx is composed of exactly one literal (∀α ∈ Σx, |α| = 1)
– Each literal representing a Boolean variable of Σx corresponds to a Boolean

variable {Xi ∈ X/i ∈ [1, n]} of the feature space of the decision function f .

Following our approach, an MCS for Σf∧Σx comes down to a subset of soft
clauses, namely a part of x that is enough to remove in order to restore the
consistency, hence to flip the prediction f(x) = 0. Proposition 2 states that each
MCS computed for Σf∧Σx represents a counterfactual explanation x́ ⊆ x for
the prediction f(x) = 0 and vice versa.

Proposition 2. Let f be the decision function, OBDDf its compiled symbolic
representation, x be a data instance predicted negatively (f(x) = 0) and Σf∧Σx

an unsatisfiable CNF. Let CF (x, f) be the set of counterfactuals of x wrt. f . Let
MCS(Σf,x) the set of MCSs of Σf ∧ Σx. Then:

∀x́ ⊆ x, x́ ∈ CFf (x, f(x)) ⇐⇒ x́ ∈ MCS(Σf,x) (1)

The MCS enumeration is done over the soft clauses, which practically should
reduce the time needed to enumerate all the MCS since we will have less clauses
to consider. As for positively predicted instances, we can simply work on the
negation of OBDDf representation of the decision function f namely, we will
rely on the CNF Σ¬f∧Σx to compute the counterfactuals in a similar way.

4 Experiments

This section provides our experiments to evaluate our approach of generating
counterfactuals. Given a data instance of interest x and the decision function f ,
we encode both f and x as a CNF formula. We start by considering typical binary
classification problems and focus on Binary Naive Bayes Classifiers (BNC). To
test our approach, we compiled synthetic naive Bayes classifiers to OBDDs using
the approach proposed in [6], then we encode these OBDDs into CNF formulas
before getting into the generation of the MCSs. We mention that for each network
size, we used an average of 4 to 10 networks to run our experiments.

4.1 Compiling Bayes Classifiers into OBDDs

Table 1 summarizes the compilation experiments we ran on BNCs with different
sizes. For each category of classifiers having the same number of features, we
compute the average size of their corresponding OBDD (number of nodes). As
expected, we notice a large increase in the OBDD size as the number of features
of the classifier grows up. Moreover, it seems that the OBDD size also strongly
depends on the classifier’s parameters in addition to the number of features.
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Table 1. Average size of the OBDD representations.

Nb Features 5 10 16 20 22 25

OBDDsize 9 42 370 1020 2546 8626

4.2 Dumping OBDDs as CNF Formulas

Next step will be to encode the obtained OBDD into CNF Boolean formulas. We
aim in the following to compare the size of both OBDDs and CNFs of classifiers
with different sizes. As observed experimentally in Table 2, the time and size
(number of clauses) of the generated CNF are strongly correlated to the size
of its OBDD. While the compilation time scales linearly with the number of
nodes of the OBDD, the size of the CNF can be much smaller, depending on the
classifier’s parameters (threshold of the used BNC and variable order used for
OBDD). We remind that this encoding is done only once for a given classifier
and then can subsequently be used for explaining any number of instances.

4.3 MCSs Generation

Once we got the CNF (Σf ∧ Σx), we can get to the generation of MCSs. In our
experiments, we use the boosting algorithm for the MCSs generation proposed
in [3] and implemented in EnumELSRMRCache2. Recall that our input is a
CNF composed of hard clauses (encoding the classifier) and soft ones (encoding
the data instance to explain). The data instances were randomly generated. The
aim here is to compare the number of counterfactual explanations with the size
of OBDD and CNF representations. Table 2 summarizes the results of the aver-
age number of counterfactual explanations generated given a data instance and
a classifier. As expected, the number of explanations increases with the CNF
size in general, but remains strongly related to: (1) the classifier and OBDD
parameters (variable ordering), and (2) to the data instance itself. As shown in
Table 2, the average run-time does not seem to depend on the number of MCSs

Table 2. Average size of OBDD/CNF, runtime (ms), and number of the counterfac-
tuals (MCSs).

#Vars 5 10 16 20 22 25

OBDDsize 9 42 370 1020 2546 8626

CNFsize 3 64 2598 27122 123878 684847

Encoding Runtime (ms) 1.4 32.3 2725 241806 430471 327888500

#MCS 3 23 101 305 272 364

Runtime (ms) 1.9 2.3 17.8 1762 9299.4 109148.5

2 Available at http://www.cril.univ-artois.fr/enumcs/.

http://www.cril.univ-artois.fr/enumcs/
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generated but more on the number of features of the classifier, which is expected
since the time-consuming part of generating the MCSs is related to the size of
the representations in terms of number of clauses and their size.
To sum up the results, it can be said that as long as we can get a symbolic
tractable representation of a classifier, our approach can provide counterfac-
tual explanations. The number of different MCSs of the CNF Boolean formulas
remains low in our case since our approach computes the MCSs over the soft
clauses only, which experimentally significantly reduces the time of MCSs enu-
meration.

5 Concluding Remarks

The approach proposed in this paper allows to equip the symbolic approach
proposed in [6] with a module for counterfactual explanations. Our approach is
simple and takes advantage of well-defined concepts and proven tools for MCSs.
Moreover, our approach is specifically designed to provide actionable explana-
tions.
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support of the Région Hauts-de-France.
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Abstract. Spohnian ranking functions are a qualitative abstraction of
probability functions, and they have been applied to knowledge represen-
tation and reasoning that involve uncertainty. However, how to represent
a ranking function which has a size that is exponential in the number of
variables still remains insufficiently explored. In this work we introduce
min-sum networks (MSNs) for a compact representation of ranking func-
tions for multiple variables. This representation allows for exact inference
with linear cost in the size of the number of nodes.

Keywords: Spohnian ranking functions · Graphical models

1 Introduction

Spohnian ranking functions are a qualitative order-of-magnitude abstraction of
probability functions. These can be used to measure uncertainty using ranks [15]
represented by natural numbers or ∞, which can be understood as a degree of
surprise: 0 for not surprising, 1 for surprising, 2 for very surprising, and so on,
and ∞ for impossible.

These functions have been applied to problems of knowledge representation
and reasoning that involve uncertainty but where probabilities are unknown
or irrelevant, such as belief revision and non-monotonic inference [4,7,12]. One
of the fundamental issues when using ranking functions in practice is the rep-
resentation of a ranking function, which has a size that is exponential in the
number of variables. The same problem arises in probabilistic modeling, where
it is solved by using probabilistic graphical models (PGMs) as compact rep-
resentations of probability distributions [10]. Because ranks behave much like
probabilities if + is replaced with min and × with +, it is sometimes possible to
adapt PGMs to represent and reason about ranking functions. For example, the
ranking-based counterpart of a Bayesian network is called a ranking network or
OCF network [2,7,9,15].

In this paper we introduce min-sum networks (MSNs) for compact repre-
sentation of ranking functions. They are an adaptation of sum-product networks
c© Springer Nature Switzerland AG 2020
J. Davis and K. Tabia (Eds.): SUM 2020, LNAI 12322, pp. 281–288, 2020.
https://doi.org/10.1007/978-3-030-58449-8_22
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(SPNs) [13]. An SPN is a rooted directed acyclic graph with a recursively defined
structure: a node is either a sum-node with weighted edges pointing to its chil-
dren; a product-node with non-weighted edges pointing to its children; or a leaf
node representing a univariate distribution. Compared to many PGM models,
SPNs support exact inference with linear cost in the size of the number of nodes.
This advantage, combined with the ability to handle missing data makes SPNs to
a very attractive choice for modeling any data set. Indeed, several SPN learning
techniques have shown comparable or better performance than other state-of-
the-art models in tasks such as image classification and natural language pro-
cessing [3,5].

The tractability of SPN’s inference carries over to MSNs. More precisely, the
rank of an event or proposition according to the ranking function represented by
an MSN can be computed with cost linear in the size of the number of nodes in
the MSN. One issue, however, is that the MSN needs to be constructed first. To
address this, we propose a method to learn an MSN based on a set of observations
in such a way that more probable events are less surprising (lower ranked) than
less probable events.

The overview of this paper is as follows. We present the necessary basics
concerning ranking theory in Sect. 2. In Sect. 3 we define min-sum networks,
while Sect. 4 deals with the problem of learning min-sum networks. We conclude
in Sect. 5.

2 Ranking Functions

Ranking functions are a qualitative abstraction of probability functions where
events receive ranks [15]. A rank is a non-negative integer or ∞ and can be
understood as a degree of surprise: 0 for not surprising, 1 for surprising, 2 for
very surprising, and so on, and ∞ for impossible. Formally, a ranking a ranking
function (also known as an ordinal conditional function or kappa function) is
defined as follows.

Definition 1. A ranking function over a set Ω is a function κ : Ω → N∞
0 such

that κ(w) = 0 for at least one w ∈ Ω. A ranking function κ is extended to a
function over propositions or events (i. e., subsets of Ω) by defining κ(X) = ∞ if
X = ∅, and κ(X) = min({κ(w) | w ∈ X}), otherwise. The rank of A conditional
on B is denoted κ(A | B) and is defined by κ(A | B) = κ(A ∩ B) − κ(B).

A ranking function κ induces beliefs using the principle that A is believed if
and only if the complement A = Ω \ X is surprising (i.e. κ(A) > 0). Similarly,
A is believed conditional on B if and only if κ(A | B) > 0.

3 Min-Sum Networks

Here we provide the definition of MSN, which is a ranking-based variation
on SPNs [13]. We first need to introduce some notation and terminology.
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Random variables will be denoted by uppercase letters (e.g. Xi). We restrict
our attention to Boolean random variables. We use X to denote a collection
{X1, . . . , Xn} of random variables and denote by val(X) the set of realisations
of X, i.e., val(X) = {T,F}n (T for true and F for false). Elements of val(X)
are denoted by lowercase boldface letters (e.g. x). A realisation of some subset
of {X1, . . . , Xn} will be called evidence. Given a random variable Xi we use xi

and xi to denote indicator variables. We say that xi (resp. xi) is consistent with
evidence e iff e does not assign false (resp. true) to Xi.

A min-sum network (MSN) over variables X = {X1, . . . , Xn} is an acyclic
directed graph N whose leaves are the variables x1, . . . , xn, x1, . . . , xn. Given a
node i in N we denote by Ni the subgraph rooted at node i and we denote by
Ch(i) the set of children of node i. The internal nodes of N are either min-nodes
or sum-nodes. Each edge from a min-node i to another node j has an associated
weight wij which is a non-negative integer or ∞, satisfying min({wij}) = 0. The
rank of evidence e according to N is defined recursively: N(x) =

∑
j∈Ch(i) Nj(x)

if the root of N is a sum-node; and N(x) = min({wij + Nj(x)|j ∈ Ch(i)}), if
the root of N is a min-node. Further, we define a leaf LXi

to consist of one min
node, two weights wxi

and wx̄i
and two indicators xi, x̄i.

3.1 Validity, Consistency and Completeness

Similar to the SPNs, we introduce the three key properties, which allows us to
link MSNs with the ranking theory and ensure the error-free inference: validity,
completeness, and consistency. The link is that the values of N(x) for all x ∈
val(X) define a ranking function by

ΦN (e) = min({N(x) | x ∈ val(X), e is consistent with x}).

We define all three properties in the following.

Definition 2. An MSN N over variables X is valid, iff N(e) = ΦN (e) for all
evidence e of X.

By contrast, the definitions of completeness and consistency are the same as
those of SPNs:

Definition 3. An MSN N is complete, iff all children of the same min-node
have the same scope.

Definition 4. An MSN N is consistent, iff there is no sum-node and variable
X such that x appears in one child of this node and x in another child.

We combine the three properties and show in the following theorem that:

Theorem 1. An MSN is valid if it is complete and consistent.

Since there are only two mutually exclusive configurations {xi = 1,x̄i = 0} and
{xi = 0,x̄i = 1}, we define the delta functions

δxi
:=

{
1, xi = 1
∞, xi = 0

and δx̄i
:=

{
1, x̄i = 1
∞, x̄i = 0

.
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Table 1. Rankings in the Wet Grass example.

R T T T T T T T T F F F F F F F F

N T T T T F F F F T T T T F F F F

H T T F F T T F F T T F F T T F F

S T F T F T F T F T F T F T F T F

Rank 4 1 ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ 8 2 3 ∞ 6 0

So, we can express the value of the leaf Li for any arbitrary variable Xi as

Li = min (δxi
· wxi

, δx̄i
· wx̄i

)
= δxi

· wxi
· 1{δx̄i

·wx̄i
>δxi

·wxi
} + δx̄i

· wx̄i
· 1{δx̄i

·wx̄i
>δx̄i

·wx̄i
}.

(1)

Consequently, the leaf Li can take the two values for the two configurations wxi

or wx̄i
. Using the same idea

min ({wij + Nj(x)|j ∈ Ch(i)})

=
∑

j∈Ch(i)

(wij + Nj(x)) · 1{∑
k∈Ch(i)\{j}(wik+Nk(x))>wij+Nj(x)}. (2)

With (1) and (2) we write N(x) as a series which will be referred to as an
expansion of the MSN. Therefore, an MSN is valid if its expansion has the same
value as ΦN (e) for all evidence e: each configuration has exactly one partial sum
(condition 1), each partial sum is convergent for exactly one configuration (con-
dition 2). From condition 2 we conclude that N(x) = wx < ∞ and consequently
ΦN (e) =

∑
x∈e N(x) =

∑
x∈e wx =

∑
k∈n(e) wk, where n(e) is the number of

the configurations complying with condition 2. From condition 1, we conclude
n(e) << |val(X)| = 2n, therefore ΦN (e) =

∑
k∈n(e):wk<∞ wk = N(e) < ∞ and

MSN is valid.
Now we prove by induction from the leaves to the root that, if the MSN is

complete and consistent, then its expansion is its network series. The rest of
the proof follows analogously to that one in [13], emphasising the necessity of
completeness for min-node and consistency for sum-node.

3.2 Min-Sum Network Example: Wet Grass

The Wet Grass [1] example is a well-known example of probabilistic graphi-
cal models. It consists of a collection of four boolean random variables X =
{R,N,H, S}, where R stands for “it has been raining”; S for “Holmes’ sprinkler
was on”; N for “Holmes’ neighbor’s grass is wet”; and H for “Holmes’ grass is
wet”. In this paper, we turn Wet Grass into a ranking example. Table 1 lists the
ranks of all possible configurations of the four random variables. For instance, it
is not surprising if it has not been raining, the sprinkler was off, and both lawns
are not wet, i.e., κ(x) = 0 for x = {R = F,N = F,H = F, S = F}. However, it
is impossible if it has not been raining, the sprinkler was off, but both lawns are
wet, i.e., κ(x) = ∞ for x = {R = F,N = T,H = T, S = F}.



Modelling Multivariate Ranking Functions with Min-Sum Networks 285

min

+ +

min min min min min min min

n n̄ h h̄ s s̄ r r̄ n n̄ + + r r̄

min min min min

h h̄ s s̄ h h̄ s s̄

w01 w02

0 ∞ 0 ∞ 3 0 0 ∞ 2 0 w11 w12 ∞ 0

0 ∞ 0 ∞ ∞ 0 6 0

Fig. 1. An example of a valid MSN. The weights of the min-nodes are w01 = 1, w02 = 0,
w11 = 3, w12 = 0.

The ranking function of the random variables in Table 1 can be modeled
with a manually designed valid MSN, shown in Fig. 1. To query the rank of
input evidence, a bottom-up pass needs to be operated. Denote Lwi

X the leaf
of random variable X from the sum-node with weight wi. For example, with
x = {R = F,N = T,H = F, S = T}, the rank of x according to the MSN is

N(x) = min({(Lw01
N + Lw01

H + Lw01
S + Lw01

R ) + w01,

Lw02
N + min {(Lw11

H + Lw11
S ) + w11, (Lw12

H + Lw12
S ) + w12} + Lw02

R + w02})
= min({(∞ + 0 + ∞ + 3) + 1, 2 + min {(∞ + 0) + 3, (0 + 6) + 0} + 0})
= min ({∞, 2 + 6 + 0}) = 8,

which means one gets very surprising if it has not been raining and the sprinkler
was on, while Mr. Holmes’ lawn is dry and his neighbor’s is wet. Given the
same evidence, the corresponding rank from Table 1 always matches the rank
calculated by the valid MSN from Fig. 1, i.e. N(x) = κ(x). Thus, the MSN in
Fig. 1 models exactly the ranks in Table 1.

4 Learning MSNs

A common way to estimate the parameters θ of a statistical model is to com-
pute the Maximum Likelihood Estimation (MLE) in such a way that under
the assumed statistical model the observational data is most probable. Denote
D � {x1,x2, . . . ,xm} as the observational data, MLE is then defined as
θ̂ � arg maxθ log p(D|θ) [11]. In analogy, we can learn the parameters θ of an
MSN by minimizing the rank on the observational data, that is,

θ̂ � arg min
θ

N(D|θ). (3)
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+

X3 min

+ +

X1 X2 X1 X2

p = 8.3

20 0

p = −7.9 p = 7.9 p = 8.4 p = −7.9

Fig. 2. Left: The ranking function for one variable. The vertical black line denotes the
optimal parameter for X3 in the MSN on the right side. Right: The MSN optimized
using samples from the synthetic distribution. The parameters are marked blue. (Color
figure online)

We assume the training examples D are independent and identically dis-
tributed. Then we can rewrite the rank as N(D|θ) =

∑
i∈m N(xi|θ). Intuitively,

minimizing N(D|θ) yields θ that makes the observed data most probable under
the assumed MSN. The parameters θ of an MSN consist of weights w at min-
nodes and the univariate distributional parameter p in the leaf nodes. We define
the ranking function on the leaves as the following form

(2 ∗ (sigmoid(p) − 0.5) ∗ (X − 0.5) + 0.5) ∗ C, (4)

where C = 100. At inference time, we round up the output to get natural
numbers. Figure 2 (left) shows a plot of this ranking function.

To find the θ that minimize the objective function N(D|θ), gradient descent
is commonly used if the target function is differentiable. We implemented MSNs
in python and Tensorflow so that differentiation and gradients can be computed
automatically by Tensorflow. We now demonstrate a concrete example using this
learning method. First we construct a synthetic distribution with three Bernoulli
variables X1, X2 and X3 of which X1 and X2 are dependent on each other and
X3 is independent of any. The joint probabilistic distribution can be factorized as
P (X1,X2,X3) = P (X1)∗P (X2|X1)∗P (X3|X1,X2) = P (X1)∗P (X2|X1)∗P (X3)
using the chain rule and independence information. 300 samples are generated
from this distribution for learning the parameters of the MSN. The sample counts
for each configuration of the three variables are shown in Table 2. We take an
MSN with randomly initialized parameters and use gradient-based method to
optimize the objective function (3) on the 300 samples. The optimization yields
the network in Fig. 2 (right) with its parameters marked blue.

The ranks of all the possible configurations computed by this network are
listed in Table 2. The ranks of all the observed configurations are sorted as
N(0, 1, 0) < N(1, 0, 0) < N(0, 1, 1) = N(0, 0, 0) < N(1, 0, 1) < N(0, 0, 1), which
correspond exactly to reversely sorted empirical probability of all the observed
configurations P (0, 1, 0) > P (1, 0, 0) > P (0, 1, 1) > P (0, 0, 0) > P (1, 0, 1) >
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Table 2. The sample counts and the ranks computed by the MSN of every possible
configuration of a synthetic distribution.

X1, X2, X3 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

Rank 100 200 0 100 20 120 100 200

Count 28 8 111 38 92 23 0 0

P (0, 0, 1). Besides, we expect the ranks for the unseen configurations to be as
high as possible because they are very unlikely to happen. Here, we have two
unseen configurations X1 = 1,X2 = 1,X3 = 0 and X1 = 1,X2 = 1,X3 = 1
whose ranks are respectively 100 and 200. That means, X1 = 1,X2 = 1,X3 = 1
is least likely to happen which is correct. But X1 = 1,X2 = 1,X3 = 0 is more
likely to happen than, for example, X1 = 1,X2 = 0,X3 = 1, which is the only
rank that does not match the empirical probability. Besides, optimization may
get stuck at a local optimum which possibly again leads to ranking computations
that are not consistent with empirical probabilities. We leave this challenge for
future research. By definition, the min-nodes encode mixtures of their children,
and the sum-nodes assume independence between their children [14]. Take the
MSN in Fig. 2 (right) as an example, X3 is independent of X1 and X2, that
means we can get the marginal ranking function of X3 by simply removing
the other independent branch. This yields an univariate ranking function with
p = 8.3. The marginal sample counts for X1 = 0 and X1 = 1 are respectively
231 (111+92+28) and 69 (38+23+8), which means the rank of X1 = 1 should
be zero and the rank of X1 = 0 should be larger than zero. Recall Fig. 2 (left),
the vertical black line denotes the optimal parameter p = 8.3 for X3 and this
parameter yields N(X1 = 1) = 100 and N(X1 = 1) = 0, which matches the
empirical probability well.

5 Conclusion and Future Work

Based on the notion of SPNs, we have introduced MSNs for compact representa-
tion and tractable inference with ranking functions. Ranking functions are used
in models of belief revision and non-monotonic inference [4,7,12], and we believe
that these applications may benefit from using min-sum networks for represent-
ing ranking functions. One obstacle, however, is that min-sum networks must
first be constructed, and for this purpose, we proposed a method to learn a
min-sum network based on a set of observations. There is a number of direc-
tions for future work. One is to improve our learning method. In particular,
Giang and Shenoy [6] have studied desirable properties for transformations from
probability functions to ranking functions. An interesting question is whether
a min-sum network can be learned from an (empirical) probability distribution
in such a way that these desirable properties are satisfied. Another interesting
question is whether min-sum networks can be constructed or learned on the
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basis of qualitative information. For instance, the non-monotonic inference sys-
tem called System Z involves determining the unique “most normal” ranking
function that satisfies a given knowledge base containing default rules [12]. If
this ranking function can be constructed directly as a min-sum network then
this network could be used to answer certain types of queries with a cost that
is linear with respect to the size of the network. Finally, our approach is based
on adapting SPNs for representing ranking functions. It may also be possible to
adapt SPNs in a similar way to represent other representations of uncertainty,
such as possibility measures, belief functions and plausibility measures [8].
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Abstract. We present an algorithm for determining inconsistency
degrees wrt. the contension inconsistency measure [7] which utilizes three-
valued logic to determine the minimal number of atoms that are assigned
truth valueB (paradoxical/both true and false). Our algorithm is based on
an answer set programming encoding for checking for upper bounds and a
binary search algorithm on top of that. We experimentally show that the
new algorithm significantly outperforms the state of the art.

Keywords: Inconsistency Measurement · Answer set programming ·
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1 Introduction

Dealing with inconsistent information is an important aspect in rational accounts
to formal reasoning. In applications such as decision-support systems, a knowl-
edge base is usually compiled by merging the formalised knowledge of many
different experts. It is unavoidable that different experts contradict each other
and that the merged knowledge base becomes inconsistent. One way of dealing
with inconsistent information is to abandon classical inference and define new
ways of reasoning. Some examples of such formalisms are, e. g., paraconsistent
logics [2], default logic [12], answer set programming [3], and computational
models of argumentation [1]. Moreover, the field of belief revision [9] deals with
the particular case of inconsistencies in dynamic settings.

The field of Inconsistency Measurement—see the seminal work [6] and the
recent book [8]—provides an analytical perspective on the issue of inconsistency.
An inconsistency measure is a function that maps a knowledge base to a non-
negative real number, the interpretation of that number being that larger values
indicate a larger inconsistency within the knowledge base. The field of incon-
sistency measurement has proposed a series of different approaches to measure
inconsistency, focusing on aspects such as minimal inconsistent subsets [4,10],
or non-classical semantics [7,13], see [14] for an overview.

In this paper, we are considering algorithmic problems involving the con-
tension inconsistency measure from [7]. This measure uses Priest’s three-valued
c© Springer Nature Switzerland AG 2020
J. Davis and K. Tabia (Eds.): SUM 2020, LNAI 12322, pp. 289–296, 2020.
https://doi.org/10.1007/978-3-030-58449-8_23
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logic [11] to determine the minimal number of atoms in the language that are
“conflicting” in the knowledge base under consideration (we will provide for-
mal details in Sect. 2). In [15] it has been shown that the problem of deciding
whether a certain value is an upper bound for the inconsistency degree wrt. the
contension measure in NP-complete. Although this is an intractable problem, it
still belongs to the rather “easier” problems in inconsistency measurement, as
the corresponding decision problems wrt. many other measures are even higher
in the polynomial hierarchy [15]. In this paper, we are presenting an algorithm
for determining the inconsistency degree wrt. the contension measure of an arbi-
trary knowledge base using answer set programming (ASP) [3]. The latter is a
declarative problem solving formalism that is suitable for addressing NP-hard
problems (and beyond). More specifically, the contributions of this work are the
following:

1. We present an ASP encoding of the problem whether a certain number is an
upper bound for the inconsistency degree and integrate it into a binary search
algorithm for determining the actual value (Sect. 3).

2. We report on some preliminary experiments that show that this algorithm
significantly outperforms the state of the art (Sect. 4).

In addition, Sect. 2 covers the necessary preliminaries and Sect. 5 concludes the
work by giving an overview of the contributions and possible future work.

2 Preliminaries

Let At be some fixed set of propositions and let L(At) be the corresponding
propositional language constructed using the usual connectives ∧ (conjunction),
∨ (disjunction), and ¬ (negation).

Definition 1. A knowledge base K is a finite set of formulas K ⊆ L(At). Let K
be the set of all knowledge bases.

If X is a formula or a set of formulas we write At(X) to denote the set of
propositions appearing in X.

Semantics for a propositional language is given by interpretations where an
interpretation ω on At is a function ω : At → {true, false}. Let Ω(At) denote
the set of all interpretations for At. An interpretation ω satisfies (or is a model
of) a proposition a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The
satisfaction relation |= is extended to formulas in the usual way.

For Φ ⊆ L(At) we also define ω |= Φ if and only if ω |= φ for every φ ∈ Φ.
A formula or set of formulas X1 entails another formula or set of formulas X2,
denoted by X1 |= X2, if and only if ω |= X1 implies ω |= X2. If there is no ω
with ω |= X we also write X |=⊥ and say that X is inconsistent.

2.1 The Contension Inconsistency Measure

Let R∞
≥0 be the set of non-negative real values including infinity. The most general

form of an inconsistency measure is as follows.
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Definition 2. An inconsistency measure I is a function I : K → R
∞
≥0 that

satisfies I(K) = 0 if and only if K is consistent, for all K ∈ K.

The intuition we intend to be behind any concrete approach to inconsistency
measure I is that a larger value I(K) for a knowledge base K indicates more
severe inconsistency in K than lower values. Moreover, we reserve the minimal
value (0) to indicate the complete absence of inconsistency.

With regard to an inconsistency measure I, ExactI denotes the problem
of deciding whether a given value a ∈ R

∞
≥0 is the inconsistency value I(K) of

a knowledge base K [15]. UpperI and LowerI denote the problems whether
a given value a ∈ R

∞
≥0 is an upper or a lower bound of I(K), respectively. For

any function I according to Definition 2 that satisfies I(K) = 0 if and only
if K is consistent, the decision problems UpperI and ExactI are NP-hard.
LowerI is coNP-hard [15]. Moreover, ValueI is the natural function problem
which returns the value of I(K) for a given knowledge base K.

In [7], Grant and Hunter introduce an inconsistency measure based on seman-
tics of Priest’s three-valued logic [11]. In addition to true (T ) and false (F ), this
logic includes a third value which indicates paradoxical, or both true and false
(B). Table 1 shows the truth tables for this logic.

Table 1. Truth tables for Priest’s propositional three-valued logic [11]

x y x ∧ y x ∨ y

T T T T

T B B T

T F F T

B T B T

B B B B

B F F B

F T F T

F B F B

F F F F

x ¬x
T F

B B

F T

Let i be a three-valued interpretation, i. e., a function that assigns one of
the three truth values to each atom in a knowledge base K, denoted as i :
At(K) �→ {T, F,B}. The domain of a certain interpretation i can be divided into
two groups corresponding to their truth value [7]. More specifically, there is the
group of atoms which are assigned a classical truth value (T or F ), and there is
the group of atoms which are assigned B. The former is defined as follows:

Binarybase(i) = {α | i(α) = T or i(α) = F}
Because the other group comprises those atoms which take part in conflicts, it
is denoted

Conflictbase(i) = {α | i(α) = B}.
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Further, a model is defined as an interpretation where each formula φ in K is
assigned either T or B. Thus, the set of models is defined as follows:

Models(K) = {i | ∀φ ∈ K, i(φ) = T or i(φ) = B}
Example 1. Consider knowledge base K1 = {a ∧ b,¬a ∨ b,¬b ∧ ¬c}. A model of
K1 is the interpretation which assigns T to a, F to c, and B to b, denoted i1.
Consequently, Binarybase and Conflictbase wrt. i1 are the following:

Binarybase(i1) = {a, c} Conflictbase(i1) = {b}
There exist also other models, for example the interpretation that assigns B to
all x ∈ {a, b, c} is a model of every knowledge base.

The previous definitions allows us to formulate the contension inconsistency
measure Ic wrt. a knowledge base K as

Ic(K) = min{|Conflictbase(i)| | i ∈ Models(K)}.

Consequently, Ic describes the minimum number of atoms in K that are assigned
truth value B. Considering the exemplary knowledge base K1 presented in Exam-
ple 1, we can easily see that it is inconsistent. More specifically, the first and
third formula, a ∧ b and ¬b ∧ ¬c, respectively, contradict each other in the sense
of classical propositional logic. Since at least b (i. e., one atom) must be assigned
the truth value B to make the knowledge base consistent in three-valued logic,
the minimal size of Conflictbase is 1. Thus, Ic(K1) = 1.

It has been shown [15] that UpperIc
is NP-complete, LowerIc

is coNP-
complete, ExactIc

is DP-complete, and ValueIc
is FPNP[log]-complete. To the

best of our knowledge, the currently only existing algorithm for computing Ic(K)
is the one given in TweetyProject1. This algorithm follows a naive approach by
searching for a solution in a brute force fashion. The given knowledge base is
first converted to CNF and then checked for consistency. If the knowledge base
is consistent, 0 is returned correspondingly. If it is not, for each proposition x,
each clause containing x is removed and the resulting knowledge base is checked
for consistency again. This is equivalent to setting x to B in three-valued logic.
If one of the new knowledge bases is consistent, 1 is returned correspondingly. If,
again, none of the knowledge bases turned out to be consistent, two propositions
are set to B, i. e., all possible pairs of propositions are iteratively removed, then
all triples, and so forth.

2.2 Answer Set Programming

Answer Set Programming (ASP) [3] is a declarative programming paradigm
based on logic programming which is targeted at difficult search problems. ASP
incorporates features of Reiter’s default logic [12] and logic programming.
1 http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/analysis/
ContensionInconsistencyMeasure.html.

http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/analysis/ContensionInconsistencyMeasure.html
http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/analysis/ContensionInconsistencyMeasure.html
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An extended logic program incorporates both negation-as-failure (not) and
classical negation (¬). Such a program comprises rules of the form

H ← A1, . . . , An, notB1, . . . , notBm. (1)

where H, as well as Ai, i ∈ {1, . . . , n} and Bj , j ∈ {1, . . . , m} are literals. In
(1), {H} is called the head of the rule, and {A1, . . . , An, B1, . . . , Bm} is called
the body of the rule. We refer to a set of literals X as closed under a positive
program P , i. e., a program that contains no instance of not, if and only if for
any rule r ∈ P , the head of r is contained in X whenever the body of r is a
subset of X. The smallest of such sets wrt. a positive program P is denoted as
Cn(P ), and it is always uniquely defined. For an arbitrary program P , a set X
is called an answer set of P if X = Cn(PX) where PX = {H ← A1, . . . , An |
H ← A1, . . . , An, notB1, . . . , notBm. ∈ P, {B1, . . . , Bm} ∩ X = ∅}.

A rule with an empty body is referred to as a fact, a rule with an empty head
is a constraint. It should be noted that the head of a rule does not necessarily
consist of a single literal – some dialects of ASP allow for constructions such as
a choice rule, a rule where the head comprises a set of literals of which basically
any subset can be set to true. There is also the notion of cardinality constraints
with lower and upper bounds. Such rules are of the form

l{A1, . . . , An, notB1, . . . , notBm}u (2)

The intuition behind this is that a cardinality constraint is only satisfied by an
answer set if at least l and at most u of the literals A1, . . . , An, B1, . . . , Bm are
included in the answer set. Cardinality constraints can be used as body elements
as well as heads of rules [5].

3 Measuring Contension Inconsistency Using ASP

In order to utilise ASP for measuring Ic, i. e., to compute ValueIc
, wrt. a knowl-

edge base K, we will encode the problem UpperIc
in ASP and then send calls

to an ASP solver in an iterative manner. By using binary search on the search
space of possible inconsistency values, only logarithmic many calls are required.
More precisely, wrt. the contension inconsistency measure, the maximum incon-
sistency value corresponds to the number of atoms n. Thus, the starting point
of the binary search is n/2.

As a first step in encoding UpperIc
, we create three new propositional atoms

exT
, exB

, exF
for each atom x. Thus, the new atoms form a representation of the

evaluation of the atom in three-valued logic. For the “guess” part of the ASP, at
most u atoms exi

B
, i ∈ {1, . . . , n} are set to true. This can be modeled as a rule

consisting of a cardinality constraint (as introduced in (2)): 0{ex1
B
, . . . , exn

B
}u.

where u is the upper bound we want to show.
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For the “check” part of the ASP, we first need to model that for an atom x
only one of its corresponding atoms exT

, exB
, exF

can be evaluated to true:

exT
← not exB

, not exF
.,

exB
← not exT

, not exF
.,

exF
← not exB

, not exT
.

The formulas in K are comprised of the set of atoms At as well as the oper-
ators ∧, ∨, and ¬. Hence, each operator must be encoded in ASP as well. More
specifically, we construct rules that model the evaluation of the formulas x ∧ y,
x ∨ y, and ¬x as follows (with new symbols e...):

x ∧ y �→ ex∧yT
← exT

, eyT
., ex∧yF

← exF
.,

ex∧yF
← eyF

., ex∧yB
← not ex∧yF

, not ex∧yT
.

x ∨ y �→ ex∨yF
← exF

, eyF
., ex∨yT

← exT
.,

ex∨yT
← eyT

., ex∨yB
← not ex∨yF

, not ex∨yT
.

¬x �→ e¬xB
← exB

., e¬xT
← exF

.,

e¬xF
← exT

.

More complex formulas can be reduced to these rules. Finally, we need to ensure
that all formulas are evaluated either T or B. To achieve this, we add the integrity
constraint ← eφF

. for each formula φ.

Example 2. We continue Example 1. The ASP corresponding to K1 would con-
tain the following rules:

1. Cardinality constraint: 0{eaB
, ebB , ecB}2. Here, we use 2 as the upper bound.

2. Ensure that each atom only gets one evaluation:

eaT
← not eaB

, not eaF
., eaB

← not eaT
, not eaF

., eaF
← not eaB

, not eaT
.,

ebT ← not ebB , not ebF ., ebB ← not ebT , not ebF ., ebF ← not ebB , not ebT .,

ecT ← not ecB , not ecF ., ecB ← not ecT , not ecF ., ecF ← not ecB , not ecT .

3. Encodings for all formulas:
(a) a ∧ b:

ea∧bT ← eaT
, ebT ., ea∧bF ← eaF

., ea∧bF ← ebF .,

ea∧bB ← not ea∧bF , not ea∧bT .

(b) ¬a ∨ b:

e¬a∨bF ← e¬aF
, ebF ., e¬a∨bT ← e¬aT

., e¬a∨bT ← ebT .,

e¬a∨bB ← not e¬a∨bF , not e¬a∨bT .

(c) ¬b ∧ ¬c:

e¬b∧¬cT ← e¬bT , e¬cT ., e¬b∧¬cF ← e¬bF ., e¬b∧¬cF ← e¬cF .,

e¬b∧¬cB ← not e¬b∧¬cF , not e¬b∧¬cT .
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Fig. 1. Comparison of the (naive) state of the art implementation of the contension
inconsistency measure and the (ASP) implementation of the algorithm proposed in
this work. The red horizontal line visualises the timeout of 60 s. (Color figure online)

(d) Negations:
e¬aB

← eaB
., e¬aT

← eaF
., e¬aF

← eaT
.,

e¬bB ← ebB ., e¬bT ← ebF ., e¬bF ← ebT .,

e¬cB ← ecB ., e¬cT ← ecF ., e¬cF ← ecT .

4. Integrity constraints: ← ea∧bF ., ← e¬a∨bF ., ← e¬b∧¬cF .

4 Preliminary Experiments

The algorithm presented in the previous section is implemented in Java by use
of the TweetyProject2 library. The library already provides an implementation
of the contension inconsistency measure that constitutes the state of the art.

In order to evaluate the proposed ASP algorithm, we compare its implemen-
tation with the naive one. We created a total of 800 random knowledge bases of
different sizes and complexities. The knowledge bases are comprised of around
15-20 formulas which contain 0-10 connectors. To achieve this, we utilised a sam-
pler (namely, the SyntacticRandomSampler3) provided by the TweetyProject.
The generated knowledge bases are built on signatures that contain either 5, 10,
or 15 propositional atoms. Then we applied both algorithms on each of these
knowledge bases and measured the execution time. A timeout was set to 60 s.
Figure 1 displays the measured execution time regarding each knowledge base,
sorted from low to high wrt. both algorithms. Clearly, the ASP algorithm per-
forms more efficiently. While applying the naive algorithm produced a timeout in
53 cases, the ASP implementation required only a maximum of 7.97 s to return
the inconsistency value.
2 http://tweetyproject.org/index.html.
3 http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/util/
SyntacticRandomSampler.html.

http://tweetyproject.org/index.html
http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/util/SyntacticRandomSampler.html
http://tweetyproject.org/api/1.14/net/sf/tweety/logics/pl/util/SyntacticRandomSampler.html
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5 Conclusion

In this paper, we introduced an algorithm for calculating the contension inconsis-
tency measure by means of reductions to answer set programming. By providing
rules for encoding three-valued evaluations of propositional formulas in ASP
rules, an inconsistency value can be retrieved using only logarithmic many calls
to an answer set solver. In Sect. 4 we compared an implementation of a state
of the art algorithm for calculating contension inconsistency with the proposed
method. The evaluation shows that the ASP algorithm clearly outperforms the
state of the art. This quite positive result leads to the conclusion that reductions
to ASP are a reasonable method to approach problems in the field of inconsis-
tency measurement. Consequently, it would be useful to explore the calculation
of other inconsistency measures using reductions to ASP as well.
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