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Abstract. Our objective is to develop an approach based on case-based
reasoning that detects and handles unforeseen deviations that occur in
flexible workflow execution. With a case-based approach we aim at sup-
porting the continuation of a deviant workflow execution by utilizing
successfully completed processes, where similar deviations emerged. As
a first step, this work introduces a novel similarity measure based on
time sequence similarity that is able to compare running and completed
workflow instances. We implemented and evaluated our approach in the
ProCAKE framework. The proposed similarity measure achieves promis-
ing results considering runtime and similarity assessment.
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1 Introduction

Digitalization is advancing in today’s business. Small and medium-sized enter-
prises (SMEs) appear to be lagging behind compared to large companies.
Process-aware information systems [1] are well established for standardized pro-
cesses, but they lack support for flexibility, which is often required in SMEs and
may lead to competitive advantages. Additionally, in SMEs there are often few
experts who are responsible for certain processes. The knowledge about how
things are done is implicit, not stored digitally and information is often only
shared orally. These experts usually deviate and perform processes due to their
expertise and experiences without losing control or missing the objective, but
rather optimizing the process [19]. Tracing these processes automatically and
using them for process control may simplify the transfer and preservation of
“best practices”. This in turn may lead to an increase of efficiency and enhanced
assistance possibilities especially for inexperienced users. Furthermore, bypassing
the system and thus a loss of knowledge and transparency is prevented.
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A main characteristic of an adequate approach for SMEs is to allow unex-
pected deviations and support unforeseen changing circumstances. Thereby, the
key challenge is to determine how to continue with the workflow, while still
achieving a successful completion. Existing approaches either require a manual
handling of upcoming deviations or an extensive modeling of expert knowledge,
resulting in a large effort for knowledge acquisition and leading to high costs
for maintenance [2,5,7,8,15,19,21]. To avoid these disadvantages we propose to
utilize past experiences, more specifically, successfully completed processes that
contain similar deviations. Applying case-based reasoning (CBR) seems to be
promising, as previous made experiences are exploited for adapting to unknown
situations. Our objective is to develop an approach based on CBR that handles
deviations that occur in flexible workflow execution, but still guides the user
by recommending adequate work items. As a first, but important step into this
direction, this paper presents a novel similarity measure based on time sequence
similarity that is able to compare running and completed workflow instances.

In the next section, we introduce the notions of workflow flexibility and devi-
ation management as well as our pursued approach. Related similarity measures
are sketched in Sect. 3. Our proposed similarity measure is presented in Sect. 4,
while an evaluation of our concept is outlined in Sect. 5.

2 Deviation Management for Flexible Workflows

In this section our previous work on workflow flexibility and its limitations will be
presented, before we introduce the idea of a case-based deviation management.

2.1 Workflow Flexibility

Flexible workflows have been focused in research for more than a decade [18].
Four different flexibility principles are distinguished [18]. Flexibility by Design,
Change and Underspecification either require an entire awareness about all pos-
sible upcoming situations at design-time in order to manually model all possible
alternatives, or a remodeling of the workflow is necessary at run-time. Flexibility
by Deviation in contrast “is the ability for a process instance to deviate at run-
time from the execution path prescribed by the original process without altering
its process definition” [18]. Hence, the user is able to execute tasks that are not
suggested as next activity, as the work list is only seen as a guideline. Thus, single
instances may not fit to the process model. We therefore explicitly distinguish
between modeled workflow, denoted as de jure and executed workflow, called de
facto [1]. This, however, raises the problem of deciding how to continue with the
deviating workflow to achieve a successful completion. To solve this problem we
developed a workflow engine that facilitates flexibility by deviation.

2.2 Constraint-Based Workflow Engine

During the SEMAFLEX [11] and the SEMANAS [12] project we developed a
flexible workflow engine based on constraints. We presented an approach [9], that
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allows flexible deviations from prescribed workflows, but still maintains control
and recommends valid work items to some extent.

The proposed method is applied to imperatively modeled block-oriented
workflows, which additionally comprise semantic information. Block-oriented
workflows are constructed through a single root block element, which in turn
consists of a single task node, a sequence of two block elements or a control-
flow block. Start and end of control-flow blocks are clearly defined through
control-flow nodes, of which three different types exist (type ∈ {+,×, ◦}). These
workflows are represented as semantic graphs (denoted as NESTGraph), where
nodes and edges additionally link to semantic descriptions [3]. Figure 1 shows an
excerpt of the workflow, which we further on used for evaluating our approach.

This workflow consists of six task nodes (blue rectangles), three data nodes
(ovals), two control-flow nodes (red rhombuses), which represent an exclu-
sive block (“×”), and one workflow node (blue rhombus). Additionally, the
edges denote either control-flow (solid black lines), data-flow (solid grey lines,
input/output relation) or part-of edges (dashed lines). Furthermore each node
is associated with a semantic description (grey rectangles), which contains addi-
tional information, e.g. data node d3 is assigned a name “volume” with a value
of “1000000”.

In our approach [9] we transform these imperative workflow models into
declarative constraints, which indicate temporal dependencies between task acti-
vations, to be able to determine task activations and thus possible executions
in a specific state of the workflow. A constraint satisfaction problem (CSP) is
constructed on the basis of these generated constraints and logged task enact-
ments. A solution of the CSP is searched for, which represents a valid enactment
sequence of all tasks. Thus, with a CSP solution we are able to recommend which
task to execute next. As we only trace task executions, deviations from this pre-
scribed work list are permitted. Ideally, the user decides to do something else
if s/he is sure that this is more appropriate in this specific situation than what
the de jure workflow proposes. In such a case, constraints are violated but they
can be retracted easily and fast at run-time in order to restore consistency. By
regarding the remaining constraints, valid solutions can be computed and thus,
the workflow engine is re-enabled to recommend further work items to complete
the workflow.

However, a categorization of deviations and their cause is not considered until
now. Several strategies for resolving inconsistencies and their limitations have
been presented in [10]. Consider the example in Fig. 2, where the left upper row
shows the initial situation and the second row represents the following step with
an additionally executed task. Rectangles indicate tasks and edges represent
the execution order. Blue-filled nodes were already executed, green ones are
currently recommended and colorless nodes are not activated yet. In the left
lower row there is an executed task, which is not in a valid order, thus a deviation
occurred (marked in orange). The cause of the violation is not explicit without
semantic knowledge and there may be different reasons and consequences. Tasks
should be skipped either due to becoming obsolete or due to being executed but
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Fig. 1. Exemplary block-oriented semantic workflow graph (Color figure online)

without notice of the system (cf. a) in Fig. 2). Alternatively, task order should
be adopted due to unknown reasons according to b) in Fig. 2.

This scenario is a simple type of deviation, but nevertheless requires a deci-
sion about which resolving strategy to apply. Besides, deviations might lead to
additional deviations or might be more complex, which makes it impossible to
determine similar strategies to handle all possible scenarios. Several approaches
to deviation management exist, that utilize rules or knowledge which is specified
beforehand [2,5,7,8,15,19]. CBRFlow [21] is a system that exploits conversa-
tional CBR to react to unexpected deviations. Business rules are used to model
workflow run-time changes and may then be recommended in similar situations.
To handle deviations, these approaches either require user interaction or domain
knowledge resulting in a significant acquisition effort and limited usability.

Fig. 2. Example sequential workflow with deviation and different interpretation

2.3 Case-Based Deviation Management

Our aim is to construct methods that can be applied in an automated manner
and support the user without the need of manual intervention or prior knowl-
edge acquisition. Therefore we focus on CBR as a technique to overcome the
previously mentioned disadvantages. With a case-based approach we expect to
support workflow continuation after a deviation by recommending adequate work
items on the basis of similar cases. The overall approach is sketched in Fig. 3.

Case. As cases we regard all de facto workflows and their corresponding de jure
workflow. The de jure workflow is block-oriented and the de facto workflow
is a simple sequence of tasks, which were traced at run-time. This includes
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workflows with deviations as well as without deviations, as both cases might
be useful for task recommendation.

Query. A running workflow instance, i.e a de facto workflow which is not com-
pleted yet, will be used as the query. This instance is a subsequence of a
completed de facto workflow and contains at least one deviation (see orange-
coloured node in Fig. 3) concerning its de jure workflow that occurred at the
time of the request. The associated de jure workflow is also available.

Deviation Management. All phases of the CBR cycle are important for a
holistic view of deviation management and lead to a self-learning system.

Retrieve. With an adequate similarity measure we aim at searching for similar
de facto workflows whose subsequences match the current instance, containing
a similar deviation compared to the query.

Reuse. This most similar case or even several similar cases might then be used
to recommend tasks that were successive to the subsequence ending with the
deviation (see green-coloured nodes in Fig. 3). In some circumstances, a simple
transfer of the solution will not be reasonable, but rather an adaptation of
the recommended remaining workflow part might be necessary.

Revise. As tasks are only recommended , the user is still able to execute a task,
which was not part of the solution resulting from the reuse step. Thus, by
continuing the query workflow, the solution might be revised.

Retain. When the query workflow has successfully terminated, its de facto work-
flow, containing the actual execution, can be integrated in the case base.

In this paper we focus on the retrieval phase and present a similarity mea-
sure that is necessary for this case-based approach. The de facto workflows that
are compared are perceived as time series that consist of tasks with additional
semantic information. Therefore an adequate similarity measure based on time
sequence similarity is searched for.

Fig. 3. Case-based approach for handling deviations (Color figure online)
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3 Similarity Measures for Time Series

Two basic approaches of similarity measures for time series can be identified in
literature. Either the series are transformed into a representation format, such
as an n-dimensional vector, which then is compared, or the algorithm finds an
alignment between both series which is then assigned a similarity score by aggre-
gating local element similarities. Three promising approaches will be introduced
in more detail in this section.

3.1 Dynamic Time Warping

Dynamic time warping (DTW) was originally developed to properly align dis-
torted time series data collected from voice recordings [4,17]. Contrary to sim-
ple euclidean distance, which only evaluates distances between elements with
the same timestamps, DTW allows elements to be warped onto elements with
different timestamps. It therefore is resistant to compression and stretching.

Natively, DTW was defined using distance functions, however, since distances
can be losslessly converted into similarity scores, we will present the algorithm
using a similarity function. Given two sequences v and w with elements vi (i =
1, . . . ,m) and wj (j = 1, . . . , n) to be compared, their leading elements are first
set to a null value: v0 = w0 = − . The scoring matrix H is then constructed in the
following way. Its first row and column are initialized to zero: H0,j = Hi,0 = 0
for j = 0, . . . , n and i = 0, . . . ,m. Every other cell’s value can be calculated by
the recursive function Hi,j :

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi,j−1 + sim(vi, wj), step horizontally
Hi−1,j−1 + 2 ∗ sim(vi, wj), step diagonally
Hi−1,j + sim(vi, wj), step vertically
0

A cell (k, l) in the matrix is interpreted to hold the similarity score between
the subsequences v1v2 . . . vk and w1w2 . . . wl. In the fully constructed matrix, we
must therefore select the cell with the maximum score - representing the final
similarity value between best matching subsequences - and backtrack in the
inverted direction of each cell’s original calculation. Every cell (i, j) contained in
the path through the matrix represents a warp from element vi onto wj .

3.2 Smith-Waterman-Algorithm

Another adoption of finding subsequence alignments is the Smith-Waterman-
Algorithm (SWA) [20]. Inspired by the Levenshtein distance, the alignment is
found by successively either matching, inserting or deleting elements from one
series with regard to the other.

Initialization of the scoring matrix is conducted equivalently to DTW, how-
ever, the scoring function itself differentiates the two approaches. Horizontal and
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vertical steps in the matrix represent either deletion or insertion (indels) of an
element, while diagonal steps are interpreted as aligning two elements. There-
fore, a penalty scheme must be introduced that assigns a negative score to any
indel operation (cf. penaltyInsertion and penaltyDeletion). The scoring matrix
is constructed in the following way:

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi,j−1 + penaltyInsertion(bj), insertion
Hi−1,j−1 + sim(ai, bj), match/mismatch
Hi−1,j + penaltyDeletion(ai), deletion
0

Again, the highest score in the matrix represents the obtained similarity value.
However, the path found by backtracking in the matrix must be interpreted
differently. In contrast to DTW, only cells that originated from diagonal steps
represent an alignment of those elements. Horizontally and vertically created cells
represent insertions and deletions with regard to sequence v. This utilization of
indel operations makes the measure very noise-resistant.

In addition to the similarity score, both DTW and SWA find series alignments
which can be further exploited in the reuse phase of CBR. Their main difference
is the interpretation of the found alignment path. SWA considers sequences to
be equal if one is a subsequence of the other, whereas DTW considers sequences
as equal if they are simply stretched or compressed versions of each other. The
construction of quadratic matrices results in O(n2) comparisons. This however
can be significantly lowered [14].

Zarka et al. [23] adopt SWA for an approach called trace-base reasoning.
They utilize this method in order to find suggestions for workflow continuation
in a mobile video editing suite by also incorporating a CBR approach. However,
the context of deviations is not considered by the authors.

3.3 Weighted Vector Similarity

Contrary to the other two approaches which find series alignments by directly
comparing the sequences, a similarity measure introduced by Gundersen [13]
transforms the sequences into a vector representation. It is based on the assump-
tion that recent tasks are most important when comparing processes.

Originally, this measure was defined on event sequences. Therefore we define
the end of each task to be an event. Given n events, the sequence A is then
transformed into a vector VA = (w1, w2, ..., wn) with weights wi depicting each
event’s importance in A based on its temporal position posi, calculated as follows:

wi =
1

2
end−posi

h

(1)

The halving distance h specifies the distance to the end where the events’ impor-
tance is one half. Those weighted vector representations can now be compared
by utilizing measures such as cosine similarity and relative component fraction.
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The main strength of this measure is its efficiency having a computational
complexity of only O(n). Major drawbacks however include that it is not able
to consider semantic similarity and can only compare entire sequences.

4 Similarity Measure for Deviating Workflows

In this section we first sketch specific properties of flexibility by deviation that are
important for determining similarity. A pre-processing of the cases is described
subsequently. Finally, the developed algorithm for similarity assessment1 which
is based on the previously presented approaches is introduced in detail.

4.1 Characteristics of Similarity for Deviating Workflows

The similarity measure has to deal with a subset relation between query and
case, as the de facto workflow of the query has not terminated yet, whereas the
de facto workflows of the cases are complete.

Another important aspect of the pursued similarity is that under certain
conditions some mismatches of subsequences of case and query should have low
or rather no influence on the similarity score. This refers to two aspects. On
the one hand, we assume that differences with a greater temporal distance to
the occurrence of the deviation should have a lower impact on the similarity.
Therefore a weighting function will be included in the final similarity measure.

On the other hand, we incorporate a property of case and query which we
call model-consistency. Any de facto workflow or any subsequence of a de facto
workflow without a deviation, but conforming to the de jure workflow is denoted
as model-consistent. In some cases, if case and query contain the same deviation
but additionally differ in some other prior subsequences, which are both model-
consistent, this difference might be ignored if it is not related to the deviation.

4.2 Pre-processing of the Case Base

The pre-processing algorithm is used to determine irrelevant workflow blocks
in case and query which are excluded from similarity assessment by deleting
these subsequences prior to comparison. This results in reduced cases and thus,
a potentially less complex and faster similarity assessment. Furthermore, pre-
processing can be done beforehand such that retrieval time is not affected but
rather enhanced. As prerequisite, case and query need to be based on the same
de jure workflow such that those subsequences might be deleted that belong to
corresponding parts. This is necessary for a reasonable and meaningful compar-
ison of reduced case and reduced query. As our overall approach is limited to
block-oriented workflows we exploit the block structuring for this purpose. The
pre-processing algorithm prepares the case base with further information which
is used when a query arises. An example is presented in Fig. 4.
1 An implementation is included in the ProCAKE framework V1.2 and publicly avail-

able under http://procake.uni-trier.de.

http://procake.uni-trier.de
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Fig. 4. Exemplary pre-processing (Color figure online)

Step 1. First, the nodes of the de jure workflow of each case are labeled.
Every control-flow node pair, i.e. split and join node, is assigned a unique
id, bid ∈ blockids ⊂ N, and each task node t is labeled with certain informa-
tion. This includes the operator of the nearest preceding control-flow node
opt ∈ {+,×, ◦, \} that can be any type of control-flow node or “\”, which
denotes the highest level where tasks are not nested in a control-flow block.
Furthermore, a set of ids, idst ∈ P(blockids), of all preceding control-flow
split nodes that have not been joined until the currently regarded task node
is added to denote the position concerning levels of nested workflow blocks.

Step 2. These labels are subsequently transferred to all corresponding de facto
workflows of the cases. This can be done easily, since each task node in the
de facto instance contains a reference id of the specific task of the de jure
workflow.

Step 3. Model-consistency can be checked for each de facto workflow. For each
bid ∈ blockids the set of task ids TB = {t|bid ∈ idst} is extracted from the
de facto workflow, preserving their sequential order, and validated by the
constraint-based workflow engine. Every bid of consistent control-flow blocks
is stored in a set consistent ⊆ blockids. In the example in Fig. 4 this is shown
for the case workflow. The sequence for bid = 0 is not model-consistent,
as a deviation is included (cf. position of t5), whereas the subsequence for
bid = 1 is model-consistent and this bid is thus added to consistent. The
same procedure will be applied to the de facto workflow of the query.

Step 4. Prior to similarity assessment, query and cases can be reduced. If any bid
coincides in the set consistent of both query and case, every task t where bid ∈
idst can be deleted from the de facto workflows. Hence, these tasks do not
affect the similarity score. In the example in Fig. 4, bid = 1 ∈ consistentcase =
consistentquery and thus, t2 and t3 are deleted from both de facto workflows.
In this case the omission of tasks of the parallel workflow block is reasonable,
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since the order of the tasks may only differ due to the sequential tracing of
terminated tasks, whereas in reality in both cases tasks t2 and t3 might be
executed in parallel. As the deviation occurs not until after the parallel block,
the difference in the preceding part might have no impact on the deviation
and the right choice to continue. Therefore this partial mismatch is simply
ignored when assessing the similarity.

4.3 Similarity Assessment

As similarity measure we propose a combined approach of the previously men-
tioned techniques to take advantage of each algorithm’s specific strengths. We
adopt a dynamic programming approach, which includes either SWA or DTW,
and extend it by the idea of a weighting function considering temporal ordering.
Furthermore local task similarities include data-flow and semantic information.
The similarity assessment can either be applied to reduced cases or non-reduced
ones. We compare a de facto workflow of the query with m tasks to a de facto
workflow of a case with n tasks.

Local Task Similarity. We define local task similarity simt of a query task qti
and a case task ctj as follows:

simt(qti , c
t
j) =

lt ∗ simN (qti , c
t
j) + li ∗ simdf (inqti

, inctj
) + lo ∗ simdf (outqti , outctj )

lt + li + lo
(2)

This value is composed of task, input and output similarity, each assigned a
respective weight lt, li, lo. simN represents an aggregated similarity score of the
semantic description of the task nodes. simdf describes the similarity of input
and output data nodes respectively. The set of input data nodes of the query
inqti

is compared to the set of input data nodes of the case inctj
by finding the

best possible mapping. The same is applied to the sets of output data nodes
(outqti , outctj ). These three local similarities are finally summed up and normal-
ized by the sum of all weights.

Scoring Matrix. The scoring matrix that combines either SWA or DTW with
a temporal distance factor and the presented local similarity is defined as follows:

Hi,j = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Hi−1,j−1 + wTempi ∗ ALGi,j(diagonal),
Hi−1,j + wTempi ∗ ALGi,j(vertical),
Hi,j−1 + wTempi ∗ ALGi,j(horizontal),
0

(3)

As starting point the first row and column are initialized to 0, ∀j : 0, . . . , n :
H0,j = 0 and ∀i : 0, . . . ,m : Hi,0 = 0. The stepping function ALGi,j differs
depending on which algorithm is used. Equations 4 and 5 show both variants.
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SWAi,j(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

simt(qti , c
t
j) if x = ’diagonal’,

penaltyDeletion(qti) if x = ’horizontal’,
penaltyInsertion(ctj) if x = ’vertical’,
0 otherwise

(4)

DTWi,j(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 ∗ simt(qti , c
t
j) if x = ’diagonal’,

simt(qti , c
t
j) if x = ’horizontal’,

simt(qti , c
t
j) if x = ’vertical’,

0 otherwise

(5)

This score is further multiplied by the weight depending on temporal distance.
Therefore, Eq. 1 will be adapted as follows. Here, m is the length of the query,
as this serves as baseline for the similarity calculation. The halving time as a
parameter is assigned a value h ∈ [0,m].

wTempi =
1

2
m−i

h

(6)

Similarity Score. The non-normalized overall similarity score simraw can be
obtained by searching for the largest value in the last row of the matrix. By
limiting this search to Hm,j for 0 < j ≤ n, it is ensured that the found alignment
always ends with the last task of the query, thus, simraw = Hm,k with Hm,k >
Hm,j for all j ∈ {0, . . . , n}\{k}.

To normalize the obtained score, it must be divided by the maximum possible
score with regard to the query. In SWA, local positive similarity values are only
aggregated when stepping diagonally in the matrix, hence, the maximum possible
score can be calculated by finding the amount of diagonal steps in the alignment.
In contrast, DTW adds a positive value to the score when stepping in either
direction. Let align = {(0, 0), . . . , (m, k)} denote all cells from the alignment
path. Let diag = {(i0, j0), . . . , (ip, jp)} ⊆ align denote all cells that originated
from a diagonal step and let other = align\diag denote all other assignments.
Normalized similarity is then calculated as follows:

simSWA
defacto(q, c) =

simraw
∑

(i,j)∈diag

wTempi
(7)

simDTW
defacto(q, c) =

simraw
∑

(i,j)∈diag

2 ∗ wTempi +
∑

(i,j)∈other

wTempi
(8)
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5 Evaluation

We evaluated our method by comparing it to a baseline approach. Bergmann
and Gil, who developed the NESTGraph formalism, presented a graph-based
similarity measure for modeled workflows [3]. They utilize heuristic A* search in
order to find a mapping m that assigns nodes and edges from graph A to nodes
and edges of graph B. Given such a legal mapping m, local similarities between
the mapped elements are calculated and aggregated into a global similarity score.

While many related approaches have been researched [6,16,22] that all utilize
workflow mappings, the method presented by Bergmann and Gil constitutes
an exception to these mostly infeasible proposals for searching the mappings.
Therefore, their A* approach will serve as the baseline similarity algorithm.2 We
want to show that our approach outperforms A* both regarding the obtained
ranking when a retrieval is performed, and regarding overall retrieval times. To
validate this, three hypotheses are considered:

H1 For every query instance, our approach will retrieve the best case from the
case base at a higher or equal rank compared to the A* approach.

H2 Using pre-processing, rankings will be as high or higher than without.
H3 Our overall retrieval times are significantly lower than those of A*.

As prerequisite, we must clarify how we identify the best case from the case base
for each query. Through communication with field experts, we modeled a realistic
de jure workflow, based on a credit grant process, consisting of 31 task nodes,
18 data nodes and 4 control-flow blocks. As queries, non-terminated workflow
instances were created which contain at least one deviation at the end with
regard to the process model. Based on a pool of realistic deviations, randomly
chosen ones were further included in the queries.

Then, a matching best case was constructed for every query through inser-
tions of tasks leading to the termination of the query workflow. Additionally,
not more than three deviations from the pool which are not included in the
query have been added to this case. However, model-consistent passages may
have been replaced with different but still model-consistent passages in order to
evaluate pre-processing. Those generated instances were then inserted into the
case base. Thereby, each query is associated with exactly one best case. The case
base was filled up with additional 27 cases, each of which contains at least as
much deviations with regard to every query as their respective best cases.

We performed a simple linear retrieval using the A* approach and our
approaches with and without pre-processing for every query, respectively. Each
retrieval produces a ranking of the cases based on their respective similarities to
the query. The rank of each query’s best case is shown in Fig. 5. In 50% of the
retrievals, A* performs as well as at least two configurations of our approaches.

2 Note that, in contrast to our approach, A* additionally searches for mappings
between the two graphs’ edges which accounts for approximately half of the run-
times. Furthermore, due to resource restrictions, the search queue is limited to 10000
entries which may hinder the algorithm from finding the overall best mapping.



A Time-Series Similarity Measure for Case-Based Deviation Management 45

However, in the other half, it produces significantly poorer results. In no case
does it outperform all of our approaches regarding the ranking. Thus, hypothe-
sis H1 is approved. Most of the time it does not matter whether pre-processing
was applied or not. Only in queries 6 and 14, the utilization of pre-processing
improves the rankings significantly. There are also queries (5,11,13) where it may
even impair the results. However, with the exception of query 11, this is due to
already poor results of DTW when no pre-processing is being applied. Thus,
hypothesis H2, only holds partially.

The retrieval times of the approaches differ by several orders of magnitude
even after correction for edge mapping. In our sample, mean retrieval time using
SWA or DTW was 45 ms in contrast to A* taking 13437 ms on average3. Pre-
processing can reduce runtimes even further. This shows a significant advantage
of our approach and verifies hypothesis H3.

Fig. 5. Similarity ranking for best matching cases (Color figure online)

6 Conclusion and Future Work

We presented an approach for a case-based deviation management in the context
of flexible workflow execution. In this paper we focused on the retrieval phase and
therefore proposed a similarity measure that is able to compare completed and
running workflow instances where a deviation occurred. Therefore we utilized
time sequence similarity enhanced by a weighting factor that determines the
temporal distance to the deviation. Furthermore, we presented a pre-processing
method for the case base in order to ignore differences that result from the
simple sequential tracing of tasks in the de facto workflows. We implemented
the developed algorithms in ProCAKE and evaluated our similarity measure in

3 Retrieval time of the A* approach was corrected for edge mapping which accounts for
approximately halve of the runtime. The experiments were conducted on a personal
computer with an 8-core Intel Core i7-6700 CPU @3.4 GHz and 32 GB of RAM.
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comparison to a graph-based mapping algorithm based on A* search. The run-
time and similarity assessment comparison shows promising results. As we aim
at supporting workflow continuation with a retrieved similar case, an evaluation
of usefulness is still pending. Therefore recommended tasks after the deviation,
resulting from the most similar case, need to be rated.

Furthermore, as future work the remaining phases of the CBR cycle that were
not considered in detail until now, but rather briefly sketched, will be investi-
gated. Adaptation methods will be developed in order to increase the suitability
of the solution for the query. Therefore the existing constraints that are processed
by the workflow engine, will be taken into account, as they represent the de jure
workflow, actual information about the de facto workflow as well as additional
semantic information, e.g. state of the constraints (valid vs. violated).

Additionally, the application of the presented pre-processing algorithm needs
to be refined. The results of the evaluation already indicate that the reduc-
tion cannot be applied reasonably in every condition, but rather needs to be
weighed. The decision, whether model-consistency should be more important
than regarding additional differences between case and query, should rather be
made based upon the de jure workflow. Data-flow dependencies could be taken
into account or a manual decision about which workflow block simply needs to
be model-consistent during case comparison, for example depending on the type
of control-flow block (parallel vs. exclusive), could be considered. In case of an
exclusive block, the reduction would result in equal treatment of excluding task
executions, even if they possibly have a totally different impact on the deviation
or rather on the continuation after the deviation. A concept for deciding in which
circumstances reduction of case and query is appropriate will be elaborated.

Acknowledgements. This work is part of the research project SEMANAS and
is funded by the Federal Ministry of Education and Research (BMBF), grant no.
13FH013IX6.

References

1. van der Aalst, W.M.P.: Business process management - a comprehensive survey.
ISRN Softw. Eng. 2013, 1–37 (2013)

2. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic,
extensible and context-aware exception handling for workflows. In: On the Move to
Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM
Confederated International Conferences, Vilamoura, Portugal, 25–30 November
2007, Proceedings, Part I, pp. 95–112 (2007)

3. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workflows. Inf. Syst. 40, 115–127 (2014)

4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: KDD Workshop, vol. 10, pp. 359–370 (1994)

5. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of
exceptions in workflow management systems. ACM Trans. Database Syst. 24(3),
405–451 (1999)



A Time-Series Similarity Measure for Case-Based Deviation Management 47

6. Dijkman, R., Dumas, M., Van Dongen, B., Krik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)
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