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Abstract. CBR applications have been deployed in a wide range of
sectors, from pharmaceuticals; to defence and aerospace to IoT and
transportation, to poetry and music generation; for example. However,
a majority of these have been built using monolithic architectures which
impose size and complexity constraints. As such these applications have
a barrier to adopting new technologies and remain prohibitively expen-
sive in both time and cost because changes in frameworks or languages
affect the application directly. To address this challenge, we introduce
a distributed and highly scalable generic CBR system, CLOOD, which
is based on a microservices architecture. This splits the application
into a set of smaller, interconnected services that scale to meet varying
demands. Experimental results show that our CLOOD implementation
retrieves cases at a fairly consistent rate as the casebase grows by several
orders of magnitude and was over 3,700 times faster than a compara-
ble monolithic CBR system when retrieving from half a million cases.
Microservices are cloud-native architectures and with the rapid increase
in cloud-computing adoption, it is timely for the CBR community to
have access to such a framework.

Keywords: Cloud CBR - Mircoservices - Elasticsearch - CBR
framework

1 Introduction

Several case-based reasoning (CBR) development frameworks and toolkits have
been introduced to the CBR community [13-15]. These have been extended
for recommender systems [8] and textual CBR [12] and more recently for self-
management systems [1]. However many of these CBR systems are mostly imple-
mented with monolithic architectures such as desktop standalone applications,
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with heavy demands due to siloed in-memory batch processing. This is not com-
patible with recent software development trends, which are increasingly using
REST APIs! for communication with cloud computing platforms.

Cloud computing is a term used to describe the use of remote hardware and
software to deliver on-demand computing services through a network (usually
the Internet). In the past, applications or programs were run from software down-
loaded on to a physical computer or server. In contrast cloud computing lets users
access these applications through the internet. Implementing software applica-
tions in the cloud offer several benefits which include efficient/cost reduction,
scalability, mobility, and disaster recovery. Distribution of CBR applications and
cases enables, MapReduce type algorithms to exploit the parallelism opportunity
that is to be had with pair-wise similarity computations [19]. Interestingly, CBR
has also been applied to support cloud provisioning, whereby similar Amazon
Web Services (AWS)? configurations are recommended given a characterisation
of a user’s compute task [9]. This helps the user to make decisions about the
types of cloud services for the given task. But having to monitor resource utili-
sation and change service requirements accordingly is a challenge which in turn
has paved the way for microservice based architectures.

A CBR framework using a microservice based architecture provides (amongst
other things) flexibility in both the technology being used (e.g., programming
language) as well as dynamic scalability that can adapt to user application
demands (e.g., spikes in casebase querying, seasonal effects). This is because,
individual microservices are independently scaled and developed such that the
overall system architecture is a scalable distributed application [6]. Importantly,
the computation of services are stateless since they are automatically provisioned
only when needed and then stopped when no longer required. This is particularly
advantageous to CBR in situations where there is in-memory demand due to its
inherent nature of being a lazy learner.

In this paper we discuss how the CBR cycle can be organised into multiple
microservices and how service discovery is facilitated between these independent
components using rest communications. A microservice is considered efficient
when the system is loosely coupled and highly cohesive [10]. Identifying which
functionalities within the CBR cycle should be decoupled and organising them
into microservices is a key design challenge that we address in this paper. We do
this by introducing, CLOOD?, a generic open-source CBR cloud-based microser-
vice framework, and make the following key contributions:

— create a novel design using the microservice paradigm for CBR;
— introduce, CLOOD, an extensible open source microservice CBR framework?;
— evaluate the scalability of the retrieval phase on a recommender task; and

1 An architectural style and approach for communication based on representational
state transfer (REST) that is often used in web services development.

2 https://aws.amazon.com.

3 Clood is “Cloud” in Scottish dialect.

4 CLooD CBR repository: https://github.com /RGU-Computing/clood.
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— identify areas of future development that are essential for the sustainability
of CLoop CBR.

Rest of the paper is organised as follows; in Sect. 2 we discuss existing frame-
works, jCOLIBRI and myCBR. The design paradigm appears in Sect.3 and the
CLooD implementation is discussed in Sect. 4. Results from a scalability experi-
ment with half a million cases is presented in Sect. 5 followed by conclusions and
future directions in Sect. 6.

2 Related Work in CBR Development Architectures

There are two well-established open-source frameworks for building CBR, appli-
cations: myCBR and COLIBRI, though they follow different approaches and sup-
port different phases of the CBR application development.

myCBR® has been a tool for researchers and practitioners over the last ten
years [16]. This framework is focused on the developing of a knowledge model
for representing cases and computing similarity through the myCBR-~workbench
tool [2]. This knowledge model can be instantiated through the building blocks
and functionality provided by the myCBR-SDK, that is a Java library following
a classical monolithic software architecture. However, their authors have recently
presented the myCBR Rest API which exposes the functionality of both myCBR-
SDK and myCBR-workbench through a RESTful API [1]. Instead of forcing
users to integrate their myCBR systems into a Java environment, this novel
API enables users to model a CBR system using myCBR’s workbench and then
deploying the application as a web service. The goal is to make it easier to build,
test, compare and deploy CBR applications.

COLIBRI, on the other hand, is focused on the development of a wide range of
CBR applications [11]. As a platform, COLIBRI offers a well defined architecture
for designing CBR systems, a reference implementation of that architecture:
the jCOLIBRI framework [13], and several development tools that aid users in
the implementation and sharing of new CBR systems and components. These
tools have been integrated in the COLIBRI Studio development environment [14].
Both tools make up the COLIBRI platform following a two layer architecture.
jCOLIBRI is the white-box layer of the architecture: a framework for develop-
ing CBR applications in Java. This framework represents the bottom layer of
the platform. It includes most of the code required to implement a wide collec-
tion of CBR systems: Standard, Textual, Knowledge-Intensive, Data-Intensive,
Recommender Systems, and Distributed CBR applications. It also includes eval-
uation, maintenance and casebase visualisation tools. All this functionality has
established jCOLIBRI as a reference CBR framework with more than 35K down-
loads®. However, jCOLIBRI still follows the same monolithic Java architecture like
myCBR and is not suitable for modern web environments.

5 http://mycbr-project.org.
5 http://gaia.fdi.ucm.es/research /colibri/jcolibri.
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The need for both these platforms to evolve into web services architecture
is clear. However, there are different approaches to implement this evolution.
myCBR proposes wrapping its existing java components as web services. It is a
straightforward option but has several drawbacks. Mostly, the wrapping of the
existing java components does not allow to take advantage of the capabilities of
cloud architectures regarding availability or scalability. The alternative option
is to create a cloud-based CBR framework from scratch in order to exploit the
features of modern cloud architectures. This is the option adopted by CLOOD,
that can be considered as a re-implementation of the functionalities provided by
the jcOLIBRI and myCBR frameworks, but instead of wrapping its existing java
components, it redesigns entirely the CBR architecture for the cloud. In this
manner, CLOOD adopts the CBR architecture defined in COLIBRI based on a
pre/post-CBR~cycle to load/release required resources. CLOOD also reproduces
the case structure representation based on a composite pattern, and the simi-
larity computation through global/local similarity functions that both jCOLIBRI
and myCBR implement.

In summary, our goal is to create a cloud architecture that is able to provide
the same functionalities using familiar methods currently being used in jCOLIBRI
and, thereafter, further integrate existing web services found in myCBR. As we
will present in the following section, CLOOD re-implements jCOLIBRI’S methods
using modern web services technologies such as Elasticsearch or JSON-based
communications that extend the existing capabilities of the framework regarding
flexibility and data-intensive processing.

3 Microservices Design Paradigm for CBR

A microservice is an independent process which can carry out specific tasks in
isolation [6]. These should be deployed, tested and scaled independently for a
single functional responsibility; such as similarity, ranking, casebase editing, etc.
Key to this architecture are the concept of serverless functions also referred to
as Function-as-a-Service (FaaS) [3] - logic that is split into small code snippets
and executed in a managed compute service. Well known examples include AWS
Lambda and Google Cloud Functions”.

3.1 Clood Architecture

Fig. 1 shows a high-level overview of the system’s design consisting of 3 main
components: REST API; serverless functions (compute service); and data ser-
vice. The core CBR tasks — retrieve, reuse, revise, retain — are implemented
as serverless computing functions. Functions can interact with external appli-
cations (e.g., a dashboard) and internally with other functions through REST
APIs. Decomposition of the CBR cycle into smaller functions provides flexibility
to introduce similarity functions and deploy them independently. Such func-
tions will also include relevant knowledge container provisions. The post-cycle

" http://aws.amazon.com/lambda and http://cloud.google.com/functions.
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or maintenance tasks, like forgetting cases or recomputing footprint cases can
be confined to the Retain service. The data service is used as the casebase which
allows the serverless functions to query and retrieve. Data sources and connec-
tors forming the pre-cycle communicate with the casebase once they are synced
with the data service. Data sources can either be external or within the cloud
platform which gives flexibility for the community to use existing data sources.
An important distinction here with the pre-cycle is that it remains lean (as com-
pared to jCOLIBRI, or myCBR); in that it does not involve loading cases into
memory once cases are made persistent.

Clood CBR Microservice Architecture

N ~ Managed Cloud Microservices

—_——_—— e e m — —— - - -~

Functions

Retrieval Revise 51 rlr||'|
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Data
sources

Pre-Cycle
¢ Process -

=0

Applications

REST API

Data
Service
___________ ” (Casebase)

Reuse Retain

Fig. 1. Proposed CLoOD CBR architecture diagram

3.2 The Casebase

Popular CBR systems like jJCOLIBRI keep the casebase in memory during opera-
tion. An in-memory casebase guarantees speed when interacting with the case-
base but will incur massive costs to scale up for big data. Also, using the CBR
system in a distributed manner can be problematic with in-memory casebase as
memory is an expensive resource even on the cloud. In the serverless architec-
ture, we maintain the casebase in the data service. The data service is a NoSQL
full-text distributed search engine for all types of data. Elasticsearch and Solr
are popular examples of such distributed, scalable open-source search tools for
textual, numerical, geospatial, structured, and unstructured data. These tools
provide a significant improvement regarding the representation of cases in pre-
vious CBR frameworks, because the case structure does not need to be fixed.
Therefore, the cases in the casebase can have different attributes, and similarity
metrics are applied according to each particular data types. Moreover, as these
search tools are built on Apache Lucene, they are extendable, allowing users
to write custom similarity metric scripts against a data index. Accordingly, the
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type of operations that would normally occur in-memory can be done in the
data store index which is usually file-based®.

3.3 Local Similarity

A subset of the serverless functions for the retrieve phase are used to gener-
ate similarity scripts to measure local similarity. These metric functions per-
form retrieval from the casebase at the attribute level. Each generated similarity
function script depends on the data type of the attribute. Supported data types
include string, numeric, boolean, date and object. Some similarity metrics, such
as metrics to retrieve exact matches, are in-built in several distributed search
engines that can be used for the data service. A suitable data service should
enable the implementation of custom similarity metrics functions to support
other local similarity functions that are used for CBR retrieval in the jCOLIBRI
and myCBR frameworks.

3.4 Global Similarity

The global similarity function which aggregates local similarities determines the
order in which cases are retrieved from the casebase and their ranking. Both a
weighted and non-weighted form can be used to identify the nearest neighbours
and is managed directly by the data service. Each local similarity function script
is executed in the data service, in response to a single query, to obtain the global
similarity as a sum. Custom scripts can be created as needed to vary the weights
associated with different attributes. These weights can be dynamically modified
for each retrieval task or alternatively remain static for all queries. The latter
corresponds to learning an attribute weighting scheme that is used unchanged
with every casebase query; whilst the former provides the opportunity to change
attribute weights to suit the query context. The default global aggregation can be
replaced with a custom aggregation script; whilst this does offer greater flexibility
it will also incur greater computing memory when working with medium to large
casebases since all the cases that are returned by the local functions will be held
in memory (as with the monolithic organisation of jcOLIBRI and myCBR).

3.5 Implication for CBR Cycle

The major improvement over the architectures used by jCOLIBRI and myCBR
is the lack of a two-layer persistence strategy. In previous frameworks there is
a need to load cases into memory from a persistence media such as a database,
text file, etc. However, the use of the CLOOD data service allows to manage cases
directly from its internal data index.

Absence of the two-layer persistence strategy, has an immediate impact on
the application structure because unlike previously where a pre-cycle step was

8 Elasticsearch index store http://www.elastic.co/guide/en/elasticsearch /reference/7.
6/index-modules-store.html (accessed May 14, 2020).
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needed prior to the CBR cycle itself for loading cases into memory, this is no
longer required. However CLOOD maintain the possibility of executing a pre-
cycle (or its complementary post-cycle) in order to perform additional pre/post-
processing of the data, if the CBR system requires it.

Another significant benefit of cloud-based technologies is concurrency, which
directly creates the opportunity to execute CBR processes in parallel. This fea-
ture is quite limited in current frameworks and is also very relevant in order to
parallelise time-consuming algorithms such as kNN or noise removal methods
such as BBNR (Blame-based noise reduction), CRR (Conservative Redundancy
Removal), RENN (Repeated Edited Nearest Neighbour), RC (Relative Cover),
or ICF (Iterative Case Filtering) [5].

4 Clood CBR System

CLoOD is implemented using python functions following the design paradigm
presented in Sect.3. These functions run on Amazon Web Services (AWS)
Lambda, which is the serverless event-driven computing service of AWS. The
casebase uses the AWS ES service and the client application is implemented with
JavaScript and HTML using the AngularJS framework”. Using a test application
provided by jcoLIBRI'Y we describe the CLOOD implementation (see Fig.2) and
discuss how CBR functionality is achieved with cloud capabilities. Services that
are not core to CBR operations include Cognito which is used for authenticated
access to the system and Cloud Watch which is used to collect and monitor event
logs.

4.1 Casebase Using Elasticsearch

Elasticsearch (ES) is an open-source highly distributed and horizontally scalable
full-text search engine with various capabilities built on Apache Lucene [7]. ES
uses RESTful interfaces to manipulate its schema-free JSON document store and
performs searches at very high speeds maintaining an index that is about 20%
the size of the indexed documents [18]. Compared to traditional database man-
agement systems, the ES “index” is somewhat like the database table as queries
are executed against the index. While there are several schema-free databases
with search capability to choose from, we choose ES as the data service in our
implementation because of its popularity and close integration with existing
cloud service providers.

Although it is “schema-free”, ES internally generates a schema based on the
field (attributes/columns) values of documents to be indexed. Relying on an
ES-generated schema can be problematic in some cases. For example, a field
for storing alphanumeric values can be designated as numeric by ES if the first
documents to be indexed have numeric values only for that field. In order to

9 http://angularjs.org.
19 http://gaia.fdi.ucm.es/research/colibri/jcolibri/doc/apidocs/es/ucm /fdi/gaia/
jeolibri/test/test1/package-summary.html (accessed May 14, 2020).
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Fig. 2. CLoop CBR implementation on AWS

avoid undesirable field properties, we create an explicit mapping which indicates
the data type to be stored for each field in the casebase. The ES index “mapping”
is comparable to the database schema as it describes the fields (columns) in the
JSON documents along with their data types.

An explicit index mapping supports the specification of how a field’s values
should be indexed and the local similarity metric to be used for retrieving the
values of that field. Where possible, we delay specifying the local similarity
function for a field until retrieval time for greater flexibility. This is because
the index specification for a field cannot be modified once data is added to
the index. With query script similarity functions supplied at retrieval time, the
method of retrieval can be varied without having to modify the underlying index
mapping. Introducing a new attribute to an existing casebase can be done by
extending the index mappings with the new field. The structure of cases that
do not have values for newly created fields will remain unchanged. CLOOD’s
serverless functions interact with ES by HTTP requests and responses using a
python Elasticsearch client, elasticsearch-py''. The casebase is a separate service
which can be hosted anywhere with exposed API end-points further highlighting
the distributed nature of CLOOD.

4.2 Clood Similarity Functions

Table1 shows the local similarity metric functions that are currently imple-
mented on CLOOD, reproducing some relevant functions available in jCOLIBRI
and myCBR. Although several similarity metrics are currently missing in
CLOOD, the goal here is to demonstrate the potential of the framework
and to encourage code contributions in the future. Each similarity metric is

' http://elasticsearch-py.readthedocs.io/en/master (accessed May 14, 2020).
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implemented as a python function which generates and returns a Painless
script!? that can be executed on ES during retrieval operations. Painless is
the scripting language that is specifically designed for writing inline and stored
scripts on ES. Generated scripts for the local similarity of each case attribute
are combined into a single multi-match query script at retrieval.

Table 1. CLOOD’s local similarity metrics

Data type | Similarity metric | Description

All Equal Similarity based on exact match
String EquallgnoreCase | Case-insensitive string matching
BM25 TF-IDF similarity with TF normalisation

based on Okapi BM25 ranking function

Semantic USE Similarity based on the similarity of vector

representations
Numeric | Interval Similarity of two numbers inside an interval
INRECA Similarity following the INRECA More is
Better and Less is Better
McSherry Similarity following the McSherry More is

Better and Less is Better

Enum EnumDistance Similarity of values based on their relative
positions within an enumeration

Date ClosestDate Similarity depending on the extent two
dates are to each other

McSherry, INRECA, Interval and EnumDistance are re-implementations of
local similarity metrics found in jCOLIBRI. For textual CBR, we specifically
implemented the Semantic local similarity metric (Semantic USE) for text con-
tent, using the Universal Sentence Encoder (USE) which embeds texts in a dense
vector space of 512 dimensions [4]. This vector representation is generated using
a lite version of USE based on the Transformer architecture'® [17] and is stored
as a dense vector field on ES. Textual retrieval follows the same process of gener-
ating the vector representation of a query string. Afterwards, the Semantic USE
local similarity function measures the cosine similarity between query vectors
and documents’ vectors to identify the most semantically similar content.

4.3 REST API

REST APIs are stateless in that the API server does not remember the state
of its clients and every call to an end-point is independent of other calls. REST

12 http://www.elastic.co/guide/en/elasticsearch /painless/master /painless-guide.html
(accessed May 14, 2020).

13 http://github.com/tensorflow /tfjs-models/tree/master /universal-sentence-encoder
(accessed May 14, 2020).
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API uses existing protocols such as HT'TP for Web APIs. As a result, client
applications do not need additional software to use the service. REST improves
portability to different types of platforms since all interactions are completed
through universally understood interfaces. With CLooD, each REST API end-
point is a serverless function. The replication of an end-point and the resources
allocated to it vary to meet changing demands without affecting the other end-
points. REST APIs are created and published using the API Gateway (see Fig. 2)
and Table 2 summarises the major REST API end-points of CLOOD.

CLoOD is able to concurrently manage multiple CBR applications (use-
cases) referred to as “project” in Table 2. The system’s capabilities can be easily
extended by introducing new serverless functions (e.g., similarity functions, reuse
functions, revise functions). Functions that will become part of the REST API
are specified in a YAML file along with their access protocols.

Table 2. CLooD’s REST API end-points

End-point Request method | Description

/project HTTP GET Retrieves all the CBR projects

/project/{id} |HTTP GET Retrieves a specific CBR project with
specified id

/project HTTP POST Creates a new CBR project. The details of
the project are included as a JSON object
in the request body

/project/{id} |HTTP PUT Updates the details of a CBR project.
Modifications are included as a JSON
object in the request body

/project/{id} | HTTP DELETE | Removes a CBR project with specified id

/case/{id}/list | HTTP POST Bulk addition of cases to the casebase of
the project with specified id. Cases are
included in the request body as an array of
objects

/retrieve HTTP POST Performs the retrieve task

/retain HTTP POST Performs the retain task

/config HTTP GET Retrieves the system configuration

/config HTTP POST Adds or updates the system configuration

4.4 Clood CBR Dashboard

Client applications can perform CBR operations through the RESTful APT end-
points of CLOOD. The CLoOD CBR client application is a light-weight HTML
and JavaScript implementation that is able to manage multiple CBR projects
through API calls. Figure 3 shows the interface for specifying the attributes of a
project’s casebase. CLOOD system’s configuration provides guidance on allowed
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operations when specifying attributes. For example, it indicates that the Interval
local similarity metric only applies to numeric attributes. Once the attribute
specifications are completed, CLOOD generates an index mapping for the case
representation on ES.

@ Projects £ Configuration i Help

Travel Description 1 | Demonstration of the jColibri Test 1 v

/ Attributes £ Add Data

Specify casebase attributes

Name Type Local similarity
Integer ¥ Equal v Add Attribute
Casebase Attributes

Name Data Type Similarity Metric

caseld String None

HolidayType Enum Enum Distance

Price Integer INRECA Less

NumberOfPersons Integer Interval

Region String Semantic USE

Transportation String Equal

Fig. 3. Specifying attributes for a casebase.
@ Retrieve
Attribute (Type) Attribute value Weight Solution Retrieve strategy
caseld (String) 1 Best Match s
HolidayType (String) Skiing 2 8 Best Match g
Price (Integer) Minimum =
NumberOfPersons (Integer) 2 3 Best Match 5
Region (String) Egypt 1 Best Match g
Transportation (String) Plane 1 Best Match s
Duration (Integer) 3 Minimum v
Best k cases Global similarity

Fig. 4. Retrieve stage query specification.

Logstash is an open-source data processing pipeline from the ES stack for
ingesting data into ES'*. Using Logstash, cases can be added to a CLOOD’s

' http://www.clastic.co/guide/en/logstash/current /input-plugins.html (accessed May
14, 2020).
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casebase from multiple data sources including files (e.g., CSV file), databases
with JDBC interfaces (e.g., MySQL), and NoSQL databases (e.g., MongoDB).
However, we also include a file upload utility for adding cases from CSV files
through a RESTful end-point and which should be sufficient for file sizes that
will not overwhelm the Web browser.

The retrieve operation begins with specifying some attribute values along
with weights for aggregating the local similarity measures. Attributes with known
values become part of the problem space while attributes with unknown values
form the solution space. Furthermore, a retrieve strategy can be specified per
attribute as shown on the user interface in Fig. 4. For example, the Best match
can be retrieved for one attribute while the Mean of the k best matches retrieved
for another attribute. The k nearest neighbours to retrieve and the global simi-
larity method can also be specified at the retrieve phase.

A reuse interface displays the retrieval results for reuse. The recommended
case (candidate solution) mixes the user-supplied attribute values with the
retrieved values for unknown attribute values. The k most similar cases to the
query case are also presented for possible reuse. The reuse button against a
retrieved case is used to make it the recommended case. The recommended case
can be revised by adjusting it as required. Afterwards, the case can be retained
by adding to the casebase.

5 Evaluation

A scalability test is conducted to evaluate CLOOD based CBR application, to
examine how resource demands both on the casebase and the serverless CBR
functions are met. We expect a fairly consistent compute performance for differ-
ent CBR tasks across different project sizes (compared to a jCOLIBRIapplication).
We focus on case retrieval for evaluation since it is the most commonly performed
and time-consuming stage of the CBR cycle.

5.1 Experimental Setup and Dataset

Six CBR projects of increasing casebase sizes (10, 102, 103, 10%, 10°, and 540, 394)
were created from a used cars dataset'® (1.35 GB CSV file), and case retrieval effi-
ciency compared with CLOOD and jCOLIBRI. A case has 25 attributes!® describ-
ing the physical attributes of a car (e.g., colour), identification attributes (e.g.,
vehicle identification number), and location attributes (e.g., region, state, coor-
dinates), and the listing price.

In the comparative study, 10 nearest neighbours (NN) are retrieved with
Equal similarities (Table 1) using the following query.

5 http:/ /www.kaggle.com/austinreese/craigslist-carstrucks-data/data (accessed
February 25, 2020).

16 Dataset attributes are id, url, region, region_url, price, year, manufacturer,
model, condition, cylinders, fuel, odometer, title_status, transmission,
vin, drive, size, type, paint_color, image url, description, county, state,
lat, long.
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{ ‘year’:¢2017’, ‘manufacturer’:‘ford’, ‘model’:‘focus’,
‘condition :‘good’, ‘fuel ’:‘gas’, ‘title_status ’:‘clean’,
‘transmission ': ‘automatic’, ‘drive’:‘4wd’,

‘size ’:‘compact’, ‘paint_color ’:‘grey’ }

Time taken by the Retrieval function (Retrieve time) is recorded which for
CLOOD, consists of: the time spent to dynamically generate a query using the
appropriate similarity functions for the query case, retrieve the 10 NN of the
query case from the casebase, generate a recommended case for reuse using
specified reuse strategy, and generate a response through the API. We do not
include the time lapse between the client application and the API endpoints as
that is very dependent on the network connection speed and client’s platform
resources. For jCOLIBRI, Retrieve time is measured in the cycle phase consisting
of: the time spent to retrieve the similarity configuration, perform NN scoring
over the cases (in-memory), and select the 10 best cases. JCOLIBRI was run on a
Windows 10 PC having 6th generation Intel core i7 processor and 16 GB RAM
with 2GiB Java heap size. CLOOD uses AWS Lambda functions for its operations
while the casebase was hosted on a single cluster of the AWS ES Service with
2GiB and 1 vCPU (t2.small.elasticsearch instance).

5.2 Results and Discussion

Figure 5 shows the average case retrieve times for CLOOD and jCOLIBRI on log
scales with standard deviations as error bars. jCOLIBRI was marginally faster on
the smallest casebase (10) but the superior performance of CLOOD is apparent
with increasing casebase sizes. Similar case retrieval times were obtained by both
systems at about casebase size of 100 cases; however at casebase size of 1,000,
CLOOD was 5.5 times faster than jCOLIBRI and at casebase size of 540,394,
CLOOD was 3,737 times faster than jCOLIBRI. Close examination of CLOOD’s
Retrieve time spent on the ES casebase when measured separately (Query time)
shows to have increased due to time spent querying the casebase (see Fig.6).
We used the smallest AWS ES instance, and we expect Query time to improve
when using an ES instance with improved resources. Also, several optimisation
techniques can be employed to improve Query time. In the current implementa-
tion, we apply each local similarity function to the target attribute of every case
in the casebase. An improvement can optimise the querying process such that it
uses filters to reduce the number of similarity computations. For example, in the
query above where the ‘year’ must match ‘2017’, we can apply the year limit as
a filter when matching ‘manufacturer’ so that it only searches for ‘ford’ in 2017
models.

The use of cloud services typically involves usage costs. The microservice
architecture with pricing per run-time keeps the costs minimal. For example,
running the CloodCBR system with core services (Lambda and ES and data
transfer) costs 14 USD a month. In comparison, a similar monolith system hosted
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on a medium-sized AWS machine (t3a.medium and 50 GB storage) costs 22 USD
a month (cost estimates as of April 2020).

6 Conclusion

We introduced CLooD CBR, a novel microservices-oriented CBR framework
which leverages the serverless architecture for CBR operations and a distributed
data storage service (Elasticsearch) for CBR knowledge persistence. Implementa-
tion of the extensible CLOOD CBR framework is an ongoing open-source project.
We demonstrated the robustness of CLOOD on a CBR project of half a million
cases and showed how CLOOD is scalable for different project sizes. Ongoing work
for the future sustainability of CLOOD include extending support for additional
similarity and data types (e.g., myCBR’s table similarity); and include functions
for reuse and revise, casebase maintenance and visualisation. Also, overcoming
the performance bottleneck of handling the intermediate results of local similar-
ity functions in-memory, when implementing custom global similarity functions,
is beneficial for extending the capabilities of CLOOD. We intend to make CLOOD
a Python library to reuse the CLOOD Elasticsearch similarity functions for the
community and add seamless integration for deploying on more cloud providers.
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